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CHAPTER I

Introduction

The health insurance reform debate, which resulted in the passage of the Patient

Protection and Affordable Care Act and the Health Care and Education Reconcilia-

tion Act, both signed into law in late March, 2010, had two general goals. One was

extending coverage to millions of uninsured Americans. The other was controlling

the growth of health care costs, with an aim to making health care more affordable

and making health insurance more protective against catastrophic financial losses as-

sociated with illness or injury. With these dual goals, policymakers focused on both

the extensive margin of health insurance coverage — moving the uninsured into any

form of coverage — and the intensive margin — how much coverage one has, and

how insurance influences the medical spending of the insured.

This dissertation consists of three distinct essays related to both aspects of the

health insurance policy debate; two focus on the intensive margin of health insurance

coverage, and one examines the extensive margin. The three essays cover some of the

most relevant issues in health insurance coverage, including whether more generous

coverage leads to more spending due to moral hazard, how different are the enrollees

in more and less generous plans (i.e., adverse selection) and how that might influence

insurance premiums, how interracial disparities in health insurance coverage have
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changed over time and why, and how responsive consumers are to particular plan

characteristics, including the level and variability of the consumer’s projected burden

of out-of-pocket medical spending under each plan.

In the first essay, I devise a new test for whether adverse selection and/or moral

hazard influence the national market for employer-sponsored health insurance. Be-

fore enrollment, employees likely know much more about their health needs in the

coming year than the insurer, which in most cases must charge the same premium

to every employee for any particular health plan, regardless of their past, present,

or future utilization. In addition, the employee and her care provider likely know

more than the insurer about the necessity of each unit of medical care received dur-

ing the coverage year. The employees’ information advantage before and during

enrollment threatens to induce inefficiency due to adverse selection and moral haz-

ard, respectively. While these effects are well understood theoretically, in practice

they are difficult to distinguish, as each results in enrollees in the more generous

plan spending more on medical care. I propose a model that produces two empirical

predictions to separately identify these effects. First, a more financially generous

health plan, irrespective of the rejected alternatives, induces increased spending due

to moral hazard. Second, controlling for the selected plan’s generosity, a positive

correlation between expenditures and the level of spending that leads employees to

prefer the more generous plan suggests adverse selection. Then, using data from

the Medical Expenditure Panel Survey from 1996 to 2001 on health plan offerings

from a national sample of employers, I confirm that more generous coverage leads

to increased spending on medical care due to moral hazard, although the effect is

weaker in managed care plans than in traditional, non-managed plans. While there

is some evidence that individuals with a medical condition enroll in more generous
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plans, spending in those plans is not significantly higher, suggesting that adverse

selection does not lead to diverging premiums.

In the second essay, written with Catherine G. McLaughlin of Mathematica Policy

Research and the University of Michigan School of Public Health, we decompose how

differences in citizenship, education, and labor market outcomes have contributed to

the growing disparity in the uninsured rate between Hispanics and non-Hispanic

Whites. Over the last 25 years, the uninsured rate has risen dramatically for His-

panics, while the proportion of most other racial and ethnic groups without health

insurance coverage has been fairly stable. Hispanics, on average, are less likely to be

citizens and have lower educational attainment and worse labor market outcomes,

and there is evidence that these differences between Hispanics and non-Hispanics

have grown over time. Using pooled panels of the Survey of Income and Program

Participation from 1983 to 2007, we find that differences in citizenship and education

can explain about half of the growth in the uninsured rate gap between Hispanics and

non-Hispanic Whites, but even after controlling for other observable characteristics,

more than half of the growing disparity, or more than one million extra uninsured

Hispanics, remains unexplained.

In the final essay, I examine the relative influence of the elements of a health

plan’s “price” on the probability that it is selected from the set of plans offered

by one’s employer. In health insurance, price includes not just the upfront cost to

the consumer, the premium, but also both the level and the variance out-of-pocket

spending associated with the care the plan insures. In addition, I consider how plan

characteristics beyond financial coverage for basic care, including access to providers,

non-standard coverage like mental health and long term care, and plan’s market share

among one’s coworkers, affect plan choice. Using the same data as the first essay and
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accounting for the differences between managed care and less restrictive plans, I find

that employees demand a plan with lower expected out-of-pocket costs, but that the

variance of a plan’s out-of-pocket spending has no effect on plan choice. Employees

are only weakly responsive to their share of the premium, but do tend to choose the

most popular plan at a firm, suggesting the importance of unobserved plan quality

differences and/or the employees opting for the default plan.



CHAPTER II

Asymmetric Information and the Generosity of
Employer-Sponsored Health Insurance

DISCLAIMER: The research in this paper was conducted while the author was a

Special Sworn Status researcher of the U.S. Census Bureau at the Michigan Census

Research Data Center. Any opinions and conclusions expressed herein are those of

the author and do not necessarily represent the views of the U.S. Census Bureau. All

results have been reviewed to ensure that no confidential information is disclosed.

2.1 Introduction

Seventy-five percent of Americans under the age of 65 obtain their health insurance

through their (or a family member’s) employer (DeNavas-Walt et al., 2009). The

main advantage of the employer insurance system is the ability to pool risk over a

group that gathers for reasons that likely have little to do with health. However, there

may be no insurance market where information is more asymmetric between buyer

and seller. Because of nondiscrimination laws, privacy concerns, and administrative

difficulty, health insurers must set plan premiums without knowing any individual

employee’s family health history, recent medical care utilization, or often even basic

demographic information like gender, age, or family size. Usually, the most the

insurer knows about any one individual in a firm is whether it is covering her alone
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or her and some unspecified number of family members.

A consequence of asymmetric information is that moral hazard and adverse se-

lection can unravel the efficiency gains from selling insurance to an employee group

rather than individual by individual. Because the insurer cannot properly monitor

which units of care are medically necessary, more generous coverage may lead to en-

rollees purchasing care that the consumer values below their full cost, reducing social

welfare. The inflated health care spending due to moral hazard drives up insurers’

costs and makes health insurance more expensive for all.

In addition, employees with private information about their high expected health

needs have an incentive to choose more generous plans, driving up the premium for

these plans and forcing healthier employees into plans that provide less protection

against financial risk. Rothschild and Stiglitz (1976) show that this self-selection may

lead to the adverse selection “death spiral,” where a plan that enrolls only the highest

risk employees becomes too expensive for the employer to offer. This results in a

welfare loss to both high- and low-risk enrollees: there are fewer insurance options

available, and those plans that do exist have less generous coverage than enrollees

would prefer.

In this paper, I take advantage of variation across employers in the generosity of

plans in the employees’ choice set, and information about both accepted and rejected

plans, to separately identify the influence of moral hazard and adverse selection. The

separate estimation of these two phenomena stands in contrast to previous studies

of other insurance markets that are restricted to a joint test of adverse selection and

moral hazard (Chiappori and Salanie, 2000).

I model the employee’s decision to enroll in the more generous plan offered to her

by her employer, and two empirical predictions emerge. First, a more generous plan
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leads to more spending on medical care due to moral hazard; the employee’s spend-

ing decision is independent of her plan’s premium and the premium and generosity

of other plans the employee had been offered. Second, an employee’s incentive to

choose higher- or lower-generosity plans depends on the difference in out-of-pocket

spending between her offers. Low spending employees prefer the less generous plan

with the lower premium, but above some (firm-specific) spending threshold, the more

generous plan is preferable. If adverse selection occurs, as the threshold spending

level increases, enrollees in both the more and less generous plans should be less

healthy and higher-spending on average.

This model leads to clear testable implications for employer-sponsored health in-

surance, the broadest insurance market in the U.S. I produce the first nationwide

estimates of the impact of moral hazard and adverse selection between plans of the

same type, either health maintenance organizations (HMOs) or more traditional,

less-managed care, on this market. Like existing studies on a small number of firms

(including Feldman et al., 1989, and Cutler and Reber, 1998), I consider how differ-

ences in direct health measures suggest adverse selection between plans of the same

type. Unlike these studies, I also estimate how differences in generosity and premi-

ums correlate with the difference in expenditures between plan enrollees, which is

more likely to lead to the adverse selection “death spiral.”

My estimates, using Medical Expenditure Panel Survey data from 1996 to 2001,

suggest that moral hazard leads to substantially more spending on medical care in

non-HMO plans, though spending does not increase with generosity in an HMO plan.

There is no evidence for adverse selection between plans of the same type; an increase

in the threshold spending level does not lead to an increase in observed spending

nor more adverse health outcomes among enrollees. There is weak evidence, that
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HMO plans are less likely than non-HMOs to enroll employees with family members

suffering from a chronic condition or over the age of 50, consistent with adverse

selection between plan types.

These results are relevant to at least two aspects of the current health insurance

debate. One important goal of reform is to reduce the growth of health care costs; the

lower level of moral hazard-induced spending among HMO enrollees suggests that

tighter management of care among all plans may reduce the ever-growing spending

on health care in the U.S. economy. Officials also aim to reduce the often exorbi-

tant premiums in the small business and individual insurance markets, restricting

premiums based on personal characteristics, including age, eliminating coverage ex-

emptions for pre-existing conditions, and generally making these markets more like

the existing employer insurance system. While adverse selection resulting from this

increase in private information could lead to rapidly increasing premiums or the

elimination of the most generous plans, my estimates suggest that this outcome is

unlikely.

2.2 Related Literature

Economists have long theorized that insurance contracts that are improperly

priced due to private information can lead to spiraling prices, unequal access, and

market failure (Arrow, 1963). Because efforts to prevent illness or injury, or limit the

amount spent on the patient beyond what is medically necessary, are difficult if not

impossible to monitor, insurers include deductibles and coinsurance to reduce moral

hazard, rather than fully cover medical care (Pauly, 1968). Furthermore, Rothschild

and Stiglitz (1976) show that when insurers are unable to differentiate between high-

and low-risk enrollees, insurance markets are prone to adverse selection: in equilib-
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rium, either low-risk individuals are unable to fulfill their desire to fully insure, or

no insurance contract is offered to either group. The market is thus forced to decide

on the proper tradeoff between protecting against the financial risk of medical care

episodes and moderating inefficiency.

The health insurance literature has generally found that moral hazard has a mod-

erate but statistically significant impact on medical spending (Cutler and Zeckhauser,

2000). This consensus emerged after the RAND experiment (Manning et al., 1987),

which featured an experimental design that avoided corrupting the moral hazard

estimates with selection effects. The RAND experiment’s conclusion was that con-

sumers are responsive to out-of-pocket price, with a small but statistically significant

elasticity (approximately -0.2).

While there has never been an analogous large-scale experiment for determining

the impact of adverse selection, researchers have frequently used employer data on the

composition of enrollees in their health plans to determine whether employees select a

health plan based on private information about their health. Cutler and Zeckhauser

(2000) survey this literature, and find that in most studies of a small number of

firms, more comprehensive plans tend to enroll older workers and those more likely

to have chronic conditions. Most of these studies focus on selection between managed

care and more traditional plans (including Cutler and Reber, 1998), with managed

care plans attracting the lower risk employees. A few others (including Ellis, 1989)

examine selection within plans of the same type (i.e., managed care or traditional fee-

for-service plans). Feldman et al. (1989) consider selection both across and within

plan types, but they lack data on covered dependents, and only observe personal

characteristics, not the eventual medical care expenditures by enrollees.1

1Other studies (Buchmueller and Feldstein, 1997, Strombom et al., 2002, and Cutler, Lincoln, and Zeckhauser,
2009) find evidence that unhealthy employees are also less likely to switch plans between years. I lack data on
employees over time, so I am restricted to a static model of adverse selection.
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These studies of individual firms nearly universally find evidence of adverse selec-

tion by individual characteristics, which are often correlated with, but not equivalent

to, eventual financial risk. The problem with adverse selection is the “death spiral,”

where a plan that attracts only high-risk enrollees will have to charge ever-higher

premiums that result in a high cost enrollee base. If costs are sufficiently managed

by the insurer so that the difference in financial risk between plans remains within

reason, then the death spiral is not inevitable (Feldman and Dowd, 1991). Fur-

thermore, the initial high-generosity plan enrollees that are forced to switch to a

lower-generosity plan are likely to bring up the average financial risk for their new

plan, stabilizing the difference in costs between the plans.

A better measure of adverse selection is whether enrollees in the more generous

plan spend more on medical care than enrollees in the less generous plan. The prob-

lem, as Pauly (1986) points out, is that higher generosity plans also encourage more

spending due to moral hazard, so a positive correlation between coverage amount

and medical care expenditure (controlling for variables that are common knowledge

and can thus be used to price the contract) could suggest the presence of adverse

selection, moral hazard, or both. The positive correlation test literature (Chiappori

and Salanie, 2000) acknowledges this limitation, but provides a starting point for

determining whether cost differences between plans in a national insurance market

could lead to escalating premiums.2

Other researchers have suggested estimation techniques to separately identify ad-

verse selection and moral hazard, but these methods carry downsides both in general

and for employer-sponsored health insurance in particular. Structural estimation re-

quires assumptions about the underlying utility maximization problem and the na-

2Chiappori and Salanie (2000) and Cawley and Philipson (1999) find no evidence for a positive correlation in the
auto and life insurance markets, respectively. Finkelstein and Poterba (2004) find a positive correlation in the U.K.
annuities market.
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ture of private information about one’s expenditure risk. Cardon and Hendel (2001)

rule out adverse selection, though they do find evidence of moral hazard in line with

the RAND experiment. Reduced form models may also allow for separating adverse

selection from moral hazard, but these models require either exogenous variation

in prices (Einav, Finkelstein and Cullen, 2008) or experience rating (Abbring et al.

2003); however, there are few, if any, natural experiments in the national employer

insurance market in the U.S. during the late 1990’s, while group health insurance

premiums are almost never based on any individual enrollee’s past utilization.

My paper employs a method for distinguishing the effects of adverse selection from

the effects of moral hazard that does not rely on assumptions about consumers’ pref-

erences or the nature of the private information signal, nor does it require exogenous

variation in the price of insurance. Instead, I use variation in the choice set of plans

across a national sample of employers to determine what portion of an enrollee’s

spending can be attributed to the generosity of the plan she selects (moral hazard),

and what can be attributed to her selecting that plan over alternatives based on

her expectations about her future spending. Like the existing single-employer stud-

ies, I compare plans based on the composition of their enrollees, but I also consider

the difference between plans in enrollees’ ultimate financial risk, which would more

directly lead to the adverse selection “death spiral.”

2.3 Data

The Medical Expenditure Panel Survey (MEPS) is conducted by the Agency of

Healthcare Research and Quality (AHRQ), a division of the U.S. Department of

Health and Human Services. MEPS interviews households about health care expen-

diture and utilization, health status and conditions, and health insurance, including
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which family members were covered and when, and other demographic variables.

Household respondents are surveyed every three to five months, a total of five times

over their two years in the panel. A new panel has started each January since 1996.

If an individual or family receives medical care during their time in the survey,

MEPS gathers more information on care events directly from the provider, including

total expenditures on the patient’s behalf and how the provider was reimbursed for

that care, either by the patient out-of-pocket or by private insurance. The primary

dependent variable in this analysis, total expenditure, is the sum of the private and

self-paid expenditures from these events during the months when individuals in the

family were covered by the selected employer-sponsored plan.

In addition, MEPS surveys business establishments and government units on the

health insurance plans (up to four) that they offer their employees. MEPS collects

characteristics of the business, eligibility rules for benefits, and details about the

offered plans. From 1996 through 2001, except 2000, this sample includes employers

of individuals in the household survey.3 This allows for a link between a survey of the

full set of insurance offerings of employers of varying size and industry from across

the country to comprehensive data on medical care utilization and expenditures for

6,600 employees, including demographic data and measures of health status.4

2.4 Theoretical Framework

The analysis in this paper considers decisions made by the health insurance unit,

which may consist of a single individual or multiple individuals in a family, subject

3MEPS documentation (AHRQ 1999) cautions that there was significant survey non-response from the employers,
and thus there has been no effort to create weights that allow for nationally representative estimates from the Linked
File, unlike the full MEPS sample.

4Only one spouse was surveyed in about 92 percent of two-earner households in this sample, but this is usually
the spouse whose employer provided coverage to the other household members. The set of offers may also be less
than complete if the firm offers more than four plans; government entities were asked about up to 36 plans, but I
restrict the choice set to the four most popular plans of the type ultimately selected by the employee.
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to eligibility rules. Single workers maximize their own individual utility. When the

health insurance unit is a family, the worker receiving the offer of insurance maximizes

expected family utility. In the analysis that follows, the “employee” refers to the

individual in a single coverage plan, or the family in a family coverage plan. I take

the decision to choose single coverage or family coverage as given.

A representative employee obtains utility from her consumption of health care,

h, and goods other than health care. While she does not know exactly how much

she (and her family) will spend on medical care during the coming year, she likely

has a better estimate than her employer or the insurer, as she knows her personal

health history, family history, the severity of any existing health conditions, and her

preference for obtaining care. While the insurer may have data on her past usage of

care if she has been enrolled previously, this information cannot be used to vary the

premium by risk type; the premium for each policyholder in a given plan is equal to

the expected average cost of all enrollees in that plan.5

At the beginning of the fiscal year, she will choose a health insurance plan from

among the plans offered by her employer.6 Her selected plan j is characterized by the

amount she must contribute toward the premium, pj, and the financial generosity of

the plan, as summarized by the coinsurance rate, 0 ≤ δj ≤ 1, i.e., the share of h she

must pay out-of-pocket.7 The plan may also differ from other plans offered by her

employer in non-financial elements: access to doctors, the breadth of in-network and

out-of-network options for care, whether a referral is necessary to see a specialist, the

5Insurers do, however, charge different premiums for the same plans across employers. The plan’s total premium
depends on the region, industry, general demographic composition of the employer’s workforce, and the collective
utilization history of that employer’s enrollees in the plan. However, the total premium paid on behalf of any
worker, i.e., the sum of the employer- and employee-paid portions, does not vary by any individual characteristic.
Conceivably, the employer could require higher-risk employees to contribute a larger amount toward the premium,
but in practice this is rare; I exclude such plans from the analysis.

6I leave the modeling of the employer’s decision to offer one or more plans of varying generosity for future research;
see Moran, Chernew, and Hirth (2001) and Bundorf (2002).

7For simplicity, plan j is assumed to have a linear coinsurance schedule; a kinked schedule, as would be the case
with a deductible, would not change the analysis.
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inclusion of dental, vision, home health care, or mental health coverage, and coverage

for particular procedures, such as mammograms or vaccinations. I restrict my focus

to the financial generosity of the plans in the portfolio with respect to physician,

hospital, and prescription drugg expenditures alone, as any two plans of the same

type (e.g., all managed care plans) in a firm’s portfolio tend to offer the same non-

financial benefits.8 A more financially generous plan will reimburse the care provider

with a higher portion of every dollar spent on health care on the employee’s behalf,

leaving the employee with a smaller share; that is, plan j is defined to be more

generous than plan k if δj < δk.

During the fiscal year, the employee’s demand for medical care should depend

only on the out-of-pocket price per unit she faces under selected plan j, δj; the more

that the insurance plan reduces the out-of-pocket price below the true price, the

more the employee will buy, due to moral hazard. This assumption follows directly

from the concept of the sunk costs, which, according to traditional economic theory,

are irrelevant in deciding how much of a product, in this case medical care, to buy.

In this model, there are two sunk costs. The premium is a fixed cost (even if paid

monthly or in each pay period, as the amount is a contractual obligation), and is

therefore a sunk cost for the length of the contract. In addition, the opportunity cost

of choosing one plan rather than another is also sunk during the contract period, and

therefore irrelevant; that is, within the fiscal year, only the selected plan matters.

Thus, moral hazard is influenced only by the absolute generosity of the selected plan

— the more generous the employee’s plan, the more she and her family will spend,

irrespective of the rejected alternatives.9

8Table 4.4 shows how the selected plans differ from the rejected plans along non-financial elements. Any two
HMO plans tend to be very similar; slightly more people prefer not to need referrals for specialist care, and prefer
to have access to a chiropractor. Non-HMO plans are more different from each other; coverage for home health care
and physicals is especially preferred. Non-HMO plan enrollees often choose a plan that requires referrals and has a
deductible over plans, consistent with choosing PPO plans over FFS plans.

9Endogenous job selection could bias this correlation upward. A job applicant with high expected medical costs



15

Adverse selection, however, requires information on both the selected plan and

the rejected alternatives, as those are the options between which the employee is

self-selecting. In an insurance market with standardized options, or within one firm

that is restricted to offering the same set of health insurance plans to all employees,

the rejected alternatives are standard across enrollees, so their characteristics are

of relatively little importance. In the national employer-sponsored health insurance

market, however, the parameters of the rejected plans vary. The potential for adverse

selection will be different at a firm that offers only two very generous plans compared

to a firm that offers one very generous plan and one much more bare-bones plan,

and very obviously different at a firm that offers just the one very generous plan and

nothing else.

In this model, the distribution of risks is continuous and one-dimensional, based

only on expected health care expenditure (as in Cutler and Reber, 1998), and risk

type maps monotonically to the ex-post realization of medical spending.10 Employees

are offered two plans of the same type (e.g., managed care), with associated premiums

that do not vary by individual but may differ between the plans, and no one chooses

to remain uninsured.11 For any fixed dollar amount of total spending on behalf of

may be attracted to a firm by its generous health plans (or one specific generous plan). Thus, a positive correlation
between generosity and spending would result purely from adverse selection between jobs. However, there are several
reasons to think that endogenous job selection does not invalidate this paper’s results. For one, among all the
uncertainty surrounding a job search, it is difficult to place a value on hypothetical plan offers, especially when all
potential employers are likely touting their “generous health benefits.” I also include firm characteristics, including
industry and firm size, in the regression analysis, which may control for differences across firms. My sample is also
limited to employees who take up an employer’s insurance offer. Endogenous job selection is more of a concern when
there is sorting between jobs that offer no health insurance versus jobs that offer at least one plan; even then, Hirth
et al. (2006) and Monheit and Vistnes (1999) indicate that a substantial number of individuals who prefer not to
have insurance are mismatched with firms that offer insurance, resulting in lower wages than would be ideal.

10Medical spending could be modeled as a function h(Ψ), where Ψ represents the difference in monetary value
between the more generous and less generous plans (Feldman and Dowd, 1982). Employees with low values of Ψ
opt for C, and those with high values select G, and the analysis is no different than above. Medical spending may
also be modeled as a function h(Ψ, ε), where ε is a stochastic variable accounting for uncertainty about one’s health
during the coming year. Employees with low Ψ will opt for plan C, but some will draw a large ε (bad health)
and realize a large value for h; these employees will have low-generosity plans but high spending levels, biasing the
expected positive correlation between absolute generosity and spending toward zero. A similar result holds for high
Ψ employees in plan G who draw a low value of ε and thus spend very little.

11This restriction simplifies the exposition of the model but is not essential. If there are uninsured employees, the
model assumes that they come from the left-most points on the risk distribution. The implications for the subsets
choosing the less generous and more generous plans remain unchanged.
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the employee, h, plan G requires less out-of-pocket spending than the less generous

plan, C (δGh < δCh). Premiums for the two plans will depend on their respective

average costs; unless G enrollees spend far less than C enrollees, enough to make up

for the plan-paid advantage, plan G will have the higher premium, so pG > pC .

Adverse selection arises in this model because each employee chooses the plan that

requires a lower total out-of-pocket spending at their expected expenditure level, h.

If spending is likely to be low, then the lower coinsurance paid under plan G will not

make up for the extra premium every month. However, if h will be high, then plan

G’s advantage in cost sharing will more than compensate for the higher premium.

Below some threshold value of spending, h′, plan C will be preferred, while above h′,

plan G results in a lower out-of-pocket spending amount, including premium. At h′,

the total out-of-pocket spending under the two plans are equal, so

pG + δGh
′ = pC + δCh

′. (2.1)

Solving for h′,

h′ =
pG − pC
δC − δG

=
pG − pC

(1− δG)− (1− δC)
, (2.2)

which indicates that the threshold level of spending above which consumers would

prefer the more generous plan is simply the ratio of the relative premium, or the

difference in premium between the two plans, to the relative generosity, the difference

in the plan-paid portion out of every dollar of medical spending.12

The MEPS dataset essentially draws a small number (often just one) of employees

randomly from the risk distribution in a firm. The expected value of that draw will

depend on the threshold spending level, h′. As h′ increases, the expected value of h
12This framework implicitly assumes a risk neutral consumer. A risk averse employee would likely prefer plan G

even at some h slightly below h′. In this case h′, and its (theoretically) positive correlation with spending, would
be overstated, so the correlation measured in the regression model is an upper bound on the true correlation. In the
results section, I show that the measured correlation is not significantly greater than zero, so we can be confident
that there is no correlation with h′ and thus no adverse selection along the demand for financial generosity.
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both above and below h′ also increases.13 The intuition is presented in Figure 2.1.

Firm X and Firm Y have identical risk distributions, f(h), in their employee pools,

and both firms offer the same less-generous plan C requiring the same employee

contribution.14 The firms offer different more-generous plans: Firm X’s plan GX is

more generous, and requires a larger employee contribution, than Firm Y’s plan GY ,

and thus is further to the right on the generosity continuum. Because the generosity

gap between the two plans is wider in Firm X, the threshold level of spending h′ will

also be further to the right in Firm X than in Firm Y, which means the randomly-

selected X employee who chose plan C will have a larger expected value of h than

the sampled Firm Y employee with the same plan.15

The exercise in Figure 2.1 summarizes the strategy for separately identifying moral

hazard and adverse selection among employees who opt for their respective firm’s

lower generosity plan. A positive correlation between plan C’s absolute generosity

and the C enrollee’s total medical care expenditure, all else (including the relative

generosity and relative premium) equal, reflects the presence of the moral hazard

incentive, because only the generosity of the selected plan matters. If unhealthy

employees adversely select into more generous plans, the threshold level of risk,

h′, i.e., the ratio of plan C’s relative premium to its relative generosity, should be

positively correlated with spending, holding C’s absolute generosity constant.16

The exercise is similar for plan G enrollees. In Figure 2.2, I compare the same

13See Appendix for the proof to this statement.
14Note that h is endogenous to plan choice, due to moral hazard, but in Figure 2.1, the relevant employees at each

firm face the same moral hazard incentive, as both choose plan C. The same is true for the employees choosing plan
G in Figure 2.2.

15In this intuitive model, plan GX requires a larger employee contribution than plan GY , for two reasons. First,
because the insurer reimburses the care provider with a higher proportion of any dollar of spending under plan GX ,
the expected cost for any fixed dollar amount in any fixed population is higher for GX than for GY . Second, as
shown in the graph, the enrollees in plan GX are higher risk on average, so the premium will need to be higher to
reflect the higher average cost. The higher premium only reinforces the adverse selection — only the riskiest Firm
X employees will choose to pay the much higher premium for GX .

16Plan C should have a lower premium than plan G, and by definition is lower generosity, so both relative premium
and relative generosity are negative, and thus the ratio is positive. The threshold value h′ is always positive if plan
G is more expensive than plan C.
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Firm X to a different firm, Z, which also has the same risk distribution among its

employees. Firms X and Z offer the same more-generous health plan G, but Firm

Z’s less-generous offering, CZ , is more generous than at Firm X, requiring a greater

premium. Because Firm X’s plan C is further to the left, so too is the threshold

spending level h′, and therefore the sampled employee at Firm X should have a lower

expected value of spending. Thus, holding constant the absolute generosity of the

selected plan (in this case, G), a positive correlation between h′ and the ultimate

level of medical spending h suggests adverse selection.

In summary, in the national employer-sponsored health insurance market, the vari-

ation in both absolute and relative generosity and relative premium allows for the

separate identification of moral hazard and adverse selection, respectively. The more

generous the selected plan is, the more that moral hazard will induce the enrollee

to spend on covered medical care; thus, a positive correlation between absolute gen-

erosity and medical expenditures suggests the influence of moral hazard. A positive

correlation between expenditures and the threshold level of spending that separates

those who prefer the more generous, more expensive plan and those who prefer the

cheaper option, controlling for the moral hazard incentive, suggests adverse selection.

2.5 Health Insurance Generosity

A key contribution of this paper is the creation of a single measure that summa-

rizes the financial generosity of a health insurance plan. This generosity measure

simplifies a plan’s often complex, non-linear coinsurance schedule, and allows for

comparing plans over the range of one’s possible out-of-pocket costs.

The simplest possible generosity measure is the total amount that the plan actu-

ally reimburses on behalf of the enrollee (and her family, where applicable) during
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the given year. This is not the measure I use, as there are a number of serious

problems with this measure. First, the family’s spending level is likely endogenous

to the plan’s characteristics; in fact, one of the hypotheses tested in this paper is

exactly that: a plan with lower cost-sharing will likely lead to more spending, due to

moral hazard. Second, this variable is only ascertained for the selected plan, not the

rejected alternatives. Finally, for those plans with no deductible, there is a mechan-

ical relationship between the chosen plan’s actual insurer-paid amount and the total

expenditure level, in effect tracing out the average plan-paid rate for that enrollee.

As an alternative, I calculate the generosity of any plan based on a sample of

employees with similar risk profiles, and determine how much every plan offered to

those employees would pay out if each member of the sample was enrolled in the

plan, using the plan’s deductible(s), co-payments, coinsurance, and maximums. The

“absolute generosity” of a plan j is the mean percent of total spending that the plan

would pay for these hypothetical enrollees.

In the model, the employee chooses a plan from among her portfolio of offers

based on her expectations about her (and her family’s) expenditures during the

coming year. I do not observe this range of expectations. Instead, I define the range

of her possible outcomes as the empirical distribution of the ex-post realization of

expenditures by others in the MEPS linked employer-employee sample who are of

a “similar” risk type ex-ante. This risk type is defined by three variables: the

survey year, to account for the growth of spending over the six years; the employee’s

enrollment status, based on whether she chose a single or family plan; and whether

anyone in the employee’s family (or just herself, if she chose an individual plan) had

a chronic condition or health limitation before or during the plan year, to account
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for her baseline risk.17

The Nr employees in subsample r were offered a total of Jr plans, between one

and four plans per person. For each employee i in that subsample, I calculate how

much plan j ∈ Jr would have paid on i’s behalf, based on i’s actual sequence of care

events and total amount spent, hi. Plan j’s generosity is then

gj ≡ 1− δj =
1

Nr

Nr∑
i=1

hi −Gj(hi)

hi

, (2.3)

or the average plan-paid rate if every employee in subsample r were covered by plan

j, where Gj is the (possibly non-linear) coinsurance schedule for plan j.18

There are other factors that will lead a consumer to pick one plan over another

besides financial generosity and the employee contribution to the premium, includ-

ing the available network of doctors, restrictions on access to specialists, and the

availability of insurance for other types of care besides basic physician, hospital,

and prescription drug coverage. Physician networks and specialist access will differ

between health management organization (HMO) plans, preferred provider organi-

zation (PPO) plans, and fee-for-service (FFS) indemnity plans.19 HMO plans make

up about 47 percent of the plans chosen in this sample, while PPO plans make up 46

percent, and FFS plans are only 7 percent. Financial generosity may, then, have a

different effect depending on whether the selected plan was an HMO, PPO, or FFS.

17Chronic conditions range from cancer and heart disease to asthma and diabetes. A respondent is “limited” if
she reports a limitation during a battery of questions about activities of daily living and functioning. I include not
just conditions that exist before the plan year begins, but also conditions that are diagnosed during the year, as
employees may have some private information about undiagnosed conditions that may soon arise because of family
history or early onset symptoms.

18In a regression of the generosity measure on a comprehensive list of plan characteristics, the R2 is 0.63, and
the coefficients for most elements are significantly different from zero at the 99 percent confidence level, and in the
predicted direction: the plan is more generous when the deductible is zero or small, and when the coinsurance rates
and co-payments for physician and hospital visits are low. These results suggest that the financial generosity of a plan
relies on each cost-sharing element of the plan working in concert, rather than just one dominant plan characteristic.

19Generally, HMOs employ a network of health care providers, and within this network, care is covered at generous
rates; care sought outside the network is generally not covered, except for emergencies and where the primary care
physician has referred the patient to a specialist. PPOs pay for care received both in- and out-of-network, but
in-network coinsurance rates are lower. FFS or traditional indemnity plans pay either a flat fee or percentage of the
cost regardless of where the care is received. See Cutler, McClellan, and Newhouse (2000) or Moran, Chernew, and
Hirth (2001) for more details.
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Unfortunately, I am not able to directly compare the generosity of managed care

(HMO) plans to less-managed plans like PPOs and FFS plans. Cutler, McClellan,

and Newhouse (2000) find that the quantity of care does not vary much by plan type,

but that the price paid to providers for that care varies greatly, with HMOs paying

the least, FFS plans paying the most, and PPOs somewhere in between. Because

HMOs have lower payouts to providers, premiums and cost-sharing for these plans

need not be as high as PPO or FFS plans, and thus for the same dollar amount

of spending, the HMO plans appear to be more generous. This runs counter to the

assumption in other studies (Feldman and Dowd, 1982, Cutler and Reber, 1998) that

the HMO plan is the less generous option that should attract lower risk employees.

In addition, the total spending measure, the sum of the amounts paid by private

insurance and the patient herself, will be lower for HMO plans that are able to

negotiate lower prices for care.20

Because neither the expenditures nor the plans’ generosity are comparable be-

tween HMO and non-HMO plans, I limit my comparisons to plans of the same type.

If plans j and k are both HMOs, or both non-HMOs, then the relative generosity of

the chosen plan j is |gj − gk|.21

2.5.1 Indications of Adverse Selection

The concept of adverse selection suggests that when facing a higher premium for

more generous coverage than for a more restrictive plan, individuals with private

information that they are likely to need large amounts of care will pay the higher

20If my calculation overstated the generosity of HMOs by a consistent percentage (for instance, the 11-17 percent
difference between HMOs and PPOs in prices paid for the same procedure in Cutler, McClellan, and Newhouse), I
could just deflate the HMO generosity by this same percentage to make the generosity measure comparable across
plan types. Because total spending is lower for HMOs, however, I would have to estimate how much plans of each
type would pay for every procedure ever performed in any care event, which is beyond the scope of this paper.

21Because FFS plans are a small portion of the total number of plans, I include them with PPO plans. While
most of the non-HMO comparisons will be a PPO chosen over another PPO, I also classify a PPO chosen over a
FFS plan, or vice versa, as a valid comparison.
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price while lower risk individuals will opt not to. With only bad risks in the risk

pool, the premium increases, driving out more good risks and further increasing the

premium.

This would not be the case, however, if more generous coverage was not also

more expensive. If one plan was more generous in every way — not just financially,

but also with less restrictive access to specialists, a wider breadth for the provider

network, and coverage for secondary care types like dental and mental health — yet

cost the same as a less generous plan, there would be very little reason not to pick the

more generous plan, whether one’s expected expenditures were high or low. In this

case, both high and low risks are in the same pool, and there is no adverse selection.

(Moral hazard may still result in a positive correlation between insurance generosity

and expenditures, however.)

In practice, more generous plans often do not require the higher employee-paid

share of the premium (Table 2.2). Out of 3685 plan pairs (a comparison between

the chosen plan and each of the rejected alternatives, in turn), 1438, or 39 percent,

required a lower employee contribution from the more generous plan. Another 21

percent required the exact same contribution from both plans, with the majority of

those cases paid entirely by the employer.

Not surprisingly, employees are more likely to choose the more generous plan if

it requires the same or lower employee contribution than when the more generous

plan has a higher price. Still, 38 percent chose the lesser plan when it had a higher

employee contribution. The tradeoff faced by the employees who are offered a package

with employee contributions that are not proportional to generosity is less clear.

These individuals may sign up for plans that are more attractive on a non-financial

level; for example, perhaps one’s preferred doctor is in the network of only the plan
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that is less financially generous. It could also be that the less generous plan is the

default option, which keeps costs low for the employer and insurer, especially when

employees do not depart from this default.

This finding also extends to the total premium: the higher premium plan is often

not more generous, and when the less generous plan has a higher premium, it is still

selected nearly 39 percent of the time.22 While a plan with a higher total premium

may reduce the employee’s cash wage more than a plan with a lower total price,

it is unlikely that the employee feels the pinch of this incentive directly; thus, the

employee is likely to respond more to the portion of the premium she pays rather

than the total premium, which includes her employer’s contribution. Therefore, I

focus on the employee’s contribution to the premium, not the total premium itself,

in the estimation of adverse selection.23

The theoretical framework which leads to the derivation of h′, the threshold level

of spending above which employees should prefer the more generous plan, suggests

an approach for dealing with employees who face a higher premium for the less

generous plan. Recall that h′ is equal to the ratio of the relative premium to the

relative generosity of the selected plan. When the relative premium is the same for

both plans, h′ = 0, and the model predicts that the more generous plan will always be

selected; if non-financial differences are minor or not greatly valued, the employee has

no reason not to choose the more generous plan if it costs exactly the same as a lesser

alternative, no matter what her expected spending level. The employee should also

choose the more generous plan, regardless of how much she will ultimately spend, if

22While this finding may call the generosity measure into question, the R2 on a regression of the total premium
on plan characteristics is only 0.04, so total premium does not appear to hinge on the coinsurance schedule. This
matches the counterintuitive finding in Cebul, Rebitzer, Taylor, and Votruba (2008) that higher premium plans are
often not more generous because of the constant churning in both the employee-employer and the employer-insurer
relationships, encouraging insurers to chase short-run profits at the expense of quality.

23Chernew, Frick, and McLaughlin (1997) find that employees are more responsive to their share of the premium
than to the total premium itself.
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the lesser plan has a employee contribution (where the relative premium is negative).

Because the more generous plan is the preferred option at any spending level h ≥ 0,

I set h′ = 0 for any employee facing the same or lesser price for the more generous

plan.

On the other end of the spectrum, some plans have the same calculated generosity,

but different premiums. In that event, h′ should be infinite, as the denominator,

relative generosity, is zero. This means that regardless of how much the employee

plans to spend, the model predicts that “less generous” plan (in this case, the plan

with the same generosity but a lower premium) is always preferred. In practice,

because the relative generosity is often quite small (within one or two percentage

points), I cap h′ at the maximum level of expenditures observed in my sample,

approximately $201,000; because no employee’s expected expenditure is anywhere

close to this maximum, no one should pick the more generous plan when the relative

premiums is relatively large and the relative generosity is relatively small (or zero).

Still, many employees with h′ = 0 pick the less generous plan with the same or

higher employee contribution to the premium, while many others with h′ = $201, 000

pick the higher premium but barely more generous plan, as shown in Figure 2.3. Only

65 percent of HMO enrollees and 59 percent of non-HMO enrollees with a negative

(paying more for the less generous plan) or zero (same premium for both plans) h′

choose the more generous plan. The percent selecting the more generous of any two

plans should be declining in h′, but for both HMOs and non-HMOs, the graph is

relatively flat, with a slight decrease for most deciles of non-HMO enrollees reversed

by a large share of employees paying a higher premium even when the two plans have

equal generosity (h′ = $201, 000). According to the model that results in adverse

selection in the insurance market, employees with large values of h′ should never
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pick the more generous plan, but when the two plans are (approximately) equal in

generosity, nearly two-thirds of the sample opt for the higher premium option.

If the market is characterized by adverse selection between plans of the same type

(HMO or non-HMO), the percent picking the more generous plan would increase

with expenditures. Figure 2.4 indicates this is not the case for non-HMOs, where the

probability of selecting the more generous plan instead stays relatively flat through-

out the expenditure distribution. For HMOs, however, there is a noticeable increase

in the probability of selecting the more generous plan as total expenditure increases.

The model suggests that, unlike adverse selection, moral hazard depends only

on the absolute generosity of a plan — the more generous the selected plan is, the

more the employee (regardless of her risk type) will likely spend. This is exactly

what I observe for non-HMO enrollees, and less so for HMO enrollees, in Figure 2.5.

With each successive decile of absolute generosity, the average expenditure for that

decile tends to increase; i.e., a linear trend line through all three series is positive

and significantly different from zero. HMO expenditures are slightly lower for all but

three deciles.24

2.6 Empirical Strategy

To test for the presence of adverse selection and moral hazard in the employer-

sponsored insurance market, I estimate a series of regressions where the dependent

variable is total expenditure, and the key independent variables are measures of

absolute and relative generosity.

24Figure 2.5 by itself does not indicate moral hazard, however, because adverse selection may also lead to a positive
correlation between the selected plan’s generosity and expenditure. On the other hand, coupled with the evidence in
Figures 2.3 and 2.4, and Table 2.2, that the conditions for adverse selection do not exist, Figure 2.5 provides strong
evidence for moral hazard.
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2.6.1 Estimation Sample

The sample for these regressions consists of pairs of plans of the same type (HMO

or non-HMO), where one plan is the selected plan and the other is each rejected plan

in turn. If an employee is offered plans A, B, and C, and chooses A, I would like

to be able to measure the selection between A and the employee’s second-best plan;

unfortunately, we do not know whether B is preferred to C, or vice versa. Therefore,

I include every comparison between the selected plan and a rejected plan of the

same type, because it is unclear whether the selection of risk types is most relevant

between selected plan A and rejected plan B, or between A and rejected plan C.

This means that employees offered three plans are double-counted, while employees

offered four plans are triple-counted.25 Standard errors are clustered by individual, to

account for double- and triple-counting, and for the few employees that appear in the

linked employer-employee sample during both years of their observation by MEPS.

I include as many as three plan pairs per person; for government employees who

are asked about more than four plans, I retain only the selected plan and the three

rejected options with the highest enrollment among employees at that establishment.

I do not include a plan pair where one plan is an HMO and the other is a non-

HMO. That means that if the employee chose an HMO, I only consider relative

generosity and premium between the selected plan and other HMO plans in her

portfolio.

I exclude employees who are offered only one plan, and employees who are offered

only one plan of the type they ultimately selected. That is, if the employee chose an

HMO plan, and all of her rejected alternatives were non-HMO plans, I consider her

portfolio to consist of only one plan, and she is excluded. For one-plan employees,

25As a robustness check, I also estimate the main result using just one pair per person; see section 4.6.
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the other option is to go uninsured, where the generosity is g = 0, which means

that absolute and relative generosity are equal. The absolute generosity coefficient,

then, is also picking up the effect of adverse selection between insurance and being

uninsured. Similarly, for an employee offered only one plan of the type she chose,

the absolute generosity coefficient may pick up the effect of adverse selection across

plan types.

Information is asymmetric in the employer-sponsored insurance market because

very few plans allow the insurer to know, and charge different premiums based on, any

characteristics of the individual employee aside from firm characteristics. MEPS asks

employers in the establishment survey whether each plan’s premiums vary according

to age, gender, family size, wage, or some other factor. Approximately 83 percent of

chosen plans indicated that they do not vary premiums based on any of these factors;

I exclude the 17 percent of plans that have variable premiums.26

2.6.2 Specification

The medical expenditure variable in this paper, as in the existing literature, is

right-skewed and has a small mass point at zero. Figure 2.6 displays the distribution

of the natural logarithm of total expenditures for HMO and non-HMO enrollees.

There is a small mass point at zero expenditures, while the rest of the distribution

is normally distributed in log form. The HMO distribution is slightly to the left,

and more likely to have zero expenditures; this could suggest that HMO enrollees

are healthier, or that HMOs just pay out less for the same procedures.

Duan, Manning, Morris, and Newhouse (1983) suggest using a two-part model

when medical expenditures is the dependent variable. In the first equation, I estimate

26Of those that did vary premiums by observable characteristics, the most popular pricing scheme was based on
family size alone (8.2 percent of chosen plans), followed by “other reasons” alone (3.6 percent) and age alone (1.2
percent); no other combination of these factors totaled more than one percent of the sample of chosen plans.
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a logit regression where the dependent variable is an indicator for whether total

medical expenditure h for employee i (and her family, if she has family coverage) is

positive,

I(hi > 0) = f(α1gj + α2log(h
′) +Xiξ + νi) (2.4)

= f(α1gj + α2log(
pj − pk
gj − gk

) +Xiξ + νi),

where gj and pj is the absolute generosity and employee contribution, respectively, for

plan j. The logit estimation accounts for the mass point at zero in the expenditure

distribution.

In the second equation, I estimate a linear regression of the natural logarithm of

medical care spending, log(h), conditional on having non-zero expenditures, on the

absolute generosity (gj) of selected plan j and the natural logarithm of the threshold

level of spending (h′ = pj−pk
gj−gk

) above which the more generous of the two options j

and k should be preferred,

log(hi|hi > 0) = β1gj + β2log(h
′) +Xiγ + εi (2.5)

= β1gj + β2log(
pj − pk
gj − gk

) +Xiγ + εi.

The loglinear estimation accounts for the long right tail of the expenditure distribu-

tion.

The predicted expenditure, ĥ, will be the product of the predicted probability

that the expenditure is positive from 2.4, p̂, multiplied by the conditional predicted

expenditure from the 2.5, ̂h|h > 0. Duan, et al., (1983) propose scaling the pre-

dicted expenditure by a smearing factor, ŝ, equal to the exponentiated residual from

the loglinear regression, as the error term is likely to be non-normal. So the final
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predicted expenditure is

ĥ = p̂( ̂h|h > 0)(ŝ). (2.6)

The smearing factor simplifies the differentiation of equation (2.6) with respect to

g and log(h′), in turn. The marginal effect of absolute generosity on total expenditure

for employee i reduces to

∂ĥ

∂g
=

α̂1

1 + exp(α̂1gj + α̂2log(h′) +Xiγ̂)
ĥ. (2.7)

Similarly, the marginal effect of log(h′) on total expenditure is the predicted expen-

diture, ĥ, times the logit coefficient for log(h′) divided by the denominator of the

logistic function. In the results tables, I report the mean of this derivative evaluated

for each individual, with standard errors calculated by bootstrap (500 iterations).

The null hypothesis of no moral hazard assumes that the marginal effect of g on ĥ

is zero, while the null for no self-selection by risk type assumes that the marginal

effect of log(h′) on ĥ is zero.27 As the measures of spending (h) and generosity (g)

have different meanings due to the ability for HMOs to negotiate lower prices for

the same services, I estimate this two-part model separately for HMO and non-HMO

plan pairs.

X includes the few variables that insurers who sell coverage through employers

may be able to include in their pricing formula, so that we control for any symmetric

information in the transaction.28 The only two elements that vary at the individual

level in this matrix are an indicator for whether the policyholder has family coverage

rather than single coverage and, in the non-HMO regression only, controls for whether

the selected plan was a FFS plan or PPO plan. I also control for the characteristics
27Though both coefficients are expected to be positive, I perform two-sided tests; one possibility, contrary to my

model, is that self-selection could be favorable, if higher-spending employees choose the less generous plan in their
portfolio, perhaps because of liquidity constraints, higher discount rates, or higher risk tolerance.

28Nearly all employers in the sample employ only one MEPS Household Component respondent, so I cannot
estimate a firm fixed effect.



30

of the firm and the local insurance market. These variables include the region of

the country, whether the policyholder lives within a metropolitan area, whether the

policyholder is a member of a union, the industry of the policyholder’s firm, the

firm’s size, whether the firm self-insures, whether the firm offers health savings or

flexible savings accounts, and year dummies.

2.6.3 Weights

The first two columns of Table 2.4 reinforce the warning in the MEPS documen-

tation that the sample of employees from the MEPS household survey linked to the

employer survey is not nationally representative, a problem made worse by my sample

inclusion requirement that employees are offered more than one plan of their selected

type (HMO or non-HMO). The first column presents summary statistics for the the

full MEPS Household Component sample of working adults with insurance through

their own employer, with means and standard deviations calculated using the popu-

lation weights provided by MEPS. The second column features the unweighted means

and standard deviations of my sample. The variables I have included in this table

are those that are most different between the estimation subset and the full MEPS

sample. White non-Hispanic, non-self employed, higher-income employees working

in large establishments or the government tend to be most likely to have multiple

health insurance offers of the same type, and are thus over-represented in my sample.

In order to produce results that are more easily interpretable and generalizable,

I re-weight my sample to account for this over-representation. Using the full (linked

and unlinked) household sample of employer-insured working adults, I create an indi-

cator variable for whether the employee is in the estimation sample. I then estimate

a logistic regression of the probability of inclusion on the gamut of personal and

firm characteristics from the household survey, including the variables in Table 2.4
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plus age categories, marital status, self-reported health status, education, region,

urbanicity, and occupation as explanatory variables. An employee’s weight is their

MEPS-provided weight divided by the predicted probability of inclusion in the sam-

ple, so that the groups that are over-represented in the sample are under-weighted.

The third column in Table 2.4 includes means and standard deviations calculated

using the new weights; the means are much closer to the means reported in the first

column.

Table 2.3 provides summary statistics for the regression variables of note, both

unweighted and weighted. The standard deviations on the expenditure variables

are very large relative to the means. On average the plans pay 75 percent of an

employee’s total annual medical care spending. The mean difference in generosity

between plans is between 8 and 10 percentage points; the difference in generosity

is smaller between HMO plans than between non-HMO plans. Conditional on the

employee’s premium contribution for the more generous plan being the higher than

for the less generous plan, the relative employee contribution is approximately $450

per year. The mean threshold spending level, h′, is lower for non-HMO plans because

a higher percentage of the more generous of two non-managed care plans require the

same, or even lower, employee contribution.

2.7 Results

2.7.1 Expenditures

In Table 2.5, I report the results of the regression of the natural logarithm of

total annual medical expenditures on the selected plan’s absolute generosity and the

natural logarithm of the threshold spending level (h′), separately by whether the

selected plan and rejected alternative are both HMO (top panel) or non-HMO plans

(bottom panel). All regressions include plan and firm characteristics and year fixed
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effects, and are weighted to reflect non-random missing observations in the MEPS

HC-IC Linked File.

Absolute generosity is positively associated with medical expenditure for both

HMO and non-HMO plans, but it is statistically significant only for non-HMO en-

rollees. The logit coefficient (column 1) indicates that non-HMO enrollees are more

likely to spend a positive amount on medical care the more generous is their selected

health plan. Conditional on having positive spending, the loglinear coefficient (col-

umn 2) indicates that for every additional percentage point paid by the plan, the

employee (and her family) enrolled in a non-HMO plan spends 2.1 percent more on

medical care. The marginal effect (column 3), which accounts for both the incentive

to spend some positive amount and the incentive to spend more thereafter, suggests

a large response to absolute generosity; a small change in generosity leads to more

than $460 in additional medical spending, approximately 14 percent of the average

non-HMO family’s spending.

The response is much smaller for HMO plans, and imprecisely estimated. Both the

logit and loglinear coefficients for absolute generosity are positive but not significantly

different from zero, and the point estimates are smaller than those estimated for non-

HMO plan pairs. The marginal effect suggests that a small increase in the generosity

of the selected plan increases spending by $180, or 6 percent of average spending,

but the standard error on the marginal effect is too large to rule out the absence of

an effect with any certainty.

The theoretical model predicts that, in an insurance market subject to adverse

selection, expenditures will be positively correlated with the threshold level of spend-

ing (h′) above which the insured would prefer the more generous of two insurance

contracts. This does not appear to be the case between employer-sponsored health
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insurance plans of the same type. For HMO enrollees, the logit coefficient is positive

and the loglinear coefficient is negative, while the opposite is true for non-HMO en-

rollees. Only the loglinear coefficient for non-HMO plans is positive and significant,

but the marginal effect that takes into account zero spenders is actually negative;

whereas theory would predict an increase, spending decreases by 1.5 percent with a

small increase in the relative premium (or a small decrease in the relative generos-

ity), though the effect is not statistically significant. The marginal effect is larger in

absolute value and positive for HMO plans, but the standard error is also larger.

I can further decompose medical care spending to examine whether moral hazard

or adverse selection differs by the type of care received (Table 2.6). The same pattern

holds for each care type: moral hazard leads non-HMO employees to spend more on

physician care, hospital care, and prescription drugs in more generous plans, while

HMO enrollees do not have the same response. The marginal effect for hospital care is

especially large; buoyed by the large increase in the probability of spending a positive

amount on hospital care, a small increase in non-HMO plan generosity increases

hospital spending by $1531, more than doubling the average hospital expenditure.

The marginal effects are much smaller, and statistically insignificant, for HMO plans.

There is no evidence of adverse selection, as each marginal effect is not significantly

different from zero.

These results indicate that moral hazard leads employees enrolling in more gen-

erous non-HMO, but not HMO, plans to spend more, and that the effect is substan-

tively large for non-HMO enrollees. There is no detectable adverse selection between

either two HMO nor two non-HMO plans, but this could be because so many port-

folios require the same employee contribution for both plans, so employees of all risk

types should select the more generous plan if its premium is no higher. The first two
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columns of Table 2.7 present regression results separately for employees who pay the

same portion (in dollars or percent) of the total premium for both plans, and for

those who contribute differently to each plan.

One of the assumptions in the model is that moral hazard does not depend on

premiums, neither absolute nor relative, and these results seem to confirm that as-

sumption: as I find in the main regression, the moral hazard incentive is weak for

HMO enrollees in both groups (top panel), and the marginal effect of generosity on

spending is positive and statistically significant, and of comparable magnitude, for

both groups of non-HMO enrollees (bottom panel). The marginal effect of log(h′) on

spending is a larger positive number for HMO and non-HMO enrollees that face a

higher premium for a more generous plan than for those who face the same premium

for both plans, but in neither case is it statistically significant.

In the third column of Table 2.7, I present the marginal effects from the two-part

model just for those who pay a higher employee premium for the more generous plan

(regardless of whether they chose the more or less generous plan);29 this group has

an h′ that’s greater than zero but less than infinity, so there is a range of expected

spending where the less generous plan is optimal, and other values where the more

generous plan should be preferred. The point estimates are similar, though because

of the smaller sample size, the standard errors are larger. The pattern of results is

the same: a large positive effect of absolute generosity on spending, and a small and

insignificant effect of log(h′), which together suggest moral hazard but not adverse

selection.
29The regression results are nearly identical between people who select the more or less generous plan.
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2.7.2 Utilization

Moral hazard and adverse selection, if present, should be detectable not only

in their effect on expenditures, but also in medical care utilization. A high-risk

individual, in addition to spending more, will likely also seek care more often, so

the total number of care events should be correlated with absolute and relative

generosity exactly like expenditures. Whether physician visits or hospital visits or

nights increases, however, is more ambiguous: more generous insurance may lead to

substitution toward going to the hospital rather than the physician, or it might lead

to more frequent office visits and fewer hospitalizations.

Because the number of care events in a year is a count variable, I use a Poisson

specification.30 The results in Table 2.8 suggest that non-HMO enrollees do increase

the number of both physician visits and hospital nights due to moral hazard, while

a generous HMO plan sees an increase only in physician visits. The marginal effect

of log(h′) is small and insignificant, so employees do not appear to self-select by

their frequency of care use. The effects are quite substantial: the marginal effect

of increasing generosity slightly leads to nearly 14 more physician visits and four

more nights in the hospital for non-HMO enrollees, and seven more visits to the

physician in an HMO plan. Moral hazard thus seems to materialize as an increase in

the frequency of medical care utilization, not just an increase in the amount spent

by consumers and their care providers.

2.7.3 Direct Measures of Selection

In most of the existing literature that uses data from a single employer, or a sample

of employers in a metropolitan area, to determine whether there is adverse selection

between plans, the authors look for significant differences in the demographic and

30OLS coefficients are similar in significance and relative magnitude.
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health composition of the enrollee pools in each plan. Fortunately, the MEPS data

provides information on measures of health status, so I can directly test for the

presence of adverse selection between plans of the same type (HMO or non-HMO).

Furthermore, because the measurement of these health measures across plan types is

not corrupted by HMO management’s skill at negotiating lower prices, I can also test

for whether adverse selection occurs across types, i.e., whether high risk employees

choose non-HMO plans while healthier employees opt for an HMO. I display the

results of these regressions in Table 2.9.

I estimate the correlation between absolute and relative plan generosity and, in

turn, six different health measures. The first such measure is the number of people

in the employee’s family (or just the employee, if the plan covers just the individual)

who have a chronic condition.31 The results of the OLS estimation are reported in

column 1.32 The number of family members with a chronic condition is positively

correlated with the threshold spending level (h′) in HMO plans, but the effect is very

small and not statistically significant; for non-HMO plans, the effect is even smaller

and similarly insignificant.

Other measures of health are similarly uncorrelated, or have a very small positive

correlation, with log(h′). Employees with family members who consider their own

physical health as “fair” or “poor” or have a limitiation are statistically more likely

to sort into the more generous of two plans, but the magnitude of the effect is quite

small. Those with infants or relatives over age 50 (where the age profile of health

spending begins to ascend rapidly) covered under their plan are no more likely to

31Because an individual may have more than one chronic condition, I also estimate a Poisson regression for the
total number of conditions in the family. The results match in significance, but the magnitudes are larger than those
reported in column 1.

32For all six health measures, Poisson coefficients are similar in significance. I also estimate a logistic regression
for whether the employees has any family members with each of the six health outcomes, and the results are also
similar.
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choose the more generous plan. Thus, there is no direct evidence of adverse selection

between plans of the same type.

Interestingly, the coefficient on absolute generosity is positive and significant for

three out of the six measures among non-HMO enrollees; this may arise because

conditions are more likely to be diagnosed and treated the more generous is the se-

lected plan, as care is sought more often (moral hazard), or because sufferers of these

conditions seek out firms that offer more generous plans (endogenous job selection).

This does not appear to be the case for the HMO plans, however.

In section 2.5, I outlined why HMO and non-HMO plans cannot be compared in

the total expenditure regressions; because HMOs are able to negotiate lower prices

than non-HMOs for the same procedures, expenditures and generosity are not mea-

sured on the same scale. With these regressions involving the direct health status

measures, however, there is no such limitation. I include both HMO and non-HMO

enrollees in the same regression, and include an indicator variable equal to one if

the plans in the pair were both HMO plans. The coefficient on the HMO indicator

is given in the bottom panel of Table 2.9. If, as expected, the healthiest employees

choose HMO plans, which are generally considered to be less generous than PPO or

FFS plans when measured properly, then we should observe that each of these coeffi-

cients should be negative and significantly different from zero. I find that employees

in HMO plans are less likely to have people in their families with chronic conditions

(6 percent), or over the age of 50 (7 percent), but neither effect is statistically sig-

nificant; the coefficient on the HMO indicator is also negative and fairly large (17

percent, statistically significant at the 90 percent confidence level), in the regressions

where the dependent variable is the total number of chronic conditions in the family

(not shown). HMOs are actually significantly more likely (at the 90th percentile)



38

to have young children (3 percent); while children under age 2 are expensive to in-

sure due to their frequent use of care, this would further indicate that HMOs enroll

younger, generally healthy families. These results (which are similar to Cutler and

Reber, 1998, and Feldman and Dowd, 1982), though weak statistically, suggest that

enrollees in the comparatively less generous HMO plans are less risky to the insurer,

as predicted by the model of adverse selection across plan types.

2.7.4 Robustness Checks

One plan comparison per employee The regressions above include every valid

(same plan type) comparison between plans for each employee. That means that

there are two observations for the employees who were offered three plans of the

same type as the one they selected (i.e., the HMO plan they selected plus two other

HMO options), and three observations for the employees who were offered four plans

of the same type as the one they selected. The dependent variable is the same for

each of the two or three observations for these employees, so there may be a concern

that the positive correlation between expenditures and the absolute generosity of

the selected plan, or between expenditures and the threshold level of spending that

divides risk types, may be biased upwards.

The employees who are offered exactly two plans of the same type should be

unaffected by the decision to double- and triple-count employees. The marginal effect

of absolute generosity on total spending for just this group (Table 2.10) is smaller

and insignificant for non-HMO enrollees, though the loglinear coefficient is positive

and significant as expected; the small sample size, leading to a larger standard error

in the logit regression, likely leads to the insignificance. Here, the marginal effect

for HMO enrollees is actually positive and significant, and larger in magnitude than

the marginal effect for non-HMO enrollees in Table 2.5, but this is entirely due to
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a large coefficient in the logit regression; the loglinear coefficient is negative and

insignificant. The marginal effect of log(h′) is positive and significant for HMO plans

despite a negative and significant coefficient in the loglinear regression, and negative

and significant, counter to theory, for non-HMO plans. While these results are

somewhat different than the main estimations, the disparities are mostly explained

by the small sample size.

Timing of medical care If an enrollee in the more generous plan foresees switch-

ing to the less generous plan when the fiscal year ends, she may increase her spending

now while the out-of-pocket price is low. Conversely, if the enrollee plans to switch

to a more generous plan, she will delay spending until the following year. Both sce-

narios suggest that the rejected plan’s generosity may actually influence spending

during the plan year, contrary to the model, so the absolute generosity coefficient

may be biased upward.

While I do not observe enough employees in multiple years to look at those who

switch plans, I can look at the timing of spending for all employees in the sample.

Figure 2.7 suggests that spending is relatively flat throughout the year, with no

increase in the beginning nor at the end of a plan year. As a robustness check, I re-

run the main regression with the log of total expenditures in the middle eight months

of the plan year, excluding the first two and last two months, as the dependent

variable. The results in Table 2.11 are very similar to the main results (though,

not surprisingly, smaller in magnitude, as the spending is over a shorter period)

suggesting that the results are not biased by delayed or accelerated care.

Coverage and marital status For most dual-earner couples, I observe only one

of the spouses’ choice set of health plans. The h′ I calculate for these families may

not represent the relevant choice between the first- and second-best plans, if the
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second-best plan was offered by the other spouse’s employer. I therefore estimate

the two-part regression model separately for unmarried people with single coverage,

married people with single coverage, unmarried employees opting for family coverage,

and married employees in family coverage. The results in Table 2.12 largely match

the main estimation: more generous coverage leads to more spending for each group

in non-HMO plans, and the coefficient on log(h′) is never significantly greater than

zero statistically.

Validity of the theoretical model of plan choice The theoretical model

predicts that employees who plan to spend more than h′ should enroll in the more

generous plan, while those planning to spend less than h′ will find that the lower pre-

mium paid in the less generous plan is a better fit for their needs. Expected spending,

even over a short period of time, is uncertain, but if I assume that consumers have

perfect foresight, then I should see that employees who ultimately spent more than

h′ should enroll in the more generous plan, and vice versa. About 55 percent of the

sample enrolls in the plan that is a better fit according to the theoretical model;

these employees who select a non-HMO have a greater response to the moral haz-

ard incentive than those who do not select the plan that the model predicts (Table

2.13). The marginal effect of log(h′) is actually negative, though insignificant, for

both HMO and non-HMO enrollees whose plan choice fit the theoretical model, but

positive and both statistically and substantively significant for HMO enrollees who

do not fit the model.

2.8 Conclusion

In this paper, I suggest a new method for determining whether adverse selection

and moral hazard affect the market for employer-sponsored health insurance, using
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the variation in health plan offers across employers. By controlling for both the

absolute generosity of a selected plan and the level of spending above which the

employee prefers the more generous option, I am able to separately identify the

effects of moral hazard from adverse selection, respectively.

My results indicate that the moral hazard incentive significantly influences the

employer health insurance market: the more (absolutely) generous the selected plan,

the more the enrollee tends to spend on medical care. This moral hazard incentive is

strongest in non-HMO plans, as expected. There is no evidence of adverse selection,

however; the correlation between medical expenditures and the level of spending

that makes the more generous plan optimal is never significantly greater than zero.

Enrollees in more generous plans are also no more likely to have an adverse health

outcome, even when they face a tradeoff between premiums and generosity, which

suggests that there is no self-selection by risk type between plans of the same gen-

erosity. There is some evidence that adverse selection occurs between plan types, as

HMO enrollees are less likely to have (or to cover family members with) a chronic

condition or be over the age of 50 than enrollees in non-HMO plans, but because

expenditures across plan types are not directly comparable, this evidence comes only

from the direct measures of risk type, whereas the adverse selection “death spiral”

is likely to arise from differences in expenditure (Feldman and Dowd, 1991).

The methodology used here can be applied to any insurance market where the

quantity of coverage is variable. Most insurance plans do not fully cover the damage

caused by a risky event, and even those that do may vary the deductible or other

cost-sharing involved in paying out claims, so there are very few markets where this

does not apply. To apply the distinction between absolute and relative generosity,

the researcher would need data on not only the selected plan but also the other plans
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available in the market. This may be difficult in some markets where customers are

allowed to shop around (and do not rely on an employer to do the shopping for them),

but rules against insurance plans crossing state or national boundaries often make a

market finite. Moreover, the calculated financial generosity may actually be a better

measure of the perceived value to the enrollee in insurance markets other than health

insurance, which is complicated by personal relationships with care providers.

While the moral hazard finding matches the qualitative conclusion of the RAND

Health Insurance Experiment and most subsequent studies, the lack of adverse selec-

tion stands in contrast to most single-firm studies (though, importantly, not struc-

tural estimates like Cardon and Hendel (2001), which use data from a similarly broad

sample of firms) and the prediction of the Rothschild-Stiglitz theoretical model, es-

pecially given the information gap between insurer and enrollee. This paper’s results

should be interpreted with some skepticism, due to limitations both with the data

and the model.

Using health insurance plan data from a nationwide sample of firms allows for

greater confidence in the external validity of the results, but has the disadvantage

of incomplete and possibly inaccurate information on the quality of each plan. In

this study, I focus entirely on the plan’s implied financial burden on the employee

for physician, hospital, and prescription drug expenditure, but other factors almost

certainly influence the decision to select one plan over another.33 One very important

missing plan parameter, especially as HMOs and PPOs have come to dominate the

market, is the breadth of the provider network under one’s plan — in particular,

whether the employee may keep seeing her, or her family member’s, preferred care

33Finkelstein and McGarry (2006) and Fang, Keane, and Silverman (2008) suggest that self-selection occurs along
other dimensions, including risk tolerance and cognition, and future work should take these important dimensions
into account. Unfortunately, MEPS lacks direct measures of risk tolerance and cognition like those used in these
two studies from the Health and Retirement Study. MEPS can, however, be linked to the National Health Interview
Survey, which includes self-reported information on smoking, alcohol use, exercise, and use of preventive care.
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provider under alternative plans. Employees may also desire coverage for types of

care that have their own coinsurance schedule, if they’re covered at all, such as men-

tal health or home health care. Lacking information on the provider network and the

coinsurance schedule for other care types, I cannot determine the extent to which em-

ployees are willing to trade off greater financial generosity in basic care for the ability

to see a specific care provider or to be covered for a more specialized care type; this

may partly explain the prevalence of employees who opt for a plan that has a higher

premium and lower measured financial generosity than some alternative. More gen-

erally, I am forced to make the strong assumption that unobserved differences in (real

or reputational) plan quality have the same impact on plan choice throughout the

health distribution, whereas in single-firm studies, plan-specific quality is differenced

away.34

It is also possible that there is adverse selection, but it does not manifest as

predicted by the model. Aside from adverse selection along other plan elements, such

as network breadth (sicker patients enrolling in broader, more expensive networks),

mental health, or long term care, it is also possible that h′ is not the relevant margin

between two plans. One weakness of the model is the assumption that the employee

chooses between exactly two plans of the same type; many employees have the choice

of three or more plans, which means that there may be multiple h′ thresholds along

the distribution of potential health spending.35 The model also assumes that the

consumer has complete knowledge of the plan’s financial parameters, but the effort

cost of differentiating between similar and complex plans may be prohibitive, so that

34Only comparing plans of the same type (HMO or non-HMO) likely reduces the importance of unobserved plan
differences, though this may be less true as non-HMO plans, especially PPOs, mimic the successes of HMO plans.
Eliminating cross-type comparisons also reduces the sample to the subset of employees offered multiple plans of
the same type; while I weight the observations to account for differences in observable characteristics between this
subsample and the full MEPS sample, the weights may not fully account for how the relationship between the plan
choice and care-seeking decisions may be different in this subsample.

35Risk aversion actually biases in the direction of finding evidence of adverse selection, so the assumption of risk
neutrality is not qualitatively problematic; see note 12.
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workers do not sort into the plan that is the best fit for their needs, even ex-ante.

I also assume that the ex-post realization of medical expenditures is a good proxy

for an enrollee’s risk type, but biases may arise if employees systematically under-

or overestimate their medical needs before the year.

Finally, I cannot estimate by how much moral hazard or adverse selection reduce

social welfare, only whether they exist or not. The implication of my finding of

insignificant adverse selection suggests that the social welfare impact is small, but

I cannot begin to estimate exactly how small unless I can trace out demand and

supply curves.36

While the reader is cautioned about taking these results at face value, adverse

selection appears to be restricted to sorting between plan types, not plans within

a type (e.g., HMO plan versus other HMO plans). Using managed care as a sort-

ing mechanism allows low-risk consumers to get actuarially fair insurance without

attracting the highest risks. At the same time, the employer-sponsored insurance

system effectively subsidizes the less healthy, as the employee’s contribution to the

premium does not depend on her health status, and the tax system favors compen-

sation in the form of health benefits. Feldman and Dowd (2000) suggest that the

combination of sorting by managed care and subsidization of the unhealthy through

the employer system strikes the right balance between efficiency and fairness. If there

is no further adverse selection beyond managed care versus more traditional plans,

then that balance is not upset.

The recent effort by the Obama Administration and Congress to reform the health

insurance market for individuals, and for small business employees that enter the

market without the benefit of diverse risk pools, use the large- and medium-firm

36The Einav-Finkelstein-Cullen (2008) approach appears promising, but in the national health insurance market
during the 1996-2001 period studied here, there is no obvious exogenous price variation required to estimate marginal
and average cost curves.
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employer-sponsored insurance market as a model. One concern is that proposals

that increase the amount of private information, including preventing screening for

pre-existing conditions and capping the degree to which premiums can vary based on

age, could result in adverse selection. The results in this paper suggest that, if the

composition of the risk pool of small business employees and individuals is similar

to employees in the existing employer insurance system, adverse selection will have

only a minimal impact.

Moral hazard, on the other hand, may be inevitable, as even the most tightly

managed health plan will lower the out-of-pocket cost below its actual marginal

cost. Still, this paper shows that managed care plans have diminished the moral

hazard incentive significantly over non-managed plans. Further monitoring of care,

especially in non-HMO plans, will likely reduce costs, and allow for more affordable

care for all.
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2.9 Appendix: Proof That Expected Value of Expenditures Increases
with the Threshold Spending Value h′.

Let f(h) and F (h) represent the probability density function and cumulative

density function of spending, h, respectively. The researcher does not observe the

threshold level of spending, h′, that separates enrollees in high-generosity planG from

enrollees in low-generosity plan C, but does observe whether G or C was selected,

and the ex-post realization of expenditures h.

The expected value of h for C enrollees is

E(h|h < h′) =
1

F (h′)

∫ h′

−∞
hf(h)dh.

Taking the derivative of E(h|h < h′) with respect to h′ yields

∂E(h|h < h′)
∂h′ = − f(h′)

F (h′)2

∫ h′

−∞
hf(h)dh+

1

F (h′)
(h′f(h′)),

with the latter portion due to the fundamental theorem of calculus.

For the derivative to be positive,

h′f(h′)
F (h′)

>
f(h′)
F (h′)2

∫ h′

−∞
hf(h)dh.

Simplifying, f(h′) and 1/F (h′) cancel from both sides, leaving

h′ >
1

F (h′)

∫ h′

−∞
hf(h)dh = E(h|h < h′),

which must be true, as the expected value must be less than the upper bound for

that interval.

The expected value of h for G enrollees is

E(h|h > h′) =
1

1− F (h′)

∫ ∞

h′
hf(h)dh.

Taking the derivative of E(h|h > h′) with respect to h′ yields

∂E(h|h < h′)
∂h′ =

f(h′)
(1− F (h′))2

∫ ∞

h′
hf(h)dh+

1

1− F (h′)
(−h′f(h′)),
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with the latter portion due to the fundamental theorem of calculus.

For the derivative to be positive,

h′f(h′)
1− F (h′)

<
f(h′)

(1− F (h′))2

∫ ∞

h′
hf(h)dh.

Simplifying, f(h′) and 1/(1− F (h′)) cancel from both sides, leaving

h′ <
1

1− F (h′)

∫ ∞

h′
hf(h)dh = E(h|h > h′),

which must be true, as the expected value must be greater than the lower bound for

that interval. �
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Figure 2.1: Risk Distribution and Generosity at Two Hypothetical Firms With the Same
Less-Generous Plan (C)

2.10 Figures and Tables



49

CZ G

f(h)

# Obs Choose GChoose C

h’Z

Relative GenerosityZ

Firm Z

Risk (h)

CX G

f(h)

# Obs Choose GChoose C

h’X

Relative GenerosityX

Firm X

Generosity (G & C)

Risk (h)

Generosity (G & C)
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Table 2.1: Non-Financial Generosity Differences Between Plan Pairs

HMO Pairs Non-HMO Pairs
Selected Had Rejected Had Selected Had Rejected Had

Deductible 1.4 1.0 25.0 16.2
Lifetime Maximum 1.5 1.8 1.6 2.1
Annual Plan-Paid Max 0.9 0.7 0.8 0.7
OOP Annual Limit 9.9 10.6 7.2 5.4
Refuse for Pre-Existing 1.2 1.6 4.7 4.3
Wait Period for Pre-Existing 1.7 2.5 3.9 4.7
Specialist Referrals 3.4 7.2 11.2 8.5
Mammograms 1.8 1.9 1.3 0.6
Chiropractor 14.1 8.4 8.0 31.5
Rx Included 1.9 1.7 2.4 1.2
Dental Included 7.3 8.0 10.6 8.4
Orthodontal Included 6.9 6.2 4.9 9.3
Inpatient Mental Incl. 2.3 1.9 1.9 1.7
Outpatient Mental Incl. 1.8 1.9 1.0 1.0
Substance Abuse 1.6 1.3 1.0 0.3
Life Insurance Incl. 0.3 0.3 0.4 0.1
Disability Insurance Incl. 0.1 0.2 0.3 0.2
Physicals 1.6 1.2 25.1 8.1
Pap Smears 1.6 1.0 2.2 1.4
Prenatal Coverage 1.0 0.6 3.8 0.8
Adult Immunizations 1.9 1.6 5.8 3.7
Child Immunizations 1.6 1.3 1.3 0.5
Well-Infant Care 1.6 1.5 2.2 1.0
Well-Child Care 1.4 1.2 5.7 2.7
Other Non-Physician 5.3 3.3 5.1 1.4
Nursing Home 1.9 1.6 1.1 1.0
Home Health 1.5 0.8 27.9 5.3

Note: Table entry is the percent of plans with that characteristic.
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Table 2.2: Employee Contributions, Premiums, and Choosing the More Generous Plan

All HMO Non-HMO
Plan Pairs % More Gen Plan Pairs % More Gen Plan Pairs % More Gen

Employee Contributions
More Gen Has Lower Contrib 1437 61.5 690 64.5 747 58.8
Both Zero Contribution 529 56.1 396 53.8 133 63.2
Same Contribution 227 65.2 134 65.7 93 64.5
More Gen Has Higher Contrib 1490 51.3 686 64.1 804 40.4

Total Premiums
More Gen Has Lower Premium 1718 61.5 909 64.0 809 58.6
Same Premium 234 63.7 105 61.9 129 65.1
More Gen Has Higher Premium 1731 51.4 892 60.4 839 41.7

Total 3683 56.9 1906 62.2 1777 51.1

Table 2.3: Summary Statistics

Unweighted Weighted
HMO Non-HMO HMO Non-HMO

Total Expenditure 2900.73 3522.39 2831.41 3293.58
(6864.51) (8351.29) (6860.87) (9291.98)

Physician Expenditure 1092.86 1428.92 1067.10 1210.09
(1908.35) (2645.68) (1911.67) (2287.88)

Hospital Expenditure 1199.02 1372.99 1224.20 1474.16
(5658.72) (6378.78) (5738.07) (7784.03)

Prescription Drug Expenditure 589.55 698.87 511.45 579.35
(1304.39) (1238.61) (1364.44) (1001.55)

Chose HMO 1 0 1 0
(0) (0) (0) (0)

Chose PPO 0 0.90 0 0.87
(0) (0.30) (0) (0.33)

Chose FFS 0 0.10 0 0.13
(0) (0.30) (0) (0.33)

Chose More Generous 0.62 0.51 0.58 0.52
(0.48) (0.50) (0.49) (0.50)

Absolute Generosity 0.83 0.66 0.80 0.63
(0.12) (0.17) (0.17) (0.20)

Relative Generosity, More Generous 0.04 0.14 0.05 0.15
(0.10) (0.15) (0.13) (0.16)

Relative Generosity, Less Generous 0.05 0.14 0.06 0.16
(0.09) (0.13) (0.11) (0.17)

Relative Premium, More Generous 394.24 541.06 394.24 541.06
(713.48) (670.00) (713.48) (670.00)

Relative Premium, Less Generous 284.87 505.64 284.87 505.64
(442.13) (644.83) (442.13) (644.83)

Threshold Spending Level (h’) 17563 14219 17563 14219
(48770) (41881) (48770) (41881)

Number of observations 1907 1778 1877 1738

Note: Standard deviations in parentheses. Relative premium means are from the sample
where the employee contribution for the more generous plan is larger than the less generous
plan.
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Table 2.4: Selected Summary Statistics for Weighted Full Sample and Estimation Sample,
Unweighted and Weighted

Full MEPS-HC Estimation Estimation
Weighted Sample of Sample Sample
Insured Workers (Unweighted) (Weighted)

White 0.769 0.663 0.770
(0.421) (0.473) (0.421)

Black 0.112 0.158 0.115
(0.315) (0.365) (0.319)

Hispanic 0.080 0.142 0.082
(0.271) (0.349) (0.275)

Self Employed 0.044 0.011 0.047
(0.205) (0.104) (0.212)

Establishment Size
1-10 0.138 0.063 0.147

(0.344) (0.242) (0.354)
11-25 0.111 0.075 0.104

(0.314) (0.263) (0.305)
26-50 0.115 0.092 0.104

(0.319) (0.289) (0.305)
51-100 0.130 0.127 0.139

(0.336) (0.333) (0.346)
101+ 0.429 0.571 0.431

(0.495) (0.495) (0.495)
Industry (partial list)
Construction 0.047 0.020 0.065

(0.212) (0.138) (0.247)
Manufacturing 0.201 0.135 0.208

(0.401) (0.342) (0.406)
Sales 0.130 0.056 0.100

(0.336) (0.229) (0.300)
F.I.R.E. 0.070 0.054 0.067

(0.255) (0.226) (0.250)
Professional Services 0.257 0.318 0.263

(0.437) (0.466) (0.440)
Public Administration 0.077 0.222 0.081

(0.267) (0.416) (0.273)
After-Tax Family Income
Less than $25k 0.230 0.183 0.237

(0.421) (0.387) (0.426)
$25k-50k 0.356 0.348 0.324

(0.479) (0.477) (0.468)
$50k-75k 0.242 0.274 0.253

(0.428) (0.446) (0.435)
$75k-100k 0.098 0.107 0.109

(0.297) (0.309) (0.311)
$100k+ 0.074 0.088 0.077

(0.262) (0.284) (0.267)
Observations 32395 1996 1961

Note: Standard deviations in parentheses.
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Table 2.5: Two-Part Regression of Total Expenditures on Absolute Generosity and Log
Threshold Spending Level

Logit Log Marginal
Linear Effect

HMO Enrollees
Absolute Generosity 0.939 0.330 177.05

(1.337) (0.379) (202.27)
Log(h’) 0.018 -0.0092 3.306

(0.016) (0.0077) (4.098)
N 1870 1732
R2 0.197 0.113

Non-HMO Enrollees
Absolute Generosity 2.742 *** 2.112 *** 467.38 ***

(1.015) (0.421) (149.45)
Log(h’) -0.009 0.0221 ** -1.530

(0.021) (0.0086) (3.669)
N 1719 1572
R2 0.336 0.226

Note: Regressions weighted to account for non-random missing observations
in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level

Table 2.6: Two-Part Regression of Expenditures on Generosity and Premium Measures, by Type
of Care

Marginal Effects
HMO Non-HMO

Ln(Physician Expenditures)
Absolute Generosity 104.36 475.25 ***

(102.84) (112.16)
Log(h’) 0.864 2.214

(1.837) (3.023)
N 1876 1726
R2 Logit 0.154 0.241
R2 LogLin 0.115 0.210
Ln(Hospital Expenditures)
Absolute Generosity 19.85 1531.00 ***

(651.10) (445.38)
Log(h’) -18.483 15.117

(12.100) (10.140)
N 1876 1738
R2 Logit 0.072 0.201
R2 LogLin 0.104 0.206
Ln(Prescription Drug Expenditures)
Absolute Generosity 88.97 192.27 ***

(60.72) (37.75)
Log(h’) 0.993 0.446

(1.155) (1.093)
N 1876 1726
R2 Logit 0.206 0.317
R2 LogLin 0.177 0.139

Note: Regressions weighted to account for non-random missing observations
in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level
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Table 2.7: Two-Part Regression of Total Expenditures on Absolute Generosity and Log
Threshold Spending Level, By Employee Contribution Scheme and h’ Level

Marginal Effects
Same Employee Different Employee More Generous Has Higher
Contributions Contributions Premium (0 < h′ < max)

HMO Enrollees
Absolute Generosity 579.592 -37.817 70.240

(400.068) (309.188) (629.713)
Log(h’) 2.707 6.556 2.027

(6.823) (6.427) (38.281)
N 1080 745 518
R2 Logit 0.171 0.373 N/A
R2 LogLinear 0.170 0.209 0.213

Non-HMO Enrollees
Absolute Generosity 1595.861 ** 596.516 *** 463.467 *

(781.468) (183.753) (277.813)
Log(h’) -10.884 2.230 3.998

(19.896) (4.164) (28.663)
N 462 1210 749
R2 Logit N/A 0.344 0.419
R2 LogLinear 0.358 0.229 0.292

Note: Regressions weighted to account for non-random missing observations in HC-IC Linked File
sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level

Table 2.8: Poisson Regression of Visits on Absolute Generosity and Log Threshold Spending
Level

Total Physician Hospital
Visits Visits Nights

HMO Enrollees
Absolute Generosity 7.44 *** 7.27 *** 0.16

(2.61) (2.73) (0.88)
Log(h’) 0.041 0.020 0.020

(0.052) (0.042) (0.019)
N 1877 1877 1877

Non-HMO Enrollees
Absolute Generosity 16.21 *** 13.73 *** 4.00 ***

(2.26) (2.18) (0.93)
Log(h’) 0.066 0.046 0.007

(0.065) (0.059) (0.022)
N 1738 1738 1738

Note: Entry in each cell is marginal effect from Poisson regression; boot-
strapped standard errors in parentheses. Regressions weighted to account for
non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level
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Table 2.10: Two-Part Regression of Total Expenditures on Absolute Generosity and Log
Threshold Spending Level, Offered Exactly Two Plans

Logit Log Marginal
Linear Effect

HMO Enrollees
Absolute Generosity 2.758 * -0.458 755.72 ***

(1.426) (0.561) (218.48)
Log(h’) 0.032 -0.0303 ** 8.642 **

(0.037) (0.0138) (4.221)
N 399 369
R2 0.225 0.291

Non-HMO Enrollees
Absolute Generosity 1.652 1.658 *** 186.79

(1.283) (0.603) (143.96)
Log(h’) -0.060 0.0311 * -6.801 *

(0.047) (0.0160) (3.637)
N 414 373
R2 0.531 0.244

Note: Regressions weighted to account for non-random missing observations
in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level

Table 2.11: Two-Part Regression of Total Expenditures in the Middle Eight Months on Absolute
Generosity and Log Threshold Spending Level

Logit Log Marginal
Linear Effect

HMO Enrollees
Absolute Generosity 0.406 0.479 39.31

(1.113) (0.410) (93.71)
Log(h’) 0.002 -0.0097 0.242

(0.027) (0.0082) (2.426)
N 1325 1086
R2 0.146 0.125

Non-HMO Enrollees
Absolute Generosity 2.123 ** 1.263 *** 231.74 *

(1.047) (0.435) (137.86)
Log(h’) 0.027 0.0178 ** 2.970

(0.026) (0.0084) (3.085)
N 1322 1055
R2 0.239 0.295

Note: Regressions weighted to account for non-random missing observations
in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level
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Table 2.12: Two-Part Regression of Total Expenditures on Absolute Generosity and Log
Threshold Spending Level, by Coverage and Marital Status

Marginal Effects
Single Coverage Family Coverage

Unmarried Married Unmarried Married
HMO Enrollees
Absolute Generosity 800.337 84.261 -433.585 2795.770 ***

(804.028) (623.377) (929.763) (673.015)
Log(h’) -2.526 4.123 -7.585 7.797

(10.819) (12.836) (17.435) (7.729)
N 445 283 184 814

0.244 N/A N/A 0.652
R2 0.223 0.269 0.325 0.123

Non-HMO Enrollees
Absolute Generosity 1240.244 ** 676.847 822.619 1853.478 ***

(605.350) (1265.150) (4614.680) (501.334)
Log(h’) -7.664 -0.570 -18.208 11.882

(14.164) (21.630) (49.359) (9.057)
N 376 208 80 1001

0.363 0.404 N/A 0.579
R2 0.660 0.458 0.849 0.175

Note: Regressions weighted to account for non-random missing observations in HC-IC Linked
File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level
* - 90% confidence level

Table 2.13: Two-Part Regression of Total Expenditures on Absolute Generosity and Log
Threshold Spending Level, by Whether the Predicted Plan was Selected

Marginal Effects
Predicted Not Predicted

Plan Plan
HMO Enrollees
Absolute Generosity 239.010 178.401

(401.861) (312.134)
Log(h’) -7.960 13.543 **

(9.154) (5.444)
N 928 840

N/A 0.231
R2 0.157 0.146

Non-HMO Enrollees
Absolute Generosity 610.266 *** 344.289

(186.365) (291.500)
Log(h’) -4.239 0.821

(4.669) (7.527)
N 975 687

0.388 0.400
R2 0.236 0.338

Note: Regressions weighted to account for non-random missing observations
in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level



CHAPTER III

Decomposing the Growing Disparity in Health Insurance
Coverage between Hispanics and Non-Hispanic Whites

3.1 Introduction

Between 1987 and 2008, the number of Americans without health insurance grew

from 31.0 million to 46.3 million, or from 12.9 percent of the population to 15.4

percent (DeNavas-Walt et al, 2009).1 This expansion in the ranks of the uninsured,

despite public coverage expansions and a macroeconomy that was generally booming

during this time, is a concern for policymakers, as lower coverage rates could result

in more exposure to medical and financial risk and less access to necessary health

care. The growing uninsured rate has therefore received a great deal of attention

both in the mainstream media and by academic journals in the fields of medicine,

public health, and economics.

Less recognized has been the fact that for many population subgroups, the unin-

sured rate has remained constant, or actually declined, over this time. In 1983, 19

percent of children under age 18 were uninsured; in 2007, this rate had fallen to

17 percent, aided by expansions to Medicaid and SCHIP.2 The number of elderly

(over 65) uninsured remains negligible, due to pervasive Medicare coverage. The

uninsured rate fell even among some groups of nonelderly adults, who are largely
1These figures are from the Current Population Survey.
2These figures are from the Survey of Income and Program Participation.

59



60

ineligible for public coverage. Though the uninsured rate for Blacks remains almost

ten percentage points higher than Whites, the proportion of Blacks without health

insurance fell slightly, mirroring the small decline in uninsured Whites. Asians and

Native Americans are also slightly less likely to be uninsured than they were in the

1980’s.

For Hispanics, though, the health insurance problem has only grown worse. Al-

ready sixteen percentage points higher than non-Hispanic Whites in the early 1980’s,

the uninsured rate for Hispanics increased to 38.7 percent in 2007, a gap of nearly

25 percentage points with non-Hispanic Whites. Whereas the uninsured rates for

Whites and Blacks have fluctuated, with increases in the early 1990’s and early

2000’s sandwiched by declines during the late 1980’s, late 1990’s, and mid-2000’s,

the Hispanic uninsured rate has grown almost monotonically throughout this period.

While much of the growth in the number of uninsured Hispanics has been concen-

trated in the non-native population, U.S.-born Hispanics are also more likely to be

uninsured compared to twenty-five years ago.

In a previous paper (Rutledge and McLaughlin, 2008), we analyze the trends in

the uninsured rate across racial and ethnic groups, and within the Hispanic group,

in more detail. We find that the overall uninsured rate would have been essentially

flat over the last two decades if the Hispanic noncitizen proportion of the popu-

lation had remained constant, and actually would have declined if the proportion

Hispanic (without regard to citizenship) had remained unchanged. We also suggest

that changes in the composition of the Hispanic population, particularly the growth

in the likelihood of having less than a high school education relative to other ethnic

groups, have contributed to the growing gap between Hispanics and non-Hispanics.

This paper extends our previous work on uninsured rate trends by formally ana-
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lyzing how differences in citizenship status, educational attainment, public coverage

eligibility, income, and labor market outcomes between Hispanics and non-Hispanic

Whites have contributed to the divergence in uninsured rates between the two groups.

We examine not only how observable differences contribute to point-in-time coverage

gaps, but also how these characteristics have contributed to the growth in the gap

over two decades.

We use two methods to decompose the contribution of observable variables to

the diverging uninsured rates: 1) the estimation of a regression-adjusted trend line,

from the coefficients of the interaction of the Hispanic indicator with year dummies,

and determining how this trend line changes when adding each variable sequentially,

and 2) a Blinder-Oaxaca-style decomposition of the trend from a base period to

the end of our sample. We find that, consistent across our decomposition methods,

differences in citizenship and educational attainment between Hispanics and non-

Hispanic Whites account for each about one third of the growth in the uninsured

rate gap, and a similar amount of the annual point-in-time gaps, more than any other

of the characteristics we observe. Still, in each of our decomposition methods, more

than half of the divergence in uninsured rates from 1984 to 2007 remains unexplained.

We also analyze the trends in the rate of coverage separately by insurance source.

The gap in public coverage has been reliably countercyclical, but after adjusting

for personal characteristics, Hispanic and white non-Hispanic public coverage rates

are essentially equal and constant over time. Adjusting for observable differences

between the groups, Hispanics and non-Hispanic Whites were also just about as

likely to have private coverage through their own employer. There was, however,

a sharp decline for Hispanics in coverage through another family member, the one

insurance source category where a significant portion of the gap with non-Hispanic
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Whites remains unexplained even after controlling for observable characteristics.

Our results indicate that the high, and growing, uninsured rate among Hispanics

cannot be attributed to lower educational attainment, citizenship rates, and income

only. In 2007, 9 million Hispanics between the ages of 18 and 55 were uninsured,

according to our sample. If, instead, the uninsured rate gap had remained constant

at its 1984 level, 6.6 million nonelderly Hispanic adults would have been uninsured.

Based on our estimates, only 0.7 to 1.4 million of this 2.4 million difference can

be explained by differences in observable characteristics, leaving an unaccounted-for

increase of more than one million uninsured Hispanic adults since 1984.

Because much of the increase in the uninsured rate for Hispanics relative to non-

Hispanic Whites remains unexplained, we offer some potential reasons for the widen-

ing gap, among them job composition, social networks, risk tolerance, and health

quality. Government, advocacy groups, and private individuals must address these

issues, in addition to improving labor market and educational outcomes, in order to

assure equitable access to health care and protection from high medical expenditures

to all Americans, regardless of ethnicity.

3.2 Previous Literature

The concentration of the growth in the uninsured within the growing Hispanic

population is well-established in the literature. Carrasquillo, Himmelstein, et al

(1999) analyzed trends in the uninsured rate from 1989 to 1996 and found that

Hispanics account for 36.4 percent of the increase in the number of uninsured during

that time. Rutledge and McLaughlin (2008) calculate that the growth in the Hispanic

share of the population accounts for 31 percent of the increase in the number of

uninsured adults.
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Though we focus on how the gap in uninsured rates between Hispanics and non-

Hispanics has changed over time, we begin by decomposing how personal character-

istics contribute to the gap within each year. Monheit and Vistnes (2000), using a

similar decomposition method to ours, find that wages, family income, and education

can account for most of the gap between Hispanic and white men in 1987 and 1996,

though a substantial portion remains unexplained.

Two other studies suggest separate analysis and decomposition by insurance

source. Waidmann, Garrett, and Hadley (2000) decompose how demography, hu-

man capital, labor and health care market changes, and state policies affect offers

and takeup of employer sponsored insurance (ESI), and find that most of the gap

is explained by English language proficiency and education. Buchmueller, LoSasso,

Lurie, and Dolfin (2007) sequentially add human capital and employer variables (sim-

ilar to our Method 1) to regressions of ESI eligibility, offers, and takeup, and find

that only the gap between natives and non-citizens in offer rates remains substan-

tially unexplained.

Other studies make clear that the Hispanic population is not uniform, suggesting

separate analysis by country of origin. In descriptive work, Shah and Carrasquillo

(2006) examine trends over a twelve-year period among Latino subgroups compared

to non-Hispanic Whites, and find that Mexicans were hardest hit by Medicaid cuts

in the 1990’s and employer coverage declines in the early 2000’s. Berk, Albers, and

Schur (1996) find similar results between 1977 and 1992. Fronstin, Goldberg and

Robins (1987) use Blinder-Oaxaca decomposition to compare Mexicans to Puerto

Ricans and Cubans, both of whom have lower uninsured rates, and find that most

of the difference can be explained by wages, age, education, industry, and firm size.

Besides county of origin, Hispanics differ in other ways, including nativity, gen-
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der, and employment, that influence their coverage probability. Hamilton, Hummer,

You, and Padilla (2006) separate Mexican-Americans by generation; while second-

generation Mexican-Americans have much lower coverage rates than Blacks, third-

generation Mexican-Americans actually have higher rates than Blacks and are similar

to Whites. Alegria et al. (2005) find gender differences for Latinos, with females far

more likely to have public coverage and males more likely to have private coverage,

and that only immigrants within their first five years in the U.S. have substantially

different coverage rates than U.S. natives. Schur and Feldman (2000) look at firm

size and industry, and find that even within a finely-defined industry, Hispanics have

lower coverage rates. While we are unable to directly control for generation, we

do include gender, taking into account that public insurance programs may affect

women differently from men, and industry.

Immigration is also an important issue with any public policy concerning His-

panics. Camarota and Edwards (2000) attribute much of the growth in the overall

uninsured rate to immigrants, due mostly to lower educational attainment and higher

poverty rates. Borjas (2003) found no significant change in the uninsured rate among

non-citizens following welfare reform in the mid-1990’s, as reductions in public cover-

age eligibility were canceled out by increased labor force participation and a greater

rate of employer-sponsored coverage. Kandilov (2007), though, finds no difference

in private coverage rates, and higher uninsured rates overall, among immigrants in

states with more restrictive Medicaid rules post-reform. Our study takes into ac-

count not only how citizenship impacts the likelihood of insurance coverage, but how

citizenship can differentially affect Hispanics and non-Hispanics.

Our paper analyzes not only the point-in-time uninsured rate difference between

Hispanics and non-Hispanic Whites, the most common approach in the existing lit-
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erature, but also how differences in personal characteristics between these groups

have resulted in diverging uninsured rates. No other paper uses a dataset as rich,

or with as long a sample window. In addition to the sequential regression method

used previously (Buchmueller, et al., 2007), we use a more formal and heretofore un-

derutilized method, a Blinder-Oaxaca decomposition of the growth in the uninsured

rate gap between two different points in time.3 We also decompose trends separately

by insurance source and Hispanic subgroup.

3.3 Data

The Survey of Income and Program Participation (SIPP), is a panel survey of U.S.

individuals about income sources, welfare, household and family structure, jobs and

work history, and health insurance. Each individual in a household is interviewed

every four months (regarding each intervening month) for two to four years. New

panels began in each year from 1984 through 1993, and then again in 1996, 2001,

and 2004; questions are comparable across panels, though over time some answer

options changed (such as educational attainment). The samples sizes and length of

the panels vary (Table 3.1). Most of the panels track respondents for about three

years, or 8 to 9 interview waves, though the 1996 and 2004 panels lasted for four

years.

We pool each completed panel4 into one dataset of 9.3 person-months, resulting

in a continuous cross-section of respondents for all but seven months (March through

September 2000, between the end of the 1996 panel and the beginning of the 2001

panel) of the interval between June 1983 and December 2007.

3Three exceptions are Van Hook, Brown and Kwanda (2004) for trends in poverty among the children of im-
migrants, Fairlie and Sundstrom (1999) for the racial unemployment gap, and Ashraf (1996) for the gender wage
gap.

4The 1989 panel was discontinued after three waves, and lacks information on citizenship, so it was excluded from
our sample.
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We focus on individuals age 18 to 55, since the difference in the uninsured rate

between Hispanics and white non-Hispanics is most pronounced for this age group,

and public insurance programs are less likely to cover working age adults. The

uninsured rate among children declined slightly for both Hispanics and non-Hispanic

Whites over this time (Figure 3.1), and stayed relatively constant for those over age

55 and over (Figure 3.2).5

Our primary dependent variable is an indicator variable for whether the individual

reported health insurance coverage, irrespective of source, in the surveyed month.6

We consider individuals with missing values for the insurance questions to be out-

of-sample; in our time-series figures, we correct the SIPP-provided person-month

weights to account for potential non-random attrition (see Appendix), though all

regressions are unweighted.7

We represent the individual’s insurance coverage choice as a linear model with only

this one outcome, insured or uninsured. While we could run multinomial regressions

where the possible coverage outcomes are private, public, or none, public coverage is

an appropriate part of the choice set of only a select few, since Medicaid is typically

available only to expectant mothers, the elderly, and the disabled. Unfortunately, we

do not know with certainty who is eligible for public coverage.8 Our proxy for public

5Because of pervasive Medicare coverage, the uninsured rate for non-Hispanic Whites over the age of 65 is negligible
throughout. Like their younger counterparts, elderly Hispanics are more likely to be without health insurance (3 to 4
percent each year), but the uninsured rate for this group has remained relatively stable throughout the sample. The
uninsured rate gap between Hispanics and non-Hispanic Whites between the ages of 55 and 64 has also remained
stable since 1983.

6SIPP asks about insurance status for each month individually; while there could be seam bias, where the
retrospective months are less reliable than the interview month, our results are no different using only the interview
months. The Current Population Survey (CPS) uninsured rates are more often quoted in the press, but the CPS
asks whether the individual ever had health insurance during the previous year; this is a very different question
than the SIPP, as insurance status often changes during the calendar year. Researchers have found that the CPS
measure of insurance status actually follows the point-in-time status around the interview month more closely than
the ever-in-year status implied by the question. In addition, the CPS did not ask about citizenship status until 1993,
so using the CPS would result in a shorter sample window. We repeat our analysis for the CPS for 1993 through
2007 and get similar results.

7The coefficients in weighted regressions, using either the uncorrected or corrected weights, are nearly identical
to the unweighted regressions.

8If we had a clear indicator of public coverage eligibility, we would a multinomial regression for just those who are
eligible, while leaving the remainder in a more traditional linear or nonlinear single-choice model. Even if we knew
the eligibility rules in the individual’s state, however, we would likely have a large number of individuals who appear
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coverage eligibility is an indicator variable equal to unity when the individual is below

the (time-varying) federal poverty line. We also interact this variable separately with

our female and Hispanic indicators; female because poor women are more likely to

be eligible than poor men, Hispanic because we hypothesize that Hispanics may have

different takeup responses to public coverage eligibility than non-Hispanics.9

In addition, SIPP provides data on the source of insurance. Though the ex-

act options on the questionnaire change between panels, we are able to construct

a consistent indicator for whether an individual has coverage through a public pro-

gram (grouping Medicare, Medicaid, SCHIP, and other federal and state programs

together) or through a private insurer. We further divide private coverage into cover-

age obtained through one’s own employer, coverage obtained in one’s own name from

some source other than own’s employer (including the individual market), and cover-

age obtained in someone else’s name (irrespective of who that person is, or where that

person obtains coverage). We separately analyze trends by each insurance source cat-

egory, and separately decompose how the same right-hand side variables contribute

to the Hispanic-White gap in each insurance source.

3.4 Trends in the Uninsured Rate

The uninsured rate among adults aged 18 to 55 in the U.S. increased slightly

between 1983 and 2007 (Figure 3.3). The uninsured rate increased from 18 percent

to be ineligible but have public coverage. The other kind of error, where individuals who appear to be eligible do
not have public coverage, are considered “conditionally covered” in the health insurance literature. While hospitals
will assist them in acquiring their rightful public assistance when they present for emergency care, they miss out
on regular preventive and non-emergency care. Because of this difference in what kind of care is covered, there is
a debate over whether these individuals should be considered insured or uninsured. The definition of “covered by
health insurance” that is consistent with the SIPP questionnaire would include non-emergency care, so we consider
the “conditionally covered” to be uninsured.

9While the percent of public coverage recipient above 100 percent of the federal poverty line increased slightly
during our sample window, the vast majority of public coverage recipients had family incomes below the poverty
line. Throughout our sample period, the proportion of the population under the poverty line was greater than
the proportion with public coverage, indicating a large number of “conditionally covered” (see note 8). Also, the
percent uninsured closely matches the difference between our eligibility proxy and the percent with public coverage,
suggesting that the “conditionally covered” did not have any health insurance.
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in the mid 1980’s to almost 20 percent in 1993 and 1994, before falling during the

economic boom of the late 1990’s. After 1998, the proportion uninsured increased

again, but fell slightly after 2003, resulting in an overall 25-year upward trend of

0.04 percentage points per year, which is statistically significant at the 90 percent

confidence level.

The overall uninsured rate increased despite statistically significant downward

trends among non-Hispanic Whites and non-Hispanic Blacks, particularly since the

early 1990s. Both groups follow the pattern of the overall rate, but the larger de-

creases in the 1990’s led to a decline in the uninsured rate for Whites of 0.1 per-

centage points per year, and 0.14 percentage points for Blacks. The uninsured rate

among Asians and Native Americans (not shown) also had a statistically significant

downward trend, of 0.14 and 0.60 percentage points per year, respectively.

Alone among the racial and ethnic groups investigated, the uninsured rate for

Hispanics trended upward, and by amounts that dwarf the improvement in the other

groups. The Hispanic uninsured rate was 27.7 percent in 1984, more than twelve

percentage points greater than the uninsured rate for non-Hispanic Whites. Over

the next 25 years, the proportion of Hispanics without health insurance increased by

0.4 percentage points per year, to more than 40 percent in the early 2000’s. The gap

with non-Hispanic Whites more than doubled, increasing to 22 percentage points in

2007. At the beginning of our sample, a nonelderly Hispanic adult was nearly twice

as likely to be uninsured as her non-Hispanic White peer; by the end of our sample,

she is almost three times as likely.

Most, but not all, of the growth in the Hispanic uninsured rate was among non-

citizens (Figure 3.4). In 1984, the uninsured rate among Hispanic non-citizens was

37.4 percent. By 2004, their uninsured rate was more than 60 percent, before falling
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slightly to 53.7 percent in 2007. For the full 25-year period, the uninsured rate

grew by 0.7 percentage points each year, statistically significant at the 99 percent

level. Since 1996, non-citizens of Hispanic origin are more likely to be uninsured

than insured.

While the level of insurance coverage is higher and the rate of growth smaller than

for those born elsewhere, native-born Hispanics also saw an increase in the likelihood

of being uninsured. The uninsured rate for native-born Hispanics increased from 24.5

percent in 1983 to 30.5 percent in 2002. Though the uninsured rate for this group

fell sharply thereafter, to 20.3 percent in 2007, the proportion of native Hispanics

who are uninsured remains far above native Asians (11.0 percent) and Whites (11.5

percent), and comparable to Blacks (21.0 percent). The insurance coverage gap for

Hispanics, then, cannot be written off as just an immigration problem.

Still, over this period, the health insurance status of all immigrants got worse.

Non-Hispanic non-citizens also saw an increase in their uninsured rate, from 15.6

percent in 1984 to 26.3 percent in 2007, a statistically significant upward trend of 0.32

percentage points per year, and as high as 30 percent in 1996 and 2004. Naturalized

Hispanics (not shown) also saw a slight but significant increase, from 26.0 percent in

1983 to 32.9 percent in 2007, a slower rate of increase than Hispanic natives, while

naturalized non-Hispanics had a slower, insignificant increase.10

Besides citizenship, previous studies have indicated that education, income, and

age explain significant portions of both the growth rate of the uninsured population

and the Hispanic-non-Hispanic coverage gap.

Figures 3.4(a) (Hispanics) and 3.4(b) (non-Hispanics) display the sharp increase in

the uninsured rate among those with less than a high school diploma. This increase

10The uninsured rate among Hispanics without immigration information increased steadily, from around 30 percent
in the mid 1980’s to more than 45 percent in the 2000’s.
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is especially large for Hispanics, nearly 0.8 percentage points per year, but is also

significant for non-Hispanics. It is among college graduates, however, where the

Hispanic gap is most stark. The uninsured rate for non-Hispanic college graduates

declined from 10.4 percent to 8.2 percent from 1983 to 2007. For Hispanic college

graduates, though, the uninsured rate actually increased, from 14.2 percent in 1984

to more than 19.8 percent in 2007. Also, while the uninsured rate for non-Hispanics

with just a high school diploma increased slightly, and for those with some college

experience was nearly exactly flat over this time, the Hispanic uninsured rate for

these groups significantly increased.

A similar story is told in Figures 3.5(a) and 3.5(b). Even the lowest income non-

Hispanics are less likely to be uninsured in 2007 than they were in the early 1980’s,

but the uninsured rate for even the highest income Hispanics has grown significantly.

For each category of family income, normalized to the percent of the federal poverty

line, the uninsured rate among Hispanics was already higher than non-Hispanics,

and that gap has steadily grown over the last 25 years.

Within age groups, the gap between Hispanics and non-Hispanics has also in-

creased (Figures 3.6(a) and 3.6(b)). The non-Hispanic uninsured rate has changed

only within a tight band, with the youngest group at the highest level. The Hispanic

age groups, though, have each increased, though generally at a slower rate than we

see in the education and income categories.

These graphs seem to indicate that differences between Hispanics and non-Hispanics

in citizenship, education, and income, and to a lesser extent age,11 have a great deal

of influence on the divergence of the uninsured rate between the two groups. We will

focus on these variables, along with our measure of public coverage eligibility (which

11When the age categorical variables are added separately to Method 1, the Hispanic-year coefficients do not change
much. Also, in the trend decomposition in Method 2, the effect of age is much smaller than education, citizenship,
income, and public coverage. As a result, we include age only in the X variables.
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is represented by the top line in Figures 3.5(a) and 3.5(b)), in our analysis.

But these variables are likely to be closely related, and their influence is hard

to differentiate; greater educational attainment will generally lead to higher income,

and the age-income profile is well documented. Though identifying the trends in

these variables and how they relate to the uninsured rate is interesting and impor-

tant, we will not be able to perceive of the relative contribution of each variable to

insurance status separate from the others by merely graphing the means. Our two

decomposition methods allow us to better separate the effect of each variable on the

trends in the uninsured rate.

Previous studies have indicated that the Hispanic population is far from homo-

geneous, and that we must also consider country of origin within Hispanic ethnicity,

as the uninsured rate is higher for individuals of Mexican heritage than for those

from other areas in Latin America. Indeed, in each year in our sample, Mexicans

had a higher uninsured rate than Puerto Ricans, Cubans, and those from other Latin

countries, with a higher growth rate over the two-decade period through 2003.12 The

uninsured rate is highest for Mexican non-citizens, though Hispanic non-citizens from

countries other than Mexico narrowed that gap slightly (Figure 3.8), particularly

among Cubans. The greater growth rate for Hispanics of Mexican heritage is due to

the faster increase among Mexican-Americans, while there was no significant trend

among non-Mexican Hispanics born in the U.S. Because of the very different rates

of growth seen in Figure 3.8, we decompose the contribution of each variable to the

growth in the uninsured rate gap for Mexicans separately from other Hispanics, and

also the difference between the two groups.

12SIPP has consistent Hispanic heritage indicators only for Mexicans, Puerto Ricans, and Cubans, with all other
Hispanics grouped together. Only in the 1996 and 2001 panels did SIPP further differentiate Hispanics. Also, the
question that differentiates Hispanics by country of origin was eliminated from the 2004 panel, so the time series
ends in 2003.
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We may also be concerned with the source of insurance and how the coverage type

has changed over time for Hispanics relative to non-Hispanics, particularly if we feel

that employer-sponsored coverage is a “better” (or at least more stable) source than

public coverage or non-group private plans. From the mid-1980’s through the mid-

1990’s, the public coverage rate increased nearly across the board, with the largest

growth rate among Blacks (Figure 3.9). Since welfare reform in 1996, however, only

Whites have maintained their public coverage level, while a smaller percentage of

Hispanics are covered by Medicare, Medicaid, or a state program. The increase in

the public coverage gap was especially pronounced for Hispanic non-citizens; the pro-

portion of Hispanic non-citizens’ with public coverage rate fell by three percentage

points with passage of the Personal Responsibility and Work Opportunity Reconcil-

iation Act in 1996, which limited Medicaid coverage for new immigrants (Ku and

Bruen, 1999), but White and Black non-citizens actually saw a small increase in

public coverage.

Private coverage rates were relatively constant for most groups, but fell from

more than 60 percent to less than 50 percent among Hispanics. There was a slight

increase in the proportion with employer-sponsored insurance among Whites and

Blacks, but among Hispanics, there was a substantial decrease from an already much

lower percentage (Figure 3.10). All groups saw small, (but statistically insignificant,

declines in private insurance from a source other than one’s employer. Finally, while

the proportion of Whites receiving insurance through someone else’s policy declined

slightly (and this percentage among Blacks actually increased, albeit insignificantly),

the proportion among Hispanics fell significantly, from more than 20 percent to less

than 15 percent.
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3.5 Methods

At its most basic, we run the following linear regression model, for individual i in

month t:

Uninsit = β0 + β1Hispi + γ′Xit +
2002∑

y=1983

[ζyI(yearit = y) + δyHispiI(yearit = y)],(3.1)

where I(yearit = y) is an indicator function that equals unity when the person-month

of observation occurs in year y. Thus, our “adjusted” measure of the Hispanic-White

is the uninsured rate in year y, accounting for observable variables, is β1 + δy.

Our Xit vector in each regression includes indicator variables for whether the

individual is black, Asian, or Native American,13 female, married, has children of

one’s own, and a categorical variable for one’s age in 3-to-5-year increments. We

also control for the seasonally-adjusted unemployment rate in her state during that

month, as a control for local economic conditions.14 Finally, we include indicator

variables for the interview wave, to control for the increased probability of non-

random attrition in later waves. Sample means are reported in Appendix Table

3.2.

We choose a linear model for simplicity, but it is important to note that our re-

sults hold for a probit model. Using a linear model allows for easier interpretation of

coefficients and marginal effects, and with our multiple methods of decomposition,

we should attempt to keep the interpretation as simple, and as comparable between

methods, as possible. While a Blinder-Oaxaca decomposition from a nonlinear re-

13In our regressions, we exclude non-Hispanic Blacks, Asians, and Native Americans from the sample. Our goal
is to explain the difference in the trend in the uninsured rate between Hispanics and the majority group, white
non-Hispanics, where the gap is most stark; we thus obtain no additional explanatory power by the inclusion of
individuals who are in these other groups. The coefficients and standard errors in regressions including all Blacks,
Asians, and Native Americans are nearly identical. We do include race indicators in the regressions to account
for potential differences between white and black Hispanics (or Asian Hispanics, or Native American Hispanics,
though these interactions with Hispanic are much less common), though the results excluding these variables are not
substantially different.

14Cawley and Simon (2005) find that state unemployment rate is positively correlated with insurance coverage,
and that this correlation survives even after controlling for employment transitions.
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gression is possible (Fairlie 2005), the calculation of the trend decomposition becomes

unwieldy.15

We use two different methods to determine how differences in particular variables

(or categories of variables) between Hispanics and non-Hispanic Whites may con-

tribute to the growing gap in the probability of being uninsured between the two

groups: (1) the statistical significance of the trend line in the uninsured rate gap,

regression-adjusted for each variable sequentially, and (2) pairwise Blinder-Oaxaca-

style decomposition of the annual gap, and the change in the gap between starting

(e.g., 1984) and ending (e.g., 2007) years.16

3.5.1 Method 1 - Regression-Adjusted Trend Line

In the first method, we see how β1 + δy, the adjusted gap, changes when we add

variables sequentially to the regression. After adding each group of related variables,

we then determine whether the slope of the trend in the annual uninsured rate gap

is significantly different from zero.

We begin with the unadjusted trend line, the difference in the (unweighted)17 unin-

sured rate between Hispanics and non-Hispanic Whites, averaged over each month

in the specific calendar year.

We then add categories of variables one-by-one. If the variables were independent,

then the order they are added to our regression would be immaterial, but this is

likely not the case with education, income, and citizenship, among other variables.

We must then determine an order for their addition. We choose to add variables
15Of the 9.3 million person-month observations in our OLS regression, the predicted value of the dependent

variable is below zero for 985,000 of them (10.6 percent), but 75 percent of those are between zero and -0.04. Only
86 observations have a predicted value of greater than one.

16The results of a decomposition of each variable’s contribution to the change in the gap’s trend in the style of
Bound and Freeman (1992) are similar to both of the included methods.

17As the uninsured are more likely to leave the sample, and perhaps more so if they are also Hispanic, our
unweighted estimates may actually underestimate the gap. Our results should thus be considered a lower bound on
Hispanic-White coverage differences.
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in rough order of when they were endowed to the individuals in our sample. We

start with the variables that are largely out of the individual’s control: gender, race,

age, and family structure. Next, individuals are either born or choose to live in the

United States and, if the latter, whether to become citizens. Then, they decide what

level of education to acquire. Next, they (and their families) settle on a certain living

standard, which either meets or fails to meet the poverty threshold calculated by the

U.S. government. Finally, the individual and his or her spouse choose how much to

work, in what industry, and for what pay.

Our first adjusted trend line, therefore, includes controls for Hispanic, the vari-

ables in Xit, and the year and Hispanic-year dummy variables.

Second, we add citizenship variables. Each SIPP respondent is asked their cit-

izenship status, country of birth, and year entering the U.S. (if non-native) once

during their time in the panel, in a special “topical module” separate from the usual

(“core”) questions.18 The topical module including the immigration and citizenship

questions was during the second interview wave for all panels but the 1984 (wave 8)

and 1985 (wave 4) panels. Because these questions are asked just once, and early

in the life of the panel, there are many individuals who are never asked about their

citizenship status. Also, not surprisingly, there are also many individuals who have

no response for these questions. We may worry that the late-arriving and/or non-

responding individuals may not be randomly distributed with respect to the other

variables (especially if those with missing information are more likely to be undoc-

umented immigrants), so we include “no answer” as one possible citizenship status,

along with naturalized citizen, noncitizen, and native-born (the omitted condition).

We also interact citizenship status with Hispanic origin. In addition, we include

18The one exception is the 2004 panel, where respondents were asked citizenship and immigration questions both in
the core and the second topical module. Between the two sources, no individual in this panel has missing citizenship
information.
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a categorical variable for how long the individual has been in the U.S.: less than

ten years, ten to twenty years, or twenty-plus years, with native-born (or missing

information) as the omitted condition.19

Next, we add a categorical variable for one’s education level: less than high school,

high school degree only, or some college, with bachelors degree or higher as the

omitted condition.20

We next add the proxy variable for public coverage eligibility, an indicator variable

for whether family income is below the federal poverty line for that year. We include

interactions between this proxy variable and Hispanic ethnicity, and between the

proxy and the female indicator. In addition, we include interactions with each of the

three citizenship indicators, and with both citizenship and Hispanic ethnicity.

Finally, we add variables that account for labor supply and income. We add a

categorical variable for the respondent’s family income as a percent of the federal

poverty level. We include controls for whether the individual is working full time, part

time, self employed, or unemployed (the omitted condition), and a broad categorical

variable for her industry, based on the job for which she earns the highest hourly

wage (imputed or directly reported).21 In addition, we include indicator variables

for spouse’s work status, on the theory that a spouse working, especially full time,

should increase one’s access to health insurance.

As we add more variables, our “adjusted gap” shrinks toward zero in each year.

We measure the amount of the gap that remains unexplained in each year, and

19We have experimented with adding each of these variables and interactions separately. After adding citizenship
status, the interactions and time in U.S. variables have little effect on the Hispanic coefficients; most are significant,
though, so we include them.

20Interactions between educational attainment and citizenship status are mostly insignificant and changed the
other coefficients negligibly.

21We can also include an indicator variable for union membership. If we do, though, we lose all observations in
1983 and most of 1984, because union status was not part of the SIPP in the 1984 panel. As the results including a
union dummy are not substantially different, we have opted to restore the full sample and drop the union dummy
from our regressions.
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its significance, as the difference between the sum β1 + δy (for year y) and zero.

More importantly, as a measure of how much the upward trend in the gap remains

unexplained, we run a linear trend through the unexplained portion of the gap in

each year and determine its significance. There are also some obvious trend breaks

in the data, so we also include results for piecemeal linear trends.

3.5.2 Method 2 - Pairwise Blinder-Oaxaca Change Decompositions

As mentioned above, conclusions made about the analysis of Method 1 are some-

what limited, because the order that the variables are added to the regression controls

the amount of influence we detect for each set of variables. For instance, if income

has a large effect on the Hispanic-year coefficients, but much of that effect is sopped

up by controlling for variables that are added earlier, such as education or public

coverage eligibility, we may incorrectly conclude that income is not an important

explanatory variable.

A more thorough method, and one independent of the order of addition for vari-

ables, is the Blinder-Oaxaca decomposition. In this paper, we perform two different

types of Blinder-Oaxaca decomposition. First, we decompose the contribution of

particular variables to the annual uninsured rate gap between Hispanics and non-

Hispanic Whites. Then, we decompose the contribution of each variable to the change

in the gap between the base year and each given year.

Adapting the setups from Blinder (1973) and Oaxaca (1973), we start with two

mutually exclusive and exhaustive groups, non-Hispanic Whites (denoted W ) and

Hispanics (H). For a particular outcome y (in our primary estimates, the indicator

variable for uninsured), we have two parallel models of the effect of variables X on
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that outcome y:

yH = βHXH + εH ,

yW = βWXW + εW , (3.2)

where the error terms εH and εW are mean zero. We expect ŷH > ŷW , where

ŷJ = β̂JXJ , the fitted value for y for group J ∈ {H,W}. The difference between the

two fitted outcomes (suppressing the hat notation for simplicity) is:

yH − yW = βHXH − βWXW . (3.3)

Traditional Blinder-Oaxaca decomposition then adds and subtracts either βWXH or

βHXW . In the former case, after grouping terms, the following equation results:

yH − yW = βW (XH −XW ) + (βH − βW )XH . (3.4)

which decomposes the difference between y in populations H and W into the portion

that can be explained by differences in the mean of the variables X in the two groups

(the first part, commonly called the “explained” portion) and the portion owing to

differences in the coefficients between the two groups for the same values of X (the

latter part, or the “unexplained” portion).22

A similar process can be used to decompose the change in the uninsured rate gap

between Hispanics and white non-Hispanics between any two points in time (Altonji

22Alternatively, if we added and subtracted βWXH from equation (5), our decomposition equation would be

yH − yW = βH(XH −XW ) + (βH − βW )XW . (3.5)

Oaxaca and Ransom (1994) demonstrate that these two methods bound the actual Hispanic effect on the probability
of being uninsured. Jann (2005) puts the Blinder-Oaxaca decomposition in general form:

yH − yW = β�(XH −XW ) + [(βH − β�)XH + (β� − βW )XW ], (3.6)

where β� is the “benchmark coefficient.” In the case outlined in the text, β� = βW ; in the footnote case, β� = βH . We
present results from only the decomposition that uses the white non-Hispanic coefficient as the benchmark (β� = βW ),
since most of our sample is white non-Hispanic (between 84 and 94 percent) and therefore the population-weighted
average coefficients (Reimers, 1983, and Cotton, 1988) and the pooled coefficients (Neumark, 1988) are very similar
to βW .



79

and Blank, 1999). For members of group J ∈ {H,W}, the change in y between

periods t and t′ can be written as

ΔyJ ≡ yJt′ − yJt = βJt′XJt′ − βJtXJt

= βJt′XJt′ − βJtXJt + βJt′XJt − βJt′XJt

= βJt′(XJt′ −XJt) + (βJt′ − βJt)XJt, (3.7)

where the first line uses the definition ΔzJ = zJt′ − zJt, for some vector z.

Then, we can decompose the change in the gap between H and W for outcome y

as

ΔyH −ΔyW = βHt′(XHt′ −XHt) + (βHt′ − βHt)XHt

− βWt′(XWt′ −XWt)− (βWt′ − βWt)XWt. (3.8)

We use the white non-Hispanic coefficients βWt′ and βWt as benchmarks for their

respective years, so the decomposition between base year t and ending year t′ is

ΔyH −ΔyW = βWt[(XHt′ −XWt′)− (XHt −XWt)]

+ (βWt′ − βWt)(XHt′ −XWt′)

+ [(βHt′ − βWt′)− (βHt − βWt)]XHt

+ (βHt′ − βWt′)(XHt′ −XHt). (3.9)

Altonji and Blank (1999) identify the first line as the effect of relative changes over

time in the observed characteristics of the two groups, and the second line as the

effect of changes over time in the white non-Hispanic coefficient, holding differences

in the observed characteristics fixed; these two parts make up the “explained” por-

tion of the change decomposition. The third line is the effect of changes over time

in the relative coefficients between the two groups, and the fourth line “captures
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the fact that changes over time in the characteristics of [the two groups] alter the

consequences of differences in group coefficients” (p. 3226); these two lines make up

the “unexplained” portion of the change decomposition.23 We isplay only the total

explained and unexplained portions of equation (9), rather than separately present

the results for each of the four portions.

In our main analysis, t is 1984, the first full year of the sample and the year where

the uninsured rate gap between Hispanics and non-Hispanic Whites is smallest, while

t′ is the last year of the sample, 2007. It is clear from the graphs that there is a

break in the trend between the 1993 and 1996 SIPP panels, probably due to subtle

differences in surveying or weighting techniques or variable definitions. Also, the gap

has a clear peak in 2001, decreasing slightly in the last years of the panel. Therefore,

we will also decompose the change in the gap between 1984 and 1995, between 1996

and 2001, and between 2002 and 2007.

One disadvantage of this method is that we are unable to ascertain the amount of

the annual gap, or the change in the annual gap, that can be explained by variables

that are perfectly collinear with Hispanic. In particular, we can no longer include

the interaction between Hispanic and the public coverage eligibility proxy, or His-

panic and citizenship status. While the coefficients on these variables (in the last

regression of Method 1) are significantly different from zero, they are of relatively

small magnitude, and their exclusion leaves the key coefficients largely unchanged.

3.6 Results

3.6.1 Regression Adjusted Trend Line

The first column of Table 3.3 is the actual (unweighted, because the regressions are

all unweighted) gap in uninsured rates between Hispanics and non-Hispanic Whites,
23Fairlie and Sundstrom (1999) have a mathematically equivalent change decomposition, but have a broader

definition of the “explained” portion that would include parts of the third line of equation (3.9).
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averaged over the months in each year. The actual gap grew from a low of 12.4

in 1984 to a high of 28.7 in 2001, decreasing in the remaining years of the sample.

Fitting a linear trend to the numbers in this column (bottom panel of Table 3.3),

we find a slope of 0.505, and we can reject the null of a zero slope at 99 percent

confidence level.

The remaining columns of Table 3.3 present the adjusted Hispanic-White gap,

the sum of the coefficient on the Hispanic intercept term plus each Hispanic-year

coefficient (β1 + δy). In the second column, we add the X variables: gender, race

and ethnicity, family structure, age categories, and the state unemployment rate. On

average, the annual gaps shrink by six percent, or about 0.3 percentage points. Most

annual gaps are at least a little smaller, with the 2004 gap shrinking by the greatest

percent (4.1 percent, or 1.1 percentage points). The slope of the fitted linear trend

line is flatter at 0.476 percentage points per year, a decrease of 5.7 percent in the

slope from the unadjusted gap, but is still significantly different from zero.

Next, we add citizenship variables, including indicators for naturalized citizen and

non-citizen, an indicator for missing citizenship information, interactions of each of

those three statuses with the Hispanic dummy, and a categorical variable for how

long the individual has spent in the United States. On average, the annual gaps

fall by an additional ten percentage points, or about half of the actual gap. The

reduction is largest for the early years; the gap shrunk by at least 50 percent in nine

out of the first thirteen years, and on average by about 40 percent in the 2000’s. The

trend line is 26.2 percent flatter than the unadjusted trend, but is still significantly

different from zero.

In the fourth column, we add categorical variables for educational attainment.

The annual gaps are an additional 3.5 percentage points smaller on average, and the
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average adjusted gap is now a third of the unadjusted gap for that year. Still, this

reduction is substantially smaller for the more recent years in the sample, and the

linear trend has a statistically significant slope of 0.341 percentage points per year.

We next add our proxy variable for public coverage eligibility, plus interactions

between the proxy and Hispanic, female, each citizenship status, and both Hispanic

and citizenship status. Accounting for public coverage eligibility actually increases

the gap slightly in most years, particularly in the years after welfare reform, sug-

gesting that Hispanics would be even less likely to have insurance coverage than

non-Hispanic Whites were it not for the increased likelihood of being eligible for

Medicaid. This leads to a steeper slope in the trend line, though still a 29 percent

slower average annual increase in the gap than the unadjusted figures.

Finally, we add income and labor supply variables, including indicators for whether

one is full time, part time, or self employed, the same employment status categories

for one’s spouse, and five industry categories. Controlling for these variables reduces

each of the gaps, undoing the reversal caused by adding public coverage eligibility.

Again, though, the reduction in the gap is largest in the early years; in fact, the 1984

gap disappears. Still, 30 to 40 percent of the gap in each year of the 2000’s remains

unexplained. As a result, the trend line is slightly steeper than in column 4, with

the gap growing at a statistically significant 0.351 percentage points per year, only

30.4 percent less steep than the unadjusted trend. Despite significant contributions

by citizenship and education, about 70 percent of the divergence in the uninsured

rate between Hispanics and non-Hispanic Whites remains unexplained.

Figure 3.11 graphs these adjusted gaps. It is clear from the graph that citizenship

and education have the largest effects, while income also reduces the annual gaps, but

most of its effect worked through variables added previously. Drawing one trend line
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through all of the points in each series, we see that we can explain some of the growth

of the gap, but that a significant upward trend remains even in the all-inclusive series.

In Figure 3.11, there appears to be a break at 1996, possibly due to subtle dif-

ferences between earlier panels and the 1996 panel (though the definitions for most

of the variables we use appear to be largely unchanged), or because of the growth

of the economy during this period. It may be more appropriate to draw separate

trend lines, one from 1983 to 1995, another from 1996 to the peak of the uninsured

rate gap in 2001, and another from 2002 to the end of the sample. Table 3.4 gives

linear trend coefficients through Figure 3.11 for these time periods. Between 1983

and 1995 (second panel), the unadjusted gap has a positive slope of 0.37 percentage

points per year, significantly different from zero, but becomes essentially flat once we

control for citizenship. The gap grew the most between 1996 and 2001 (third panel),

and adding personal characteristics actually makes the positive trend line steeper.

In the later period, between 2002 and 2007 (bottom panel), the uninsured rates for

the two groups started to converge; the adjusted trend lines suggest that this con-

vergence should have been even faster, based on relative improvements in Hispanics’

citizenship status and education. Except for the last few years, decomposing the 25-

year trend into smaller portions strengthens the finding that the growing (and then

ameliorating, somewhat) gap in uninsured rates between Hispanics and non-Hispanic

Whites cannot be explained by observable differences between the groups.

The other coefficients are largely in the expected direction, and because of our

large sample size (9.3 million person-months, with standard errors clustered by nearly

360,000 individuals), almost all statistically significant. Females and married indi-

viduals are less likely to be uninsured, while those with children are more likely to

be uninsured. The uninsured rate is decreasing in age (between ages 21 and 55),
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education, and family income, and increasing in the state unemployment rate. Non-

citizens are most likely to be uninsured, more so if they are also Hispanic, and while

naturalized citizens are more likely to be uninsured than native-born citizens, there is

no difference between Hispanic and non-Hispanic naturalized citizens. Foreign-born

individuals that have been in the U.S. for more than ten years are less likely to be

uninsured than even the native-born, all else equal. Those with family income less

than the poverty level (our proxy for public coverage eligibility) are far more likely to

be uninsured, though being female, Hispanic, or a non-Hispanic immigrant reduces

this probability. Hispanic immigrants (both non-citizens and naturalized citizens)

are particularly vulnerable to being uninsured. Finally, full time workers, or those

with a working spouse, are least likely to be uninsured, while the self-employed are

actually worse off than the unemployed, though a self-employed spouse is better than

an unemployed spouse. Coefficients are unchanged, for the most part, when adding

each new set of controls, except for those variables that are directly correlated, such

as citizenship variables interacted with the public coverage eligibility proxy, or the

married dummy with spouse’s work status.

3.6.2 Blinder-Oaxaca Decompositions

The Blinder-Oaxaca decomposition for the Hispanic-White uninsured rate gap

in each year yields similar results to the adjusted trend line (Appendix Table 3.6).

Except for citizenship in 1984, each variable contributes some positive amount to

“explaining” the actual gap in all years. Differences in educational attainment con-

sistently explain between ten and 20 percent of the actual gap, growing slightly more

important in later years. Income and labor market differences seem to be important

from 1990 through 1995 and in the last years of the sample, but otherwise do not

contribute much. Citizenship becomes much more important starting in 1990, but
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remains less influential than differences between the two groups in education level.

Differential public coverage eligibility is crucial from 1983 to 1989, explaining up to

half of the actual gap, but gradually fades in importance. Still, in most years, the

largest portion of the actual gap is “unexplained,” growing to more than half of the

actual gap in the 2000’s.

The results in Table 3.5, which formalize the linear trend analysis in the previous

section, reach a similar conclusion: much of the divergence in uninsured rates between

Hispanics and non-Hispanic Whites over 25 years remains unexplained by differences

in personal characteristics between the groups. Of the 12.3 percentage point increase

from 1984 to 2007 (top line), differences between Hispanics and non-Hispanic Whites

in citizenship account for 6.4 percentage points (50.7 percent). Citizenship accounts

for almost half of this amount, with income somewhat less important. Much as we

saw (though to a lesser extent) in Method 1, Hispanic-White differences in public

coverage eligibility actually work in the wrong direction, suggesting that Hispanics’

greater likelihood of living below the poverty line should actually make the increase

in the gap greater than it is. Again, a large portion of the decomposition in Table

3.5, 5.2 percentage points (42.4 percent of the actual gap), is “unexplained.”

The other lines in Table 3.5 decompose the change in the uninsured rate gap

between varying starting and ending years. As in Table 3.4, the decomposition

results for the change between 1996 and 2001 indicate that differences in personal

characteristics between Hispanics and non-Hispanic Whites should result in a larger

increase in the uninsured rate gap, and the gap’s decrease between 2002 and 2007

should have been larger considering changes in the citizenship, education, and age

compositions of the Hispanic population. Also, the largest portion of the increase

in the gap between 1984 and 1995, and between the gap’s lowest (1984) and highest
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(2001) points, is unexplained. Other than the last six years of the sample, then,

observable differences between Hispanics and non-Hispanic Whites do not explain

the largest portion of the divergence in these groups’ uninsured rates.

3.6.3 Decompositions by Insurance Source

Figure 3.12 repeats the analysis from Method 1, with an indicator for public cov-

erage, rather than uninsured, as the dependent variable. Adding our X variables

reduces the average annual public coverage gap by 16 percent. Accounting for cit-

izenship, the adjusted gap is actually larger than the unadjusted gap in all years.

The education variables induce about a 30 percent reduction in the average gap and,

not surprisingly, accounting for public coverage eligibility makes the gap nearly dis-

appear. Adding variables does not change the shape of the public coverage gap’s

long-term time series; the unadjusted gap and all of the adjusted gaps each ini-

tially decline, increase during the early 1990’s, fall through 2000, and then rise again

sharply at the end of our sample. The public coverage gap between Hispanics and

Whites is almost fully explained by Hispanics’ greater probability of having family

income below the poverty line, and unlike the uninsured rate gap, there does not

seem to be a concern for the widening of the public coverage gap.

If the public coverage gap can be almost completely explained away, but the

uninsured rate gap persists even after controlling for observable characteristics, then

the private coverage adjusted gap must also be growing, as we see in Figure 3.13.

The unadjusted gap is negative, meaning the private coverage rate for Hispanics is

lower than the rate for non-Hispanic Whites, and getting progressively more negative

as our sample advances. Adding citizenship variables reduces the private coverage

gap by about a third, education by about 20 percent, and public coverage eligibility

(which could have a crowdout effect on private coverage), and income each reduce
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the gap by about 10 percent. Still, about a quarter of the average annual gap remains

unexplained, and the adjusted trend indicates an increasing divergence for the full

sample, 1983 through 1995, and 1996 through 2001, though the gap shrinks after

2002.

The persistence of the private coverage gap between Hispanics and non-Hispanic

Whites, even after accounting for observable characteristics, does not appear to be

because of differences in rates of coverage by employer-sponsored insurance rates.

Figure 3.14 shows that citizenship explains about half of the average annual gap in

coverage from one’s own employer, while the difference in educational attainment

covers nearly the rest. While the own employer coverage gap is increasing at a small

but significant rate, 0.17 percentage points per year, nearly all of this growth is

between 1996 and 2001, while Hispanics’ adjusted employer coverage rate is nearly

equal to non-Hispanic Whites’ in 2007.

The growing private coverage gap also does not seem to be due to a divergence

in non-group coverage, as seen in Figure 3.15. The gap in own private coverage

through a source other than one’s employer is never larger than 3.5 percentage points,

and accounting for observable characteristics reduces the gap to approximately one

percentage point. There is no significant widening of the gap; in fact, unlike most of

the other graphs, the trend after 1996 is toward zero, reflecting a tightening of the

gap.

The source of the widening adjusted gap in the uninsured rate seems to be the

decreased likelihood of private coverage through someone else, usually a spouse or

parent. While this rate has remained constant at around 28 percent for non-Hispanic

Whites, the proportion of Hispanics covered by someone else fell from 21 percent to

14 percent (Figure 3.16). Differences between the groups in citizenship and education
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each explain only about 14 percent of the average annual gap, public coverage eligi-

bility another 11 percent, and income about 24 percent, but more than 40 percent

the average annual gap remains unexplained. In each time period, the adjusted trend

line, including all variables, is no different than the trend in the unadjusted gap; over

the full sample period, there is a significant increase of 0.2 percentage points per year

in gap in coverage through a family member, with the largest increase between 1996

and 2001.

3.6.4 Decompositions by Hispanic Subgroup

Figure 3.8, and previous studies, suggest that the uninsured rate has been much

different for Mexicans living in the U.S. compared to other Hispanic subgroups. In

Appendix Table 3.7, we present the results of separate decompositions for the growth

in the uninsured rate gap between each Hispanic subgroup and non-Hispanic Whites.

The largest subgroup, and the one with consistently the highest uninsured rate,

is Mexicans, including both Mexican immigrants and U.S.-born Mexican-Americans.

Between 1984 and 2003, the uninsured rate among Mexicans increased from 33.7

percent to 43.5 percent, an increase in the gap with non-Hispanic Whites of 14.7

percentage points. As we found in Table 3.5, differences in education and citizenship

account for the largest portion of this gap, but 9.4 percentage points, or nearly two-

thirds, of the Mexican-White gap remains unexplained. Similarly, the gap between

Puerto Ricans and Whites, and other Hispanics (those who are neither Mexican,

Puerto Rican, nor Cuban) and Whites, are largely left unexplained even after con-

trolling for observables. The Cuban-White gap has actually shrunk slightly, despite

differences in citizenship that suggest the gap should have widened.

We also repeat the analysis from Fronstin, Goldberg, and Robins (1997), de-

composing the differences within the Hispanic group (Appendix Table 3.8). The
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uninsured rate among Mexicans increased much faster than the uninsured rate for

Puerto Ricans or Cubans, but the widening of these intra-Hispanic gaps remains

largely unexplained after controlling for observables. Again, education and citizen-

ship differences between Mexicans and these two groups seem to be most important,

especially considering nearly all individuals of Puerto Rican heritage are citizens.

The gap between Mexicans and the remaining Hispanics did not widen nearly as

much, and observables account for more than the actual gap.

3.7 Discussion

Irrespective of the decomposition methodology, a large portion of the growth in the

uninsured rate for Hispanics relative to non-Hispanic Whites remains unexplained,

even after accounting for differences in income, education, citizenship, and other

factors available in our data. To get an idea for the magnitude of this unexplained

portion, we can do some simple accounting.

The uninsured rate for white non-Hispanic nonelderly adults fell from 19.6 percent

in 1984 to 14.0 percent in 2007. The uninsured rate for Hispanics increased from

32.0 percent in 1984 to as much as 42.2 percent in 2001, before falling to 38.7 percent

in 2007; the gap, therefore, increased from 12.4 to 28.7 percentage points, and then

back down to 24.7 percentage points, during that time. Of that 12.3 percentage

point increase in the gap over the full sample, we can explain 3.9 percentage points

under the first decomposition method,24 and 7.1 percentage points under the more

statistically rigorous method.25

If the gap had remained constant at 1984 proportions, the Hispanic uninsured rate

in 2007 would have been 26.4 percent, or 6.6 million uninsured out of 25.1 million
24For Method 1, we multiply the trend coefficient (0.351) times 24 years, so the regression-predicted change in the

gap for 2003 is 8.4 percentage points.
25For Method 2, a change of 5.2 percentage points remains unexplained between 1984 and 2007, as can be seen in

the last row of Table 3.5.
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Hispanic nonelderly adults. Instead, there were 9.0 million nonelderly Hispanic adults

without health insurance in the average month in 2007, an increase of almost 2.4

million over the counterfactual. Accounting for income, education, citizenship, and

other variables, we can explain 749,000 (Method 1) to 1.37 million (Method 2) of the

difference between the actual and the counterfactual. In other words, between 1.0

and 1.6 million of the increase in the number of uninsured Hispanic nonelderly adults

remains unexplained by observable differences between Hispanics and non-Hispanic

Whites.

Another counterfactual can help us estimate how the growth of the Hispanic

population in the U.S. has led to an increase in the number of uninsured. The non-

Hispanic White population grew by 4.4 percent between 1984 and 2007; in contrast,

the Hispanic population more than tripled. If the Hispanic population had grown

by only 4.4 percent, but experienced the same increase in the uninsured rate as they

actually did over that time (to 38.7 percent uninsured), there would have been 3.0

million uninsured Hispanics in 2003, 6.0 million fewer than the actual figure. Based

on our regression estimates, we can only explain between 1.9 million (Method 1) and

3.5 million (Method 2), leaving an extra 2.5 to 4.1 million uninsured Hispanics for

whom we cannot account from interethnic differences in observable characteristics.

Though our data cannot account for the extra several million uninsured Hispanics,

there are other potential explanations. We suggest a number of possible factors

that could have increased the price of insurance, changed preferences for health

insurance, or decreased the (relative) income available to purchase insurance for

Hispanics during this time.
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Price of Insurance

Our estimation by source of insurance indicate that most of the unexplained

increase in the Hispanic uninsured rate is from fewer Hispanics acquiring coverage

through another person. There is also some evidence that employer coverage is harder

to come by, though we can explain much of the Hispanic-White difference in employer

coverage by controlling for observable characteristics. Perhaps employers are still

offering coverage to employees at roughly the same rate, but are attempting to control

costs by being more restrictive about coverage for family members. Unfortunately,

SIPP does not consistently ask whether an individual receives an offer of coverage

from her employer, and whether that offer will include not just her but also her

family members; we are able to determine whether she accepted the offer, but SIPP

does not ask whether an offer was rejected.

If jobs that are considered “high-quality” are also the ones who are more likely

to offer health insurance for the whole family as part of the compensation package,

then perhaps Hispanics have grown more likely to take lower-quality jobs. Whether

because of labor market tightness or changing returns to relative skill level, Hispanics

could be increasingly likely to be stuck in jobs that offer lower total compensation,

less certainty over hours or eventual job tenure, or less workforce bargaining power,

all of which would reduce the probability of comprehensive insurance offers. While

we find little change in the industrial composition of the Hispanic workforce in our

data, it could be that Hispanics more often find themselves in positions that are less

generous with insurance offers within these broad industrial categories.

Also worth considering is the percentage of Hispanics who are self-employed or

work in small businesses owned by others, since both groups are likely to face higher

and more volatile health insurance plan prices. While SIPP does not have a consistent
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measure of the size of an employee’s firm throughout the years, we do know from our

data that the proportion of Hispanics for whom self-employment is their primary job

has decreased slightly, from 4.8 percent in 1983 to 3.5 in 2007. The self-employment

rate for white non-Hispanics has fallen by a higher percentage, from 9.7 percent in

1983 to 6.3 in 2007. Still, Hispanics are, and have been throughout our sample, much

less likely to be self-employed, and this explanation is probably not overly relevant.

It’s also possible that Hispanics have increased job volatility. Since many jobs,

even “high quality” positions, do not offer health insurance until after a probationary

period (often six months or one year), people who change jobs frequently will often

experience long spells without health insurance while they wait for eligibility. If, over

the time covered in our sample, job tenure declined and job volatility increased for

Hispanics, then this could explain part of the growing disparity; we will explore this

possibility in future research on insurance transitions.

As with most large survey datasets, we should note that there is no information

in the SIPP about an immigrant’s legal status. An immigrant lacking proper doc-

umentation is likely to find jobs that are of lower quality, as she has little leverage

in the job market. Very few of these jobs will offer health insurance for her, and

even fewer will extend coverage to her spouse or children. If the proportion of the

immigrant population without documentation grew larger from the mid-1980’s to

the 2000’s, then the immigrant population would be less likely to acquire affordable

private coverage, in ways that are not captured by our citizenship variables.26

Another problem with the SIPP data is the lack of a primary language variable

(other than in the 2001 and 2004 panels). If language or thickness of one’s accent is

26This possible difference in the immigrant population relies on the assumption that SIPP is able to interview the
same proportion of undocumented immigrants that it currently does, and that a larger undocumented population will
result in more interviews with undocumented immigrants. On the contrary, if currently no additional undocumented
immigrants respond to SIPP interview requests, then there would be no measured difference in the immigrant
population.
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a significant barrier to acquiring health insurance, whether through finding a quality

job or discovering eligibility for a public program, many foreign-born (and even some

U.S.-born) Hispanics would be more likely to go without coverage. We probably

control for most of the language impact by including citizenship variables and their

interaction with Hispanic ethnicity and poverty, but within these groups we could

still have some with language difficulty having trouble getting insurance, with others

with English proficiency being more successful.

For non-English speakers, social networks could prove to be very important when

attempting to access health care and health insurance. Gresenz, Rogowski, and Es-

carce (2007) find that Mexican immigrants are more likely to be insured when they

live in a neighborhood with a high concentration of Spanish-speakers and other His-

panics, though this effect disappears for U.S.-born Mexican-Americans, suggesting

that those who are more acculturated are less reliant on networks to find access to

affordable health care. Also, Borjas and Hilton (1996) find that immigrants are more

likely to be covered by Medicaid if earlier immigrants from that same country also

had high levels of Medicaid coverage. Our finding of a widening gap in coverage

through another person fits into the social network model of these two papers. Still,

since network effects are less important for native-born Hispanics, these spillovers

are unlikely to explain much of the growing gap with other groups.

Preferences for Risk, Health Care, and Insurance

The lack of insurance among Hispanics could be a matter of personal preference

as it relates to risk, in ways that we are not capturing in the variables we have.

Barsky et al. (1997) find that in hypothetical questions on a survey, Hispanics are

the second-most (after Asians) risk tolerant group, and that those with higher risk

tolerance are less likely to have health insurance coverage. The survey responses are
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consistent with increased prevalence of risky behaviors found by other researchers,

including lower saving rates (Engen et al. 1999), more credit card usage (Medina

and Chau 1998), lower seatbelt usage rates (Campos-Outcalt et al. 2003), and lower

vaccination rates (Herrera, Zhao and Klevens 2001).

If native-born Hispanics are healthier, it may make sense for more of them to

choose to go without health insurance. But Hendee (1991) finds that Hispanics have

a higher risk of diabetes, hypertension, tuberculosis, HIV, alcoholism, cirrhosis, some

cancers, and violent deaths. On the other hand, Hispanics may be less likely to seek

treatment in an emergency department (Taylor, Larsen, and Correa-de-Araujo 2006),

use prescription drugs (Weinick et al. 2004), or have a usual source of care (Weinick,

Zurekas, and Cohen 2000), so even if they are less healthy, access to and financial

coverage of medical care may be less important. Future research should consider

whether Hispanic health care utilization has changed over this time; the decreased

likelihood of insurance relative to other groups makes more sense if Hispanics are

using less care than they were in the early 1980’s, not just that they’re less likely to

use care at any particular point in time.

Also, Hispanics may value insurance less as a part of their total compensation

package, whether it be from an employer or part of a welfare plan. Non-citizens

who are remitting income to their families in other countries may prefer to receive

compensation in the form of wages rather than fringe benefits, particularly if their

time in the U.S. labor market is short or seasonal. This is less likely for citizens,

though we should also consider whether Hispanics are more likely to be a secondary

wage earner, or have the possibility of being covered by another family member’s

plan.
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Income Available for Insurance

Another possibility is that many Hispanics’ lower income makes them unable to

afford insurance, even if the price is reasonable and their preference is for coverage. If

Hispanics have fallen further behind non-Hispanic Whites in income over the sample

period, then affordability could explain some of the unexplained health insurance

disparity. In our data, though, Hispanics have actually gained on white non-Hispanics

in family income relative to the federal poverty level. Hispanics’ increased likelihood

of being in the poorest part of the distribution has shrunk somewhat, and Hispanics

are also more likely to be in the 300-400 percent “middle class” range, relative to how

the distribution has changed for non-Hispanic Whites. On the other hand, Hispanics

are even less likely than Whites to be in the highest income group relative to where

they were in the 1980’s. Still, the most constrained group seems to have shrunk

somewhat, so growing income disparity is likely not the culprit.

Income could be insufficient to purchase insurance if long term or frequent illness

cuts into earning power. A person with tuberculosis or cirrhosis would probably be

unable to work, or would have frequent interruptions in their work schedule which

would make them less attractive to potential employers (not to mention more expen-

sive to insure under a small business employer sponsored plan). The Hendee paper

cited above makes the case that Hispanics are more likely to have the type of long

term health conditions that could prevent a stable income source.

3.8 Conclusions

Hispanics were already more likely to be uninsured in the early 1980’s. Over the

course of the next 25 years, they fell even further behind, not only compared to

non-Hispanic Whites, but also relative to non-Hispanic Blacks, Asians, and Native
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Americans. Our research suggests that, though differences in education and citi-

zenship between Hispanics and non-Hispanic Whites can account for some of the

divergence in health insurance coverage, a substantial portion of the growth in the

uninsured rate gap remains unexplained, particularly among individuals of Mexican

heritage. In fact, we estimate this portion to represent more than one million extra

uninsured Hispanics in 2007. Looking further into how health insurance is delivered,

we find that most of the unexplained increase was due to lower rates of coverage

through a family member, while gaps in public programs and employer-sponsored

coverage largely disappear when controlling for observable characteristics.

While we are confident in our findings, we should stress that our paper has some

limitations. The biggest downside to using the SIPP is that English language pro-

ficiency is not included, except in the 2001 and 2004 panels. While we expect that

we have controlled for most of the effect that language would have on the likelihood

of being uninsured with our citizenship status variables, it is likely that English

proficiency varies within the Hispanic non-citizen group, and immigrants with bet-

ter understanding of English will be more likely to find a “quality” job that offers

insurance, or better understand their public coverage eligibility.

We are also reliant upon the data being accurate and complete, with only random

attrition, though our results are no different when re-weighting observations to con-

trol for non-random attrition (see Appendix). Of particular concern is citizenship

status; we control for the possibility that those who do not answer the citizenship

question could be different than those who do, but it is possible that many non-

citizens, especially those without proper documentation, may claim to be citizens,

even native-born. We are also unable to tell which immigrants are legal and which

are not, which probably has a substantial impact on the likelihood of having health
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insurance and access to affordable health care.

Our preliminary research indicates that, in addition to the increased likelihood

of being uninsured at any particular time relative to other groups, insured Hispan-

ics have also grown more likely to lose coverage, while uninsured Hispanics are less

likely to gain coverage, though the divergence is not nearly as monotonic as the

point-in-time coverage analyzed in this paper. While some medical care can wait

until the individual has insurance, frequent transitions may subject policyholders to

restrictions on pre-existing conditions, and leave those who have dropped coverage

vulnerable to medical and financial risk from poorly timed illnesses or injuries. In

the near future, we would like to apply the analysis from this paper to insurance

transitions, to determine if the variables we found to be important sources of cover-

age disparities, such as citizenship and education, also account for the disparity in

coverage lapses.
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3.9 Appendix: Inverse Probability Weighting for Time Series Graphs

As with most panel surveys, the SIPP experiences nonrandom attrition from the

sample. The nonrandom nature of this attrition is a concern for us because evidence

suggests that those who are most likely to be uninsured are also the most likely

to attrit from the sample. To account for nonrandom attrition, we reweight each

observation by the inverse probability of its being present in the sample. Following

Robins, Rotnitzky, and Zhao (1995) and Wooldridge (2000), we first determine the

probability of individual i being present in the sample at time t using a probit

regression, where the covariates are the time t− 1 (or time-invariant) characteristics

and the SIPP interview wave:

Prob(present)it = Φ(Z ′
i,t−1γ),

where Φ is the standard normal cumulative distribution function and Z is a vector of

personal characteristics. Note that because, by definition, we do not know the value

for any time-varying characteristic when the individual is not present, Z includes

the value of each characteristic at time t− 1 (unless, of course, it is time-invariant),

with the exception of the SIPP interview wave. In addition to the wave variable, we

include dummy variables for being uninsured, unemployed, Hispanic, black, Asian,

Native American, female, and married in Z, and use the SIPP weight (lagged as

necessary) when running the probit regression.

After fitting a selection probability, π, to each observation, we then find the

probability of being present in time t, conditional on being present in each previous

period from entry time (t = 1) to time t− 1:

pit = πi1 ∗ πi2 ∗ πi3 ∗ ... ∗ πi,t−1 ∗ πit
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The new bias-corrected weight is then the SIPP-created weight times 1/pit.

Finally, we rescale all weighted totals so that they match the total number of

nonelderly adults in the United States for that month, according to the Census

figures.

We use the inverse probability weights in our graphs of the time series of insurance

status for different groups, but not in our regressions. Regression results using the

weights are not substantially different than the unweighted results, despite SIPP’s

oversampling of lower income communities. These results are available from the

authors upon request. We should also note that we control for the interview wave

of the person-month observation in our regressions, in order to pick up some of the

potential effect of nonrandom attrition, which is increasingly likely in later waves.
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Figure 3.1: Uninsured Rate By Ethnicity, Age 17 and Under
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3.10 Figures and Tables



101

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Pe
rc

en
t

All White Hispanic Black

Figure 3.3: Uninsured Rate by Racial and Ethnic Group, Age 18 to 55
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Figure 3.4: Uninsured Rate by Hispanic Origin and Citizenship, Age 18 to 55
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(a) Hispanics
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Figure 3.5: Uninsured Rate by Educational Attainment, Age 18 to 55
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(a) Hispanics
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Figure 3.6: Uninsured Rate by Family Income as a Percent of the Federal Poverty Level, Age 18
to 55
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Figure 3.7: Uninsured Rate by Age, Age 18 to 55
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Figure 3.8: Uninsured Rate by Hispanic Subgroup and Citizenship, Age 18 to 55
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Figure 3.9: Public Coverage Rate By Racial and Ethnic Group, Age 18 to 55



106

30.0

35.0

40.0

45.0

50.0

55.0

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

P
er

ce
nt

All White Hispanic Black

Figure 3.10: Employer-Sponsored Coverage in Own’s Name Rate By Racial and Ethnic Group,
Age 18 to 55
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Figure 3.11: Hispanic - White Non-Hispanic Gap in Uninsured Rate
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Figure 3.12: Hispanic - White Non-Hispanic Gap in Public Coverage Rate
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Figure 3.13: Hispanic - White Non-Hispanic Gap in Private Coverage Rate
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Figure 3.14: Hispanic - White Non-Hispanic Gap in Rate of Own Employer-Sponsored Coverage

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

P
er

ce
nt

ag
e 

P
oi

nt
s

Unadjusted Gap Gender, Race, Age, Family, and Year Dummies
Add Citizenship and Time in U.S. Add Education
Add Public Coverage Proxy Add Income, Work Status, and Industry

Figure 3.15: Hispanic - White Non-Hispanic Gap in Rate of Own Private non-ESI Coverage
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Figure 3.16: Hispanic - White Non-Hispanic Gap in Rate of Private Coverage From Someone
Else
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Table 3.1: Survey of Income and Program Participation (SIPP) Panels

Panel Waves Sample Size Beginning Month Ending Month
1984 9 23,283 June 1983 July 1986
1985 8 16,011 October 1984 July 1987
1986 7 13,292 October 1985 March 1988
1987 7 13,681 October 1986 April 1989
1988 6 13,793 October 1987 December 1989
1990 8 25,595 October 1989 August 1992
1991 8 16,358 October 1990 August 1993
1992 9 22,438 October 1991 December 1994
1993 9 22,694 October 1992 December 1995
1996 12 41,378 December 1995 February 2000
2001 9 39,551 October 2000 December 2003
2004 12 150,282 October 2003 December 2007
Note: Sample size reflects number of nonelderly adults in the first month of Wave 1 of that
panel.

Table 3.2: Sample Means

All Hispanic White Non-Hispanic
Mean Std Dev Mean Std Dev Mean Std Dev

Uninsured 0.180 (0.384) 0.369 (0.483) 0.154 (0.361)
Hispanic 0.119 (0.324) 1.000 (0.000) 0.000 (0.000)
Female 0.512 (0.500) 0.522 (0.500) 0.511 (0.500)
Black 0.008 (0.090) 0.069 (0.254) 0.000 (0.000)
Asian 0.001 (0.035) 0.010 (0.100) 0.000 (0.000)
Native American 0.002 (0.047) 0.019 (0.136) 0.000 (0.000)
Married 0.211 (0.408) 0.302 (0.459) 0.198 (0.399)
Own Children Present (0/1) 0.662 (0.473) 0.757 (0.429) 0.648 (0.477)
Age

18-20 0.078 (0.268) 0.099 (0.299) 0.075 (0.263)
21-23 0.076 (0.265) 0.094 (0.292) 0.074 (0.262)
24-26 0.080 (0.271) 0.097 (0.296) 0.078 (0.267)
27-30 0.113 (0.316) 0.133 (0.340) 0.110 (0.313)
31-35 0.145 (0.353) 0.159 (0.365) 0.144 (0.351)
36-40 0.146 (0.353) 0.140 (0.346) 0.147 (0.354)
41-45 0.138 (0.345) 0.117 (0.321) 0.141 (0.348)
46-50 0.121 (0.326) 0.091 (0.288) 0.125 (0.330)
51-55 0.103 (0.304) 0.070 (0.256) 0.108 (0.310)

State Unemployment Rate 5.782 (1.640) 6.152 (1.481) 5.732 (1.654)
Citizenship

N/A 0.153 (0.360) 0.140 (0.347) 0.154 (0.361)
Non-Citizen 0.054 (0.227) 0.323 (0.468) 0.018 (0.132)
Naturalized citizen 0.029 (0.168) 0.108 (0.311) 0.018 (0.133)

Citizenship Interacted with Hispanic
N/A 0.017 (0.128) 0.140 (0.347) 0.000 (0.000)
Hispanic Non-Citizen 0.039 (0.193) 0.323 (0.468) 0.000 (0.000)
Hispanic Naturalized 0.013 (0.113) 0.108 (0.311) 0.000 (0.000)

Time in U.S.
Less than 10 Years 0.032 (0.177) 0.179 (0.384) 0.012 (0.110)
10 to 20 Years 0.022 (0.147) 0.126 (0.331) 0.008 (0.089)
More than 20 Years 0.019 (0.138) 0.076 (0.265) 0.012 (0.108)

Less than HS 0.128 (0.334) 0.368 (0.482) 0.095 (0.293)
HS Graduate 0.337 (0.473) 0.321 (0.467) 0.339 (0.473)
Some College 0.230 (0.421) 0.174 (0.379) 0.237 (0.425)
College 0.306 (0.461) 0.137 (0.344) 0.329 (0.470)
Public Coverage Eligibility Proxy

Under 100% FPL 0.116 (0.321) 0.228 (0.420) 0.101 (0.302)
Female Under 100% FPL 0.067 (0.251) 0.138 (0.345) 0.058 (0.233)
Hispanic Under 100% FPL 0.027 (0.163) 0.228 (0.420) 0.000 (0.000)

Citizenship Interacted with Eligibility Proxy
N/A 0.025 (0.156) 0.037 (0.188) 0.023 (0.151)
Non-Citizen 0.013 (0.112) 0.087 (0.282) 0.002 (0.050)
Naturalized citizen 0.004 (0.061) 0.020 (0.138) 0.002 (0.040)

Citizenship Interacted with Hispanic and Eligibility Proxy
continued on next page
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continued from previous page
All Hispanic White Non-Hispanic

Mean Std Dev Mean Std Dev Mean Std Dev
N/A 0.004 (0.066) 0.037 (0.188) 0.000 (0.000)
Non-Citizen 0.010 (0.102) 0.087 (0.282) 0.000 (0.000)
Naturalized citizen 0.002 (0.048) 0.020 (0.138) 0.000 (0.000)

Family Income as % of Poverty Line
Less than 50 0.059 (0.236) 0.098 (0.297) 0.054 (0.226)
50-100 0.057 (0.232) 0.131 (0.337) 0.047 (0.212)
100-150 0.075 (0.263) 0.150 (0.357) 0.065 (0.246)
150-200 0.088 (0.283) 0.139 (0.346) 0.081 (0.273)
200-300 0.185 (0.388) 0.203 (0.403) 0.182 (0.386)
300-400 0.163 (0.369) 0.121 (0.327) 0.168 (0.374)
More than 400 0.374 (0.484) 0.158 (0.365) 0.403 (0.491)

Part Time 0.127 (0.333) 0.115 (0.318) 0.128 (0.334)
Full Time 0.581 (0.493) 0.536 (0.499) 0.587 (0.492)
Self Employed 0.082 (0.274) 0.048 (0.214) 0.086 (0.281)
Unemployed 0.606 (0.489) 0.567 (0.495) 0.611 (0.487)
Industry

N/A 0.231 (0.422) 0.307 (0.461) 0.221 (0.415)
Manufacturing 0.244 (0.429) 0.240 (0.427) 0.244 (0.430)
Utilities 0.047 (0.212) 0.037 (0.190) 0.048 (0.215)
Sales 0.144 (0.351) 0.136 (0.343) 0.145 (0.352)
Service 0.295 (0.456) 0.250 (0.433) 0.301 (0.459)
Government 0.039 (0.193) 0.030 (0.170) 0.040 (0.196)

Spouse Work Status
Part Time 0.064 (0.245) 0.049 (0.216) 0.066 (0.249)
Full Time 0.355 (0.479) 0.310 (0.463) 0.361 (0.480)
Self Employed 0.062 (0.241) 0.034 (0.182) 0.066 (0.247)
Unemployed 0.117 (0.321) 0.151 (0.358) 0.112 (0.316)

Mexican Origin 0.071 (0.257) 0.614 (0.487) 0.000 (0.000)
Public Insurance 0.463 (0.499) 0.333 (0.471) 0.481 (0.500)
Private Insurance 0.055 (0.228) 0.033 (0.178) 0.058 (0.234)
Own Employer-Sponsored Insurance 0.260 (0.439) 0.162 (0.369) 0.273 (0.446)
Own Non-Employer Private Insurance 0.768 (0.422) 0.517 (0.500) 0.802 (0.399)
Covered by Family Member 0.062 (0.241) 0.124 (0.330) 0.053 (0.225)
Number of Observations 9,268,530 1,107,374 8,161,156
Number of Person Clusters 359,033 44,435 314,598
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Table 3.3: Predicted Hispanic - White Non-Hispanic Gaps in Uninsured Rate (Method 1)

Predicted Gap (Percentage Points)
Actual Gap Add Add Public
(Percentage Citizenship Coverage Add Income,

Points) Add Basic and Time Add Eligibility Proxy Work Status,
Controls in U.S. Education and Interactions and Industry

1983 15.9 15.2 6.9 3.5 3.1 1.4
1984 12.4 12.5 4.0 0.6 0.9 -0.6
1985 14.0 14.0 5.7 2.5 3.3 1.3
1986 18.7 18.8 10.6 7.6 7.8 5.4
1987 18.5 18.3 10.1 7.1 7.2 5.1
1988 18.6 18.6 9.9 7.0 7.0 4.9
1989 19.0 19.1 9.7 6.8 7.0 4.9
1990 20.4 20.8 10.1 6.8 6.7 5.1
1991 18.7 19.1 8.3 5.0 4.8 3.2
1992 18.4 18.5 7.7 4.6 4.4 2.8
1993 18.5 18.3 7.6 4.4 4.1 2.5
1994 18.3 18.1 7.7 4.5 4.3 2.7
1995 18.8 18.4 8.6 5.4 5.2 3.4
1996 24.9 24.1 13.3 9.3 9.4 7.4
1997 23.6 23.2 12.7 8.7 8.9 6.9
1998 23.5 23.1 12.7 8.7 8.9 7.0
1999 23.0 22.7 12.5 8.5 8.9 7.3
2000 27.9 27.3 17.1 12.5 12.7 10.6
2001 28.7 28.1 17.6 13.0 13.9 12.0
2002 26.9 26.6 16.6 12.1 13.0 11.4
2003 25.7 25.3 15.5 11.1 12.0 10.3
2004 25.9 24.8 14.9 10.9 11.4 9.2
2005 23.6 23.0 13.3 9.8 10.3 8.0
2006 24.2 23.7 11.6 8.9 9.1 6.9
2007 24.7 24.3 12.4 9.8 9.7 7.5

Linear Trend, 1983-2007
Coefficient 0.505 0.476 0.373 0.341 0.360 0.351
t-statistic 8.0 7.8 5.6 6.0 5.8 5.9

Percent of Trend
in Actual Gap 5.7% 26.2% 32.6% 28.7% 30.4%

Explained
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Table 3.4: Linear Time Trends in the Uninsured Rate Gap between Hispanics and Non-Hispanic
Whites

Predicted Gap (Percentage Points)
Actual Gap Add Add Public
(Percentage Citizenship Coverage Add Income,

Points) Add Basic and Time Add Eligibility Proxy Work Status,
Controls in U.S. Education and Interactions and Industry

1983-2007
Coefficient 0.505 0.476 0.373 0.341 0.360 0.351
t-statistic 8.0 7.8 5.6 6.0 5.8 5.9
Percent of Trend
in Actual Gap 5.7% 26.2% 32.6% 28.7% 30.4%
Explained

1983-1995
Coefficient 0.365 0.370 0.133 0.138 0.096 0.120
t-statistic 2.7 2.6 0.9 0.9 0.6 0.9
Percent of Trend
in Actual Gap -1.4% 63.5% 62.2% 73.6% 67.0%
Explained

1996-2001
Coefficient 0.914 0.911 0.986 0.849 0.969 0.983
t-statistic 1.9 2.1 2.5 2.4 2.7 3.1
Percent of Trend
in Actual Gap 0.2% -7.9% 7.1% -6.0% -7.6%
Explained

2002-2007
Coefficient -0.522 -0.517 -0.980 -0.549 -0.751 -0.883
t-statistic -2.5 -2.4 -6.1 -4.0 -6.2 -6.2
Percent of Trend
in Actual Gap 0.9% -87.9% -5.2% -44.1% -69.2%
Explained

Table 3.5: Blinder-Oaxaca Decompositions for the Change in the Hispanic-White Non-Hispanic
Uninsured Rate Gap

Actual Percentage Point Change Percent of Actual Change in Gap
Change Change
between in Gap Inc Educ Cit Pub Oth Unexp Inc Educ Cit Pub Oth Unexp

1984 and 2007 12.3 1.9 3.4 6.3 -4.7 0.3 5.2 15.0 27.3 50.7 -37.9 2.4 42.4
1984 and 1995 6.4 1.8 1.1 1.9 -3.5 1.1 4.0 28.5 17.6 30.0 -54.9 16.4 62.4
1984 and 2001 16.4 1.9 2.9 3.3 -5.0 0.9 12.4 11.7 17.5 20.1 -30.4 5.5 75.6
1996 and 2001 3.9 0.4 0.5 -0.2 -1.9 -0.1 5.3 10.6 12.6 -6.3 -50.2 -3.2 136.4
2002 and 2007 -2.2 -0.1 -0.1 3.2 0.6 -0.5 -5.3 4.5 4.9 -141.0 -25.1 20.5 236.2

Note: Benchmark coefficient is from the White Non-Hispanic regression.
Key:
Inc includes family income as a percent of poverty, work status (own and spouse), and industry of employment.
Educ includes the three categories of educational attainment.
Cit includes citizenship status and time lived in the U.S.
Pub includes the public coverage eligibility proxy and its interaction with gender and citizenship status.
Oth includes gender, marital status, presence of children, wave of interview, age, and state unemployment rate.
Unexp is the total of the ”unexplained” portions of the decomposition, including the constant term.
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Table 3.6: Blinder-Oaxaca Decompositions for Annual Hispanic-White Non-Hispanic Uninsured
Rate Gap

Actual Percentage Points Percent of Actual Gap
Gap Inc Educ Cit Pub Oth Unexp Inc Educ Cit Pub Oth Unexp

1983 15.9 1.3 2.3 0.1 5.6 1.0 5.6 8.5 14.3 0.5 35.4 6.2 35.1
1984 12.4 0.3 1.7 -0.1 7.1 0.1 3.3 2.7 13.7 -1.2 57.3 0.4 27.0
1985 14.0 0.9 1.7 0.5 6.9 0.0 4.0 6.4 11.9 3.3 49.5 0.1 28.8
1986 18.7 0.9 2.0 1.2 7.2 0.2 7.2 5.0 10.6 6.3 38.2 1.3 38.5
1987 18.5 0.6 1.9 0.9 7.6 0.2 7.4 3.3 10.2 4.9 40.9 0.8 39.9
1988 18.6 0.8 1.8 0.2 7.7 0.2 7.8 4.5 9.5 1.2 41.5 1.2 42.0
1989 19.0 1.1 2.0 1.1 7.1 0.3 7.4 5.5 10.4 5.7 37.5 1.8 38.9
1990 20.4 2.9 3.1 2.9 3.5 0.3 7.7 14.3 15.3 14.1 17.2 1.3 37.8
1991 18.7 2.5 2.8 2.0 4.1 0.0 7.3 13.4 14.9 10.6 22.1 0.1 38.9
1992 18.4 2.4 3.0 1.5 3.5 0.1 7.8 12.9 16.3 8.1 19.3 0.7 42.7
1993 18.5 2.5 3.1 1.5 3.8 0.4 7.1 13.8 16.8 8.2 20.6 2.3 38.4
1994 18.3 2.6 2.8 1.2 2.7 1.0 8.1 14.0 15.1 6.3 14.7 5.6 44.3
1995 18.8 2.2 2.8 1.8 3.6 1.1 7.4 11.6 15.1 9.5 18.9 5.9 39.1
1996 24.9 1.9 4.1 3.4 4.0 1.1 10.4 7.4 16.4 13.6 16.3 4.3 42.0
1997 23.6 2.0 3.6 2.3 4.1 1.0 10.6 8.6 15.3 9.7 17.3 4.2 44.9
1998 23.5 1.7 3.8 2.3 3.7 1.4 10.6 7.4 16.0 9.8 15.7 5.8 45.3
1999 23.0 1.5 3.8 2.5 3.2 1.1 10.9 6.6 16.6 10.9 14.0 4.7 47.3
2000 27.9 2.3 4.2 1.5 3.3 1.3 15.3 8.2 15.2 5.4 11.8 4.6 54.9
2001 28.7 2.3 4.6 3.1 2.1 1.0 15.7 7.9 15.9 10.9 7.3 3.3 54.7
2002 26.9 2.3 5.2 2.9 1.9 0.8 13.9 8.5 19.2 10.9 6.9 3.0 51.5
2003 25.7 2.4 4.9 3.5 2.1 0.6 12.2 9.5 18.9 13.8 8.3 2.3 47.2
2004 25.9 2.8 4.6 4.8 3.3 0.8 9.6 10.8 17.8 18.5 12.6 3.0 37.2
2005 23.6 2.9 4.2 4.1 2.8 0.6 8.9 12.2 18.0 17.4 12.0 2.6 37.9
2006 24.2 2.7 4.1 5.6 2.5 0.5 8.7 11.3 16.8 23.4 10.2 2.3 36.1
2007 24.7 2.2 5.1 6.1 2.4 0.3 8.6 8.9 20.5 24.7 9.8 1.4 34.7

Average 20.7 1.9 3.3 2.3 4.2 0.6 8.9 9.3 16.0 11.0 20.5 3.0 43.2

Note: Benchmark coefficient is from the White Non-Hispanic regression.
Key:
Inc includes family income as a percent of poverty, work status (own and spouse), and industry of employment.
Educ includes the three categories of educational attainment.
Cit includes citizenship status and time lived in the U.S.
Pub includes the public coverage eligibility proxy and its interaction with gender and citizenship status.
Oth includes gender, marital status, presence of children, wave of interview, age, and state unemployment rate.
Unexp is the total of the ”unexplained” portions of the decomposition, including the constant term.
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CHAPTER IV

Another Moment to Consider: Health Plan Choice and the
Distribution of Out-Of-Pocket Medical Spending

DISCLAIMER: The research in this paper was conducted while the author was a

Special Sworn Status researcher of the U.S. Census Bureau at the Michigan Census

Research Data Center. Any opinions and conclusions expressed herein are those of

the author and do not necessarily represent the views of the U.S. Census Bureau. All

results have been reviewed to ensure that no confidential information is disclosed.

4.1 Introduction

More than seventy percent of insured Americans obtain their health insurance

coverage from an employer (DeNavas-Walt, Proctor, and Smith, 2009). According

to the Kaiser Family Foundation’s Employer Health Benefits Survey (2005), 63 per-

cent of covered workers are offered two or more plans. The decision to choose one

health plan over potentially multiple other options has interesting implications for

economists, including the willingness to pay for insurance against medical expen-

ditures, the perceived value of fringe benefits, whether adverse selection effects the

employer insurance market, and whether plans are chosen rationally and without

error.

Health insurance is an especially interesting product, because unlike most con-
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sumer goods, the “price” of insurance coverage is paid over time and is contingent

on how much it is used. The upfront price, or premium, is analogous to the price of

traditional consumer goods, though it is complicated by the fact that in the U.S. the

premium is subsidized, often heavily, by employers. The portion of the cost of care

paid by the consumer during the plan year, meanwhile, is both part of the price of

coverage (especially to the extent that care cannot be delayed or is sought at regular

intervals) and perhaps the most important measure of the quality of the plan. More-

over, this part of the price may depend on the consumer’s prior use of care, which

is difficult to predict ex-ante; paradoxically, insurance coverage, which is meant to

reduce financial uncertainty, has a price which is itself uncertain.

In this paper, I examine how each element of the price of coverage influences how

consumers choose between the health insurance plans offered by their employers,

using a national sample of employer plan offers that should provide a more general

conclusion about demand for insurance than existing single-firm studies. In addition

to the employee’s contribution toward the premium, I derive a measure of potential

out-of-pocket spending under each health plan, allowing me to consider how both the

mean and the variance of medical costs over the next year affect the choice of plans. I

also estimate how other elements of the plan, including supplemental coverage, plan

characteristics, and plan popularity at one’s establishment, influence the choice of

plans. To my knowledge, this is the first paper to measure consumers’ responsiveness

to each aspect of the price of coverage, including the upfront premium as well as the

level and variance of plan generosity.

I find that employees are less likely to choose a plan the higher is the expected

level of out-of-pocket spending. The variance of the within-year “price” of coverage,

however, does not influence employees’ choice of plans. I find weak evidence that
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employees are responsive to their share of the premium, but no evidence that the

types of insurance coverage beyond basic medical care that are included or optional

in the plan influence their choice. Holding plan parameters constant, an employee

is substantially more likely to choose a plan the larger is its market share among

her coworkers, which suggests the presence of unobserved differences in plan quality

and/or that employees choose the default option rather than negotiate the complex,

and often small, differences between plans.

While there has been a rich literature on the choice of plans, most previous studies

use data from a single employer or a small sample of firms, and nearly all consider only

the level, but not the variance, of plan generosity. This paper fills some of the gaps

in the literature outlined by Scanlon, Chernew, and Lave (1997), as I use data from a

recent national sample of employers and employees with detailed information on the

plans and personal characteristics, and take into account the important differences

in the modern insurance market between health maintenance organization (HMO)

plans and more traditional fee-for-service (FFS) or preferred provider organization

(PPO) plans that offer less restrictive access to providers at a higher cost. Unlike

most of the existing literature, I also examine the influence, or lack thereof, of non-

standard coverage types and covered medical services that are either missing in most

data sources or are differenced away in a one-firm sample.

The paper proceeds as follows. In section 4.2, I discuss the existing literature on

plan choice and the distribution of plan generosity and this paper’s contribution. I

outline a theoretical framework that yields predictions on the role of each plan char-

acteristic in the consumer’s utility function in section 4.3. In section 4.4, I introduce

the Medical Expenditure Panel Survey data. I address the empirical specification

and discuss unconditional means in section 4.5. In section 4.6, I present the esti-
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mation results, and in section 4.7, I conclude with a discussion of other factors that

may contribute to plan choice.

4.2 Related Literature

Many researchers over the last several decades have examined the question of how

consumers pick among their choice set of health insurance plans. Most of these stud-

ies, though, focus on the elasticity of plan choice with respect to premiums. Scanlon,

Chernew, and Lave (1997) review the literature and conclude that health insurance

enrollees’ response to price is reasonably well understood and consistently negative

and significant across studies, but much less is known about elements other than

price, and how price and these other elements interact with personal characteristics.

They also are hopeful that future studies would use newer data that includes infor-

mation on not just the chosen plan but also rejected alternatives, and will be not be

specific to one market, geographic area, or type of consumer.

Many of the older studies reviewed by Scanlon, et al., and Feldman, et al. (1989)

use data from a single employer, which calls into question the identification of pre-

mium differences at firms that likely charge the same price to every employee for any

particular plan, and whether the findings are broadly applicable. Another potential

source of bias is the estimation strategy used in most of these studies. Short and

Taylor (1989) use a national sample of firms, but estimate two unrelated logit regres-

sions, whether to select an HMO or FFS plan and whether, conditional on choosing

some FFS plan, to select the high- or low-premium option, even though the probabil-

ities associated with each of these decisions are likely related. Barringer and Mitchell

(1994) estimate a conditional logit model on a large multi-state firm that charges

different premiums by state for the same plans. These studies find that employees



122

are especially responsive to the premium and coinsurance of non-HMO plans, and

that consumers are more likely to select a plan that has additional features, including

dental or mental health coverage.

Feldman, Finch, Dowd, and Cassou (1989) suggest that the independence of ir-

relevant alternatives (IIA) assumption necessary for the conditional logit approach

is easily violated in a health insurance market with close substitutes. The sharp

contrast between health maintenance organization (HMO) plans, that feature lower

premiums and cost sharing but restrict access to providers and specialists, and more

traditional fee-for-service (FFS) plans means that when a new HMO plan is offered,

it is likely to draw enrollees mostly from the other HMO plan. They instead es-

timate a nested logit model, which relaxes the IIA assumption by grouping strong

substitutes into a nest (HMO vs. non-HMO), estimating the probability of choosing

any plan in the nest, and then estimating the conditional probability of selecting a

particular plan within that nest.1 Using data from a small group of Minneapolis-area

firms, they find that consumers have a significant negative elasticity with respect to

the premium, but each individual element of the coinsurance schedule is either in-

significant or significant in the wrong direction, suggesting that consumers are not as

responsive to cost sharing as theory would predict. They also find that older people

(but not those with chronic conditions, surprisingly) are more likely to choose the

non-HMO nest, and that a premium increase for one HMO plan will increase the

market share for both the other HMO plans in the same nest and plans in the other

nest.

Most recent papers have adopted the nested logit empirical framework. Abraham,

Vogt, and Gaynor (2006) estimate a nested logit model using a subset of the same

1Though Feldman, et al. (1989) reject the equivalence of the conditional logit model and the nested logit model,
Royalty and Solomon (1999) do not. The latter paper reports only conditional logit results, which requires that the
IIA assumption holds.



123

data I use in this paper. They find that employees are sensitive to employee con-

tributions to the premium for both HMO and non-HMO plans. They also interact

personal characteristics with the employee premium, finding that married employees

and those who file the full IRS-1040 form are less price-sensitive, and federal gov-

ernment workers have higher elasticities (in absolute value). Although the approach

and data are strikingly similar to mine, there are some important methodological

differences. They include only two incomplete measures of cost sharing under the

plan, deductibles and the outpatient coinsurance rate; the effect of the deductible

on plan choice is small and insignificant for both HMOs and non-HMOs, and the

coinsurance rate is statistically insignificant for HMOs and significant in the wrong

direction for non-HMOs. They ignore other elements of the plan besides premium,

deductible, coinsurance, and plan type (HMO vs. non-HMO). Finally, they join

with nearly the entire stock of the literature in neglecting higher moments of the

out-of-pocket spending distribution and their effect on plan choice.

Only a handful of papers consider aspects of the medical cost distribution other

than the mean. Marquis and Holmer (1986, 1996), as part of the RAND Health

Insurance Experiment, use self-reported expected total medical expenditures and

coinsurance information of one’s randomly-assigned plan to simulate the distribution

of one’s expected out-of-pocket expenditure. They find that a model of asymmetric

utility over monetary gains and losses, rather than eventual net income, is a better

fit for consumers’ behavior. Ellis (1989) uses a nonparametric method to determine

which plan offered to employees of a single financial services firm is optimal at various

points in the distribution. Fang, Keane and Silverman (2007) include the variance of

expected expenditures, calculated as part of an effort to predict missing expenditure

data in the Health and Retirement Study, as a potential source of advantageous
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selection.

My paper contributes to the literature on health plan choice in several ways. Sat-

isfying the Scanlon, et al. (1997), critique, I use data from a recent national sample

of employers that includes detailed information on each plan they offer their em-

ployees, reweighted to be nationally representative, from a period where HMO and

non-HMO plans were both prominent in the marketplace. I calculate the distribution

of a family’s potential out-of-pocket expenditure in a way that completely summa-

rizes how the deductible, differences in coinsurance by care type, and out-of-pocket

and plan-paid maximums interact, using the actual expenditure profiles of others

in the national sample. This calculation allows me to consider how both the mean

and the variance of the distribution influence one’s choice of health insurance plans,

which most previous work ignores. In addition to the employee contribution and

the two moments of the out-of-pocket expenditure distribution, I also consider other

plan elements like supplemental coverage and covered services that are not usually

available in most data sources.

4.3 Theoretical Framework

In the choice of health plans, the consumer likely has utility over many factors

related to health care delivery and non-financial elements of the plans. For exposition,

though, I first model the consumer’s utility over a single dimension, the money

remaining to spend on all other goods after accounting for necessary health care

spending (“disposable income,” ỹ).

The consumer earns a fixed after-tax annual salary y, and is offered J health plans

by her employer, with plan j ∈ J requiring an annual employee contribution toward

the premium of pj.
2 For a given level of health spending h, the plan will reimburse

2I do not model the employer’s decision over which plans to offer; see Moran, Chernew, and Hirth (2001) and
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the employee’s care providers for gj(h) on the dollar, requiring (1 − gj(h))h of the

employee. Thus, for fixed h, plan j will leave the employee with ỹ = y − pj − (1 −

gj(h))h to spend on all other goods.3

I model the consumer’s utility as a quadratic function of disposable income, u(ỹ) =

bỹ + cỹ2, though this specification could indicate either that the utility function

is indeed quadratic, or represent a second-order approximation of the true utility

function. Hanoch and Levy (1970) derive that this utility function must have b ≥ 0

because the marginal utility u′(ỹ) = b + 2cỹ must be positive for all ỹ and ỹ = 0 is

a valid value, and c < 0 because −u′′/u′ > 0 for all ỹ.4 The consumer will select

the plan that maximizes her expected utility, Eu(ỹ). In ỹ, y and p are both known

with certainty as part of the contractual arrangement with the employer, and g(· )

is known for any particular value of h. But h itself is subject to uncertainty about

the health of her and her family. Because of the often complex coinsurance schedule

1 − g(h), it is both notationally and empirically convenient to consider the entire

expression (1 − g(h))h, or her total out-of-pocket spending, to be uncertain, and

distributed H(μ, σ2). Her expected utility while covered by plan j is therefore

Euj(ỹ) = bE(ỹ) + cE(ỹ2) (4.1)

= bE[y − pj − (1− gj(h))h] + cE[(y − pj − (1− gj(h))h)
2]

= by − bpj − bE[(1− gj(h)h] + cy2 + cp2j − 2cypj

− 2cyE[(1− gj(h))h]− 2cpjE[(1− gj(h))h] + cE[((1− gj(h))h)
2]

= by − bpj − bμ+ cy2 + cp2j − 2cypj − 2cyμ− 2cpjμ+ cμ2 + cσ2,

Bundorf (2002). I also assume that employees sort into jobs exogenously with respect to the composition of insurance
offers, a conventional, albeit potentially problematic, assumption in the literature on employees’ plan choice.

3It is likely that the more generous is plan j, i.e. the larger is gj , the higher h will be due to moral hazard,
which will reduce ỹ even further for more generous plans. Furthermore, this moral hazard effect will likely result in
a higher premium for plan j to cover the increased payments to care providers. The model will therefore understate
the tradeoff of all other goods required for more generous health insurance.

4This framework requires that ỹ have an upper bound which keeps marginal utility positive.
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where the last two terms derive from the definition of variance.5

Recalling that c < 0, equation (4.1) suggests that the consumer’s expected utility

from selecting a particular health plan depends on her after-tax income (with an

expected positive effect) and its square (negative), the premium she pays and its

square (both negative), the mean expected out-of-pocket spending (in levels) under

that plan (negative), the pairwise interaction of these three terms (all positive), and

the second moment of the out-of-pocket spending distribution (the sum of the distri-

bution’s variance and its squared mean, with an expected negative sign). Intuitively,

larger and more uncertain out-of-pocket medical costs are unattractive, a higher pre-

mium is undesirable and increasingly so as it gets larger, and the marginal utility of

income is increasing but at a decreasing rate.6

Of course, utility is also likely to be a function of other characteristics of the

plan, such as whether the consumer is required to get a referral to see a specialist or

whether the plan includes coverage for mental health or long term care, as well as

characteristics of the consumer, including demographic variables and the health care

needs of her and her covered family members. Let X represent the plan characteris-

tics, which include p, p2, μ, μ2, σ2, and their interactions both with each other and

with y. Let Z represent the characteristics of the consumer, which includes y and its

square. Most of the existing literature (e.g., Barringer and Mitchell, 1994) estimates

a conditional logit model, where the expected utility function for consumer i,

Euij = Xijβ + Ziα + εij

includes an independently and identically distributed error term with an extreme-
5By definition, σ2 = E[(x− μ)2] = E[x2 − 2xμ+ μ2] = E[x2]− 2μE[x] + μ2 = E[x2]− 2μ2 + μ2 = E[x2]− μ2, so

E[x2] = σ2 + μ2.
6Hanoch and Levy (1970), in the context of evaluating two portfolios of financial assets, discuss the conditions

under which one portfolio strictly dominates another in a quadratic utility model. In a pairwise comparison where the
means and variances of both portfolios’ distributions are known, portfolio A dominates portfolio B if (Δμ2−Δσ2) > 0,
where ΔX = XA − XB for each parameter X. To make this applicable to health plans, one would have to assume
that the premium for each plan is proportional to its desirability.
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value distribution.

In the model of plan choice, however, the error terms are likely to not be indepen-

dent in one important variable: how much the plan restricts the consumer’s choice

of providers. Feldman, Finch, Dowd, and Cassou (1989) give the example of a firm

that offers two plans, one traditional fee-for-service plan and another that is part of

an HMO, each enrolling half of the firm’s employees (so the odds ratio of selecting

the HMO plan to the FFS plan is 1:1). If the firm begins to offer another HMO

plan, the independence of irrelevant alternatives (IIA) assumption that is inherent

in the conditional logit model requires that the odds ratio between the two plans,

1:1, remains unchanged, so that the third plan picks off enrollees equally from the

two existing plans (e.g., each plan enrollees one-third of the employees). More likely,

because they are less concerned about restrictions on provider choice, most of the

enrollees in the new HMO plan will come from the existing HMO plan, which is its

closest substitute. This reduces the odds ratio, violating independence.

Feldman, et al., instead suggest the nested logit model. The choice set of J

plans can be split into two nests: HMO plans on the one hand, and plans that offer

less restrictive access to providers like FFS plans or preferred provider organizations

(PPOs) on the other. For example, a firm may initially offer just two HMO plans and

two non-HMO plans. Within the HMO nest, a third HMO plan offered on top of two

existing ones may pull enrollees disproportionately from the plan that is its closest

substitute, violating IIA. Some of the new HMO plan’s enrollees may also come from

the non-HMO plans in the choice set, but because HMO and non-HMO plans are

different enough with respect to provider choice, both non-HMO plans should lose

enrollees to the new plan proportionally, so the IIA assumption is maintained across
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nests.7

The consumer selects the plan that yields the highest expected utility. Plan j

among the Jk plans in nest k will yield the highest utility with probability Pjk,

which equals the probability of choosing plan j conditional on choosing any plan in

nest k, Pj|k, times the probability of choosing any plan in nest k, Pk. The nested

logit model therefore estimates how the variables in X and Z, respectively, affect

these two probabilities. Per McFadden (1978), the former probability can be written

as

Pj|k =
eXjkβ/τ∑

p∈Jk e
Xpkβ/τ

=
eXjkβ/(1−σ)

eIk
,

where Ik = ln(
∑

p∈JK eXpkβ/τ ) is called the “inclusive value.”

In this paper, there are two possible nests, HMO plans or non-HMO plans, so

k ∈ {HMO,NHMO}. The probability of selecting an HMO plan, for example, is

PHMO =
eZHMOα+τIHMO

eZHMOα+τIHMO + eZNHMOα+τINHMO
.

The smaller the coefficient τ , the more important are the characteristics of the

nest, or plan type. If τ = 1, then consumers make no distinction between HMOs and

non-HMOs and are equally likely to substitute across plan type, so IIA holds. An

estimate of τ < 1, therefore, serves as a specification test for the nested logit model

compared to the conditional logit model.

4.4 Data

The Medical Expenditure Panel Survey (MEPS) is a series of surveys conducted

by the Agency for Healthcare Research and Quality. The Household Component
7One commonly misunderstood implication of the nested logit model is that the consumer need not first decide

whether to select an HMO plan or not, and then choose from the options within that category. On the contrary,
Hensher, Rose, and Greene (2005, p. 482) make clear that the nest structure of this model does not imply such a
temporal ordering. More realistically, the consumer considers each plan simultaneously, but her choice is influenced
by, among other things, the degree to which the plan restricts access to providers.



129

(HC) includes information about demographics, labor market outcomes, self-reported

health status, and insurance coverage by month and source from a household sur-

vey conducted five times over a two-year period. In addition, households provide

information about the source and frequency of health care they have received, which

MEPS uses to survey medical providers about which conditions were treated, the

treatments that were performed, drugs prescribed, and the amounts and sources of

payment for care. The information from the Household and Medical Provider Com-

ponents are publicly available and nationally representative (when weighted), with

a new two-year panel starting each year since 1996.

MEPS also interviews employers about firm and establishment characteristics and

the plans they offer to their employees. The Insurance Component (IC) includes in-

formation on up to four plans for private employers and up to 36 plans for public

employers, including employee and employer contributions to premiums, coinsur-

ance/copayments, out-of-pocket and plan-paid maximums, included and optional

coverage types, covered services, and plan requirements (such as whether there is a

waiting period for a pre-existing condition or if one needs a referral to see a specialist)

for each offered plan.8

During five of the first six years of the MEPS survey, 1996 through 1999 and 2001,

the IC sample purposefully included employers of individuals in the Household Com-

ponent, thus allowing for a link between demographic and health variables from the

household survey and details about offered plans’ premiums, coinsurance schedule,

and nonfinancial elements for approximately 8000 employees. MEPS warns that the

link rate is low and not nationally representative; in my sample, employees at large

firms (100 employees or more) are particularly over-represented, so all results are re-

8I include up to seven plans per employee: the union of the selected plan, the next three most popular plans
overall and the next three most popular plans of the type (HMO or non-HMO) ultimately selected by the employee.
The weighted average, excluding those with a single offer, was 3.2 plans per employee.
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weighted to reflect the differences between the (weighted) nationally representative

sample in the full HC and the smaller sample from the HC-IC Linked File.

I focus only on the intensive margin of insurance coverage; the decision whether to

take up any employer-sponsored health insurance plan is left for further research. My

sample excludes, therefore, all employees who were offered only one plan and thus

were not choosing between plans, and anyone who refused employer coverage and

either remains uninsured or received coverage though an individual with an employer

who was not part of the HC-IC Linked File. I observe generally one employee per

employer, and plans or insurers are not linked across employers, so I have no way of

controlling for firm-, insurer- or plan-specific fixed effects.

Because the choice of health plans is often a family decision, I estimate each

regression separately for unmarried individuals and married employees without a

working spouse. I exclude individuals with a working spouse for two reasons. First,

for most dual-earner families (about 92 percent), I observe only one of the two

employed spouses’ employer insurance offers; if both spouses were offered insurance,

the choice set is incomplete. Second, as Feldman et al. (1989) point out, the IIA

assumption may be violated for dual earner families if plans in one spouse’s choice

set are close substitutes for the other’s offers. To properly account for the family’s

full choice set, I would need more information than the data can provide.

4.5 Empirical Implementation

The coefficients for the plan (X) and individual (Z) characteristics and the in-

clusive value (I) in the nested logit model, β, α, and τ , respectively, are estimated

by maximum likelihood, separately by coverage status (single coverage or family

coverage excluding those with working spouses).
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Two variables among the plan characteristics (X) are of particular interest: the

mean and variance of the distribution of out-of-pocket spending in one’s plan. If

the consumer, when choosing among her plan offers, knew with certainty how much

she would spend in the coming year, only her projected out-of-pocket spending in

each plan would affect her decision. While the consumer likely has some information

about her imminent health needs, much remains uncertain, and hence the desire for

health insurance. Ideally, the researcher would know the shape of the distribution of

her expectations about her future spending, but this is a difficult question to include

on a survey. Instead, I use data on medical spending by others in the MEPS sample

to trace out the distribution of potential out-of-pocket spending under each plan.9

The MEPS Insurance Component includes detailed information on the cost-sharing

elements of each offered plan. Thus, for any given pattern of spending during the

year, I can calculate how much the individual would have paid out-of-pocket, taking

into account whether and when the deductible (if applicable) was satisfied, differ-

ences in coinsurance or co-payments for spending on physician care, inpatient or

outpatient hospital visits, and prescription drugs, and whether an out-of-pocket or

plan-paid maximum is reached. The MEPS Household Component sample includes

thousands of these patterns of spending; therefore, following Chapter II, I calculate

how much any individual in the MEPS would have spent had he or she had any par-

ticular plan from the HC-IC Linked File.10 I then calculate the mean and variance

of the resulting distribution of possible out-of-pocket spending outcomes.11

9Another approach would be to use the distribution of out-of-pocket spending by other enrollees in the same plan,
but MEPS lacks an identifier variable that would link plans across employers, so as far as I know, I observe only one
enrollee per plan. Also, nearly all of the households in the Linked File appear during the first of their two years in
the MEPS-HC, so I cannot use the previous year’s expenditures (as does Ellis, 1989) to predict the current year’s
spending.

10The calculated mean and variance is similar when I restrict the distribution to individuals in the Linked File,
rather than the full MEPS household sample.

11In Chapter II, I calculated the out-of-pocket and plan-paid rates, rather than the levels used here, but the process
is the same.
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I refine the sample of MEPS-HC observations that are included in the out-of-

pocket calculation in two ways. First, if the employee has only individual coverage,

I restrict the sample to other people with single coverage; likewise, employees opting

for family coverage are compared to other families.12 Second, an employee likely

has some sense of the shape of the distribution based on whether she, or at least

one of her family members, has a chronic condition that requires regular medical

care. Therefore, if there is at least one chronic condition in her family, I included

only individuals or families with a chronic condition in the distribution calculation,

while limiting the sample to those without chronic conditions if no one in her family

has one. There are thus four risk groups, in ascending order by mean out-of-pocket

spending: single coverage without a chronic condition, family coverage without a

chronic condition, single with a chronic condition, family with a chronic condition.

Table 4.1 shows how elements of the plan’s coinsurance schedule contribute to

whether the plan is a high- or low-generosity, and high- or low-volatility plan. As

expected, plans with low mean out-of-pocket spending, and with low variance on that

spending, are less likely to have deductibles, have lower coinsurance and co-payments,

and are less likely to have plan-paid annual or lifetime maximums (though, somewhat

surprisingly, are also less likely to have annual out-of-pocket limits). There is also

little difference in most alternative coverage types, though the higher likelihood of

requiring referrals suggests that HMO plans are disproportionately represented in

the lower quartiles.13

12I do not impute whether any individual from the MEPS sample would have chosen single or family coverage.
As a result, the uninsured and those with public coverage, who face much different prices and incentives for medical
spending, are excluded from the distribution calculation. The exclusion of Medicare recipients likely eliminates many
of the highest spending outcomes, but the elderly may not be the best comparison for working-age individuals and
their families.

13Normally, HMO plans are considered less generous, not more generous. Cutler, McClellan, and Newhouse (2000)
find that HMOs are better able to negotiate low prices for care, so both total and out-of-pocket spending will be
lower under HMO plans, which will make HMO plans look more generous. Due to this difference in measurement, I
feel that the nested logit model is the appropriate choice, as HMO plans are compared only to other HMO plans.
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Table 4.1 also suggests the high degree of correlation between the mean and

variance of out-of-pocket spending. High deductible plans, for example, are likely

to have both high mean out-of-pocket spending, as well as a high variance of out-

of-pocket spending. Indeed, the overall correlation between the mean out-of-pocket

spending level and its variance is 0.62; the correlation between the difference in mean

spending between any plan and the most generous plan offered by a firm and the

difference in variance between any plan and the least volatile plan is 0.76. While the

correlation between level and volatility is high, the estimation below allows for each

moment of the out-of-pocket spending distribution to have its own impact on plan

choice, controlling for the other moment.

In addition to the mean and variance of the out-of-pocket spending distribution,

X includes the employee’s contribution to the premium (“co-premium”). In some

specifications, I also include the square of the co-premium, and the pairwise in-

teractions between income, co-premium, and mean out-of-pocket spending level, as

suggested by the model in Section 4.3. Approximately 20 percent of employees pay

no portion of the premium for a single coverage plan, and 8 percent pay nothing

for a family plan (Table 4.2). Six percent pay the same non-zero amount for all

plans, and another 19 percent pay the same amount for each HMO plan and the

same for each non-HMO plan.14 For these individuals, there is no tradeoff between

more (financial) generosity and a greater upfront price, so it should be a relatively

easy decision to choose the most (financially) generous plan, all else equal. I run the

estimation separately just for those who pay different premiums for each plan, as

this is the group whose response to price, both upfront and during the year, is most

relevant.
14This includes individuals who are offered exactly one HMO and one non-HMO plan, the most popular combination

of plans at 22.8 percent of the sample. The next most common combination is 1 HMO and 2 non-HMO plans (11.7
percent), 2 HMO plans and no non-HMO plans (9.4 percent), and 2 HMO plans and 1 non-HMO plan (9.2 percent).
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Table 4.3 displays weighted and unweighted summary statistics for the key vari-

ables, including the moments of the out-of-pocket distribution, the employee’s share

of the premium, and after-tax income. The effect of the weight is most apparent in

the reduction in the average number of enrollees in a plan between the first three

and last three columns.

Another X variable of interest is the share of enrollees in the plan. The coin-

surance schedule for a plan may be confusing, and even if perfectly understood, the

consumer may have trouble predicting their probability of becoming ill or injured

and evaluating the consequences (Liebman and Zeckhauser, 2008). A simple way to

choose a plan would be to ask a coworker, or to choose the plan that the human

resources department has set as the default option. In either event, employees would

be more likely to select a plan the greater is the share of employees at one’s establish-

ment that have also selected that plan, so the predicted effect is positive. Because

there may be diminishing returns to the plan’s popularity, I include the square of

enrollee share as well.

X also includes the benefits in the plan aside from financial coverage for basic

care: whether the plan includes (or has as an option for) coverage for dental, mental

health, and long-term care; whether the plan requires a referral from the primary

care provider to see a specialist; and indicator variables for whether the plan includes

a deductible or an out-of-pocket stop loss limit. Table 4.4 presents the probability

of selecting a plan given whether that plan and/or one of the employee’s alternative

offers included a particular service. Most services are either offered in both plans or

in neither plan, so there is little variation in nonfinancial plan characteristics between

offers off of which to identify the influence of these factors on plan choice.

The variables in Z do not vary between plans, so their primary purpose is to
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provide an estimate of adverse selection between HMO and non-HMO plans. In

the most basic specification, Z includes only after-tax family income, though in

subsequent specification Z also includes the square of income, indicator variables

for whether the employee is female or married, age and its square, and categorical

variables for race and ethnicity and educational attainment. I also include in the

full regression measures of the relative health of the individual and her family, with

indicators for whether the employee herself only (for single coverage employees; for

employees, it is the the number of family members she covers) has a chronic condition,

has a disability or limitation (i.e., answers “yes” to any Activities of Daily Living or

Instrumental Activities of Daily Living question in the MEPS survey), reports fair

or poor physical or mental health (on a 5-point scale), or is age 2 or younger (family

coverage only); these variables will measure the degree to which there is adverse

selection between HMOs and non-HMOs (Feldman, et al., 1989; see also Chapter

II). Finally, Z includes characteristics of the firm, including categorical variables for

the number of employees in the establishment and the region of the country, whether

the firm is in an urban area, and indicator variables for union status and whether

the firm self-insures.15

The coefficients on the variables of interest, the first and second moments of the

out-of-pocket spending distribution and the premium, are identified off variation in

plan offers. Figures 4.0(a), 4.0(b), and 4.0(c) plot the distribution of the differences

in the mean out-of-pocket total, variance of the out-of-pocket total, and employee-

paid premium, respectively, between the selected plan and each rejected alternative.

While the largest portion of the mean out-of-pocket spending level distribution for,

especially, singles is at zero, there is a fair amount of dispersion, particularly for

15In another specification, I included 11 categorical variables for industry, but none of the coefficients were signif-
icant, and the estimation had trouble converging with so many fewer degrees of freedom.
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employees with family coverage.

The model predicts that as the mean out-of-pocket spending total increases, the

plan becomes less attractive. Figure 4.1(a) displays the probability of selecting a plan

given how much greater the out-of-pocket spending level is than the most generous

plan in an employee’s portfolio. Nearly 45 percent of employees select the most

generous plan. As the difference in out-of-pocket burden increases, the plans are

chosen with less frequency; greater than 30 percent of plans in the first decile of mean

out-of-pocket spending difference are selected, but only 20 percent of the plans in the

highest decile are selected.16 The model also suggests that more uncertainty in out-

of-pocket spending is undesirable, so we should observe that as the relative variance

of the out-of-pocket spending distribution for a plan increases, the probability of

selecting the plan decreases. Figure 4.1(b) suggests that this is weakly the case

for single employees, but there is no negative relationship between the difference in

out-of-pocket spending variance with the least volatile plan and the probability of

selecting a plan for employees in family coverage without a working spouse. Looking

at premium alone ignores differences in out-of-pocket burden and other measures of

plan quality, but single employees more frequently opt for less expensive plans, while

employees in family coverage appear to be more likely to consider other elements

besides upfront price (Figure 4.1(c)).

4.6 Results

Table 4.5 presents the results of the nested logit regression for the single coverage

subsample. For each observation, I evaluate the derivative of each X (top panel) and

Z (bottom panel) variable given that observation’s values for the other variables, and

16A linear trend line through the points in Figure 4.1(a) has a significantly negative slope for both single employees
and employees with family coverage and no working spouse.
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then report the mean derivative over the sample. Standard errors (in parentheses)

are estimated by bootstrap over 100 iterations of the nested logit model.

The first column of Table 4.5 includes only the basic characteristics of the plan —

the first two moments of the out-of-pocket spending distribution, the employee-paid

premium, and whether the plan is a fee-for-service plan, plus after-tax family income,

which is constant across plans and thus outside the nest. The marginal effects for

most of the plan characteristics are in the expected direction. A small increase in

the mean out-of-pocket spending under a plan decreases the likelihood it is chosen

by 2.6 percent, which is significantly different from zero at the 99 percent confidence

level. The effect of the employee contribution toward the premium is also negative

and statistically significant; a small increase leads to a 1.2 percent decrease in the

probability that the plan is selected. The effect of an increase in the second moment

is unexpectedly positive but minuscule and not statistically significant.

In the second column, I include quadratic terms for the co-premium and income,

as well as pairwise interactions between the mean out-of-pocket amount, co-premium,

and income, as suggested by the theoretical model. As in the first column, a small

increase in family income leads to a statistically significant but fairly small (0.1

percent) increase in the probability of choosing an HMO plan. The effect of mean

out-of-pocket spending decreases in magnitude but remains statistically significant,

so that a small increase in the patient’s financial burden would result in a 2.1 percent

decrease in the probability the plan is selected. The magnitude of the effect of the

second moment remains tiny and statistically insignificant. The negative effect of the

employee premium also decreases in absolute value, enough to make it statistically

insignificant at conventional levels.

To account for the effect of plan elements aside from price and the financial
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generosity for basic care types, in specification 3, I add indicator variables for mental

health care, long term care, and dental care coverage; whether the plan requires

referrals, has a deductible, and has an out-of-pocket stop loss; and the share of

employees at one’s establishment that select that plan and its square, which will proxy

for the de facto or de jure default option in the choice set. I also include additional

personal characteristics outside the nest, including gender, race, education, marital

status, geographic variables, union status, firm size, age and its square, and health

measures.

In the full specification (column 3), the effect of a small increase in mean out-

of-pocket spending still reduces the probability a plan is selected by 1.6 percent,

but the magnitude decreases enough that the confidence interval includes zero. The

effect of the second moment is negative, but even smaller than before and not close

to statistical significance. The co-premium actually has a positive, albeit small and

statistically insignificant, effect. Only one plan characteristic has an effect that

is significant, either substantively or statistically — a small increase in the plan’s

market share in the establishment increases the probability that plan is selected by

45 percent, which is statistically different from zero at the 95 confidence level.17

The marginal effects in the bottom panel of column 3 provide little evidence

of adverse selection between HMO and non-HMO plans. Older people, those with

chronic conditions, or employees that report fair or poor physical or mental health

are all less likely to choose a (generally less-generous) HMO plan, consistent with

adverse selection, but none of the effects are statistically significant. I can only reject

the null for the indicator for whether the employee has a limitation, which actually

makes one more likely to select an HMO plan; this runs counter to the effect I would

17The coefficient on the quadratic term for enrollee share is positive and statistically insignificant, suggesting that
the effect of plan’s popularity at the establishment does not diminish as it increases.
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observe if there was adverse selection.18

In Table 4.6, I change the specification slightly — instead of including the second

moment, which is shown above to be the sum of the square of the first moment plus

the variance, I include these two variables separately. The marginal effect of mean

out-of-pocket spending, which now includes its square, is greater in magnitude than

in the matching column in Table 4.5, and remains statistically significant at the 90

percent confidence level after the addition of other characteristics of the plan and

employee. The variance has the predicted negative effect, but small enough to ignore.

The mean derivative for the other coefficients, including the co-premium, are almost

exactly the same as in Table 4.5.

One complication with plan choice is that many employers ask for the same em-

ployee contribution for any plan they offer, or at least the same employee contribution

for any plan of the same type. Table 4.7 repeats the analysis just for the sample

that pays a different co-premium for each plan, and the results are largely similar.

Without controlling for plan or personal characteristics, the effect of a small increase

in mean out-of-pocket level is almost identical in magnitude to estimate with the full

sample of single coverage employees, but in the full model, the effect becomes larger

and statistically significant for this refined sample. As one might expect, employees

appear to be more price sensitive when I eliminate those who face the same premium

for each plan, though the marginal effect of co-premium on plan choice is statisti-

cally insignificant when I include all plan and personal characteristics. The effect of

the market share of a plan is larger; on average, a small increase in plan popularity

increases its likelihood that any individual will pick the plan by 60 percent. There

18All of the reduction in the marginal effect of mean out-of-pocket spending between specifications 2 and 3 is due
to the addition of personal characteristics. Adding these variables without adding the other plan characteristics
results in a smaller (in absolute value) marginal effect of the co-premium as well, but it remains negative, while the
effect of the second moment is basically unchanged.



140

is somewhat more evidence of adverse selection between HMO and non-HMO plans,

as HMO enrollees are younger and less likely to report fair or poor physical health,

but oddly more likely to have a limitation.

Some of the employees in the sample in Table 4.7 pay a larger contribution for

a less generous and/or more volatile plan. In Table 4.8, I further parse the sample

into just those who pay the lowest premium for the plan with the highest mean out-

of-pocket spending and largest out-of-pocket spending variance. The magnitude of

the effect of mean generosity on plan choice is larger than in the full sample when I

do not control for other plan characteristics, but matches the estimate in Table 4.5

when I include other plan parameters. Most of the other effects match the estimates

from the full sample, both in magnitude and significance.

The results for employees in family coverage, excluding those with a working

spouse, are quite similar (Table 4.9). Not accounting for other plan characteristics, a

small increase in the mean out-of-pocket spending level decreases the likelihood the

plan is selected by a statistically-significant 2.1 percent, but this effect approaches

zero and is imprecisely measured when controlling for other measures of plan quality.

The second moment again has no effect on plan choice when controlling for the

first moment. The employee contribution to the premium has a much smaller (and

statistically insignificant) effect for employees with family coverage. Plan popularity

is an even bigger factor for families; holding plan characteristics constant, a small

increase in market share at the establishment increases the probability the plan will

be selected by over 80 percent. There is also no evidence of adverse selection between

HMO and non-HMO plans.

At the bottom of each table of regression results, I report the coefficient τ on

the inclusive value for both HMOs and non-HMOs. None of the τ estimates are
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significantly less than one; I cannot rule out that the independence of irrelevant

alternatives assumption holds, so the conditional logit model, which makes the IIA

assumption, may be appropriate.19 In Table 4.10, I report mean derivatives based on

the conditional logit estimates for the full single coverage sample, without (column

1) and with (column 2) interactions between the HMO dummy variable and each

basic plan characteristic, to account for the different implications of plan generosity

in an HMO plan. The magnitude of the effect of mean out-of-pocket spending level

is negative, as expected, but smaller and statistically insignificant than in the nested

logit estimates, while the effect of the second moment is again minuscule. The co-

premium has a stronger negative effect on plan choice, though I have not controlled

for other plan characteristics, which diminished the employee’s price sensitivity in

previous specifications. An HMO plan is twenty percent more likely to be chosen,

an effect which decreases only slightly when I interact the HMO dummy with plan

parameters.

4.7 Conclusion

This paper estimates the relative influence of employee-paid premiums and both

the level and variance of financial plan generosity in the selection of health plans from

among the options offered by one’s employer. Essentially, this paper is measuring

the price responsiveness of demand for health insurance (and the health care costs

which it insures against); where it differs with traditional consumer products is that

the price has both upfront and ongoing elements, and that the ongoing portion is

subject to uncertainty. In order to control for that ongoing element, I use detailed

plan information from an employer survey combined with comprehensive medical

19This runs counter to the finding in Feldman, et al. (1989), but is consistent with Royalty and Solomon’s (1999)
result.
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spending data from employees and their providers to derive a unique, flexible measure

of potential out-of-pocket spending under any hypothetical plan.

The results suggest that the employees are more concerned with the level of this

ongoing element than the upfront price, though their choice is not influenced by

any uncertainty in the within-year price. Employees in single coverage, especially,

are less likely to choose a plan the greater is the expected value of out-of-pocket

spending under that plan, but the potential variance of out-of-pocket spending has

a minuscule, imprecisely-estimated effect on the probability a plan is selected. The

employee’s contribution toward the premium also has a small and, when controlling

for the full menu of plan parameters, imprecisely-estimated effect on plan choice.

Coverage types beyond basic physician and hospital care, and plan characteristics

such as required referrals and deductibles, also have little influence on the choice of

plans.

One concern in the estimation of price elasticity is that an observed good is not

homogeneous; if a higher price reflects higher unobserved quality, quantity demanded

may not be decreasing in price. With health insurance, the most important element

of plan quality is the ongoing portion of the plan’s price, its potential out-of-pocket

cost to the employee; using multiple moments of the distribution of out-of-pocket

spending yields a more complete picture of the impact of this quality measure on

demand for a plan. My model also includes other ways in which plans differ, including

the structure of the plan (HMO, PPO, or FFS), the types of coverage beyond basic

care that are included or optional, and whether the plan requires specialist referrals.

I also include the plan’s market share at the firm, which is in part a proxy measure

of quality, as higher quality plans should be more popular, all else equal.

Still, among the disadvantages to using a national sample of employers rather
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than a single firm or small group of firms is that plan heterogeneity remains, due

to missing information and measurement error. While MEPS includes information

on whether many potential elements are offered in the plan, other factors which

are harder or more sensitive to measure, including network breadth (in particular,

whether an employee’s desired care provider is in the given plan), waiting times,

coverage refusals, enrollee satisfaction, and employees learning about plan quality

over time, are missing. Even for the variables that are present, aside from coverage

for physician and hospital care, the researcher knows at most the extensive margin

of, e.g., mental health coverage. Measurement error is also likely a factor; respon-

dents across firms may have different answers for the same health plan, based on the

particular respondent’s understanding of the question and his or her personal expe-

rience with the plan. At a single firm, many of these unobserved differences across

employees and insurers are differenced away. A researcher using a national dataset

like MEPS must therefore tradeoff the increased measurement error and missing

information for increased external validity.

While higher-quality data may yet find that consumers are, in fact, responsive to

upfront price and the variance of within-year costs, one result here stands out: the

finding that the probability a plan is chosen is substantially increasing in the mar-

ket share of the plan within the employee’s establishment. As mentioned, this may

reflect unobserved measures of plan quality. Alternatively, consumers may simply

choose their company’s explicit default option, if one exists, or simply “follow the

herd” and choose the most popular plan. Figures 4.0(a) and 4.0(b) suggest that for

many employees, there is little difference between any two plans in generosity. Even

establishing that the plans are essentially equal in generosity may be too difficult

or time-consuming for some employees. Gibbs, Sangl, and Burrus (1996) cite focus
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groups of private insurance, Medicare, and Medicaid consumers that report confu-

sion and frustration with the information they receive at the time of enrollment on

comparisons between plans, and that consumers would require a great deal more

training to interpret the more detailed descriptions in the Health Employer Data

Information Set report cards, which were meant to assist in plan choice. Abaluck

and Gruber (2009), analyzing the recent Medicare Part D expansion that offered

the elderly expanded prescription drug benefits but with a possibly overwhelming

number of options, find that the vast majority of enrollees chose a plan that offered

less generous benefits at a higher price than some other option available to them.

Similarly, I find in Chapter II, using the same MEPS data as this study, that of em-

ployees given a choice between one plan and another less generous, more expensive

option, nearly half choose the strictly dominated plan.

Employers can counter their employees’ confusion by providing more information,

particularly about the consequences of each plan’s cost sharing elements. Schoen-

baum, Spranca, Elliott, Bhattacharya, and Short (2001) find in an experimental

setting that providing supplemental cost information to potential health insurance

consumers increases the amount of risk that consumers are willing to bear, which

they interpret as evidence that under-informed and therefore uncertain consumers

overinsure in the absence of clear information. An interesting extension of my paper

would consider the choice of plans separately by educational attainment, the number

of years the consumer has been insured by their current (or any) employer, and other

measures of consumer informedness.

Other authors suggest that the problem is not only under-informed consumers, but

under-informed researchers with models that do not properly account for advances

in behavioral economics. Ellis (1989) and Marquis and Holmer (1986, 1996), both



145

motivated by the “prospect theory” outlined by Kahneman and Tversky (1979),

measure how responsive individuals are to gains and losses relative to a fixed referral

point, rather than focusing on overall medical costs predicted by the expected utility

model. Liebman and Zeckhauser (2008) suggest that the structure of health plans

in today’s market, including the expectation that relatively small co-payments will

adequately control excess demand for health care and the inability of consumers

to recognize that a dollar of employer contribution toward the premium is one less

dollar they could have been paid in cash wages, is better predicted by a behavioral

model than a more traditional expected utility model. Future models of plan choice

should better account for the implications of recent behavioral studies on consumer

behavior.



146

4.8 Figures and Tables
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(a) Mean Out-of-Pocket Spending
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(b) Standard Deviation of Out-of-Pocket Spending
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(c) Employee Contribution

400

600

800

1000

1200

O
bs

er
va

tio
ns

0

200

-1
60

0
-1

50
0

-1
40

0
-1

30
0

-1
20

0
-1

10
0

-1
00

0
-9

00
-8

00
-7

00
-6

00
-5

00
-4

00
-3

00
-2

00
-1

00 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
+

Employee Contribution to the Premium ($)

Single Coverage Family Coverage (Excl. Dual Earners)

Figure 4.1: Distribution of Differences between Selected and Non-Selected Plans
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(a) Mean Out-of-Pocket Spending
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(b) Standard Deviation of Out-of-Pocket Spending
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(c) Employee Contribution
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Figure 4.2: Probability of Selecting Plan, By Decile of Difference with Most Generous (Lowest
Co-Premium) Plan
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Table 4.1: Plan Characteristics by Out-of-Pocket Mean and Variance Quartile

OOP Mean Quartiles OOP Variance Quartiles
1st 2nd 3rd 4th 1st 2nd 3rd 4th

Any Deductible 0.7 12.3 29.8 48.4 6.9 18.7 26.8 39.0
$0.01 to $100 36.8 16.3 6.6 1.7 8.0 9.6 5.7 3.1
$100.01 to $200 15.8 53.4 26.8 11.8 69.7 22.2 25.2 11.9
$200.01 to $500 5.3 24.3 37.2 41.8 14.9 30.3 40.1 43.7
$500.01 to $1000 0.0 0.0 2.0 35.3 0.0 0.8 10.4 37.9
$1000.01 to $2000 0.0 0.0 0.2 8.4 0.0 0.0 0.3 10.4
$2000.01 or more 0.0 0.0 0.0 3.4 0.0 0.2 0.1 4.1

Physician Co-Payment 79.6 89.4 85.5 62.5 80.9 89.9 84.7 61.6
$0.01 to $5 44.3 24.9 14.4 9.9 41.9 22.9 16.6 11.6
$5.01 to $10 41.9 48.9 55.0 46.0 46.1 51.5 51.4 41.9
$10.01 to $20 13.8 25.6 30.0 42.0 11.9 25.3 31.3 44.2
$20.01 or more 0.0 0.6 0.6 2.1 0.0 0.3 0.7 2.3

Physician Co-Insurance 0.6 5.1 12.9 35.9 0.6 5.1 13.3 35.5
0.01% to 10% 93.8 54.2 27.0 21.5 58.8 62.9 32.6 18.6
10.01% to 20% 6.3 41.7 65.8 67.3 41.2 35.7 62.1 69.0
20.01% to 50% 0.0 4.2 6.6 10.9 0.0 0.7 5.3 11.9
50.01% or more 0.0 0.0 0.5 0.4 0.0 0.7 0.0 0.5

Hospital Co-Payment 13.4 25.1 27.8 24.1 10.5 23.6 28.8 27.8
$0.01 to $50 44.7 35.2 33.5 19.3 53.6 35.5 34.5 17.6
$50.01 to $100 28.9 24.0 27.6 24.6 29.9 25.3 25.6 25.5
$100.01 to $300 25.0 34.9 34.2 42.0 15.8 36.7 34.3 42.1
$300.01 to $500 0.5 3.9 3.2 9.6 0.0 2.3 3.4 9.9
$500.01 or more 0.8 2.0 1.5 4.5 0.7 0.3 2.2 4.8

Hospital Co-Insurance 3.0 11.7 19.8 48.7 1.0 10.4 20.8 51.2
0.01% to 10% 86.0 67.1 40.9 31.2 82.8 80.3 44.7 30.0
10.01% to 20% 14.0 31.7 55.4 60.8 17.2 19.3 52.8 61.7
20.01% to 50% 0.0 1.2 3.2 7.7 0.0 0.0 2.5 7.8
50.01% or more 0.0 0.0 0.5 0.4 0.0 0.3 0.0 0.5

Out-of-Pocket Maximum 38.6 52.0 62.0 61.7 40.6 57.7 62.6 53.9
$0.01 to $1000 31.8 25.9 16.5 9.1 29.4 24.6 19.3 6.5
$1000.01 to $2000 37.6 42.5 45.9 32.9 40.5 41.1 46.2 30.7
$2000.01 to $3000 16.1 22.4 26.9 28.3 17.4 26.4 23.5 28.2
$3000.01 or more 14.5 9.1 10.8 29.7 12.7 8.0 11.0 34.6

Annual Plan-Paid Max 1.5 2.1 2.0 5.3 1.2 2.0 2.5 5.1
$0.01 to $10K 2.3 0.0 7.1 14.7 0.0 1.8 1.4 17.2
$10K to $100K 9.3 5.1 3.6 2.7 0.0 10.9 4.2 2.8
$100K to $200K 0.0 0.0 1.8 1.3 0.0 0.0 0.0 2.1
$200K or more 88.4 94.9 87.5 81.3 100.0 87.3 94.4 77.9

Lifetime Plan-Paid Max 6.1 8.7 11.5 23.0 5.5 8.5 13.2 22.3
$0.01 to $1 Mil 51.7 63.3 64.3 62.9 48.4 66.5 63.4 62.7
$1 Mil to $2 Mil 40.2 28.6 29.0 31.6 41.5 24.6 29.4 32.9
$2 Mil or more 8.0 8.1 6.7 5.5 10.1 8.9 7.2 4.4

Require Referral (0/1) 81.1 65.7 49.6 33.8 76.8 59.3 52.9 41.0
Rx Coverage (0/1) 91.0 91.3 89.8 87.1 91.6 92.2 90.5 84.7
Dental Coverage (0/1) 67.5 69.3 69.0 68.0 69.0 72.0 67.1 65.7
LTC Coverage (0/1) 63.1 66.6 65.7 56.0 64.1 68.7 65.3 53.4
Mental Coverage (0/1) 82.9 83.0 83.2 77.9 83.5 84.6 82.1 76.9

Note: In each panel, the first row (non-italicized) is the proportion of plans in the
quartile that include the plan parameter. In subsequent rows (italicized), the entry
is the proportion of plans with values in the category, conditional on including the
plan parameter.

Table 4.2: Employee Premium Sharing Arrangements, By Coverage Type

Single Coverage Family Coverage, No Working Spouse
Employee Premium Arrangement All HMO Non-HMO All HMO Non-HMO
All zero 21.3 17.4 23.6 7.9 10.2 6.4
All same (non-zero) 5.4 6.8 4.6 6.7 4.9 7.9
All HMO same, all Non-HMO same 18.3 14.1 20.9 19.9 11.7 25.4
All HMO same, Non-HMO different 20.7 41.0 8.5 23.9 46.2 8.9
HMO different, all Non-HMO same 17.6 4.9 25.3 26.2 8.0 38.4
All plans different 16.6 16.0 17.0 15.4 18.9 13.0
Total 100.0 100.0 100.0 100.0 100.0 100.0
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Table 4.3: Summary Statistics for Unweighted and Weighted Samples

Unweighted Weighted
All Single Family All Single Family

Selected (0/1) Mean 0.308 0.311 0.308 0.342 0.346 0.344
(SD) (0.462) (0.463) (0.462) (0.475) (0.476) (0.475)

Employee Contribution ($) Mean 1012.46 400.98 1545.58 926.69 383.47 1486.92
(SD) (1166.02) (459.51) (1429.65) (1125.39) (493.93) (1415.78)

Mean OOP Amount ($) Mean 413.70 276.48 518.18 435.51 302.64 573.33
(SD) (457.62) (253.54) (559.25) (477.62) (314.75) (663.30)

Std Dev OOP Amount ($) Mean 458.48 318.51 576.94 498.21 363.06 709.86
(SD) (940.66) (437.74) (1243.18) (972.72) (534.19) (1622.99)

After-Tax Family Income ($) Mean 51664 43056 38900 49746 40312 38991
(SD) (33960) (29171) (31902) (32815) (28538) (32073)

Family Coverage (0/1) Mean 0.565 0 1 0.528 0 1
(SD) (0.496) (0.000) (0.000) (0.499) (0.000) (0.000)

HMO (0/1) Mean 0.591 0.624 0.599 0.585 0.628 0.585
(SD) (0.492) (0.485) (0.490) (0.493) (0.483) (0.493)

FFS (0/1) Mean 0.056 0.051 0.063 0.069 0.065 0.077
(SD) (0.231) (0.221) (0.242) (0.254) (0.247) (0.267)

Enrollee Share Mean 0.144 0.156 0.136 0.152 0.161 0.154
(SD) (0.215) (0.222) (0.209) (0.219) (0.221) (0.222)

Any Chronic Conditions* Mean 0.730 0.452 0.927 0.670 0.416 0.944
(SD) (0.811) (0.498) (0.932) (0.808) (0.493) (1.012)

Physical Health Fair/Poor* Mean 0.157 0.105 0.284 0.128 0.080 0.274
(SD) (0.424) (0.307) (0.597) (0.390) (0.272) (0.604)

Mental Health Fair/Poor* Mean 0.062 0.040 0.110 0.049 0.031 0.094
(SD) (0.267) (0.196) (0.379) (0.242) (0.175) (0.372)

Any Limit/ADL/IADL* Mean 0.286 0.201 0.398 0.259 0.171 0.394
(SD) (0.523) (0.401) (0.629) (0.502) (0.376) (0.637)

Number of Observations 11328 4890 2129 11095 4731 2108

*Note: Health variables are indicator variables for whether a single coverage employee has each
condition, and the number of covered family members with each condition for employees in family
coverage.
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Table 4.5: Mean Derivatives from Nested Logit Regression of Plan Choice, Single Coverage Only

(1) (2) (3)
Within Nest
Mean OOP Amount -0.026 *** -0.021 ** -0.016

(0.010) (0.010) (0.012)
2nd Moment, OOP Amount 0.000026 0.000026 -0.0000013

(0.000097) (0.000099) (0.0001179)
Employee Premium* -0.012 *** -0.0084 0.00031

(0.005) (0.0051) (0.00716)
FFS -0.017 -0.016 -0.013

(0.061) (0.070) (0.061)
Enrollee Share* 0.452 **

(0.187)
Quadratics and Interactions N Y Y
Supplemental Coverage N N Y
Plan Characteristics N N Y

Nest - Picking HMO
After-Tax Family Income* 0.0010 *** 0.0016 *** -0.00024

(0.0004) (0.0004) (0.00068)
Any Chronic Conditions -0.019

(0.023)
Fair/Poor Physical Health -0.0032

(0.0369)
Fair/Poor Mental Health -0.090

(0.063)
Any Limit/ADL/IADL 0.054 **

(0.025)
Age* -0.0012

(0.0010)
Quadratics and Interactions N Y Y
Demographics N N Y
Firm Characteristics N N Y
τ HMO 1.304 * 1.378 ** 1.337

(0.173) (0.182) (0.217)
τ Non-HMO 0.951 1.111 0.931

(0.242) (0.255) (0.442)
Number of plans 4731 4731 4731
Number of employees 1479 1479 1479

Note: Specifications 2 and 3 include quadratic terms for variables marked with * and pairwise
interactions between Mean OOP Amount, Premium, and Income. All regressions weighted to account
for non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level
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Table 4.6: Mean Derivatives from Nested Logit Regression of Plan Choice, Single Coverage
Only, Splitting The Second Moment

(1) (2) (3)
Within Nest
Mean OOP Amount* -0.034 *** -0.032 *** -0.029 *

(0.011) (0.010) (0.016)
Variance OOP Amount -0.000010 -0.000056 -0.000070

(0.000205) (0.000202) (0.000172)
Employee Premium* -0.012 *** -0.0084 0.00004

(0.004) (0.0069) (0.00723)
FFS -0.007 -0.002 -0.005

(0.061) (0.067) (0.056)
Enrollee Share* 0.424 **

(0.185)
Quadratics and Interactions N Y Y
Supplemental Coverage N N Y
Plan Characteristics N N Y

Nest - Picking HMO
After-Tax Family Income* 0.0010 *** 0.0016 *** -0.00008

(0.0004) (0.0005) (0.00063)
Any Chronic Conditions -0.019

(0.027)
Fair/Poor Physical Health -0.0025

(0.0415)
Fair/Poor Mental Health -0.090

(0.066)
Any Limit/ADL/IADL 0.055 **

(0.028)
Age* -0.0012

(0.0009)
Quadratics and Interactions N Y Y
Demographics N N Y
Firm Characteristics N N Y
τ HMO 1.230 1.280 1.277

(0.181) (0.186) (0.219)
τ Non-HMO 1.011 1.187 1.013

(0.227) (0.234) (0.386)
Number of plans 4731 4731 4731
Number of employees 1479 1479 1479

Note: Specifications 2 and 3 include quadratic terms for variables marked with * and pairwise
interactions between Mean OOP Amount, Premium, and Income. All regressions weighted to account
for non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level
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Table 4.7: Mean Derivatives from Nested Logit Regression of Plan Choice, Single Coverage
Only, Different Premium for Each Plan

(1) (2) (3)
Within Nest
Mean OOP Amount -0.021 -0.018 -0.037 *

(0.013) (0.012) (0.022)
2nd Moment, OOP Amount 0.00012 0.00012 0.00047

(0.00032) (0.00023) (0.00034)
Employee Premium* -0.015 ** -0.0138 ** -0.0042

(0.006) (0.0065) (0.0080)
FFS -0.073 -0.079 -0.127

(0.064) (0.071) (0.124)
Enrollee Share* 0.597 *

(0.333)
Quadratics and Interactions N Y Y
Supplemental Coverage N N Y
Plan Characteristics N N Y

Nest - Picking HMO
After-Tax Family Income* -0.000047 0.0004 -0.00144

(0.000772) (0.0010) (0.00092)
Any Chronic Conditions -0.012

(0.035)
Fair/Poor Physical Health -0.130 **

(0.059)
Fair/Poor Mental Health -0.088

(0.103)
Any Limit/ADL/IADL 0.067 *

(0.036)
Age* -0.0028 *

(0.0015)
Quadratics and Interactions N Y Y
Demographics N N Y
Firm Characteristics N N Y
τ HMO 1.325 1.309 1.050

(0.278) (0.309) (0.287)
τ Non-HMO 0.868 0.887 2.039

(0.293) (0.361) (0.740)
Number of plans 2851 2851 2851
Number of employees 774 774 774

Note: Specifications 2 and 3 include quadratic terms for variables marked with * and pairwise
interactions between Mean OOP Amount, Premium, and Income. All regressions weighted to account
for non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level
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Table 4.8: Mean Derivatives from Nested Logit Regression of Plan Choice, Single Coverage
Only, Worst Plan Has Lowest Premium

(1) (2) (3)
Within Nest
Mean OOP Amount -0.033 ** -0.021 -0.016

(0.015) (0.016) (0.029)
2nd Moment, OOP Amount -0.000059 -0.00012 -0.00019

(0.000340) (0.00030) (0.00055)
Employee Premium* -0.020 *** -0.0055 -0.0014

(0.005) (0.0091) (0.0091)
FFS -0.054 -0.050 0.075

(0.082) (0.089) (0.103)
Enrollee Share* 0.640 **

(0.271)
Quadratics and Interactions N Y Y
Supplemental Coverage N N Y
Plan Characteristics N N Y

Nest - Picking HMO
After-Tax Family Income* 0.0018 *** 0.0023 *** 0.0012

(0.0006) (0.0006) (0.0018)
Any Chronic Conditions -0.075

(0.063)
Fair/Poor Physical Health -0.0087

(0.0795)
Fair/Poor Mental Health 0.065

(0.100)
Any Limit/ADL/IADL 0.071

(0.066)
Age* -0.0034

(0.0022)
Quadratics and Interactions N Y Y
Demographics N N Y
Firm Characteristics N N Y
τ HMO 1.032 1.143 0.846

(0.477) (0.510) (0.627)
τ Non-HMO 0.74 0.77 0.863

(0.293) (0.307) (0.442)
Number of plans 1004 1004 1004
Number of employees 369 369 369

Note: Specifications 2 and 3 include quadratic terms for variables marked with * and pairwise
interactions between Mean OOP Amount, Premium, and Income. All regressions weighted to account
for non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level
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Table 4.9: Mean Derivatives from Nested Logit Regression of Plan Choice, Family Coverage
Only with No Working Spouse

(1) (2) (3)
Within Nest
Mean OOP Amount -0.021 ** -0.021 * -0.006

(0.010) (0.012) (0.011)
2nd Moment, OOP Amount 0.000050 0.000058 0.000028

(0.000149) (0.000205) (0.000116)
Employee Premium* -0.001 -0.0006 0.00125

(0.002) (0.0032) (0.00263)
FFS -0.006 -0.005 0.016

(0.078) (0.084) (0.057)
Enrollee Share* 0.806 **

(0.325)
Quadratics and Interactions N Y Y
Supplemental Coverage N N Y
Plan Characteristics N N Y

Nest - Picking HMO
After-Tax Family Income* 0.000038 0.000099 -0.00316 ***

(0.000460) (0.000785) (0.00093)
Number with Any Chronic Conditions 0.013

(0.023)
Number with Fair/Poor Physical Health -0.042

(0.033)
Number with Fair/Poor Mental Health -0.031

(0.042)
Number with Any Limit/ADL/IADL 0.021

(0.028)
Number Age 2 and Under 0.002

(0.040)
Age* 0.000040

(0.001815)
Quadratics and Interactions N Y Y
Demographics N N Y
Firm Characteristics N N Y
τ HMO 1.122 1.171 1.314

(0.212) (0.216) (0.326)
τ Non-HMO 1.138 1.342 1.532

(0.302) (0.344) (0.758)
Number of plans 2105 2105 2105
Number of employees 648 648 648

Note: Specifications 2 and 3 include quadratic terms for variables marked with * and pairwise
interactions between Mean OOP Amount, Premium, and Income. All regressions weighted to account
for non-random missing observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95% confidence level * - 90%
confidence level
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Table 4.10: Mean Derivatives from Conditional Logit Regression of Plan Choice, Single
Coverage Only

(1) (2)
Mean OOP Amount -0.0070 -0.0089

(0.0098) (0.0130)
2nd Moment, OOP Amount 0.0000057 0.00000047

(0.0000837) (0.0002098)
Employee Premium -0.0092 ** -0.0100 **

(0.004) (0.0039)
After-Tax Family Income -0.00067 -0.00063

(0.00050) (0.00046)
FFS 0.049 0.069

(0.066) (0.071)
HMO 0.200 *** 0.181 ***

(0.030) (0.052)
HMO Interactions N Y
Number of plans 4731 4731
Number of employees 1479 1479

Note: Specifications 2 and 3 include quadratic terms for variables marked
with * and pairwise interactions between Mean OOP Amount, Premium,
and Income. All regressions weighted to account for non-random missing
observations in HC-IC Linked File sample.
*** - Significantly different from zero at the 99% confidence level ** - 95%
confidence level * - 90% confidence level



CHAPTER V

Conclusion

This volume explores the extensive and intensive margins of health insurance

coverage, focusing on three different aspects of consumers’ interaction with the health

care system: the choice of employer-sponsored health plans, how health insurance

coverage generosity influences medical spending, and disparities in the uninsured rate

across racial and ethnic groups. Because all three chapters use data from national

surveys, the results should be more broadly applicable than studies that examine a

single firm or a small group of health insurance policyholders.

The results in the first chapter suggest that consumers do respond to the inherent

moral hazard incentive in the health insurance system: more generous coverage,

which lowers the out-of-pocket price for medical care, encourages more spending.

But inefficiency is not an automatic result. Managed care, an innovation of health

maintenance organizations that has extended into more traditional health plans,

breaks this relationship between generosity and spending to some extent. Moreover,

there is little evidence of adverse selection; if consumers with greater health care

needs are not opting for more expensive, more generous health plans, then the lack

of information sharing in today’s employer-sponsored health insurance system, and

perhaps tomorrow’s health insurance exchange, need not lead to spiraling premiums
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or inefficient provision of insurance coverage.

In the second chapter, I find that differences in citizenship, education, and labor

market outcomes do not fully account for the growth in the disparity in health insur-

ance coverage between Hispanics and non-Hispanic Whites. If universal coverage is

the societal goal, policymakers must consider both supply and demand factors that

lead to the inequality in coverage rates.

I conclude in the third chapter that, as expected, consumers desire higher levels of

coverage against health risks, but do not seem attracted to lower levels of variability

in their out-of-pocket spending. Health insurance, and its consequences for how

the insured person receives necessary or desired medical care, is complicated, and

consumers are notorious for their misunderstanding of future health care risks, so

perhaps it is not surprising that consumers do not select plans optimally.

Policymakers took an enormous step toward reforming the health insurance sys-

tem in March, 2010, especially in extending affordable coverage options to nearly all

uninsured American citizens. Further improvements will likely require consumers,

with the help of both government and private industry, to educate themselves. A

consumer with a better understanding of the elements of health insurance plans,

especially managed care and the coinsurance schedule, will likely select the health

plan that best protects her and her family from the financial risk of large medical

expenditure. Better informed consumers could result in the adverse selection we do

not currently observe in the employer system, though this may be countered by a

desire by healthier individuals to subsidize the less fortunate members of society, a

motive we observe in the progressivity of the tax and transfer system and the popu-

larity of charitable giving. Further, if employees understand the general equilibrium

effects of their demand for health insurance and health care — that their demand
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for more generous coverage results in lower wages for all, and that overspending on

medical care raises premiums for all — health insurance could become less a way to

prepay for care, and instead true insurance against unexpected medical spending.



BIBLIOGRAPHY

161



162

[1] Abaluck, Jason T. and Jonathan Gruber, 2009. “Choice Inconsistencies Among the Elderly:
Evidence from Plan Choice in the Medicare Part D Program,” NBER working paper 14759,
February 2009.

[2] Abbring, Japp H., Pierre-Andre Chiappori, and Jean Pinquet, 2003. “Moral Hazard and
Dynamic Insurance Data,” Journal of the European Economic Association, 1:767-820.

[3] Abraham, Jean Marie, Wiliam B. Vogt, and Martin S. Gaynor, 2006. “How Do Households
Choose Their Employer-Based Health Insurance,” Inquiry 43:315-332.

[4] Agency for Healthcare Research and Quality, Center for Cost and Financing Studies, 2003.
“Household Component - Insurance Component Linked Data, 1999: Documentation,” AHRQ
mimeo.

[5] Alegria, Margerita, Zhun Cao, Thomas McGuire, and David Takeuchi, 2005. “Health Insurance
for Vulnerable Populations: Understanding Differences across Asian American and Latino
Subgroups in the United States,” Economic Research Initiative on the Uninsured Working
Paper 41.

[6] Altonji, Joseph G., and Rebecca M. Blank, 1999. “Race and Gender in the Labor Market,”
Handbook of Labor Economics, Volume 3 (Amsterdam: Elsevier), 3143-3259.

[7] Arrow, Kenneth J., 1963. “Uncertainty and the Welfare Economics of Medical Care,” American
Economic Review, 53(5):941-973.

[8] Ashraf, Javed, 1996. “Is Gender Pay Discrimination on the Wane? Evidence from Panel Data,
1968-1989,” Industrial and Labor Relations Review 49(3): 537-546.

[9] Barringer, Melissa W. and Olivia S. Mitchell, 1994. “Workers’ Preferences Among Company-
Provided Health Insurance Plans,” Industrial and Labor Relations Review 48(1):141-152.

[10] Barsky, Robert B., F. Thomas Juster, Miles S. Kimball, and Matthew D. Shapiro, 1997.
“Preference Parameters and Behavioral Heterogeneity: An Experimental Approach in the
Health and Retirement Study,” Quarterly Journal of Economics 112(2):537-579.

[11] Berk, Marc L., Leigh Ann Albers, Claudia L. Schur, 1996. “The Growth in the U.S. Uninsured
Population: Trends in Hispanic Subgroups, 1977 to 1992,” American Journal of Public Health
86: 572-576.

[12] Blinder, Alan S., 1973. “Wage Discrimination: Reduced Form and Structural Estimates,”
Journal of Human Resources 8(4): 436-455.

[13] Borjas, George J., 2003. “Welfare Reform, Labor Supply, and Health Insurance in the Immi-
grant Population,” Journal of Health Economics 22: 933-958.

[14] Borjas, George J., and Lynette Hilton, 1996. “Immigration and the Welfare State: Immi-
grant Participation in Means-Tested Entitlement Programs,” Quarterly Journal of Economics
111(2): 575-604.

[15] Bound, John, and Richard B. Freeman, 1992. “What Went Wrong? The Erosion of Relative
Earnings and Employment Among Young Black Men in the 1980’s,” Quarterly Journal of
Economics 107(1): 201-232.

[16] Buchmueller, Thomas C. and Paul J. Feldstein, 1997. “The effect of price on switching among
health plans,” Journal of Health Economics, 16:231-247.

[17] Buchmueller, Thomas C., Anthony T. LoSasso, Ithai Lurie, and Sarah Dolfin, 2007. “Immi-
grants and Employer-Sponsored Health Insurance,” Health Services Research 42(1): 286-310.



163

[18] Bundorf, M. Kate, 2002. “Employee demand for health insurance and employer health plan
choices,” Journal of Health Economics 21(1):65-88.

[19] Camarota, Steven A., and James R. Edwards., Jr., 2000. “Without Coverage: Immigration’s
Impact on the Size and Growth of the Population Lacking Health Insurance,” Center for
Immigration Studies working paper.

[20] Campos-Outcalt, D., C. Bay, A. Dellapena, and M.K. Cota, 2003. “Motor Vehicle Crash
Fatalities by Race/Ethnicity in Arizona, 1990-96,” Injury Prevention 9(3): 251-256.

[21] Cardon, James H. and Igal Hendel, 2001. “Asymmetric Information in Health Insurance:
Evidence from the National Medical Expenditure Survey,” RAND Journal of Economics,
32(3):408-427.

[22] Carrasquillo, Olveen, David U. Himmelstein, Steffie Woolhandler, and David H. Bor, 1999.
“Going Bare: Trends in Health Insurance Coverage, 1989 to 1996,” American Journal of
Public Health 89: 36-42.

[23] Cawley, John and Tomas Philipson, 1999. “An Empirical Examination of Information Barriers
to Trade in Insurance,” American Economic Review, 89(4):827-846.

[24] Cawley, J. and K.I. Simon, 2005. “Health Insurance Coverage and the Macroeconomy,” Jour-
nal of Health Economics 24(2): 299-315.

[25] Cebul, Randall, James B. Rebitzer, Lowell J. Taylor, and Mark Votruba, 2008. “Unhealthy
Insurance Markets: Search Frictions and the Cost and Quality of Health Insurance,” NBER
working paper 14455, October 2008.

[26] Chernew, Michael, Kevin Frick, and Catherine G. McLaughlin, 1997. “The demand for health
insurance coverage by low-income workers: can reduced premiums achieve full coverage?”
Health Services Research, 32(4):453-472.

[27] Chiappori, Pierre-Andre, Franck Durand, and Pierre-Yves Geoffard, 1998. “Moral Hazard
and the Demand for Physician Services: First Lessons from a French Natural Experiment,”
European Economic Review, 42(3-5):499-511.

[28] Chiappori, Pierre-Andre and Bernard Salanie, 2000. “Testing for Asymmetric Information on
Insurance Markets,” Journal of Political Economy, 108(1):56-78.

[29] Claxton, Gary, Isadora Gil, Benjamin Finder, Jon Gabel, Jeremy Pickreign, Heidi Whitmore,
Samantha Hawkins, 2005. Employer Health Benefits: 2005 Annual Survey. Menlo Park and
Chicago: Henry J. Kaiser Family Foundation and Health Research and Educational Trust.

[30] Cotton, Jeremiah, 1988. “On the Decomposition of Wage Differentials,” Review of Economics
and Statistics 70: 236-243.

[31] Cutler, David M., Bryan Lincoln, and Richard J. Zeckhauser, 2009. “Selection Stories: Un-
derstanding Movement Across Health Plans,” NBER working paper 15164, July 2009.

[32] Cutler, David M., Mark McClellan, and Joseph P. Newhouse, 2000. “How does managed care
do it?” RAND Journal of Economics, 31(3):526-548.

[33] Cutler, David M. and Sarah J. Reber, 1998. “Paying for health insurance: the tradeoff between
competition and adverse selection,” Quarterly Journal of Economics, 113(2):433-466.

[34] Cutler, David M. and Richard J. Zeckhauser, 2000. “The Anatomy of Health Insurance,”
Handbook of Health Economics, (Amsterdam: Elsevier 2000), 563-643.

[35] DeNavas-Walt, Carmen, Bernadette D. Proctor, and Jessica Smith, 2009. “Income, Poverty,
and Health Insurance Coverage in the United States, 2008,” U.S. Census Bureau Report
P60-236.



164

[36] Duan, Naihua, Willard G. Manning, Jr., Carl N. Morris, and Joseph P. Newhouse, 1983. “A
Comparison of Alternative Models for the Demand for Medical Care,” Journal of Business and
Economic Statistics, 1(2):115-126.

[37] Einav, Liran, Amy Finkelstein, and Mark R. Cullen, 2008. “Estimating welfare in insurance
markets using variation in prices,” NBER working paper 14414, October 2008.

[38] Ellis, Randall P., 1989. “Employee Choice of Health Insurance,” The Review of Economics
and Statistics, 71(2):215-223.

[39] Engen, Eric M., William G. Gale, Cori E. Uccello, Christopher D. Carroll, and David I. Laibson,
1999. “The Adequacy of Household Saving,” Brookings Papers on Economics 1999(2): 65-187.

[40] Fairlie, Robert W., 2005. “An Extension of the Blinder-Oaxaca Decomposition Technique to
Logit and Probit Models,” Journal of Economic and Social Measurement 30(4): 305-316.

[41] Fairlie, Robert W., and William A. Sundstrom, 1999. “The Emergence, Persistence, and
Recent Widening of the Racial Unemployment Gap,” Industrial and Labor Relations Review
52(2): 252-270.

[42] Fang, Hanming, Michael P. Keane, and Dan Silverman, 2008. “Sources of Advantageous
Selection: Evidence from the Medigap Insurance Market,” Journal of Political Economy,
116(2):303-350.

[43] Feldman, Roger D. and Bryan E. Dowd, 1982. “Simulation of a Health Insurance Market with
Adverse Selection” Operations Research, 30(6):1027-1042.

[44] Feldman, Roger and Bryan Dowd, 1991. “Must adverse seleciton cause premium spirals?”
Journal of Health Economics, 10:349-357.

[45] Feldman, Roger and Bryan Dowd, 2000. “Risk segmentation: goal or problem?” Journal of
Health Economics, 19:499-512.

[46] Feldman, Roger, Michael Finch, Bryan Dowd and Steven Cassou, 1989. “The demand for
employment-based health insurance plans,” Journal of Human Resources, 24(1):117-142.

[47] Finkelstein, Amy and Kathleen McGarry, 2006. “Multiple dimensions of private information:
evidence from the long-term care insurance market,” American Economic Review, 96(4):938-
958.

[48] Finkelstein, Amy and James Poterba, 2004. “Adverse Selection in Insurance Markets: Policy-
holder Evidence from the U.K. Annuity Market,” Journal of Political Economy, 112(1):183-
208.

[49] Finkelstein, Amy and James Poterba, 2006. “Testing for Adverse Selection with ‘Unused Ob-
servables,’” NBER working paper 12112, March 2006.

[50] Fronstin, Paul, Lawrence G. Goldberg, and Philip K. Robins, 1997. “Differences in Private
Health Insurance Coverage for Working Male Hispanics,” Inquiry 34: 171-180.

[51] Gibbs, Deborah A., Judith A. Sangl, and Barri Burrus, 1996. “Consumer perspectives on
information needs for health plan choice,” Health Care Financing Review 18(1):55-73.

[52] Gresenz, Carole Roan, Jeanette Rogowski, and Jose J. Escarce, 2007. “Social Networks and
Access to Health Care Among Mexican-Americans,” NBER Working Paper 13460.

[53] Hamilton, Erin R., Robert A. Hummer, Xiuhong H. You, and Yolanda C. Padilla, 2006.
“Health Insurance and Health-Care Utilization of U.S.-Born Mexican-American Children,”
Social Science Quarterly 87(5): 1280-1294.



165

[54] Hanoch, Giora and Haim Levy, 1970. “Efficient Portfolio Selection with Quadratic and Cubic
Utility,” Journal of Business 43(2):181-189.

[55] Hendee, William R., 1991. “Hispanic Health in the United States,” Journal of the American
Medical Association 265(2): 248-252.

[56] Hensher, David A., John M. Rose, and William H. Greene, 2005. Applied Choice Analysis: A
Primer. New York: Cambridge University Press.

[57] Herrera, Guillermo A., Zhen Zhao, and R. Monina Klevens, 2001. “Variation in Vaccination
Coverage Among Children of Hispanic Ancestry,” American Journal of Preventive Medicine
20(4): 69-74.

[58] Hirth, Richard A., Reagan A. Baughman, Michael E. Chernew, and Emily C. Shelton, 2006.
“Worker preferences, sorting and aggregate patterns of health insurance coverage,” Interna-
tional Journal of Health Care Finance and Economics, 6:259-277.

[59] Jann, Ben, 2005. “Standard Errors for the Blinder-Oaxaca Decomposition,” working paper.

[60] Kahneman, Daniel and Amos Tversky, 1979. “Prospect Theory: An Analysis of Decision
Under Risk,” Econometrica 47:263-291.

[61] Kandilov, Amy M. Gass, 2007. “Health Insurance and Labor Supply Among Recent Immi-
grants following the 1996 Welfare Reform: Examining the Effect of the Five-Year Residence
Requirement,” working paper.

[62] Ku, Leighton, and Brian Bruen, 1999. “The Continuing Decline in Medicaid Coverage,” New
Federalism: Issues and Options for States, Urban Institute.

[63] Liebman, Jeffrey and Richard Zeckhauser, 2008. “Simple Humans, Complex Insurance, Subtle
Subsidies,” NBER working paper 14330, September 2008.

[64] Manning, Willard G., Joseph P. Newhouse, Naihua Duan, Emmett B. Keeler, and Arleen
Leibowitz, 1987. “Health Insurance and the Demand for Medical Care: Evidence from a
Randomized Experiment,” American Economic Review, 77(3):251-277.

[65] Marquis, M. Susan and Martin R. Holmer, 1986. “Choice Under Uncertainty and the Demand
for Health Insurance,” The Rand Corporation, N-2516-HHS.

[66] Marquis, M. Susan and Martin R. Holmer, 1996. “Alternative Models of Choice Under Uncer-
tainty and Demand for Health Insurance,” Review of Economics and Statistics 78(3):421-427.

[67] Medina, Jose F., and Chak-Tong Chau, 1998. “Credit Card Usage Behavior Between Anglos
and Hispanics,” Hispanic Journal of Behavioral Sciences 20(4): 429-447.

[68] Monheit, Alan C. and Jessica Vistnes, 1999. “Health Insurance Availability at the Workplace:
How Important are Worker Preferences?” Journal of Human Resources, 34(4):770-785.

[69] Monheit, Alan C., and Jessica Primoff Vistnes, 2000. “Race/Ethnicity and Health Insurance
Status: 1987 and 1996,” Medical Care Research and Review 57(Supp. 1): 11-35.

[70] Moran, John R., Michael E. Chernew, and Richard A. Hirth, 2001. “Preference Diversity and
the Breadth of Employee Health Insurance Options,” Health Services Research, 36(5):911-934.

[71] Neumark, David, 1988. “Employers’ Discriminatory Behavior and the Estimation of the Wage
Discrimination,” Journal of Human Resources 23: 279-295.

[72] Oaxaca, Ronald, 1973. “Male-Female Wage Differentials in Urban Labor Markets,” Interna-
tional Economic Review 14(3): 693-709.



166

[73] Oaxaca, Ronald L., and Michael R. Ransom, 1994. “On Discrimination and the Decomposition
of Wage Differentials,” Journal of Econometrics 61: 5-21.

[74] Pauly, Mark V., 1968. “The economics of moral hazard: comment,” American Economic
Review, 58(3):531-536.

[75] Pauly, Mark V., 1986. “Taxation, Health Insurance, and Market Failure in the Medical Econ-
omy,” Journal of Economic Literature, 24(2):629-675.

[76] Reimers, Cordelia, 1983. “Labor Market Discrimination Against Hispanic and Black Men,”
Review of Economics and Statistics 65: 570-579.

[77] Robins, James A., Andrea Rotnitzky, and Lue Ping Zhao, 1995. “Analysis of Semiparameteric
Regression Models for Repeated Outcomes in the Presence of Missing Data,” Journal of the
American Statistical Association 90(429), 106-121.

[78] Rothschild, Michael and Joseph E. Stiglitz, 1976. “Equilibrium in competitive insurance mar-
kets: an essay on the economics of imperfect information,” Quarterly Journal of Economics,
90(4):347-369.

[79] Royalty, Anne Beeson and Neil Solomon, 1999. “Health Plan Choice: Price Elasticities in a
Managed Competition Setting,” Journal of Human Resources 34(1):1-41.

[80] Rutledge, Matthew S., and Catherine G. McLaughlin, 2008. “Hispanics and Health Insurance
Coverage: The Rising Disparity,” Medical Care 46(10), 1086-1092.

[81] Scanlon, Dennis P., Michael Chernew, and Judith R. Lave, 1997. “Consumer Health Plan
Choice: Current Knowledge and Future Directions,” Annual Review of Public Health 18: 507-
528.

[82] Schoenbaum, Michael, Mark Spranca, Marc Elliott, Jay Bhattacharya, and Pamela Farley
Short, 2001. “Health Plan Choice and Information about Out-of-Pocket Costs: An Experi-
mental Analysis,” Inquiry 38:35-48.

[83] Schur, Claudia, and Jacob Feldman, 2001. “Running in Place: How Job Characteristics, Immi-
grant Status, and Family Structure Keep Hispanics Uninsured,” Commonwealth FundWorking
Paper 453.

[84] Shah, N. Sarita, and Olveen Carrasquillo, 2006. “Twelve-Year Trends in Health Insurance
Coverage Among Latinos, By Subgroup and Immigration Status,” Health Affairs 25(6): 1612-
1619.

[85] Short, Pamela Farley and Amy K. Taylor, 1989. “Premiums, Benefits, and Employee Choice
of Health Insurance Options,” Journal of Health Economics 8(3):293-311.

[86] Strombom, Bruce A., Thomas C. Buchmueller, and Paul J. Feldstein, 2002. “Switching Costs,
Price Sensitivity, and Health Plan Choice,” Journal of Health Economics 21:89-116.

[87] Taylor, Amy K., Sharon Larsen, and Rosaly Correa-de-Araujo, 2006. “Women’s Health Care
Utilization and Expenditures,” Women’s Health Issues 16(2): 66-79.

[88] Van Hook, Jennifer, Susan L. Brown, and Maxwell Ndigume Kwenda, 2004. “A Decomposition
of Trends in Poverty Among Children of Immigrants,” Demography 41(4): 649-670.

[89] Waidmann, Timothy A., Bowen Garrett, and Jack Hadley, 2004. “Explaining Differences in
Employer Sponsored Insurance Coverage by Race, Ethnicity, and Immigrant Status,” Eco-
nomic Research Initiative on the Uninsured Working Paper 42.

[90] Weinick, Robin M., Elizabeth A. Jacobs, Lisa Cacari Stone, Alexander N. Ortega, and He-
len Burstin, 2004. “Hispanic Healthcare Disparities: Challenging the Myth of a Monolithic
Hispanic Population,” Medical Care 42(4): 313-320.



167

[91] Weinick, Robin M., Samuel H. Zuvekas, and Joel W. Cohen, 2000. “Racial and Ethnic Dif-
ferences in Access to and Use of Health Care Services, 1977 to 1996,” Medical Care Research
and Review 57 (Supp. 1): 36-54.

[92] Wooldridge, Jeffrey M., 2000. “Inverse Probability Weighted M-Estimators for Sample Selec-
tion, Attrition, and Stratification,” mimeo, Michigan State University Department of Eco-
nomics.


