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Chapter I 

General Introduction 

 

Opioid pharmacology 

 Opioids, such as morphine, have been used in human medicine for centuries 

because of their analgesic properties.  Unfortunately, opioid drugs also carry unwanted 

side effects, such as constipation and respiratory depression, which complicate their use.  

Furthermore, abuse of opioids, including prescription narcotics, is a problem.  Past-year 

non-medical use of the prescription opioid analgesic Vicodin® by high-school seniors is 

reported to be 10 percent (Monitoring the Future, 2008).  This is second only to 

marijuana, which carries an annual use rate of 32 percent by high-school seniors. 

 There are three prototypical opioid receptors, designated mu (MOR), delta (DOR) 

and kappa (KOR).  Most of the clinically used opioid drugs exert their action primarily 

through MOR, which leads to significant analgesia, sedation, respiratory depression, 

constipation and euphoria (Dhawan et al., 1996; Traynor, 1996).  As demonstrated by 

studies in MOR knock-out mice (Matthes et al., 1996), the desired analgesic properties of 

morphine and the undesired side effects and abuse liability are all mediated by MOR, 

making separation of these effects difficult.  Activation of KOR can produce moderate 

analgesia, but significant dysphoria limits the usefulness of KOR agonists as therapeutics 

(Pfeiffer et al., 1986).  However, some drugs classified as mixed agonist/antagonists, 

such as pentazocine and nalorphine, do have partial agonist activity at KOR (Remmers et 

al., 1999) and MOR (Traynor and Nahorski, 1995).  These mixed agonist/antagonists 

could theoretically have lower abuse liability due to a balance of dysphoria and euphoria 

from KOR and MOR activation, respectively, but clinically this has not been observed.  

Compounds targeting DOR are not used clinically; however, in rodent models DOR 
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agonists produce some antinociception (Bilsky et al., 1995) and display antidepressant-

like effects (Broom et al., 2002b).  Furthermore, the DOR agonist SNC80 ((+)-4-[(αR)-α-

((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) 

is not self-administered by rhesus monkeys (Negus et al., 1998; Stevenson et al., 2005), 

indicating a decreased abuse liability.  An obstacle to the development of DOR agonists 

as therapeutics is the tendency of DOR activation to cause convulsions.  However, the 

convulsive effects occur at higher doses than those required to elicit antinociception 

(Broom et al., 2002c) and are not required for antidepressant-like effects (Broom et al., 

2002a).   

A unique aspect of opioid pharmacology is the existence of a plethora of ligands 

(both endogenous and exogenous) for only three cloned receptors.  The first endogenous 

opioid peptides discovered were the enkephalins (Tyr-Gly-Gly-Phe-[Leu or Met]) 

(Hughes et al., 1975).  The initial tetrapeptide sequence Tyr-Gly-Gly-Phe is essential for 

interaction with the receptor binding pocket (Schwyzer, 1986).  Other endogenous opioid 

peptide families were subsequently discovered; the endorphins include β-endorphin, α-

endorphin and γ-endorphin, and the dynorphins include dynorphin(1-17), dynorphin(1-

13) and dynorphin(1-9).  These begin with the sequence of either Leu- or Met-enkephalin 

but continue to various lengths which may contribute to selectivity.  Contrary to logic, the 

differing structures of the three classes of endogenous opioid peptides (enkephalin, 

endorphin and dynorphin) do not confer specificity for the three opioid receptors.  Rather, 

the enkephalins and β-endorphin bind well to both MOR and DOR (Lord et al., 1977; 

Chang and Cuatrecasas, 1979; Akil et al., 1981), while the dynorphins have some 

selectivity for KOR (Chavkin et al., 1982; James et al., 1982).  The discrepancy between 

the number of endogenous opioid peptides and the number of opioid receptor types 

prompted the hypothesis that various receptor conformations exist that are differentially 

recognized by opioid ligands (Rothman et al., 1988; George et al., 2000; Gomes et al., 

2000), which could be the result of receptor-receptor, receptor-lipid or receptor-protein 

interactions. 

Opioids were first used by man in the form of naturally occurring opium, derived 

from the sap of a poppy bud, Papaver somniferum.  Opium is a crude mixture of many 



 

3 

 

alkaloids, the most abundant of which is morphine (Watkyn-Thomas, 1912), which was 

isolated in 1806 by Serturner and named after the Greek god Morpheus, the god of 

dreams.  Natural compounds that can be derived directly from the opioid poppy include 

morphine and codeine.  Opioids include natural opiates as well as semi-synthetic 

derivatives (eg. hydrocodone, oxycodone, buprenorphine) and fully synthetic compounds 

(eg. fentanyl, remifentanil and meperidine).  While most of these opioids have some 

preference for MOR, selective ligands have been developed for all three opioid receptors 

based initially on the structures of the endogenous opioid peptides.  Especially important 

for this thesis are the MOR selective agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-

enkephalin) (Handa et al., 1981) and the DOR selective agonists SNC80 (Calderon et al., 

1994) and DPDPE ([D-Pen2,5]-enkephalin) (Mosberg et al., 1983).  Selective KOR 

agonists include U50,488 and U69,593 (Vonvoigtlander et al., 1983).  Naloxone, a 

derivative of morphine, is an antagonist for all three opioid receptors.  Antagonism of 

specific receptor types can be achieved using the MOR antagonist CTAP (D-Phe-[Cys-

Tyr-D-Trp-Arg-Thr-Arg-Thr-Pen]-Thr-NH2) (Pelton et al., 1986) or the DOR antagonist 

naltrindole (NTI) (Portoghese et al., 1988).  In certain instances, the DOR inverse agonist 

ICI 174,864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH) (Cotton et al., 1984) is used instead 

of NTI due to increased DOR selectivity (Hirning et al., 1985).  Nor-binaltorphimine 

(nor-BNI) is a commonly used KOR antagonist (Portoghese et al., 1987).  Affinities of 

the above compounds for each receptor type are listed in Table 1.1.   

The first opioid receptor cloned was DOR, which was identified using a cDNA 

library prepared from NG-108 cells that express high amounts of this receptor type 

(Evans, 1992; Kieffer, 1992).  Cloning of the highly homologous MOR and KOR from a 

rat brain cDNA library soon followed (Chen et al., 1993a; Chen et al., 1993b).  An 

additional receptor, the nociceptin/orphanin FQ peptide receptor (NOPr), was identified 

based on structural similarity to the other opioid receptors (Bunzow et al., 1994; 

Mollereau et al., 1994).  NOPr, however, does not bind typical opioid ligands and the 

endogenous peptide ligand for NOPr, nociceptin/OFQ, lacks the initial Tyr residue that is 

required for binding of the other endogenous peptides to MOR, DOR and KOR (Bunzow 

et al., 1994; Mollereau et al., 1994; Meunier et al., 1995; Reinscheid et al., 1995).  
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Regardless, NOPr is now considered a member of the opioid receptor family on the basis 

of structural homology (Harmar et al., 2009). 

 

Opioid receptor signaling 

All opioid receptors (including NOPr) contain seven membrane-spanning 

domains and are classic, family A G protein-coupled receptors (GPCRs) that couple to 

inhibitory heterotrimeric Gi/o proteins composed of an α, β and γ subunit.  The binding of 

agonist promotes or stabilizes conformations of the receptor that are recognized by G 

proteins and facilitates exchange of GDP for GTP on the Gα subunit, leading to 

downstream signaling by both the Gα and Gβγ subunits.  Opioid receptor signaling is 

summarized in Figure 1.1.  The primary effect of the activated Gαi/o subunit is inhibition 

of adenylyl cyclase (AC), a family of enzymes that catalyzes the conversion of ATP to 

cAMP (Katada and Ui, 1982; Taussig et al., 1993).  The Gβγ heterodimer can activate 

many downstream effectors, including inwardly-rectifying potassium (GIRK) channels, 

mitogen-activated protein kinases (MAPK), phospholipase C (PLC), non-receptor 

tyrosine kinases (e.g. Src family), and N-type calcium channels (Clapham and Neer, 

1993; Milligan and Kostenis, 2006; Dupre et al., 2009).  Furthermore, Gβγ plays a 

modulatory role in AC activity, as it strongly stimulates some isoforms of AC (AC 2, 4 

and 7), but inhibits other isoforms (AC 1, 3 and 8) (Sunahara and Taussig, 2002; Sadana 

and Dessauer, 2009). 

AC plays a critical role in opioid receptor signaling both acutely and during 

chronic opioid treatment.  Mice lacking AC 5, which is highly expressed in the striatum, 

display reduced behavioral responses to morphine, including locomotor activity, 

analgesia, reward and withdrawal (Kim et al., 2006).  Upregulation of the cAMP 

pathway, especially AC 1 and 8, in the locus coeruleus (LC) during chronic opioid 

treatment is thought to contribute to opioid withdrawal (Zachariou et al., 2008).  Acute 

administration of an opioid agonist leads to inhibition of cAMP production.  After 

prolonged opioid exposure, homeostatic mechanisms in the cell facilitate sensitization of 

AC, allowing cAMP levels to normalize.  Following withdrawal of the opioid agonist and 
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stimulation of the sensitized AC, cAMP production is enhanced.  This cAMP “overshoot” 

is considered a cellular model of withdrawal and was originally described for opioids 

acting at DOR (Sharma et al., 1975), but has since been described for many Gi/o-coupled 

receptors including MOR, α2AR, D2-dopamine, M4-muscarinic and somatostatin 

(Thomas, 1987; Watts, 2002; Clark and Traynor, 2006; Divin et al., 2009).   

There are nine mammalian isoforms of AC and not all AC isoforms participate 

equally in opioid signaling.  Only those AC isoforms acutely inhibited by opioids (AC 1, 

5, 6 and 8) are sensitized following chronic opioid treatment, and this effect is 

independent of the agent used to stimulate AC (forskolin, ionomycin or Gαs-coupled 

receptor agonist) (Avidor-Reiss et al., 1997).  The isoform-specific sensitization is similar 

for Gi/o-coupled D2-dopamine and M4-muscarinic receptors (Nevo et al., 1998).  The 

mechanism of cAMP overshoot is not clearly understood, but it does not require synthesis 

of new proteins (Avidor-Reiss et al., 1995) and does not depend on the antagonist 

precipitating withdrawal (Divin et al., 2009).  Various kinases have been implicated in 

the mechanism, including Raf-1, PKC, and Src (Varga et al., 2002; Beazely and Watts, 

2005; Zhang et al., 2009), but there is probably redundancy within these pathways.   

One prominent hypothesis for the mechanism of overshoot is increased 

stimulation of AC by Gαs, which is not due to increased Gαs protein levels (Ammer and 

Schulz, 1995).  Evidence suggests that Gαi and Gαs can bind simultaneously to the C1 

and C2 domains of AC, respectively (Taussig et al., 1994; Ammer and Schulz, 1998; 

Dessauer et al., 1998; Chen-Goodspeed et al., 2005).  One study has demonstrated 

enhanced Gαs binding to AC following chronic opioid treatment (Ammer and Schulz, 

1997).  However, in a different cell line the same authors did not observe direct Gαs 

binding to AC during opioid withdrawal, although functional receptor-coupled Gαs was 

still indirectly required for cAMP overshoot (Ammer and Schulz, 1998).  The difference 

between these studies may be due to the expression patterns of AC isoforms in the cells 

utilized because isoform-specific requirements for Gαs in cAMP overshoot have been 

reported.  Gαs is required for D2-dopamine receptor-mediated sensitization of AC 5, but 

not AC 1 (Vortherms et al., 2006).  In addition, a shift in the membrane localization of 

Gαs, Gαi or MOR may be an important step in the development of opioid-induced AC 



 

6 

 

sensitization (Ammer and Schulz, 1997; Bayewitch et al., 2000; Mouledous et al., 2005). 

This will be further addressed in subsequent sections.  

 

Receptor coupling models 

The transduction of signal from GPCR to G protein has been described by 

multiple models over the years.  It was originally proposed that receptor and G protein, or 

effector, were freely diffusible entities in the lipid bilayer and that the interaction between 

receptor and effector occurred by random collisions (Tolkovsky and Levitzki, 1978).  

This “collision-coupling” model was further refined to propose “encounters” between 

active receptor and G protein that adjusted for the rate of dissociation of the G protein 

and agonist from the receptor, thus defining the duration of time required for the 

interaction (Stickle and Barber, 1992).  Both models were based on data from β-

adrenergic receptor activation of AC in turkey erythrocytes, in which it was assumed that 

the rate of G protein activation was proportional to AC activation.  A strength of these 

models is the opportunity for signal amplification, as multiple G proteins can recognize a 

single activated receptor. 

An alternate situation to the collision-coupling model is that G protein and 

receptor are associated even in the absence of agonist, thus “pre-coupled”, allowing 

rapidity of GPCR signal propagation.  Fluorescence and bioluminescence resonance 

energy transfer (FRET and BRET) approaches have been employed to study pre-coupling 

of various GPCRs to G proteins (Gales et al., 2005; Hein et al., 2005; Nobles et al., 2005; 

Gales et al., 2006).  These studies suggest that the β2-adrenergic receptor (β2AR) is 

associated with G protein subunits Gαs, Gαi1, Gβ1 and Gγ2 under basal (no drug) 

conditions, which may be the reason for constitutive activity of this receptor (Gales et al., 

2005).  These β2AR/G protein complexes have been shown to form early in protein 

processing prior to trafficking to the plasma membrane (Dupre et al., 2006).  The BRET 

between β2AR and Gαs or Gαi2 proteins was significantly increased upon agonist binding 

in a concentration-dependent manner that paralleled agonist-stimulated cAMP production 

(Gales et al., 2005).  It is unclear if the increase in signal upon agonist exposure is due to 
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increased association with G protein or rearrangement of a preassembled receptor/G 

protein complex, although the authors suggest the latter.  This may be the case since 

agonist addition decreased BRET between α2AAR and Gαi1 depending on the location of 

the tag on the G protein and was not due to dissociation of the G protein from receptor 

(Gales et al., 2006).  In contrast, using FRET, others have concluded that α2AAR and G 

proteins are not pre-coupled, but rather interact by rapid collision coupling following 

agonist application (Hein et al., 2005).  DOR, a receptor that shows endogenous 

constitutive activity, may also form preassembled complexes with G proteins, although 

the affinity of G protein for receptor was increased when the receptor was occupied by 

agonist (Alves et al., 2003; Audet et al., 2008).  Interpretation of these data is further 

complicated by the lack of direct structural evidence of a receptor bound to G protein; 

however, models do exist (Oldham and Hamm, 2008).   

Although MOR has not been shown to be pre-coupled to G proteins, evidence 

suggests that the probability of MOR and G protein interaction is enhanced by co-

localization into the same membrane domains (Remmers et al., 2000; Alt et al., 2001).  

Such compartmentalization would provide a restricted collision coupling model in which 

diffusion of signaling proteins is limited to a confined space or compartment.  In this 

thesis, “compartment” will be used to describe any organization in the plasma membrane 

that reduces diffusion thereby enhancing (or diminishing) the likelihood that two proteins 

will interact.  This type of interaction has been proposed previously for GPCR signaling 

(Neubig, 1994), largely based on the finding that mobility of G proteins is strikingly 

limited (Kwon et al., 1994).  In agreement with compartmentalization, the diffusion of 

MOR was shown to be restricted to sub-micrometer permeable domains as determined by 

fluorescence recovery after photobleaching (FRAP) in SH-SY5Y cells (Sauliere et al., 

2006).  Furthermore, in single particle tracking experiments, MOR displayed short-term 

diffusion confined to a domain, which also diffuses (Daumas et al., 2003; Suzuki et al., 

2005).  This behavior was termed “walking confined diffusion” or “hop diffusion”.  In 

either case, these results indicate that MOR is confined to a compartment with spatial 

barriers.  However, these compartments were not permanent, since agonist treatment 

changed the diffusion of MOR to “directed diffusion” which the authors contributed to 
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internalization (Daumas et al., 2003).  Compartmentalization of receptors may also be 

type dependent, since adenosine A2A receptors had restricted mobility similar to MOR, 

but M1 muscarinic receptors have been reported to display simple random diffusion 

(Charalambous et al., 2008; Hern et al., 2010).   

Many modes of compartmentalization have been proposed, including 

oligomerization of opioid (Jordan and Devi, 1999; George et al., 2000; Gomes et al., 

2004) and other GPCRs (Milligan, 2009) as well as membrane microdomains (Allen et 

al., 2007).  Compartmentalization could also occur by protein scaffolding to the 

cytoskeleton or to specialized proteins, such as A-Kinase Anchoring Proteins (AKAPs) 

(Hall and Lefkowitz, 2002; Kreienkamp, 2002; Milligan, 2005; Dessauer, 2009).  In 

support of compartmentalization, large protein complexes have been identified that 

contain receptor (i.e. β2AR), G protein and multiple effectors, including Cav1.2, Kir3.2 

and AC 5/6 (Davare et al., 2001; Lavine et al., 2002).  These complexes also included 

both kinase (PKA) and phosphatase (PP2A) that could serve to regulate the local 

environment (Davare et al., 2001).  The spatial organization of proteins in a cell has 

significance for many signal transduction pathways, not just those modulated by GPCRs, 

and has been recently reviewed (Scott and Pawson, 2009). 

A functional consequence of compartmentalization other than enhancing the 

speed of signaling, may be to separate different types of receptors leading to signaling 

specificity.  In this case, co-application of agonists to separated receptors would lead to 

an additive response.  In N18TG2 neuroblastoma cells, agonists to endogenous DOR and 

cannabinoid (CB1) receptors activated G proteins in an additive manner (Shapira et al., 

1998; Shapira et al., 2000).  In contrast, receptors located in the same compartment would 

only have access to a limited pool of effectors, and therefore maximal activation of both 

receptor types would lead to competition for shared effectors and a less than additive 

response.  Such competition was originally observed between Gs-coupled β-adrenergic 

receptors and prostaglandin receptors (Pike and Lefkowitz, 1981) or glucagon receptors 

(Murayama and Ui, 1984).  However, competition can also be observed for Gαi/o-coupled 

receptors.  A less than additive response has been described for concomitant MOR and 

DOR activation in SH-SY5Y cells (Alt et al., 2002).  Similarly, DOR and CB1 receptors 
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cotransfected in COS-7 cells shared G proteins (Shapira et al., 2000) and MOR and α2AR 

endogenously expressed in SH-SY5Y cells were observed to access the same AC 

enzymes (Lameh et al., 1992).   

 

Plasma membrane composition and organization 

One of the proposed modes of compartmentalization is the presence of membrane 

microdomains, also called lipid rafts.  These are regions of the plasma membrane 

enriched in cholesterol and sphingolipids (Simons and Ikonen, 1997; Pike, 2006).  The 

identification of certain signaling proteins, including GPCRs and G proteins, with 

markers of these domains led to the hypothesis that microdomains may serve as signaling 

platforms (Simons and Ikonen, 1997).  However, the existence and importance of 

membrane microdomains is highly controversial (Munro, 2003), although recent reports 

using sophisticated microscopy and spectroscopy techniques provide more convincing 

support (Lingwood et al., 2008; Eggeling et al., 2009; Kaiser et al., 2009).  Despite this 

controversy, many groups have attempted to study the role of microdomains in opioid 

receptor signaling.  Furthermore, the lipids of the plasma membrane, and in particular 

cholesterol, are important for the structure and function of the proteins that are embedded 

within or associated with the membrane, such as opioid receptors, adenylyl cyclase and G 

proteins.  The progress and pitfalls in identifying the role of cholesterol and membrane 

microdomains in opioid receptor signaling will be discussed below. 

 

Plasma membrane lipids 

The mammalian plasma membrane is comprised of three main types of lipids: 

phospholipids, cholesterol and sphingolipids.  Although the relative amount of these 

lipids varies with cell type, phospholipids are usually the most abundant of the three.  

Cholesterol is often the second most prevalent species and represents 35 % of the plasma 

membrane lipids in N2A neuroblastoma cells (Charalampous, 1979).  Less than 10 % of 

the plasma membrane lipids of N2A cells were sphingomyelin, the most common type of 

sphingolipid (Charalampous, 1979).   
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Phospholipids and sphingolipids have similarities in their structures as both 

contain a polar head group, a carbon backbone and two fatty acid chains.  However, the 

differences between these two molecules provide heterogeneity in membranes.  

Phospholipids contain a glycerol backbone, one of several polar head groups and two 

moderately long (16 - 18 carbons) fatty acid chains, one of which is usually unsaturated 

with a cis double bond (Ramstedt and Slotte, 2002).  Sphingolipids contain a long chain 

sphingoid base, an amide-linked fatty acid chain and, in the case of sphingomyelin, a 

phosphocholine head group.  The amide-linked acyl chain varies in length from 16 – 24 

carbons and is usually fully saturated (Ramstedt and Slotte, 2002).  In brain gray matter, 

the most common fatty acid attached to sphingomyelin is the fully saturated stearic acid 

(18:0) (Koval and Pagano, 1991).  Thus, both acyl chains of sphingomyelin are usually 

saturated, in contrast to most phospholipid molecules, which have at least one unsaturated 

cis double bond.   

Another key difference between phospholipids and sphingolipids is their ability to 

interact with cholesterol.  Considerable evidence shows that cholesterol interacts 

preferentially with sphingomyelin over other phospholipids, such as phosphatidylcholine 

and phosphatidylethanolamine (Demel et al., 1977; Ohvo-Rekila et al., 2002).  This may 

have physiological relevance, since homeostatic regulation of sphingomyelin and 

cholesterol levels is known to be interdependent and coordinated (Slotte, 1999).  

However, the structural basis for this interaction is less clear.  Unlike phospholipids that 

interact with cholesterol in a manner very sensitive to chain length and degree of 

unsaturation, cholesterol interacts favorably with sphingomyelin even in the presence of 

long, unmatched acyl chains (Ohvo-Rekila et al., 2002).  The sphingolipid-cholesterol 

interaction is partly due to van der Waals forces between the normally saturated acyl 

chains of sphingomyelin and the rigid hydrophobic rings of cholesterol (Ramstedt and 

Slotte, 2002).  It has been suggested that the sphingomyelin-cholesterol interaction is 

enhanced by a hydrogen bond formed between the amide group of sphingomyelin and the 

3-OH of cholesterol (Bittman et al., 1994).  However, authors of atomic-scale molecular 

dynamics simulations reached conflicting conclusions about the importance of direct 

hydrogen-bonding on the sphingolipid-cholesterol interaction, although they do agree that 
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one neighboring cholesterol molecule is sufficient to induce an interaction with 

sphingomyelin (Aittoniemi et al., 2007; Zidar et al., 2009).  Thus, cholesterol interacts 

favorably with sphingomyelin although the structural basis for this interaction is unclear.  

 

Lipid organization in model membranes 

Bilayers containing solely phospholipids will form two temperature-dependent 

phases, with a shift from an ordered, solid-like gel state to a liquid-disordered (ld) state as 

temperature increases past the melting temperature (Tm) of the lipid.  The Tm of a lipid is 

dependent on the length and saturation of its fatty acid chains, with saturated fatty acids 

having a higher Tm than polyunsaturated fatty acids, because cis double bonds interfere 

with lateral packing ability.  Addition of cholesterol to the bilayer induces an 

intermediate state, increasing the fluidity of lipids below and decreasing the fluidity of 

lipids above their Tm.  At concentrations of cholesterol above 30 mol %, the transition 

between gel and ld phases is obscured and a liquid-ordered (lo) phase prevails, 

characterized by increased organization and tighter packing of fatty acid chains leading to 

a thicker bilayer that retains rapid lateral diffusion (Demel et al., 1977; Ipsen et al., 1987; 

Lawrence et al., 2003; Zidar et al., 2009).  This lo phase is considered a simplified 

representation of the lipid raft or membrane microdomain state.  In mixed lipid bilayers, 

cholesterol will induce lo domain formation preferentially with sphingomyelin (Demel et 

al., 1977; Zidar et al., 2009).  Together, these results provide evidence used to define 

lipid rafts or membrane microdomains as highly ordered regions enriched in cholesterol 

and sphingolipids (Pike, 2006). 

 

Detergent-resistant membranes 

The two physiologically relevant bilayer phases, the ld and lo phases, can be 

separated in model membranes based on solubility in non-ionic detergents, such as Triton 

X-100 (London and Brown, 2000).  The lo phase is relatively resistant to solubilization 

with Triton X-100 because van der Waals forces between tightly packed lipids are 

stronger than lipid-Triton interactions (Shogomori and Brown, 2003).  Thus, in model 

membranes, non-ionic detergent-resistant extracts are a reliable representation of the lo 
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state.  In cells, Triton X-100-insoluble membranes can be extracted that are enriched in 

cholesterol and sphingolipids (Brown and Rose, 1992).  However, these membranes may 

not truly represent the physiological state because addition of detergent at the low 

temperature (4°C) utilized in these experiments could easily perturb the membrane 

(London and Brown, 2000; Shogomori and Brown, 2003).  Thus, detergent-resistant 

membranes should not be considered identical to membrane microdomains.  Despite 

these drawbacks, separation of non-ionic detergent-resistant membranes is an accessible 

technique that has commonly been used to study the lipid and protein content of putative 

membrane microdomains.   

 

Do membrane microdomains exist in the plasma membrane?    

The membrane microdomain theory began as a hypothesis to explain the observed 

sphingomyelin and cholesterol-enriched lo phases of model membranes in terms of the 

heterogeneous environment of the plasma membrane (Simons and Ikonen, 1997).  The 

tools initially available to study microdomains in cells, such as separation of detergent-

resistant membranes, were crude and have led to misinterpretation and controversy, 

limiting the progress of this field.  New technological advances, primarily in microscopy 

and spectroscopy, have allowed researchers to begin to overcome these challenges and 

the current status of the membrane microdomain theory has been reviewed very recently 

(Lingwood and Simons, 2010).  Convincing evidence toward the existence of membrane 

microdomains comes from experiments using stimulated emission depletion (STED) far-

field fluorescence nanoscopy to detect the movement of single molecules (lipid or 

protein) across regions of a living cell membrane < 50 nm in diameter (Eggeling et al., 

2009).  Using STED nanoscopy, it was observed that phosphoethanolamine (a 

phospholipid not associated with microdomains) displayed a single, rapid diffusion 

pattern.  In contrast, sphingomyelin exhibited two types of diffusion; free diffusion and 

hindered diffusion, which was due to a brief trapping of the molecules that was 

dependent upon cholesterol and consistent with membrane microdomains (Eggeling et 

al., 2009).    
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In cells, two types of membrane microdomains that are enriched in cholesterol 

and sphingolipids have been proposed to exist.  Planar domains have proven elusive to 

observe, but caveolae, which are nonclathrin-coated, flask-shaped invaginations of the 

plasma membrane, are obvious in electron micrographs (Yamada, 1955).  The primary 

structural component of caveolae is the cholesterol-binding protein caveolin (Rothberg et 

al., 1992).  Although caveolae have not been identified in neurons, these cells do express 

caveolin, which may play a role as a scaffolding protein or in the formation of synapses 

(Cameron et al., 1997; Head and Insel, 2007).  Thus, caveolae, which are also enriched in 

cholesterol, are well-accepted structures and may account for some of the experimental 

observations attributed to microdomains.   

 

Protein localization in membrane microdomains 

If membrane microdomains exist and can selectively recruit certain proteins as 

proposed by Simons and Ikonen (1997), what are the criteria for such incorporation?  The 

presence of saturated fatty acid modifications has been shown to help target certain 

proteins to detergent-resistant membranes (Melkonian et al., 1999).  This was first 

observed for glycosylphosphatidylinositol (GPI)-anchored proteins that bind to the 

extracellular side of the membrane (Brown and Rose, 1992), but has since been identified 

for acylated proteins, such as Src family kinases and G proteins, which attach to the 

intracellular side of the membrane (Harder et al., 1998; Moffett et al., 2000).  For G 

proteins, myristoylation and palmitoylation of Gαi1 is necessary for partitioning to 

Triton-resistant regions of a reconstituted lipid bilayer (Moffett et al., 2000).  In contrast, 

prenylated Gβ1γ2, and Gαi1 with a cis-unsaturated fatty acid instead of palmitate, do not 

incorporate into Triton-resistant membranes (Moffett et al., 2000).  Other aspects of 

protein structure must also be important for targeting because some palmitoylated 

proteins do not resolve in detergent (Triton)-resistant membranes (Melkonian et al., 

1999).  For example, family A GPCRs, such as the LH receptor, are often palmitoylated, 

but this palmitoylation rarely drives membrane microdomain targeting (Chini and 

Parenti, 2009).   
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Another possibility is that proteins concentrate in caveolin-enriched domains due 

to protein-protein interactions with caveolin itself.  For example, Gαs, Gαi2 and Gαo were 

pulled-down with a GST-caveolin fusion protein (Li et al., 1995).  The portion of 

caveolin responsible for this and other binding interactions was identified in the 

cytoplasmic amino-terminal tail, and this domain was used as bait to elucidate a caveolin-

binding motif (ΦXΦXXXXΦ or ΦXXXXΦXXΦ; Φ = F, W or Y) (Couet et al., 1997).  

However, this motif is fairly broad and may be present in proteins that do not associate 

with caveolin.  Furthermore, proteins that are directed in this manner may be specific to 

caveolae and not generalizable to membrane microdomains.     

Finally, proteins may associate with membrane microdomains due to interaction 

with cholesterol.  The best example of this is the cholesterol-binding protein caveolin, 

which is found in caveolae and is used as a putative membrane microdomain marker.  

There may also be potential for cholesterol to interact with GPCRs directly.  This will be 

further discussed below. 

 

Cholesterol and GPCR structure 

Despite the controversy regarding membrane microdomains, it is well-established 

that cholesterol is an important plasma membrane constituent.  In addition, cholesterol 

may directly interact with transmembrane proteins, such as GPCRs, since cholesterol was 

necessary for successful crystallization of β2AR and three cholesterol molecules per 

receptor were resolved in the crystal structure (Cherezov et al., 2007).  A second β2AR 

crystal structure allowed the elucidation of a cholesterol consensus motif (CCM) as 

follows: [4.39-4.43(R,K)]-[4.50(W,Y)]-[4.46(I,V,L)]-[2.41(F,Y)] (Hanson et al., 2008).  

Twenty-one percent of human class A GPCRs contain this consensus motif and 44 % 

have all but the aromatic residue at 2.41 (Hanson et al., 2008).  However, in the crystal 

structure of the A2A adenosine receptor, which contains the strict CCM, this region 

contained a lipid (modeled as stearic acid) instead of cholesterol, though cholesterol was 

necessary for crystallization (Jaakola et al., 2008).  Thus, this consensus site may not be 

as specific to cholesterol as originally proposed, and may be better described as a region 

important for hydrophobic interactions with membrane lipids. 
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Both of the β2AR structures were solved in the presence of an inverse agonist, so 

cholesterol binding may favor an inactive conformation of this receptor.  In support of 

this, binding of the inverse agonist timolol, but not the full agonist isoproterenol was 

enhanced by the addition of cholesterol to purified receptors (Hanson et al., 2008).  

Functionally, cholesterol depletion increases the ability of β2AR agonists to stimulate 

AC, indicating an increase of active conformation receptors following cholesterol 

depletion (Rybin et al., 2000; Pontier et al., 2008).  Indeed, under basal conditions, β2AR 

is found in caveolin-containing, cholesterol-rich domains of the plasma membrane but 

moves out of caveolin-containing fractions following agonist treatment (Rybin et al., 

2000).  Cholesterol may help stabilize closely related GPCRs in a similar manner.  For 

example, the α1A-adrenergic receptor, which shares the strict cholesterol consensus motif 

with β2AR, is also stabilized in an inactive conformation by cholesterol (Lei et al., 2009). 

 

Cholesterol and/or membrane microdomains in opioid receptor signaling 

Cholesterol and/or membrane microdomains in MOR signaling  

A role for cholesterol and membrane viscosity in opioid receptor signaling was 

appreciated even before the membrane microdomain theory became popular.  The 

addition of cis-unsaturated fatty acids to synaptosomal membranes from rat brain reduced 

membrane viscosity and proportionally reduced MOR and DOR agonist binding 

(Remmers et al., 1990; Lazar and Medzihradsky, 1992).  The cis fatty acid isomers were 

more potent than similar trans isomers at inhibiting MOR agonist binding and in 

decreasing membrane viscosity (Remmers et al., 1990).  The effects of membrane 

viscosity were specific to agonist binding, as binding of the antagonist naltrexone was 

less affected by either cis or trans fatty acid addition, indicating that a high-affinity 

conformation of MOR and/or DOR that can bind agonist is more sensitive to changes in 

the bulk membrane environment (Remmers et al., 1990).  The inhibition of MOR and 

DOR agonist binding could be reversed by adding cholesteryl hemisuccinate to the 

membranes, which normalized membrane viscosity (Lazar and Medzihradsky, 1992).   

To further study the high-affinity receptor conformation, experiments were 

performed in the presence of 5 µM GTPγS with or without 150 mM NaCl, which 
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uncouples G proteins from MOR and prevents high-affinity agonist binding.  The 

addition of cholesteryl hemisuccinate reduced the ability of sodium to decrease high-

affinity MOR agonist binding (Lazar and Medzihradsky, 1993).  Addition of cis-

unsaturated oleic acid to cholesterol-enriched membranes reversed the increase in 

viscosity and restored the ability of sodium to modulate MOR agonist binding.  These 

results indicate that increasing the viscosity of the membrane and/or adding cholesterol 

can stabilize MOR in a high-affinity state and prevent the transition to a low-affinity 

state.     

A more specific role for cholesterol in stabilization of MOR in a high-affinity 

state was recently elucidated.  In yeast expressing MOR and Gαi2, MOR agonist binding 

is only observed when endogenous ergosterol is removed and replaced with cholesterol, 

while antagonist binding is observed regardless of sterol status (Lagane et al., 2000).  

Since cholesterol and ergosterol have similar effects on membrane viscosity (Gimpl et al., 

1997), these results indicate that the high-affinity MOR conformation requires the 

presence of cholesterol.  Similarly, MOR expressed in CHO cells required cholesterol for 

stabilization of a high-affinity conformation and for coupling to G proteins (Gaibelet et 

al., 2008). 

Despite the apparent role of cholesterol in coupling MOR to G proteins, 

conflicting data exist about the effect of cholesterol removal on MOR agonist-mediated G 

protein activation, which are summarized in Table 1.2.  In all cases described below, 

cholesterol depletion was achieved using the cholesterol-sequestering agent methyl-β-

cyclodextrin (MβCD), which selectively removes cholesterol from the membrane 

(Gaibelet et al., 2008).  However, MβCD treatment conditions varied, which could be the 

cause of conflicting results.  For instance, using the same cells (CHO cells stably 

expressing MOR), depletion of cholesterol either increased (Huang et al., 2007b) or 

decreased (Gaibelet et al., 2008) the ability of the MOR agonist DAMGO to stimulate 

[35S]GTPγS binding.  In the study that showed an increase in DAMGO activity, the cells 

were treated with 15 mM MβCD for 1 h at 37°C prior to preparation of membranes for 

the [35S]GTPγS binding assay (Huang et al., 2007b).  In contrast, in the study that 

demonstrated a decreased DAMGO response, membranes were prepared first, then 
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treated with 10 mM MβCD for 30 min at 20°C prior to use in the [35S]GTPγS binding 

assay (Gaibelet et al., 2008).  Similarly, when Huang et al. treated membranes prepared 

from rat caudate putamen with MβCD (15 mM for 1 h at 37°C), they also showed a 

reduction in DAMGO-stimulated [35S]GTPγS binding (Huang et al., 2007b).  These 

results could lead to the interpretation that cholesterol removal from cells does not equate 

to cholesterol removal from membranes.  However, this interpretation does not account 

for all conflicting results since treatment of HEK293 cells stably expressing MOR with 1 

mM MβCD for 1 h reduced the ability of morphine to phosphorylate ERK or to inhibit 

AC, which could be reversed by adding back cholesterol (Zheng et al., 2008a).  

Therefore, the study showing an increase in [35S]GTPγS binding following MβCD 

treatment of cells could be an anomaly. 

Conflicting results also exist regarding the localization of MORs with membrane 

microdomain markers, which again could be a consequence of different methods 

employed.  The most stringent method uses Triton X-100 to isolate detergent-resistant 

membranes, which, as described above, roughly resembles the composition of putative 

membrane microdomains.  Using this method in CHO cells, greater than 95 % of MOR 

was found in cholesterol-poor domains (Gaibelet et al., 2008).  Another method 

originally designed to isolate caveolae consists of homogenization of cells in 500 mM 

sodium carbonate buffer at pH 11 followed by sonication.  Using this method, others 

have found a proportion of MOR in fractions with the membrane microdomain marker 

caveolin when isolated from CHO cells, HEK293 cells or rat brain membranes (Zhao et 

al., 2006; Huang et al., 2007b).   

As suggested by single particle tracking, membrane microdomains are likely 

transient and thus any “localization” to these domains would be a snapshot in time and 

easily altered by activation state of the receptor, as mentioned earlier for β2AR.  

However, studies disagree on the effect of agonist treatment on MOR distribution.  In one 

study, treatment with etorphine or morphine did not change the fractional distribution of 

MOR (Huang et al., 2007b), while in another study, etorphine, but not morphine, caused 

a shift of MOR out of caveolin-containing fractions (Zheng et al., 2008a).  This agonist-

dependent difference was not attributed to MOR internalization by etorphine.  The 
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opposite shift has also been reported for MOR that was found in cholesterol-poor regions 

under resting conditions and shifted to cholesterol-rich fractions following DAMGO 

treatment (Gaibelet et al., 2008).  On the other hand, the above studies do agree that 

MOR localization in fractions containing membrane microdomain markers is dependent 

on G protein-coupling.  For instance, the agonist-mediated redistribution of MOR to 

cholesterol-enriched domains was attenuated when membranes were treated with the 

nucleotide analogue GppNHp (Gaibelet et al., 2008).  Furthermore, down-regulation of 

Gαi2 by antisense or expression of a MOR mutant lacking the sequence 276RRITR280, 

which prevents interaction with G proteins, resulted in the detection of MOR mostly 

outside of the caveolin-containing fractions.  This was in contrast to wild-type MOR, 

which was found in caveolin-containing fractions, indicating that there may have been 

some precoupling of MOR to G proteins under basal conditions (Zheng et al., 2008a).  

Thus, while conflicting evidence suggests MOR can function without microdomain 

localization, there may still be a role of membrane microdomains and/or cholesterol in 

optimizing MOR signaling. 

 

Cholesterol and/or membrane microdomains in DOR signaling 

Similar to MOR, conflicting reports exist about the role of cholesterol and/or 

membrane microdomains for DOR signaling, as summarized in Table 1.2.  In NG 108-15 

cells, DORs were found in two different fractions of the plasma membrane that varied in 

G protein concentration (Ott et al., 1989).  More recently, using 1 % Triton X-100 to 

separate insoluble plasma membrane domains, DOR was excluded from caveolin-

containing fractions (Eisinger and Ammer, 2009).  Other evidence suggests that DOR is 

only found in cholesterol-enriched fractions if very low (< 0.3%) concentrations of Triton 

X-100 are used, which likely does not completely separate soluble and resistant 

membranes (Andre et al., 2008).  These results agree with studies showing that 

unliganded DOR incorporates preferentially into phosphatidylcholine rich domains of 

model membranes (Alves et al., 2003), but disagree with studies using a non-detergent 

separation method that found DOR in caveolin- or cholesterol-enriched fractions from 

CHO cells, NG 108-15 cells and cardiac myocytes (Patel et al., 2006; Huang et al., 
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2007a).  These differences can be attributed to the stringency of the separation method 

utilized, as proper separation was not always confirmed using non-raft controls, such as 

transferrin receptor.       

Conflicting reports also abound regarding the effect of agonist treatment on DOR 

distribution.  In model membranes, agonist-bound DOR incorporated preferentially into 

sphingomyelin-rich domains (Alves et al., 2003).  This was attributed to the previously 

observed elongation of DOR, identified by plasmon-waveguide resonance (PWR) 

spectroscopy, following agonist (Deltorphin II) binding which may cause DOR to 

distribute to thicker lo domains (Salamon et al., 2002; Alves et al., 2003).  In the study, G 

proteins bound with 30-fold higher affinity to DOR in sphingomyelin-enriched 

membranes than to DOR in phosphocholine-rich membranes, suggesting that the active 

conformation was stabilized in the sphingomyelin-enriched domains (Alves et al., 2003).  

In HEK293 cells, addition of the DOR agonist deltorphin II lead to a two-fold increase in 

the amount of DOR in cholesterol-enriched fractions and, similar to MOR, this 

redistribution of DOR was prevented by the addition of GppNHp (Andre et al., 2008).  

However, in a different study also using HEK293 cells, addition of etorphine and 

morphine did not change the distribution of DOR from transferrin receptor-containing 

fractions (Eisinger and Ammer, 2009).  The complete opposite situation was also 

observed.  In a study using the non-detergent separation method, DOR resided in 

fractions with caveolin under basal conditions and partially partitioned out of caveolin-

enriched fractions following agonist treatment (Huang et al., 2007a).  

As with MOR, removal of cholesterol has been shown to have differing effects on 

DOR signaling.  In one study, removal of cholesterol using MβCD decreased the ability 

of the DOR agonist DPDPE to stimulate [35S]GTPγS binding (Andre et al., 2008) even 

though DOR was found primarily in Triton-soluble membranes.  The study that 

previously found DOR in cholesterol-enriched fractions also showed that MβCD 

treatment of NG 108-15 cells or caudate putamen membranes reduced the ability of 

DPDPE to stimulate [35S]GTPγS binding.  However, in this study, treatment of CHO 

cells stably expressing DOR with MβCD increased DPDPE-stimulated [35S]GTPγS 
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binding (Huang et al., 2007a).  These conflicting results were attributed to the presence of 

caveolin in CHO cells, but not NG 108-15 cells or caudate putamen. 

 

Cholesterol and/or membrane microdomains in signaling of KOR and NOPr 

 The localization and effect of cholesterol removal on KOR and NOPr has not 

been as extensively studied.  The most recent study identified KOR in cholesterol and 

caveolin-enriched fractions of a gradient prepared from CHO cells using a non-detergent 

method (Xu et al., 2006).  Treatment of cells with MβCD to deplete cholesterol enhanced 

the ability of the KOR agonist U50,488H to stimulate [35S]GTPγS binding, which is 

identical to findings published by the same group regarding the effect of MβCD 

treatment on CHO cells expressing MOR or DOR (Huang et al., 2007a; Huang et al., 

2007b).  MβCD treatment also enhanced ERK1/2 phosphorylation by the KOR agonist 

U50,488H (Xu et al., 2006).  The effects of MβCD on [35S]GTPγS binding and ERK1/2 

phosphorylation were reversible when cholesterol was reintroduced to the cells.  These 

results are counterintuitive when considering a previously published study that reported a 

significant decrease in high-affinity KOR binding to [3H]U69,593 following 

incorporation of the cis-unsaturated oleic acid to synaptosomal membranes, which 

increased membrane fluidity and would theoretically also destabilize membrane 

microdomains (Lazar and Medzihradsky, 1992).  Less is known about the role of 

cholesterol or membrane interactions on NOPr signaling.  In a single study, NOPr was 

found in Triton-resistant membranes that also contained flotillin (Butour et al., 2004).  

This localization was not altered by NOP pretreatment and these receptors were 

functionally coupled to G proteins.   

 

Cholesterol in opioid withdrawal 

 Many AC isoforms have been identified in cholesterol- or caveolin-enriched 

fractions of plasma membrane, including AC 3, 5, 6 and 8 (Fagan et al., 2000; Ostrom et 

al., 2001; Ostrom et al., 2002; Smith et al., 2002; Crossthwaite et al., 2005; Zhao et al., 

2006).  These are virtually the same AC isoforms (1, 5, 6 and 8) that are inhibited by 

Gαi/o and sensitized by chronic opioid treatment.  Furthermore, many of the signaling 
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proteins implicated in the mechanism of AC sensitization have been identified in 

caveolin- or cholesterol-containing fractions, including Src family kinases (Liang et al., 

2001; Mukherjee et al., 2003), Raf-1 (Mineo et al., 1996), and PKC (Weerth et al., 2007).   

Multiple lines of evidence suggest that cholesterol plays a modulatory role in AC 

activity.  Depletion of cholesterol by MβCD enhances activation of AC by forskolin or a 

Gαs-coupled receptor agonist (Rybin et al., 2000; Pontier et al., 2008).  The enhancement 

in AC activity following MβCD treatment is not nearly as pronounced as the overshoot 

that can be produced following opioid withdrawal so, theoretically, cAMP overshoot 

could still be observed after cholesterol removal.  However, MβCD pretreatment prevents 

AC sensitization by morphine in HEK293 cells stably expressing MOR (Zhao et al., 

2006).  It has been suggested that AC sensitization develops in membrane microdomains 

following the activation and recruitment of Src kinases by chronic morphine treatment 

(Zhang et al., 2009).  The Src kinases are proposed to phosphorylate MOR allowing the 

receptor to switch to stimulatory signaling (Zhang et al., 2009).  Recently, 

dephosphorylated Gαs has been shown to couple to MOR in caveolae (Chakrabarti et al., 

2010). 

Chronic treatment with agonists for MOR, KOR or M4-muscarinic receptors that 

cause AC sensitization increased the amount of Gβ1 and Gαi found in 1% sodium 

cholate-insoluble particulate with a parallel decrease in the cholate-soluble fraction 

(Bayewitch et al., 2000).  This solubility shift was not seen with Gαs, was blocked by 

PTX, and was reversible on a time-scale similar to the loss of AC sensitization 

(Bayewitch et al., 2000).  These results suggest that a shift of Gαi and/or Gβγ into 

cholate-resistant membranes contributes to AC sensitization or that AC sensitization 

occurs in membrane microdomains.  For the latter, one might have expected a shift in 

Gαs into detergent-resistant membranes as well, since increased Gαs input has been 

suggested as one mechanism of AC sensitization.  If anything, the opposite shift may 

occur since chronic morphine treatment depalmitoylates Gαs (Ammer and Schulz, 1997) 

and palmitoylation helps target G proteins into detergent-resistant membranes.  

Furthermore, depalmitoylated Gαs may be more effective at stimulating AC (Ammer and 

Schulz, 1997).  In contrast, another study found that long-term (24 h) morphine treatment 
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reduced the amount of Gαi2, Gαi3, Gβ1 and Gβ2 in 1% Triton-resistant membranes 

(Mouledous et al., 2005), but this may represent degradation rather than a solubility shift.  

These results suggest that AC sensitization may occur outside of membrane 

microdomains where depalmitoylated Gαs would partition, while Gαi is sequestered into 

rafts and away from AC.  These results are consistent with the movement of high-affinity, 

Gi protein bound MOR into membrane microdomains described above.  However, it 

conflicts with evidence that dephosphorylated Gαs has been shown to couple to MOR in 

caveolae after treatment with the agonist sufentanil (Chakrabarti et al., 2010). 

 

Membrane cholesterol and/or microdomains in vivo   

 There is evidence that AC sensitization and subsequent withdrawal-induced 

cAMP overshoot may mediate certain opioid withdrawal symptoms in vivo.  In mice 

lacking AC 5, which is highly expressed in the striatum, some morphine withdrawal signs 

are attenuated, including weight loss, sniffing, teeth chattering, ptosis and body tremor 

(Kim et al., 2006).  Furthermore, morphine-dependent mice lacking AC 1 and 8 showed 

significantly less withdrawal-induced jumping, paw tremor and diarrhea (Zachariou et al., 

2008).  Hyperactivity of noradrenergic LC neurons has been observed following opioid 

withdrawal (Aghajanian, 1978).  This hyperactivity may be partially mediated by AC 

sensitization since in vitro it can be suppressed by PKA inhibitors and is enhanced by 

forskolin or an active cAMP analog (Ivanov and Aston-Jones, 2001).  In addition, 

withdrawal-induced hyperactivity is not observed for neurons isolated from the LC of 

morphine-dependent, AC 1 and 8 knock-out mice (Zachariou et al., 2008).      

Results regarding the role of cholesterol in cAMP overshoot must be interpreted 

carefully when attempting to apply them to the opioid withdrawal syndrome observed in 

vivo.  In healthy adults, brain cholesterol is very tightly regulated, so cholesterol levels 

are likely to only vary on a subcellular level.  Neurons contain many subcellular 

compartments in the form of synapses, which have been hypothesized to form with the 

help of cholesterol-binding to proteins including caveolin and synaptophysin (Thiele et 

al., 2000; Head and Insel, 2007).  Although chronic morphine treatment of rats increased 

the cholesterol to phospholipid ratio in hippocampus and caudate (Heron et al., 1982b), 
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these results do not indicate a mechanism or cellular location of the cholesterol increase.  

There is some evidence that membrane-fluidizing “natural lipids” decreased morphine 

withdrawal symptoms in mice (Heron et al., 1982a).  However, attempts to modulate 

brain cholesterol or membrane viscosity as a therapeutic would be very non-specific and 

dangerous.  Cholesterol is obviously very important to brain functioning since the brain, 

which is only 2% of the total body mass, contains 25% of the body’s unesterified 

cholesterol and almost all of the cholesterol in the brain is synthesized de novo (Dietschy 

and Turley, 2001).  Total brain cholesterol levels are tightly regulated and cholesterol 

turnover is very slow with an estimated half-life of approximately 5 years (Bjorkhem and 

Meaney, 2004).  However, there may be a therapeutic potential for cholesterol and/or 

membrane microdomain modifiers in some pathological conditions such as Niemann-

Pick type C (NPC) and Alzheimer’s disease when the turnover of cholesterol is increased 

(Dietschy and Turley, 2001).  In the case of NPC, a build-up of cholesterol occurs which 

has been experimentally treated with cyclodextrins (Liu et al., 2009).  Furthermore, other 

neurodegenerative diseases such as Krabbe disease and Huntington’s disease have altered 

metabolism of cholesterol and/or sphingolipids (Korade and Kenworthy, 2008; White et 

al., 2009).  Thus, in addition to the importance of understanding the role of cholesterol 

and membrane microdomains in the organization of cell signaling, there may be 

applications to diseases characterized by altered metabolism of cholesterol or 

sphingolipids in the brain.    

  

Hypothesis and Aims 

The overall aim of this thesis is to investigate factors that can influence the 

interaction between GPCR and G protein; namely, the lipid environment (especially the 

role of cholesterol) and competition between multiple receptors, using opioid receptors as 

a model.   

 

Aim 1: In the first data chapter, I test the hypothesis that coupling of agonist-bound MOR 

to G protein is dependent on cholesterol concentration.  Experiments were performed in 

HEK293 cells stably expressing FLAG-tagged MOR or DOR to answer the following 
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questions:  Is cholesterol differentially important for MOR or DOR signaling?  Does 

cholesterol stabilize certain receptor conformations?  Does localization of MOR and 

DOR to membrane microdomains correlate with the role of cholesterol in signaling?    

Aim 2: In the second data chapter, experiments were performed to examine the 

hypothesis that compartmentalization of MOR receptors controls interactions with other 

co-expressed GPCRs.  Differentiated human neuroblastoma SH-SY5Y cells were 

employed to answer the following questions regarding the organization of endogenously 

expressed Gi/o-coupled receptors, including MOR and DOR:  Is there 

compartmentalization of signaling in SH-SY5Y cells that leads to sharing of adenylyl 

cyclase?  Does compartmentalization occur during acute and chronic signaling?  Can 

activation of receptors that share adenylyl cyclase with MOR prevent MOR-mediated 

cAMP overshoot?   
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Table 1.1: Ki (nM) for selected ligands at human MOR, DOR and KOR   
Literature values for ligand binding as reported previously for receptors expressed in 
CHO cells.  SNC80 binding experiments were performed in mouse brain membranes.  
 

Ligand MOR (3H-DAMGO) DOR (3H-DPDPE) KOR (3H-U69,593) 

DAMGO 0.5 ± 0.05 300.0 ± 58.6 305.5 ± 46 

SNC80* 881.5 1.78 441.8 

DPDPE 503.6 ± 10 1.7 ± 0.1 > 10,000 

U50,488 290.0 ± 14.3 > 10,000 0.2 ± 0.05 

Naloxone 1.4 ± 0.05 67.5 ± 40 2.5 ± 0.3 

CTAP 2.3 ± 0.65 365 ± 82 > 10,000 

Naltrindole 6.3 ± 2.3 0.2 ± 0.05 10.1 ± 0.65 

ICI 174,864+ 18900 ± 1100 703 ± 1 n.d. 

Nor-BNI 21.0 ± 5 5.7 ± 0.9 0.2 ± 0.05 

Values obtained from (Toll et al., 1998) except *SNC80 from (Bilsky et al., 1995), and 
+IC50 for ICI 174,864 from (Maeda et al., 2000).  n.d., not determined 
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Table 1.2: Membrane microdomains in opioid receptor localization and signaling 
Receptor Cell/tissue 

type 
Method Basal 

association 
Agonist shift Effect of 

cholesterol 
removal 

Reference 

MOR HEK293 Na2CO3 
CTB 

Raft Out 
(etorphine) 
n.c. 
(morphine) 

 AC,  ERK 
(morphine) 
 AC, n.c. ERK 
(etorphine) 

(Zheng et 
al., 2008a) 

MOR CHO Na2CO3 Raft n.c. 
(etorphine, 
morphine) 

 [35S]GTPγS 
(etorphine, 
morphine, 
DAMGO) 

(Huang et 
al., 2007b) 

MOR Rat CPu Na2CO3 Raft n.c. 
(morphine) 

 [35S]GTPγS 
(morphine, 
DAMGO) 

(Huang et 
al., 2007b) 

MOR CHO Triton 
X-100 

Non-raft In 
(DAMGO) 

 [35S]GTPγS 
(DAMGO) 

(Gaibelet et 
al., 2008) 

DOR CHO Na2CO3 Raft Out 
(etorphine) 

 [35S]GTPγS 
(DPDPE),   
DPDPE binding 

(Huang et 
al., 2007a) 

DOR NG 108-15 Na2CO3 Raft Out 
(etorphine) 

 [35S]GTPγS 
(DPDPE),   
DPDPE binding 

(Huang et 
al., 2007a) 

DOR Rat CPu Na2CO3 Raft n.d.  [35S]GTPγS 
(DPDPE, 
SNC80) 

(Huang et 
al., 2007a) 

DOR HEK293 Triton 
X-100 

Non-raft n.c. 
(etorphine, 
morphine) 

n.d. (Eisinger 
and Ammer, 
2009) 

DOR HEK293 Triton 
X-100 

Non-raft In (delt II)  [35S]GTPγS, 
 delt II binding 

(Andre et 
al., 2008) 

DOR POPC/SM 
bilayer 

PWR POPC 
(non-raft) 

SM (“in”) 
(DPDPE) 

n.d. (Alves et 
al., 2003) 

KOR CHO Na2CO3 In n.d.  [35S]GTPγS, 
 ERK 
(U50,488),  
U50 binding 

(Xu et al., 
2006) 

NOPr HEK293 Triton 
X-100 

In n.c. (NOP) n.d. (Butour et 
al., 2004) 

n.c., no change; n.d., not determined; CTB, Cholera Toxin B subunit; CPu, caudate 
putamen, POPC, palmitoyloleoylphosphatidylcholine; SM, sphingomyelin; PWR, 
plasmon-waveguide resonance spectroscopy; delt II, deltorphin II  
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Figure 1.1: Schematic of opioid receptor signaling   
Agonist binding to opioid receptors stimulates the exchange of GTP for GDP, thus 
activating G proteins resulting in downstream effects from Gα and Gβγ subunits.  The 
main effect of Gαi/o is inhibition of AC.  Gβγ can activate G protein-coupled inwardly-
rectifying potassium (GIRK) channels, mitogen-activated protein kinases (MAPK), 
phospholipase C (PLC) and non-receptor tyrosine kinases (e.g. Src family).  Gβγ inhibits 
N-type calcium channels.  Gβγ modulates AC in an isoform-specific manner, inhibiting 
some isoforms (e.g. AC 1) while activating other isoforms (e.g. AC 2).
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Chapter II 

Differential effect of membrane cholesterol removal on MOR and DOR: A parallel 
comparison of acute and chronic signaling to adenylyl cyclase 

 

Summary 

According to the lipid raft theory, the plasma membrane contains small domains 

enriched in cholesterol and sphingolipid which may serve as platforms to organize 

membrane proteins.  Using methyl-β-cyclodextrin (MβCD) to deplete membrane 

cholesterol, many G protein-coupled receptors have been shown to depend on putative 

lipid rafts for proper signaling.  Here, we examine the hypothesis that treatment of 

HEK293 cells stably expressing the FLAG-tagged mu opioid receptor (HEK FLAG-

MOR) or delta opioid receptor (HEK FLAG-DOR) with MβCD will reduce opioid 

receptor signaling to adenylyl cyclase.  The ability of the MOR agonist DAMGO to 

acutely inhibit adenylyl cyclase or to cause sensitization of adenylyl cyclase following 

chronic treatment was attenuated with MβCD.  These effects were due to the removal of 

cholesterol, since replenishment of cholesterol restored DAMGO responses back to 

control values, and were confirmed in SH-SY5Y cells endogenously expressing MOR.  

The effects of MβCD may be due to uncoupling of MOR from G proteins, but were not 

due to decreases in receptor number and were not mimicked by cytoskeleton disruption.  

In contrast to the results in HEK FLAG-MOR cells, MβCD treatment of HEK FLAG-

DOR cells had no effect on acute inhibition or sensitization of adenylyl cyclase by DOR 

agonists.  The differential responses of MOR and DOR agonists to cholesterol depletion 

                                                 
This research was originally published in the Journal of Biological Chemistry.  Levitt ES, Clark MJ, 
Jenkins PM, Martens JR, Traynor JR. Differential effect of membrane cholesterol removal on mu- and 
delta-opioid receptors: A parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol 
Chem. 2009; 284:22108-22. © the American Society for Biochemistry and Molecular Biology. 
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suggest that MOR are more dependent on cholesterol for efficient signaling than DOR 

and can be partly explained by localization of MOR, but not DOR, in cholesterol- and 

caveolin-enriched membrane domains.  

 

Introduction 

Membrane cholesterol can alter the function of integral proteins, such as G 

protein-coupled receptors, through cholesterol-protein interactions and by changes in 

membrane viscosity (Gimpl et al., 1997).  In addition, cholesterol interacts with other 

lipids found in the bilayer, particularly sphingolipids (Slotte, 1999), which allows for 

tight and organized packing that can precipitate the formation of specialized domains 

within the plasma membrane (Simons and Ikonen, 1997).  These domains have become 

an area of intense research interest, and have been termed lipid or membrane rafts (Pike, 

2006).  The study of membrane rafts in intact cells is controversial, due in part to the 

limitations of the current methods used to study rafts (Munro, 2003; Shogomori and 

Brown, 2003).  Regardless, the membrane environment formed in regions of high 

cholesterol and sphingolipids may be such that certain proteins have an affinity for these 

regions, especially proteins with a propensity to interact with cholesterol.  

Many G protein-coupled receptors and signaling proteins have been found to 

prefer cholesterol-enriched domains leading to the hypothesis that these domains can 

organize signaling molecules in the membrane in order to enhance or inhibit specific 

signaling events (Allen et al., 2007).  This includes MOR (Head et al., 2005; Zhao et al., 

2006), DOR (Patel et al., 2006; Huang et al., 2007a) and KOR (Xu et al., 2006).  In 

addition, Gαi (Li et al., 1995; Li et al., 1996; Moffett et al., 2000; Foster et al., 2003; 

Quinton et al., 2005; Xu et al., 2006), Gαo (Li et al., 1995) and adenylyl cyclase isoforms 

3 (Ostrom et al., 2002), 5/6 (Fagan et al., 2000; Ostrom et al., 2002; Zhao et al., 2006) 

and 8 (Smith et al., 2002) have been found to associate with cholesterol and/or the 

cholesterol binding protein caveolin.  Activated opioid receptors couple to Gαi/o proteins 

and acutely inhibit the activity of adenylyl cyclase.  Longer term exposure to opioid 

agonists causes sensitization of adenylyl cyclase and a rebound overshoot of cAMP 

production upon withdrawal of the agonist (Watts, 2002).  Consequently, we sought to 
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assess the role of cholesterol depletion on the ability of MOR and DOR agonists to 

inhibit, and cause sensitization of, adenylyl cyclase. 

There are conflicting data for the effect of changes in membrane cholesterol on 

opioid signaling.  For example, an increase in plasma membrane microviscosity by 

addition of cholesteryl hemisuccinate to SH-SY5Y cell membranes increased MOR 

coupling to G proteins (Emmerson et al., 1999).  Conversely, removal of membrane 

cholesterol from CHO cells has been shown to either decrease (Gaibelet et al., 2008) or 

increase (Huang et al., 2007b) the coupling of MOR to G proteins, as measured by 

[35S]GTPγS binding stimulated by the MOR agonist DAMGO.  Furthermore, the effect of 

cholesterol removal on DOR agonist-stimulated [35S]GTPγS binding varies by cell type 

(Huang et al., 2007a; Andre et al., 2008).  In these previous studies, the variety of cell 

types utilized and the conflicting results makes comparisons between opioid receptor 

types difficult.  The objective of this study was to directly compare the role of membrane 

cholesterol in modulating acute and chronic MOR and DOR signaling in the same cell 

systems using identical methods, including 1) depletion of cholesterol by the cholesterol-

sequestering agent methyl-β-cyclodextrin (MβCD), 2) separation of cholesterol-enriched 

membranes by sucrose gradient ultracentrifugation and 3) clustering of lipid raft patches 

in whole cells with cholera toxin B subunit. 

In initial experiments using human embryonic kidney (HEK) cells heterologously 

expressing MOR or DOR, we found that DOR was located in caveolin-poor fractions 

following 1% Triton X-100 homogenization and sucrose gradient ultracentrifugation.  

This differs from studies using a detergent-free method to identify lipid raft fractions 

(Patel et al., 2006; Huang et al., 2007a).  In contrast, we found that MOR was found in 

both caveolin-poor and caveolin-rich fractions, in accordance with previous literature 

(Head et al., 2005; Zhao et al., 2006).  This differential localization of opioid receptors 

led us to test the hypothesis that, in contrast to MOR, DOR would not be dependent on 

cholesterol for signaling.  The results show that MOR, but not DOR, have a dependence 

on cholesterol for signaling to adenylyl cyclase and that this effect is much more 

pronounced following chronic exposure to opioids. 
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Materials and Methods 

 Materials- SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-

methoxybenzyl]-N,N-diethylbenzamide), DPDPE ([D-Pen2,5]-enkephalin) and naltrindole 

hydrochloride were obtained from the Narcotic Drug and Opioid Peptide Basic Research 

Center at the University of Michigan (Ann Arbor, MI).  Lovastatin hydroxy acid was 

obtained from Cayman Chemical (Ann Arbor, MI).  [3H]diprenorphine, [3H]DAMGO 

([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin) and [35S]GTPγS were obtained from Perkin-

Elmer Life Sciences (Boston, MA).  Tissue culture media, geneticin, fetal bovine serum 

and trypsin were from Invitrogen (Carlsbad, CA).  All other chemicals were obtained 

from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. 

Cell culture- Human embryonic kidney 293 cells stably transfected with the N-

terminal FLAG-tagged DOR (HEK FLAG-DOR) or MOR (HEK FLAG-MOR) were 

grown in Dulbecco’s Modified Eagle Medium (DMEM) containing 0.8 mg/ml geneticin 

and 10% fetal bovine serum at 37°C in 5% CO2.  Receptor expression in HEK FLAG-

DOR (8.4 ± 1.5 pmol/mg protein; n = 5) and HEK FLAG-MOR (9.7 ± 1.3 pmol/mg 

protein; n= 5) cells was similar (p > 0.05).  Receptor expression was measured by 

saturation binding of the opioid antagonist [3H]diprenorphine as described previously 

(Emmerson et al., 1999).  SH-SY5Y cells were grown as above but without geneticin.  

SH-SY5Y cells were differentiated by adding 10 µM retinoic acid (Calbiochem, La Jolla, 

CA) 3 – 5 days prior to assay. 

Cholesterol modulation- HEK FLAG-MOR or HEK FLAG-DOR cells were 

grown to confluence in DMEM + 10% FBS.  Media was replaced with serum-free 

DMEM with or without 2% (15 mM) methyl-β-cyclodextrin (MβCD) (Sigma-Aldrich, 

St. Louis, MO) for 1 h, 37°C.  SH-SY5Y cells were treated with 5 mM MβCD for 10 

min.  For cholesterol replenishment, cells were incubated with or without a 2% MβCD-

cholesterol complex (MβCD-CH) in serum-free DMEM for 2 h following cholesterol 

depletion.  MβCD-cholesterol complexes were formed in an 8:1 molar ratio as described 

previously (Christian et al., 1997).  Briefly, cholesterol was dissolved in a 1:1 ratio by 

volume of chloroform/methanol in a glass tube.  Following evaporation of the solvent, 

the dried cholesterol was reconstituted with a suitable volume of serum-free DMEM 
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containing 2% MβCD, vortexed, sonicated for 30 s and incubated overnight at 37°C with 

shaking.  For lovastatin experiments, cells were treated with serum-free Opti-MEM 

containing 10 µM lovastatin hydroxy acid or DMSO vehicle for 48 h.  Cholesterol 

content from cell lysates was determined using the Amplex Red Cholesterol Assay Kit 

(Invitrogen, Carlsbad, CA) following the manufacturer’s instructions.  Cholesterol 

content was normalized to protein content, as determined by the method of Bradford 

(Bradford, 1976).  

Stimulation of [35S]GTPγS binding-  Membranes were prepared from HEK 

FLAG-DOR or FLAG-MOR cells following treatment with or without 2% MβCD as 

described previously (Clark et al., 2003).  Final membrane pellets were resuspended in 50 

mM Tris-HCl buffer, aliquoted and stored at -80°C.  Protein concentration was measured 

using the Bradford assay (Bradford, 1976).   

Membranes (30 µg protein) were incubated with 0.1 nM [35S]GTPγS for 60 min at 

25°C, with or without various concentrations of the DOR agonist SNC80 or the MOR 

agonist DAMGO in [35S]GTPγS binding buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 

100 mM NaCl, 1mM EDTA, 2 mM dithiothreitol and 30 µM GDP).  Membranes with 

bound [35S]GTPγS were collected on GF/C filters (Whatman, Middlesex, UK) using a 

Brandel harvester (MLR-24, Gaithersburg, MD) and rinsed three times with cold wash 

buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 100 mM NaCl).  Dried filters were 

saturated with EcoLume liquid scintillation cocktail (MP Biomedicals, Solon, OH) and 

radioactivity was counted in a Wallec 1450 MicroBeta (PerkinElmer, Waltham, MA).  

Cyclic AMP accumulation assays- Inhibition of adenylyl cyclase activity was 

measured in HEK FLAG-DOR or FLAG-MOR cells grown to confluence in 24-well 

poly-D-lysine coated plates.  Cells were washed with serum-free DMEM and incubated 

with various concentrations of the DOR agonist SNC80 or the MOR agonist DAMGO in 

the presence of 5 µM forskolin and 1 mM 3-Isobutyl-1-methylxanthine (IBMX) in 

serum-free media for 10 min at 37°C.  The assay was stopped by replacing the media 

with 1 ml ice-cold 3% perchloric acid.  After at least 30 min at 4°C, a 400 µl aliquot of 

sample was neutralized with 2.5 M KHCO3 and centrifuged at 13,000 x g.  Cyclic AMP 

was measured from the supernatant using a [3H]cAMP assay system (GE Healthcare, 
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Buckinghamshire, UK) following the manufacturer’s instructions.  Inhibition of cAMP 

formation was calculated as a percent of forskolin-stimulated cAMP accumulation in the 

absence of opioid agonist. 

For adenylyl cyclase sensitization experiments, HEK cells were rinsed with serum-free 

DMEM and incubated in the presence or absence of SNC80, DPDPE or DAMGO in 

serum-free DMEM for 30 min at 37°C.  SH-SY5Y cells, plated in uncoated 24-well 

plates (5 x 105 cells / well) and differentiated with 10 µM retinoic acid for 3 – 5 days 

prior to sensitization experiments, were incubated in the presence or absence of 1 µM 

DAMGO for 60 min at 37°C.  The drug-containing media was then removed and 

replaced with serum-free media containing 5 µM forskolin, 1 mM IBMX and 10 µM of 

the opioid antagonist naloxone for HEK FLAG-MOR cells and SH-SY5Y cells, or 10 

µM of the DOR antagonist naltrindole for HEK FLAG-DOR cells, to precipitate cAMP 

overshoot.  After 10 min at 37°C, the assay was stopped with ice cold 3% perchloric acid 

and cAMP accumulation was quantified as described above.  Overshoot was calculated as 

a percent of forskolin-stimulated cAMP accumulation in the absence of opioid agonist. 

Radioligand binding assays- In competition binding assays, membranes (5 - 12 

µg protein) from HEK FLAG-MOR or DOR cells treated with or without 2% MβCD 

were incubated for 1 h with shaking at 25°C with 0.2 nM [3H]diprenorphine and 

increasing concentrations of unlabeled ligand (DAMGO or SNC80) in 50 mM Tris-HCl, 

pH 7.4.  Where indicated, a final concentration of 10 µM GTPγS and 100 mM NaCl was 

added to the incubation buffer.  For saturation binding assays, membranes (20 µg protein) 

from low-expressing HEK FLAG-MOR cells (1.6 ± 0.1 pmol/mg protein) were incubated 

with increasing concentrations of [3H]diprenorphine [0.08 – 5 nM] or [3H]DAMGO [0.06 

– 12 nM] in 50 mM Tris buffer, pH 7.4, for 1 h with shaking at 25°C.  For whole cell 

binding, HEK FLAG-MOR cells (1 x 105 cells/tube) were incubated for 1 h in a 37°C 

shaking water bath with 4 nM [3H]diprenorphine ± 10 µM CTAP (D-Phe-Cys-Tyr-D-

Trp-Arg-Thr-Pen-Thr-NH2) in serum-free DMEM.  Protein content from a representative 

aliquot was determined by the method of Bradford (1976).  For all binding assays, non-

specific binding was determined using 10 µM naloxone.  All assays were stopped by 

rapid filtration through GF/C filters using a Brandel harvester (MLR-24, Gaithersburg, 
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MD) and rinsed three times with ice-cold 50 mM Tris-HCl wash buffer, pH 7.4.  Bound 

radioactivity was determined by liquid scintillation counting as described in [35S]GTPγS 

methods.   

Separation of Detergent Resistant Membranes- HEK FLAG-DOR or FLAG-

MOR cells were grown to confluence in 10 cm2 dishes, washed and resuspended in ice-

cold phosphate buffered saline (PBS).  Cells were pelleted and homogenized with a 

Dounce homogenizer in 100 µl MES buffered saline (MBS) containing 1% Triton X-100.  

The homogenate was placed on the bottom of a 2.2 ml ultracentrifuge tube, adjusted to 

40% by addition of 53.3% sucrose in MBS and overlaid with 900 µl of 30% sucrose and 

900 µl of 5% sucrose in MBS for a discontinuous gradient.  The samples were 

centrifuged at 200,000 x g in a Beckman-Coulter (Fullerton, CA) Optima Max-E 

Ultracentrifuge using a swinging bucket rotor (TLS-55) for 16-24 h at 4°C.   

Equal volume (183 µl) fractions were collected from the top.  Equal volume aliquots 

were taken from each fraction, mixed with sample buffer (63 mM Tris-HCl, pH 6.8, 2% 

SDS, 10% glycerol, 0.008% bromophenol blue, 50 mM DTT), separated by SDS-PAGE 

on a 10% polyacrylamide gel and transferred to nitrocellulose membranes (Pierce 

Biotechnology, Rockford, IL) for western blotting.  Antibodies used were monoclonal 

anti-FLAG M1 (1:2000; Sigma-Aldrich, St. Louis, MO), polyclonal anti-caveolin 

(1:2000; B.D. Transduction Laboratories, Rockville, MD) and monoclonal anti-human 

transferrin receptor (TfR) (1:2000; Zymed Laboratories, Carlsbad, CA).  Secondary 

antibodies used were goat anti-mouse HRP or goat anti-rabbit HRP (1:10,000; Santa Cruz 

Biotechnology, Santa Cruz, CA).  Above antibodies were diluted in 5% milk in TBS-

0.05% Tween 20 (+1 mM CaCl2 for FLAG M1 antibody).  SuperSignal West Pico 

chemiluminescent substrate (Pierce Biotechnology, Rockford, IL) was used to detect 

immunoreactivity.  For detection of adenylyl cyclase (AC) 5/6, samples were separated 

on a 6% polyacrylamide gel and transferred to an Immobilon-P polyvinylidene fluoride 

membrane (Millipore, Billerica, MA).  AC 5/6 was detected by rabbit anti-AC 5/6 (Santa 

Cruz Biotechnology, Santa Cruz, CA) diluted 1:200 in 1% BSA in TBS-0.05% Tween 

20. 
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Cholera toxin B-induced Patching- HEK FLAG-DOR or HEK FLAG-MOR cells 

were plated on poly-D-lysine coated coverslips in a 6-well plate (1x106 cells/well) 24 h 

prior to patching.  Cells were incubated with AlexaFluor 488-conjugated cholera toxin B 

subunit (1 µg/µl in DMEM, 10% goat serum; Invitrogen, Carlsbad, CA) for 45 min at 

4°C to label endogenous ganglioside GM1.  Lipid raft aggregation, or patching, was 

induced as described previously (Fra et al., 1994) by incubating with goat anti-CTB 

antibody (1:250 in DMEM, 10% goat serum; Calbiochem, San Diego, CA) for 30 min at 

4°C, followed by 20 min at 37°C.  Cells were fixed with 4% paraformaldehyde for 20 

min and incubated in monoclonal anti-FLAG M1 antibody (1:1000 in PBS, 5% milk; 

Sigma-Aldrich, St. Louis, MO) for 1 h followed by AlexaFluor 594-conjugated goat anti-

mouse antibody (1:1000 in PBS, 5% milk; Invitrogen, Carlsbad, CA) to stain the FLAG-

tagged MOR or DOR.  For transferrin receptor (TfR) and caveolin staining, cells were 

permeabilized with 0.1% Triton X-100 for 10 min and incubated with monoclonal anti-

TfR antibody (1:200 in PBS, 5% milk; Zymed, Carlsbad, CA) or polyclonal anti-caveolin 

antibody (1:200 in PBS, 5% milk; B.D. Transduction Laboratories, Rockville, MD).  

Coverslips were mounted on slides using ProLong Gold (Invitrogen, Carlsbad, CA).  

Fluorescent images of 0.5 µm Z planes were captured using an Olympus FV-500 

confocal microscope.   

Quantification of colocalization was performed using the RG2B colocalization 

plug-in to ImageJ (version http://rsb.info.nih.gov).  The minimum threshold pixel 

intensity was set to 50 for both channels and the minimum ratio for pixel intensity 

between the channels was 50%.  Colocalization pixels from individual Z planes were 

displayed as a stack of Z projections with maximum pixel intensity.  Co-localization was 

reported as the average pixel density of co-localized pixels per cell.  

Statistical Analysis- All data were analyzed using GraphPad Prism 4 software 

(San Diego, CA).  All data points represent at least three separate experiments in 

duplicate and are presented as mean ± standard error of the mean (S.E.M.), unless 

otherwise noted.  The effect of treatment on agonist responses at various concentrations 

was analyzed by 2-way ANOVA with Bonferroni’s post-hoc test.  EC50 values were 

calculated from individual concentration-effect curves using fixed slope sigmoidal dose-

http://rsb.info.nih.gov/�
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response curve fit analysis in GraphPad Prism.  Ki and Bmax/Kd values were calculated 

from individual binding experiments using one or two-site competition or one-site 

hyperbola binding curve fit linear regression analysis, respectively.  EC50, Ki, Bmax and 

Kd values are expressed as mean ± S.E.M. and compared for statistical significance by 

unpaired, two-tailed Student’s t-test.  Cholesterol repletion experiments were compared 

using 1-way ANOVA with Bonferroni’s post-hoc test.  All other statistical comparisons 

were made with unpaired, two-tailed Student’s t-test, unless otherwise indicated.  For all 

tests significance was set at p < 0.05. 

 

Results 

Effect of cholesterol depletion on opioid receptor coupling to G protein    

HEK293 cells stably expressing either the FLAG-MOR or FLAG-DOR were 

treated with the cholesterol-sequestering agent MβCD (2%) for 1 h at 37°C.  This 

reduced cholesterol to 40 ± 5.6 % of control, consistent with previously published results 

of 40 - 60 % reductions (Rodal et al., 1999; Xu et al., 2006; Pontier et al., 2008), and 

induced rounder cell morphology, although cells were still viable by trypan blue 

exclusion.  This treatment has been shown to eliminate caveolae as determined by 

electron microscopy (Rodal et al., 1999), and has been commonly used to disrupt lipid 

rafts in order to study effects on opioid signaling (Patel et al., 2006; Xu et al., 2006; Zhao 

et al., 2006; Huang et al., 2007a).  Therefore, we used this pharmacological tool to 

directly compare the effects of cholesterol depletion on MOR and DOR signaling. 

Agonist-activated opioid receptors couple to Gαi/o proteins and induce the 

exchange of GTP for GDP, which can be measured by the increase in binding of the 

guanine nucleotide analog [35S]GTPγS.  Basal levels of [35S]GTPγS binding were similar 

in membranes from untransfected HEK293 cells and HEK cells expressing MOR, but 

were higher in membranes from cells expressing DOR (Figure 2.1a), which are thought 

to be tightly coupled to G proteins and show constitutive activity (Costa et al., 1988).  

Treatment of either HEK FLAG-MOR cells or untransfected HEK293 cells with 2 % 

MβCD for 1 h reduced basal [35S]GTPγS binding by 38 ± 5.5 % or 39 ± 2.2 %, 

respectively (Figure 2.1a), suggesting an opioid receptor-independent effect.  In contrast, 
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treatment of HEK FLAG-DOR cells with MβCD reduced basal levels of [35S]GTPγS 

binding by 61 ± 1.7 %.  However, the DOR inverse agonist RTI-5989-25 (Zaki et al., 

2001) was able to reduce [35S]GTPγS binding by 18 ± 3.8 % in control HEK FLAG-DOR 

cells (data not shown).  Therefore, in HEK FLAG-DOR cells approximately one-third of 

the decrease in basal [35S]GTPγS binding caused by MβCD may be due to a loss of 

constitutively active receptors.  The remaining decrease, which is similar to the decrease 

in HEK FLAG-MOR or untransfected HEK293 cells, is likely due to a reduction in 

available, unoccupied Gα proteins themselves or a loss of constitutive activity of other G 

protein-coupled receptors endogenous to HEK293 cells.   

Due to this decrease in basal [35S]GTPγS binding, data were graphed as fmol of 

agonist-stimulated [35S]GTPγS bound/mg protein rather than as percent change over 

basal, as has been reported previously (Huang et al., 2007a; Huang et al., 2007b; Andre et 

al., 2008).  Treatment of HEK FLAG-DOR or FLAG-MOR cells with MβCD did not 

alter maximal stimulation of [35S]GTPγS by the DOR agonist, SNC80 (p = 0.557), or the 

MOR agonist, DAMGO (p = 0.200), respectively (Figure 2.1b and c).  The potency of 

SNC80 to stimulate [35S]GTPγS binding was also similar in control (EC50 = 4.9 ± 2.4 

nM) and MβCD-treated cells (EC50 = 5.2 ± 0.8 nM) (p = 0.898; Figure 2.1b).  In contrast, 

MβCD treatment caused a significant rightward shift in the ability of DAMGO to 

stimulate [35S]GTPγS binding (Figure 2.1c) [treatment: F(1, 92) = 9.838, p = 0.002].  

This was reflected by a 4-fold increase in EC50 from 16.8 ± 9.3 nM in control cells to 

73.0 ± 26.5 nM in MβCD-treated cells; although variability precluded significance (p = 

0.116).  Even though this difference in G protein activation between MOR and DOR in 

response to cholesterol removal is small, it does disagree with previous reports using 

heterologous systems that show an effect of MβCD on DOR agonist-stimulated 

[35S]GTPγS binding (Huang et al., 2007a; Huang et al., 2007b; Andre et al., 2008).  This 

could be due to cell types utilized or methods of data analysis since the basal level of 

[35S]GTPγS binding does change.  Regardless, the trend shown here suggests that 

cholesterol aids in efficient coupling of MOR to G proteins, but is not necessary for 

efficient DOR coupling.  
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The reduced ability of the MOR agonist DAMGO to stimulate [35S]GTPγS 

binding may be due to a loss of receptor-G protein coupling following cholesterol 

depletion.  To test this hypothesis, we used a ligand binding approach.  Receptors were 

labeled with the non-selective opioid antagonist 3H-diprenorphine and displaced by the 

DOR agonist SNC80 or the MOR agonist DAMGO, as appropriate.  The DOR agonist 

SNC80 was best fit by a single, high-affinity binding site model (Ki = 0.78 ± 0.21 nM), 

although the slope of the displacement curve was less than unity (-0.77 ± 0.09) 

suggesting a population of DOR with slightly different agonist affinities.  Regardless, this 

high-affinity binding was retained even after removal of cholesterol from the plasma 

membrane of HEK FLAG-DOR cells with MβCD (Ki = 0.87 ± 0.09 nM; slope = -0.72 ± 

0.12) (Figure 2.2a).  Similarly, the MOR agonist DAMGO displayed mainly high-affinity 

binding in control membranes (Ki = 4.9 ± 1.2 nM; slope = -0.76 ± 0.03).  In contrast, 

DAMGO displacement (slope = -0.45 ± 0.05) was best fit to two affinity sites following 

removal of cholesterol from HEK FLAG-MOR cells (Ki high = 1.9 ± 0.3 nM; Ki low = 

244 ± 49 nM) (Figure 2.2b).  This MβCD-induced low-affinity site in HEK FLAG-MOR 

cells had a similar affinity to the site induced by uncoupling the receptor from G proteins 

with sodium ions and GTPγS (Ki = 768 ± 82 nM).  Moreover, the Ki induced by sodium 

ions and GTPγS was not significantly reduced further in membranes from cells treated 

with MβCD (Ki = 1887 ± 712 nM).  These results confirm the [35S]GTPγS experiments 

and indicate that removal of membrane cholesterol by MβCD generates two affinity 

states of MOR, likely due to uncoupling a proportion of MOR from G proteins, thus 

resulting in a loss of stimulatory activity of agonist on G proteins.  

 

Effect of cholesterol depletion on opioid inhibition of adenylyl cyclase  

To examine if a decrease in G protein activation by agonists translates to 

decreases in downstream responses within the cell, inhibition of adenylyl cyclase by 

MOR and DOR agonists was measured following cholesterol removal.  Treatment of 

HEK FLAG-DOR cells with 2% MβCD did not alter the ability of the DOR agonist 

SNC80 to inhibit adenylyl cyclase (Figure 2.3a), (EC50 of control = 1.05 ± 0.32 nM; 

MβCD-treated = 1.51 ± 0.07 nM; p = 0.229).  In contrast, MβCD treatment of HEK 
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FLAG-MOR cells significantly affected acute inhibition of adenylyl cyclase by the MOR 

agonist DAMGO (Figure 2.3b) [treatment: F(1,54) = 17.39, p = 0.0001] with a significant 

4-fold rightward shift in the potency of DAMGO from an EC50 of 2.49 ± 1.01 nM in 

control cells to 9.24 ± 1.15 nM in MβCD treated cells (p = 0.023).  Together, these 

results are consistent with [35S]GTPγS and binding results, indicating that cholesterol or 

cholesterol-dependent membrane effects modulate efficient MOR signaling more than 

DOR signaling. 

In order to measure inhibition of adenylyl cyclase by opioid agonists, the enzyme 

is stimulated directly with forskolin.  Consistent with previous reports (Rybin et al., 2000; 

Pontier et al., 2008), the level of cAMP produced by forskolin was enhanced 

approximately 2-fold by MβCD treatment in both HEK FLAG-DOR (control = 0.83 ± 

0.07 pmol cAMP/µg protein; MβCD-treated = 2.3 ± 0.35 pmol cAMP/µg protein, p = 

0.0004) and FLAG-MOR cells (control = 1.3 ± 0.06 pmol cAMP/µg protein; MβCD-

treated = 2.3 ± 0.14 pmol/µg protein, p < 0.0001) (Figure 2.3c).  This could be due to 

decreased inhibitory input on adenylyl cyclase by the lower basal Gαi/o protein activity 

which was observed in [35S]GTPγS binding experiments.  To investigate if this was due 

to decreased constitutive activity of opioid receptor, cells were treated with pertussis 

toxin overnight to block receptor-Gαi/o protein coupling.  Pertussis toxin treatment (100 

ng/ml) did not lead to a significant increase of basal or forskolin-stimulated adenylyl 

cyclase activity in control or MβCD-treated HEK FLAG-DOR cells (data not shown), 

suggesting that the decreased baseline activity of the G protein following MβCD 

treatment is either independent of coupling to the receptor or is not responsible for the 

increased forskolin response.   

 

Effect of cholesterol depletion on opioid-induced adenylyl cyclase sensitization  

Chronic administration of opioid agonists results in a dependent state in both 

animal and cell models, which is characterized by withdrawal following removal of the 

agonist.  In cells, the chronic inhibition of adenylyl cyclase by agonists for Gαi/o-coupled 

receptors causes a sensitization of the enzyme.  Upon withdrawal of the agonist (usually 
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by addition of a competitive antagonist) and subsequent stimulation of adenylyl cyclase 

by forskolin, cAMP production is increased over that of forskolin alone, termed cAMP 

overshoot (Watts, 2002).  Treatment of HEK FLAG-DOR cells with 2% MβCD for 1 h, 

prior to chronic (30 min) exposure to varying concentrations of either the non-peptidic 

DOR agonist, SNC80 (1 – 100 nM), or the peptidic DOR agonist, DPDPE (0.1  – 10 nM), 

did not alter the degree of cAMP overshoot precipitated by the DOR antagonist 

naltrindole at any of the agonist concentrations tested (Figure 2.4a and b).  However, 

similar treatment of HEK FLAG-MOR cells with MβCD reduced the resultant cAMP 

overshoot induced by incubation with various concentrations (10 – 1000 nM) of the 

MOR agonist, DAMGO (Figure 2.4c), [treatment: F(1,32) = 16.39, p = 0.0003], 

consistent with results published previously (Zhao et al., 2006).  These results suggest 

that cholesterol removal by MβCD selectively blocks MOR, rather than DOR, agonist-

induced sensitization of adenylyl cyclase.  Furthermore, this alteration in chronic 

signaling is much more robust than effects of MβCD on the acute signaling to Gαi/o 

proteins and adenylyl cyclase. 

To determine if the effect of MβCD on MOR-induced adenylyl cyclase 

sensitization was restricted to a heterologous expression system, we repeated the 

sensitization experiments with SH-SY5Y neuroblastoma cells that endogenously express 

MOR.  SH-SY5Y cells were differentiated with retinoic acid prior to sensitization 

experiments to create a more neuronal model (Pahlman et al., 1984; Encinas et al., 2000).  

SH-SY5Y cells were treated with 5 mM MβCD in serum-free DMEM for 10 min, which 

depleted cholesterol by 30.6 ± 4.4 % (Control = 43.32 ± 2.2 µg/mg protein; MβCD = 

29.94 ± 2.0 µg/mg protein, p = 0.002, n = 5), similar to a previous report (Cheema and 

Fisher, 2008).  This treatment paradigm had no effect on cAMP production by 5 µM 

forskolin (Control = 1.27 ± 0.12 pmol cAMP/µg protein; MβCD = 1.27 ± 0.16 pmol 

cAMP/µg protein).  However, adenylyl cyclase sensitization by 1 µM DAMGO was 

significantly attenuated in SH-SY5Y cells treated with MβCD (Figure 2.4d, p < 0.01).  

Therefore, the robust effect of MβCD on MOR agonist-mediated adenylyl cyclase 
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sensitization is not limited to HEK293 cells, but also occurs in this neuronal model 

expressing endogenous receptors. 

 

Alteration of MOR signaling by MβCD is due to removal of cholesterol  

Despite the common use of MβCD for its cholesterol-sequestering properties, it 

may also have other non-specific effects on a cell due in part to changes in cell 

morphology.  To ensure that the effects on MOR signaling observed following MβCD 

treatment were related to the removal of cholesterol from the membrane, membrane 

cholesterol was replenished using 2% MβCD pre-conjugated to cholesterol (MβCD-CH) 

in an 8:1 MβCD : cholesterol molar ratio (Christian et al., 1997; Xu et al., 2006; Zhao et 

al., 2006).  In these experiments, HEK FLAG-MOR cells were treated first with 2% 

MβCD for 1 h to deplete membrane cholesterol.  Cholesterol was then reintroduced to 

some cells by incubation with serum-free media containing 2% MβCD-CH for 2 h, while 

other MβCD-treated cells were incubated for 2 h with serum-free media alone.  As 

expected, while cholesterol levels in MβCD-treated cells remained low, cholesterol levels 

in cells incubated with MβCD-CH returned to a level similar to that of control cells (p > 

0.05), (control = 21.1 ± 3.3 µg cholesterol/mg protein, MβCD-treated = 7.8 ± 1.0 µg 

cholesterol/mg protein, MβCD-CH treated = 30.6 ± 3.4 µg cholesterol/mg protein; n = 6).   

The replenishment of cholesterol restored acute inhibition of adenylyl cyclase by 

10 nM DAMGO (Figure 2.5a) and sensitization of adenylyl cyclase by 100 nM DAMGO 

(Figure 2.5b) to levels similar to control cells.  Restoration of membrane cholesterol by 

MβCD-CH also allowed cell morphology to return to normal.  Incubation with serum-

free media or MβCD-CH for 2 h produced similar levels of forskolin-stimulated cAMP 

as control cells (control = 1.73 ± 0.10 pmol cAMP/µg protein; MβCD = 2.16 ± 0.33; 

MβCD-CH = 1.53 ± 0.20 pmol cAMP/µg protein), indicating that effects of MβCD on 

forskolin response are transient. 

To further verify that the effect of MβCD on MOR-mediated overshoot was due 

to reduction in cellular cholesterol, we used the cholesterol-lowering drug lovastatin, 

which inhibits the rate limiting enzyme in cholesterol synthesis, 3-hydroxy-3-methyl-
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glutaryl-CoA reductase (HMG-CoA reductase).  HEK FLAG-MOR cells were treated 

with the activated, open ring form of lovastatin (lovastatin hydroxy acid) for 48 h to 

lower cholesterol by 28.3 ± 0.07 % (p = 0.02) as compared to vehicle treated cells.  

Under this treatment paradigm, lovastatin abolished the ability of the MOR agonist 

DAMGO (100 nM) to elicit overshoot (Figure 2.5c; p < 0.001).  To prevent cellular 

uptake of cholesterol from the serum present in the normal growth media (DMEM with 

10% FBS), cells were grown in lovastatin or DMSO vehicle containing Opti-MEM for 48 

hours.  Cells were 70-80% viable as assessed by trypan blue exclusion after 48 h in Opti-

MEM.  Furthermore, the overshoot elicited by the MOR agonist DAMGO was similar in 

cells cultured in Opti-MEM or regular growth media (DMEM with 10% FBS) (Figure 

2.5c).  Additionally, there was no effect of media type or lovastatin treatment on the 

forskolin response (DMEM/FBS = 1.06 ± 0.03 pmol cAMP/µg protein, Opti-

MEM+DMSO = 1.30 ± 0.04 pmol cAMP/µg protein, Opti-MEM+lovastatin = 1.02 ± 

0.12 pmol cAMP/µg protein).   

Similarly, differentiated SH-SY5Y cells were treated with lovastatin hydroxy acid 

for 48 h to measure the effect on overshoot mediated by endogenous MOR.  Lovastatin 

treatment reduced cholesterol by 17 ± 2.4 % compared to vehicle-treated controls, which 

was not as robust as the reduction observed with MβCD or with lovastatin in HEK cells.  

However, there was a significant reduction in the ability of the MOR agonist DAMGO (1 

µM, 1 h) to cause adenylyl cyclase overshoot (Figure 2.5d).  Production of cAMP by 5 

µM forskolin was similar in lovastatin and vehicle-treated SH-SY5Y cells (vehicle = 0.93 

± 0.07 pmol/µg protein; lovastatin = 0.89 ± 0.10 pmol/µg protein).  Together, the data 

obtained from replenishment of cholesterol and reduction of cholesterol using the 

synthesis inhibitor lovastatin indicate that MβCD prevents MOR agonist sensitization of 

adenylyl cyclase by a mechanism dependent on lowered cholesterol. 

 

Receptor number is not responsible for alterations in MOR signaling by MβCD  

Both the HEK FLAG-MOR and HEK FLAG-DOR cells used in this study 

express a high number of opioid receptors (9.7 ± 1.3 pmol/mg protein and 8.4 ± 1.5 

pmol/mg protein, respectively), so it is unlikely that the difference observed between 
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MOR and DOR agonists is due to different expression levels.  Furthermore, HEK FLAG-

MOR cells treated with 2% MβCD for 1 h retained a similar level of cell surface MOR as 

vehicle treated cells (92.2 ± 3.1 %; p = 0.107; n = 2, in triplicate) as determined by 

immunoassays directed toward the extracellular FLAG epitope performed as described 

previously (Divin et al., 2009).  Of the total MOR in HEK FLAG-MOR cells, 51 ± 4 % 

of the receptors are on the cell surface as determined by competition binding in whole 

cells with the membrane impermeable MOR antagonist CTAP and the cell permeable 

antagonist 3H-diprenorphine (Figure 2.6a).  To further confirm that the high receptor 

number is not responsible for the alteration in MOR signaling to adenylyl cyclase, we 

repeated experiments using an HEK FLAG-MOR clone that expressed six times less 

MOR (1.6 ± 0.1 pmol/mg protein).  Similar to results in the high-expressing clone, 

treatment of this lower receptor-expressing HEK FLAG-MOR clone with 2% MβCD 

reduced the ability of the MOR agonist DAMGO to acutely inhibit adenylyl cyclase 

(Figure 2.6b; p < 0.05) and greatly blocked its ability to cause adenylyl cyclase 

sensitization (Figure 2.6c; p < 0.01).  Furthermore, treatment of these cells with MβCD 

did not reduce total receptor number as determined by saturation binding of the opioid 

antagonist 3H-diprenorphine (Bmax of Control = 1560 ± 108 fmol/mg; MβCD = 1580 ± 64 

fmol/mg; Figure 2.6d).  Similarly, treatment of SH-SY5Y cells with 5 mM MβCD for 10 

min did not alter maximal (4 nM) 3H-diprenorphine binding (Control = 879 ± 51 fmol/mg 

protein; MβCD = 858 ± 43 fmol/mg protein; p > 0.05; n = 2, in triplicate). 

The antagonist 3H-diprenorphine can recognize all affinity states of the MOR, but 

as an agonist 3H-DAMGO will only label high-affinity sites at the concentrations used in 

saturation binding assays.  Therefore, in HEK FLAG-MOR cells the maximum number 

of receptors bound by 3H-DAMGO (944 ± 85 fmol/mg protein; Figure 2.6e) was 

expectedly less than those bound by 3H-diprenorphine.  Furthermore, treatment of these 

cells with MβCD significantly reduced the Bmax of 3H-DAMGO to 205 ± 24 (p = 0.002), 

indicating a loss of MOR in a high-affinity state.  This is consistent with the increase in 

low-affinity agonist binding observed in competition binding assays following 

cholesterol depletion by MβCD.  These results support the previous observations from a 

high receptor-expressing model and suggest that the effects of MβCD on decreasing 
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MOR-G protein coupling and downstream signaling to adenylyl cyclase is not merely the 

result of a loss of receptors. 

 

Effect of cytoskeletal disruption on MOR-induced adenylyl cyclase sensitization   

Disruption of either actin or tubulin has been shown to perturb caveolae and raft 

microdomains in rodent cardiac myocytes and S49 T-lymphoma cells (Head et al., 2006).  

To address the effects of caveolae and raft disruption using cytoskeletal inhibitors, HEK 

FLAG-MOR cells were treated with demecolcine to prevent microtubule polymerization 

or cytochalasin D to disrupt actin filament organization.  Demecolcine is a close analog 

of colchicine, which has been shown to disrupt rafts (Head et al., 2006).  Demecolcine (1 

µg/ml) for 16 - 20 h produced rounding cell morphology similar to 1 h MβCD treatment, 

but did not inhibit MOR agonist-induced sensitization of adenylyl cyclase (Figure 2.7a).  

In contrast, cytochalasin D (20 µM, 1.5 h), which has previously been shown to disrupt 

rafts (Head et al., 2006), caused slimming of the cells and decreased the ability of 

DAMGO to sensitize adenylyl cyclase [treatment: F(1,34) = 42.14, p < 0.0001].  

Cytochalasin D altered the efficacy of DAMGO to produce sensitization at maximal 

concentrations (p < 0.01 at 0.1 µM and p < 0.001 at 1 µM DAMGO), but did not shift the 

potency of DAMGO-mediated sensitization (EC50 after DMSO vehicle = 13.4 ± 8.4 nM 

and after cytochalasin D = 17.8 ± 5.7 nM, p = 0.676; Figure 2.7b).  Neither demecolcine 

nor cytochalasin D treatment affected cAMP produced by forskolin alone (control = 1.14 

± 0.09 pmol/µg vs. demecolcine = 1.13 ± 0.07 pmol/µg; DMSO = 1.06 ± 0.05 pmol/µg 

vs. cytochalasin D = 1.08 ± 0.08 pmol/µg).  These data demonstrate that although the 

effect of MβCD on DAMGO-mediated signaling was due to removal of cholesterol, it 

could not be mimicked using a tubulin inhibitor, even though tubulin inhibitors have been 

shown to disrupt rafts (Head et al., 2006).  However, the actin inhibitor cytochalasin D 

did attenuate MOR overshoot, indicating a potential role for actin in adenylyl cyclase 

sensitization. 
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Differential membrane localization of opioid receptors and adenylyl cyclase  

The disparate importance of cholesterol for MOR, but not for DOR signaling 

described above could be explained by direct interaction of the receptor with cholesterol 

or differing localization of receptors and signaling proteins in putative cholesterol-

enriched membrane rafts.  Membrane rafts have been identified by their buoyancy and 

insolubility in non-ionic detergents, such as Triton X-100 (Brown and London, 1998).  

To assess the localization of MOR and DOR in putative membrane rafts in HEK293 

cells, a detergent-based method was employed similar to that described by Brady and 

colleagues (Brady et al., 2004).  HEK FLAG-DOR or HEK FLAG-MOR cells were 

homogenized in 1% Triton X-100 and separated on a 5/30/40% discontinuous sucrose 

gradient, after which twelve fractions were collected from the top.  Fractions 7 - 9 

contained a cloudy band that floated at the interface between the 5 % and 30 % sucrose 

layers, consistent with the definition of membrane rafts.  These fractions were also 

enriched in the cholesterol-binding protein, caveolin (Figure 2.8).  Transferrin receptor, 

which is found in clathrin-coated pits and is excluded from caveolin-enriched fractions 

(Janes et al., 1999; Brady et al., 2004), was used as a marker to identify the cholesterol-

poor, detergent-soluble membrane fractions.  These solublized membranes are found in 

the dense 40 % sucrose fractions located at the bottom of the discontinuous gradient as 

evidenced by transferrin receptor immunoreactivity found in fractions 11 and 12 (Figure 

2.8).  The separation between the caveolin-containing fractions and the transferrin 

receptor-containing fractions indicates the quality of the preparation and efficient 

separation of the putative raft and non-raft membrane types.  Under these conditions, 

DOR was observed only in the transferrin receptor-containing fractions (Figure 2.8a and 

e), while the MOR was found in both caveolin-containing and transferrin receptor-

containing fractions (Figure 2.8b and f).  DOR was not observed in the caveolin-

containing fractions even after overexposure of the blot (data not shown).  Although this 

separation method is inherently non-quantitative for the amount of protein in detergent-

resistant fractions (Brown, 2006), analysis of the signal in each fraction from multiple 

experiments illustrated the less exclusive distribution of MOR in both caveolin-enriched 

and non-enriched fractions compared to DOR (Figure 2.8e and f).   
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Many of the signaling proteins that DOR activates have been identified in 

cholesterol-enriched membranes, including Gαi (Xu et al., 2006) and adenylyl cyclase 

isoforms 5/6 (Ostrom et al., 2002).  Consequently, we tested the hypothesis that DOR 

would move into cholesterol-enriched membranes, and therefore associate with these 

signaling proteins upon agonist stimulation.  Such movement into rafts has been reported 

previously for muscarinic M2 and purinergic A1 receptors (Allen et al., 2007).  However, 

treatment of HEK FLAG-DOR cells with a 10 µM concentration of the DOR agonist 

DPDPE for 5 min did not change the localization of the receptors (Figure 2.8c and e). 

Because DOR signaling to adenylyl cyclase is unaffected by cholesterol 

depletion, this raises the question of which adenylyl cyclase isoform DOR is coupled to, 

especially as adenylyl cyclase enzymes that are inhibited by DOR have been found in 

rafts, including AC 5/6 (Ostrom et al., 2002).  However, it is likely that the propensity for 

the adenylyl cyclases to localize only to cholesterol-enriched domains is not absolute and 

that cyclases are also present in other areas of the plasma membrane.  In HEK293 cells, 

endogenous AC 5/6 was detected in transferrin receptor-containing fractions, in addition 

to the caveolin-containing fractions, following detergent solubilization (Figure 2.8d).  

Therefore, DOR would not need to reside in high-cholesterol regions of the membrane to 

effectively signal to adenylyl cyclase.   

 

Cholera toxin B-induced patching  

Cholera toxin B subunit (CTB)-induced patching was used to further examine the 

membrane localization characteristics of MOR and DOR in intact cells using a method 

that does not rely on cell disruption or detergent solubilization.  This method has been 

used previously to identify raft-associated proteins (Janes et al., 1999).  With an 

estimated size of 10 – 200 nm (Pike, 2006) putative membrane rafts are too small for 

observation by conventional light microscopy, but can be clustered into patches by CTB, 

which binds with high affinity as a pentamer to the raft-associated ganglioside GM1 

(Janes et al., 1999). Further clustering with an anti-CTB antibody aggregated the CTB-

GM1 complexes into patches visible by confocal microscopy (Figure 2.9a).   
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Staining of the FLAG epitope on the extracellular N-terminus of DOR following 

patching showed that DOR on the cell surface were poorly co-localized with CTB-

clustered patches.  In fact, upon quantification of over 25 cells from at least 3 separate 

experiments, DOR co-localized with CTB to the same degree as the non-raft marker 

protein transferrin receptor (Figure 2.9b).  In contrast, MOR co-localized with many CTB 

patches, as indicated by arrows (Figure 2.9a).  Upon quantification, MOR were 

colocalized with CTB to a higher degree than DOR (MOR = 7.89 ± 2.22 vs. DOR = 2.00 

± 0.56 pixel density/ cell, p = 0.01) or transferrin receptors (1.93 ± 0.46 pixel density/ 

cell, p = 0.01), but to a significantly lesser degree than caveolin (17.85 ± 2.41 pixel 

density/ cell, p = 0.005).  Together, these localization and cell signaling experiments 

indicate that in HEK293 cells MOR tends to depend on cholesterol, and can partly 

interact with cholesterol-rich domains of the cell membrane, more than DOR.  

 

Discussion 

In this study we have used FLAG-tagged MOR and DOR expressed in HEK293 

cells to ask questions concerning the localization and signaling of these two highly 

homologous plasma membrane proteins.  Two conclusions can be drawn from this study.  

Firstly, MOR signaling is sensitive to the cholesterol content of the cell membrane, with a 

much greater effect on signaling following chronic agonist exposure.  This conclusion 

was reached by removal and replenishment of plasma membrane cholesterol using the 

cholesterol sequestering agent MβCD and by cholesterol synthesis inhibition by 

lovastatin.  Furthermore, the decrease in MOR signaling appears to be due to an 

uncoupling of the MOR from its G protein and is not due to a decrease in receptor 

number.  The effect of MβCD on adenylyl cyclase sensitization is also not a product of 

using a heterologous expression system or a high receptor number as shown by 

experiments using SH-SY5Y cells and HEK cells expressing a lower level of MOR.  

Under the same conditions, DOR signaling and G protein coupling are not affected.  

Secondly, using fractionation of the cell membrane and CTB patching of whole cells, we 

demonstrate the localization of DOR outside of cholesterol-enriched domains, but a less 

exclusive localization of MOR in both cholesterol-enriched and cholesterol-poor 
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membrane regions.  This differential distribution pattern supports the differential 

sensitivity of MOR and DOR signaling to cholesterol.   

There are two hypotheses to explain the differential dependence of MOR and 

DOR on membrane cholesterol.  Firstly, the partial localization of MOR in detergent-

insoluble domains may result from a higher propensity for these receptors to bind to 

cholesterol or caveolin than DOR.  Although both MOR and DOR contain one of the 

proposed caveolin binding motifs (ΦXΦXXXXΦ; Φ = F, W or Y) (Couet et al., 1997) at 

the interface of TM7 and the C-terminal tail, MOR contains more aromatic and 

hydrophobic residues in the area immediately distal to this region.  This difference may 

be especially important for interactions with cholesterol in the membrane because it is in 

the same region of the receptor that was shown to interact with cholesterol in the β2AR 

crystal structure (Cherezov et al., 2007), and includes a conserved palmitoylated cysteine.  

Even though DOR contains a caveolin-binding domain, this may not be enough for the 

receptor to bind tightly to caveolin, since the binding domain is a rather general sequence 

that could be found on many proteins.  For example, Gαi2 contains a caveolin binding 

domain (Couet et al., 1997), but has not always been shown to associate with caveolin 

(Head et al., 2005).  

Alternatively, DOR may not need the extra membrane rigidity provided by 

cholesterol to support signaling because it is known to couple tightly to G proteins (Costa 

et al., 1988; Polastron et al., 1992).  In fact, Andre et al. (2008) conclude that DOR can 

form a high affinity state that is stabilized by G-proteins rather than cholesterol.  MOR, 

however, is less tightly coupled to G proteins (Chakrabarti et al., 1997) and may depend 

on cholesterol to aid in this coupling even in non-raft regions of the plasma membrane.  

This is supported by evidence that cholesterol alone can stabilize MOR in a high-affinity 

state (Gaibelet et al., 2008), and increasing membrane viscosity with a cholesterol analog 

has been shown to improve the potency of the MOR agonist DAMGO to stimulate 

[35S]GTPγS binding (Emmerson et al., 1999). 

The heterogeneous distribution of MOR in caveolin-enriched and caveolin-poor 

fractions may explain the rather small effect of cholesterol depletion on acute MOR 

signaling (either [35S]GTPγS binding or adenylyl cyclase inhibition).  However, this 
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effect was greatly amplified when cells were treated chronically with a MOR agonist to 

induce adenylyl cyclase sensitization.  The complexity of adenylyl cyclase sensitization 

(Watts, 2002) may explain the more dramatic effect of cholesterol depletion (either by 

MβCD or lovastatin) on adenylyl cyclase sensitization versus acute inhibition of adenylyl 

cyclase by DAMGO.  Besides the previously mentioned G proteins, many of the other 

signaling pathways postulated to play a role in adenylyl cyclase sensitization have also 

been shown to be associated with cholesterol-enriched domains, such as Raf-1 (Mineo et 

al., 1996), PKC (Weerth et al., 2007) and Src kinase (Mukherjee et al., 2003).  Recently, 

Src kinase has been implicated as an important mediator of MOR adenylyl cyclase 

sensitization in putative rafts (Zhang et al., 2009).  In addition, many of the adenylyl 

cyclase isoforms that can be sensitized [AC 5, 6 and 8 (Watts, 2002)] have also been 

found in cholesterol-enriched domains [AC 5/6 (Fagan et al., 2000; Ostrom et al., 2002; 

Zhao et al., 2006) and 8 (Smith et al., 2002)].  Exceptions to this include AC 1, which can 

be sensitized by a variety of agonists (Avidor-Reiss et al., 1997; Nevo et al., 1998; Rhee 

et al., 2000) but has not been found in rafts (Ostrom et al., 2002), and AC 3, which is 

preferentially found in cholesterol-enriched membranes (Ostrom et al., 2002) but is not 

sensitized by several agonists, including the MOR agonist morphine (Avidor-Reiss et al., 

1997; Nevo et al., 1998). Additionally, sensitization caused by chronic agonist treatment 

may require a redistribution of the heterotrimeric G protein to detergent-insoluble 

domains.  In a study using CHO-MOR cells, chronic morphine treatment increased the 

amount of Gαi and Gβ1 in the cholate-insoluble cellular fraction (with a corresponding 

decrease of G protein in the cholate-soluble fraction) in a time-dependent manner that 

was similar to the time-course of adenylyl cyclase sensitization (Bayewitch et al., 2000).  

This redistribution of Gαi and Gβ1 was reversed following removal of morphine in a 

similar time frame as the loss of sensitization.  Therefore, cholesterol depletion may 

prevent the development of sensitization by preventing the shift of heterotrimeric G 

proteins to detergent-insoluble microdomains. 

Although a percentage of MOR opioid receptors were found in detergent-

insoluble domains, most were found in putative non-raft domains.  Since the effect of 

cholesterol depletion by MβCD or lovastatin on adenylyl cyclase sensitization was very 
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robust, this may suggest a loss of cholesterol function on MOR, rather than, or in addition 

to, disruption of rafts.  The cytoskeleton, including both actin and tubulin, has also been 

shown to be important for the formation of lipid rafts and caveolae (Head et al., 2006).  

Therefore, the lack of effect of the tubulin inhibitor demecolcine on MOR agonist-

mediated adenylyl cyclase overshoot would point away from a raft mechanism.  Even so, 

with the actin inhibitor cytochalasin D we do see a decrease in the ability of the MOR 

agonist DAMGO to cause overshoot.  However, differences between MβCD and 

cytochalasin D, including morphology changes and the lack of effect of cytochalasin D 

on forskolin-stimulated cAMP production, argue against a contributing role of actin 

disruption in the mechanism of action of MβCD.  Therefore, it appears most likely that 

cholesterol and actin are both important independently for MOR overshoot.  To our 

knowledge this is the first report of a role for actin in adenylyl cyclase sensitization, 

although, there is evidence of increased actin cycling following withdrawal from chronic 

morphine treatment in rats (Toda et al., 2006). 

The increase in forskolin-stimulated cAMP production observed immediately 

following cholesterol removal by MβCD has been observed by others (Rybin et al., 2000; 

Pontier et al., 2008).  However, this enhanced forskolin effect is lost if a 2 h incubation in 

serum-free media is included following cholesterol removal, even though cholesterol 

levels remain depleted.  Furthermore, chronic inhibition of cholesterol synthesis using 

lovastatin for 48 h did not affect the forskolin response.  Therefore, the effect of 

cholesterol removal on forskolin appears transient as the cell has to rapidly adapt to the 

loss of cholesterol.  In addition, basal and isoproterenol activation of adenylyl cyclase 

through Gαs have been shown to increase following cholesterol depletion by MβCD or 

cholesterol oxidase (Rybin et al., 2000; Pontier et al., 2008).  Thus, the increased 

forskolin response could be due to increased synergistic activation of adenylyl cyclase 

with Gαs.  Results from experiments by us and others (Pontier et al., 2008) using 

pertussis toxin suggest that the increase in forskolin or isoproterenol response does not 

involve receptor-activated Gαi/o proteins.   

The results from the sucrose gradient membrane separation experiments are 

consistent with reports of the localization of MOR in caveolin-enriched membrane 
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fractions as well as caveolin-poor fractions (Zhao et al., 2006; Gaibelet et al., 2008).  In 

contrast, we found DOR only in the same cellular fractions as transferrin receptor, a non-

raft marker.  This finding differs from previously published reports of DOR localization 

in putative raft fractions (Patel et al., 2006; Huang et al., 2007a).  These conflicting data 

may relate to the method used for isolation of membrane microdomains, about which 

there is much debate (Shogomori and Brown, 2003; Allen et al., 2007).  Previous studies 

of DOR localization used high molarity sodium carbonate buffer, pH 11, for 

homogenization prior to sucrose gradient ultracentrifugation to separate cholesterol-

enriched from cholesterol-deficient membranes.  Although this method has been 

commonly employed to study protein content in putative lipid rafts (Song et al., 1996; 

Allen et al., 2007), there are some problems intrinsic to this method.  The primary 

concern with the non-detergent method is a lack of specificity for isolating putative raft 

proteins, since even non-plasma membrane proteins, such as mitochondrial proteins, are 

found in the cholesterol-enriched fractions (Foster et al., 2003).  Using the sodium 

carbonate method, we have also identified DOR in more buoyant, caveolin-containing 

fractions.  However, these fractions also contained significant amounts of the non-raft 

marker transferrin receptor indicating a lack of separation between putative raft and non-

raft membranes (data not shown).  Thus, we are not confident using this method to 

identify raft proteins.  Previous studies (Patel et al., 2006; Huang et al., 2007a) did not 

include a negative control, such as transferrin receptor, for comparison.   

The detergent method used in the present study also has limitations, but is more 

stringent for identification of cholesterol-binding proteins (Foster et al., 2003).  Recently, 

DOR localization has been studied using the detergent Triton X-100 in various 

concentrations (Andre et al., 2008).  Although this study identified a small percentage (~ 

5 %) of DOR in raft-like fractions, the majority of DOR were found in the non-raft pellet, 

which generally agrees with our findings.  In addition, our identification of DOR in 

caveolin- and cholesterol-poor fractions was supported by the lack of association of DOR 

with raft domains as labeled by CTB-patching of intact cells.  Furthermore, these 

localization results are consistent with the DOR signaling data in this study 
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demonstrating that cholesterol depletion by MβCD did not affect agonist-mediated DOR 

signaling.   

Although the evidence presented here suggests that DOR is excluded from 

cholesterol-enriched regions, many signaling molecules, including Gαi/o proteins (Li et 

al., 1995; Li et al., 1996; Moffett et al., 2000; Foster et al., 2003; Quinton et al., 2005; Xu 

et al., 2006), known to be activated by DOR have been found in cholesterol-enriched 

fractions or associated with caveolin.  One possible explanation we have excluded is that 

DOR moves into cholesterol-enriched fractions upon agonist treatment.  A more likely 

possibility is that although many signaling proteins are found in rafts, this relationship is 

not exclusive and these proteins are also functioning outside of raft domains.  For 

example, Gαi proteins have also been found in cholesterol-poor fractions in 

cardiomyocytes (Head et al., 2005) and in these HEK cells (data not shown) so that DOR 

could  signal through these Gαi proteins.  In addition, adenylyl cyclase isoforms 3 and 

5/6 are primarily, but not exclusively, found in caveolin-containing fractions (Ostrom et 

al., 2002).  In our preparations, adenylyl cyclase 5/6 is found in transferrin receptor-

containing fractions.  Moreover, DOR may also signal through adenylyl cyclase 1 which 

has not been found in cholesterol-enriched domains (Ostrom et al., 2002; Ostrom and 

Insel, 2004), is readily sensitized (Watts, 2002) and is present in HEK293 cells (Premont, 

1994).   

In conclusion, these studies demonstrate differences in signaling and localization 

properties of MOR and DOR, using identical methods in the same HEK cell system, and 

are supported by studies in SH-SY5Y neuroblastoma cells that endogenously express 

opioid receptors.  DOR, which were not found in cholesterol-enriched membranes, were 

not as affected by changes in the microenvironment of the membrane.  In contrast, MOR, 

to which agonists cause robust dependence clinically, is significantly altered by 

cholesterol modulation, with a greater effect on chronic signaling than acute signaling.  

Although these effects are due to cholesterol removal, these studies cannot confirm that 

they are due to lipid raft disruption and may suggest a need for cholesterol to provide 

efficient MOR signaling in non-raft regions of the plasma membrane.  Regardless, these 

findings have implications for cellular signaling in general, especially in light of the 
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recent, somewhat controversial (LaRosa et al., 2005; Pitt, 2005) lowering of clinical 

cholesterol guidelines (Smith et al., 2006). 
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Figure 2.1:  MOR, but not DOR, agonist-mediated G protein activation is altered 
following MβCD treatment.  A, basal [35S]GTPγS binding in membranes from HEK 
FLAG-DOR, HEK FLAG-MOR or untransfected HEK293 cells treated with (hatched 
bars) or without (open bars) 2% MβCD in serum-free media for 1 h. **p < 0.01, ***p < 
0.001 versus respective control by unpaired two-tailed Student’s t-test.  B, stimulation of 
[35S]GTPγS binding by the DOR agonist SNC80 (1 nM – 10 µM) was unchanged in 
membranes from HEK FLAG-DOR cells treated with MβCD.  EC50 values: Control = 4.9 
± 2.4 nM; MβCD = 5.2 ± 0.8 nM (p = 0.898).  C, stimulation of [35S]GTPγS binding by 
the MOR agonist DAMGO (1 nM – 10 µM) was shifted in membranes from HEK 
FLAG-MOR cells treated with MβCD.  EC50 values: Control = 16.8 ± 9.3 nM; MβCD = 
73.0 ± 26.5 nM (p = 0.116).  Data are presented as mean ± S.E.M. from 3-4 separate 
experiments, in duplicate. 
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Figure 2.2:  Cholesterol removal by MβCD induces low-affinity binding in MOR, 
but not DOR, expressing cells.  Competition binding experiments in membranes 
prepared from HEK FLAG-DOR (A) or HEK FLAG-MOR (B) cells treated with (open 
circles) or without (filled circles) 2% MβCD for 1 h.  Unlabeled agonist (SNC80 or 
DAMGO) was added in increasing concentrations in competition with 0.2 nM 3H-
diprenorphine (DPN).  Non-specific binding was determined using 10 µM naloxone.  A, 
Ki for SNC80 using one-site competition linear regression: Control = 0.78 ± 0.21 nM; 
MβCD = 0.87 ± 0.09 nM (p = 0.767).  Slope of concentration displacement curve was 
unchanged: Control = -0.77 ± 0.09; MβCD = -0.72 ± 0.12 (p = 0.788).  In B, 100 mM 
NaCl and 10 µM GTPγS was added in the Tris incubation buffer as indicated to uncouple 
G proteins.  Ki for DAMGO: Control = 4.9 ± 1.2 nM, one-site model; MβCD = 1.9 ± 0.3 
nM (Ki high), 244 ± 49 nM (Ki low), two-site model.  Slope of concentration 
displacement curve was reduced: Control = -0.76 ± 0.03; MβCD = -0.45 ± 0.05 (p = 
0.0004).  Ki after NaCl and GTPγS addition: Control = 768 ± 82 nM; MβCD = 1887 ± 
712 nM.  Data are presented as a percent of the total specifically bound 3H-diprenorphine 
in absence of competing agonist and are from 3 separate experiments, in duplicate.  Ki 
and slopes were compared using two-tailed, unpaired Student’s t-tests.
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Figure 2.3:  MOR, but not DOR, agonist-mediated inhibition of adenylyl cyclase is 
altered following MβCD treatment.  A and B, Concentration-response curves for acute 
adenylyl cyclase inhibition by the DOR agonist SNC80 (0.1 nM – 1 µM), or the MOR 
agonist DAMGO (1 nM – 1 µM) in HEK FLAG-DOR (A) or HEK FLAG-MOR (B) cells 
pretreated with (open circles) or without (filled circles) 2% MβCD for 1 h.  Data are 
presented as a percent of the forskolin-stimulated cAMP accumulation in the absence of 
agonist (n=3, in duplicate).  A, EC50 values for SNC80 were not changed: Control = 1.05 
± 0.32 nM; MβCD = 1.51 ± 0.07 nM (p = 0.229).  B, MβCD caused a 4-fold rightward 
shift in the potency of DAMGO: Control = 2.49 ± 1.01 nM; MβCD = 9.24 ± 1.15 nM (p 
= 0.023).  C, cAMP production by 5 µM forskolin in HEK FLAG-DOR or FLAG-MOR 
cells treated with (hatched bars) or without (open bars) 2% MβCD for 1 h.  ***p < 0.001 
compared to respective control by unpaired two-tailed Student’s t-test.  Data presented as 
mean ± S.E.M from 6 separate experiments, in duplicate. 
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Figure 2.4:  MβCD treatment blocks MOR, but not DOR, agonist-mediated adenylyl 
cyclase sensitization.  Adenylyl cyclase overshoot was precipitated with antagonist 
(naltrindole [A & B] or naloxone [C]) in the presence of 5 µM forskolin following 
chronic (30 min) treatment with the non-peptidic DOR agonist SNC80 (A), the peptidic 
DOR agonist DPDPE (B) or the MOR agonist DAMGO (C) in HEK FLAG-DOR (A & 
B) or HEK FLAG-MOR (C) cells.  Pretreatment with 2% MβCD (hatched bars) for 1 h 
prior to agonist exposure prevented overshoot produced by the MOR agonist DAMGO 
(*p < 0.05 by 2-way ANOVA with Bonferroni’s post-hoc test), but not by either DOR 
agonist.  In D, retinoic acid-differentiated SH-SY5Y cells were treated with 5 mM 
MβCD (hatched bar) for 10 min prior to incubation with 1 µM DAMGO for 60 min.  
Overshoot was precipitated with naloxone as above.  *p < 0.05 by unpaired two-tailed 
Student’s t-test.  Dashed lines indicate cAMP production with forskolin alone.  Data are 
presented as mean ± S.E.M from 3 separate experiments, in duplicate. 
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Figure 2.5:  Effects of MβCD on MOR signaling are due to removal of cholesterol 
from the membrane.  A, acute adenylyl cyclase inhibition by 10 nM DAMGO in HEK 
FLAG-MOR cells following cholesterol depletion without (MβCD + veh) or with 
cholesterol replenishment (MβCD + CH).  B, adenylyl cyclase overshoot following 
chronic (30 min) treatment with 100 nM DAMGO in HEK FLAG-MOR cells following 
cholesterol depletion without (MβCD + veh) or with replenishment (MβCD + CH).  
Dashed lines indicate cAMP production with forskolin alone.  *p < 0.05, **p < 0.01 
compared to control (veh + veh) following 1-way ANOVA and Bonferroni’s post-hoc 
test.  Forskolin stimulation was similar across all groups in each experiment (p > 0.05 by 
two-way ANOVA and Bonferroni’s post-test: veh+veh = 1.75 ± 0.13; MβCD+veh = 2.06 
± 0.22; MβCD+CH = 1.53 ± 0.11 pmol cAMP/µg protein).  In C and D, HEK FLAG-
MOR or SH-SY5Y cells, respectively, were grown in regular growth media 
(DMEM/FBS), Opti-MEM containing DMSO vehicle (Opti + DMSO) or Opti-MEM 
containing the cholesterol synthesis inhibitor lovastatin hydroxy acid (10 µM) (Opti + 
Lova) for 48 h.  Opti-MEM had no effect on overshoot compared to normal growth 
media (DMEM/FBS).   C, adenylyl cyclase overshoot following chronic (30 min) 
treatment with 100 nM DAMGO in HEK FLAG-MOR cells grown in each of the above 
conditions.  ***p < 0.001 compared to regular media (DMEM/FBS) or Opti-MEM + 
DMSO controls by one-way ANOVA with Bonferroni’s post-test.  Forskolin stimulation 
was similar among groups (DMEM/FBS = 1.06 ± 0.03, Opti + DMSO = 1.30 ± 0.04, 
Opti + Lova = 1.02 ± 0.12 pmol cAMP/µg protein).  D, adenylyl cyclase overshoot 
following chronic (60 min) treatment with 1 µM DAMGO in differentiated SH-SY5Y 
cells grown in each of the above conditions plus 10 µM retinoic acid.  ***p < 0.001 vs. 
DMEM/FBS, ++p < 0.01 vs. Opti + DMSO by one-way ANOVA and Bonferroni’s post-
test.  DMEM/FBS and Opti + DMSO were not different (p > 0.05).  Forskolin stimulation 
was not different in Opti + DMSO (0.93 ± 0.07 pmol/µg protein) and Opti + Lova (0.89 ± 
0.10 pmol/µg protein).  Dashed lines indicate cAMP production with forskolin alone.  All 
data are presented as mean ± S.E.M. (n = 3 or 4, in duplicate).  
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Figure 2.6:  Alterations in MOR signaling are not due to changes in receptor 
number.  A, surface expression of MOR was determined in whole cells (1 x 105 
cells/tube) by displacement of 4 nM 3H-diprenorphine (DPN) by the cell impermeable 
antagonist CTAP (10 µM).  Non-specific binding was determined using the cell 
permeable antagonist naloxone (10 µM).  In B and C, HEK FLAG-MOR cells expressing 
only 1.6 fmol/mg receptor were treated with (hatched bars) or without (open bars) 2% 
MβCD for 1 h prior to acute cyclase inhibition (B) or adenylyl cyclase overshoot (C) 
experiments with 10 nM DAMGO or 100 nM DAMGO, respectively.  Data are graphed 
as percent of forskolin-stimulated cAMP, represented by the hashed line (n = 3, in 
duplicate).  *p < 0.05; **p < 0.01 by unpaired, two-tailed Student’s t-test.  D and E, 
saturation binding experiments with the opioid antagonist 3H-diprenorphine (DPN) (D) or 
the MOR opioid agonist 3H-DAMGO (E) in membranes from low-expressing HEK 
FLAG-MOR cells treated with (closed circles) or without (open circles) 2% MβCD for 1 
h.  Control cells (open circles) in E were incubated with vehicle for 3 h.  Non-specific 
binding was determined using 10 µM naloxone.  Data are presented as mean ± S.E.M (n 
= 3, in duplicate).  D, 3H-diprenorphine binding was unchanged following cholesterol 
depletion: Bmax: control = 1560 ± 108 fmol/mg; MβCD = 1580 ± 64 fmol/mg: Kd: 
control = 0.20 ± 0.07 nM; MβCD = 0.18 ± 0.01 nM.  E, 3H-DAMGO Bmax decreased 
(control =  944 ± 85 fmol/mg; MβCD = 205 ± 24 fmol/mg; p = 0.0019 by unpaired two-
tailed Student’s t-test) with no change in Kd (control = 0.86 ± 0.33 nM; MβCD = 0.60 ± 
0.24 nM).  
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Figure 2.7:  Effect of cytoskeleton inhibitors on MOR-mediated adenylyl cyclase 
sensitization.  HEK FLAG-MOR cells were treated with (filled circles) or without (open 
circles) the tubulin inhibitor demecolcine (1 µg/ml, overnight) (A) or the actin inhibitor 
cytochalasin D (20 µM, 1.5 h) (B) prior to induction of adenylyl cyclase sensitization by 
the MOR agonist DAMGO as described in Methods.  Data are presented as mean ± 
S.E.M. (n = 3, in duplicate).  *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA 
with Bonferroni’s post-hoc test.  Forskolin stimulation was not affected by cytoskeleton 
disruption in either experiment (p > 0.05 by two-way ANOVA and Bonferroni’s post-hoc 
test): control = 1.14 ± 0.09 pmol/µg vs. demecolcine = 1.13 ± 0.07 pmol/µg; DMSO = 
1.06 ± 0.05 pmol/µg vs. cytochalasin D = 1.08 ± 0.08 pmol/µg. 
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Figure 2.8:  Localization of MOR, but not DOR, in caveolin-enriched fractions, in 
addition to transferrin receptor-enriched fractions.  Detergent-resistant membranes 
were prepared from HEK FLAG-DOR (A, C & D) or HEK FLAG-MOR (B) cells as 
described in Methods.  Equal volume-loaded samples were assessed for localization of 
opioid receptor (using anti-FLAG M1 antibody), adenylyl cyclase 5/6 (AC 5/6), caveolin 
(a raft marker), or transferrin receptor (TfR, a non-raft marker) as indicated.  C, treatment 
of HEK FLAG-DOR cells with the DOR agonist, DPDPE (10 µM, 5 min), prior to 
homogenization did not change the localization of DOR compared to untreated cells (A).  
In E and F, the mean pixel density of the FLAG-DOR or FLAG-MOR (55 kD band) in 
each fraction of a separation experiment was quantified and compared to the total mean 
pixel density in all lanes for an experiment.  Note that equal volume loading and presence 
of intracellular receptors in soluble fractions (11 and 12) precludes truly representative 
quantification.  Results are presented as a percent of the total pixel density in each 
fraction from 2-7 separate experiments. 



 

62 

 

 

 

 

 

Figure 2.9:  DOR is not co-localized with cholera toxin B (CTB) subunit patches.   
A, HEK FLAG-DOR or FLAG-MOR cells were plated on poly-D-lysine coated 
coverslips 24 h prior to patching with cholera toxin B subunit (CTB) conjugated to Alexa 
488 at 4°C to label endogenous ganglioside GM1, enriched in lipid rafts.  Lipid raft 
clustering was induced by incubating with goat anti-CTB for 30 min at 4°C, followed by 
20 min at 37°C.  Cells were fixed with 4% paraformaldehyde and DOR or MOR were 
stained using mouse anti-FLAG M1 antibody followed by goat anti-mouse-Alexa 594.  
Fluorescent images of 0.5 µm Z planes were captured using confocal microscopy.  Scale 
bar = 10 µm.  B, quantification of colocalization with CTB from at least 25 cells from 3 
separate experiments is presented as mean pixel density of colocalization per cell ± 
S.E.M.  *p < 0.05, ***p<0.001 compared to TfR or DOR by two-tailed unpaired 
Student’s t-test; ‡ p = 0.005 compared to caveolin by two-tailed unpaired Student’s t-test. 
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Chapter III 

Gi/o-coupled receptors compete for signaling to adenylyl cyclase in SH-SY5Y cells 
and reduce opioid withdrawal-mediated cAMP overshoot 

  

Summary 

Organization of G protein-coupled receptors and cognate signaling partners at the 

plasma membrane has been proposed to occur via multiple mechanisms including 

membrane microdomains, receptor oligomerization and protein scaffolding.  Here, we 

investigate the organization of six types of Gi/o-coupled receptors endogenously 

expressed in SH-SY5Y cells.  The most abundant receptor in these cells was MOR, 

activation of which occluded acute inhibition of AC by agonists to DOR, NOPr, alpha2-

adrenergic (α2AR), cannabinoid (CB1) and serotonin 1A (5-HT1A) receptors.  We further 

demonstrate that all receptor pairs share a common pool of AC.  The MOR agonist 

DAMGO also occluded the ability of DOR agonist to stimulate G proteins.  However, at 

lower agonist concentrations and at shorter incubation times when G proteins were not 

limiting, the relationship between MOR and DOR agonists was additive.  The additive 

relationship was confirmed by isobolographic analysis.  Chronic co-administration of 

MOR and DOR agonists caused cAMP overshoot that was not additive, suggesting that 

sensitization of AC mediated by these two receptors occurs by a common pathway.  

Furthermore, heterologous inhibition of AC by agonists to DOR, NOPr and α2AR 

reduced the expression of cAMP overshoot in DAMGO-dependent cells.  However, this 

cross-talk did not lead to heterologous tolerance.  These results indicate that multiple 

receptors could be tethered into complexes with cognate signaling proteins and that 

access to shared AC by multiple receptor types may provide a means to prevent opioid 

withdrawal.    
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Introduction 

Opioid receptors are members of the G protein-coupled receptor (GPCR) family 

and signal via activation of AC-inhibitory (Gi/o) GTP-binding proteins.  It has been 

suggested that the probability of opioid receptor/G protein interaction is enhanced by 

compartmentalization in the membrane (Alt et al., 2001), allowing rapidity of GPCR 

signal propagation (Hur and Kim, 2002).  Various modes of organization in the plasma 

membrane have been proposed to describe these compartments, including dimerization of 

opioid receptors (George et al., 2000; Gomes et al., 2004) and other GPCRs (Milligan, 

2009), membrane microdomains (Allen et al., 2007) or protein scaffolds (Hall and 

Lefkowitz, 2002).  However, mathematical modeling of experimental findings supporting 

compartmentalization has claimed that these data can be explained by a collision 

coupling model (Tolkovsky and Levitzki, 1978; Stickle and Barber, 1992) without the 

need to invoke compartments (Brinkerhoff et al., 2008).   

Compartments also prevent interactions between two proteins by constraining 

cross-talk and/or sharing of effector molecules, thus leading to signaling specificity.  In 

NG108-15 cells, muscarinic receptors and DOR did not share G proteins with α2AR, as 

measured by agonist binding (Graeser and Neubig, 1993).  In this scenario, co-

administration of agonists for separately compartmentalized receptors would result in an 

additive response as each receptor type activated its own pool of effectors.  For instance, 

in N18TG2 neuroblastoma cells, agonists to endogenous DOR and CB1 receptors 

activated G proteins in an additive manner (Shapira et al., 1998; Shapira et al., 2000).  On 

the other hand, in SH-SY5Y cells, co-administration of a MOR agonist and a DOR 

agonist produced the same level of G protein activation as the MOR agonist alone, 

indicating that MOR and DOR activate the same G proteins (Alt et al., 2002).  Similarly, 

DOR and CB1 receptors cotransfected in COS-7 cells shared G proteins (Shapira et al., 

2000) and MOR and α2AR endogenously expressed in SH-SY5Y cells were observed to 

access the same AC enzymes (Lameh et al., 1992).   

The conflicting data on DOR and CB1 receptor competition in N18TG2 and COS-

7 cells can potentially be explained by differences in the level of expression of receptors.  

At high density, receptors compete for a limiting pool of G proteins, whereas, at low 
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receptor concentrations, G proteins are in excess and agonists for two receptor types 

activate G proteins in an additive manner regardless of compartmentalization 

(Brinkerhoff et al., 2008).  However, at low receptor levels, artificially reducing G 

protein number (using pertussis toxin; PTX) did not increase competition (Graeser and 

Neubig, 1993; Shapira et al., 2000), suggesting that receptor number is more predictive of 

competition than G protein number (Brinkerhoff et al., 2008).   

Competition between only two GPCR types would be observed if the receptors 

were able to freely diffuse along the cell membrane to access all available G proteins or if 

they were corralled together, i.e. in a membrane microdomain, by scaffolding proteins or 

by dimerization.  By considering competition between multiple receptor types, the chance 

of all receptors sharing the same compartment decreases, and it should therefore be easier 

to differentiate between receptors that are somehow constrained together and those that 

are not.  The goal of the experiments presented here was to determine the degree of 

competition or effector sharing between multiple inhibitory GPCRs endogenously 

expressed in SH-SY5Y cells and the consequences of this competition for signaling to 

AC.  We show that agonist-occupied MOR can access all AC available to these other 

Gi/o-coupled GPCRs suggesting a lack of compartmentalization and/or the presence of 

complexes containing multiple receptors.  Moreover, depending on the level of receptor 

expression, agonists at non-MOR GPCRs are able to attenuate the cAMP overshoot 

observed following withdrawal from exposure to a chronic MOR agonist, thus suggesting 

a mechanism for the prevention of opioid withdrawal.   

 

Materials and Methods 

 Materials- [3H]DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), [3H]DPDPE 

([D-Pen2,5]-enkephalin), [3H]nociceptin/OFQ, [3H]yohimbine, [3H]CP 55,940 and 

[35S]GTPγS (guanosine-5'-O-(3-[35S]thio)triphosphate) were obtained from Perkin-Elmer 

Life Sciences (Boston, MA).  SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-

piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) was obtained from the Narcotic 

Drug and Opioid Peptide Basic Research Center at the University of Michigan (Ann 

Arbor, MI).  DAMGO, DPDPE, naloxone, CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-
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Thr-NH2), nociceptin/orphanin FQ (nociceptin/OFQ), UK 14304, clonidine, forskolin and 

IBMX (3-isobutyl-1-methylxanthine) were from Sigma-Aldrich (St. Louis, MO).  CP 

55,940 and WIN 55212-2 were from Cayman Chemical (Ann Arbor, MI).  ICI 174,864 

(N, N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH) and J113397 (1-[(3R,4R)-1-cyclooctylmethyl-3-

hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one) were from 

Tocris Bioscience (Ellisville, MO).  Retinoic acid was obtained from Calbiochem (La 

Jolla, CA).  Pertussis toxin (PTX) was from List Biological Laboratories (Campbell, CA).  

Tissue culture media, fetal bovine serum and trypsin were from Invitrogen (Carlsbad, 

CA).  All other chemicals were obtained from Sigma-Aldrich (St. Louis, MO) and were 

of analytical grade.  

Cell culture- Human neuroblastoma SH-SY5Y cells, a subclone of SK-N-SH cells, 

were obtained from ATCC (Manassas, VA), grown in Dulbecco’s Modified Eagle 

Medium (DMEM) containing 10% fetal bovine serum (FBS) at 37°C in 5% CO2, and 

used within passages 34 – 44 from subcloning to maintain consistent neuroblast 

properties between experiments.  All experiments were performed in SH-SY5Y cells 

differentiated with 10 µM retinoic acid for 4 – 7 days prior to assay. 

Radioligand binding assays- Membranes were prepared from retinoic acid-

differentiated SH-SY5Y cells, as described previously (Alt et al., 2002).  Final membrane 

pellets were resuspended in 50 mM Tris-HCl buffer, aliquoted and stored at -80°C.  

Protein concentration was measured using the Bradford assay (Bradford, 1976). 

Receptor density was determined by incubating membranes (50 µg) for 60 min at 

25°C with shaking in 50 mM Tris-HCl, pH 7.4 buffer containing saturating 

concentrations of radiolabeled ligand as follows: 12 nM [3H]DAMGO for MOR, 16 nM 

[3H]DPDPE for DOR, 1 nM [3H]nociceptin/OFQ for nociceptin/orphanin FQ peptide 

receptor (NOPr), 10 nM [3H]yohimbine for α2AR or 6 nM [3H]CP 55,940 for CB1.  Non-

specific binding was determined with unlabeled naloxone (MOR and DOR), J113397 

(NOPr), UK 14304 (α2AR) or WIN 55212-2 (CB1).  All plasticware was precoated with 

Sigma Cote (Sigma-Aldrich, St. Louis, MO) and 0.1% BSA was included for [3H]CP 

55,940 binding.  Assays were stopped by rapid filtration through GF/C filters presoaked 

in 0.1% polyethyleneimine using a Brandel harvester (MLR-24, Gaithersburg, MD) and 
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rinsed three times with ice-cold 50 mM Tris-HCl wash buffer, pH 7.4.  Dried filters were 

saturated with EcoLume liquid scintillation cocktail (MP Biomedicals, Solon, OH) and 

radioactivity was counted in a Wallec 1450 MicroBeta (Perkin-Elmer, Waltham, MA). 

Stimulation of [35S]GTPγS binding-  Membranes were prepared from retinoic acid-

differentiated SH-SY5Y cells, as described for radioligand binding assays.  In some 

experiments, cells were treated overnight with agonist (SNC80 or DAMGO) or for 24 h 

with PTX (100 ng/ml) prior to membrane preparation.   

Membranes (50 µg protein) were incubated with 0.1 nM [35S]GTPγS for 60 min 

(unless otherwise indicated) at 25°C, with or without various concentrations of SNC80 

and/or DAMGO in [35S]GTPγS binding buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 

100 mM NaCl, 1mM EDTA, 2 mM dithiothreitol and 30 µM GDP).  Membranes with 

bound [35S]GTPγS were collected on GF/C filters (Whatman, Middlesex, UK) using a 

Brandel harvester (MLR-24, Gaithersburg, MD) and rinsed three times with cold wash 

buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 100 mM NaCl).  Bound radioactivity was 

determined by liquid scintillation counting as described in radioligand binding methods.   

Cyclic AMP accumulation assays- For inhibition of AC, SH-SY5Y cells were plated 

in 24-well plates (5 x 105 cells / well) and differentiated with 10 µM retinoic acid 4 days 

prior to assay.  Cells were incubated with 1 µM of the indicated agonist(s) in the presence 

of 5 µM forskolin and 1 mM IBMX in DMEM/10% FBS for 10 min at 37°C.  The assay 

was stopped by replacing the media with 1 ml ice-cold 3% perchloric acid.  After at least 

30 min at 4°C, a 400 µl aliquot of sample was neutralized with 2.5 M KHCO3 and 

centrifuged at 13,000 x g.  Cyclic AMP was measured from the supernatant using a 

[3H]cAMP assay system (GE Healthcare, Buckinghamshire, UK) following the 

manufacturer’s instructions.  Inhibition of cAMP formation was calculated as percent 

inhibition of forskolin-stimulated cAMP accumulation in the absence of opioid agonist. 

For AC sensitization experiments, differentiated SH-SY5Y cells were incubated 

overnight in the presence or absence of DAMGO and/or DPDPE in DMEM/10% FBS at 

37°C.  Drug-containing media was replaced with media containing 5 µM forskolin, 1 mM 

IBMX and 1 µM MOR antagonist CTAP for DAMGO-treated cells, 30 µM forskolin, 1 
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mM IBMX and 1 µM DOR antagonist ICI 174,864 for DPDPE-treated cells, or 5 µM 

forskolin, 1 mM IBMX and 100 µM opioid antagonist naloxone for chronic DAMGO 

and DPDPE-treated cells, to precipitate cAMP overshoot.  In some experiments, 

DAMGO-containing media was replaced with media containing 5 µM forskolin, 1 mM 

IBMX, 1 µM MOR antagonist CTAP and 1 µM Gi/o-coupled receptor agonist.  After 10 

min at 37°C, the assay was stopped with ice cold 3% perchloric acid and cAMP 

accumulation was quantified as described above.  Overshoot was calculated as either 

percent cAMP overshoot or as a percent of forskolin-stimulated cAMP accumulation in 

the absence of opioid agonist. 

Isobologram analysis - An isobologram for agonists (SNC80 and DAMGO) with 

different maxima and therefore a variable potency ratio was constructed based on the 

following equation (Tallarida, 2006): 
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The parameters for the equation were based on values from the individual concentration-

effect curves for DAMGO and SNC80.  As the more efficacious drug in these 

experiments, DAMGO was assigned as Drug B and SNC80 as Drug A (Tallarida, 2006).  

B50 and Ac represent the EC50 of DAMGO and SNC80, respectively.  Eb and Ec represent 

the maximal effect (fmol [35S]GTPγS bound/mg) produced by DAMGO and SNC80, 

respectively.  The equation was solved for either a or b (concentration of SNC80 or 

DAMGO in nM, respectively) at the concentration of DAMGO that produced 50 % of its 

maximal effect (Bi).  Therefore, in this case Bi = B50.  The derived (a, b) coordinates were 

fit to exponential one phase decay in GraphPad Prism 5 (San Diego, CA) to produce the 

line of additivity.  Concentration-effect curves for DAMGO were then obtained in the 

presence of set concentrations of SNC80 (1, 5, 10, 20 or 30 nM).  The concentration of 

DAMGO, when in combination with SNC80, needed to produce 50 % of its maximum 

effect was determined and plotted on the isobologram as mean ± S.E.M. for 3 separate 

experiments.  Since the error for all points overlaps the line of additivity they were 
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assumed to not be statistically different than the line and no further statistical analysis 

was conducted.   

Statistical Analysis- All data were analyzed using GraphPad Prism 5 software (San 

Diego, CA).  Data points represent at least three separate experiments in duplicate and are 

presented as mean ± standard error of the mean (S.E.M.), unless otherwise noted.  The 

addition of single agonist concentrations was analyzed by one-way ANOVA with 

Bonferroni’s post-hoc test.  Percent competition values were compared to 100 by one-

sample t-test.  Effects on agonist responses at various concentrations were analyzed by 2-

way ANOVA with Bonferroni’s post-hoc test.  EC50 values were calculated from 

individual concentration-effect curves using non-linear three parameter log [agonist]-

response curve fit analysis in GraphPad Prism and compared for statistical significance 

by unpaired, two-tailed Student’s t-test.  For all tests significance was set at p < 0.05. 

 

Results 

Gi/o-coupled receptors expressed in SH-SY5Y cells 

Human neuroblastoma SH-SY5Y cells were differentiated with retinoic acid (10 

µM for 4 – 7 days) to produce a neuronal-like phenotype.  Differentiation increased MOR 

density from 232 ± 33 fmol/mg protein to 305 ± 42 fmol/mg protein, as identified by the 

specific MOR agonist 3H-DAMGO, and increased the level of AC inhibition by 

DAMGO, as reported previously (Yu and Sadee, 1988; Zadina et al., 1994).  In 

differentiated SH-SY5Y cells, agonists for the following receptors were shown to inhibit 

AC: MOR, DOR, NOPr, α2AR, CB1 and 5-HT1A (Figure 3.1a).  However, the ability of a 

maximal concentration (1 µM) of these agonists to inhibit AC was not equal.  The most 

effective agonist was the MOR agonist DAMGO, followed closely by the DOR agonist 

SNC80 and the NOPr agonist nociceptin/OFQ.  The following agonists had similar 

activity, but caused significantly less inhibition than DAMGO: UK 14304 (α2AR), 

clonidine (α2AR), CP 55,9140 (CB1), 8-OH-DPAT (5-HT1A).  All of the agonists used 

are commonly regarded as full agonists, except clonidine and 8-OH-DPAT, which 

display partial agonist activity in certain assays (Varrault and Bockaert, 1992; Parsley et 
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al., 1999).  However, in this assay, clonidine caused the same degree of cAMP inhibition 

as the full α2AR agonist UK 14304. 

The endogenous expression level of the above identified receptors was 

determined in membranes from differentiated SH-SY5Y cells using maximal 

concentrations of selective radioligands for each receptor.  Receptor densities are listed in 

Table 3.1 and follow the same rank order as the ability of selective agonists for each 

receptor to inhibit AC.   

 

Gi/o-coupled receptors compete for AC 

To evaluate the level of interaction between MOR and other Gi/o-coupled 

receptors in SH-SY5Y cells, maximal concentrations of Gi/o-coupled receptor agonists 

were combined with a maximal concentration of DAMGO.  When added to DAMGO, 

none of the agonists were able to inhibit AC to a greater degree than DAMGO alone 

(Figure 3.1b), indicating that MORs are able to access and inhibit the same AC enzymes 

as other Gi/o-coupled receptors.  We next addressed whether agonists to α2AR, CB1 or 5-

HT1A receptors, which produced lower maximal inhibition than DAMGO, would 

compete with each other for AC.  Even these less efficacious agonists were not able to 

inhibit AC to any greater extent in combination than when applied alone (Figure 3.1c).   

The extent of competition between receptors for AC can be calculated using the 

following equation (Brinkerhoff et al., 2008):  
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where R1 and R2 are two different receptor types giving a theoretical maximum response 

(R1 + R2), which is compared to the experimentally determined effect of R1+2 and the 

effect of the most efficacious agonist alone [max(R1,R2)].  If two receptors do not 

compete, the theoretical additive and experimental additive will be equivalent so there 

will be zero % competition.  When there is complete (100%) competition between two 

receptors, the experimental addition of both agonists does not increase the response over 

the most efficacious agonist alone.  Using the data from experiments in SH-SY5Y cells 

described above, complete competition was observed for all receptor pairs (Table 2; p > 
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0.05 compared to 100 % by one sample t-test).  In addition, the DOR agonist SNC80 or 

the NOPr agonist nociceptin/OFQ occluded responses from the other less effective 

agonists, resulting in competition that was not significantly different from 100 % (Table 

3.3; p > 0.05, one sample t-test).  Therefore, at maximal agonist concentrations, Gi/o-

coupled receptors, including the opioid receptors, compete for a shared pool of AC.         

 

MOR and DOR share G proteins 

 Interactions between receptors could be occurring at the level of AC or G protein.  

To evaluate this we studied the interaction between MOR and DOR for stimulation of G 

proteins as measured by binding of [35S]GTPγS.  Maximum concentrations of DAMGO 

stimulated a greater degree of [35S]GTPγS binding than SNC80, consistent with their 

relative degrees of AC inhibition and the greater expression of MOR compared to DOR 

in these cells.  When added together, DAMGO and SNC80 stimulation of [35S]GTPγS 

binding was similar to binding stimulated by DAMGO alone (p > 0.05 comparing 

DAMGO to DAMGO/SNC80 by one-way ANOVA with Bonferroni’s post-test) and 

significantly less than the theoretical additive (p < 0.01 comparing R1 + R2 to 

DAMGO/SNC80 by one-way ANOVA with Bonferroni’s post-test) (Figure 3.2a), giving 

a percent competition between DAMGO and SNC80 of 88 ± 2 %, similar to the level of 

competition between these two agonists for AC.  These results indicate significant 

sharing of G proteins between MOR and DOR in differentiated SH-SY5Y cells.   

It has been proposed that MOR and DOR heterodimerize and that these oligomers 

can activate PTX-resistant G proteins (George et al., 2000).  However, in the 

differentiated SH-SY5Y cells used in our experiments, [35S]GTPγS binding stimulated by 

the combination of DAMGO and SNC80 was completely eliminated by PTX treatment 

(Figure 3.2b; PTX 100 ng/ml, 24 h), indicating that the combination of agonists still 

signals through PTX-sensitive Gαi/o proteins.  In addition, PTX did not alter spontaneous 

[35S]GTPγS binding.  Similarly, AC inhibition by the combination of DAMGO and 

SNC80 was also blocked by 24 h pretreatment with PTX (data not shown).   
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Isobolographic analysis of interactions between MOR and DOR agonists 

Combinations of maximally effective concentrations of agonists resulted in less 

than additive effects and predict competition for a common effector; however, at lower 

agonist concentrations it should be possible to identify additive, sub-additive and 

synergistic interactions.  To this end, the concentration dependence of DAMGO to 

stimulate [35S]GTPγS binding was determined in the presence of a sub-maximal 

concentration of SNC80.  Addition of 30 nM SNC80 with DAMGO did not significantly 

change the potency of DAMGO to stimulate [35S]GTPγS binding (Figure 3.3a; EC50 of 

DAMGO alone = 121 ± 32 nM, EC50 of DAMGO + 30 nM SNC80 = 64 ± 12 nM, p > 

0.05), and at maximal concentrations of DAMGO the level of [35S]GTPγS binding was 

similar in the presence or absence of SNC80 (at 1 µM and 10 µM DAMGO, p > 0.05 by 

two-way ANOVA with Bonferroni’s post-test) and significantly less than the theoretical 

additive (at 10 µM DAMGO, p < 0.05 by two-way ANOVA with Bonferroni’s post-test; 

Figure 3.3a).  However, at lower concentrations of DAMGO, combination with 30 nM 

SNC80 was similar to the theoretical additive (Figure 3.3a), indicating an additive 

interaction between MOR and DOR agonists until G proteins become limiting, at which 

point DAMGO is occlusive.  

Additive actions of agonists or deviations from additivity can be observed 

graphically using an isobologram (Tallarida, 2006).  An isobologram for combinations of 

DAMGO and SNC80 that produced 50 % of the maximal DAMGO effect was 

constructed based on values from the individual concentration-effect curves for DAMGO 

and SNC80 using the equation described in Methods (Tallarida, 2006).  The line of 

additvity is not linear because DAMGO and SNC80 have different maxima and therefore 

a variable potency ratio.  [35S]GTPγS concentration-effect curves for DAMGO were 

performed in the presence of low concentrations of SNC80.  The concentration 

combination that was required to produce 50 % of the maximal DAMGO effect was 

plotted on the isobologram.  At these low concentrations, SNC80 produced an additive 

interaction when combined with DAMGO, as indicated by points falling on the line of 

additivity (Figure 3.3b).  This agrees with results above and indicates that MOR and 
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DOR share a common set of G proteins that are activated additively at low concentrations 

but sub-additively when G proteins become limiting.  

 The binding of [35S]GTPγS is time-dependent with a t1/2 of approximately 20 min 

for DAMGO or SNC80-stimulated binding.  Therefore, at time points shorter than 20 

min, G proteins should not be limiting.  When [35S]GTPγS binding was measured after a 

10 or 20 min incubation, maximal concentrations of DAMGO and SNC80 were similar to 

the theoretical additive (Figure 3.3c) with competition between receptors only 12 ± 8.6 % 

after 10 min, increasing to 33 ± 11% after 20 min.  These results are in agreement with an 

additive interaction of these agonists at less than saturating concentrations when G 

proteins are not limiting.   

 

Heterologous inhibition of AC prevents opioid receptor-mediated cAMP overshoot 

 Chronic administration of opioid agonists and other Gi/o-coupled receptor agonists 

causes a homeostatic sensitization of AC resulting in an overshoot of cAMP production 

upon addition of a competitive antagonist (Sharma et al., 1975).  To determine if MOR 

and DOR accessed the same systems responsible for AC sensitization during chronic 

treatment, cells were treated overnight with the peptidic DOR agonist DPDPE (10 µM) in 

the presence or absence of DAMGO.  DPDPE alone produced an overshoot response 

which was enhanced in the presence of 10 nM, but not 100 nM DAMGO (Figure 3.4).   

 Since MOR and DOR accessed the same pool of AC in both the acute and chronic 

opioid state, we hypothesized that overshoot of cAMP occurring upon precipitation of 

withdrawal from chronic MOR agonist treatment would be prevented by acute addition of 

a DOR agonist.  To test this hypothesis, differentiated SH-SY5Y cells were treated 

overnight with DAMGO (100 nM) and withdrawal was precipitated with the MOR 

antagonist CTAP in the presence or absence of 1 µM SNC80.  The addition of SNC80 

attenuated the AC overshoot response (Figure 3.5).  Moreover, this attenuation was also 

observed with addition of the NOPr agonist nociceptin/OFQ and the α2AR agonists UK 

14304 and clonidine (Figure 3.5).  Agonists that did not inhibit AC as efficiently (CP 

55,9140 and 8-OH-DPAT) were unable to attenuate MOR-mediated cAMP overshoot.   
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 To determine the concentration-relationship of this effect, DAMGO-mediated 

cAMP overshoot was precipitated by CTAP in the presence or absence of varying 

concentrations of SNC80.  The addition of SNC80 reduced DAMGO-mediated overshoot 

in a concentration-dependent manner (Figure 3.6a).  Furthermore, SNC80 inhibited 

cAMP production with a similar potency in vehicle or DAMGO-treated cells (vehicle = 

14.6 ± 7.8 nM, DAMGO-treated = 13.8 ± 7.2 nM).  The effect of SNC80 was via DOR 

because MOR was blocked by the selective antagonist CTAP in both vehicle and 

DAMGO-treated cells, and in separate experiments 1 µM CTAP did not affect AC 

inhibition by 100 nM SNC80 (100 nM SNC80 = 59 ± 3 % cAMP inhibition, 100 nM 

SNC80 + 1 µM CTAP = 55 ± 2 % cAMP inhibition; n = 6, p > 0.05). 

Reciprocally, DOR-mediated cAMP overshoot was attenuated in a concentration-

dependent manner by DAMGO (Figure 3.6b).  In these experiments, cells were treated 

overnight with DPDPE and specific DOR-mediated cAMP overshoot was precipitated 

using the selective DOR antagonist ICI 174,864 (1 µM) in the absence or presence of 

increasing concentrations of DAMGO.  In addition to preventing overshoot, DAMGO 

inhibited AC with a similar potency in vehicle or DPDPE-treated cells (EC50: vehicle-

treated = 32.2 ± 12.5 nM, DPDPE-treated = 29.0 ± 7.1 nM).  1 µM ICI 174,864 did not 

shift the ability of DAMGO to stimulate [35S]GTPγS binding in SH-SY5Y cells (EC50: 

Control = 263 ± 30 nM; with ICI 174,864 = 283 ± 35 nM, p = 0.70, n = 2).  

 

Lack of heterologous tolerance between MOR and DOR 

 The similar EC50 values for AC inhibition in opioid-treated and naïve cells for 

both MOR and DOR agonists suggest a lack of cross-tolerance between these two 

receptors in SH-SY5Y cells.  To confirm this, agonist-stimulated [35S]GTPγS binding 

was measured in membranes from SH-SY5Y cells that were treated overnight with 

vehicle, DAMGO or SNC80.  DAMGO stimulated [35S]GTPγS binding in vehicle-treated 

SH-SY5Y membranes in a concentration dependent manner (Figure 3.7a, EC50 = 86 ± 16 

nM).  Both the maximum effect (vehicle-treated = 121 ± 3.7 % stimulation; DAMGO-

treated = 29 ± 2.9 % stimulation, p < 0.0001) and EC50 (vehicle-treated = 86 ± 16 nM; 

DAMGO-treated = 260 ± 62 nM, p < 0.05) of DAMGO-stimulated [35S]GTPγS binding 
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was significantly attenuated in membranes from cells treated overnight with 1 µM 

DAMGO, indicating the development of tolerance (Figure 3.7a).  In comparison, SNC80-

stimulated [35S]GTPγS binding was similar in membranes from vehicle or DAMGO-

treated cells (Figure 3.7b, vehicle-treated EC50 =  29.8 ± 12.5 nM; DAMGO-treated EC50 

= 34.6 ± 10.8 nM; vehicle-treated max = 53.1 ± 4.7 % stimulation; DAMGO-treated max 

= 56.5 ± 3.5 % stimulation).  The reverse treatment paradigm produced similar results.  

Treatment of SH-SY5Y cells overnight with 1 µM SNC80 produced marked homologous 

tolerance, indicated by a significant reduction in [35S]GTPγS binding by maximal 

concentrations of SNC80 (Figure 3.7c, vehicle-treated = 57.2 ± 3.4 % stimulation; 

SNC80-treated = 14.6 ± 4.8 % stimulation, p < 0.0001).   However, the potency and 

efficacy for DAMGO to stimulate [35S]GTPγS binding was not affected by SNC80 

pretreatment (Figure 3.7d, vehicle-treated EC50 = 69 ± 8.5 nM; SNC80-treated EC50 = 79 

± 1.6 nM; vehicle-treated max = 106.7 ± 7.5 %; SNC80-treated max = 100.7 ± 5.9 %, p > 

0.05).  Unstimulated binding of [35S]GTPγS in the absence of agonist was similar in 

vehicle, DAMGO or SNC80-pretreated cells (vehicle-treated = 9.8 ± 0.6 fmol/mg; 

DAMGO-treated = 11.6 ± 1.4 fmol/mg; SNC80-treated = 11.4 ± 0.6 fmol/mg, p > 0.05 

one-way ANOVA with Bonferroni’s post-test).  Together these results confirm a lack of 

cross-tolerance between MOR and DOR in differentiated SH-SY5Y cells, similar to 

previous reports in undifferentiated cells (Zadina et al., 1994; Alt et al., 2002).  

 

Discussion  

 In this study, we have shown that AC inhibition by agonists to DOR, NOPr, 

α2AR, CB1 and 5-HT1A receptors in differentiated SH-SY5Y cells was occluded by a 

maximal concentration of the MOR agonist DAMGO, suggesting that all of these 

receptors compete for and inhibit the same AC enzymes.  The competition, as shown by 

MOR and DOR, began at the G protein, was additive when the G protein was not 

limiting, and reached an occlusive ceiling at maximal agonist concentrations.  Similar 

competition occurred during chronic agonist exposure such that acute administration of 

agonists to DOR, NOPr and α2AR prevented the expression of AC sensitization 
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following chronic DAMGO-treatment.  However, the cross-talk between MOR and DOR 

did not lead to heterologous tolerance.    

The rank order of AC inhibition by a maximum concentration of full agonists 

acting at Gi/o-coupled receptors in SH-SY5Y cells was MOR > DOR ≥ NOPr > α2AR ≥ 

CB1 = 5-HT1A.  This order is likely determined by the relative receptor expression, which 

follows a similar pattern.  Thus, all of these Gi/o-coupled receptors shared a common pool 

of AC, but the proportion of the AC pool utilized by each receptor was determined by 

receptor density.  A conceptual schematic representing the relative pool of AC accessed 

by each receptor type is shown in Figure 3.8, where the pool of AC shrinks as receptor 

density and the ability to inhibit AC decreases.  The most active agonist, the MOR 

agonist DAMGO, had access to the greatest amount of AC and at a maximal 

concentration occluded effects by agonists to DOR, NOPr, α2AR, CB1 and 5-HT1A 

receptors.  DOR and NOPr agonists were slightly less effective than DAMGO to inhibit 

AC, but still occluded responses from α2AR, CB1 and 5-HT1A receptors.  Agonists to 

α2AR, CB1 and 5-HT1A receptors inhibited AC the least and even these receptors were 

not additive with each other, suggesting that the pool is always limiting even for 

receptors with lower expression levels.   

The ability of all receptors to share AC indicates that barriers to prevent free 

diffusion in the membrane, such as receptor dimers, membrane microdomains, and 

protein scaffolds (George et al., 2000; Alt et al., 2001; Hall and Lefkowitz, 2002; Gomes 

et al., 2004; Allen et al., 2007) do not segregate these receptors from the common pool of 

AC.  Two alternative hypotheses could explain these results.  Free access of receptors to 

all G proteins and AC as predicted by the collision coupling model would allow receptors 

to share a common pool of AC and has recently been discussed as an alternative 

explanation to negative cooperativity data that was attributed to dimerization (Chabre et 

al., 2009).  However, such a scenario would seem unlikely given the evidence that MOR 

diffusion is restricted to sub-micrometer domains (Sauliere et al., 2006).  Secondly, there 

could be complexes of multiple receptors isolated with signaling molecules.  Most of the 

Gi/o-coupled receptors expressed in SH-SY5Y cells have been reported to heterodimerize 

with MOR, including DOR (George et al., 2000; Gomes et al., 2004), NOPr (Wang et al., 
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2005), α2AR (Jordan et al., 2003) and CB1 (Rios et al., 2006), while DOR has been 

shown to form heterodimers with α2AR (Rios et al., 2004).  In addition, preformed 

signaling complexes containing GPCR and multiple effectors have been identified 

(Davare et al., 2001).  If such complexes contained multiple GPCRs with shared G 

protein and AC, and the proportion of complexes containing a certain receptor type was 

related to the receptor density, then these large signalosomes could account for the results 

shown above.  In SH-SY5Y cells, such complexes would always include MOR and could 

include at least five other Gi/o-coupled receptor types (Figure 3.8).  

Agonists for DOR, NOPr and α2AR were able to inhibit AC in the naïve and 

opioid-dependent state.  The rank order of the effectiveness of agonists to inhibit AC 

remained the same in control and DAMGO-dependent cells, so that the most efficacious 

agonists (SNC80 and nociceptin/OFQ) significantly prevented DAMGO-mediated cAMP 

overshoot.  One exception was the α2AR agonist UK 14304, which was equally effective 

as SNC80 and nociceptin/OFQ at preventing DAMGO-mediated overshoot, but 

considerably less efficacious at AC inhibition in the naïve cell.  An increase in α2AR 

density following chronic DAMGO exposure could explain the enhanced UK 14304 

response.  However, in rats, α2AR density in various brain regions was either decreased 

or unchanged following chronic morphine treatment (Smith et al., 1989).  Alternatively, 

the α2AR signaling system may become more efficient after chronic MOR agonist 

treatment.  One mechanism may involve the regulators of G protein signaling (RGS) 

family. Chronic MOR agonist treatment can down-regulate certain RGS proteins 

(Traynor, 2010).  Since RGS proteins are negative regulators of signaling, this down-

regulation could permit increased signaling through α2AR.  In addition, a lack of effect 

on NOPr signaling by the RGS proteins endogenously expressed in SH-SY5Y cells could 

explain the robust signaling through NOPr in SH-SY5Y cells that would not be predicted 

based on NOPr expression levels.     

AC sensitization occurs following chronic MOR occupation and is thought to be 

important for the manifestation of withdrawal (Sharma et al., 1975).  Specifically, 

upregulation of the cAMP/AC/ protein kinase A (PKA) pathway in the locus coeruleus 

(LC) has been identified as a mediator of opioid dependence and withdrawal, most 
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recently by (Zachariou et al., 2008).  Thus, drugs that inhibit the cAMP pathway and can 

counter AC sensitization, such as the Gi/o-coupled receptor agonists presented here, 

would have therapeutic potential in the treatment of opioid withdrawal.  For instance, the 

clinical utility of the α2AR agonist clonidine in opioid withdrawal has been known for 

some time (Gold et al., 1978) and α2AR agonists are often used “off label” to treat or 

prevent opioid withdrawal (Gowing et al., 2009).  Furthermore, the α2AR agonist 

lofexidine, which has been reported to cause fewer side effects and is available in the 

U.K., could become the first non-opiate FDA-approved treatment of opioid withdrawal 

(Yu et al., 2008).   

It is thought that clonidine prevents opioid withdrawal symptoms by reversing 

hyperactivity of noradrenergic neurons in the LC (Aghajanian, 1978).  There are two 

prevalent proposed mechanisms for withdrawal-induced hyperactivity of LC neurons in 

opioid-dependence.  The first is an enhanced input of excitatory glutamate into the LC 

(Aston-Jones et al., 1997).  The second is an intracellular sensitization mediated by 

upregulation of the cAMP pathway, and is supported by data that in vitro, withdrawal-

induced hyperactivity is suppressed by inhibitors of PKA and is enhanced by forskolin or 

an active cAMP analog (Ivanov and Aston-Jones, 2001).  Thus, our findings that 

clonidine can heterologously inhibit cAMP and prevent DAMGO-mediated cAMP 

overshoot, supports a mechanism for clonidine in opioid withdrawal.     

 NOP and CB1 receptors are also co-expressed with MOR in LC neurons, where 

NOPr was found to activate the same population of K+ channels as MOR and α2AR 

(Connor et al., 1996; Scavone et al., 2009).  Furthermore, intracerebroventricular 

injection of nociceptin/OFQ prevented naloxone-precipitated withdrawal symptoms in 

morphine-dependent rats, and the non-peptidic NOPr agonist Ro 64-6198 reduced the 

expression of morphine-withdrawal jumping in mice when administered just prior to 

precipitation of withdrawal (Kotlinska et al., 2000; Kotlinska et al., 2003).  This is again 

consistent with our findings that administration of nociceptin/OFQ during antagonist-

precipitated withdrawal reduced cAMP overshoot and supports an intracellular 

mechanism of competitive inhibition of shared AC.  Although the CB1 agonist CP 55,940 

did not prevent MOR-mediated cAMP overshoot in SH-SY5Y cells, CB1 receptors, if co-
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expressed with MOR in sufficient quantities, would be predicted to prevent morphine-

withdrawal signs through a similar intracellular mechanism of AC inhibition.  This is 

pertinent because levels of CB1 in the brain are generally high and acute administration of 

cannabinoid agonists Δ9-tetrahydrocannabinol or anandamide to morphine-dependent 

rodents prevented withdrawal symptoms including jumping, weight loss, wet dog shakes 

and diarrhea, although the mechanism or site of action was not determined (Hine et al., 

1975; Vela et al., 1995).     

In contrast to α2AR, NOPr and CB1 receptors, the role of DOR in attenuating 

MOR-mediated withdrawal may be less relevant in vivo.  Although we have shown that 

DOR shares AC with MOR, and the DOR agonist SNC80 inhibits DAMGO-mediated 

cAMP overshoot in SH-SY5Y cells, an in vivo intracellular mechanism between MOR 

and DOR to prevent morphine-withdrawal will obviously depend on co-expression in a 

single neuron.  DOR is not expressed in the LC and although other brain regions are also 

important in withdrawal (Christie et al., 1997), the co-expression of MOR and DOR on 

neurons in other regions is debatable (Gomes et al., 2004; Scherrer et al., 2009).  

Furthermore, administration of the DOR agonist BW373U86 just prior to naloxone-

precipitated withdrawal in morphine-dependent rats did not reduce withdrawal symptoms 

(Lee et al., 1993).   

 In conclusion, these studies have shown that all identified Gi/o-coupled receptors 

endogenously expressed in differentiated SH-SY5Y cells shared a common pool of AC 

so that spatial barriers did not prevent specific receptor access.  The interaction likely 

begins at the G-protein level for all receptors, but certainly does for MOR and DOR.  At 

this stage, we cannot distinguish between a lack of compartmentalization and the 

presence of signalosomes that contain several receptor types and signaling proteins.  

However, biophysical data on MOR membrane diffusion would tend to support a model 

in which there is organization of receptors (Sauliere et al., 2006).  Regardless of the 

model, heterologous inhibition of shared AC by DOR, NOPr and α2AR agonists 

prevented the expression of cAMP overshoot in MOR agonist-dependent cells.  Thus, 

these studies support an intracellular mechanism for the prevention of morphine-

withdrawal symptoms by acute administration of α2AR, NOPr or CB1 receptor agonists.   
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Table 3.1: Receptor density in differentiated SH-SY5Y cells.   
Receptor numbers in cell membranes were determined using selective radioligands at a 
maximal concentration as described in Methods.  Results are presented as mean fmol 
radioligand bound/mg protein ± S.E.M. (n = 6). 
 
Receptor Type+  Radioligand Receptor density  

(fmol/mg protein ± SEM) 

MOR   3H-DAMGO 305 ± 42 

DOR   3H-DPDPE 191 ± 21 

CB1  3H-CP 55,940 60 ± 25 

α2AR   3H-UK 14304 43 ± 11 

NOPr    3H-nociceptin/OFQ 30 ± 11 

+5-HT1A not tested 
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Table 3.2: Competition between indicated agonists (1 µM) for acute inhibition of 
AC.   
Percent competition was calculated as described in Results (Brinkerhoff et al., 2008) 
using experimental data shown in Figure 3.1.  The percent competition from three 
individual experiments was compiled and is presented as mean ± SEM. 
 
Agonist R1 

(receptor) 
Agonist R2 

(receptor) 
% competition  
(mean ± SEM) 

DAMGO (MOR) SNC80 (DOR) 78 ± 8 

DAMGO (MOR) Nociceptin/OFQ (NOPr) 97 ± 12 

DAMGO (MOR) UK 14304 (α2AR) 115 ± 10 

DAMGO (MOR) Clonidine (α2AR) 106 ± 22 

DAMGO (MOR) CP 55,9140 (CB) 121 ± 24 

DAMGO (MOR) 8-OH-DPAT (5-HT1A) 97 ± 13 

   

UK 14301 (α2AR) CP 55,9140 (CB) 95 ± 19 

8-OH-DPAT (5-HT1A) Clonidine (α2AR) 95 ± 16 

8-OH-DPAT (5-HT1A) CP 55,9140 (CB) 83 ± 6 
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Table 3.3:  Competition between 1 µM SNC80 or nociceptin/OFQ and other Gi/o-
coupled receptor agonists for acute inhibition of AC.   
Inhibition of AC by 1 µM of agonist(s) alone or in combination was performed as 
described for Figure 3.1 and in Methods.  Percent competition was calculated from three 
individual experiments, in duplicate, as described for Table 3.2. 
 
Agonist R1 

(receptor) 
Agonist R2 

(receptor) 
% competition  
(mean ± SEM) 

SNC80 (DOR) Nociceptin/OFQ (NOPr) 79 ± 18 

SNC80 (DOR) UK 14304 (α2AR) 84 ± 30 

SNC80 (DOR) Clonidine (α2AR) 72 ± 21 

SNC80 (DOR) CP 55,9140 (CB) 88 ± 32 

SNC80 (DOR) 8-OH-DPAT (5-HT1A) 119 ± 12 

   

Nociceptin/OFQ (NOPr) UK 14304 (α2AR) 108 ± 15 

Nociceptin/OFQ (NOPr) Clonidine (α2AR) 119 ± 11 

Nociceptin/OFQ (NOPr) CP 55,9140 (CB) 119 ± 7 

Nociceptin/OFQ (NOPr) 8-OH-DPAT (5-HT1A) 124 ± 10 
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Figure 3.1: Gi/o-coupled receptors endogenously expressed in SH-SY5Y cells share a 
common pool of AC.  A, acute cAMP inhibition of 5 µM forskolin-stimulated AC by 1 
µM of the indicated agonist alone.  Agonist (receptor) = DAMGO (MOR), SNC80 
(DOR), OFQ (NOPr), UK 14304 (α2AR), clonidine (α2AR), CP 55,940 (CB1), 8-OH-
DPAT (5-HT1A).  ***p < 0.001 compared to DAMGO by one-way ANOVA with 
Bonferroni’s post-test.  B, co-incubation with 1 µM DAMGO occludes inhibition by 1 
µM of all indicated agonists.  All bars are not statistically different from 1 µM DAMGO 
alone (p > 0.05 by one-way ANOVA with Bonferroni’s post-test).  C, lower efficacy 
agonists (1 µM) were also not additive when co-administered in the indicated pairs (p > 
0.05 for all pairs when compared to the most efficacious agonist of the pair by one-way 
ANOVA with Bonferroni’s post-test).  Data are presented as mean ± S.E.M. (n = 4, in 
duplicate) of percent cAMP inhibition, where stimulation by 5 µM forskolin alone is 
represented as 0%. 
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Figure 3.2:  MOR and DOR share pertussis toxin-sensitive G proteins.  A, 
stimulation of [35S]GTPγS binding in membranes from SH-SY5Y cells after 60 min 
incubation with 1 µM DAMGO or SNC80 alone or in combination (DAMGO/SNC80).  
Incubation with DAMGO and SNC80 in combination (DAMGO/SNC80) did not 
significantly increase [35S]GTPγS binding more than DAMGO alone (p >  0.05 by one-
way ANOVA with Bonferroni’s post-test), and stimulated significantly less [35S]GTPγS 
binding than the theoretical additive of the individual responses (R1 + R2) (**p < 0.01 by 
one-way ANOVA with Bonferroni’s post-test).  B, pretreatment of SH-SY5Y cells with 
pertussis toxin (PTX, 100 ng/ml) for 24 h prior to membrane preparation blocked 
stimulation of [35S]GTPγS binding by 1 µM DAMGO, SNC80 or the combination 
(DAMGO/SNC80).  Pertussis toxin treatment did not alter spontaneous [35S]GTPγS  
binding in the absence of agonist.  Data are presented as mean ± S.E.M. (n = 3, in 
triplicate). 
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Figure 3.3:  DAMGO and SNC80 activation of G protein is additive at 
concentrations or time-points when G protein is not limiting.  A, concentration-
dependent stimulation of [35S]GTPγS binding in SH-SY5Y membranes following 60 min 
incubation with various concentrations of DAMGO alone (filled squares) or DAMGO 
with 30 nM SNC80 (open squares).  The EC50 of DAMGO is not significantly altered by 
the addition of 30 nM SNC80 (DAMGO alone = 121 ± 32 nM, DAMGO + 30 nM 
SNC80 = 64 ± 12 nM, p = 0.14 by two-tailed Student’s t-test).  Co-incubation of 
DAMGO with 30 nM SNC80 produces additive [35S]GTPγS binding similar to the 
theoretical additive curve (triangles), which diverges only when DAMGO becomes 
occlusive at maximal concentrations (*p < 0.05 at 10 µM for “DAMGO + 30 nM 
SNC80” compared to the “theoretical additive” by two-way ANOVA with Bonferroni’s 
post-test; n = 4, in duplicate).  B, Isobologram for agonists with a variable potency ratio 
calculated as described in Methods.  Stimulation of [35S]GTPγS binding by DAMGO was 
conducted in the presence of indicated concentrations of SNC80.  Concentration 
combinations that produced 50 % of the maximum effect of DAMGO alone are plotted 
from 3 separate experiments as mean ± S.E.M.  Points on the line indicate additivity 
between DAMGO and SNC80.  C, stimulation of [35S]GTPγS binding in SH-SY5Y 
membranes following incubation with 1 µM DAMGO or SNC80 alone or in combination 
for 10 or 20 min, before the incubation reaches steady state.  At both time-points, co-
incubation with DAMGO and SNC80 (DAMGO/SNC80) is greater than DAMGO alone 
(*p < 0.05 by one-way ANOVA with Bonferroni’s post-test) and similar to the 
theoretical additive (R1 + R2) (p > 0.05 by one-way ANOVA with Bonferroni’s post-
test; n = 2, in triplicate).   
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Figure 3.4:  MOR and DOR share AC during chronic agonist administration.  SH-
SY5Y cells were treated overnight with vehicle (open bars) or 10 µM DPDPE (hatched 
bars) in the presence or absence of the MOR agonist DAMGO (10 nM or 100 nM) to 
induce dependence.  Withdrawal was precipitated with the opioid antagonist naloxone 
(100 µM) in the presence of 5 µM forskolin.  Data are presented as mean ± S.E.M. (n = 4, 
in duplicate) of the percent of forskolin-stimulated cAMP, where forskolin alone is 100% 
and is indicated by the dashed line.  Overnight incubation with DPDPE produced 
overshoot on its own and enhanced the overshoot produced by 10 nM, but not 100 nM 
DAMGO.  ***p < 0.001 compared to the vehicle with the same concentration of 
DAMGO. 
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Figure 3.5:  DAMGO-mediated cAMP overshoot is reduced by heterologous 
inhibition of shared AC by agonist to DOR, NOPr or α2AR.  AC sensitization was 
allowed to develop by incubating SH-SY5Y cells overnight with 100 nM DAMGO.  To 
precipitate withdrawal, DAMGO-containing media was replaced with media containing 5 
µM forskolin, 1 mM IBMX and 1 µM CTAP in the presence or absence of 1 µM of non-
MOR agonist, as indicated, for 10 min.  Data are presented as mean ± S.E.M. of percent 
cAMP overshoot, where stimulation by forskolin alone is represented as 0%.  Three of 
six experiments, in duplicate, were compiled that produced > 100% DAMGO overshoot 
in the absence of non-MOR agonist.  **p < 0.01, ***p < 0.001 compared to DAMGO 
overshoot without non-MOR agonist by one-way ANOVA with Bonferroni’s post-test. 



 

88 

 

 
Figure 3.6:  Inhibition of cAMP by MOR or DOR agonists is similar for sensitized 
or non-sensitized AC.  A, SH-SY5Y cells were incubated with vehicle (filled squares) or 
the MOR agonist DAMGO (100 nM, open squares) overnight to induce dependence.  
Withdrawal was precipitated with the MOR antagonist CTAP (1 µM) in the presence of 5 
µM forskolin.  Acute cAMP inhibition was produced by including various concentrations 
of the DOR agonist SNC80 in the precipitating media.  The concentration-response of 
SNC80 to inhibit cAMP was similar in control and DAMGO-dependent cells (EC50: 
vehicle-treated = 14.6 ± 7.8 nM, DAMGO-treated = 13.8 ± 7.2 nM, p > 0.05 by two-
tailed student’s t-test).  B, Cells were incubated with vehicle (filled squares) or the DOR 
agonist DPDPE (10 µM, open squares) overnight to induce dependence.  Receptor-
specific withdrawal was precipitated with the DOR antagonist ICI 174,864 (1 µM) in the 
presence of 30 µM forskolin.  Various concentrations of the MOR agonist DAMGO were 
included in the precipitating media to acutely inhibit cAMP.  The concentration-response 
of DAMGO to inhibit cAMP was similar in control and DPDPE-withdrawn cells (EC50: 
vehicle-treated = 32.2 ± 12.5 nM, DPDPE-treated = 29.0 ± 7.1 nM, p > 0.05 by two-
tailed Student’s t-test).  Data are presented as mean pmol cAMP/mg protein ± S.E.M. (n 
= 3 or 4, in duplicate).  cAMP produced by forskolin alone is indicated by the dashed 
line. 
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Figure 3.7:  Lack of heterologous tolerance between MOR and DOR.  SH-SY5Y 
cells were incubated with 1 µM of the MOR agonist DAMGO (A, B) or the DOR agonist 
SNC80 (C, D) for 24 h prior to membrane preparation.  [35S]GTPγS binding in 
membranes from treated cells was stimulated by incubation for 60 min with various 
concentrations of DAMGO (A, D) or SNC80 (B, C).  Chronic treatment with 1 µM 
DAMGO reduced the potency of DAMGO (EC50: vehicle-treated = 86 ± 16 nM; 
DAMGO-treated = 260 ± 62 nM, p = 0.04), but not SNC80 (EC50: vehicle-treated = 29.8 
± 12.5 nM; DAMGO-treated EC50 = 34.6 ± 10.8 nM, p > 0.05).  Similarly, chronic 
treatment with 1 µM SNC80 almost completely abolished SNC80-mediated [35S]GTPγS 
binding, but did not alter the potency of DAMGO-mediated [35S]GTPγS binding (EC50: 
vehicle-treated = 69 ± 8.5 nM; SNC80-treated = 79 ± 1.6 nM, p > 0.05).  EC50 statistical 
comparisons were made by two-tailed Student’s t-test. 
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Figure 3.8:  Schematic depicting the accessibility of Gi/o-coupled receptors to 
portions of the total AC pool.  The amount of the AC pool utilized by each receptor 
type is related to receptor expression.  The most highly expressed receptor MOR shares 
AC with all other receptor types.  The other receptor types share AC in a manner 
predicted by receptor density such that three receptor groupings exist – one that contains 
MOR only, one that contains MOR, DOR and NOPr, and one that contains MOR, DOR, 
NOPr, α2AR, CB1 and 5-HT1A. 
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Chapter IV 

Discussion and Future Directions 
 

 The studies presented in this thesis have described cellular and molecular aspects 

of GPCR signaling using opioid receptors as a model, either heterologously expressed in 

HEK293 cells or endogenously expressed in SH-SY5Y cells.  I have provided evidence 

that MOR and DOR have a differential requirement for cholesterol to sustain signaling.  

MOR required cholesterol for coupling to G proteins and efficient signaling to AC, while 

DOR signaling was unaffected by removal of cholesterol.  Hypotheses regarding the 

basis for this differential dependence on cholesterol were proposed previously in this 

thesis, and approaches to test these hypotheses are presented below.   

In addition, a portion of the MOR population was associated with markers of 

cholesterol-enriched membrane microdomains.  In contrast, DOR was not associated with 

these markers, even after agonist treatment.  Thus, MOR and DOR are likely not 

compartmentalized together within cholesterol-enriched membrane microdomains.  

Regardless, MOR and DOR were observed to compete for a common pool of G proteins 

and AC in SH-SY5Y cells.  Moreover, this was not limited to MOR and DOR, as all Gi/o-

coupled receptors endogenously expressed in SH-SY5Y cells were able to access a 

shared pool of AC.  This applied to both an acute measure (AC inhibition) and a chronic 

measure (cAMP overshoot) of receptor activation.  Given that multiple receptors can 

share AC and reduce MOR-mediated cAMP overshoot, receptors that are co-expressed 

on MOR-containing neurons may be utilized in the treatment of opioid withdrawal 

symptoms.  

Although I have ruled out co-association of receptors within cholesterol-enriched 

membrane microdomains as a mechanism by which receptors compete for AC (at least 

for MOR and DOR), I have proposed two hypotheses to explain the observed 

competition.  Firstly, free diffusion of receptors would allow each receptor type access to 
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G protein and AC.  Secondly, MOR, DOR and other Gi/o-coupled receptors could coexist 

in large protein complexes that contain multiple receptor types and signaling molecules, 

which have been termed signalosomes.  These two alternative possibilities cannot be 

differentiated based on the work presented in this thesis.  Strategies to address this and 

other unanswered questions that have arisen from this work are presented below. 

 

Future directions related to compartmentalization  

Differentiating between free diffusion and multi-receptor signalosomes  

 One of the major unanswered questions arising from work described in this thesis 

is whether the ability of all Gi/o-coupled receptors expressed in SH-SY5Y cells to share 

AC is due to competition between multiple receptors in a signalosome or due to free 

diffusion of receptors.  Although I argue that studying a large number of receptors 

increases the likelihood that interactions result from unconstrained diffusion, I cannot 

rule out the possibility that multiple receptors may be somehow tethered together (i.e. 

compartmentalized).  Especially since biophysical studies have shown restricted MOR 

membrane diffusion in SH-SY5Y cells that would tend to support a model in which there 

is organization of receptors (Sauliere et al., 2006; Sauliere-Nzeh Ndong et al., 2010).  In 

fact, assuming AC was not limiting, the lack of additive cAMP inhibition observed 

between the lower efficacy agonists also supports a compartmentalization model.  One 

approach to differentiate between these two possible scenarios would be to evaluate the 

existence of large multimeric complexes containing multiple receptor types. 

 The literature contains many reports of interactions between two proteins, such as 

receptor-receptor or receptor-effector pairs.  Many of these reports employed BRET or 

FRET, to study close (< 100 Å) interactions.  These techniques require the use of two 

fluorescent or bioluminescent tags, which limits the detection of interactions to only two 

proteins at one time and prevents study in a truly native environment.  Therefore, these 

techniques are not ideal to identify interactions between multiple proteins.  To study 

multimeric complexes, immunoprecipitation would be more appropriate and has been 

employed to identify β2AR signaling complexes (Davare et al., 2001).  Though 
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immunoprecipitation is not sensitive enough to identify protein-protein interactions, it is a 

valuable tool to detect proteins that may be in a complex.   

 Ideally, complexes of endogenously expressed receptors would be identified using 

antibodies to the native receptor.  For example, Davare et al. (2001) identified β2AR 

complexes from rat brain using an antibody to the endogenous β2AR.  Unfortunately, 

there is a general lack of availability of quality antibodies to the GPCRs used in this 

study.  Thus, to study receptor complexes in SH-SY5Y cells, one of the receptors could 

be heterologously expressed in a tagged form.  The tagged receptor could then be 

immunoprecipitated and the presence of other endogenous Gi/o-coupled receptors 

identified in the supernatant or the pelleted complex by radioligand binding.  Radioligand 

binding has been performed in detergent extracts (Huang et al., 2007a) and in the soluble 

and pelleted fractions of immunoprecipitates (Mehta et al., 2007).  Associated signaling 

molecules, such as AC isoforms and G protein subunits, could be determined by Western 

blot.  Receptors present in the immunoprecipitated pellet would be assumed to be in 

complex with the tagged receptor, whereas receptors in the supernatant would not be in 

complex.  In this way it would be possible to determine the receptor composition of 

multimeric complexes.  I would expect such experiments to show that MOR will exist in 

complexes with all other receptors based on the functional data presented here and the 

fact that MOR has been shown to heterodimerize individually with DOR, NOPr, α2AR 

and CB1 receptors (Jordan and Devi, 1999; George et al., 2000; Gomes et al., 2004; 

Wang et al., 2005; Rios et al., 2006; Vilardaga et al., 2008).     

Based on evidence in this thesis, I hypothesized that the number of complexes 

occupied by a receptor and the fraction of the AC pool available to a receptor type is 

proportional to receptor expression levels.  This could be tested by expressing increasing 

levels of receptor (by increasing the concentration of transfected cDNA) or decreasing 

receptor levels (with RNAi), then determining the effect on AC inhibition and the 

composition of receptor immunoprecipitates.  For example, co-expression of increasing 

amounts of α2AR should result in increased recovery of α2AR in a FLAG-MOR 

precipitated pellet.  If the increased recovery is specific to the pellet and not the 

supernatant, then it can be assumed that α2AR is in complex with MOR.  If this was true 
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for multiple receptor types, it would indicate that the presence of receptors in complexes 

is determined by receptor expression levels, although there is the caveat that this could 

depend on specific characteristics of the receptor type.  Functionally, this could be 

determined by expressing higher amounts of other receptors (e.g. α2AR, CB1 or 5-HT1A 

receptors) in SH-SY5Y cells, which should allow agonists at these receptors to more 

effectively inhibit AC.  If AC inhibition mediated by the overexpressed receptor is more 

pronounced than AC inhibition by MOR, then a maximally effective concentration of 

agonist to the overexpressed receptor should occlude the response by a MOR agonist.  

Although not direct proof, this would be consistent evidence that increasing receptor 

concentration increases the number of complexes the receptor occupies, and in turn, the 

amount of accessible AC.   

If the ability of GPCRs to share AC is due to unrestricted diffusion and 

independent of complex formation, then simply increasing the efficiency of the receptor 

to signal without increasing receptor number should enhance the amount of AC the 

receptor can access.  DOR, but not MOR, signaling is modulated by RGS4 endogenously 

expressed in SH-SY5Y cells, and down-regulation of RGS4 by shRNA enhances both the 

potency and efficacy of AC inhibition by DOR agonists (Wang et al., 2009).  Selectively 

enhancing DOR agonist-mediated inhibition of AC following RGS4 down-regulation 

should allow a DOR agonist to inhibit AC to a greater extent than a MOR agonist.  Then, 

as the higher efficacy system, DOR agonists should occlude responses by a MOR 

agonist.  Combined with the finding that RGS4 does not co-immunoprecipitate with 

MOR in HEK293 cells (Wang et al., 2009), this would provide evidence for a free 

diffusion model rather than MOR, DOR and RGS4 containing complexes.      

     

Future directions related to cholesterol/membrane microdomains 

Cholesterol as a modulator of functional selectivity 

 It has been reported that cholesterol can stabilize active and inactive 

conformations of GPCRs depending on the receptor type.  For example, evidence 

presented here and elsewhere (Gaibelet et al., 2008) suggests that cholesterol stabilizes a 

high-affinity conformation of MOR, whereas β2AR (Rybin et al., 2000; Hanson et al., 
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2008) and α1AR (Lei et al., 2009) are held in an inactive conformation by cholesterol.  In 

my study and the study by Gaibelet et al. (2008), the decrease in DAMGO binding was 

mimicked when G proteins were decoupled from receptors with sodium and/or guanine 

nucleotide.     

It is now commonly accepted that a single type of receptor can display multiple 

intracellular responses depending on the environment of the receptor and the ligand 

activating the receptor.  This phenomenon has been described using multiple terms 

including functional selectivity, agonist-directed signaling, biased agonism and protean 

agonism (Urban et al., 2007).  Functional selectivity has been identified for MOR 

signaling, trafficking and desensitization (Whistler et al., 1999; Zheng et al., 2008b; 

Bailey et al., 2009).  For functional selectivity to occur, receptors must be able to form 

more than one “active” conformation.  If cholesterol affects some agonist-recognizable 

conformations of MOR more than others, then the presence of cholesterol or location of 

MOR in cholesterol-enriched or -depleted membrane microdomains could modulate 

functional selectivity.   

The hypothesis that membrane microdomains confer functional selectivity of 

MOR has been recently reviewed (Simmons, 2008).  This is based primarily on evidence 

from two studies of morphine and etorphine signaling to ERK and AC in putative raft and 

non-raft membrane microdomains (Zheng et al., 2008a; Zheng et al., 2008b).  Etorphine, 

which binds to G protein-coupled and -uncoupled forms of MOR, (Lee et al., 1999), 

stimulates ERK via β-arrestins and partitions MOR out of caveolin-containing 

membranes in a β-arrestin-dependent manner (Zheng et al., 2008a; Zheng et al., 2008b).  

This etorphine-mediated ERK stimulation was not altered by cholesterol removal, which 

the authors interpreted as evidence that the β-arrestin-mediated activation of ERK by 

etorphine occurs in non-raft membranes (Zheng et al., 2008a).  In contrast, morphine-

mediated ERK stimulation was found to be G protein-dependent and was attenuated 

following cholesterol depletion (Zheng et al., 2008a; Zheng et al., 2008b).  This 

cholesterol-dependent, G protein-coupled conformation of MOR is likely also recognized 

by etorphine, since cholesterol depletion attenuates etorphine-mediated AC inhibition, a 

G protein-dependent response (Zheng et al., 2008a).  Together, the authors of these 
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studies conclude that morphine and etorphine-mediated activation of G proteins requires 

MOR to be in membrane microdomains, while etorphine activation of ERK occurs in 

non-raft membranes.        

I propose a related, but more conservative, explanation that accounts for the role 

of cholesterol binding to the receptor itself, irrespective of cholesterol-enriched 

membrane microdomains.  I propose that etorphine recognizes MOR in both a G protein-

coupled conformation that is dependent on cholesterol and an additional non-G protein-

coupled conformation that is not dependent on cholesterol and not able to bind morphine.   

This recognition of different MOR conformations with a differential requirement for 

cholesterol could lead to the observed functional selectivity.  This hypothesis requires 

that the binding of etorphine to MOR is not affected by cholesterol removal.  Agonists 

structurally similar to etorphine, such as buprenorphine and dihydroetorphine, that do not 

display an affinity shift in the presence of sodium and guanine nucleotide may also 

recognize this MOR conformation.  To investigate this hypothesis, the effect of 

cholesterol depletion on binding of various agonists including those that exhibit a shift in 

affinity after uncoupling G protein with sodium ions and guanine nucleotides (morphine, 

fentanyl, methadone) and those that do not (etorphine, dihydroetorphine, buprenorphine) 

can be examined to identify agonist-specific differences in the importance of cholesterol 

in MOR signaling. 

 Unlike MOR, I found that cholesterol removal did not affect AC sensitization 

mediated by the peptidic agonist DPDPE or the non-peptidic agonist SNC80 at DOR.  

DOR has been shown to display multiple agonist-induced conformational states, which 

have been observed as BRET signal between DOR and heterotrimeric G protein tagged at 

various positions (tagged-Gαi1 or Gγ2) (Audet et al., 2008).  Since DPDPE and SNC80 

were shown to induce different conformations of DOR in BRET assays (Audet et al., 

2008), this suggests that cholesterol is not required for stabilization of at least these two 

agonist-bound receptor conformations.  It would be of interest to measure binding of a 

range of DOR ligands, including partial agonists (e.g. morphine) and antagonists (e.g. 

naltrindole) that produced very different conformations in the BRET study (Audet et al., 

2008).   
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Determining cholesterol binding to MOR and DOR 

 To determine if the differential effects of cholesterol signaling on MOR, but not 

DOR, are indeed due to the ability of MOR to bind cholesterol with higher affinity, 

binding of [3H]cholesterol to purified receptors could be performed.  Purification of 

MOR is enhanced by the addition of cholesteryl hemisuccinate (Kuszak et al., 2009).  

Theoretically, one could measure binding of cholesterol to purified MOR as long as 

cholesterol binding is competitive and has a reasonable off-rate.  Saturation binding of 

[3H]cholesterol to purified membrane proteins solublized in detergent has been 

determined previously for SREBP cleavage-activating protein (SCAP) and Niemann-Pick 

Type C1 protein (NPC1) (Radhakrishnan et al., 2004; Infante et al., 2008).  However, the 

conformation of purified MOR is not equivalent to MOR in membranes, as indicated by a 

decreased ability to bind antagonist in detergent- and cholesterol-containing micelles 

(Kuszak et al., 2009), so the binding of [3H]cholesterol to purified MOR may not be truly 

representative of MOR in the plasma membrane. 

 The binding of [3H]cholesterol observed in vitro could be confirmed in cells using 

the photoactivatable analog of cholesterol [3H]photocholesterol, which has been used 

previously to detect cholesterol binding to synaptophysin (Thiele et al., 2000).  

[3H]Photocholesterol can be introduced into cells as a complex with MβCD and 

covalently linked to proteins by UV irradiation.  Following covalent linkage, FLAG-

tagged MOR or DOR can be immunoprecipitated and the presence of 

[3H]photocholesterol identified by SDS-PAGE and fluorography.  

 

Molecular determinants of MOR association with cholesterol  

 The differential effect of membrane cholesterol removal on MOR and DOR 

signaling was surprising for two highly homologous receptors.  A goal of future 

experiments could be to identify the molecular determinants of the ability of MOR, but 

not DOR, to be modulated by cholesterol and at least partially associate with markers of 

cholesterol-enriched membrane microdomains.  Several potential targets have been 

identified that could influence the interaction of MOR with cholesterol, including the 

cholesterol consensus motif (CCM), binding to caveolin or palmitoylation of the receptor.   



 

98 

 

The CCM (Hanson et al., 2008) is composed of residues in TM 4, while the 

caveolin binding motif (Couet et al., 1997) is located at the end of TM 7 and beginning of 

the C-terminal tail (Figure 4.1).  Therefore, the overall importance of these regions in 

MOR association with cholesterol could be determined using chimeric receptors.  Since 

swapping of entire sections of the receptor could have functional effects unrelated to 

cholesterol, endpoints that are cholesterol-specific should be utilized, such as 

[3H]photocholesterol linkage or cholesterol removal-induced changes in agonist binding 

to wild-type and chimeric receptors at equal expression levels.  Furthermore, since MOR 

partially associated with markers of cholesterol-enriched membrane microdomains, the 

distribution of chimeric receptors in detergent-resistant membranes could be evaluated.  

If a chimeric receptor behaves differently than its wild-type counterpart, follow-up 

experiments can be performed to identify which residues of these possible “motifs” are 

most predictive of cholesterol interactions. 

 MOR and DOR both contain two residues of the proposed CCM (4.39-4.43K and 

4.50W).  However, MOR has an additional Arg at the 4.40 position, which may increase 

the propensity for MOR to bind cholesterol (Figure 4.1).  Strategic point mutations would 

provide a more exact picture of the requirements of this motif for cholesterol binding, 

which could be measured using [3H]cholesterol or [3H]photocholesterol, as described 

above.  If the CCM is sufficient to promote MOR association with cholesterol, 

introduction of 4.40R into DOR should increase [3H]cholesterol or [3H]photocholesterol  

incorporation.  If the CCM is required for MOR interaction with cholesterol, mutation of 

4.40R to the corresponding residue in DOR (4.40A) should decrease [3H]cholesterol or 

[3H]photocholesterol binding to MOR R4.40A.  Functionally, if the proposed CCM is 

required for cholesterol stabilization of MOR in a high-affinity conformation, then MOR 

R4.40A should display decreased binding affinity to DAMGO that is unaltered by 

sodium and GTPγS.  Finally, a percentage of MOR was found to associate with markers 

of cholesterol-enriched membrane microdomains.  If cholesterol binding to the CCM 

regulates this association, then mutated DOR containing the MOR CCM may associate 

with microdomain markers.  In contrast, substitution of DOR residues into the MOR 

CCM could prevent association of MOR with microdomain markers. 
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 As described previously, a caveolin binding motif has been identified 

(ΦXΦXXXXΦ; Φ = F, W or Y; (Couet et al., 1997)) and is present in both MOR and 

DOR, although MOR contains more hydrophobic residues in the area immediately distal 

to this region.  Mutation of these hydrophobic residues (370F and 372I) in MOR to the 

corresponding DOR residues (370L and 372R) may decrease association of MOR with 

caveolin, which could be determined by co-immunoprecipitation of caveolin and FLAG-

MOR F370L/I372R.  However, decreased association with caveolin may not necessarily 

decrease cholesterol binding to MOR, which could be determined using [3H]cholesterol 

or [3H]photocholesterol.  Furthermore, if MOR F370L/I372R can still bind cholesterol, 

coupling of MOR to G proteins may not necessarily be affected by alterations in caveolin 

binding.  Indeed, caveolin has been observed to suppress G protein activity in some 

studies (Li et al., 1995; Huang et al., 2007a), so decreased association with caveolin may 

lead to increased, rather than decreased, signaling by MOR agonists.   

 The residues identified above flank a C-terminal cysteine, and for many GPCRs, 

cysteines in the C-terminal tail are often a site of palmitoylation (Qanbar and Bouvier, 

2003).  It is known that MOR is palmitoylated in an agonist-independent manner, but the 

site of palmitoylation is not located at either of the two cysteines found in the C-terminal 

tail (Chen et al., 1998).  Palmitoylation of mature DOR occurs at the plasma membrane in 

a receptor-activation dependent manner (Petaja-Repo et al., 2006); however, the site(s) of 

DOR palmitoylation are unknown.  The C-terminal tail of DOR contains three cysteine 

residues.  Measuring the incorporation of [3H]palmitate following mutation of these 

residues to alanine would permit identification of the residue(s) that can be palmitoylated.  

If one or more of these DOR cysteines are palmitoylated, this palmitate could substitute 

for cholesterol to allow proper functioning of DOR.  Indeed, palmitic acid covalently 

attached to cysteine 341 in the C-terminal tail of β2AR was resolved in its crystal 

structure at the lipid-packing interface with the cholesterol molecules (Cherezov et al., 

2007).  In contrast, the A2A-adenosine receptor structure contained fully saturated stearic 

acid instead of cholesterol (Jaakola et al., 2008).  Perhaps a saturated fatty acid, such as 

palmitate, binding in an analogous region is sufficient to stabilize DOR.  In this case, 

DOR would not require cholesterol for signaling.  On the other hand, MOR, which is not 



 

100 

 

palmitoylated on the C-terminal tail, may instead bind cholesterol.  This hypothesis could 

be tested by depalmitoylating DOR using hydroxylamine and measuring cholesterol 

binding (using [3H]cholesterol) and high-affinity agonist binding.  Alternatively, high-

affinity agonist binding or [3H]photocholesterol incorporation could be determined for 

DOR mutants in which palmitoylated Cys residue(s) are replaced with Ala.    

 

Overall summary and significance 

Receptor location requirements for potential therapeutic benefit in opioid withdrawal 

In SH-SY5Y cells, endogenously expressed Gi/o-coupled receptors can access the 

same pool of AC and attenuate MOR-mediated cAMP overshoot.  Altered homeostasis of 

the AC/cAMP/PKA pathway has been implicated in withdrawal.  Thus, receptors that are 

co-expressed on neurons with MOR could be targets to prevent the manifestation of 

hyperactive systems, such as cAMP overshoot, that may contribute to withdrawal 

symptoms.  This is a possible mechanism for the clinical utility of the α2AR agonist 

clonidine in opioid withdrawal, and suggests that agonists for other receptors, such as 

NOPr and CB1, may be useful to alleviate withdrawal.  

The utility of designing therapeutics to treat opioid withdrawal based on an 

intracellular mechanism in which receptors can dampen responses from a sensitized, 

shared effector, such as the attenuation of hyperactive LC neurons, obviously requires co-

expression of the receptors in the same neuron.  As described previously, α2AR and 

NOPr co-expression with MOR in the LC, a brain structure relevant to withdrawal, can 

prevent opioid withdrawal-induced hyperactivity.  However, the LC is not the only region 

that contributes to the opioid withdrawal syndrome (Christie et al., 1997).  In mice that 

lacked AC 5, which is prominently expressed in the striatum, certain opioid withdrawal 

symptoms were also attenuated (Kim et al., 2006).  Other brain regions that have been 

implicated in opioid withdrawal include the periaqueductal grey (PAG), dorsal horn of 

spinal cord, several hypothalamic nuclei, nucleus raphe magnus and the rostral 

ventromedial medulla (Christie et al., 1997).  Therefore, Gαi/o-coupled receptors co-

expressed with MOR in other relevant brain regions could reduce certain withdrawal 

symptoms by an intracellular mechanism.  For example, MOR and Gi/o-coupled 
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dopamine D2 receptors are co-expressed in rat striatum (Ambrose et al., 2004).  In 

addition, MOR and NOPr are co-localized on neurons in the rostral ventromedial medulla 

(Vaughan et al., 2001) and are found in similar brain regions in the guinea pig, such as 

ventromedial hypothalamus (Sim and Childers, 1997).  However, MOR and NOPr are not 

co-expressed in spinal cord (Monteillet-Agius et al., 1998).   

Obviously, not all agonists with therapeutic potential in the treatment of opioid 

withdrawal would need to directly modulate the intracellular environment of a MOR-

containing neuron.  Receptors on neurons that converge on MOR-containing neurons 

could also be targets.  In the LC, a major component of withdrawal-induced neuronal 

hyperactivity is due to enhanced input by excitatory glutamatergic neurons (Aston-Jones 

et al., 1997).  Therefore, receptors that act on neurons in series to MOR-containing 

neurons could also have physiological benefit.  For example, 5-HT1A receptor activation 

may have an indirect effect in LC (Berrocoso and Mico, 2007) to decrease noradrenergic 

neuron firing by acting on presynaptic glutamatergic afferent terminals (Bobker and 

Williams, 1989; Pudovkina et al., 2001). 

 As discussed previously, evidence suggests that MOR and DOR do not act at the 

same neuron to prevent opioid withdrawal.  However, co-administration of MOR and 

DOR agonists could still have beneficial effects via actions on neurons in series.  DOR 

has been reported to prevent morphine-withdrawal by an indirect mechanism given that 

continuous administration of BW373U86 throughout morphine exposure did reduce 

naloxone-precipitated withdrawal signs in morphine-dependent rats (Lee et al., 1993).  In 

addition, co-administration of MOR and DOR agonists could have other favorable 

effects, since SNC80 has been shown to synergistically enhance antinociceptive, but not 

sedative effects of MOR agonists in monkeys (Stevenson et al., 2003; Stevenson et al., 

2005).  Synergistic or additive interactions have been observed in antinociception assays 

between MOR and CB1 or α2AR agonists, as well.  Morphine and the CB1 agonist CP 

55,940 produced synergistic antinociception, while additive interactions existed for 

morphine and the α2AR agonist dexmedetomidine (Tham et al., 2005). 
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Relevance of cholesterol in opioid withdrawal 

The relationship between cholesterol/membrane viscosity and opioid withdrawal 

has been reported in studies from over 20 years ago using rodents.  Chronic morphine 

treatment of rats led to a naloxone-reversible increase in plasma cholesterol (Bryant et al., 

1987), brain cholesterol, and viscosity of membranes from the hippocampus and caudate 

(Heron et al., 1982b).  However, substance abusers generally have low cholesterol levels 

due to malnutrition (Gettler, 1991).  Thus, treating opioid-addicted patients with 

cholesterol-lowering drugs, such as statins, is not a likely therapeutic option.  However, 

modulation of membrane viscosity may have some benefit, since treatment of rats 

systemically with lipids that prevented the morphine-induced increase in membrane 

viscosity attenuated opioid withdrawal symptoms (Heron et al., 1982a).  These general 

cholesterol or membrane viscosity effects do not indicate the involvement of membrane 

microdomains, although some biochemical data has identified MOR with microdomain 

markers isolated from rat brain (Huang et al., 2007b).   

 In summary, I have found that cholesterol stabilizes MOR but not DOR in a 

conformation that is capable of binding G proteins and signaling to AC.  Similar findings 

at MOR have been reported by others during preparation of this thesis (Gaibelet et al., 

2008; Zheng et al., 2008a).  Cholesterol depletion attenuated AC sensitization induced by 

MOR, but not DOR, agonists.  Others have implicated membrane microdomains in the 

mechanism of MOR-mediated AC sensitization (Zhang et al., 2009).  However, MOR 

and DOR can access a similar AC pool which, based on the differential distribution of 

these receptors, is not compartmentalized in membrane microdomains.  Thus, the role of 

cholesterol in MOR-mediated AC sensitization is probably independent of membrane 

microdomain localization.  Although modulation of brain cholesterol is an unlikely 

therapeutic target, modulation of membrane viscosity has been shown to reduce opioid 

withdrawal signs in rats (Heron et al., 1982a), and may be involved in the mechanism of 

several neurodegenerative diseases, including Alzheimer’s disease, Krabbe disease and 

Niemann-Pick Type C (Korade and Kenworthy, 2008). 
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Figure 4.1: Serpentine model of MOR.  Residues that satisfy the requirements of the 
putative caveolin binding motif (ΦXΦXXXXΦ; Φ = F, W or Y) are found at the end of 
TM 7 and beginning of the C terminal tail, as outlined with red.  These residues are found 
in both MOR and DOR.  The putative cholesterol consensus motif (CCM; [4.39-
4.43(R,K)]-[4.50(W,Y)]-[4.46(I,V,L)]-[2.41(F,Y)]; Hanson et al., 2008) is located in TM 
4 of MOR (box and insert) and DOR (insert).  MOR contains three of these residues 
(4.43K, 4.50W and 4.40R) highlighted in yellow in the serpentine model and the insert.  
For comparison, DOR contains two of these CCM residues (4.43K and 4.50W; yellow; 
insert).  Residues that do not satisfy the requirements of the CCM are outlined in green.  
Serpentine models were adapted from the Center for Opioid Research and Design, 
University of Minnesota, http://www.opioid.umn.edu/ and are consistent with the original 
published sequence of MOR (Chen et al., 1993a).  Gray residues are conserved between 
opioid receptor types and black residues are highly conserved among many family A 
GPCRs. 
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	If membrane microdomains exist and can selectively recruit certain proteins as proposed by Simons and Ikonen (1997), what are the criteria for such incorporation?  The presence of saturated fatty acid modifications has been shown to help target certai...
	Another possibility is that proteins concentrate in caveolin-enriched domains due to protein-protein interactions with caveolin itself.  For example, Gs, Gi2 and Go were pulled-down with a GST-caveolin fusion protein (Li et al., 1995).  The portion...
	Finally, proteins may associate with membrane microdomains due to interaction with cholesterol.  The best example of this is the cholesterol-binding protein caveolin, which is found in caveolae and is used as a putative membrane microdomain marker.  T...

	Cholesterol and GPCR structure
	Despite the controversy regarding membrane microdomains, it is well-established that cholesterol is an important plasma membrane constituent.  In addition, cholesterol may directly interact with transmembrane proteins, such as GPCRs, since cholesterol...
	Both of the 2AR structures were solved in the presence of an inverse agonist, so cholesterol binding may favor an inactive conformation of this receptor.  In support of this, binding of the inverse agonist timolol, but not the full agonist isoprotere...


	Cholesterol and/or membrane microdomains in opioid receptor signaling
	Cholesterol and/or membrane microdomains in MOR signaling
	A role for cholesterol and membrane viscosity in opioid receptor signaling was appreciated even before the membrane microdomain theory became popular.  The addition of cis-unsaturated fatty acids to synaptosomal membranes from rat brain reduced membra...
	To further study the high-affinity receptor conformation, experiments were performed in the presence of 5 M GTPS with or without 150 mM NaCl, which uncouples G proteins from MOR and prevents high-affinity agonist binding.  The addition of cholestery...
	A more specific role for cholesterol in stabilization of MOR in a high-affinity state was recently elucidated.  In yeast expressing MOR and Gi2, MOR agonist binding is only observed when endogenous ergosterol is removed and replaced with cholesterol,...
	Despite the apparent role of cholesterol in coupling MOR to G proteins, conflicting data exist about the effect of cholesterol removal on MOR agonist-mediated G protein activation, which are summarized in Table 1.2.  In all cases described below, chol...
	Conflicting results also exist regarding the localization of MORs with membrane microdomain markers, which again could be a consequence of different methods employed.  The most stringent method uses Triton X-100 to isolate detergent-resistant membrane...
	As suggested by single particle tracking, membrane microdomains are likely transient and thus any “localization” to these domains would be a snapshot in time and easily altered by activation state of the receptor, as mentioned earlier for 2AR.  Howev...

	Cholesterol and/or membrane microdomains in DOR signaling
	Similar to MOR, conflicting reports exist about the role of cholesterol and/or membrane microdomains for DOR signaling, as summarized in Table 1.2.  In NG 108-15 cells, DORs were found in two different fractions of the plasma membrane that varied in G...
	Conflicting reports also abound regarding the effect of agonist treatment on DOR distribution.  In model membranes, agonist-bound DOR incorporated preferentially into sphingomyelin-rich domains (Alves et al., 2003).  This was attributed to the previou...
	As with MOR, removal of cholesterol has been shown to have differing effects on DOR signaling.  In one study, removal of cholesterol using MCD decreased the ability of the DOR agonist DPDPE to stimulate [35S]GTPS binding (Andre et al., 2008) even th...

	Cholesterol and/or membrane microdomains in signaling of KOR and NOPr
	The localization and effect of cholesterol removal on KOR and NOPr has not been as extensively studied.  The most recent study identified KOR in cholesterol and caveolin-enriched fractions of a gradient prepared from CHO cells using a non-detergent m...

	Cholesterol in opioid withdrawal
	Many AC isoforms have been identified in cholesterol- or caveolin-enriched fractions of plasma membrane, including AC 3, 5, 6 and 8 (Fagan et al., 2000; Ostrom et al., 2001; Ostrom et al., 2002; Smith et al., 2002; Crossthwaite et al., 2005; Zhao et ...
	Multiple lines of evidence suggest that cholesterol plays a modulatory role in AC activity.  Depletion of cholesterol by MCD enhances activation of AC by forskolin or a Gs-coupled receptor agonist (Rybin et al., 2000; Pontier et al., 2008).  The enh...
	Chronic treatment with agonists for MOR, KOR or M4-muscarinic receptors that cause AC sensitization increased the amount of G1 and Gi found in 1% sodium cholate-insoluble particulate with a parallel decrease in the cholate-soluble fraction (Bayewitc...

	Membrane cholesterol and/or microdomains in vivo
	There is evidence that AC sensitization and subsequent withdrawal-induced cAMP overshoot may mediate certain opioid withdrawal symptoms in vivo.  In mice lacking AC 5, which is highly expressed in the striatum, some morphine withdrawal signs are atte...
	Results regarding the role of cholesterol in cAMP overshoot must be interpreted carefully when attempting to apply them to the opioid withdrawal syndrome observed in vivo.  In healthy adults, brain cholesterol is very tightly regulated, so cholesterol...


	Hypothesis and Aims
	The overall aim of this thesis is to investigate factors that can influence the interaction between GPCR and G protein; namely, the lipid environment (especially the role of cholesterol) and competition between multiple receptors, using opioid recepto...
	Aim 1: In the first data chapter, I test the hypothesis that coupling of agonist-bound MOR to G protein is dependent on cholesterol concentration.  Experiments were performed in HEK293 cells stably expressing FLAG-tagged MOR or DOR to answer the follo...
	Aim 2: In the second data chapter, experiments were performed to examine the hypothesis that compartmentalization of MOR receptors controls interactions with other co-expressed GPCRs.  Differentiated human neuroblastoma SH-SY5Y cells were employed to ...
	Table 1.1: Ki (nM) for selected ligands at human MOR, DOR and KOR
	Literature values for ligand binding as reported previously for receptors expressed in CHO cells.  SNC80 binding experiments were performed in mouse brain membranes.
	Values obtained from (Toll et al., 1998) except *SNC80 from (Bilsky et al., 1995), and +IC50 for ICI 174,864 from (Maeda et al., 2000).  n.d., not determined
	Table 1.2: Membrane microdomains in opioid receptor localization and signaling

	n.c., no change; n.d., not determined; CTB, Cholera Toxin B subunit; CPu, caudate putamen, POPC, palmitoyloleoylphosphatidylcholine; SM, sphingomyelin; PWR, plasmon-waveguide resonance spectroscopy; delt II, deltorphin II
	Figure 1.1: Schematic of opioid receptor signaling
	Agonist binding to opioid receptors stimulates the exchange of GTP for GDP, thus activating G proteins resulting in downstream effects from G and G subunits.  The main effect of Gi/o is inhibition of AC.  G can activate G protein-coupled inwardl...


	Chapter II
	Differential effect of membrane cholesterol removal on MOR and DOR: A parallel comparison of acute and chronic signaling to adenylyl cyclase
	Summary0F
	According to the lipid raft theory, the plasma membrane contains small domains enriched in cholesterol and sphingolipid which may serve as platforms to organize membrane proteins.  Using methyl--cyclodextrin (MCD) to deplete membrane cholesterol, ma...
	suggest that MOR are more dependent on cholesterol for efficient signaling than DOR and can be partly explained by localization of MOR, but not DOR, in cholesterol- and caveolin-enriched membrane domains.

	Introduction
	Membrane cholesterol can alter the function of integral proteins, such as G protein-coupled receptors, through cholesterol-protein interactions and by changes in membrane viscosity (Gimpl et al., 1997).  In addition, cholesterol interacts with other l...
	Many G protein-coupled receptors and signaling proteins have been found to prefer cholesterol-enriched domains leading to the hypothesis that these domains can organize signaling molecules in the membrane in order to enhance or inhibit specific signal...
	There are conflicting data for the effect of changes in membrane cholesterol on opioid signaling.  For example, an increase in plasma membrane microviscosity by addition of cholesteryl hemisuccinate to SH-SY5Y cell membranes increased MOR coupling to ...
	In initial experiments using human embryonic kidney (HEK) cells heterologously expressing MOR or DOR, we found that DOR was located in caveolin-poor fractions following 1% Triton X-100 homogenization and sucrose gradient ultracentrifugation.  This dif...

	Materials and Methods
	Materials- SNC80 ((+)-4-[(R)--((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide), DPDPE ([D-Pen2,5]-enkephalin) and naltrindole hydrochloride were obtained from the Narcotic Drug and Opioid Peptide Basic Research Ce...
	Cell culture- Human embryonic kidney 293 cells stably transfected with the N-terminal FLAG-tagged DOR (HEK FLAG-DOR) or MOR (HEK FLAG-MOR) were grown in Dulbecco’s Modified Eagle Medium (DMEM) containing 0.8 mg/ml geneticin and 10% fetal bovine serum ...
	Cholesterol modulation- HEK FLAG-MOR or HEK FLAG-DOR cells were grown to confluence in DMEM + 10% FBS.  Media was replaced with serum-free DMEM with or without 2% (15 mM) methyl--cyclodextrin (MCD) (Sigma-Aldrich, St. Louis, MO) for 1 h, 37 C.  SH-S...
	Stimulation of [35S]GTPS binding-  Membranes were prepared from HEK FLAG-DOR or FLAG-MOR cells following treatment with or without 2% MCD as described previously (Clark et al., 2003).  Final membrane pellets were resuspended in 50 mM Tris-HCl buffer...
	Membranes (30 g protein) were incubated with 0.1 nM [35S]GTPS for 60 min at 25 C, with or without various concentrations of the DOR agonist SNC80 or the MOR agonist DAMGO in [35S]GTPS binding buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 100 mM NaCl,...
	Cyclic AMP accumulation assays- Inhibition of adenylyl cyclase activity was measured in HEK FLAG-DOR or FLAG-MOR cells grown to confluence in 24-well poly-D-lysine coated plates.  Cells were washed with serum-free DMEM and incubated with various conce...
	For adenylyl cyclase sensitization experiments, HEK cells were rinsed with serum-free DMEM and incubated in the presence or absence of SNC80, DPDPE or DAMGO in serum-free DMEM for 30 min at 37 C.  SH-SY5Y cells, plated in uncoated 24-well plates (5 x ...
	Radioligand binding assays- In competition binding assays, membranes (5 - 12 g protein) from HEK FLAG-MOR or DOR cells treated with or without 2% MCD were incubated for 1 h with shaking at 25 C with 0.2 nM [3H]diprenorphine and increasing concentrat...
	Separation of Detergent Resistant Membranes- HEK FLAG-DOR or FLAG-MOR cells were grown to confluence in 10 cm2 dishes, washed and resuspended in ice-cold phosphate buffered saline (PBS).  Cells were pelleted and homogenized with a Dounce homogenizer i...
	Equal volume (183 l) fractions were collected from the top.  Equal volume aliquots were taken from each fraction, mixed with sample buffer (63 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.008% bromophenol blue, 50 mM DTT), separated by SDS-PAGE on a ...
	Cholera toxin B-induced Patching- HEK FLAG-DOR or HEK FLAG-MOR cells were plated on poly-D-lysine coated coverslips in a 6-well plate (1x106 cells/well) 24 h prior to patching.  Cells were incubated with AlexaFluor 488-conjugated cholera toxin B subun...
	Quantification of colocalization was performed using the RG2B colocalization plug-in to ImageJ (version Uhttp://rsb.info.nih.govU).  The minimum threshold pixel intensity was set to 50 for both channels and the minimum ratio for pixel intensity betwee...
	Statistical Analysis- All data were analyzed using GraphPad Prism 4 software (San Diego, CA).  All data points represent at least three separate experiments in duplicate and are presented as mean ± standard error of the mean (S.E.M.), unless otherwise...

	Results
	Effect of cholesterol depletion on opioid receptor coupling to G protein
	HEK293 cells stably expressing either the FLAG-MOR or FLAG-DOR were treated with the cholesterol-sequestering agent MCD (2%) for 1 h at 37 C.  This reduced cholesterol to 40 ± 5.6 % of control, consistent with previously published results of 40 - 60 ...
	Agonist-activated opioid receptors couple to Gi/o proteins and induce the exchange of GTP for GDP, which can be measured by the increase in binding of the guanine nucleotide analog [35S]GTPS.  Basal levels of [35S]GTPS binding were similar in membr...
	Due to this decrease in basal [35S]GTPS binding, data were graphed as fmol of agonist-stimulated [35S]GTPS bound/mg protein rather than as percent change over basal, as has been reported previously (Huang et al., 2007a; Huang et al., 2007b; Andre et...
	The reduced ability of the MOR agonist DAMGO to stimulate [35S]GTPS binding may be due to a loss of receptor-G protein coupling following cholesterol depletion.  To test this hypothesis, we used a ligand binding approach.  Receptors were labeled with...
	Effect of cholesterol depletion on opioid inhibition of adenylyl cyclase
	To examine if a decrease in G protein activation by agonists translates to decreases in downstream responses within the cell, inhibition of adenylyl cyclase by MOR and DOR agonists was measured following cholesterol removal.  Treatment of HEK FLAG-DOR...
	In order to measure inhibition of adenylyl cyclase by opioid agonists, the enzyme is stimulated directly with forskolin.  Consistent with previous reports (Rybin et al., 2000; Pontier et al., 2008), the level of cAMP produced by forskolin was enhanced...
	Effect of cholesterol depletion on opioid-induced adenylyl cyclase sensitization
	Chronic administration of opioid agonists results in a dependent state in both animal and cell models, which is characterized by withdrawal following removal of the agonist.  In cells, the chronic inhibition of adenylyl cyclase by agonists for Gi/o-c...
	To determine if the effect of MCD on MOR-induced adenylyl cyclase sensitization was restricted to a heterologous expression system, we repeated the sensitization experiments with SH-SY5Y neuroblastoma cells that endogenously express MOR.  SH-SY5Y cel...
	Alteration of MOR signaling by MCD is due to removal of cholesterol
	Despite the common use of MCD for its cholesterol-sequestering properties, it may also have other non-specific effects on a cell due in part to changes in cell morphology.  To ensure that the effects on MOR signaling observed following MCD treatment...
	The replenishment of cholesterol restored acute inhibition of adenylyl cyclase by 10 nM DAMGO (Figure 2.5a) and sensitization of adenylyl cyclase by 100 nM DAMGO (Figure 2.5b) to levels similar to control cells.  Restoration of membrane cholesterol by...
	To further verify that the effect of MCD on MOR-mediated overshoot was due to reduction in cellular cholesterol, we used the cholesterol-lowering drug lovastatin, which inhibits the rate limiting enzyme in cholesterol synthesis, 3-hydroxy-3-methyl-gl...
	Similarly, differentiated SH-SY5Y cells were treated with lovastatin hydroxy acid for 48 h to measure the effect on overshoot mediated by endogenous MOR.  Lovastatin treatment reduced cholesterol by 17 ± 2.4 % compared to vehicle-treated controls, whi...
	Receptor number is not responsible for alterations in MOR signaling by MCD
	Both the HEK FLAG-MOR and HEK FLAG-DOR cells used in this study express a high number of opioid receptors (9.7 ± 1.3 pmol/mg protein and 8.4 ± 1.5 pmol/mg protein, respectively), so it is unlikely that the difference observed between MOR and DOR agoni...
	The antagonist 3H-diprenorphine can recognize all affinity states of the MOR, but as an agonist 3H-DAMGO will only label high-affinity sites at the concentrations used in saturation binding assays.  Therefore, in HEK FLAG-MOR cells the maximum number ...
	Effect of cytoskeletal disruption on MOR-induced adenylyl cyclase sensitization
	Disruption of either actin or tubulin has been shown to perturb caveolae and raft microdomains in rodent cardiac myocytes and S49 T-lymphoma cells (Head et al., 2006).  To address the effects of caveolae and raft disruption using cytoskeletal inhibito...
	Differential membrane localization of opioid receptors and adenylyl cyclase
	The disparate importance of cholesterol for MOR, but not for DOR signaling described above could be explained by direct interaction of the receptor with cholesterol or differing localization of receptors and signaling proteins in putative cholesterol-...
	Many of the signaling proteins that DOR activates have been identified in cholesterol-enriched membranes, including Gi (Xu et al., 2006) and adenylyl cyclase isoforms 5/6 (Ostrom et al., 2002).  Consequently, we tested the hypothesis that DOR would m...
	Because DOR signaling to adenylyl cyclase is unaffected by cholesterol depletion, this raises the question of which adenylyl cyclase isoform DOR is coupled to, especially as adenylyl cyclase enzymes that are inhibited by DOR have been found in rafts, ...
	Cholera toxin B-induced patching
	Cholera toxin B subunit (CTB)-induced patching was used to further examine the membrane localization characteristics of MOR and DOR in intact cells using a method that does not rely on cell disruption or detergent solubilization.  This method has been...
	Staining of the FLAG epitope on the extracellular N-terminus of DOR following patching showed that DOR on the cell surface were poorly co-localized with CTB-clustered patches.  In fact, upon quantification of over 25 cells from at least 3 separate exp...

	Discussion
	In this study we have used FLAG-tagged MOR and DOR expressed in HEK293 cells to ask questions concerning the localization and signaling of these two highly homologous plasma membrane proteins.  Two conclusions can be drawn from this study.  Firstly, M...
	There are two hypotheses to explain the differential dependence of MOR and DOR on membrane cholesterol.  Firstly, the partial localization of MOR in detergent-insoluble domains may result from a higher propensity for these receptors to bind to cholest...
	Alternatively, DOR may not need the extra membrane rigidity provided by cholesterol to support signaling because it is known to couple tightly to G proteins (Costa et al., 1988; Polastron et al., 1992).  In fact, Andre et al. (2008) conclude that DOR ...
	The heterogeneous distribution of MOR in caveolin-enriched and caveolin-poor fractions may explain the rather small effect of cholesterol depletion on acute MOR signaling (either [35S]GTPS binding or adenylyl cyclase inhibition).  However, this effec...
	Although a percentage of MOR opioid receptors were found in detergent-insoluble domains, most were found in putative non-raft domains.  Since the effect of cholesterol depletion by MCD or lovastatin on adenylyl cyclase sensitization was very robust, ...
	The increase in forskolin-stimulated cAMP production observed immediately following cholesterol removal by MCD has been observed by others (Rybin et al., 2000; Pontier et al., 2008).  However, this enhanced forskolin effect is lost if a 2 h incubatio...
	The results from the sucrose gradient membrane separation experiments are consistent with reports of the localization of MOR in caveolin-enriched membrane fractions as well as caveolin-poor fractions (Zhao et al., 2006; Gaibelet et al., 2008).  In con...
	The detergent method used in the present study also has limitations, but is more stringent for identification of cholesterol-binding proteins (Foster et al., 2003).  Recently, DOR localization has been studied using the detergent Triton X-100 in vario...
	Although the evidence presented here suggests that DOR is excluded from cholesterol-enriched regions, many signaling molecules, including Gi/o proteins (Li et al., 1995; Li et al., 1996; Moffett et al., 2000; Foster et al., 2003; Quinton et al., 2005...
	In conclusion, these studies demonstrate differences in signaling and localization properties of MOR and DOR, using identical methods in the same HEK cell system, and are supported by studies in SH-SY5Y neuroblastoma cells that endogenously express op...
	Figure 2.1:  MOR, but not DOR, agonist-mediated G protein activation is altered following MCD treatment.  A, basal [35S]GTPS binding in membranes from HEK FLAG-DOR, HEK FLAG-MOR or untransfected HEK293 cells treated with (hatched bars) or without (o...
	Figure 2.2:  Cholesterol removal by MCD induces low-affinity binding in MOR, but not DOR, expressing cells.  Competition binding experiments in membranes prepared from HEK FLAG-DOR (A) or HEK FLAG-MOR (B) cells treated with (open circles) or without ...
	Figure 2.3:  MOR, but not DOR, agonist-mediated inhibition of adenylyl cyclase is altered following MCD treatment.  A and B, Concentration-response curves for acute adenylyl cyclase inhibition by the DOR agonist SNC80 (0.1 nM – 1 M), or the MOR agon...
	Figure 2.4:  MCD treatment blocks MOR, but not DOR, agonist-mediated adenylyl cyclase sensitization.  Adenylyl cyclase overshoot was precipitated with antagonist (naltrindole [A & B] or naloxone [C]) in the presence of 5 M forskolin following chroni...
	Figure 2.5:  Effects of MCD on MOR signaling are due to removal of cholesterol from the membrane.  A, acute adenylyl cyclase inhibition by 10 nM DAMGO in HEK FLAG-MOR cells following cholesterol depletion without (MCD + veh) or with cholesterol repl...
	Figure 2.6:  Alterations in MOR signaling are not due to changes in receptor number.  A, surface expression of MOR was determined in whole cells (1 x 105 cells/tube) by displacement of 4 nM 3H-diprenorphine (DPN) by the cell impermeable antagonist CTA...
	Figure 2.7:  Effect of cytoskeleton inhibitors on MOR-mediated adenylyl cyclase sensitization.  HEK FLAG-MOR cells were treated with (filled circles) or without (open circles) the tubulin inhibitor demecolcine (1 g/ml, overnight) (A) or the actin inh...
	Figure 2.8:  Localization of MOR, but not DOR, in caveolin-enriched fractions, in addition to transferrin receptor-enriched fractions.  Detergent-resistant membranes were prepared from HEK FLAG-DOR (A, C & D) or HEK FLAG-MOR (B) cells as described in ...
	Figure 2.9:  DOR is not co-localized with cholera toxin B (CTB) subunit patches.
	A, HEK FLAG-DOR or FLAG-MOR cells were plated on poly-D-lysine coated coverslips 24 h prior to patching with cholera toxin B subunit (CTB) conjugated to Alexa 488 at 4 C to label endogenous ganglioside GM1, enriched in lipid rafts.  Lipid raft cluster...
	Chapter III


	Gi/o-coupled receptors compete for signaling to adenylyl cyclase in SH-SY5Y cells and reduce opioid withdrawal-mediated cAMP overshoot
	Summary
	Organization of G protein-coupled receptors and cognate signaling partners at the plasma membrane has been proposed to occur via multiple mechanisms including membrane microdomains, receptor oligomerization and protein scaffolding.  Here, we investiga...

	Introduction
	Opioid receptors are members of the G protein-coupled receptor (GPCR) family and signal via activation of AC-inhibitory (Gi/o) GTP-binding proteins.  It has been suggested that the probability of opioid receptor/G protein interaction is enhanced by co...
	Compartments also prevent interactions between two proteins by constraining cross-talk and/or sharing of effector molecules, thus leading to signaling specificity.  In NG108-15 cells, muscarinic receptors and DOR did not share G proteins with 2AR, as...
	The conflicting data on DOR and CB1 receptor competition in N18TG2 and COS-7 cells can potentially be explained by differences in the level of expression of receptors.  At high density, receptors compete for a limiting pool of G proteins, whereas, at ...
	Competition between only two GPCR types would be observed if the receptors were able to freely diffuse along the cell membrane to access all available G proteins or if they were corralled together, i.e. in a membrane microdomain, by scaffolding protei...

	Materials and Methods
	Materials- [3H]DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), [3H]DPDPE ([D-Pen2,5]-enkephalin), [3H]nociceptin/OFQ, [3H]yohimbine, [3H]CP 55,940 and [35S]GTPS (guanosine-5'-O-(3-[35S]thio)triphosphate) were obtained from Perkin-Elmer Life Science...
	Cell culture- Human neuroblastoma SH-SY5Y cells, a subclone of SK-N-SH cells, were obtained from ATCC (Manassas, VA), grown in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) at 37 C in 5% CO2, and used within passages ...
	Radioligand binding assays- Membranes were prepared from retinoic acid-differentiated SH-SY5Y cells, as described previously (Alt et al., 2002).  Final membrane pellets were resuspended in 50 mM Tris-HCl buffer, aliquoted and stored at -80 C.  Protein...
	Receptor density was determined by incubating membranes (50 g) for 60 min at 25 C with shaking in 50 mM Tris-HCl, pH 7.4 buffer containing saturating concentrations of radiolabeled ligand as follows: 12 nM [3H]DAMGO for MOR, 16 nM [3H]DPDPE for DOR, ...
	Stimulation of [35S]GTPS binding-  Membranes were prepared from retinoic acid-differentiated SH-SY5Y cells, as described for radioligand binding assays.  In some experiments, cells were treated overnight with agonist (SNC80 or DAMGO) or for 24 h with...
	Membranes (50 g protein) were incubated with 0.1 nM [35S]GTPS for 60 min (unless otherwise indicated) at 25 C, with or without various concentrations of SNC80 and/or DAMGO in [35S]GTPS binding buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 100 mM NaCl...
	Cyclic AMP accumulation assays- For inhibition of AC, SH-SY5Y cells were plated in 24-well plates (5 x 105 cells / well) and differentiated with 10 M retinoic acid 4 days prior to assay.  Cells were incubated with 1 M of the indicated agonist(s) in ...
	For AC sensitization experiments, differentiated SH-SY5Y cells were incubated overnight in the presence or absence of DAMGO and/or DPDPE in DMEM/10% FBS at 37 C.  Drug-containing media was replaced with media containing 5 M forskolin, 1 mM IBMX and 1...
	Isobologram analysis - An isobologram for agonists (SNC80 and DAMGO) with different maxima and therefore a variable potency ratio was constructed based on the following equation (Tallarida, 2006):
	The parameters for the equation were based on values from the individual concentration-effect curves for DAMGO and SNC80.  As the more efficacious drug in these experiments, DAMGO was assigned as Drug B and SNC80 as Drug A (Tallarida, 2006).  B50 and ...
	Statistical Analysis- All data were analyzed using GraphPad Prism 5 software (San Diego, CA).  Data points represent at least three separate experiments in duplicate and are presented as mean ± standard error of the mean (S.E.M.), unless otherwise not...

	Results
	Gi/o-coupled receptors expressed in SH-SY5Y cells
	Human neuroblastoma SH-SY5Y cells were differentiated with retinoic acid (10 M for 4 – 7 days) to produce a neuronal-like phenotype.  Differentiation increased MOR density from 232 ± 33 fmol/mg protein to 305 ± 42 fmol/mg protein, as identified by th...
	The endogenous expression level of the above identified receptors was determined in membranes from differentiated SH-SY5Y cells using maximal concentrations of selective radioligands for each receptor.  Receptor densities are listed in Table 3.1 and f...

	Gi/o-coupled receptors compete for AC
	To evaluate the level of interaction between MOR and other Gi/o-coupled receptors in SH-SY5Y cells, maximal concentrations of Gi/o-coupled receptor agonists were combined with a maximal concentration of DAMGO.  When added to DAMGO, none of the agonist...
	The extent of competition between receptors for AC can be calculated using the following equation (Brinkerhoff et al., 2008):
	where R1 and R2 are two different receptor types giving a theoretical maximum response (R1 + R2), which is compared to the experimentally determined effect of R1+2 and the effect of the most efficacious agonist alone [max(R1,R2)].  If two receptors d...

	MOR and DOR share G proteins
	Interactions between receptors could be occurring at the level of AC or G protein.  To evaluate this we studied the interaction between MOR and DOR for stimulation of G proteins as measured by binding of [35S]GTPS.  Maximum concentrations of DAMGO s...
	It has been proposed that MOR and DOR heterodimerize and that these oligomers can activate PTX-resistant G proteins (George et al., 2000).  However, in the differentiated SH-SY5Y cells used in our experiments, [35S]GTPS binding stimulated by the comb...

	Isobolographic analysis of interactions between MOR and DOR agonists
	Combinations of maximally effective concentrations of agonists resulted in less than additive effects and predict competition for a common effector; however, at lower agonist concentrations it should be possible to identify additive, sub-additive and ...
	Additive actions of agonists or deviations from additivity can be observed graphically using an isobologram (Tallarida, 2006).  An isobologram for combinations of DAMGO and SNC80 that produced 50 % of the maximal DAMGO effect was constructed based on ...
	The binding of [35S]GTPS is time-dependent with a t1/2 of approximately 20 min for DAMGO or SNC80-stimulated binding.  Therefore, at time points shorter than 20 min, G proteins should not be limiting.  When [35S]GTPS binding was measured after a 10...

	Heterologous inhibition of AC prevents opioid receptor-mediated cAMP overshoot
	Chronic administration of opioid agonists and other Gi/o-coupled receptor agonists causes a homeostatic sensitization of AC resulting in an overshoot of cAMP production upon addition of a competitive antagonist (Sharma et al., 1975).  To determine if...
	Since MOR and DOR accessed the same pool of AC in both the acute and chronic opioid state, we hypothesized that overshoot of cAMP occurring upon precipitation of withdrawal from chronic MOR agonist treatment would be prevented by acute addition of a ...
	To determine the concentration-relationship of this effect, DAMGO-mediated cAMP overshoot was precipitated by CTAP in the presence or absence of varying concentrations of SNC80.  The addition of SNC80 reduced DAMGO-mediated overshoot in a concentrati...
	Reciprocally, DOR-mediated cAMP overshoot was attenuated in a concentration-dependent manner by DAMGO (Figure 3.6b).  In these experiments, cells were treated overnight with DPDPE and specific DOR-mediated cAMP overshoot was precipitated using the sel...

	Lack of heterologous tolerance between MOR and DOR
	The similar EC50 values for AC inhibition in opioid-treated and naïve cells for both MOR and DOR agonists suggest a lack of cross-tolerance between these two receptors in SH-SY5Y cells.  To confirm this, agonist-stimulated [35S]GTPS binding was meas...


	Discussion
	In this study, we have shown that AC inhibition by agonists to DOR, NOPr, 2AR, CB1 and 5-HT1A receptors in differentiated SH-SY5Y cells was occluded by a maximal concentration of the MOR agonist DAMGO, suggesting that all of these receptors compete ...
	The rank order of AC inhibition by a maximum concentration of full agonists acting at Gi/o-coupled receptors in SH-SY5Y cells was MOR > DOR ≥ NOPr > 2AR ≥ CB1 = 5-HT1A.  This order is likely determined by the relative receptor expression, which follo...
	The ability of all receptors to share AC indicates that barriers to prevent free diffusion in the membrane, such as receptor dimers, membrane microdomains, and protein scaffolds (George et al., 2000; Alt et al., 2001; Hall and Lefkowitz, 2002; Gomes e...
	Agonists for DOR, NOPr and 2AR were able to inhibit AC in the naïve and opioid-dependent state.  The rank order of the effectiveness of agonists to inhibit AC remained the same in control and DAMGO-dependent cells, so that the most efficacious agonis...
	AC sensitization occurs following chronic MOR occupation and is thought to be important for the manifestation of withdrawal (Sharma et al., 1975).  Specifically, upregulation of the cAMP/AC/ protein kinase A (PKA) pathway in the locus coeruleus (LC) h...
	It is thought that clonidine prevents opioid withdrawal symptoms by reversing hyperactivity of noradrenergic neurons in the LC (Aghajanian, 1978).  There are two prevalent proposed mechanisms for withdrawal-induced hyperactivity of LC neurons in opioi...
	NOP and CB1 receptors are also co-expressed with MOR in LC neurons, where NOPr was found to activate the same population of K+ channels as MOR and 2AR (Connor et al., 1996; Scavone et al., 2009).  Furthermore, intracerebroventricular injection of no...
	In contrast to 2AR, NOPr and CB1 receptors, the role of DOR in attenuating MOR-mediated withdrawal may be less relevant in vivo.  Although we have shown that DOR shares AC with MOR, and the DOR agonist SNC80 inhibits DAMGO-mediated cAMP overshoot in ...
	In conclusion, these studies have shown that all identified Gi/o-coupled receptors endogenously expressed in differentiated SH-SY5Y cells shared a common pool of AC so that spatial barriers did not prevent specific receptor access.  The interaction l...
	Table 3.1: Receptor density in differentiated SH-SY5Y cells.
	Receptor numbers in cell membranes were determined using selective radioligands at a maximal concentration as described in Methods.  Results are presented as mean fmol radioligand bound/mg protein ± S.E.M. (n = 6).
	+5-HT1A not tested
	Table 3.2: Competition between indicated agonists (1 M) for acute inhibition of AC.
	Percent competition was calculated as described in Results (Brinkerhoff et al., 2008) using experimental data shown in Figure 3.1.  The percent competition from three individual experiments was compiled and is presented as mean ± SEM.
	Table 3.3:  Competition between 1 M SNC80 or nociceptin/OFQ and other Gi/o-coupled receptor agonists for acute inhibition of AC.

	Inhibition of AC by 1 M of agonist(s) alone or in combination was performed as described for Figure 3.1 and in Methods.  Percent competition was calculated from three individual experiments, in duplicate, as described for Table 3.2.
	Figure 3.1: Gi/o-coupled receptors endogenously expressed in SH-SY5Y cells share a common pool of AC.  A, acute cAMP inhibition of 5 M forskolin-stimulated AC by 1 M of the indicated agonist alone.  Agonist (receptor) = DAMGO (MOR), SNC80 (DOR), OFQ...
	Figure 3.2:  MOR and DOR share pertussis toxin-sensitive G proteins.  A, stimulation of [35S]GTPS binding in membranes from SH-SY5Y cells after 60 min incubation with 1 M DAMGO or SNC80 alone or in combination (DAMGO/SNC80).  Incubation with DAMGO a...
	Figure 3.3:  DAMGO and SNC80 activation of G protein is additive at concentrations or time-points when G protein is not limiting.  A, concentration-dependent stimulation of [35S]GTPS binding in SH-SY5Y membranes following 60 min incubation with vario...
	Figure 3.4:  MOR and DOR share AC during chronic agonist administration.  SH-SY5Y cells were treated overnight with vehicle (open bars) or 10 M DPDPE (hatched bars) in the presence or absence of the MOR agonist DAMGO (10 nM or 100 nM) to induce depen...
	Figure 3.5:  DAMGO-mediated cAMP overshoot is reduced by heterologous inhibition of shared AC by agonist to DOR, NOPr or 2AR.  AC sensitization was allowed to develop by incubating SH-SY5Y cells overnight with 100 nM DAMGO.  To precipitate withdrawal...
	Figure 3.6:  Inhibition of cAMP by MOR or DOR agonists is similar for sensitized or non-sensitized AC.  A, SH-SY5Y cells were incubated with vehicle (filled squares) or the MOR agonist DAMGO (100 nM, open squares) overnight to induce dependence.  With...
	Figure 3.7:  Lack of heterologous tolerance between MOR and DOR.  SH-SY5Y cells were incubated with 1 M of the MOR agonist DAMGO (A, B) or the DOR agonist SNC80 (C, D) for 24 h prior to membrane preparation.  [35S]GTPS binding in membranes from trea...
	Figure 3.8:  Schematic depicting the accessibility of Gi/o-coupled receptors to portions of the total AC pool.  The amount of the AC pool utilized by each receptor type is related to receptor expression.  The most highly expressed receptor MOR shares ...
	Chapter IV


	Discussion and Future Directions
	The studies presented in this thesis have described cellular and molecular aspects of GPCR signaling using opioid receptors as a model, either heterologously expressed in HEK293 cells or endogenously expressed in SH-SY5Y cells.  I have provided evide...
	In addition, a portion of the MOR population was associated with markers of cholesterol-enriched membrane microdomains.  In contrast, DOR was not associated with these markers, even after agonist treatment.  Thus, MOR and DOR are likely not compartmen...
	Although I have ruled out co-association of receptors within cholesterol-enriched membrane microdomains as a mechanism by which receptors compete for AC (at least for MOR and DOR), I have proposed two hypotheses to explain the observed competition.  F...
	Future directions related to compartmentalization
	Differentiating between free diffusion and multi-receptor signalosomes
	One of the major unanswered questions arising from work described in this thesis is whether the ability of all Gi/o-coupled receptors expressed in SH-SY5Y cells to share AC is due to competition between multiple receptors in a signalosome or due to f...
	The literature contains many reports of interactions between two proteins, such as receptor-receptor or receptor-effector pairs.  Many of these reports employed BRET or FRET, to study close (< 100 Å) interactions.  These techniques require the use of...
	Ideally, complexes of endogenously expressed receptors would be identified using antibodies to the native receptor.  For example, Davare et al. (2001) identified 2AR complexes from rat brain using an antibody to the endogenous 2AR.  Unfortunately, ...
	Based on evidence in this thesis, I hypothesized that the number of complexes occupied by a receptor and the fraction of the AC pool available to a receptor type is proportional to receptor expression levels.  This could be tested by expressing increa...
	If the ability of GPCRs to share AC is due to unrestricted diffusion and independent of complex formation, then simply increasing the efficiency of the receptor to signal without increasing receptor number should enhance the amount of AC the receptor ...

	Future directions related to cholesterol/membrane microdomains
	Cholesterol as a modulator of functional selectivity
	It has been reported that cholesterol can stabilize active and inactive conformations of GPCRs depending on the receptor type.  For example, evidence presented here and elsewhere (Gaibelet et al., 2008) suggests that cholesterol stabilizes a high-aff...
	It is now commonly accepted that a single type of receptor can display multiple intracellular responses depending on the environment of the receptor and the ligand activating the receptor.  This phenomenon has been described using multiple terms inclu...
	The hypothesis that membrane microdomains confer functional selectivity of MOR has been recently reviewed (Simmons, 2008).  This is based primarily on evidence from two studies of morphine and etorphine signaling to ERK and AC in putative raft and non...
	I propose a related, but more conservative, explanation that accounts for the role of cholesterol binding to the receptor itself, irrespective of cholesterol-enriched membrane microdomains.  I propose that etorphine recognizes MOR in both a G protein-...
	Unlike MOR, I found that cholesterol removal did not affect AC sensitization mediated by the peptidic agonist DPDPE or the non-peptidic agonist SNC80 at DOR.  DOR has been shown to display multiple agonist-induced conformational states, which have be...
	Determining cholesterol binding to MOR and DOR
	To determine if the differential effects of cholesterol signaling on MOR, but not DOR, are indeed due to the ability of MOR to bind cholesterol with higher affinity, binding of [3H]cholesterol to purified receptors could be performed.  Purification o...
	The binding of [3H]cholesterol observed in vitro could be confirmed in cells using the photoactivatable analog of cholesterol [3H]photocholesterol, which has been used previously to detect cholesterol binding to synaptophysin (Thiele et al., 2000).  ...
	Molecular determinants of MOR association with cholesterol
	The differential effect of membrane cholesterol removal on MOR and DOR signaling was surprising for two highly homologous receptors.  A goal of future experiments could be to identify the molecular determinants of the ability of MOR, but not DOR, to ...
	The CCM (Hanson et al., 2008) is composed of residues in TM 4, while the caveolin binding motif (Couet et al., 1997) is located at the end of TM 7 and beginning of the C-terminal tail (Figure 4.1).  Therefore, the overall importance of these regions i...
	MOR and DOR both contain two residues of the proposed CCM (4.39-4.43K and 4.50W).  However, MOR has an additional Arg at the 4.40 position, which may increase the propensity for MOR to bind cholesterol (Figure 4.1).  Strategic point mutations would p...
	As described previously, a caveolin binding motif has been identified ((X(XXXX(; ( = F, W or Y; (Couet et al., 1997)) and is present in both MOR and DOR, although MOR contains more hydrophobic residues in the area immediately distal to this region.  ...
	The residues identified above flank a C-terminal cysteine, and for many GPCRs, cysteines in the C-terminal tail are often a site of palmitoylation (Qanbar and Bouvier, 2003).  It is known that MOR is palmitoylated in an agonist-independent manner, bu...

	Overall summary and significance
	Receptor location requirements for potential therapeutic benefit in opioid withdrawal
	In SH-SY5Y cells, endogenously expressed Gi/o-coupled receptors can access the same pool of AC and attenuate MOR-mediated cAMP overshoot.  Altered homeostasis of the AC/cAMP/PKA pathway has been implicated in withdrawal.  Thus, receptors that are co-e...
	The utility of designing therapeutics to treat opioid withdrawal based on an intracellular mechanism in which receptors can dampen responses from a sensitized, shared effector, such as the attenuation of hyperactive LC neurons, obviously requires co-e...
	Obviously, not all agonists with therapeutic potential in the treatment of opioid withdrawal would need to directly modulate the intracellular environment of a MOR-containing neuron.  Receptors on neurons that converge on MOR-containing neurons could ...
	As discussed previously, evidence suggests that MOR and DOR do not act at the same neuron to prevent opioid withdrawal.  However, co-administration of MOR and DOR agonists could still have beneficial effects via actions on neurons in series.  DOR has...
	Relevance of cholesterol in opioid withdrawal
	The relationship between cholesterol/membrane viscosity and opioid withdrawal has been reported in studies from over 20 years ago using rodents.  Chronic morphine treatment of rats led to a naloxone-reversible increase in plasma cholesterol (Bryant et...
	In summary, I have found that cholesterol stabilizes MOR but not DOR in a conformation that is capable of binding G proteins and signaling to AC.  Similar findings at MOR have been reported by others during preparation of this thesis (Gaibelet et al....
	Figure 4.1: Serpentine model of MOR.  Residues that satisfy the requirements of the putative caveolin binding motif ((X(XXXX(; ( = F, W or Y) are found at the end of TM 7 and beginning of the C terminal tail, as outlined with red.  These residues are ...
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