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ABSTRACT

A study was made of the effect of temperature and hydrostatic
pressure on ratioes of interfacial tensions in the binary: system nickel-
lead at temperatures above the melting point of lead. Ratios of
interfacial tensions were obtained by measurement of the dihedral
angle made by the intersection of two nickel/lead interfaces with
a, nickel/nickel grain boundary.

At zero pressure, the dihedral angle decreases from 52° to
32° as the temperature is increased from 371°C to 816°C. At 371°C,
the dihedral angle decreases from 52° to 39° as hydrostatic pressures
up to 50,000 psi are applied. . At 593°C, the dihedral angie decreases
from 41° to 32° with>increasing hydrostatic pressure up to 52,600 psi.

The assumption is made, that. in the temperature and pressure
range studied, the interfacial‘tensions in this system vary linearly with
changes in temperature or pressure. It is shown that the experimental
data is consistent with this assumption. Using this assumption, pressure
and temperature coefficients arercalculated for each interface. The
values dbtained for these coefficients are all positive,

It is assumed that the Gibbs Adsorption Equation may be applied
to solid/liquid and solid/solid interfaces to obtain expressions for the
pressure and temperature coefficients of interfécial tension. . Applying
the expressiohs derived to the temperature and pressure Coefficients
of interfacial tension permits calculation of the excess entropy and
the excess concentration of nickel at the nickel/lead interface. Although
similar calculations cannot be carried out for the nickel/nickel grain

boundary, it is shown that in all likelihood, lead segregates strongly
at these boundaries.

viii



Several specimens of leaded nickel were subjected to uniaxial
tension and compression at 571°G; Significant changes in the dihedral
angle were measured as a function of stress. It is felt, however, that
the conditions which allow interpretation of the dihedral angle as a
ratio of interfacial tensions are not satisfied under these conditions
of loeding. It is concluded that the changes observed ;n the dihedral
angle in these experiments need not have been due to changes in inter-

facial tensions.
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CHAPTER T

INTRODUCTION

The grain structures of well-annealed, single-phase polycrystalline
metals have been shown to bear a striking resemblance to the structure of
soap bubbles in a froth. This similarity arises because metal grain
boundaries and soap films both possess a certain free energy associated
with their interfaces. When certain conditions are satisfied, the most
stable configuration of the boundaries in both cases is the one which
minimizes the total interfacial free energy.

The grain structures of well-annealed, multi-phase alloys are
determined by the same condition. No soap froth analogy can be made here,
however, because the interfaces between like and unlike phases in the alloy
possess different energies.

This fact has some interesting consequences. In a single phase
metal, individual grains tend to the same shapes regardless of their
interfacial free energy. In a metal with two or more phases, the minimization
of total interfacial free energy produces configurations in which high
energy boundaries tend to be replaced by low energy boundaries. Thus,
the shapes of grains of different phases depend on the relative magnitudes
of the interfacial energies of the various types of boundaries present.

A simple type of multi-phase alloy, illustrating these principles,
consists of a matrix phase in which & small amount of a second phase having
a low melting point is dispersed. The second phase particles readily assume
equilibrium shapes during annealing at temperatures above the melting

proint of the second phase.



. The shapes vary depending on whether the particles occur in the
interior of matrix grains, at grain boundaries, at grain edges, or at
grain corners. A grain edge is the junction line where three matrix grain
boundaries intersect; a grain corner is the point of intersection of four
or more grain edges. - When the particles are vwholly included within a
grain, they become spheroidal. .When they are in contact with one or more
of the matrix grain boundaries,their shapes are governed by their tendency
to wet the grain boundary. The wetting is determined by the relative
magnitudes of the interphasal and grain boundary energies.

It is convenient to characterize the "wettability" of the second
phase by its "dihedral angle," the angle formed by the apex of the
second phase particle penetrating the grain boundary. Under certain
conditions, the dihedral angle is a function of the ratio of grain
boundary and interphasal energies. The dihedral angle serves as a
"poundary condition" (in the mathematical sense) on the shape of the
second phase particle.

Interfacial free energies or interfacial tensions (a distinction
will be made later) are thermodynamic quantities whose values depend on
the thermodynamic constraints on the system. If the temperature, pressure,
or the composition is varied, the resulting changes in interfacial
ﬁension are reflected in changes in micréstructure via changes in the
dihedral angle.

Sizable changes in interfacial tensions can occur when the
composition of the system is changed.  For example, a second phase consisting
of a lead-bismuth alloy in copper can be made to produce dihedral angles
from 15° to 60° by varying the ratio of lead to bismuthg59> Variations

in temperature can also cause changes in interfacial tensions. The
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dihedral angle of lead in copper decreases from 60° to 0° as the
temperature is increased from the melting point of lead to the melting
point of copper°<51)

Similarly, changes in the dihedral angle are to be expected
when the pressure on the system changes, because the surface tensions
which determine the dihedral angle must change with pressure. The
magnitude of this effect has not previously been established for systems
involving metals. Changes in interfacial tensions with pressure have
been observed in gas/liquid and liquid/liquid systems, however.

The shapes of such second phase particles are important primarily
because they determine the extent to which the second phase can. influence
the bulk properties of the alloy. Many phases with low melting points
are weak or brittle. When the bulk material is stressed, stress con-
centrations occur at these particles due to differences between phases
in elastic or plastic behavior. . The stress concentrations cause-cracking
and premature failure. These effects are most pronounced when the second
phase can wet the grain boundaries and grain edges of the matrix, i.e.,
when the dihedral angle is low. The detrimental effects of the second
phase are minimized when the dihedral angle is high. For example, lead
inclusions in nickel cause the alloy to be extremely weak and brittle.

This probébly occurs because the dihedral angle of lead in nickel is low
enough (about 50°) to allow unlimited spreading of lead along the edges
between matrix grains. ILead inclusions in copper cause some decrease in
strength and ductility of the alloy at room temperature, but the higher
dihedral angle of lead in copper (about 65°) does not allow spreading

along grain edges, hence the effect of the weaker phase is minimized.



Two other occasions may be mentioned where relative magnitudes
of interfacial tensions play an important role. Sintering is sometimes
carried out with a liquid phase present. .When this liquid wets the solid
particles, sintering rates are much more rapid. This happens because
the sq;id particles are held together by the surface tension of the liquid
during the early stages of sintering and because high rates of mass transport
are possible in the liquid. The effectiveness of the liquid depends on
its wettability; this can be changed, as indicated above, by changing
the temperature, pressure, or composition of the system.

Secondly, it has been found that certain metals exhibit lowered
fracture strengths and brittle fractures when stressed in certain liquid
metal environments. Annealed copper has a fracture strength in liquid
lead which i1s three times its fracture strength in liguid bismuth.(87)
Intermediate liquid compositions produce intermediate fracture strengths.
It is generally felt that this indicates that the energy required for
initiation and propagation of cracks at the solid surface is lowered when
the crack i1s exposed to certain liquid metals. This energy is identified
with various interfacial tensions in the system. For a given solid metal,
only a few liquid metals, if any, produce a marked decrease in fracture
sfrength. Thus, in systems where this phenomenon is observed, rather
special relations must exist between the various interfacial tensions.

In an effort to obtain information on changes in wetting with
variations in the constraints on the system, experiments were undertaken
to measure the effect of changes in temperature and pressure on the
dihedral angle of lead in nickel. In addition, specimens were subjected

to tensile and compressive stresses, and changes in the dihedral angle



were observed. These results are discussed in terms of changes taking
place in the interfacial tensions of the solid nickel/liquid lead
interface and the nickel grain boundary.

In the next chapter the thermodynamic description of interfaces
and interfacial tensions will be discussed as a backgrpund for a review

of the pertinent literature in Chapter III.



CHAPTER II

THERMODYNAMICS OF INTERFACES

In this chapter the thermqdynamics of interfaces will be
reviewed.  This is intended to serve as a background for the literature
review in the next chapter, and as a basis for treatment of the
experimental results in Chapter VIL.

In this review - the emphasis will be on the classical description
of interfaces presented by Gibbs. No rigorous derivation of the Gibbs
Adsorption Equation will be presented. Instead, the various parameters
used by Gibbs and others to characterize an interface will be defined,
and the conditions for equilibrium and stability in systems involving
interfaces will be discussed. The assumptions needed to extend the
application of the Gibbs Adsorption Equation to solid surfaces will
be reviewed. . In the final section, the Gibbs Adsorption Equation will
be written in appropriate forms for describing the dependence of

interfacial tension on temperature and pressure.

1. Fundamental Definitions

It seems particularly necessary when discussing surface phenomena
involving solids to clearly define the meanings of the various gquantities
considered.  There is little comsistency in the literature, partly because
great quantities of work have been done in special areas in solid surface
chemistry where attention has been focused on the adsorbing substance and
the properties of adsorbed films. Another major source of inconsistency
has been the carry-over of concepts used to describe liquid-liquid and

liquid-gaseous interfaces to interfaces involving solids. For example,

-6-
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(65)

McLean uses Guggenheim's expression for the dependency of the surface
tension of liquids on temperature and composition to describe temperature
and composition dependencies in metal grain boundaries. But Guggenheim
says that in solids "there is no quantity analogous to surface tension”(35>
(at least the way he defines it) which suggests that McLean's application
deserves Justification which he does not provide.

The Second International Congress on Surface Activity in 1959
included presentation of nine papers under the category of thel"Solid/

(112) The heated discussion which followed their

Liquid Interface."
presentation indicated a basic lack of agreement on the significance
of the terms surface energy and surface tension when applied to solids,
or for that matter, when applied to liquids in,some cases.

In the discussions to follow, the meanings of surface free
energy, surface tension, and surface stress will be those given by
HErring§u3> Shuttleworth,(9o) and Johnson,(SE) all of which are
(29,82)

based on the original work of Gibbs.

Dividing Surface and Excess Quantities

Gibbs defined the various properties of a surface in terms of
excess quantities which are referred to a dividing surface separating
phases. Consider a system of bulk phases & and B separated by an
interface S. The dividing surface, according‘to Gibbs, is a geometrical
surface "sensibly coincident with the physical surface of discontinuity"
but having a "precisely determined position." ILet a dividing surface of
some sort be chosen to separate phases & and B so that it lies between
surfaces Ca and CB as shown schematically below. The portion of the

dividing surface under consideration is sufficiently small to be

considered plane.



p
C
B g
S The dividing surface
a?
COC
0/

The specific properties of the material in phase « exist
unchanged up to Cay and the specific properties in f exist unchanged

up to C,. Regions «a' and B' lie; respectively, between the surfaces

B

. ? ?
Ca and S, and CB and S. Let 7% and TB be the total quantities

of some extensive variable (e.g., the mass of component i, the free
energy, etc.) lying within a volume of «' and B', respectively, which

is circumscribed by normal lines to a closed curve enclosing an area A

& 4 P

+
in S. Then ————KJE- may be considered to be the surface density
of the variable T. Now let Ta and T‘3 be the quantity of the extensive

variable T in the interiors of phases « and f, respectively,

b 1
- existing in the same volume as Ta and 'I‘f3 » . Then

: ! p! p
o) _ (1% s+ ) - (1% + 1) (2-1)

o(s)

where is the surface excess of the particular quantity T per

unit area of dividing surface. In other words,

- +—I—ﬁVB + (sl (2-2)

B

where TT is the total quantity of T in the system, Eq and the

quantities of T per unit volume, Vay and VB the total volumes of

phases «Q and B, where the phases extend up to the dividing surface,

and A the area of the dividing surface.
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This analysis may be used to define excess internal energy,
Helmholtz free energy, or mass of the !th component. Note, however,
that since volume has been used to define the excess quantities, that

T

V(s> =0, 1.e., V' = Va +V One could, however, define a non-zero

B
excess volume per mass (using a mass rather than volume basis for
defining excess quantities) which is related to the surface excess
of mass on the volume basis used above. Guggenheim and Adam(Bu)
discuss alternative conventions for describing the properties of the
surface.

Movement of the dividing surface in the direction of its normal
affects the magnitude of the excess properties, except when the phases
G, B are identical (which is the case for grain boundary between like
crystals in a solid). The position of the dividing surface when « and
B are not identical 1s usually chosen for convenience, e.g., to make
the surface excess vanish for the major constituent of one of the phases.

When the phases @, B are identical, the dividing surface cannot be

chosen so that one of the surface excess gquantities vanishes.

Surface or Interfacial Free Energy

(e)

The surface free energy f is the excess Helmholtz free
energy per unit area of dividing surface determined in the manner described
above, Shuttleworth(9o> points out that for a one component solid in

equilibrium with its vapor in a constant volume enclosure at constant

temperature, the amount of reversible work required to form a unit area
r (),
i

o(s)

of surface by a process of division is The subscript 1 1is

needed for crystalline substances because varies according to

the crystallographic plane of division. (For liquids and glasses f(S)

is not dependent on orientationo)
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Surface or Interfacial Tension

(29)

The surface tension 7y 1s given by Gibbs as
7y = SO ui‘_; (2-3)
i

where the subscripts 1 refer to various components in the system.
The chemical potentials W, are defined by the usual relations in either

bulk phase:

_ [ oF_
By T\ oW,

) . (%%— ) , ik (2-b)
il v, T,P,N,

(43)

Herring points out that for solids, shear strains must be held

constant as)well as volume in the first expression, and constant stress
!

should replace constant pressure in the second expression.

The quantities rl are the specific surface excess quantities
1 1
of mass of component i. If N? and N? are moles of the 1ith

1 b
component, (corresponding to 7 ana T above ) then

al g a, B
_ (N o+ N - (N7 + N7)
r—; = ( 1 i )A ( 1 1 ) (2_5)

Note that’since-Shuttleworth(9O) considers only a one component
solid in equilibrium with its vapor, he may choose his dividing surface
S 1in such a way that the surface excess of his one component is zero.
.Whenever this is so, the surface free energy and surface tension are
eéuala For a two component system,however, one cannot in general choose
a dividing surface so as to make both surface excess quantities vanish.
Hence, in this case, surface tension and surface free energy are not

equal.
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HErring<45) has defined surface tension in precisely the same

manner as Gibbs. It must be realized, however, that when Herring defines
f(s> as the Helmholtz free energy per unit area of surface it is the
same as the surface excess free energy (surface free energy) defined
above. Similarly, Herring defines rﬂi = Ni(s)/A where, in terms
of quantities previously defined,

) el el - el (2-6)

For a system consisting of more than one component, ¥ measures
the energy required to create unit area of solid surface where, as before,
vy will vary with the crystallographic orientation of the new surface

created.

Surface Stress

Gibbs<29> says that for solids "we may regard (v ) as expressing
the work spent in forming a unit of the surface discontinuity...but it
cannot properly be regarded as expressing the tension of the surface.

The latter quantity depends on the work spent in stretching the surface,
while the quantity (7) depends on the work spent in forming the
surface." In the case of liquids, the work spent in stretching or in
Torming a surface 1s the same, but for solids capable of existing in
different states of strain, the quantities must be distinguished.

(43)

Following Herring , consider an interface S separating

two bulk phases «a and B, at least one of which is a solid. Then
-

consider a plane P erected perpendicular to S, having a normal n

lying in S. If we imagine P +to be a cut across the bulk phases and

the interface, then in order that atoms in the plane of the cut retain
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the positions they had prior to cutting, external forces must be applied
acting across and in the plane ‘P, In general, a normal force acting

in the direction of Ef and two perpendicular shearing forces in the
plane P will be required. The contributions to these forces resulting
from the presence of the surface is defined as the surface stress.

One can imagine that this contribution is arrived at by a process of
dividing the total forces into bulk and surface contributions as was
done in defining excess quantities earlier. When P 1is rotated about
an axis normal to the interface the surface stress acting across the
interface is given by ;;L gpv qV where the surface stress tensor

guv has components for the two values of v going with directions

in the plane of the interface, and components for the three values of

L representing pefpendicular directions in S and normal to S.

By considering infinitesimal deformations of the surface

which may change 7y, Herring arrives at the following expression for

r%lw . 1

b L=1,2,3%
g, = 1. TS ’ o (2-7)
Ky Hv “uv v=1,2

. Where euv 1s the strain tenser of the deformation and Buv is the
Kronecker Delta.
; (90) e
Shuttleworth's treatment of the same problem is simplified
because he considers ohly surface stresses in the external surface of
a .one component solid in equilibrium with its vapor.  As mentioned

()

before, this allows one to equate 7y and £ by choosing the dividing

surface so that | '= O,
For this case, if one chooses x and y axes in the plane of

the interface, the surface stress may be expressed in general by three
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-components, gxx’ gyy and gxyo When principal dxes are chosen,
gxy vanishes so the surface stress for an external surface can be
characterized by two numbers.

Shuttlieworth considers an infinitesimal deformation of a
rectangle in the surface, oriented with principal surface stresses
perpendicular to the sides of the rectangle (no shearing stresses).
For a reversible, constant temperature deformation, the surface con-
tribution to the work is gxdix + gyydAy = d(Af<S)) which, for the

isotropic case gxx = gyy = g reduces to

g = £8) | A(df(s>/dA) (2-8)

a relation analogous to the definition above, but clearly more restricted.
(Shuttleworth calls f(S> the surface energy and gij the surface
tension. This is logical nomenclature for a one component system, but

it leaves no name for 7y when a multi-component system is considered.

Note that Shuttleworth's symbol ¥ is the same as g wused here. )

Alternative Treatments

(35)

Guggenheim has presented treatments of interfaces not

involving solids which are not based directly on Gibbs’ notion of a
dividing surface between phases. Guggenheim cites Van der Waals and
B&Mﬁm<lo> as the principal source for his development.

| Consider a plane interface between bulk phases « and p and

pass two planes Ca and. C6 through the bulk phases o and B near

the interface. Ga and CB are placed so that the properties of the

matter at or near Ca and C are the properties of the matter in the

B
interior of the bulk phases « and f, respectively. (It is possible



i I

to show that such relations as are derived for the surface are independent

of the precise location of Ca and C as long as the above conditions

p

are true.) The distance between Ca and C, 1s T, the thickness

P
of the interface, which should be less than 10-6 cm, but is probably
smaller.  The interface 'S 1is treated as a bulk phase which differs
from phases & and B only in the property that when the system is
under hydrostatic pressure, the force across any unit area of S is

different on planes parallel and perpendicular to Ca and C the

ﬁj
difference being the surface tension.

Iet T° be the total quantity of some extensive variable
contained in a volume of interfacial material lying between Ca and

C and circumscribed by normal lines to a closed curve in, say, C

B’ a
enclosing an area A in Ca” Then the interfacial density of T 1is
simply

™ = T1°/a

Note that this is not an excess quantity.

Guggenheim'’s expression for the surface tension is

y = F%+ Pr - Zui ni (2-9)
1

vhere F° = FS/A is the surface dengity of Helmholtz free energy,

ng = ni/A is the surface density of component 1, P 1is the pressure,
S
Hy the chemical potential of the ith component, and 7T = %r the

volume of the surface phase corresponding to unit interfacial area.
This expressiod may be reduced to Gibbs' definition of surface tension

as follows:
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In terms of excess quantities:

o p
g0 - pl8) I+ E
A
o4 B
I o I St
i i A

Substituting in Guggenheim'’s expression:

IPACED - R Q- e S
vy = f - Sy + 5 (B + B - piNi)

i 1

1 R B B
vy (Few 'Zil"“iNi>

The two terms in parentheses are zero because

(07 07 07 04
o+ Y = @ —;“iNi

Hence the surface tensions defined by Gibbs and Guggenheim are entirely
equivalent.

Guggenheim’s skepticism as to the reality of surface tension
in solids is undoubtedly based on the identification of ¥ with a
real force in the surface. The distinction that Herring has made
between surface tension and surface stress gij should remove this

objection.

2. The Gibbs Adsorption Equation

In this section a derivation of the Gibbs Adsorption Equation

applicable to a system of two fluid phases separated by an interface will

(29)

be outlined following Gibbs., In the next section, the criteria for
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stability of an equilibrium state with respect to motion of the
interfaces will be discussed and applied to systems Which involve
solids as well as fluids. UFinally, the applicability of the Gibbs
Adsorption Equation to systems involving solids undergoing changes
in temperature and hydrostatic pressure will be discussed.

Gibbs(29) shows that Equation (2-10) describes the dependence
of the excess internal energy of the surface UO? on the excess
entropy of the surface SO, the area. of the surface, A, and the
excess number of moles of component 1 present in the surface, mg.
UG, S(j and. mg are excess quantities for an area A of interface;

they are not specific excess quantities.

au® = mas® + yaa + 2§:kuidm§ (2-10)

Equation (2-10) is a fundamental relation giving the internal energy

as a homogeneous function of the first degree in the variables SO,
A, mg, cany mﬁ . Hence, the temperature, T, interfacial tension

v, and chemical potential w;, are homogeneous functions of zero degree

in the variables SG, A, mgy cuoy mg given by the relations
o
Q%) =T i=1, ..., n
oS o
Aym,
i
SN .
Si) o o =7 i=1, .o, n (2-11)
S, m
au’ S
N = My 1537
Bmi g
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Since UY 1is of the first degree in its variables, then by the Euler
relation

07 = 787 4+ ya + Z\uimg o (2-12)
1

Differentiating Equation (2-12) we have

au® = mas’ + s%T + yaA + Ady + Z uidmg + Zmic’dpi . (2-13)
1 1

Setting Equations (2-10) and (2-15) equal to one another gives

s%ar + Ady + ; mgdui = 0. (2-14)
Dividing (2—1&) by the area A and rearranging, we have

dy = s8)ap _ ; Fidpi (2-15)

where

Equation (2-15) is the Gibbs Adsorption Equation. Note that it is
obtained (up through Equation (2-14)) by the same procedﬁre which is
used to obtain the Gibbs-Duhem relation for either bulk phase. Note
also that in Equation (2-15) the interfacial tension depends only on
‘the temperature and the chemical poﬁentials of the components present.
Gibbs shows that at equilibrium the temperatures of all phases and the
interface are equal,;and the chemical potentials of all components are
the same everywhere in the system. Thus, the interfacial tension, v,
is completely determined by intensive properties of the bulk phases.
For fluid phases separated by a curved interface, Gibbs shows

that the condition for mechanical equilibrium in the system is
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- =y (cy +¢,) (2-16)

where pa, pB are the pressures of phases « and B on either side

of the interface, and C and 02 are the principal curvatures of

et B

the interface. When the interface is plane, this reduces to p = p

1

which is the condition for mechanical equilibrium between bulk phases

when interfaces are neglected.

3. Criteria for Stability of an Equilibrium State

The equilibrium conditions for a system involving an interface,
i.e. uniform temperature, equal chemical potentials in all phases, etc.,
are derived by Gibbs from the condition that at equilibrium the energy
of the system must be an extremum, when the total entropy and volume
of the system, and the masses of all components are held constant.

For stable equilibrium, the energy of the system must be at a
minimum. Gibbs shows that when the temperature and the chemical potentials
of all components are uniform throughout the system and the surface
tensions are constant over each interface, a condition for stability is
that "in a stable system each surface of tension must be a surface of
minimum area for constant values of the volumes which it divides, when
the other surfaces bounding these volumes and the perimeter of the
surface of tension are regarded as fixed." He then derives a condition
of stability with reference to motion of interfaces which is sufficilent,
but not necessary. This'condition is the basis for several methods of
méasuring interfacial tensions.

Consider a system composed of several bulk phases separated by
interfaces of various kinds. ILet the system be in equilibrium; thus

the temperature and the chemical potentials of all components are every-
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where constant. The total entropy and the total quantities of all
components remain fixed. Gibbs shows (299 P. 252) that under these
constraints, a sufficient condition for the stability of an equilibrium
state with respect to motion of interfaces is: the sum of the products
of the areas of the interfaces by thelr tensions, less the sum of the
products of the volumes of the phases by their pressures, must be a
minimum. This condition is expressed in Equation (2-1?), where the
notation indicates that the function in brackets is a minimum in the

stable state.

nin [_2 g7idAi - ngjdv.] (2-17)

1 J J
Now in many situations Equation (2—17) can be reduced to a
simpler form. . Consider a system of two bulk phases separated by an
interface, the whole system being in thermal, chemical and mechanical
equilibrium. The bulk phases may now be either solids or fluilds.
Let the volumes of the two bulk phases be held constant and let us con-
sider changes in the mechanical work done on the system when the interface
is allowed to move. Changes must in general o¢cur in the terms g‘yidAi
because the interfacial areas are being varied. If the state of stress
on the bulk phases is substantially unaltered when the interfaces move¥*,
then the terms for the bulk phases will be unchanged because the volumes
of the bulk phases are constant. .In particular, when all bulk phases

are under a uniform hydrostatic pressure, then the terms in .gpjdvj do

* Herring<u5) points out that there must always be an inhomogeneous
stress in a solid near an interface which is needed to offset the
surface stress. . This inhomogeneous stress will 1in general change
as the interface changes position. Herring shows that this effect
is negligible,
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not change when the position of the interface is changed. Under these

conditions Equation (2-17) reduces to

min {2 XyidAi] (2-18)

1

If the interfacial tensions are independent of crystallographic
orientation (if anyvof the phases is a solid)9 or if all phases are fluids,
application of condition (2-18) to intersecting sets of interfaces
produces the familiar "vectorial balance" of surface tensions. Herring<u5)
has applied the condition (2-18) to systems in which the interfacial
tensions do depend on crystallographic orientation and obtains a more
general type of relation. . These equations will be discussed more fully
in the next chapter. . It must be emphasized here that all equations of
this type depend on the reduction of condition (2-17) to condition (2-18)0
If for some reason this reduction is not possible, then none of the
equations expressing the balance of tensions about a point are valid.
Furthermore, the condition (2-17) is sufficient for stability, but
not necessary; hence, stable equilibrium.may be possible without
satisfying either (2-17) or (2-18).

4. Application of the Gibbs Adsorption Equation to Systems Involving
Solids

(43)

Herring notes some conditions in which the Gibbs Adsorption
Equation (2-15) does not give the total change in interfacial tension

for a solid surface for all types of changes in the system. These
circumstances are: (1) when a displacement of an interface changes

its radius of curvature, (2) when the orientation of the crystalline
surface changes, and, (3) when the state of strain of a crystalline

surface is altered (other than by a simple dilation of the bulk phase

normal to the interface}
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Situation (1) above can generally be disregarded because
the interfapial tension is substantially independent of curvature,
except when the radii of curvature are on the order of atomic dimensions.
Neither of the second two situations can be generally disregarded.

The dependence of the interfacial tension on crystallographic
orientation varies considerably from system to system. Studies of
small angle grain boundaries between crystals of the same phase have
shown a negligible dependence of the tension on boundary orientation,
if the crystals across the boundary have a fixed orientation with
respect to one another. The appearance of generally spherical particles
of low melting phases within solid grains indicates that the solid/
liquid interfacial tension does not have a strong dependence on the
crystallographic plane exposed. On the otherland, the development
of facets on crystals at high temperatures may be related to
significant variations in the surface tension on various crystallographic
planes, as may the occurrence of some plate-like or rod-like precipitates
in metals. (These effects, however, may also involve preferred
directions for growth. )

If the change in surface tension with a change in the constraints
on the system 1s measured on a large, random collection of interfaces
of all possible orientations, then the average surface tension of all
these interfaces should be independent of crystallographic changes
occurring at specific interfaces. The Gibbs Adsorption Equation can
then be applied to this average tension to describe its changes when

the constraints on the system are changed.

The final condition noted in the first paragraph seems to

seriously restrict application of the Gibbs Adsorption Equation to
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solid surfaces. Gibbs says (29, p. 328) that Eguation (2-15) may be
applied to solid surfaces subject to the limitation “that the state

of strain of the surface of the solid remains the same."

He goes on
to say that "this limitation may in most cases be neglected,” but "if
the quantity (7) represented the Erue tension of the surface, as in the
case of a surface between fluids, the limitation would be wholly
unnecessary."”

It is unfortunate that Gibbs did not expand upon this subject,
because 1t is not at all clear in which cases changes in the state of
(43)

strain of the surface may be neglected. Using Herring'’s expression

for the surface stress tensor as a function of surface tension,

the condition for applicability would seem to be either that the change
in the state of strain is very small or that the differential coefficlent

8%%7 is small compared to 7. It must be assumed that Gibbs had in
1J
mind the latter case. For example, a decrease in temperature of 50°C
causes strains on the arder of -7‘*10“&L in/in in nickel. (About the
same amount of strain is caused by the application of 60,000 psi hydro-
static pressure.) These strains certainly result in a change in the
"state of strain” of the solid surface. It seems quite unlikely that
Gibbs would make the statement that Equation (2jl5) was applicable to
changes in solid surface tensions "in most cases," if changes in the
state of strain of this order of magnitude could not be tolerated.

It will be assumed in all subsequent chapters that the Gibbs

Adsorption Equation can be used to express the change in interfacial



tension with temperature and pressure for solid/solid and solid/liquid
interfaces. This implies that the surface tension and surface stress

(L3)

do not differ significantly. Herring notes that several atomistic
calculations of the surface stress for homopolar crystals, alkali halide
crystals and rare gas crystals indicate that the surface stress and
surface tension should be significantly different. On the other hand,
the conditions for equality of surface stress and surface tension in
solid metals appear to be satisfied as much as 200°C below the melting
point (cfo measurements of surface tension by the Udin-Shaler-Wulff

(105,41 (65)

method McLean feels that the surface tension and surface
Sfress of ordinary large angle grain boundaries should be "nearly
equal...at high temperature." No experimental measurements of the
difference between surface stress and surface tension in solids have
been made.

To summarize, the stability conditions presented in the
previous section insure that interfaces in systems involving solids
under hydrostatic pressure assume a configuration such that, neglecting
the influence of solid crystallography, a vectorial .balance of inter-
facial tensions occurs. As will be shown later, this guarantees that
ratios of interfacial tensions can be measured. However, expressing
the dependence of these interfacial tensions on temperature and hydrostatic

pressure by means of the Gibbs Adsorption Equation involves the assumption

of equality of surface tension and surface stress.

5. Derivation of Useful Relations from the Gibbs Adsorption Equation

The dependence of surface tension on temperature, pressure

and composition of a system is given by the Gibbs Adsorption Equation:
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o = s ar . 20 F; an, (2-19)

i=1l

(s)

where S is the surface excess entropy, and the sum is taken over

2ll components of the system. The discussion to follow considers a
two-component system consisting of two phases, @ and B, and an
interface separating them. ZFor solids whose surface tension is dependent
on crystallographic orientation, the following derivation is applicabie
for a particular set of orientation coordinates.

Let (1) and (2) designate the components of the system.

The Gibbs Adsorption Equation is

dy = 508 )ar - rzdpl - F;aue ) (2-20)

The chemical potential of each component is constant throughout the
e a_ B _ (s) a_ B _ . (s) |

system at equilibrium Hy = By =By 5% hence dul = dul = dpl . Let

xay XB be the mole fractions of component (1) in phases o and B.

Then (1 - Xa)j (l - XB) are the mole fractions of component (2)°

The chemical potentials in Equation (2-20) may be written:

B N
dul = il dT + —S-rg ap + a dx
ox
(2-21)
Q a“g a“g Ol e
dp.2 = ""ng dT + —"a-’f aprp + __Q( dx
ox .
for phase @, and
B B B
b - Oy Opy oM g
}.Ll = —B‘E arT + '—S*f ap + -g—g dx
B B s (2-22)
5 Sug Bug aug 5
du2 = 37 dT + >Sp ap -+ __E dx
ox

for phase B.
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Equations (2-21) and (2-22) may be simplified using the

following relations:

Bui = 3

ST /p,xd T 5 (2-23)

Bpi .

)00 = 0 (2-24)

) BHJ . Buj

N L s 1-x) =2 - o (2-25)
dx? dx?

where ég and Vé are, respectively, the partial molar entropy and

the partial molar volume of component 1 in phase J, and Equation (2—25)

is the Gibbs-Duhem relation between chemical potentials in phase J.
Inserting Eguations (2~25)y (2-2h>9 and (2-25) in (2-21) and

(2—22)9 the differentials of chemical potential in each phase are:

Bua
a = = Q 1 (0%
iy = -8 dT + VT dP + —5 ax
A%
5 e (2-26)
a = Q. = O __X 1 07
du, = -8, dT + ¥~ aP S — dx
1 - x oK
and
BpB
awP = -5Par + TP ap + L &f
1 1 1 NP
X
5 (2-27)
5 = B =8 s T
du, = -§,7ar + V. aP - 5 5 ax
: 1 - x ox

‘Either Equations (2-26) or (2-27) may now be substituted

into Equation (2-20). Substituting (2-26) we have:

a7 = '[S(S) - PJ.,S-% - D?gg]dT _{r'lvi‘ * Fv—a]dP

22

-28
_[P-——X“arg}éﬁ ‘ (2-20)

dx
1l -x axa
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In some cases, Equation (2-28) may be considerably simplified.
For example, if phase o and B have different compositions, then
the dividing surface between phases can be chosen so that surface
excess of one component vanishes, e.g. rﬂ = 0. Then at constant

2

- temperature and pressure, Equation (2-28) reduces to:

O
dy = I —L (2-29)
1(2) o
ox
where [;(2) is the surface excess for this choice of dividing surface.
Since
p‘:’L‘ - by o= RTlna?L‘ = RTlnflaxo‘

0

where aa is the activity and f the activity coefficient of

1 1
component (1), then
oy AT 3 1n £°
= - B 4 p—2 . (2-30)
o a a
ox X ox

For solutions in which either Henry's Law or Raoult's law.is valid
for component (1), the second term on the right hand side of (2-30)

vanishes. . Under these conditions, Equation. (2-29) becomes

dy = - ,:(2) RT 4 1n x° (2-31)

which is a commonly encountered form of the Gibbs Adsorption Equation.
Simplifications of Equation (2-28) will now be derived for

the solid/liquid and grain boundary surface tensions.

Solid-Liquid Interfaces

Consider the interface between a solid and a liquid, where

the solid consists almost wholly of component (1), while the liquid is
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rich in component (2) with very limited solubility for component (1).
The dividing surface will be chosen so that r; = 0, Then, with
chemical potentials referred to the liquid phase, Egquation (2-28) may

be written:

)4
s _ y o
W= ’[ngg -1 Sﬂ or - ) T ae - r::(z) j . (2-52)

At constant pressure, the variation in surface tension with

temperature may now be written:

2
dy S(s) a“f.l_ dxz

ar - T |P(2) T '1(2) Eigl T oe) @ (2-33)

If the activity of component (l) in the liquid is proportional

to its mole fraction x£5 then
l
Oy RT

and

u _[Sggg hE] - T )RTi—lzl_zf. (2-35)

arT 1(2)81 1(2 ar

Without making an assumption as to the relative magnitude of
the quantities in (2-35), further simplification is not possible. If
the solubility as a function of temperature and the partial molal entropy
of component (1) in the liquid are known, the quantities SEZ; and
FI(E) could be determined if at least one was assumed constant with
temperature and other was an assumed function of temperature. However,
this would require great precision in measurements of ¥y vs. T.

At constant temperature, the variation of surface tension

with pressure is:
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ap 1 1 ~ 4 ap
ox

& = 1 a“lz ax’
F--lLen » (2-36)
(2)
Substitution of Equation (2-34) gives:

‘
oA ) d 1n x )
P - 1(2) [Vl * BT =3 ) (2-37)

If the solubility as a function of pressure and the partial
molal volume of component (l) in the liquid are known, 1;22) may be
determined from measurements of ¥ vs. P,

In many cases, the thermodynamic properties of the liquid
solution are not known. One can obtain simple expressions for d7/(1']3
and %7 /ap replacing Equations (2-35) and (2-37), if the solid can be
assumed to be pure component (1). Then the differential of chemical

potential referred to the solid is:

N S
du° = auldv = V,°aP = V.®°aP at constant T
by = 3P 7 N1 R .
N
Q. = o ar = -8S°ar = -8°%T at constant P
Hy 5 3T 1 - | ‘ :
Inserting these results in Equation (2-19)9 taking r; = O, one has
. _ _qbs) s
dy/aT = ’S(g) + F;kg) S, at constant P (2-38)
_ 8
dy/dP = - [;kQ) 31 at constant T. (2-39)

and the molar volume, Ve

Since values for the molar entropy, s® Vi,

21
of the pure solid are generally available, measurement of the temperature

and pressure cocefficients of interfacial tension permitscalculation

of r“(z) and SES)

1 2)
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Grain Boundaries

For grain boundaries between phases of the same density and
composition it is not possible to choose a dividing surface so that
the interfacial excess concentration of one of the components vanishes.
In addition, the interfacial excess quantities are independent of the
choice of dividing surface. Thus, formal simplification of Equation (2-28)
is not possible by the methods previously used.

At constant temperatures and pressure, Equation (2-28) simplifies to:

o4 o
iy = - \_:"L - -i—---a Pg]g—é; ax” (2-40)
X

Cahn and Hilliard<lu> have suggested that the quantity in

brackets be designated.glg)ofzcgis the difference between the actual
excess concentration of component (1) at the interface, and the excess
concentration of (1) which would be required just to maintain the bulk

composition in the boundary, given the excess concentration of

——

component (2). Thus, r1<2) indicates the direction in which the

composition of the boundary deviates from the bulk composition. In

the case of strongly segregating component (2) in the grain boundaries

of almost pure (1), r122> would be negative.

m——

One could, in principle, determine 1(2) from measurements
of the variation in 7y  with xa using a Udin-Shaler-Wulff type
experimenta(lo5) The precision required is probably unattainable,
however.,

In a more general situation, this approach provides no
simplifications. One can, however, obtain more usable equations if

a few assumptions are made.
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At constant temperature, Equation (2-28) applied to the

grain boundary gives the pressure coefficient of grain boundary tension:
i Bp£ A
%’7? = - [_r‘lvi * r\gvgl - i_ri\L - —— re}"% %' (2-41)
1l -x ox

In this equation, the surface excess gquantities refer, of
course, to the grain boundary, but the differentials of chemical potential
occurring in Equation (2-20) are now referred to the liquid phase. IT

the system is in equilibrium, the chemical potentials are the same in

all phasegs; hence this procedure is permissible.
O] gyt
axﬂ apP

that the solid is pure component (1) and the liquid is a mixture of the

An expression for is easily obtained 1f one assumes

two components. - ‘Then

S

dul = Yl dP  in the solid
=1 5“‘:{ 2 (2-h2)
dp, = V."dP + — dx"in the liquid.
1 1 sz

Equating these two expressions and rearranging gives:

Bui dx£ s =1
T (2-43)

where Ki is the molar volume of the solid and Vﬁ is the partial molal
volume of component (1) in the 1iquid. Substituting (2-4%) in (2-k41),

rearranging and using the relation Kﬂ = xzvlz + (1 - xg) Vég ; wWhere

Eﬁ is the molar volume of the liquid, one has

r1
& s 2 VN
ap rJ‘_Yl T2 (V" - %" v,7). (2-k4)
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Now if one could assume that the surface excess quantities are independent
of temperature, measurement of dy/dP at two temperatures would allow
calculation of the two surface excess quantities FE? rga But,
FE? F; are most likely to be constant with temperature if there is
little change in the liquidus compoéition with temperature. Since
molar volume changes in the solid and liquid in this case would then
be, essentially, only due to thermal expansion, the change expected in
dy/dP would be very small. This small difference would make the com-
putation of r;? T; very inaccurate.

For the case of a grain boundary in a one component solid,

the pressure coefficlient of surface tension is given by

dy/dp = - r} vy

where Yl is the molar volume of the solid. If the grain boundary is
lo% less dense, on the average, than the grain interior and if the density

of the bulk material is p and the boundary is ].O_7 cm thick, then

]
1

- 10_8p gms/cm2

L
and
Yy = 4H/pocm /gm
hence
-8
dy/aP = 10~ cm .

So a pressure change of 1000 atmospheres will produce an increase in
the surface tension of about 10 ergs/cmeo It will be shown later that
this change is large enough to be detected from measurements of ratios

of surface tensions.
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When a solute is present which segregates at the grain
boundary one would expect rl < 0 and r; > 0.  Referring to Equation
(2-4h) for the saturated solution,it is apparent that dy/dP could be
either positive or negative depending on the extent of the segregation
and the thermodynamic properties of the system.

The temperature coefficient of the grain boundary tension
may be expressed in an entirely analogous manner. Assuming the solid

is pure component (l)y then

a/u__l ax’ = 8t . gs® (2-45)
N i aT 1 =1
X
where Eiz is the partial molal entropy of component (1) in the liquid,
and Els is the molar entropy of the solid. The temperature coefficient is:

ay _ (s) S 2 [ £z I, s
S I s A1 ] (2-46)

where §£ 1s the molar entropy of the liquid.

For a grain boundary in a one component solid, (2-M6> reduces

to
ayfar = -sts) . r; s,”.

Since r; <'O one would expect the temperature coefficient of the
grain boundary tension to be negative. In a two component system, it
is obvious that the temperature coefficient may be either positive or
negative depending on the degree of segregation at the boundary and

the thermodynamic properties of the system.
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LITERATURE REVIEW

The literature chosen for review may be classified under three
main headings: (l) a survey of some measurements of ratios of inter-
facial tensions, obtained by measuring the dihedral angle, (2) a survey
of measurements of changes in interfacial tension with pressure, and
(3) a review of two afeasj brittle fracture and liquid phase sintering,

in which interfacial tensions play an important role.

1. Measurement of Ratios of Interfacial Tensions

Many methods have been devised for measuring the interfacial
tension between two fluid phases. The two most common are measurements
of capillary rise and measurement of drop shapes. Adam's book(l> describes
these methods and thelr theoretical basis.

The only means of measuring with any degree of reliability
the surface tension between a solid and a fluid phase 1s the method
of Udin, Shaler and Wulfﬂ(lou> This involves suspending small weights
from fine wires, measuring rates of extension, and finding (either
experimentally or by extrapolation) the weight which just compensates
for the tendency of the wire to contract due to surface tension. This
method yields an absolute measure of the solid surface tension for
polycrystalline wires if the ratio of surface and grain boundary energies
is known, but i1s only useful to within 200°C of the melting point.

(k1)

have measured the surface tension of nickel

5<105>

Hayward and Greenough
( }
by this method. Shuttleworth£9o> Hérring5(45> MbLean?(65> Udin

and others have discussed this method. Herring concludes that surface

tension and surface stress are equal in these experiments.

_33-
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Measurements of ratios of surface tensions are easier to obtain.
These are based on equations describing the surface tensions of three
interfaces meeting at a line as a vectorial balance of forces. These
equations are strictly true when all of the phases are flulds, but are

not necessarily true when one or more of the phases 1s a solid. Thus,

1f phases 1, 2, 5 meet at a line, the surface tensions Y102 725,
751 are given by the equations
e _ T . Tn (3-1)
81n95 sin 91 sin 92
See figure 1(a).
If two of the phases are identical, the relation is:
71, = 2ry, cos8/2 (3-2)

See figure l(b)‘°

If the (1) phases here are metal grains, then 711 is the
grain boundary tension. If (2) is a gas phase or vacuum, then this
expression describes the angle formed during thermal grooving at a

(M4, 71) 1o (5) 16 & 1iquid or solid phase, then O

(93)

grain boundary°
is termed the dihedral angle. The dihedral angle is important in
determining the effect of a dispersed "second phase” on mechanical
properties.

When a liquid droplet is placed on a rigid, undeformable,

insoluble solid, the vectorial balance of tensions only takes place

in the plane of the solid, as shown in Figure l(c)a

Yoy = Yig = Yy, co0s8O (3-3)

where € is the contact angle of the liquid on the solid (Figure 1(c))
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Vectorial Relations Between Interfacial Tensions.
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All of these relations are consequences of the necessity for
minimization of the sum of the products of interfacial tensions and areas
at equilibrium. (See Section 3, Chapter TI.) From this principle,
Gibbs(29) and Johnson(52) present derivations of Equation (3-3).

(43)

Herring outlines a derivation leading to (3-1) or (5-2)°

It is worth noting at this point that the notion of surface
tension as a physical force acting in the surface of liguids leads
directly to the proper vectorial relations between tensions on inter-
secting surfaces. In solids, on the other hand, the surface tension
is not a force per unit length but an energy per unit area. With a
modification to be noted, however, the same relations between surface
tensions hold for interphasal boundaries involving solids. The name
"surface tension" is a misnomer for solids; it is retained because
the quantity it describes has the same thermodynamic definition for
all interfaces.

(k2)

Herring has shown that the vectorial balance of interfacial
tensions given above is not strictly true when one of the phases involved
i1s a solid whose interfacial tension depends on crystallographic
orientation. By considering virtual displacements of three phase
boundaries meeting at a line, the necessity for minimization of

5 o (65)
) 7idAi leads to the conditions :

i=1
oy dy
. 15 . 12 . 3

725 + 715 oose5 + 712 &:62 895 sin % + S - 51n92 =0
3 67 b

7’15 + '}'25 cose + '}’12 cose B_? s:Ln6 + g-éz sine:L = 0 (5-4)
oy oy

Yip T Vo3 cOS 92 713 COSel - 5——62—2 s:‘ur192 + 8—6:2 s:me =0

N
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For derivatives with respect to ei clockwise rotation is
positive (Figure 1(a)). Only two of the above relationg are independent,
and they do not suffice to determine the interfacial tensions or their
derivatives with respect to rotation. For the most general case of the
intersection of three grain boundaries, the situation is further com-
plicated because five parameters of orientation are needed to describe
the position of the boundary with respect to one of the adjacent crystals,
and the terms 87/89 are dependent on these parameters.

If the conditions on a system involving solids are such that
the stability condition for equilibrium does not reduce to simply
minimization of the total‘interfacial free energy, then none of the
Equations (3-1) to (3-4) are true.

Usually one assumes,that for anything but a small angle
grain boundary or a twin boundary, the terms expressing orientation
dependence in (3-4) are negligibleand Equations (3-1) or (5—2) are used.
This point will be expanded upon in the section on the orientation
dependence of interfacial tensions.

In his classic paper on the role of interfacial energies in

(93)

determining microstructures, C. S. Smith noted that a vectorial
balance of surface tensions at the Jjunction of a twin boundary and a
curved grain boundary would imply, in some cases, that the twin boundary
had a negative surface tension. ©Since this is impossible, Smith thought
that perhaps the twin boundary tension was so small as to be sensitive
to slight variations in grain boundary tension as the grain boundary

8)

curved past the twin. Fullm.an(2 pointed out, however, that the behavior
of coherent twin boundaries could be understood if one regarded them as

"locked” in position due to the large amount of energy needed to reorient
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them from their position of coherency. This, then, would only allow
a vectorial balance of surface tensions in the plane of the twin boundary.
This proposal leads to valueg-for coherent twin boundary tension of about

(72) has studied the thermal

0.035 of the grain boundary tensionu(QB) Mykura
grooving of twins in nickel and used Herring's equations to determine the
coefficients of orientation dependence of the surface tension. These
are on the order of 0.05 to 0.25 of the surface tension.

Measurements of relative interfacial tensions are capable
of detecting rather small changes in tensions. For example, the angle
of penetration of a liquid between solid metal grains is given by the
balance of surface tensi.ons in Equation (3-2). If &= 50° and Tog =
500 ergs/cmg, then changes in 7ss and 7sl by 10 ergs/cm? produce
the changes in dihedral angle shown in Table T,

TABLE T

EFFECTS OF SMALL CHANGES IN INTERFACIAL
TENSIONS ON THE DIHEDRAL ANGLE

Ratio of Tensions Dihedral Angle
7ss/:ysl 20
Voot 10 ys5e

751
?Ss
751 + 10 58
Yoo + 10
SS 5”0
Ys1 * 10
Yss - 27 55°
7s1
________TU_VSS 40°
VYs1 -
4 - 10
SS L‘_6o

- 10
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For a dihedral angle less than 50°, the same change in the

surface tensions will produce an even larger change in dihedral angle.

2. Measurement of Dihedral Angles

The most straight-forward way to measure a dihedral angle
is to measure the trace of the angle on a surface normal to the line
of intersection of the surfaces forming the angle. This may be done
in sheet specimens where grains are allowed to grow to a width several
times the thickness of the sheet. To a very good approximation, all
grain boundaries become normal to the surface of the sheet during a
long anneal and true dihedral angles can be measured directly.

A second method requires the measurement of a large number
of angles made by the traces of grain boundaries on an arbitrary plane
of polish. AIf there is a single dihedral angle characterizing the
structure, this will give rise to a particular distribution of observed
angles. From the observed distribution, one can determine the dihedral
angle which generated it. The details of this method, originated by

(39)

Harker and Parker, are given in Appendix A,

The first method has the disadvantage that the same crystal-
lographic surfaces will not lie in the plane of the sheet for all grains;
hence, these may influence the equilibrated angle obtained. The second
method has two disadvantages: a) the model for the distribution of angles
observed may be inexact, and b) sampling error limits the precision of

the measurements. These last disadvantages will be considered at length

later.



=10-

All of the work described in the following section on the
orientation dependence of surface tension was done measuring the dihedral
angle directly. For some experiments, however, it is desirable to use
the statistical method to determine the dihedral angle and assume that
orientation differences exert a negligible influence on the distribution

of measured angles.

. 5. smitn(93:94595) (51)

and Ikeuye and Smith measured the

angle formed by particles of a low-melting second phase in the grain
boundaries of a solid matrix phase, and studied the variation of this

angle with temperature. Ikeuye and Smith<5l) noted that the dihedral

angle observed was dependent on the composition of the liquid phase

present. When the composition of the liquid was changed either by

changing the temperature or by adding alloying elements to the system,
regular changes in the dihedral angle were observed. They concluded

that major shifts in the dihedral angle with increasing temperature

would only‘occur if the liquid composition varied markedly with temperature.
Van Vlack<lO6> also employed this technique to establish
interfacial energies in the Fe—Cu—CuES system. Both Smith(95) and
Van‘Vlack<lO6) showed conclusively that the relative interfacial tensions
determined in this manner were internally consistent by comparing direct

measurements and indirect calculations using other measurements to arrive

at the relative tension for a particular interface.

(05) payior, (103) (16)
(85)

McLean, and Chalmers have reviewed this

work. More recently, Riegger has correlated the change in dihedral

angle made by a liquid phase with changes in composition of the liquid

(103)

phase using a semi-empirical relation suggested by Taylor based on
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the Gibbs Adsorption Equation for binary systems. If one assumes that
the grain boundary tension is nearly independent of temperature and com-
position changes in the liquid phase, then changes in the dihedral angle
reflect changes in the solid/liquid interfacial tension. A plot of the
solid/liquid interfacial tension obtained in this manner, versus the log
of the solubility of the minor constituent in the liquid, is found to
produce a linear relationship. From the slope of this curve one can then,
presumably, calculate a surface excess concentration. ©Several other
assumptions, beyond that of having the grain boundary tension constant
with temperature, are also involved. Referring to Equation (2-35)
it is apparent that the entropy terms must be negligible and that the
activity of the solute must be proportional to its mole fraction. A
constant slope with temperature, then, indicates that the surface excess
véries as l/Tu This correlation is not too helpful, because all these
assumptions cannot reasonably be made without considerable experimental
justification. For example, Mclean's calculations (65, p. 148) indicate

that the change in grain boundary tension with temperature cannot be ignored.

3. Orientation Dependence of Grain Boundary Tension

Five parameters are necessary in order to specify the orientation
of a boundary between grains 1 and 2. Three determine the orientation
of grain 2 with respect to axes in grain 1, and two determine the
orientation of the boundary with respect to grain 1. It has proven dif-
ficult to establish orientation dependencies of grain boundary tensions
because no absolute measure 1s available. Tensions must always be measured
by means of a junction angle formed between the interface of interest and

a reference interface which is assumed constant from sample to sample.
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Read and Shockley<81) calculated the dependency of the energy
associated with a grain boundary formed from dislocations on the degree
of misorientation between the crystals on either side of the boundary.
They predicted that for angles of misorientation ¢>, up to about ¢>= 15°,

the energy should be given by

E o= E_¢ ['A-lngb]
where EO is a function of the macroscopic elastic constants and the
orientation of the boundary, and A 1s related to the energy in the
material immediately surrounding a dislocation and.is also dependent on the
orientation of the boundary. This calculation wasg based on a model
of a simple tilt boundary in a simple cubic lattice. Since this reduces
to a two dimensional problem, only one parameter, qb , 1s needed to
specify the orientation of the grains, and another to specify the
orientation of the boundary.

(20,21,22)

Dunn and his co-workers obtained the first confirm-

ation of this relationship. Dunn used oriented tricrystals of silicon
ferrite, in sheet form, all having the same crystallographic plane in

the planeyof sheet. Variationsiﬁ tensions wiﬁh the degree of misorientation
between crystals’were measured with reference to a standard interface
between crystals with a fixed degree of mismateh. Although the orientation
of the boundary could not be controlled in these experiments, the pre-
dicted relationship holds quite well. Some of the scatter in the data

(20)

is attributed to the variation in boundary orientation which occurred.

(15,5,6,64,107)

Since this work, Chalmers, et .al. and.Aust(8>

have determined this orientation dependence for Sn, Pb, Ge, Ag, and AgCl.

(27)

Friedel, Cullity, and Crussard studied this effect in Al, and
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(31) (108

in Cu. - Weinberg, ) Chalmers(lé) Aust and
(65)

Gjostein and Rhines

(7)

Chalmers and McLean have reviewed this work.

Conclusions which may be drawn are: a) the grain boundary
tension 1s a function of misorientation between crystals, most of the
variation in energy occurring between O and 15° for simple tilt
boundaries, b) the grain boundary tension is not a strong function
of the orientation of the boundary between grains of fixed orientation
relative té one another, except perhaps for low angle boundaries,

c) Cusps in the tension versus misorientatim curve (which are predicted
from the dislocation model) are not observed except, possibly, near
twin orientations.

It is important to know the frequency with which low tension
boundaries will be encountered in well annealed polycrystalline materials.
Read and Shockley<8l> estimate that "energies less than 50% of the
average will be obtained in only about 5% of the cases. Consequently,
observations of grain boundaries for grains selected at random would
show such a small percentage of low energy boundaries that their
presence would have only a slight effect on the statistics.” This
point will be dealt with later in the discussion of errors in the
distribution of angles observed due to the presence of a range of
dihedral angles in the specimen.

Several workers have determined the orientation dependence
of the surface tension for metal vapor surfaces. The method involves
the use of Herring's relation (Equation (B—M)) applied to thermally
etched twins. By measuring various angles formed it is possible to

determine the coefficients 1/7 %%; which express the change in surface
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tension with orientation. Mykura<72) showed that the surface tension
changes about 6% with a rotation of about 30° from a (100) plane in

(86)

nickel. Robertson and Shewmon found changes of the same order of
magnitude in copper. In both cases, the rate of change of tension with
orientation is greatest near low index planes.

Before employing the method of statistical analysis to determine
dihedral angles, it should be established that the large fluctuations
in interfacial tension which occur, occur so infrequently as to be
negligible, and that minor fluctuations in energy are too small to
influence the distribution obtained. On the first point, reference
can be made to Read and Shockley’s statement above, and to similar
statements by C. So,Smith§93) (It is a simple matter to show, that
two adjacent grains, misoriented by a combination of tiltland twist less
than 15°, occur randomly only BQM% of the timeo) Experiments on solid/
vapor interfacial tensions lead one to expect that the orientation
dependence of any solid/fluid interface 1s small, but that a few percent
variation can be expected. Hence, large fluctuations in grain boundary
tension undoubtedly do not influence the distribution.

On the second point, fluctuations of a few percent seem likely
in a large percentage of the grain boundary and solid/fluid interfaces
one might encounter. These variations will lead to a broadening of
the distribution of angles seen; a statistical analysis based on the
ideal distribution (Appendix A) may be in error due to this broadening.

This point will be dealt with further in the section on errors.

L., Changes in Surface Tension with Pressure

Comparatively few attempts have been made to determine the

effect of pressure on surface tension. Before the importance of
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adsorption was appreciated, it was believed possible to determine the
molecular volume of a liquid at an interface by measuring the pressure
coefficient of its surface tension. Several earlier experiments were
done with this end in mind. More recent experiments have been performed
on systems of interest to the petrocleum industry.

The motivation for the early work was provided by an easily
derived thermodynamic expression. Consider a system of n components
in two bulk phases separated by an interface. For the entire system
one may write:

dG = =~ 8dT + VAP + <vdA +Z Hidni. (3-5)
l E

Since 4G 1s an exact differential, we may write

BV/BA) 0y - 14

-6
%) s (5-6)

That 1s, the change in surface tension with pressure is equal
to the increase in volume of the system with an increase in interfacial
area. Hence, in Bridgman's words,(ll> "the pressure coefficient of
surface tension is a measure of the difference of effective volume of
a molecule in the interior and at the surface of a liquid." ILewis and

, ‘ (61) e
Randall (1923%) support this view.

(62)

It was later realized that this interpretation implied an
over-simplified picture of the interface, as will be shown below. For

a two phase; one cpmppnent_systemy the quantity’ BV/BP)T?Agni cannot be
determined because the pressure on the system cannot be varied at constant
temperature and still retain two phases. If one has a binary system,
however, consisting of a pure liquid of one component and a pure gas

of another, with no mutual solubility, then one can certainly determine

the quantity By/BP)TDAyniQ To see the significance of the term BV/BA)TQPﬁni

the following illustration is helpful. Let a container fitted with a moveable
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piston P be divided into two sections A and B by a sliding partition
C, (Figure 2)0 In section A is pure vapor of substance 1 at a

given temperature and pressure, and in section B is pure liquid of
substance 2 at the same temperature and pressure. Assume that the
properties of the liquid and vapor exist unchanged up to the partition C.
Let C be slowly withdrawn and the piston P continually adjusted to
maintain a constant pressure. Figures 3(a) and 3(b) show the density
relationships before and after the partition is withdrawn.

Note that in this picture there is an abrupt density change
clearly defining a physical "surface" at a. Also there is an "inter-
facial region"” from a to b where the density of material (all
substance 2) approaches the value of the density in the bulk liquid
phase. Then the volume change of the system may be entirely ascribed
to the change in density of the liquid phase in the region ab.

Now given measured values of By/af)myAﬁni and estimating
a thickness for the interfacial region. ab one is able to calculate
an average density for the interface. Statistical mechanical models
for the interfacial transition region in the liquid can then be checked
directly from.experimental data. This is the physical situation that
Bridgman had in mind.

A somewhat more real physical situation might be imagined if
adsorption of the gas were allowed at the interface, so that the density
profile might look like Figure 3(c).

The change in volume of the system with creation of the inter-
face is now the sum of volume changes which occur in the gas and liquid phases

at the interface. The quantity g%) T P.n cannot be broken down into
B Al LR



L=

Figure 2. Thermodynamic Model for Creation
of a Liquid/Vapor Interface.
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contributions from the gas and ligquid phases without some information
about the process occurring.

Based on the above approach, statements are often madejthat
since a liquid should be less dense near its surface than in its interior,
the expression BV/BA)TyP,ni will be positive and the surface tension
should increase with inéreasing pressure. Clearly, however, with
adsorption occurring, nofhing can be said a priori as to whether surface
tension should increase or decrease with pressure.

In any real case, where the liquid has a significant vapor
pressure and the gas dissolves somewhat in the liquid, the transition
in density across the interface ié probably continuous (on a statistical
basis, ignoring atomistics) and even less can be said about the physical
meaning of the expression BV/BA)Tﬁpyni.

Recent workers have dealt with the change in surface tension
with pressure in terms of the Gibbs Adsorption Equation. This agpproach
emphasizes the importance of adsorption at the interface.

Recently, experiments have been performed on systems generally
involving water and hydrocarbons. In oil reservoirs, recovery of oil
in porous rock is affected by the-displacement of oil by natural water
which is in turn affected by the interfacial tension between the oil
and water. But these interfacial tensions are established under condi-
tions of very high pressureé hence it is important to know how interfacial
tensions are affected by pressure. A number of experiments have been
pérformed to determine the pressure effect on some important hydrocarbon
systems.,

Apparently the first measurements of the change in surface

(60)

tension with pressure were performed by Kundt in 1881. He measured
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the change in vapor-liquid interfacial tension with pressures up to

(02H5)20-—a1r, and. (CEHS)EO——H2° In all cases he found the surface

212 atm in the systems CSE~—air, CHCl1,—air, 02H5QH-—air, C
tension to decrease with increasing pressure.

In 1906, Lynde(65) measured surface tension changes with
pressure in the systems mercury-water, mercury-ether, water-ether,
chloroform-water, and carbon bisulfide-water at pressures up to 5000
psi. He found increases in surface tension with pressure in the systems
mercury-ether, mercury-water, and carbon bisulfide-water and decreases
in the others. Bridgman(ll) has commented on Lynde‘s work in connection
with determining the molecular volume at the interface by means of
Equation (3-6).

(83)

Rice has discussed the effect of pressure on surface tension.
He points out that a one component liquid in equilibrium with its wvapor

is "almost certainly" less dense near the surface than in the bulk;

hence aV/BA)PDT,n should be positive and the surface tension of a

binary system involving this liquid should increase with pressure.

Since Kundt'®s work shows that the surface tension decreases with increasing
pressure, Rice sought to meld the interpretation of surface energy changes
with pressure on the basis of Equation (%-6) with the interpretation

based on the Gibbs Adsorption Equation. He considers two component
vapor-liquid systems and breaks down | %%)]Pﬂbn. into two

terms: a DAV of the gas phase arising from adsorption of gas

at the surface of the liquid, and a IBVG arising from a density decrease
in the liquid near the interface. (Implicitly, his model demands that the

dividing surface to which the excess quantities refer be placed so that

on one side of the surface the properties of the gas phase are uniforma)
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The volume change due to adsorption of gas in the liquid surface
R ;ﬂ% where r1

may be written AV = -F‘y:, or for an ideal gas AV =
is the surface excess of the gaseous component at the interface, with
the dividing surface indicated above, and P 1s the total pressure on
the system. So for an ideal gas

dy -MxT
= fiT— + ZXVED (3-7)

aP')T;,A?ni
Now Rice applies this equation to Kundt's data assuming ZSVG = 0 and
is able to account for the fact that the surface tension decreases with
increasing pressure. He obtains values for " as a function of pressure.

. The same equation that Rice obtains may be obtalined immediately
from the Gibbs Adsorption Equation, avoiding the awkwardness of Rice's
approach. For an ideal gas (1) above a liquid (2) the Gibbs Adsorption
Equation at constant temperature is

-ay = Taw, + T, .

If one chooses the dividing surface so as to make the surface
excess of the liquid component vanish, i.e., - 0 then

2
-dy = F?

l(g)dpl (3“8)

where r1}2> is the surface excess of component 1 for this choice of

dividing surface. Now for the gaseous phase

o - B g L Foap - v, ap
1T 3P -1 R
For a one component ideal gas, dul = %? dPs; - therefore
' — k!
afar =~ & (5-9)

1(2) P

which is Rice's result, obtained in a more conventional manner.
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(92)

Slowinski, Gates, and Waring measured the effect of six
pressurized gases above water and n-hexane. The gases were COQ, C2H6’

H, and He. With all gases except He above either liquid,

Chy, Ny, Hy

a decrease in surface tension with pressures to 100 atm was observed.
Helium pressures to 100 atm produced a very slight increase in the
surface tension for both liquids. These results tend to confirm
Equation (5-7>9 which ignores any mutual solubility of the components.
From the shapes of the curves obtained it appears that over a fairly
wide range of pressures that FI(2> = KP; that is, the adsorbed excess
i1s proportional to pressure. It is interesting to note that the order
of increasing effect of a particular pressurized gas on the surface
tension of water is the same as the order of increasing gas solubility
in the water at atmospheric pressure.

(30)

Gielessen and Schmatz measured the pressure dependence

of the liquid/vapor surface tension for the liquids n-hexane, heptane,

octane, nonane, a Cl ~fraction, and cyclohexane under nitrogen.

)
In addition, they also considered n-hexane and nonane under pressures
of helium and argon. In all systems except those involving helium,
the surface tension was found to decrease with pressure. The data in
these systems were correlated with an empirical equation, with two
constants, formally similar to the Langmuir Adsorption Isotherm.

(92)

These authors confirm the results of Slowinski, et al. for systems

involving helium; i.e. a small, linear increase in surface tension is
found.

(40)

Hassen, Nielsen, and Calhoun measured the effects of

pressures to 204 atm and temperatures from 26° - 82°C on the liquid-
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liquid interfacial tensions of a series of hydrocarbons with water.
The hydrocarbons used were benzene, propane, n-butane, n-pentane,
n-hexane, n-octane, and i-octane. In all cases increasing pressure
lowered the surface tension, the magnitude of decrease varying with
the liquid pair. Presumably, this data can be subjected to the same
treatment outlined above. If we choose the dividing surface so that

the surface excess of water vanishes, F; = 0, then

a7 = Ty an.

Assuming the hydrocarbon liquid does not dissolve water, then

Bul _
dpl = 5P T dP = Vl abP = zl arp.
So rﬂ
P/ep = = T2y 4y (3-10)
where Kl is the molar volume of the hydrocarbon liquid. Knowing
vV, = yl (PL i.e., compressibility data for the hydrocarbon, surface

—1
excess guantities may readily be computed.

(67)

Michaels and Hauser measured the liquid/liquid interfacial
tension in the systems n-decane-water and benzene-water as a function

of temperature and pressures to 700 atm. The interfacial tension
decfeased with pressure in the benzene-water system and increased

with pressure in the n-decane-water system.

(48,49, 50)

Hough and his co-workers have measured surface tension
changes with pressure in systems involving water and methane, helium,
nitrogen or carbon dioxide at pressures up to 1000 atm. They find

rather irregular behavior in some of these systems: 1) in the water-

methane system the surface tension at 100°F and 160°F decreases with
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 increasing pressure to about 5000 psi, then increases; while at TL°F

it decreases continuously with pressure, 2) the surface tension in the
water-nitrogen system decreases with pressure at temperatures from 80°F
to 280°F, %) the surface tension in the water-helium system increases
‘with applied pressure by a rather small amount at temperatures from

80°F to 280°F, L) the surface tension in the water-CO, system decreases

2
with increasing pressure, showing an initial sharp decrease to about
3000 psi followed by a more gradual decreage thereafter.

Using the relation (5-7}‘Hough et élo(u9’50) calculate surface
excess quantities as a function of pressure for these systems using
Z&VG = O, . Although their surface tension measurements show little
scatter about a smooth curve, they are not sufficiently preclse to allow
calculation of the surface excess to much more than an order of magnitude.
The plots of [ ve P which they presented imply much better precision.

The pressure dependence of interfacial tension has been
measured for a number of systems involving crude oil, water and reservoir
gasesn(u7?55’log) The results are rather irregular,and because of the
multitude of chemical species present (in unknown proportions), have
little scientific value.

A certain amount of work has also been done by Russian investi-
gators on surface tension changés with pressure in hydrocarbon systems

(88)

impdrtant to the petroleum industry. This work appears to be
fundamentally no different than the American work discussed above.
One exception is that differences in the wetting of solids by liquids

have been noted when the gas pressure surrounding the liquid-solid system

is increased.
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In summary, the above results indicate that chénges in pressure
can produce measurable changes in surface tension in liquid-vapor and
liquid-liquid interfaces and possibly in liquid-solid interfaces.  The
change in surface tension with pressure can be described by the Gibbs
Adsorption. Eguation at constant temperature with the total differentials
of chemical potential for each component expressed as functions of
pressure and composition. In certain cases, especilally for binary
systems where one component is not present in both phases, the change
in surface tension with pressure is given by the particularly simple

relation

& - -

aPp 1(2) Yy

which is rigorously true for a plane interface, with the dividing surface

chosen so that r; = 0 and where Yl is the molar volume of component
1l in the phase which is assumed to be pure component 1. flzg) is

then the surface excess of component 1 for this choice of dividing surface.

5. Brittle Fracture

In two papers in the early,l920“s<52’55)

Griffith proposed a
theory of rupture for isotropic brittle materials which has formed the
basis for much of the subsequent work done to explain brittle and nearly-
brittle failure.

The principle behind the theory is quite straightforward.
If one assumes the existence of some sort of microcracks in a material,
then the minimum energy that must be supplied to create a unit area of

new crack surface (propagate the crack) at constant temperature is the

surface tension (as defined earlier) of the crack surface. - Thus, the
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energy stored in the surface of a very flat elliptical crack in a plate
per unit plate thickness is 'WS = LyC where the length of the crack is 2C.
In addition to this energy, elastic energy is stored in the
material due to the action of external forces. This energy may be divided
‘into two parts: (a) the elastic energy Wa which would be stored if
the crack were absent, and (b) a correction term which accounts for the
additional strain energy due to the presence of the crack. - This latter
term will be dependent upon the length of the crack, and is given for

1 . .2 202 2
the plane strain problem by Wb = (l L % n7C7o

where ¢ 1s the
stress normal to the crack, v is Polisson's ratio and E is Young's
modulus.

For a fixed stress, the total decrease in the potential energy
of the material and its surface tractions is equal to the strain energy

(32)

stored in the material. Hence, the potential energy of the system

at equilibrium with reference to the unstressed, uncracked state is:

AW = ws(c) - W, - wb(c>.

If the crack is to propagate, the total energy must decrease as € increases.

The point at which the crack is in equilibrium with the applied stress

d AW
daC

expression the crack may propagate without limit. Alternatively, one

is given by = 0., When C exceeds the value given by this
may also determine the stress above which a crack of length 2C will
propagate. For a flat elliptical hole in a plate in a condition of

plane stress, the critical stress applied normal to the crack is

- [
o, = \/ﬂ'C . (3-11)
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For the plane strain problem the critical stress is givén by

2Ey
= . 3=-12
e \/;EC (1 - v2) (5-12)

8
Sack( 9) has treated the corresponding three dimensional

problem of & circular "penny-shaped" crack in a solid and finds that

0, =fE7 - (3-13)
2C (1 - v9)

where g, is the critical stress normal to the plane of the crack.

Griffith's theory adequately explains the fracture behavior

of glasses and some ionic solidsa<5)
In recent years, the Griffith theory has been modified to account

for the plastic deformation associated with cleavage-type fractures in

metals which have some ductility. Thus, Orowan(77> suggests that v

in Griffith's expression be replaced by 7y + p, '‘or simply ©p, where

P represents the energy stored in plastic deformation per unit area of

crack éurface formed,, and is about 1000 times as large as . The

presence of deformed metal layers on fracture surfaces lends support

to this suggestion,(25>
Griffith's theory does not explain how microcracks originate

in metals, or how they grow to a critical size. The answer to this

problem has been provided by the development of theories of crack nucleation

based on dislocation models. ©Stroh has been a major contributor in this

field, and has written an excellent review of many aspects of metal

fractureo<loo>
According to the model developed by Stroh, cracks are nucleated

in polycrystalline metals by the pile-up of dislocations in a slip band

at a grain boundary. The grain boundary is usually an effective obstacle
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to the propagation of slip because the orientation of adjacent grains
across the boundary is different. That is, slip in one grain cannot
readily be extended to a neighboring grain because there is no slip system
properly oriented to accomodate it. This situation produces a plle-up
of dislocations in the slip band at the grain boundary.

When a sufficient amount of slip has taken place in a grain,
the total stress field arising from the piled-up dislocations becomes
large enough to create a crack. Stroh’s relation for the resolved shear

stress on the slip plane needed to produce a crack isz(loo>

. ~ VETIE (-14)

where G 1s the rigidity modulus and L 1is the length of piled-up
dislocations in the slip plane. (I is usually taken to be of the
order of the grain diameter. )

(lOO) the above relation for crack

As Stroh points out,
nucleation does not contain a dependence on the crack length, thus
the crack may grow with an overall decrease in energy until it has
consumed the dislocations which produced it. Once this occurs further
growth of the crack is dependent upon the normal stress across the
crack and the ability of the material to yield plastically to reduce
the stress concentration at the crack tip. For an ideally brittle material,
Griffith's criteria now determines whether or not the crack will propagate;
for a meterial with some ductility Orowan's modification may be appropriate.
The theories outlined above explain many aspects of fracture
behavior. Fracture, however, is a very complicated subject. Reference

(9)

to a recent symposium on fracture shows that many modifications and

refinements of the foregoing notions are needed to explain the many

phenomena observed.
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It is apparent from the preceding discussion that the surface
tension of the crack surface is of paramount importance in fracture theory
because it occurs in every expression (3-11) to (3-1L) for the critical
stress for crack nuclestimn or growth. Changes in the state of the system
which change this surface tension can produce changes in the fracture
behavior of a metal. But not all changes in surface tension produce
identifiable changes in fracture strength. For example, changes in
temperature and pressure (or stress) produce changes in the surface
tension, but they have a much more pronounced effect on the generation
and movement of dislocations; hence any effect of surface tension changes
from these sources is masked by changes in the modes of deformation.
Changes in composition, on the other hand, change the surface tension
and may not radically change the mechanism of crack nucleation and growth.

Petch<80> has developed this last idea to explain the hydrogen
embrittlement of iron. Using Strohis criteria for the nucleatioﬁ of a
cleavage crack due to dislocation pile-up, Petch corrects the surface
energy term for adsorption of hydrogen on the crack surfaces. He
employs the Gibbs Adsorption Equation, written for the adsorption of an
ideal gas, and substitutes the Langmuir $déorption Isotherm to express
£he surface excess concentration as a function of pressure. . Although
sufficient data is not available to allow a precise calculation to be
made, it is clear that.the lowering of surface tension aue to adsorption
should produce a drop in strength which is of the same order of magnitude

as that which is observed.

6. Intergranular Fracture

The dislocation model of crack nucleation proposes that the
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nucleating crack is transgranular, but there are many occasions where
fractures are observed to proceed along grain boundaries rather than
across grains. The minimum energy required to form a unit area of grain
boundary crack at constant temperature is 27S - 7gb and the energy
required to form a transcrystalline crack is 27S, where 7S is the
surface tension of the crack surface formed and ng is the surface

(65)

tension of the grain boundary. One usually assumes that a.crack

propagates so as to expend the least amount of energy; this suggests

that variations in the quantity 27S are important in determining
275‘ B 7gb < 1
27y » Vg

is generally much larger than ygbe This ratio is on the order of

the fracture path. While it is always true that

0.9, so other factors probably determine whether the fracture will
proceed intergranularly or transgranularly, or show a mixture of the

two., But if Vs ~1s .caused to decrease, e.g., by changes in composition,
2y . =7
b
then the ratio —5 87 is smaller and:preference for the inter-

275

granular path is now marked.

One .of  the ways in which 7, can be significantly lowered
has been mentioned above in the case of hydrogen embrittlement. And
g . : : : : (100) o
indeed, intergranular fracture is observed in this case. This is

at best, however, a qualitative correlation; no theory has yet explained

all that is involved in the choice of fracture path.

(23) (73,7T4,75,17,87)

The work of Eborall and Gregory and Rostoker
on embrittlement by liguid metals lends itself to interpretation on the
basis of changesin interfacial tension. . Eborall and Gregory showed that
small amounts of lead present in B-brass and tin bronze produced a

large drop in the hot ductility of these alloys. (Experiments were

conducted above the melting point of leadu) They pointed out that
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for intergranular cracking, the surface energy that must be supplied
to propagate a Griffith crack in the presence of a liquid phase is
2751 - 7gb where 7sl is the surface tension of the solid-liquid
interface.  As a rule, 7 > 75(1) > Ys1 i.e., the surface tension
of the pure metal surface i1s greater than its surface tension in the
presence of the liquid's vapor, and the latter 1s in turn greater than
the solid-liquid interfacial tension. Hence, if the liquid fills the
crack tip, a Griffith crack can propagate at a much lower stress. It
is likely, in this case, that the lead particles existing in the grain
boundaries of this material actedras pre-existing Griffith cracks.
Rostoker and his associates have published several papers

(73, 74,75,17) (87)

and a book on the embrittling effect of liquid metals.
The features they have obgerved are characteristic of many types of
embrittlement; for example: (l) a ductile-brittle transition temper-
ature, (2) delayed failure behavior, (%) dependence of embrittlement
on grain size, and (4) intergranulér, rather than transgranular cracking.
They have observed that cracking commences at the surface of
a metél stressed in & liguid metal environment. Hence, the environment
probably influences not only crack proﬁagation but nucleation as well.
This supposition has been confirmed,<75) and by use of the Stroh-Petch
relation between grain size and fracture stress, the effective surface
tensions for the nucleation and propagation of cracks have been estimated.
While the interpretation of the results in terms of surface tensions
depends on the model chosen for the initiating crack, the data suggest
that the initiating and propagating steps are characterized by difflerent

surface tensions.
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Brittle, intergranular failures are also observed when a
casting fails by "hot-tearing.” Hot tears may occur whenever stresses
are produced in the casting due to either thermal gradients or constraints
on the cooling metal from complicated mold shapes. In either case,
severe hot tearing is usually associated with the presence of a low
melting phase, e.g. an iron sulfide-iron eutectic in steels. In the
absence of this liquid, tearing seldom occurs because the metal
plastically deforms to reduce the magnitude of the stresses present.
With some liquid present, these stresses are reduced by cracking. It
seems likely thatvthe mechanism Eborall and Gregory propose to explain
the detrimental effect of lead 1n brass and bronze 1s also applicable

here.

7., ILiquid Phase Sintering

Liquid phase sintering is a process in which a liquid phase,
permeating the interstices between solid particles, accelerates the
densification of the compact. As in all sintering, interfacial tension
plays a dominant role in this process, and the_.lowering of the total
free energy of the system.by.the motion of interfaces (and resulting
change in particle shape)provides the driving force for densification.

Although liquid phase sintering has been a successful industrial
technique for many years, the theoretical development of the subject

has lagged. Recently, however, Kingeryk56’57958>

has proposed a
densification mechanism for liquid phase sintering which conforms to
experimental observations of the importance of major process variables.

Liquid phage sintering begins, typically, with a pressed

compact of low and high melting materials. . When the compact is raised
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to a temperature sufficient to melt the low melting phaseg an initial
densification occurs due to the rearrangement of the solid particles
into a more closely packed configuration. In order to obtain the
accelerated densification characteristic of liguid phase sintering,
several criteria must be satisfied: (1) there must be sufficient
liquid present to fill most of the interstices of the solid particles,
(2) the solid must be appreciably soluble in the liquid, and (3) the
liquid must wet the solid completely.

The structure of a compact which has been liguid-phase sintered
generally shows rounded solid particles outlined by the totally wetting
liquid phase. (If the solid is non-metallic, e.g., a carbide, euhedral
grain shapes will often be preservedo) If insufficient liguid is
present or 1f the liquid does not wet the solid completely, bridges
ﬁay form between the solid particles,and the sintering rate slows to
that characteristic of conventional solid state sintering. The solid
particles change shape by a procesé of solution and reprecipitation,
mass trans@ort taking place through the liquid phasej hence the
requirement that the solid be soluble in the liquid phase.

After the initial readjustment when the liquid phase melts,
the solid particles change shape so as to: a) round off sharp edges,
b) flatten points of contact (or points of nearest approach), and

(56> proposes that step (b) is most

c) increase in size. Kingery
important in promoting densification, and derives an expression for
the rate of densification due to this process.

Several requirements on interfacial tensions may be inferred

from the above requirements for successful liquid phase sintering.
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(a). The solid~-liquid interfacial tension must be less than or
equal to half the solid-solid grain boundary tension for the liquid
phase to wet the solid particles. (b). Following Kingery's model,
it is necessary that the contact angle, formed by the balance of
liquid-vapor, solid-vapor and solid-liquid interfacial tensions, be
acute, which implies that the solid-vapor tension is greater than
the solid-liquid tension.

Equilibrium measurements of relative interfacial tensions
of a liquid-solid pair should indicate whether liquid phase sintering
is possible for this system. In practice, however, if the liguid
is not saturated initially with the solid (and vice versa) the wetting
characteristics may deviate far enough from equilibrium behavior so that
relative interfacial tensions determined at equilibrium are a poor gulde

to the actual sinterability of the systema<58’ discussion)

In addition,
surface active impurities present in small amounts may also influence
wettability.

Since surface tensions vary with the pressure on the system,
it is possible that some of the benefits of sintering under pressure

(hot—pressing)j with or without a liquid phase present, are due to

pressure induced changes in surface tensions.

8. Summary

The effects of temperature and composition on surface and
interfacial tensions have been widely studied and are generally appreciated.
Relatively few investigations have been made of the effect of pressure
on interfacial tenslions, mainly because pressures beyond the customary

range of laboratory experimentation or commercial application must be
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applied to produce a significant change. This is particularly true
for interfaces between condensed phases.

The tension of a solid/liquid or solid/solid interface is
difficult to measure absolutely. Ratios of these tensions, however,
can be more easily determined. Complications which arise due to the
crystallographic and elastic properties of the solid are frequently
resolved by assuming that metals behave as liquids. This assumption
is warranted in many cases, but the departures from liquid-like behavior
(eag,, the dependence of grain boundary tension on the misorientation
of grains across the boundary, the behavior of doherent twin boundaries )
have provided a most fruitful field for research.

A study of changes in interfacial tensions in metals is
profitable because many properties of the metal depend indirectly
on interfacial tensions. For example, interfacial tensions are the
major controlling factor determining the shapes of grains in annealed
polycrystalline metals. The magnitudes of certain of these tensions
and the relative magnitudes of tensions at various types of interfaces
must also be considered in theories of brittle fracture and theories of
sintering. Changes in interfacial tensions arising from changes in
composition have been shown to significantly influence such properties
as fracture strength and ductility. It is likely that changes in
interfacial tensions caused by changes in pressure (or state of stress)
or temperature may also influence these properties, although the effect

may be masked by changes in the mode of deformation.



CHAPTER IV

EXPERIMENTAL PROCEDURE

1. Sample Preparation

All specimens of leaded nickel were made using high-purity
(99a99+%) lead obtained from the American Smelting and Refining Company.
Table II is the spectrographic analysis provided with this material.

TABIE ITI
SPECTROGRAPHIC ANALYSIS OF LEAD USED FOR ALLOY

Bi 0.0008 * Fe 0.0002

Cu 0.0003 Zn N.D.

Sb N.D. cda N.D.

As N.D. Ag N.D.

Sn N.D. Te N.D.

Ni N.D. Po 99.99+% by difference
N.D. = None Detected ~ Weight Percent

Mond Nickel shot (99.95% Ni + Co), obtained from the International
Nickel Company, was used in all but two melts. All specimens with the

letters B, C, or D in their designation were from heats made using

Mond Nickel. . Specimens from heats E and F were made using Sherritt

Gordon Grade "E" Nickel Powder. A typical analysis provided with the
latter material is given in Table IIT.
TABIE IIT

TYPICAL ANALYSIS OF SHERRITT GOKRDON
GRADE "E" NICKEL POWDER

Ni 99.9% Fe 0,00k
Co 0.0% S 0,002
Cu 0.0L ¢ 0.0%

% Weight Percent
Heats B, C, D, consisting of about 4 lbs. of Ni and Pb were

induction melted in a LECO zirconia crucible under a protective atmosphere

-66-
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of tank argon. ' The system was .evacuated and flushed with argon before
melting and while the system was being heated. From 8 - 12 psig argon
pressure was kept above the melt to keep the lead from boiling off.
Melts were allowed to solidify in the crucible under argon pressure.
In all cases ingots showed no sign of oxidation during melting.

Heats E and F were prepared by compacting mixed lead
and nickel powders and sintering at 1500°F for about 18 hours in purified
flowing hydrogen. The sintered chpaéts were then melted under a pressure
of about 3 psig purified flowing hydrogen in a small globar furnace.
The melt was contained in a small Morganite, recrystallized alumina
boat. The hydrogen gas was purified by passage through a DeOxo unit,
a Drierite dessicant, and a liquid nitrogen cold trap. Pressure was
maintained on the system by bubbling the outlet gas through about
[ inches of mercury.

Analyses were performed on a sample of material from Heat D

by Chicago Spectro Service Laboratory. The results are shown in

Teble IV,
TABIE IV
ANALYSIS OF HEAT "DV
Pb 1.98% c 0,02
Cu - 0,001 S 0.013
Fe 0.002 0 0,004

Si 0,00
= 1 * Weight Percent

Since the analysis of Heat D showed a sulfur content which
was not negligible, heats E and F were made to obtain specimens with
a low sulfur level. A sulfur analysis on Heat F performed by the Research

Laboratory of the International Nickel Company indicated 3 ppm sulfur,

which i1s considerably lower than the sulfur content of the Nickel used

for the melt.
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Sufficient information as to the free energies of formation
of the nickel sulfides is not available. Thus, the partial pressure
of HéS in equilibrium with them cannot be calculated. However, the
data that are available(gu) indicate - that the free energy of formation
of these sulfides is not much different from the free energy of formation
of HESj per mole of sulfur. It is probable that the partial pressure
of H2S in the flowing hydrogen stream was kept low enough to result in

removal of sulfur from the nickel in heats E and F.

Test Specimens

Test specimens were machined from ingots according to the
dimensions shown in Figure L.

Specimens used in hydrostatic testing and for equilibration
at various temperatures varied in dimensions. Most were small cylinders,
%/16 inches diam., 1/2 inches long.

Tensile specimens were copper plated before use. A flash coat
of copper wasapplied using a cyanide bath, at low current density.
Subsequently a heavier cbatp about 0.001l inches thick, was applied
from a sulfate bath at higher current density. Plating conditions

1(5%)

and solutions used are given by Kehl.

Heat Treatment

Specimens were equilibrated at temperatures from 371°C to
816°C at times varying from 24 hours to one week. All specimehs subjected
to hydrostatic, tensile, or compression loading at 371°C were annealed
for one week at 371°C prior to testing. Specimens hydrostatically

tested at 593%°C were annealed for five days at 593°C prior to testing.
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Figure 4. Tension and Compression Test Specimens.
(a) Tensile Specimen. (b) Compression Specimen.
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The only exceptions were specimens from heats E and F which were
annealed three days at 593°C.

Annealing ﬁas done in a vycor tube which was fitted with a
ground glass joint and a stopcock. Samples were positioned in the tube
using ceramic pieces so that when the vycor tube was placed in a tube
furnace, the specimens were at a determinable position in the hot zone.
Previous calibration of the furnace insﬁred that the annealing temper-
ature ﬁas within t5°C of the desired temperature during the course of
the run.

The " portion of the annealing tube not occupied by the
specimen was filled with clean uranium turnings and cerium chips.

Prior to placing the tube in the furnace, it was evacuated, flushed
repeatedly with argon or helium, then evacuated again.  The tube was
placed in the furnace while still open to the vacuum system. After
about 15 minutes of pumping while the tube was at the desired annealing
temperature, the stopcock was closed and the vacuum system detached.

- This proved to be a very satisfactory method for long time
anneals. The presence of the very reactive metals, U and Ce, insured
that residual amounts of gases were removed.

At the completion of the anneal, the vycor tube was quickly
withdrawn from the furnace and gquenched in water. This seemed to provide
a satisfactory quench for the temperature range covered. - It probably
would not give a rapid enough quench from temperatures much higher than
816°C, however.

In every case, the specimens annealed in this manner were as

bright as when they were placed in the furnace. The U and Ce present
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were usually covered with a light coating of reaction products. This
was easily removed by cleaning in nitric acid. The same uranium turnings
were used for more than a dozen long time equilibratiomns.
The average matrix grain diameter after annealing for heats
B, C, D was about 0.5 mm. Lead was present largely as spherical
shapes within grains and as lenticular and elongated shapes in grain
boundaries. Figure 5 d1s typical of the appearance of the lead in these
alloys. Heats E and F were different. The average matrix grain
diameter in F was about 0.2 mm. The lead was distributed as in the
previous heats except that no elongated lead particles were observed
in grain boundaries. No significant change in matrix or particle grain
size occurred with heat treatment in the temperature range used.
Recrystallization of samples did not occur during heat treatment.
If the specimens were sufficiently‘deformed to cause recrystallization,
they were so badly cracked as to beunusable. Failure to have a recrystal-
lized matrix structure did not appear to introduce any systematic sampling

error in dihedral angle measurement.

2. Hydrostatic Pressure Testing

All tests under hydrostatic loading were carried out in a
hydrothermal unit, model HR-1B, manufactured by Tem-Press Research, Inc.
A schematic drawing of this apparatus is shown in Figure 6..

Each reactor vessel, about 8 inches long, with 1/4 inch bore
ahd 5/8 inch thick walls, was mounted so that a vertical tube furance
could Ybe raised into a position around it. After completing a run,
the furnace could be quickly dropped, and a dQuenching bath placed about

the reactor. Specimens were successfully quenched from 593°C and 50,000 psi

by this method.



Figure 5. Photomicrographs of Specimen DPS,
1000 X, Not Etched,



m‘(:)) -

o

Mgure 5 (cont'd), Photomicrographs of Specimen DP8,
1000 X. Not Btched.
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The unit above is built to operate using water as a pressure
medium. The procedure used for a typical run was: (l) The specimen
was placed in reactor vessel and the vessel was filled with water,
assembled and installed in the unit. (2) The pressure was raised on
the vessel using the water pump. (5) The furnace was ralsed over the
reactor and the vessel brought to the desired test temperature.

(h) Excess pressure was bled from the system during heating and when
stabilized at the test temperature. When the desired test temperature
and pressure were obtained, the system was isolated by closing the
appropriate valve. When the system was adequately pressure tight,
week-long runs could be made with no significant pressure drop occurring.

The temperature of the vessel was measured by a thermocouple
inserted in a well on the outside of the reactor vessel opposite the
specimen. A calibration showed that temperatures recorded at this
point were about 2°C higher at 371°C and 593°C than temperatures inside
the reactor vessel after the system had become stabilized at a particular
temperature. The temperature of the furnace was regulated by a thermo-
couple inserted in the furnace windings. A West Model JP controller
was used.

Pressures were followed during a run by means of the pressure
gauges shown in Figure 6 . The two units with 0-50,000 psi gauges were
used for runs of less than 30,000 psi. If the pressure on the system
was suddenly removed, the resulting Jjar to the gauge needle often changed
the indicated zero point. Over the several months that these units were
used, several zero point calibrations of the pressure gaﬁges were necessary.
These were made by attaching a dead weight gauge tester directly to the

system. The calibration of the gauges was otherwise unaffected.
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Figure 6., Schematic Drawing of Hydrothermal Unit. Key:
A--Water Reservolr. B--High Pressure Bir Driven
Water Pump. Max Output Pressure 28,000 psi.
¢, D, E, F, G--High Pressure Valves. K, L--0-100,000
psi Pressure Gauges. M--Reactor Vessel.
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It was found that no oxidation of specimens occurred in the
course of a run, if all digsolved oxygen was removed from the water in
the unit. This was accomplished by using freshly boiled distilled water
in the reactor vessel and by placing a few uranium turnings or cerium
chips in the reactor. These reactive metals prevented any specimen
oxidation; any metal left after reaction with the dissolved oxygen
(or nitrogen) was converted to oxide by reaction with the water.

Two runs, (Specimens E1 and F1) only one of which was completely
successful, were made using argon as a pressure medium. To obtain suf-
ficiently high argon pressures af 593%°C, it was necessary to begin the
run with the reactor vessel filled with liquid argon. This was readily
done by placing the reactor vessel in liquid nitrogen, and running in
tank argon until the vessel was filled. When the reactor was installed
in the unit and allowed to warm to room temperature a pressure of
25-30,000 psi was obtained. Subsequent heating produced higher pressures.
It was also necessary in these runs to add reactive metals to the reactor
vessel to remove oxygen and nitrogen from the argon. Enough water was
left in the line leading to the pressure gauge to insure a proper pressure

reading.

3. Testing in Tension and Compression

All tests in tension and compression were done at 371°C (700°F) in a
helium atmodphere. Direct dead weight loading was used. A sketch of
the apparatus with a tensile specimen in place is shown in Figure 7 .
A split wound tube furnace, 1 1/4" ID, 12" long was placed around the
tube. All threaded fittings inside the furnace tube were loose fitting;

this provided the necessary flexibility to prevent bending of the specimens.
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Figure 7. Furnace Tube and Fittings for Tensile Testing. Key:
A--Pull Rod to Framework. B--Conax Seals
C--"0"-Ring Seals. D--Furnace Control Thermocouple.
E--Thermocouple. F--Specimen. G--Threaded Fittings.
H--Helium Supply. I--"0"-Ring Packing Gland.
J--Packing Gland Nut. K--Pull Rod to Weight Pan.
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Prior to starting a run, the furnace tube was evacuated and
flushed several times with helium. During the run a positive pressure
of 1-2 psig helium was maintained in the furnace tube. . This kept oxidation
of the specimens to a minimum, but never eliminated it entirely.

The temperature of the furnace was controlled using the control
thermocouple shown in Figure 7 . A "Celectray" controller, manufactured
by C. J. Tagliabue Manufacturing Company, was used for temperature control.
Temperatures during runs were checked using a thermocouple which touched
the specimen. The temperature gradient along the specimen was less than
2°C.  Temperature variation during a run was about toeq,

The lower pull rod attached to the specimen passed through a
packing gland which consisted of 3 teflon "0" rings. The packing gland
nut was used only to keep the "0"rings in position; they were not com-
pressed. A high polish was kept on the pull rod. It was found that the
1-2 psig helium pressure inside the furnace tube was sufficient to push
the rod through the packing gland. The load placed in the weight pan
plus the weight of the pan and fittings was taken to be the true load
on the specimen. In other words, it was assumed that the helium pressure
maintained inside the furnace tube Jjust offset the frictional forces in
the packing gland. At most, this could result in a 2% error in the
effective load on the specimen.

Before each run, three sets of scribe marks were placed on
the specim.én° The distance between marks was at least one inch. Measure-
ment of the distance between these marks before and after each run revealed
no indication that bending occurred. For runs made at the heavier loads,

about 2°l0"7br permanent strain was indicated, but this is less than the
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error with which the distances between scribe marks could be measured
on successive trials. Hence, one can conclude that no sizable permanent
elongation occurred during these runs.

A compression run (DCl) was made in the same apparatus using
fittings which permitted tensile loading to achieve compression of the
specimen. Two interlocking "U" shaped fittings, one of which is shown
in Figure 8, were used.

Oné run in compression was carried out. Microscopic inspection

after the run showed no signs of bending.

4, Measurement of Dihedral Angles

Specimens were prepared for metallographic examination using
conventional metallographic techniques applied with some care.

Specimens were generally cylindrical in shape, 1/2 to 3/L"long,
5/52 to 7/52" diameter° Most specimens were copper plated using solutions
recommended by Kéhl§5u) prior to mounting in bakelite. This prevented
rounding of the specimen edges during polishing.

After mounting, specimens were ground using 60C silicon carbide
paper, so that the final plane of polish bisected the cylinder along its
axis.  Some of the tensile sgpecimens were also examined on transverse
sections. Following this, 240C and 600C grit papers were used; 6 micron
diamond on a silk cloth was used to remove the scratches from the 600 paper.

Typically, at this point 1t appeared that the nickel matrix
had been smeared to such an extent that only the largest lead particles
were visible. Since no etchants were used, (because of preferential

attack of either the lead phase or the interfaces in the system) this

flowed metal had to be removed by careful polishing with a Linde A
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Figure 8. TFitting for Compression Testing.
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A.']_205 suspension, followed by two or more hours of mechanical polishing

using a Syntron vibrating polisher with ILinde B AlEO suspended in water.

>

In both of the final polishing steps, well-worn Buehler Microcloths
were used. The high nap on a new cloth tended to remove lead from the
structure.

This polishing treatment did not produce "relief" polishing
in the sense that adjacent nickel grains were at different levels.
it did, however, cause all grain boundaries to be lower than the matrix
grains., 'It 1ls not felt that this in any way distorted the shape of the
lead particles present. On the contrary, unléss this situation obtained,
the lead particles were often partially obscured by smeared nickel.

.Angles were measured on z Baush and Lomb Research Metallograph
equipped with a rotating stage. By means of a vernier attached to the
stage, angles could be read to the nearsst 0.1°., All angles were recorded
to the nearest 0.1° even though the probable accuracy of measurement
varied from t01,5 to t5° from one angle to another.

An 80X, oil immersion objective was used for all measurements
with a 15X filar eyepiece. For angles méasured on tension and compression
specimens (and on sample D, a b;’l.,amk;)/n the dlstance from the edge of the
specimen was recorded for each angle. In addition, the angle which
the grain boundary made with the axis of tension (or compression) was
measured., The accuracy of the latter measurement was probably about i5°°

The distance from the specimen edge was also recorded for all
specimens equilibrated at various temperatures or subjected to hydro-
static loading with the exception of specimens from heats E and F.

The specimens used in these cases were irregular in shape which made such

a measurement difficult.
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In every case, specimens were repolished at least once so
that angle measurements were made on more than one polished section.

This was done to minimize any systematic error due to the quality of
polish. As experience was gained, good quality polishes could be

produced consistantly.



CHAPIER V

STATISTICS OF DIHEDRAL ANGLE MEASUREMENTS

The statistical problem involved in the determination of a
dihedral angle from a sampling of observed angles should be a problem
in determining a best estimator, 8 , for the dihedral angle 8 |,
which is the single parameter in the theoretical cumulative frequency
function (Appendix.A) which describes the population from which the
sample is drawn.

Straightforward solutioncf‘ﬂmepabkmlis difficult because of
the complexity of the analytical form of the distribution function.
More important, however, 1s the fact that the distribution function
does not, in all likelihood, accurately charscterize the population
from which the sample is drawn. For these reasons, a less direct
approach is required.

(84)

It has been shown that the median angle of the theoretical
distribution always lies within 1° of the dihedral angle, €& . Given
a value of the median angle onevcan apply a correction which will produce
the dihedral angle. One must then consider the factors which are likely
to cause the actual distribution to depart from the theoretical distribu-
tion and determine their effect on the median angle. If the effect on
the median angle is predictable, then it is still possible to determine
the dihedral angle from the median angle by applying several @orrections.
Since the actual form of the distribution function for the
population is unknown or exceedingly complex, the most satisfactory

way to determine the probable errors in the value of the median angle

obtained is to apply methods of non-parametric statistics to the sample,

_83_
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This will allow one to establish a confidence interval for the median
of the population. Other non-parametric methods will allow comparisons
for significance to be made between different samples.

The sections to follow elaborate on these points and discuss

the calculations made.

1l. A Discussion of Errors Affecting the Distribution of Observed Angles

The statistical analysis of observed angles to determine a
true dihedral angle was first eméloyed by Harker and Parker(Bg) in 1945.
A few years later, Smith(95) and Ikeuye and Smith(Sl) used this analysis
to determine the dihedral angle of dispersed second phase particles
lying in grain boundariescfa,matrix phase, e.g., lead in copper.

These authors, and most subsequent workers who have employed
this technigque, have observed that in general the distribution of angles
observed departs considerably from the expected distribution, in that
the peaks observed at the modal ahgle are blunter and broader than one
would expect. TFigure 9 illustrates this point with data from the
Nickel-Lead system, (Specimen D). Application of a Chi-Squared test
to this data indicates there is virtually no chance that the sample
of angles obtained came from a population with the theoretical distribution
shown. Application of the Chi-Squared Test to other data in the litera-
ture dhows some data which fits the theoretical distribution better than
the data shown, but no cases of good fits.

Several reasons have been advanced to explain this discrepancy.

(39)

Harker and Parker suggested that a) the presence of a range of
dihedral angles in a specimen rather than a unique dihedral angle would

cause a spreading of the distribution function, b) a non-random selection
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of orientations with respect to the plane of polish would distort the
distrubution function, e.g., arising from a columnar grain structure.
This is more likely to be a problem when measuring the angle at which
matrix grains meet, as in Harker and Parker's experiment, c) "bad luck"
in sampling. The last cause can be ruied out because the effect is
invariably observed.

Smith(95> and Tkeuye and Smith<51> suggest that failure to
observe the expected peak frequencies is due to either a) differences
in grain boundary energy due to orientation effects, or b) failure
to obtain equilibrium. For well annealed specimens, such as they used,
Tkeuye and Smith do not consider the latter effect o be important.

They ascribe the bulk of the peak broadening to the first cause even
though "there is only a small probabiliﬁy that two grains will meet
each other at an angle that gives a boundary of low energy"o(95>

Another possible source of this discrepancy is the contribution
of measuring error. If the errors in measurement are sizable, then
even if they occur randomly they will change the effective distribution
function for the populatiop of observed angles. Increasing the sample
size only insures that the sample distribution approaches the effective
distribution of the population, not the "true" distribution.

In measurements performed on dispersed second phase particles,
another type of error can arise from an improper selection of particles.

It is easier to measure the angles from a particle whose section size in

the plane of polish is large.  This same particle can be sectioned to
produce a variety of sectlon sizes, and it can be shown that if the
difficult measurements on small section sizes are omitted, then a systematic

error in the sample distribution can result.
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The following three sections show the effects of three sources
of error on the effective distribution function of observed angles.

The calculations were performed with aid of an IBM 7090 computer.

2. Effect of a Non-Unique Dihedral Angle on the Distribution of
Observed Angles

Blunting of the distribution peak has usually been ascribed
to variations in grain boundary tensions arising from the dependence of
grain boundary tension on orientation parameters. It is undoubtedly
true that the few orientations which produce very low grain boundary
tensions contribute negligibly to a sample of observed angles. However,
minor fluctuations in composition due to segregation (influencing
adsorption at the boundary) might very well produce a range of dihedral
angles. Smith<95) points out that the general occurrence of particles
with nearly spherical symmetry within matrix grains argues against any
significant dependence of solid-liquid tension on interface orientation.
This may be so, but variations in interface tension by a few percent
might not noticesbly affect the sphericity of these particles, but
would have significant effect on the dihedral angle.

For the moment, we will assume that fluctuations in tensions
only occur for grain boundaries. If the grain boundary tension is
uniformly distributed over a range ¥ * 0.015y, then if the dihedral
angle corresponding to ¥ is 50°, the range in dihedral angles will
vary from gbout L6° to 54°. If the range is ¥ * 0,03y the dihedral
angles will vary from 42° to 58°. The spread in the frequency function
peak for each of these cases is indicated in Table V. Comparison with
the sample presented in Figure 9 shows that a uniform distribution of

dihedral angles from at least 42° to 58° would be needed to explain

the peak depression.
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TABLE V

EFFECT OF NON-UNIQUE DIHEDRAL ANGLE ON THE
DISTRIBUTICN OF OBSERVED ANGLES

Observed Theoretical

Angle Cumulative
Frequency

for & =50°
5 0.29
10 1.18
15 2.70
20 4.9k
25 8.00
30 12.09
35 17.51
Lo 2L .82
L5 35.23
48 hh 4o
49 48.60
50 5. 75
51 60.75
52 6L.69
55 72.80
60 80.94
65 85.95
70 89.33
75 91.73
80 9%.48
85 oL.81
90 95.83
95 96.63
100 97.27
105 97.79
110 98.20
115 98.55
120 98.83

Median Angle 49,3

4045

45-50

20-55

55-60

Cumulative
Freguency
for §=50%t2

0.29
1.18
2.71
L.95
8.02
12.12
17.57
24,92
3544
45,0k
49,74

Cumulative
Frequency
for @=50%k

L8.

.29
.19
e,
.98
.08
.22
.72
.19
.10
Y
71
.78
ST
62 -
.03
.61
.76
.20
.63
RN}
.76
- 79
.60
.25
N
.19
.54
.82

8

Relative frequencies near Peak of Frequency

10.41
19.49
18.07

8.1k

10.5%
19.31
17.87

8.2k4

10.
18.
17.

8.

91
67
25
58

Plot

Cumulative
Frequency
for B =508

0.30
1.22
2.80
5.12
8.32
12.62
18.38
26.42
39.21
18.63
51.75
5L. 84
57.88
60.86
69.24
19.55
85.17
88,81
91.3%6
93%.21
9L.60
95.67
96,51
97. 17
97.71
98.14
98.50
98.79

L8. L

12.89
15.55
14 .40
10.32
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If this factor is important, then no unique dihedral angle exists.
If the number obtained for the median angle of the population is corrected
to obtain the dihedral angle, the latter can only be regarded as a number

representing the central tendency of an existing range of dihedral angles.

3. The Contribution of Measuring Error

According to the theoretical distribution (Appendix AL if
one has a dihedral angle of 50°;, then EODB% of the angles observed
should lie between L48° and 52°a‘ But if the reproducibility of measure-
ment is on the order of 1°, then even if the sampling is perfect, errors
in measurement would not allow one to observe such a large percentage
of angles in such a small range. The following discussion presents
an approximate method for determination of the amount of peak broadening
due to errors in measurement.

Let q)*'designate the variable which is measured experimentally.

Then, when errors in measurement exist
w* = ¥ + v (5-1)

where q) is the value of the variable which would be observed in the
absence of errors, and y 1is the contribution of error. Let y be
normally distributed with mean O and standard deviation o, and let

q) be distributed according to Harker and Parker's expression. Then,
what is required is an expression for the distribution function of q}*o

The distribution function for \P #* may be calculated according

to the following scheme. Let the fraction of angles less than or eqgual

to q) be called Cq,ﬁ where Cq, is determined from the theoretical
‘distribution equation. Let the fraction of angles between Y and +ay

be designated f s Where

Fx
+ 22X
A 2
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\\l-\—_ézﬂ{ - C'Ly+AqJ - Cy - (5-2)

Errors in measurement cause the fraction f p + sy  to be normally
2
distributed over all W . (Since the range of Y is finite, the normal
distribution is a good approximation except for Y near O or 180°.)
' . . ce . . AY
The fraction of £ Y + DY . which is greater than Y + 5 + x or

less than tV + Jg— - X 1is

oQ
-t2/2

1
£ e at
vr g [J%‘ Xx/a

Hence the cumulative frequency corrected for measuring error is C@

where K
B Gy 7 jn=o {f W (n+i2)ay Ty (e A\P]
o 2
N -t /o . (5-3)
\ e (n+ 1/2)ayw
(o]

The summation is carried out up to n = K, where K is high
enough so that the value of the error integral is very small. This will,
of course, depend on the value chosen for o and for AY . For the
calculations that were made, AY and ¢ were adjusted so that K = 40,
which meant that the smallest value of the error integral used was 0.00004,

The results of this calculation for ¢ =2 and o = 5 are shown
in Table VI. Computed values are shown only for the central portion
of the distribution, since the assumed normal distribution of error
cannot hold for very large or very small angles. Although a pronounced
blunting of the distribution peak occurs for o = 5, neither the modal
angle nor the median angle is much affected. While both of these criteria

remain relatively unbiased for this type of error, neither the sample



Observed
Angle

20
25
30
35
10
L5
48
49
50
51
52
55
60
65
70
15
80
85
90
95
100
105
110
115
120

Median A

L0-L5
45-50
50-55
55-60

EFFECT OF MEASURING ERROR ON THE
DISTRIBUTION OF OBSERVED ANGLES
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TABLE VI

Theoretical
Cumulative
Frequency

ngle

Relative

6 =50°

b,

8.
12,
17.
ok,
35,
L,
L8,
54,
60,
I
72,
80.
85.
89.
91,
93.
oly,

oL
00
09
51
82
25
L2
60
&

Cumulative
Frequency
for o=2

6 =50°

5.00

8,09
12,20
17.66
25.06
35,81
45,81
50.06
54,7k
59.03
63.12
72,17
80.70
85.8%

Cunmulative
Frequency
for o=5

6 =50°

8.53
12.78
18.52
26.60
38.L8
47.63
50.388
54.15
57.38
60.5%
69,04
79.10
85,05
88.81
91,39
9%.26
9k, 65
95.72
96.55
97.21
97.7h
98.17
98.52
98.81

48.8

Frequencies near Peak of Frequency Plot

10,
19.
18,

8.

b
49
o7
1h

10.75
18.9%
17.43

8.53

11.89
15.66
14,90
10,06
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mode nor median will be as reliable as calculations based on the theoretical
distribution would suggest.

The standard deviation o of the error in measurement depends
on the magnitude of the angle, the size of the particle being measured
relative to the magnification, and the quality of the metallographic
preparation. Thus, while a single value for ¢ really does not exist,
the assumption of a fixed value is valid for estimating the magnitude of
the effect.

For most samples measured in this work, a conservative estimate
of ¢ would be 2.0°. From the results of the above calculations one
can see this would have s small effect on the shape of the distribution,

and a negligible effect on the median or modal angles.

Iy, The Effect of Observed Particle Size

The two types of errors previously discussed probably account
for most of the departure observed from the theoretical distribution
of angles. A third type of error may on occasion arise due to biased
sampling which occurs because of differences in the section size of
dispersed particles.

- FPor example, 1f the dispersed second phase consists mainly
of lenticular shapes lying in matrix grain boundaries, measurement of
only the largest sections seen on é plane of polish introduces a bias
toward a higher median angle. This occurs because sections through a
lens which are of a smaller apparent size have angles which are on the
average, smaller.

To see this, consider a single such particle in the form of a

(93)

lens with surfaces which are portions of spheres meeting in a dihedral
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angle B and having a diameter @ in the central plane. Then, passing
planes of random orientation through the particle gives rise to observed
grains whose apparent length [f is such that £ £ d.

If one is measuring angles observed on a plane of polish at
a particular magnification, the ease of measurement is dependent upon
the particle size. For particles whose diameters lie between d and
d + Ad, there will always be a length KO below which it is not pos-
sible to make an accurate measurement. However, disregarding particles
which are too small to measure gives rise to a systematic error in the
distribution of angles obtained, whose net effect is to raise the median
angle of the distribution.

It is worthwhile to determine the value of £O/d which will
‘allow one to-disregard particles having lﬂi ' lo/d without appreciably
affecting the distribution of angles obtained. This in turn gives one
a qualitative guide to the magnification needed to satisfactorily
measure dispersed particles having a certain size range.

Let N %be the normal to the plane intersecting a lens having
its central plane lying in the XZ plane. . The normal has direction
cosines (cos B sina, sinf sin @, cos a) where Q, B are the usual
spherical coordinates.  Thus, the equation of the intaersgcting plane
is cos B sina x + sinB sina y + cos @ z = O, and the trace T of
this plane on the X7 plane is the line cos B sin @ x+ cos o 1z = O,

2
The equation of the circle C in the central plane of the lens is (X -r)
: 2 . ‘

+ oz = r2° Solving the latter two equations for x, and expressing

the length of the chord 4 in terms of x results in the following

expression’



1
2/a = tfer = : (5-k4)
v1-+ COSEB tanga

Rearranging (5-&) and using the trigonometric substitution

N Qa singa
4 ,___g_?——‘
an 1l - sin~«
one has
. 2 _ K
sin O = m (5 5)

where K = (d/;z)2 - 1.

(39) have shown that the probability of

Harker and Parker
observing an angle less than or equal to (P for a given dihedral angle
6 is given by the areas to the left of curves of constant qJ on a graph
of singa vs. PB. Superposition of curves of constant ﬁo/d from
(5-5) on the curves of constant QJ will indicate the portion of the
distribution not obtained when particles having £/d £ zo/d are ignored.
For B = 50°, the probability plot of singa vs B 1is given
in Figure 10 with the curves for three ratios of Eo/d superimposed.
The fraction of the population of observed angles having Zb/d < 0.1
is about 0.5%, for Zo/d < 0.3 about 4.6%, and for ﬁo/d < 0.5 about
lBQA%o The data for the frequency plots thus obtained are given in
Table VII and the median angle for each case is indicated. Note that
the modal angle is about the same for each case, Clearly, if all particles
with ﬂ/d 2> 0.1 can be measured, no significant error in the distribution
will result. On the other hand, if only 85% of the particles present
are large enough to measure, the distribution of angles obtained will
be in error.

Two considerations prohibit the application of these results

in any quantitative manner. First, a distribution of particle sizes
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TABLE VIT

EFFECT OF IGNORING ANGIES FROM SMALL SECTION SIZES ON THE
DISTRIBUTION OF OBSERVED ANGLES FROM LENTICULAR PARTICIES

Observed Theoretical Cumulative Cumuilative Cumulative
Angle Cumulative Frequency Frequency Frequency
Frequency £/d=0.1 1/d=0.3 1/d=0.5
6 =50° 6 =50° g =50° e =50°

10 1.18 0.73 0 0

15 2.70 2,24 0 0

20 L.oL 4.48 1.25 0

25 8.00 7.56 4.16 0

30 12.09 11.67 8.30 1.95

35 17.51 17.12 13.90 7.18

IYo) 2L .82 2L 46 21.51 15.06

L5 35.25 34.93 32.39 26.73

48 Lh Lo Wl 16 42,01 37.19

49 48.60 48.36 L6.38 41.96

50 54.7% 54.52 52.81 49,00

51 60.75 60.57 59.12 55.92

52 64 .69 64.53 63.2k4 60.543

55 72.80 72.68 TL.73 69.70

60 80.94 80.86 80.25 78.96

65 85.95 85.90 85.L49 8L.65

70 89.33 89.3%0 89.02 88.46

75 91.73 91.70 91.52 91.15

80 93.48 93.47 93.3%5 93,12

85 94,81 94.80 oL. 7% 9L .60

90 95.83 95.83 95.80 95.73

95 96.63 96.63 96.6% 96.61
100 97.27 97.28 97.29 97.3L
105 97.79 97-79 97.82 97.87
110 98.20 98.21 98.25 98.31
115 98.55 98.56 98.61 98.68
120 98.83 98.84 98.90 98.97

Median Angle U49.3 49.3 49.6 50.1

Relative Frequencies Near Peak of Frequency Plot

40-45 10.41 10.46 10.88 11.67
45-50 19.49 19.59 20,41 22.27
50-55 18.07 18.16 18.93 20.70

55-60 8.1h 8.18 8.52 9.26
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is always present. This means that for relatively large particles, nearly
-all orientations of the particle with respect to the plane of polish pro-
duce sections large enough to measure, while for particle sizes at the
other end of the spectrum, a large proportion will produce sections too
small to measure., Without knowing the distribution of particle sizes,

no correction can be applied. It is probably true, however, that if

the magnification used is adequate to resolve all but a few percent of
the particles present, no significant error should result. When a fine
dispersion of particles is present and the best  magnificetion available
cannot resolve a large proportion of them, the distribution of angles
obtained i1s sure to be in érrorov An approximation to the true dihedral
angle éan, however, still be obtained from the modal angle. . The median
angle of the measured distribufion Will be too high.

In the alloys used in this Work, lenticular shapes were pre-
dominant. However, this is often not the case. When the matrix grain
size is small relative to the dispersed particle size (as in powder
compacts sintered with a partially-wetting liquid phase present), more
particles will lie in grain edges and in corners where four grains meet
than when the matrix grain size is relatively large. Obviously, the
same considerations that have been dealt with above for lenticular
shapes apply here, too, but the more complex geometry of these particle

shapes would make a similar calculation difficult.

5. Establishing a Confidence Interval for the Median Angle

Two criteria have been proposed to determine the dihedral angle
from a sample distribution of angless a) the modal angle, and b) the

median angle. Smith(93) pointed out that the modal angle in the theoretical
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frequency function is the dihedral angle. If a range of dihedral angles
exists, the mode then tends to a central value in the distribution of dihedral
angles. Unfortunately, the mode is a clumsy tool; the sample size must

be large and the value of the modal angle depends on the classification

of the data. The value of the modal angle is insensitive to many types

of error, but the frequency of the mode is not.

Riegger and Van Vlack(8h) proposed use of the median angle to
characterize the distribution. They show that the median angle of the
theoretical distribution is always within 1° of the true dihedral angle,
(see Figure 25). The median angle is obviously determined more easily
than the mode, and with a greater precision. Riegger and Van Vlack

estimate the sampling error in using the median angle of a sSample
(drawn from a population having the theoretical distribution) to obtain
the median angle of the population. They assume that the theoretical
distribution function of observed angles approximmtes a normal distribution.
Then, the standard deviation of the median angle is given as an asymptotic
approximation for large n by the relation
o

~ 2_
med = 1.253 =

o)

where Up is the standard deviation of the population. They then apply
this relation to show that 25-50 angle samples characterized by means of
the.median angle give the same accuracy in determining the dihedral angle
as much larger samples characterized by the mode. These last results may
be criticized on three points: (l) the theoretical distribution deviates
from a normal distribution at small and large values of the dihedral
angle; the useful range of this assumption is probably 20°¢ 6 £ 160°;

(2) the approximation used to obtain the standard devigtion of the median
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angle is valid for large samples. It has not been shown that a 25-50 angle
sample is sufficiently “large"; (3) the population from which the sample
is drawn is almost certainly not characterized by the theoretical frequency
function (or a normal distribution with the same mean and standard deviation);
the standard deviation of the actual population is larger.

A better approach is to use a non-parametric method to establish
a confidence interval for the median. ©Such a method has the virtue of
being independent of the distribution function assumed for the population.

S. So‘Wilks<llO) derives the following probability relationships.
A sample of size n from a given population may be ordered according to
the magnitude of the elements in the sample. Thus, the sample may be
represented (X(l)y X(2)9 ooy X(n)> where X(k) 4 X<k + 1) Then

a confidence interval for the median of the population x 1is given by:

P <X(kl) <2 LFy kg)) = Igg (kpym -k +1)
(5-6)

1005 (kl +ky, n - (kl + kg) + 1)

where Ip (vl, v2) is the Incomplete Beta Function. Tabulated values
of this fimction have been prepared by Pearson<78) for p = 0.0L to 1.00,
and for Vis Vp = 0.05 to 50, For large samples, an asymptotic approxi-
mation using a normal distribution permits a similar calculation. Table VIII
shows 90% and 95% confidence intervals for samples of five different sizes.

- TABIE VIIT

CONFIDENCE INTERVALS FOR VARIOUS SAMPLE SIZES
Sample Size 90% Confidence Interval 95% Confidence -Interval

25 8 - 17 7 - 18
50 19 - 32 18 - 33
75 30 - L5 29 - L6
250 112 - 138 110 - 140

500 2%2 - 268 228 - 272
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Using. this method, one can then say, for example, that for a
sample size of 500, there is only one chance in twenty that the median
of the population has a value lying outside the values of the 228th and
272nd members.  Thus, without making any assumptions as to the distribution
function of the population, the median of the population can be established
to within fairly close limitsn

Although this method gives an interval in which the median
of the population is likely to occur, it gives no best estimate for the
median of the population. For purposes of further calculation, the median
of the population is taken to be the median of the sample. An equally
valid choice for the median of the population would be the mean of the
limits of the confidence interval. For large sample sizes, there is no
significant difference between fhese two figures.

To obtain the dihedral angle from the median, the factor obtained

(8x%)

by Riegger and Van Vlack is added to the median angle. PFrom the calcul-
ations of the previous sections one could also apply a correction for
measuring error. A value of o0 =2 1s a conservative estimate for the
measuring error of any specimen; this would mean an additional factor of
about 0.3%° should be added to the median angle. This last correction was
not applied because it is small and computations show 1t is independent

of the size of the median angle in the range off interest. . Furthermore,

.the measuring error was probably not the same for all specimens.

6. Summary
Three types of errors have been considered which will change
the effective population of observed angles and thereby the distribution

function for that population: (1) Existence of a range of dihedral angles,
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distributed in an unknown manner, (2) errors in measurement, and
(3) a range of apparent particle sizes, some of which are too small to
measure.

One should be able to avoid the third type of error by using
sufficiently high magnification on a sufficiently coarse distribution
of particles. This type of error is most likely to show itself when
comparing results of samples taken from two different dispersions.

Both of the first two effects must always be present, however,
to some extent. . The resulting samples with flattened peaks represent a
superposition of both effects. A reasonable estimate of the error in
measurement, o = 2, cannot account for all of the peak broadening.

One must conclude, therefore, that a range of dihedral angles existsin
the specimen. If one assumes that this range of dihedral angles is rec-
tangularly distributed, then the above calculations suggest a spread of
dihedral angles from 8° to 16° wide is present.

The median angle of the population of observed angles can be
determined. . To relate this to a dihedral angle one must retain the con-
venient fiction that a single dihedral angle exists. This assumption leads
to the calculation of ratios of interfacial tensions which are some sort
of averaged values. While it is important to realize that all interfaées
may not have the same tensions, conclusions made as to how the averaged
tensions vary with the constraints on the system must also be true for
the individual tensions.

In the following section, a brief description is given of
another method for determining adihedral angle from a sample of observed
angles. In the second section, the results of non-parametric tests for

° . ‘ o . .
statistical differences between certain pairs of samples are given.
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7. Another Method for Obtaining Dihedral Angles

In a previous section, a non-parametric method for establishing
a confidence interval for the median angle of the population was discussed.
For large samples, the 95% confidence interval is small enough so that the
probable error involved in identifying the median angle of the sample with
the median angle of the population is tolerable., In addition, however,
one would like to know how well the samples fit the theoretical distribution
equation.

An alternative method for choosing a value of dihedral angle
likely to produce the observed sample was devised which is applicable
to samples of any size. This method is empirical and does not gilve an
indication as to the accuracy of the values obtained, but it does give
an indication as to how well the sample fits the distribution equation.

Given a sample (ngoow Wn) ordered so that Wig Wi+l’

one can construct a cumulative distribution function for the sample

0, § £ 0
Pe (p) = Fo=, 04WY 5 1=, . (57)
1, \‘J>\Pn

If F(w H 6) is the distribution function given in Appendix A
which describes the population, then one can define a parameter J given by:

J = y [F(Wi;e) - F*(viﬂzao (5-8)

i=1

Thus, a value of J for a sample can be computed for any choice
of the parameter B . The value of © which gives the smallest value to
J, thus giving the "best" fit to the data, is taken to be the dihedral
angle. - The value of J for this "best" fit, is an index as to how well

the sample fits the theoretical distribution.
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This empirical method for choosing the parameter 8 is based

(18)

on the Cramér-von Mises test for "goodness-of-fit According to this
test, if the theoretical distribution function is known, the "goodness-of-

fit" of a data sample can be established by means of the parameter nu?
2 1l En: 25 - 1 2
: = —— 4 - S
oo 12n ; F(Xj) 2n ]
J=1
2 - 1

where F (X) is the distribution function of the population,and ~n

is the distribution function for the sample. Tables of the probability that

a sample has ﬁmg £ 7 for various values of Z are given by Anderson

and Darlingo(u)
While there is no assurance that the above method of minimizing

J produces an estimate of © which is any way better than a value of &

determined via the median angle, one does obtain in the minimum value of

J an indication as to how well the data can be made to fit a theoretical

distribution. As was pointed out in the discussion of errors, the

distribution function of Appendix A does not satisfactorily describe

the population distribution, a fact which may be confirmed by the Cramér-

von Mises test. Nevertheless, the minimum values of J obtained allow

Jjudgments to be made as to the relative religbility of various samples.

- For purposes of comparison, an index of fit, I, is defined

as follows:

1= Vi =\/i‘_[w<wiye> - w (W) P (5-9)

where F (Wi;8) ana F* (¥, ) are expressed as percentages. This index
is not dependent on sample size, as is J. Typically, "good data" gives

values of I less than 5.
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The values of the dihedral angle found by this method are up
to 1° higher (and never lower) than those obtained by using the corrected
median angle. One would expect this result, because (1) measuring error
has been shown to decrease the median angle, and (2) a range in dihedral
angles probably decreases the median angle.

In subsequent calculations, the dihedral angle used was the
ae obtained by correcting the median angle. No significant difference in
any of the results is obtained by using the dihedral angles which fit the

data best according to the above criteria.

8. Statistical Tests for Differences Between Samples

Since the form of the distribution function for the population
of "observed angles" is unknown, it is desirable to use non-parametric
methods to establish whether or not certain samples could have come from
the same populatidno The methods used are described in reference (91)°

Two types of "two-sample" tests are suitable: (1) the median
test, and (2) the Kolmogorov-Smirnov test. In the median test the hypothesis
being tested (null hypothesis) is that the samples come from populations
with the same median. Used as a one-tailed test, rejection of this
hypothesis implies that the medians are different in the manner predicted.

In the Kolmogorov-Smirnov test, the null hypothesis is that
for any X, F<l) (x) = F<2) (x), where F (X) is the distribution function
for the population from which the sample is drawn. ©Subscripts refer to the
two samples being tested. Used as a two-talled test, rejection of the null
hypothesis implies that the distribution functions are different in central
tendency, dispersion, or skewness. Used as a one-tailed test, rejection

implies that X )i for X near the center of the distribution.
Ty K) > Fg) (K) for X
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The one-tailed test is most sensitive to differences in the central tendency
of the distribution.
The Kolmogorov-Smirnov test is more sensitive to differences,

(91)

and is the preferred test. Some results of these comparisons are
presented in Table IX. The level of significance at which the null hypothesis
is rejected is the probability of rejecting the null hypothesis when it is

in fact true. In each case, the lowest level of significance at which

the null hypothesis can be rejected is indicated; The median test applied

to the same data does not allow rejection of the null hypothesis with as

high a degree of cerftainty.

TABLE IX

COMPARISON OF PAIRS OF SAMPIES FOR SIGNIFICANT
DIFFERENCES. KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

Level of Significance at which
Null Hypothesis is rejected

Sample Pair Two-Tailed Test One Tailed Test
D11-7
1 DL1-8 0.10 0.05
D 1 . - -
2 D 3 Not rejected Not rejected
CPA 1
3 CoA % 0.025 0.01
CL 1
b cL 3 . 0.01 0.01
D1 1
5 3 0.05 0.05

Reference to Tables X and XI in the next chapter will show that all the
samples in each pair in Table IX, except the second pair, should have
come from different populations. The Kolmogorov-Smirnov test indicates

that it is likely that the samples in each pair, except the second, do
come from different: populations. For example, the results of the two-

tailed test for pair (l) show that there is only one chance in ten that

the samples are drawn from the same population.



CHAPTER VT

EXPERIMENTAL RESULTS

1. The Nickel-Lead Phase Diagram

Figure 11, the phase diagram for the Nickel-Lead System, is
(69) (57) e

(26) and

taken from Miller and Elliot. It is based on Hansen,
corrections from the more recent data of Fleisher and Elliott,
Alden, Stevenson, and WUlffn(2> Figure 12 shows the solubility of
Ni in liquid lead from,reference (2). It is not known whether a eutectic
or peritectic reaction occurs near the melting point of pure lead.

No information is available as to how the phases present change
composition with changes in pressure. A rough calculation can be made
to indicate the order of magnitude of the change of nickel solubility
in liquid lead.

Assume that the solid is pure nickel and the liquid is a

dilute solution of nickel in lead. Then since

S i
iy = Qi (6-1)
and
S s
Ay = Yy 9F
awt = T oap o+ i axt. T constant
g Ni N Wi an
Koe
Ni
one has
L b4
o dx
Ni Ni B S = .
. 75 = Vo Yy T constant (6-3)
Wi
where s is the chemical potential of nickel, KSQ is the molar

N1
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volume of nickel in the solid, Véi the partial molar volume of nickel

in the liquid, and Xéi the mole fraction of nickel in the liquid.

If the activity of nickel in liquid lead is proportional to

its mole fraction, then

Bug
Ni RT
= 6-L
sz xﬁ ( )
Ni Ni
So
)i s =)
e S R S (6-5)
ap RT

From (66, 96) the molar volume of solid nickel at 600°C is
6.66 cc/mol. From (98) the partial molal volume of nickel in liquid
lead at 600°C in in the range 3.2 to 5.5 cc/molu Taking the value which

will produce the greatest change in solubility one has:

J/

- ;; i = 4.8 .10 atm?t . (6-6)

The solubility of nickel in lead at 600°C is 1.85 atomic
percent. From Equation (6-6), 3000 atm (44,000 psi) pressure increases
the solubility to 2.14 atomic percent. From the data avaiiable, this
must be regarded as an upper limit to the solubility change which occurs.

One can conclude that pressures in the range used in these

experiments exert very little influence on the phase diagram.

2. Temperature and Pressure Data
Specimens of leaded nickel were equilibrated at temperatures
from 371°C to 816°C (700°F to 1500°F) in a vacuum. Other specimens were

equilibrated at pressures up to 50,000 psi at 371°C (700°F) and 593°C
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(llOO°F)a The results of 500 angles measured on each specimen are shown
in Table X.

All of the specimens with designation D were cut from the
same ingot, and had about the same grain size, impurity content, etc.
All of these specimens were hydrostatically tested in water. The only
inconsistent values from this data are from DP2 and DP3. The first
gave an abnormally low value for the dihedral angle and the second an
abnormally high value. (Compare with specimens DP5 and DP9, respectivelya)
Re-measurement of these specimens produced virtually the same dihedral
angles. These two specimens were among the first ones run in the hydro-
thermal unit and neither was quenched after the run as were all other
specimens., DP2 was cooled in an air blast, and DP3 was cooled in an
air blast until the pressure dropped to about 25,000 psi, then quenched
in water. It is not clear why failure to give a rapid quench should
produce a low angle in one case and a high angle in another. This seems
to be the only difference, however, in the way these two specimens were
treated, so one must assume that the cause of the unusual values is the
guenching rate. Neither of these two specimens will be considered in
the analysis of the results.

As was mentioned in Chapter IV, heat D proved to have an
undesirably high sulfur level. Sulfur is known to be surface active
(36)

in liquid iron and there is indirect evidence which suggests it might

(76)

segregate to nickel grain boundaries.

(55)

Oxygen is also surface active
in liquid nickel. For these reasons, heats E and F were prepared

in such a manner as to insure low sulfur and oxygen contents.
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Due to the melting practice used, heat E contained only
a few percent lead which was very finely dispersed throughout the nickel
matrix. The median length of lenticular particles was about 3.4u.

Heat F contained 8-10% lead with a median particle length of about
5.4y, Particles in heat D were larger; a median particle length of
about Ty was measured. Any particle less than about 2up in length is
too small to measure with any degree of accuracy at the magnification
used (1200X). Particles from 2-L4u in length can be measured, but the
measuring error is probably high.

The measurements from specimens E, F, and D1100 show
decreasing median angles with increasing particle size. In the light
of the errors discussed in the previous chapter, it is felt that a
high median angle was obtained from E TDbecause of biased sampling due
to the omission of measurements on small particles. The same tendency
may have been present in F; but the results from - F and D1100 are
not sufficiently different (nor are the particle sizes sufficiently
different) to warrapt such a conclusion.

Specimen El was hydrostatically tested using argon as a
pressure medium. However, a slow leak in the system allowed the argon
pressure to drop about 6000 psi during the course of the run. Hence,
the measurements made on El have 1ittle significance.

Specimen F1 was also hydrostatically tested in argon. The
resulting change in median angle from F to FL checks well the change
in median angle from D1100 to D11-6. These results allow one to
conclude that, (1) composition differences (particularly sulfur content)

do not significantly influence the results, at least at these impurity



levels, (2) hydrostatically testing in water rather than an inert
medium does not influence the results, (5) the length of time allowed
to obtain equilibration at 1100°F for all specimens from heat D was more
than adequate.

The reversibility of the change in dihedral angle is shown by
specimens P, Fl, and F1A. OSpecimens F and Fl were heat treated
at 1100°F for 72 hours. Angles on F were then measured. Specimen F1
was then subjected to hydrostatic pressure at 1100°F for 30 hours.

After angle measurements were completed on Fl, it was reannealed at
1100°F for 36 hours. The angles then measured are designated by FlA.
It is clear that there is no significant difference between F and FlA,

The results of the temperature and pressure measurements are
summarized in Figures 1% and 14. The ratio of surface tensions is related
to the dihedral angle by: ygb/ysl = 2 cos 9/2, where 6 is the dihedral
angle. Points designated by squares in Figure 14 are picked off the

smooth curves of Figure 13.

3. Tension and Compression Data

The angle measurements made on stressed specimens were treated
in the same manner as similar measurements made on specimens equilibrated
at different combinations of temperature and pressure. For purposes of
characterizing a sample of angles obtained from these specimens,; the
median angle will be used. The problem of relating this to a dihedral
angle expressible as a ratio of interfacial tensions will be left to
the next chapter.

(59)

Preliminary experiments on leaded copper suggested that

the median angle decreased when a tensile stress was applied. The exact
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nature of the variation was not established by the preliminary work, so
these experiments were repeated using leaded nickel. All tension and
compression testing was done at 371°C in an inert atmosphere for 48 hours,
with the exception of one specimen run for 120 hours.

Two specimens were run at stresses of 1000 and 1500 psi. Both
showed a lower median angle than an unstressed specimen treated at the
same temperature, but the decrease in both cases was about the same.

The angle measurements were then grouped on the basis of the distance
from the edge of the specimen at which the angle was observed. It was
found “that the median angle was lower (by 5-6°) in the center two thirds
of each specimen than it was in the outer third of the specimen. This
confirmed the observations made in reference (59)0 The median-angle

in the outer third of the specimen wag almost the same as the median
angle of the unstressed alloy.

Observations of the polished section showed some cracks occurred.
These began at the specimen surface and followed grain boundaries into
the interior of the specimen. On the order of 30 cracks per inch along
the section edge were observed, the longest running 0.015-0.020" into
the specimen. The portion of the specimen showing unchanged median
angles was about 0.035" thick.

It was postulated that the applied stress was indeed affecting
the median angle observed, but that cracks occurring at the surface
relieved the stress in the outer portion of the specimen. This produced
a median angle in the outer portion of the specimen characteristic of
the unstressed material. ©Since observations of crack depth can only be
made in the plane of polish, it was considered likely that some cracks

were at least 0.035" deep.
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To test this hypothesis, subsequent specimens were plated
with about 0.001" thick copper plate prior to tensile testing. This
soft plate was applied to eliminate crack initation at the surface.

In every subsequent tensile test with plated specimens, no dependence
of the median angle on distance from the surface was noted.  On the
basis of these results, the suggestion put forward in reference (59)
that diffusion of oxygen from the atmosphere along grain boundaries was
responsible for this behavior must be rejected.

In a tensile test on this sort of material, the liquid lead
particles probably behave very much like stress-free holes in a solid
matrix. Stress concentrations occur at the particles; particles lying
in planes normal to the axis of tension must have a concentrated normal
stress at the apex of the particle tending to cause cracking. It was
considered possible that lead filled cracks originating at these particles
might have been measured and were responsible for the overall decrease
in median angle observed in Stresséd specimens.

To check this possibility, the angle that each lead particle
made with the axis of tension was recorded along with the apex angles.
The data was classified into three groups on the basis of angle off
the axis of tension. This was donevfor all tensile specimens. A sum=~
mary of all the data on plated tension specimens,. classified in this
manner, is presented in Table XTI and in Figures 15 to 17,

The data show that for all but one tensile test the median
angles taken from particles lying normal to the axis of tension are
larger than the median angle from particles lying along the axis of

tension. - Non-parametric tests for statistical significance indicate
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that the differences indicated perpendicular to and along the axis of
tension are significant. The only specimen which shows a smaller median
angle perpendicular to the axis of tension is Bl which was run at the
highest stress. Attempts made to run specimens at still higher stresses
all resulted in fracture soon after the load was gpplied. (In fact, some
specimens loaded at a lower stress than Bl also fractured. )

One must conclude from these results that the lowered median
angle observed in tension is not influenced by crack formation at the
lead particles at stresses below the observed fracture stress of these
alloys.

Specimen D2 was run for a longer time to determine whether
the median angles changed with time. . Comparison with specimen C2 run
at the same StreSS.ShOWS no significant change in the median angle
between the two specimens.

One specimen (DCl) was subjected to compressive loading under
the same conditions that were used in tensile testing. The specimen
was not plated. The median angles measured for this specimen were also
lower than for the unstressed material, but the lowest angle was now
cbserved normal to the axls of compression. The changes observed in
compression were not much different than the changes occurring at the
same tensile stress (specimen 01)5 but the dependence of the median angle
on the angle off the axis of tension is reversed.

Comparison of the data from Table XI and the data from hydro-
static testing at 371°C in Table X shows that a pressure of 50,000 psi
is required in hydrostatic loading to produce the same drop in median

angle as was observed with a 2000 psi tensile stress.
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It is probable that the variation in median angle observed
in these specimens depends on the orientation with respect to the axis
of tension of the plane of the grain boundary in which the lead particle
occurs. The angle off the axis of tension measured in the plane of
polish, W , is related to the spherical co-ordinates (©,® ) of the

normal to the grain boundary by the relation

cos @ _ sin O sin P (6-7)

\/;L - 8in° @ cos® o

The orientation parameter © represents the angle between the normal

to the grain boundary and axis of tension. When \J is allowed to
range from O to 30°, & can take on values from 60 to 90°, For
56" <Y < 60°, then 30° £ & < 90°, and for 60° £ WY < 909,
then 0 € 6 < 90°, Thus the grouping of angles occurring 60-90°
off the axis of tension can arise from particles occurring in planes
with any inclination from O to 90° with the tension axis. The majority,
however, will have inclinations from O to 30°, so the variations observed
are still qualitatively correct.

The significance of this data will be discussed in the next

chapter.



CHAPTER VII

DISCUSSION OF RESULTS

1. A Method for Obtaining Variations in Interfacial Tensions from
Variations in the Dihedral Angle

Changes in the dihedral angle with changes in temperature and
pressure are the net results of changes in interfacial tensions at the
solid/solid and solid/liquid interfaces. . If one can obtain, however, the
change in interfacial tension occurring at each interface, then the
thermodynamic equations developed in Chapter IT from the Gibbs Adsorption
Equation can be applied and some properties of the interfaces may be
calculated.

In order to do this, one must make an assumption as to the
dependence of dy/dT on temperature and of dy/dP on pressure. The
simplest assumption one can make is that for both interfaces dy/dT
is independent of T, and dy/dP is independent of P. Since one
cannot show, in general, that the thermodynamic gquantities which determine
these coefficients are independent of temperature or pressure, the worth
of this assumption can only be measured by how well the data can be
correlated on this basis.

Assume that the tension of each interface changes according

to the expression:

0 d 0

y = y° + L aX =7° + 7T AX (7-1)
dx

where X represents either temperature or pressure, AX = X - X°,

o

7° is the interfacial tension at °, and dy/dX = y' is independent

of X . Then at any value of X one may write:
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Y0 _ Vg YV gy A

]
751 7sl+7sla"x

(7-2)

where subscripts gb, sl refer to the solid/solid and solid/liquid inter-

faces respectively. Subtracting 7°gb/7'°sl from both sides, dividing

by 2 and rearranging gives:

2] o o 1 ~n © _ o0 o _ ° 1
Yo T Ve et Ve B T e - Y e A%
) - o [+] ?
2781 2y sl 2y sl<7 sl 7 slAX)
or
o oy © ? ° _ 4O ?
’/gb / gb _ (7 gb7 sl 7 gb7 sl) AP (7 5)
- 5] = o ) O 7 -
2751 27 g1 2V g1 sl Y B 17 1 AX

. ; . . <) (] H i
taking the reciprocal, assuming ¥ gb/ Y o1 > 7 gb/'y o1

o H -y O o
(7-1) 5 L 7 = 7 a1 + 277517 s1 ( ! )
v B REEEE (1 o _ y° ?
4R 61 = Vg 51) Ve a1 T T ? ) VAK
V1 751
Now when the ratio of interfacial tensions is such that O<7gb/27sl< 1,
then a dihedral angle 6 exists, 04 6@ < 180°. So the ratios of
interfacial tensions on the lefthand side of (7—&) may be represented
in terms of the dihedral angle. The first term on the righthand side
of (7-4) is independent of X and the coefficient of -l/A'X, in the

second term is independent of X . Thus Equation (7—&) may be written:

(cos e/2 - Cos 60/2)-1 = b+m( (7-5)

=

axs e
If the assumption that d‘)'/d,?( is independent of X is true,

then a plot of (cos € /2 - cos 8°/2)‘l Vs (,A'X.)_l will yield a

straight line with slope m and intercept b. If m and b are

determined from such a plot, then they may be used to find ?ﬂgb and
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7'51 in terms of either v g1 ©F Y &b and cos & /20 This is done
by solving the equations for m and b simultaneously and using the

relation:
2 cos ©°/2 = 'ygb/yslo

The results are:

1 _ E o _ o 7 gb

71 T onm Vs T 2m cos @°/2 (7-6)
270 T 70 -

i = 8L 0 _ L eb L

y o = — (L + b cos 8 /2) - <COS 90/2 +b)

Thus d7sl/dx and dygb/dx, are determined in terms of
the surface tension of either the solid/solid or solid/liquid interface
and the dihedral angle 6° at x°.

Using the above technique the coefficients dy/dP and dy/dT
can be determined for each interface from measurements of the dihedral
angle as a function of pressure and temperature, respectively. In
Appendix C, the change in dihedral angle with temperature is correlated
on this basis for data obtained from the literature.

The dihedral angle at zerc pressure was measured at five
temperatures from 371° to 816°C. This data is presented in Table X.

Using a reference temperatufe of 371°C, a plot of (cos 9/2 -
cos 9°/2)_l Vs (sz)“l is shown in Figure 18. The line drawn through
these points 1s a weighted least squares line. The reasons for using a
weighted least squares fit are discussed in Appendix D. The method
for fitting weighted least square lines is described in reference (68),

It is interesting to note that this plot extrapolates to a
zero dihedral angle at the mopotectic temperature (1340°C). If one takes

the monotectic temperature as a reference and constructs a
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Figure 18. R-plot for Temperature Data at O Pressure. The Iine Shown is a
Weighted Least Squares Line. The Idine Extrapolates to a 0°
Dihedral Angle at 1340°C, the Monotectic Temperature, Indicated

on the Abscissa.
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cos 6/2 - COS G"/E)-l Ve (AT)_]‘ plot, the data is linear and the
calculated temperature coefficients of surface tension agree to within
one standard deviation with the temperature coefficients obtained using
371°C as a reference.  The variance of the coefficients obtained is
about the same in both cases.

An attempt to quench a specimen equilibrated at the monotectic
temperature produced a specimen with a small but finite dihedral angle.
Angles appeared to be smallest at the surface of the specimen, indicating
that the quenching rate is an important variable. .Ikeuye and Smith(5l)
show the dihedral angle going to zero at the monotectic temperature
in the Cu-Pb system, and it is possible that this occurs in the Ni-Pb
system, too.

A slope and intercept may be determined from Figure 18 and

used to compute the temperature coefficients of the surface tension

at each interface. - The results are:

dy

—a%i = 5,09 (t2.76) ="J_O_LL y(371°) ergs/cm2-°0
d7 _ ; + 6 "h' z1 O 2 o
dTgb = 11.32 (t5,06) 107" v(371°) ergs/cm”-°C

where 7(571°)9 is the grain boundary tension at 371°C and O pressure.
The standard deviation of the coefficient is indicated in parentheses
(i"X)° For purposes of comparison, all data will be expressed in terms

of the grain boundary tension at 593%°C. From Equation (7-1)

y(371°) + 11.32 - 107 y(371°) (593 - 37L)

I

7(593°)

i

7(59%°) = 1.252 y(371°) .

Hence, the temperature coefficients become:
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dy .
d;l = 4,07 (¥2.20) °ZLO_LL y(593°) ergs/cm2—°C
dy (7-7)
gb + ey ° 2 o
—= = 9.0k (¥4.05) -1077 7(593°) ergs/cm™-°C,

Note that both surface tensions are increasing with increasing. temperature.
For pure liquids, surface tensions invariably decrease with increasing
temperature, but, as McLean points out§65) positive or negative temperature
coefficients are possible in two component systems. Reference to
Equation (2-28) clearly indicates that the temperature coefficient is
dependent not only on adsorption at the interfaces,but also on the
thermodynamic properties of the two component phases present. The
assumption is often made in treating changes in dihedral angles with
temperature, that the grain boundary tension is constant with changing
temperature. If this were so in this system, then the intercept of the
above plot should equal - sec 6°/2 or =-1.1. It is clear from
Figure 18, that such an intercept is improbable.

Changes in the dihedral angle with pressure were measured
at 371° and 593°C. This data is presented in Table X and plotted as
(cos €/2 - cos 9°/2)—l vs P1 in Figures 19 and 20. The reference
points are the zero pressure values of the dihedral angle at these
temperatures. The lines drawn are weighted least squareslines.

-From the slope and intercept of these plots, pressure coef-

ficients of interfacial tension are determined:

dy

‘d‘TSD:'L’ = 2,00 (t0.82) +10710 7(371°) cm

. at 371°C (7-8)
7 N .10 .

—52 =3.90 (¥1.53) "107 y(371°) cm
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Figure 19. R-Plot for Pressure Data at 371°C. The Iine Shown is a Weighted

Least Squares Line.
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Figure 20. R-Plot for Pressure Data at 593°C. The Line Shown is a Weighted

Least Squares Line.
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dy
d;1 = 0.81 (¥0.63) * 107° 5(593°) cm
. at 593°C  (7-8)
gb + . -10 °
—~5 = 1.65 (f1.32) - 107 7(593°) cnm.

Referring the measurement at 371°C to the grain boundary

tension at 593°C, as before, one has

dy -

L~ 160 (£0.65) + 1070 9(595°) em

N at 371°C  (7-9)
“E%E - 3.12 (31.22) - 10710 %(593°) cm .

The calculated pressure and temperature coefficients in
Equations (7-7) to (7-9) are rather inaccurate; the reason for this
is discussed in Apgpendix D. It should be emphasized here that the
properties of the interfaces to be calculated from these coefficients
in the next sections are at least equally uncertain, i.e., they are

reliable to an order of magnitude, but not much more.

2. The Solid/Liquid Interface

From the measured pressure coefficient of interfacial tension,
it is possible to determine the surface excess of Ni, r&i(Pb)’ by
using Equation (2-39). The only other information needed is the molar
volume of solid nickel at 371° and 593°C, which is readily obtained.

From reference (66), the density of Ni at 20°C is 8.902 g/cc.
Smithells(96) gives data for the linear coefficient of thermal expansion
between 20°C and the temperature of interest. Using’these data, the
molar volumes of solid Ni at the temperatures of interest are:

6.70 cc/mol at 371°C

Vv

Vv

1l

. (7-10)
6.77 cc/mol at 593°C .

1l



-132-

The compressibility of Nickel is on the order of 10_7(psi)-10
Since the maximum pressure used in these experiments was about 50,000 psi,
the maximum change in YNi with pressure is on the order of 0,5% or less.
This change is small enough to be ignored.

From the data in (7-8)9 (7-9) and (7-10) and using Equation
(2-39), the excess concentration of Ni at the solid/liquid interface
may be computed. The results are:

-2,59010”ll v(593°) mo:Le/cm2 = -:Lualwlolg y(59%3°)
atoms/cm? at 371°C

il

r;Ti(Pb)

(7-11)

-1.19°107 #(595°) mols/em® = -7.17-107% (59%°)
atoms/cm? at 593°C

{

rlgi(Pb)
The excess entropy of the interface, SE;@) can be determined
from the temperature coefficient of interfacial tension, using the
results in (7-11) above. Thils can be done in two ways. First, one
can assume that the solid is pure nickel, and express the differential
of chemical potential of nickel in terms of the solid phase. The

expression for the temperature coefficient of interfacial tension is

then:
. gl \,
Verjar = S(wo) * rl\?i(Pb) = (7-12)
where 'gNi 1s the molar entropy of solid nickel.

From reference (101) the molar entropy of solid nickel is:

By

s

n
Il

12.65 cal/°C-mol 5,50°108 ergs/°C-mol at 371°C
(7-13)

14.88 cal/°C-mol 6025°108 ergs/°C-mol at 593°C ,

]
i

Then using. Equation (7—l2) and the data from.(7—7)9 (7-11),

and (7-13) the excess entroples are:
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SE;&) =-1.30-10"% (593°) ergs/cm=-°C  at 371°C
(7-1k)
Sg;g) = -0.785:10™% 7(595°) ergs/cm"-°C at 595°C

The second method of obtaining the excess entropy requires
that the differential of chemical potential of nickel be expressed in
terms of the liquid phase. This leads to Equation (2-55). " No gimpli-
fying assumption is‘necessary here as to the composition of the phases,
but values are required for ghe partial molar entropy of nickel in

“ ) ax

liguid lead, &S,. and for S5 P T ? both evaluated in the

Ni
saturated solution. Sufficient experlmental data is not available
to allow calculation of these quantities, but they may be estimated
from a "sub-regular" solution model. The necessary calculations are
shown in Appendix E.

Using the results of Appendix E, the terms r;.( Sy
B%N i Pb) Ni
i

Ni(Pb) ~ox %% occurring in Equation (2-33) are computed,

and

giving the following:

= -2.20:107% ¥(593°) ———EEZEQ at 371°C

Nﬂmﬁsm
- _ P oy dynes/cm o
C;i(Pb) Sy = -1.12:10°° 7(593 ) —~—7ﬁ§4~— at 593°C |
(7-15)
[ a“Ni) dx 3 dynes/
. ax . 1A o ynes/cm o
Ni(Po) —~— pp @@ - 0930 y(593%) e et STL%C
rﬂ d

il

Mo )
Wi (Pb) —ggi)TyP & _ 5581077 y(s5030) WBEE/CM oy o500,

Using (7-11), (7-15), (7-7), and Equation (2-33), the excess entropy at

the solid/liquid interface is:

(s)

(Pb) ~1.61-107° 7(593°) ergs/cm2-°0 at 371°C

(7-16)

ng) = -0.721°10™% 7(595°) ergs/en"-°C at 593°C

1
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These results check well with (7-14).

From the values of excess entropy obtained, some inferences
may be drawn as to the thickness of the solid/liquid interfacial region.
If one calculates the entropy per unit volume in the solid and liquid
phases, thenthe excess entropy of the interface can never be larger
than the difference between these values. This assumes no maxima or
minima in the entrépy per unit volume as one moves across the interfacial
region. From reference (101) the molar entropy of the liquid lead solution
and of solid nickel can be determined. Using the molar volumes of these
phases at 371°C and 593°C, the entropies per cubic centimeter in each

phase are:

§;b = 4,86 - lO7 ergs/cc-°C at 371°C
\4 anl ° o
Sp, = 5.16 - 10" ergs/cc-°C at 593°C
(7-17)
§§i = T7.91 ° 10/ ergs/cc-°C at 371°C
Sy, = 9.16 - 107 ergs/cc-°C  at 593°C .

The maximum negative differences in entropies at each temperature are:

-3,05 + 10! ergs/cc-°C at 371°C and -4.0 - 107 ergs/cc-°C at 593°C.

2)

minimum possible thicknesses, Toin’ are:

These may. be set equal to )/T at each temperature, and the

— - . “7 9 0
Toin 1.70 - 10 " em at 371°C

(7-18)
0,78 - 1077 em at 59%3°C .

n

T .
min

These are computed assuming that ¥(593°) = LOO in Equation (7-16).

(See Appendix B for a justification of this assumption.) At both

temperatures the minimum thickness corresponds to 3 - 6 atom layers.
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These figures are not unreasonable for the solid/liquid interface; they
are, of course, no more reliable than the numerous assumptions and
egtimations that have been made up to this point in the discussion.

Such a diffuse interface is also to be expected on the basis
of the excess concentrations of nickel in Equation (7-11). Again using
7(593°) = koo,

Ni(Pb) = -5.76 - lO15 atoms/cm? at 371°C

o

Ni(Pp)

(7-19)
= -2.87 - 1007 atoms/cm2 at 593°C.

Since there are about 2°lO15 atoms of Ni on a close packed plane in the
solid, an interface of about 3 - 4 atom layers would be necessary to
obtain these values.

It is generally felt that the thickness of a grain boundary
between identical phases is on the order of % atom layers thickn(65)
For interfaces between dissimilar phases, this is probably not the

case. Cahn and Hilliard<l2’u5)

for example, predict diffuse interfaces
between dissimilar phases from calculations based on a necessarily

simplified model.

3, The Solid/Solid Interface

It was pointed out in section (5), Chapter II, that one cannot
express the temperature and pressure coefficients of grain boundary
tension in a form that permits the direct calculation of the excess
concentrations and excess entropy at the interface. It is possible,
however, to make some inferences as to the signs of the excess properties.

Equations (2-44) and (2-46) are given below:

s Pb [
afar = - Ty 7, - — 7 -y V) (7-20)
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Ni—Ni - Ni =N

dy/aT = ) ——[EE——- [sz - % SS;}O (7-21)

If one substitutes into these equations the molar volumes and
entropies of the saturated phases at 371°C and the experimentally derived
coefficients, one obtains two equations involving three interfacial

quantities r‘.y -r;b and SCS)°

Ni
on =10 oy
3.12°10 7 7(593) = - rm 6.70 - I_'Pb 19.5 (7-22)
g B (s) e
9.04107F y(597) = -s'S/ 4 ng 5.%0°10° + (7-2%)

r;b 9ohh°lo8 ergs/cm?-°0

No solution of these equations for the interfaclal guantities is possible,
but certain observations can be made. Rewriting Equation (7-22) one

obtains:

= 2,91 r;b - u066°10'll 7(595) . (7-24)

One can now show that the surface excess of nickel must be negative,
because the surface excess of lead cannot have a sufficiently large
negative value to make the righthand side of (7-24) negative. Let

the grain boundary be lOm6 cm thick, and suppose the solubility of lead
in solid nickel is one atom percent. Then, the smallest value, of f;%
occurs wheﬁ the grain boundary is void of lead. The molar density of

solid nickel is 0.149 moles/cc, so
F*g%n = -1.49 - 10—9 moles/cm? .

A negative value larger than this would require either a thicker boundary

region or a larger solubility of lead in nickel; neither event is likely.
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Inserting T“g%n in (7-24) we see that as long as 7(5953)»95 ergs/cmg,
r&i must be negative.
Since the lead atom is much larger than the nickel atom, one
expects segregation of lead to the grain boundary, i.e., r;?b3>0°
-The positive segregation of lead implies a negative segregation of
nickel. The above result, ‘f&i< 0, confirms this.
If Equations (7-22) and (7-23) are combined to eliminate
rﬂ , one obtains:

Pb

S(S) ==1.60-10"2 y(593°) + 2°O6°108 r;i ergs/cmg—°0° (7-25)

Since r&i<(% Equation (7-25) shows that the excess entropy of the
grain boundary is negative. . This result requires some explanation.

The entropy per mole for atoms in the grain boundary is
undoubtedly higher than for atoms in grain interiors. But the excess
entropy of the boundary is determined by a comparison of the entropies
in equal volumes of material in the boundary and in the bulk phase.
Thus, the difference between the molar densities of the boundary and
the bulk phase is also important.
| For a one-component system, a negative excess grain boundary
entropy could only occur if the boundary region was considerably less
dense than the grain interior. With two kinds of atoms present, quite
different in size, a positive segregation of large atoms to the boundary
implies a much greater negative segregation of small atoms. The excess
entropy of the interface can then decrease as segregation increases, if
the ratio of partial molar entropy to partial molar volume is smaller

for the large atoms than for the small atoms.
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Some crude calculations can be made to Jjustify the existence
of a negative excess interfacial entropy for nickel grain boundaries
with lead present. Assume that the solubility of lead in solid nickel

is zero; then the excess entropy of the interface is:

(S) _ ~7 a ! T QA
570 = 7 (ngy Sy - omyy Sy )+ 7 onp, Spy (7-26)

Y fot _ . . -
where ‘Ni = T\ nNi) and r1 =T 7 1s the thickness of

H °
Po Opy 3

the boundary; nﬁi and n%b the number of moles of nickel and lead,

respectively, per unit volume of boundary; Dos the number of moles of

nickel per unit volume of solid nickel; Sﬁi and g%b the partial molar

entropies of nickel and lead, respectively, in the grain boundary; and

§Ni the molar entropy of solid nickel.

The value for §Ni is knowno(lOl> Assume that gﬁi is

larger than §Ni by the entropy of melting of nickel, and assume that

—%b is the same as the molar entropy of ligquid lead. Thus,

8 /. - o
§Ni = 5,30 - 10  ergs/mol-°C
EX = 6.30 - 108 ergs /mol-°C

Ni
= .8 T
8f, = 9.ubk - 10 ergs /mol-°C

(66)

From lattice parameter measurements at room temperature,
the ratio of atomic volumes of lead and nickel is 2.74. The ratio of
molar densities of nickel and lead at 371°C gives a value of 2n9l°(96’98)
For purposes of calculation, assume

Volume of Pb atom
Volume of Ni atom

2.8 .

If the only factor which influences the number of atoms present
in the grain boundary is the displacement of nickel atoms by lead atoms,

then,
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? 7
ng;  *+ 2.8 npy s

il

If the mole fraction of lead atoms at the boundary is 0.5,

then since Oy = 0.149 moles/cc, one has:

nﬁi = n%b = 0.,03925 moles/cc.

From these assumptions and Equation (7-26) one finds

S<S)/T = = 1.7 - lO7 ergs/cc-°C

so if T = 1071 cm, then
() 2 .
S = - 1.7 ergs/em™-°C . (7-27)

While this calculation indicates how a negative excess entropy
can arise, the value of (7-27) is about 4 - 6 times smaller than
“Equation (7-25) would suggest. In view of the assumptions made to
perform the calculation, this is, perhaps, as good agreement as can

o(5)

be expected. would have a greater negative value if a larger
fraction of lead atoms was assumed present in the boundary or if

the boundary was assumed to have a significant fraction of vacancies.
However, the most critical values in the calculation (and the least

certain) are the magnitudes assumed for the partial molar entropies

and volumes of atoms in the interface.

L. Analysis of Results - Tension and Compresssion

Thevexperimental data presented in the previous chapter show
that applied tensile and compressive stresses change the shape of liquid
lead inclusions in nickel. The results indicate further that the
orientation of the lead particles with respect to the axis of tension

(or compression) influences the magnitude of the change.



-140-

If one could prove that the changes in the median angle observed
were solely the result of changes in interfacial tensions with applied
stress, the problem of obtaining a meaningful dihedral angle from this
data would still be formidable. It would be necessary to calculate a
mean difference in orientation with respect to the tension axis for
each group of angles. It would also be necessary to compute a correction
to the distributioﬁ function for observed angles; this would require
an assumption as to how the dihedral angle changes as a function of
orientation with respect to the axis of tension (or compression)°

It 1s not at all certain, however, thatthe changes observed
in particle shapes are due solely to changes in interfacial tensions.

To see this, let us consider in more detall the criteria of stability
of a state of equilibrium which was discussed in section (3) of
Chapter II.

The sufficient stability condition of an equilibrium state of

a system involving interfaces with respect to motion of the interfaces

at constant total entropy and mass of the individual components is

min [ - z SPid‘vi + Z g-yidAi ] | (7-28)

i i
(See section (5)9 Chapter II)

That is, the sum of the products of the interfacial tensions

and their ai'easy less the sum of the products of the pressures of the

(29,43)

phases and their volumes must be a minimum. For fluid phases,

the pressure throughout the phase will be constant, hence

SPidvi —> BV
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For solids the term P, must stand for a strain energy density which
may vary from point to point in the solid. The total amount of this
energy in a solid phase is represented by 1fpidvi°
Iet us consider the system of a solid containing an included
liquid phase, both phases being subjected to some hydrostatic pressure
(see Figure El(a))o The system is enclosed in a rigid envelope E,
and has equal temperatures and chemical potentials in all parts of
the system. - The volumes of both phases are held constant. Thus the
preliminary conditions are satisfied for the application of (7-28) above.
Now any perturbation of the shape of the included ligquid phase
will change the amount of liqu}d/solid interfacial area, but will not
produce any significant change in the pressures of the phases.

(43)

(Herring points out that the change in particle shape must change
the distribution of stresses set up in the solid to compensate for the
surface stress of the interface. He concludes that such changes will
be negligible.) Since neither the pressures nor the volumes of the

bulk phases are affected by movement of the interface, the stability

condition (7-28) reduces to

min [SvdA] | (7-29)

where ¥ 1s the liquid/solid interfacial tension. If the solid is
crystalline, v will in general vary over the interface, so the
condition (7-29) would require a shape which would depend on the
manner and magnitude of the variations in y. If ¥ 1s assumed
constant over the interface, then condition (7-29) requires that the
ligquid phase assume a shape which has the minimum surface area for the
volume contained. Thus, liquid phase has the form of a sphere in its

state of stable equilibrium.
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Figure 21, Sketches of Thermodynamic Systems
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Now consider the more complex system of Figure El(b), with
two identical solid phases separated by a grain boundary and an included
liquid phase lying in the grain boundary. The system is under a uniform
hydrostatic pressure, and has equal temperature and chemical potentials
in all phases,

Let us now consider the changes which occur in the system
when the interfaces are allowed to move and the volumes of all the phases
are held constant. As before, the pressures in each phase are virtually
unaffected, so that the terms ‘Spdv for each bulk phase are unchanged.
Hence, as before, the stability condition (7-28) reduces to a simpler

condition:

min[z\ gyidAil . (7-30)

i

Now the stability condition (7-30) may be applied to the line
of intersection of the grain boundary and the solid/liquid interfaces,
and produces a condition on the shape of the liquid phase which must
be satisfied in a condition of stable equilibrium. If 751 and 7gb
are assumed constant everywhere on tTheir interfaces and are not
influenced by the crystallography of the solid phases, then the condition
is simply(45>:

Vg = BVgy cos ©/2 (7-31)

where € is the dihedral angle., The point to be emphasized here is
that Equation (7-31) is only valid when the stability criterim (7-28)
reduces to Equation (7-30).

Now let us consider the system of Figure 21(a) when the phases
are not under uniform hydrostatic pressure. Let us suppose that a uniaxial

tensile stress is applied to the solid so that in the region of the solid
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surrounding the liquid particle stresses are set up which are not the

same from point to point. In particular, the state of stress on elements
of the solid adjacent to the liquid phase will vary along the solid/liquid
interface; and, most important of all, the particular distribution of
stresses in the solid will depend on the shape of the liquid particle.

The liguid will be under some uniform hydrostatic pressure.

The temperature i1s constant throughout both phases. Let us
assume that the chemical potentials of all components everywhere in the
system have equilibrium values,

The chemical potential of a component in the solid is influenced
by the state of stress and this varies within the solid. The only process
which would produce a homogeneous state of stress, thus éliminating
the gradients of chemical potential within the solid, is removal of the
included liquid phase. Since this is not possible, the equilibrium conditions
under the proposed constraints necessitate unequal chemical potentials
in various parts of the solid. This situation may be compared to a column

(29, p. 146) shows that the

of liquid in a gravitational field. Gibbs
chemical potentials of the components of the liquid vary from level to
level in the liquid, when the whole system i1s in equilibrium.

It is true, however, that the chemical potentials of all
components must be the same everywhere in the liquid phase, and that
one must have these same values in the solid immediately adjacent to
the liquid.

Now let the shape of the liquid phase be subjected to a

perturbation. The area of the interface will change as before, thus

the term 57dA in Equation (7-28) will change. But as was pointed
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out earlier, when the shape of the ligquid phase is varied, the distribution
of stresses in the solid near the liquid must also vary in order to
preserve mechanical equilibrium. In general, the total energy of the
sollid is a function of the shape of the liquid phase, so the ternlvgpdv
for the solid phase occurring in Equation (7-28) is not the same for all
positions of the interface. Since the pressure on the liguid must be
the same as the stress normal to the solid at the solid/liquid boundary,
it is conceivable that the pressure on the liquid may also vary slightly
with the position of the solid/liquid boundary. To summarize, the terms
gjpdv in Eguation (7-28) which have been shown to be 1independent of

the shape of the liquid particle under conditions of hydrostatic stress,
are not independent of the liquid particle shape under a system of
generalized stresses., Thus, the stability criterim (7-28) does not
reduce to the criterﬂﬂl(7~29)n

It is apparent that a consideration of the more complex system
of Figure 21(b) results in the same conclusion, i.e., that the stable
shape of the liquid phase depends not on minimization of the total inter-
facial energy of the system, but on minimization of the sum of bulk and
interfacial energies. ©Since this is the case, Equation (7-31) is not a
condition on the shape of the liquid phase. Thus, the.”dihedrél angle"
under these conditions is not determined solely by the fatio of grain
boundary and solid/liquid tensionéu

This result forces one to conclude that the dihedral angle
changes observed in tension and compression experiments are not
necessarily due only tochanges in interfacial tensions. The sort of

changes which are observed are consistent with the analysis above.
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For example, the stress concentration about a lead irclusion must depend
on the orientation of the inclusion relative to the axié of tension

(or compression)v Hence, the observed dependence of the dihedral angle
on this orientation is not surptr'isimgv° Secondly, the fact that the
magnitudes of the observed dihedral angle changes are so much larger

for a given stress in these experiments than in hydrostatic compression,
suggests that some other factors may be important,

To summarize, the foregoing discussion shows that the restricted
condition for stability (7-50) is probably not applicable to seolid-liquid
systems in non-hydrostatic states of stress. Thus, because the energy
contribution of the bulk phases depends on the particle shape, dihedral
angles are not determined only by the relative magnitudes of solid/
ligquid and solid/solid interfacial tensions. Without knowing the
amount of extra.strain energy arising from stress concentrations abeut
a particle and how this energy varies with particle shape, it is not
possible to isolate any possible effect of appiied stress on interfagial

tensions.

5. Summary

‘It is possible to relate the change in dihedral angles with
pressure or temperature to changes in the interfacial tension at the solid/
solid and solid/liquid interfaces. - The assumption required is that the
surface tensions at each interface change linearly with temperature or
pressure. The fact that the data can be éorrelated on this basis lends
credibility to this assumption.

The properties of the solid/liquid interface can be obtained

from the pressure and temperature coefficients of solid/liquid interfacial
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tension. The surface excess concentration of nickel is determined using
the assumption that the solid bhase is pure nickel. The excess entropy

of the interface is computed by either (a) assuming the solid is pure
nickel, or (b) estimating the thermodynamic properties of the nickel/
lead liquid. Both methods yield approximately the same results. From
the excess entropy and concentration, one can estimate a minimum thickness
for the solid/liquid interface. This calculation suggests a rather
diffuse interface,

- The thermodynamic relations for the solid/solid boundary cannot
be reduced to the formal simplicity that is obtained for the solid/liquid
boundary. This arises because a dividing surface cannot be chosen in
such a way as to make one of the surface excess concentrations vanish.
Nevertheless, from the derived equations and the femperaturerand pressure
coefficients of grain boundary tension, it is shown that the excess
concentration of nickel at the interface is negative, the excess con-
centration of lead is positive, and the excess entropy is negative.

Thermodynamic arguments lead to the conclusion that the dihedral
angle in leaded nickel under general conditions of applied stress (not
hydrostatic) cannot be interpreted as a ratio of interfacial tensions.

This happens because the strain energy of the bulk phases depends on

the position of the interfaces. Since energy contributions from the

bulk phases as well as the total interfacial energy change when inter-
faces move, the dihedral angle changes observed in tension and compression
testing represent the combined tendency of the system to minimize its
total interfacial energy and the‘sﬁrain energy of iis phases. These
coriclusions, howevef, provide no simple basis for explaining the effects

observed,



CHAPTER VIII

GENERAL SUMMARY

The dihedral angle of lead in nickel has been measured as
a function of temperature and hjdrostatic pressure. The dihedral angle
changes from 52° at 371°C to 32° at 816°C. When pressure is applied
at 371°C, the dihedral angle changes from 52° at zero pressure to 39°
at a pressure of 50,000 psi. - When pressurelis applied at 593%°C, the
dihedral angle changes from 41° at zero pressure to 32° at a pressure
of 52,600 psi.

Using the assumption that the interfacial tensions which
determine the dihedral angle change linearly with temperature and
pressure, one may obtain values for the temperature and pressure
coefficients of interfacial tension from the observed dihedral angle
changes. The results of these calculations, expressed in terms of the

nickel grain boundary tension at 593°C (v (593%°)) are:

dVSl/dP = 1.60 (%0.65) - 10710 7(593°) cm at 371°C
) fap T 0.81 (*0.6%) - 107° 7(593°) cm at 593°C
4 gy jqp = .07 (¥2.20) 107% (593°) éz&ggéz£ at O pressure
dygb/dP» = 3,12 (ilagz} °1o”loy(595°) e | at 371°C
@y /ap = 163 (F1.32) 1070 7(595°) em at 595°C
dygb/dT = 9,0k (4, 05) w:Lo"‘lL v(593°) QXE§§ZSB at 0 pressure.

From the above coefficients and the thermodynamic relations
which express the dependence of these coefficients on the properties

of the interface and the properties of the bulk phases, one can calculate

-148-
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the excess concentration of nickel at the solid/liquid interface and
estimate the excess entropy of the interface.  The properties of the
grain boundary cannot be directly calculated by the same method.

The data imply a deficiency of nickel and segregation of lead at

the grain boundary.

A decrease in the dihedral angle was observed inrleaded nickel
subjected to uniaxial tension and compression. An explanation for these
changes is not proposed for two reasons: (l) the stress distribution
about the liquid lead particles is not known, hence there is no way to
determine the stresses at the particle in terms of the applied stresses,
and (2) it is unlikely that the thermodynamic conditions which permit
the dihedral angle to be expressed as a ratio of interfacial tensions
are satisfied. It has been established,; however, that the changes

seen are not due to cracks beginning at liquid lead inclusions,



APPENDIX A

DERIVATION OF THEORETICAL DISTRIBUTION FUNCTION
FOR OBSERVED ANGLES

(39)

The following derivation is due to Harker and Parker.
If planes of all orientations are passed through the line
of intersection of two surfaces in space meeting in an angle e R
the distribution of apparent angles observed on the planes made
by the traces of thé intersecfing surfaces, 1s dependent only upon e
In order to obtain the required distribution function, it is
first necessary to relate ‘# and © geometrically, in terms of param-
eters expressing the inclination of the intersécting plane relative to
the intersecting surfaces.
Let surfaces A and B dintersect in space. At a point
g on their line of intersection, let the angle between the normals to
each surface be = - B, where @ is the dihedral angle. Then define

the following vectors, shown in Figure 22:

A: Unit normal to surface A at gq. A in the xy plane.

B: Unit normal to surface B at q. B in the Xy plane.

N: TUnit normal to intersecting plane P at q.

m: Unit tangent vector to the line of intersection of A
and P, perpendicular to N and A.

n: Unit tangent vector to the line of intersection of B

and P, perpendicular to N and B.
W: Angle between m and n (the "observed angle").
Then in terms of the dihedral angle @ and the spherical

coordinates « , B we have:

-150-
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)

Figure 22. Vectors Used in Deriving Relation
Between the Observed Angle, the Dihedral
Angle and Orientation Parameters.
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-sin /2 -sin €/2 sin @ cos B
A=|cos ©/2; B=|-cos 8/2); N =|sin a sin B
0) 0 cos &

It v] is the angle between N and A and { the angle between N and 3B,

the vectors m and n are given by

Ax N = sinrl_n}; NxB = sinfn

Then since m°n = cosY andnxm=N sin\PY , one can

write the vector equation

nx

Etantlu = .

=

=

Evaulation of the third component of this equation gives after simplification

tan ')U _ 2 gin 6 cos O (A—.l)

sin® a (cos 2B - cos & ) + 2 cos ©

which is the result given by Harker and Parker.

The probability of obtaining values ¥ to WY + AY may be
obtained by considering all possible orientati ons of an element of grain
edge of length A L.  The probability that A4 will have a particular
range of orientation parameters is given by the elemental area on the
unit sphere, shown in Figure 23:

BA = sin o B 8B

But the probability of intersection is dependent on the projected length
of A/ on the normal to the intersecting plane. Taking this normal
along the 2z axis, the projected length is D g ocos a, -Thus, the

net probability of seeing a particular orientation is
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Figure 23. Sketch Showing Relationships Used to Obtain
the Probability of Observing a Given Angle.

0.0

9"'90

Sin2q

m/2

Figure 24. Probability Plot After HarKer and Parker.(39) For a Given
Dihedral Angle &, the Ratio of the Crosshatched Area to the Total
Area of the Diagram is the Fraction of Observed Angles Having a
Magnitude Less Than or Equal to 5. The Curved Line Bordering
the Crosshatched Region is Obtained from Equation (A-1) With
©=60 and Y =y,.
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L4 cos o sin a B da o YA/ sin2 a s . (A-2)

The element of edge length, A £, may be disregarded when
integrating the above expression because the distribution of angles
seen will not usually be influenced by the length of grain edge. (See
error discussion for an amplification of this point.) From Equations
(A-1) and (A-2) it follows that the relative chance of intersecting
surfaces, meeting in an angle 6 , producing an observed angle less
than or equal to l,U , may be obtained from a plot of sin2 a vs B,
as in Figure 2k.

From Figure 2k, the probability of observing an angle of
magnitude k/)o or less is given by the ratio of the crosshatched area
to the total area of the plot. Equation (A-1) for specified values
of Y and © gives the curve Y = Wo-

Analytically, the probability represented by the crosshatched

area 1s given by the cumulative distribution function:

1.0
F(W ;9) = % 1/2 Arc cos (% (Sinianl\p- z . cose)
K
:I (a-3)
+ cos 6) az + C
where 7 = sin2 Q, and when
&=y, K = 0, ¢C = 0
S , K = 2 (cosWY -cosB ) , C=0
6> ¥ (L - cos@)(1 + cosy)
6< W, K = 2 (cos® -cosly ) , C=%o

(1 + cos@)(1 - cos )
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Equation (A-3) may be integrated numerically using Simpson's
rule, The following properties of these curves are helpful for this

integration:

1.0 , 5=ﬁ565 for all

I

(l) when sin2 a

(2) when sin® o 0.0, B

H
It

0 for Y < é
/b for Y= 6
n/2 for W > €

I

Numerlcal integration of Equation (A-3) was carried out using
an IBM 7090 computer, producing the family of cumulative distribution

curves shown in Figure 25.
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APPENDIX B

ESTIMATION OF THE NICKEL GRAIN BOUNDARY TENSION
IN THE PRESENCE OF LEAD

(41)

have determined the surface tension

(10k4)

Hayward and Greenough
of solid nickel, using the method of Udin,.Sheler and Wulff.
Since they determined the grain boundary groove angles in the course
of their experiments, their measurements also yield values for the
grain boundary tension of pure nickel.

Their measurements covered the range from 1250° to 1435°C
yielding a value for solid surface tension at the melting point of
1725 ergs/cmg, a value for the change in surface tension with tempera-

ture in this range

dy
S _ 2 o
- = - 0.6 ergs/cm™-°C

and a grain boundary groove angle of 158°, constant over the temperature
range within the accuracy of its measurement. Their results imply that
the grain boundary tension increases with decreasing temperature.

The temperature coefficient of nickel grain boundary tension
in the presence of lead calculated in Chapter VII is positive (Equation
7—7)° This is to be expected when a marked segregation of lead occurs
at the grain boundary. The nickel grain boundary tension with lead
adsorbed must be lower at all temperatures than the pure nickel grain
boundary tension measured by Hayward and Greenough.

It seems likely that the calculated positive  temperature
coefficient holds up to the monotectic temperature (lBhO°C)° From

the data of Hayward and Greenough the grain boundary tension of pure

_157_



-158-

nickel can be computed at this temperature. Using this for the wvalue

of the grain boundary tension of leaded nickel, and using the calculated
temperature coefficient, one dan find the grain boundary tension at any
other temperature (particularly at 59%°C, the reference temperature used

in Chapter VII)by means of the relation:

L

7gp(1340°) =y 4 (595°) + 9.0k-1077 y , (595°)(1340-593). (B-1)

This procedure should produce estimates on the high side,
because the grain boundary tension of nickel with lead present will be
lower than the tension of pure nickel. It is difficult to estimate
the decrease to be expected, so this correction will not be made.

(46)

The data of Hilliard, Cohen and Averbach on the Cu-Au system,
suggest a decrease on the order of 50-200 ergs/cm? might be anticipated.

Taking the surface tension of nickel at 1340°C to be 1794
ergs/cm?, the groove angle to be 158°, the grain boundary tension at
1340°C is:

Tgo = 2y, cos 79° = 685 ergs/cm? = ng(15u0°)' (B-2)

Tnserting the value from (B-2) in Equation (B-1) one has:

7 g (1540%)

Vg 093

= 1.68

So the grain boundary tension at 59%°C is probably no higher than

7 (593°) = 409 ergs/en” . (B-3)



APPENDIX C
CORRELATION OF DIHEDRAL ANGLE VS TEMPERATURE
DATA FROM THE LITERATURE

It has been proposed in Chapter VII that the change in dihedral
angle with temperature can be satisfactorily explained by assuming that
the interfacial tensions determining the dihedral angle are linear
functions of temperature. This implies that a plot of {cos 6/2 -
cos 6°/2)_l vse (T - ‘1‘°)n:L is a straight line, where 8° is the
dihedral angle at a reference temperature T°. For convenience a graph
of the latter functions will be referred to as an "R-plot."

Changes in the dihedral angle as a function of temperature
have been reported for only a few binary systems. Most of this data
is not sufficiently accurate (or is taken over too narrow a temperature
range) to provide a satisflactory test of the proposed correlation.

From the data that are available, the correlation seems valid
Tor systems where the liquid composition changes rather uniformly
(though not necessarily linearly) with temperature. . When drastic
changes in liquid composition occur over a narrow temperature range,

the tensions seem to vary non-linearly with temperature.

The Cu-Pb System

Ikeuye and Smith<51) measured the change in dihedral angle with
temperature for this system. Their dihedral angles were determined
to the nearest 5°. Fiéure 26 is the phase diagram for the Cu-Pb system,
and Figure 27 shows how the dihedfal angle changes with temperature.
From 350° to 800°C the dihedral angle is constant with temperature.

This implies that either dy/dT is zero for each interface over this
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range or that (dygb/dT) =K (d7sl/dT) where ‘K is a constant
chosen so that the ratio 7gb/7Sl does not vary. Above 800°C, the
composition of the liquid is changing rapidly with temperature,
~and the above relationship does not hold. These data indicate that
the surface tensions do not vary linearly with temperature from
350 - 950°C, although the linear dependence may be true from 350 -

800°C.

The Al-Sn-System

Figures 28, 29, and 30 show the results for this system,

also from the data of ITkeuye and Smitho(5l) The liquid here changes
composition rapidly between 550° and 660°C. . The R-plot (Figure 30)
shows that the data points at 600° and 620°C do not fall on the

straight line which satisfactorily correlates the rest of the data.

The Zn-Sn System

The phase diagram for this system is given in Figure 31
and Miller and Williams' data<7o) is shown in Figure %2. The R-plot
(Figure 3%) shows that all this data fits a straight line. There
is a close similarity between the phase diagram for this system and
the Al-Sn system. Note that the dihedral angle in the Zn-Sn system
falls to zero at about 335°C, with a composition of 50 atomic % tin
in the liquid. The most rapid change in liquid solubility occurs
above this temperature. This is in contrast to the Al-Sn system
where the dihedral angle data cover the region of rapid composition
changes. This probably is the reason w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>