THE UNIVERSITY OF MICHIGATN

COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Department of Mathematics

Technical Report

INTEGRALS OF THE CALCULUS OF VARIATIONS

Arthur W. J. Stoddart

ORA Project 0530L

under contract with:
NATIONAL SCIENCE FOUNDATION

GRANT NO. GP-57
WASHINGTON, D. C.

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1964



This report was also a dissertation submitted in
partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in The University of
Michigan, 196kL.



PREFACE

This thesis is dedicated to

Professor Lamberto Cesari

Professor D. B. Sawyer

My parents

My wife

I must express special gratitude to Professor Cesari for

his patient, yet inspiring supervision of my work over the past
two and a half years. Part I of this thesis was carried out un-
der partial support of NSF research grant GP-57 at The University

of Michigan. I also wish to thank my committee, and particularly

Professor G. W. Hedstrom, the second reader.

ii



ABSTRACT

TABLE OF CONTENTS

1. INTRODUCTION

Part T

2. THE BC-INTEGRAL

2.

2.

2.

2.
2.

1
2

5

L
5

Introduction

Quasi Additive Functions

The Weierstrass-Type Integral ff(T,¢) as a BC-
Integral

Induced Measures

Representation of BC-Integrals

3. THE IEBESGUE-STIELTJES INTEGRAL AS A BC-INTEGRAL

3.1 The Interval Function ¥
3.2 Comparison with Previous Results

4. THE BEND OF A CURVE AS A BC-INTEGRAL

4.1 The Bend of a Curve

.2 Continuous Light Curves with Finite Bend
4.3 General Light Curves

L.4 Angle Swept Out by Direction

5. CENERALIZED WEIERSTRASS-TYPE INTEGRALS [f((,d) AS BC-
INTEGRALS

1T O U1 Ul

5.

=W

5

A Lemma

Existence of the Integral [£({,d)
Transformation of the Integral [£({,d)

The Integral [f({,4) as a Lebesgue-Stieltjes
Integral

The Conditions (§) and (Z)

6. INVARIANCE PROPERTIES OF INTEGRALS [f({,d)

6.

6.
6.
6.
6.
6.

1

N\ WD

Relations R Between Interval Functions

Invariance of Integrals [f({,4) Under Relations R
Substitution of the Invariance of V in the Relations
Properties of the Relations R

Parametric Curve Integrals

Parametric Surface Integrals

iii

Page

11
13
19

20

20
25

28

28
29
55
38

Lo

b3
Ly
L9

52
55

58

58
60
65
67
69
71



TABLE OF CONTENTS (Concluded)

7. ROTATIONAL PROPERTIES OF INTEGRALS [f({,d)

7.1 Approximative Rotational Relations
7.2 Relation Between Integrals

1.3

Substitution of Special Relations

8. SEMICONTINUITY OF INTEGRALS

8.1
8.2
8.3
8.4
8.5

The Topology T

The First Semicontinuity Theorem
The Second Semicontinuity Theorem
Convexity Conditions

The Homogeneous Case

9. SEMICONTINUITY IN PARTICULAR CASES

O \0 \O \©
=W

Parametric Curve Integrals [f(X,X')ds
Parametric Surface Integrals [f(X,J)du dv
Non~Parametric Integrals:[f(w,X,grad X) du
Curve Integrals Involving Higher Derivatives

Part 11

10. THE SHAPE OF LEVEL SURFACES OF HARMONIC FUNCTIONS IN
THREE DIMENSIONS

I_l
O

N e

]

O,

l._l

OG
10,

BIBLIOGRAPHY

Introduction
Star=-Shaped Regions
Convex Regions

A Counter Example

iv

Page

76

76
7
79

81
81

88
92
95

97

97
100
104
107

117

117
118
121
123



ABSTRACT

The general purpose of this thesis is to study—in an abstract and
unified formulation—properties of the integrals of the calculus of var-
iations which are usually discussed separately in a number of particular
situations (parametric and non-parametric curves, surfaces, varieties,
with differential elements of orders one, two, etc.). An abstract form
of the integrals of the calculus of variations has been given by Cesari
in two recent papers, where Burkill-type or BC-integrals of vector-valued
set functions relative to a mesh function are treated in a very general
setting. Cesari introduced a condition of "quasi additivity" on the set
function, that is sufficient for the existence of the corresponding BC-
integral. In particular, the formulation includes Weierstrass-type in-
tegrals ff(T,¢) over a Euclidean variety T with a quasi additive set
function ¢ of bounded variation, and therefore the Welerstrass integrals
of the calculus of variations for curves and surfaces studied by Tonelli,
Bouligand, Menger, and Pauc. Under suitable conditions, the integral
ff(T,¢) can be expressed both as a BC-integral and as a Lebesgue-Stielt-
Jjes integral with respect to a measure induced by d.

In this thesis, a modification of the Welerstrass-type integral is
made to allow a more convenient expression of the integrals of the cal~
culus of variations. ©Specifically, Cesari's results for the integral
[£(T,4) are extended to an integral of the form [f({,d), where now { is
a set function with appropriate properties.

The particular properties considered in this thesis are invariance,
behavior under rotation, and semicontinuity. Here invariance means that
the integrals corresponding to two systems ({,d), ({',4') of set functions
have the same value. We introduce relations between the systems ({,d),
(C’,¢‘) that ensure invariance. Frdchet invariance for parametric curve
and surface integrals is framed under these invariance theorems. Concern-
ing behavior under rotation, the integrals are proved invariant under ro-
tations in Euclidean space provided such rotation leads to pairs (C,¢),
(L',4') of set functions related in an appropriate sense.

Some very general theorems of lower semicontinuity of the integrals
ff(C,¢) in the Lebesgue-Stieltjes form are proved under suitable con-
vexity conditions on f. The semicontinuity is relative to a topology
appropriate to the formulation. These general theorems are then shown
to contain as corollaries the particular lower semicontinuity theorems
of Tonelli and Turner for parametric curves, of Cesari and Turner for
parametric surfaces, of Tonelli for non-parametric curves, and of Cinguini
for parametric curves in Eg depending on differential elements of orders
two, or three.



In addition, further functionals are considered in Cesari's formu-
lation. The Lebesgue-Stieltjes integral is shown to be a BC-integral
of a quasi additive set function relative to the standard mesh function.
The bend or total curvature of a curve is expressed as a BC-integral of
various set functions relative to appropriate mesh functions.

The last part of the thesis concerns the shape of level surfaces
of harmonic functions in three dimensions. In terms of the correspond-
ing regions of higher potential, or "regions of potential,” the results
can be summarized as follows. If two regions of potential are convex,
then every intermediate region of potential is convex. If two regions
of potential are star-shaped relative to some point, then every inter-
mediate region of potential is similarly star-shaped. On the other
hand, we prove by an example that if two regions of potential are merely
simply connected, the intermediate regions of potential need not be sim-
ply connected.

vi



I. INTRODUCTION

The techniques used in the direct method of the calculus of varia-
tions show an underlying similarity and unity which has long been noted

26

by many authors such as Bouligand,2 Tonelli, and Menger.17 These sim-
ilarities can be seen in the so far parallel but quite separated discus-
sions of the integrals of the calculus of variations for parametric and
non-parametric curves in Ey, for parametric and non-parametric surfaces

in By, for the same integrals depending on differential elements of higher
orders, and so on.

Our objective in this thesis has been to give a unified discussion
of the main properties of the integrals of the calculus of variations
in the frame of an axiomatic treatment of the same integrals. We shall
discuss essentially the properties of semicontinuity, invariance with
respect to representation, and invariance with respect to orthogonal
linear transformations in Ej.

A major step in this direction was made by Cesari6’7 who introduced
the concept of quasi additive set function ¢ with respect to a given
mesh function &, and developed an axiomatic treatment of the correspond-
ing integral B = [¢ for set functions ¢ which are quasi additive and of
bounded variation. We shall call [¢ a Burkill-Cesari integral, or BC-

integral. This integral includes both the usual Burkill-type integrals,

and the apparently unrelated parametric Welerstrass-type integrals



J f(T,d) relative to a mapping T: A + Ep and a set function ¢ which is
quasi additive and of bounded variation with respect to a mesh function
8. Indeed, as Cesari proved in Ref. 6 under general assumptions, the
set function ¢ = f(T,¢) is again quasi additive and of bounded variation
with respect to the same mesh function &, and hence J f(T,d) can be de-
fined as a BC-integral [ f(T,4) = /] ®. Under a convenient system of
axioms, the BC-integral can be represented7 as a Lebesgue-Stieltjes in-
tegral, in particular [ £(T,4) = (A) [£(T,0)du in a convenient measure
space (A;j?,u). The line integrals and surface integrals of the calculus
of variations in parametric form are included in the axiomatic treatment
of Refs. 6 and 7, together with a number of other familiar concepts such
as total variation of a function of one real variable, Jordan length of
a curve, Lebesgue area of a surface, and Lebesgue-Stieltjes integral of
a p-measurable function f: A - E; in a measure space (Aﬂjg,u). Nishiura
has shown in his thesisl9 that this process also covers integrals over
k-varieties in Ep. Cesari's results in Refs. 6 and 7 are partially sur-
veyed in Chapter 2 of this thesis.

Chapter 3 complements the remark made by Cesari6 that the Lebesgue-
Stieltjes integral of a p-integrable function f: A > E; in any measure
space (A,@%,u) can be interpreted as a BC-integral, B = [ ¢ of a con-
venient interval function ¢ which is quasi additive with respect to a
conveniently chosen mesh function 8. Here we show that the same result
can be accomplished by means of an interval function which is quasi ad-

ditive with respect to the mesh function of the usual theory of Lebesgue-



Stieltjes integrals.

In Chapter 4 we consider the bend Q, or total curvature, of a curve
X in Ep, as defined by Iseki.15 Under various sets of general assump-
tions on the curve, we show that Iseki's bend can be expressed as the BC-
integral of an appropriate quasi additive function ¢. By this approach,
it 1s shown that the bend © of the curve X is completely similar to the
Jordan length L, and partakes with L the same formal properties and axio-
matic treatment. An analogous result can be expected for possible exten-
sions to bends Q) of any order k, 1 <k <n (k =1 < n, length; k = 2 < n,
bend or total curvature; k = 3 < n, total torsion; etc.).

In Chapter 5 we take into consideration a modified form of Weilerstrass-
type integrals [ f(x§;¢), where now both § and ¢ are set functions and
¢ is quasi additive énd of bounded variation with respect to a given mesh
function 8. Under general hypotheses on f, {, and ¢, we show that the
set function @ = f(~§,¢) is again quasi additive and of bounded varia-
tion with respect to the same mesh function 8, and hence ff( §,¢) = f@
is again a BC-integral. By this process, the line and surfacé integrals
depending on differential elements of first and second, or higher orders,
of the calculus of variations can be included in the same axiomatic treat-
ment mentioned above.

In Chapter 6 we discuss, in the frame of the same axiomatic treat-
ment, invariant properties of the present integrals with respect to change

of the generating set functions. In Chapter 7 we discuss the invariant



character of the same integrals with respect to linear orthogonal trans-
formations in E . Both the results of Chapters 6 and 7 extend results

proved by Cesari and Turner in surface area theory, and show, therefore,
that also these results hold in the present general axiomatic treatment.

In Chapter 8 we discuss the difficult question of the semicontinuity
of "regular" integrals. In the same present axiomatic treatment we prove
that convenient properties of convexity on f (regularity) assure prop-
erties of semicontinuity of Je( ¢ ,¢) with respect to appropriate topol-
ogies. These general results do not require differentiability conditions
on f, in harmony with recent work on line and surface integrals of the
calculus of variations (L. Tonelli,25 and L. Turner29). The complexity
of the present axiomatic treatment is to be expected in view of the gen-
erality of the results. In Chapter 9, we apply the results of Chapter 8
to the particular line and surface integrals of the calculus of varia-
tions. We deduce in each case corresponding sufficient conditions for
lower semicontinuity proved by Tonelli, Cinquini, Turner, and others
by a number of separate arguments.

Chapter 10 (Part II of the thesis) deals with properties of harmonic
functions in Eg. It concerns the situation of a function ¢(P), PekEg,
continuous in Es and harmonic in an open connected set D Es, such that
the complement D' = Eg-D is the union of two closed disjoint sets Co and
C1, C1 compact, and ¢ = 1 on C1, ¢ = 0 on Cy. If both C; and C; = Ez-Co
are star-shaped with respect to the origin, that is, the intersections

of every half-line from the origin with C; and Cé are segments, then the



regions {P:d(P) >k}, O < k <1, are also star-shaped with respect to the
origin. In addition, if C; and Cj are convex, then each region

{P:¢(P) >k}, 0 <k <1, is also convex. This work was initiated and
practically completed at the University of Otago. The research of this
Chapter 10 was suggested to the writer by Professor D. B. Sawyer of the
University of Otago, and continues previous work of R. M. Ga‘briel.31

The work on this chapter was completed—particularly the rigorous treat-

ment of the counter example—at The University of Michigan.



PART I

2. THE BC-INTEGRAL

2.1 INTRODUCTION

In this chapter, we partially review results of Cesari.6’7 The
proofs are not given. Some of the results in Sections 2.3 and 2.5 will
be extended in Chapter 5 and there proved in a modified setting.

Consider a set A, a collection {I} of subsets I ("intervals") of
A, and a non-empty family Oé9lof finite systems D = [I] of sets Ie{I}.
We shall make the following general assumptions:

(bl)beither (by) A is any set, and the sets I of each Deoé}j
D = [I], are disjoint, that is, IeD, JeD implies I (W = @; or (bi) A
is a topological space,fll is the collection of its open sets, the sets
I of {I} possess interior points, and the sets of each D are non-over-
lapping, that is, IeD, JeD implies f'rWJo = IO(\\E = ¢ where — and © de-
note closure and interior respectively in the topology (A,“LL).

Let ® be a real function ("mesh”y on C&a}(that is, defined for every
system Deé%?), such that

(d;) 0 < 8®(D) <o ;

(d2) for each £ >0, there is a system D609 with 8(D) < & .

Let ¢ be a vector function on {I} with values ¢(I) = [¢T(I)} =
[¢1(I),...,¢k(1)] in Ep. We call such ¢ an "interval" function, and de-
note its Euclidean norm function by H¢H.

6



Define

B.(#,A,8) = lim inf }; $.(I) ,

IeD

8(D)~0 TeD
§(¢)A;6) = [Er(¢;A;6)] s
§(¢:A:5) = [gr(?{)A;S)] .

I B(4,A,d) = B(4,A,d), we call their common value the Burkill-Cesari or
BC-integral B(¢,A,8) = [d. We shall include ¢, A, and ® in the notation
for B only where necessary. We denote B(|4||) by V, and B(Iérl) by Vp.
The number V is called the total variation of ¢. If V < o, we say that
¢ is of bounded variation.

These integrals have the following obvious properties relative to a
given system A, ZL, (1}, §57,5:

(1) If ¢ and. ¢' have finite BC-integrals, and «,Q' are constants,
then og+a'd' has finite BC-integral oB(¢g)+a'B(4').

(ii) If ¥ and V' have BC-integrals and are positive, and B,B' are
positive constants, then BY+B'V' has BC-integral BB(V) +B'B(V'). Hence,

for ¥ real, and defining ¥ = (|v|+¥)/2, v~ = (|v|-¥)/2,

B(|v]) = B(V") +B(y7), BOVT) B(¥)+B(V™) ,

where, in each case, the integrals on the riglt hand side are assumed to

exist.



If ¥,¥' are real with ¥(I) < ¥'(I) for every I, then B(V¥) < B(V')

when these integrals exist. Also

vy Vo< LV,

IN

I8l < @2 < v,

2.2 QUASI ADDITIVE FUNCTIONS

In the setting of Section 2.1, an interval function ¢ on {I} is
called "quasi additive" with respect to a mesh function d on(ﬁ}/if, ()
for every £ > 0, there exists 1(£) > O such that, for every Doedeywith

8(Do) < n(E ), there exists M & ,Dy) > O such that, for every De¢£a with

8(D) < ME ,Do),

) g -2 ol < £

IeDg
and
2t gl < &
where
Z(I> is the sum over all JeD with J C I,
and

2! is the sum over all JeD contained in no I.
A real interval function ¥ on {I} is called "quasi subadditive" with

respect to a mesh function d on Céyif, under similar conditions,

W ) o -E Pyt < £

LeDg



For these properties relative to a given system A, U, (I}, &), 8,
the following results have been proved:

(iii) If ¢,¢' are quasi additive and Q,a' are constants, then
ag+a'¢' is quasi additive.

(iv) If ¥,¥' are quasi subadditive and B,B' are positive constants,
then BY+R'V' is quasi subadditive.

(v) 1If ¢ is quasi additive, then each ¢r is quasi additive, and
conversely.

(vi) If ¥t and ¥~ are quasi additive, then V and |¥| are quasi ad-

ditive, and conversely.

+
r’

(vii) If ¢ is quasi additive, then [#l, 4./, 7 are quasi sub-
additive.

(viii) If each ér is positive and quasi subadditive, then H¢H is
quasi subadditive.

(ix) If ¢ is quasi additive, then ¢ has a finite BC-integral.

If ¥ is positive and quasi subadditive, then V¥ has a BC-integral.
Hence if é is quasi additive, then “é“, |¢r|, é}, and ¢§ have BC-inte-
grals.

Note that if ¥ is positive, then the following strengthening of the

quasi subadditive condition (¥*) for each ¢ < 0 and each Doecﬁa, there

exists M & ,Dg) > O such that, for every D€c£9 with 8(D) < M&,Dy),

Yo -2 Pt < g,

|

IeD,
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gives
B(¥) = sup ¥(I)
Deﬁ? ;2;

Under condition (V) only, B(¥) may not be the supremum of the corresponding
sums, but only the limit as & - O, as was proved by examples in Ref. 6.

(x) If ¥ is positive and quasi subadditive, and B(¥) < », then V
is quasi additive.

As a consequence, we have the following results.

(xi) 1If a vector interval function ¢ is quasi additive and
B([lgll) <, then [I4ll, |6,l, é;’ and g7 are quasi additive.

(xii) If each Iérl is quasi additive, then Hé“ is quasi additive.
Hence, if each ¢;, é; is quasi additive, then Hﬁ” is quasi additive.

In Ref. 6, Section L4, Cesari shows how the following functionals can
be expressed as BC-integrals of quasi additive interval functions with
respect to appropriate mesh functions:

The Jordan length of continuous and discontinuous curves in

The Cauchy integral in an interval in Ey.

The Iebesgue-Stieltjes integral of a p-integrable function
f(x): A > E;, in a measure space (A,g?,u).

The parametric line integrals over curves C in By, assumed to
be only continuous and rectifiable (or Weierstrass integrals on C).
These integrals can be thought of as depending on generalized dif-

ferential elements of order one of C.
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The parametric surface integrals over surfaces S in Eg as-
sumed to be only continous and of finite Lebesgue area (or Cesari-
Weierstrass integrals on S). These integrals can be thought of as

depending on generalized differential elements of order one of S.

2.% THE WEIERSTRASS-TYPE INTEGRAL [f(T,4) AS A BC-INTEGRAL
In the setting of Section 2.1, let ¢ be a vector interval function
from {I} to Ex.
Let T = T(w), weA, be a mapping from A to Ey,. For each Ie{I}, de-
fine
o(I) = sup [T(w)-T(¥)],
u,vel

and for each Deéé), define

o(D) = max o(I)
IeD

We shall assume that the following condition holds:
(w) o(D) < &(D)

Let f(p,q) be a real function on T(A) x E,. We shall denote by U
the unit sphere {q: |||l = 1} in Ey. Assume that
() f(p,q) is positively homogeneous of degree one in g, that is,
f(p,tq) = tf(p,q) for all t > 0, peT(A), qeEy; and f(p,q) is bounded and

uniformly continuous on T(A) x U.



12

Define

o(1) = £(7(r),4(1)) ,

where T 1s any fixed point of I.

6

Cesari~ has proved the following fundamental theorem:
(Xiii) If ¢ 1s quasi additive and of bounded variation with re-

spect to ®, and conditions (w), (f) hold, then
@(I) = f(T(T):Yg(I))) Tel

is quasi additive and of bounded variation with respect to &, and the
elements A, n of the definition (é) can be defined independently of the
choice of the points T in I. Thus the BC-integral of ¢ exists and is
finite, that is
fe = [e(1,¢) = lim  2e(T(r),4(I))
5(D)-0
Also, [f(T,4) is independent of the choice of T in I.

By means of this thecrem, the Welerstrass-type integrals ff(T,ﬁ)
relative to a mapping T and a gquasi additive set function é are reduced
to the standard BC-integrals of Section 2.1.

Let us mention here that line integrals for rectifiable continuous
curves have been treated as Welerstrass integrals by Tonelli25 in view
of applications to calculus of variations, and again more recently by

N. Aronszajn,l G. Bouligand,2 K. Menger,l7 C. Pauc.21 Surface integrals
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for continuous surfaces of finite Lebesgue area have been treated as

5,5,6

Welerstrass-type integrals by Cesari.

2.4 INDUCED MEASURES
We shall assume here that A is a topological space. As in Ref. 7,
we localize the properties of the system 4, 2é,, {I},Oéa, 8 in Section
2.1 to a class Z;ﬁ'of subsets of A, including A, as follows. For each
G in g%;, let Dg = {I: IeD,IClG},Cé%; = {Dg: De¢£9§o We require that
(b2) agye‘is non-empty for each non-empty Gej?ﬁ. For G non-empty, let
8y be a mesh function on Cfaé, such that
(dg) for each 7 > 0, there exists v(7,G) > O such that, for every
Deoéa/with 5(D) < v(T,G), SG(DG) < 7 and Dy is non-empty.
For a vector function ¢ on {I}, we can consider, as in Section 2.1,

the existence of the following limits:

B.(G) = 1im pr(1),
6C'T(DG>'>O I}ﬁ;}

We) - am ) I,
8g(Dg) >0 IeDg

v.(G) =  lim 1D,

da(Dg)»0 IeDg

Ve - am ) D),

6G(DG)"O IeDc

da ) D)

5@(Dg)*o IeDg

vA(G)

We shall call V(G) the total variation of @ in G. If these limits exist,

then, by the relation (dsz) between 8 and By, they also exist for 5(D)-0.
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The properties of BC-integrals given in Section 2.1 obviously apply

also for each Ge % Also, if Gp,Gz2¢ %with G, € Go, then
v(Gy) < V(Ge)

whenever these exist, and similarly for V,, V;, V;..

From now on, we shall assume also that (%@525(1) is quasi additive
with respect to each 8g. In other words, we assume that, given & >0
and Ge %, there 1s a number T]((C,,G) > 0 such that, if Dyg = [I] is any
system in 09(} with BG(DOG) < T](E,G), then there is also a number
A E,DOG,G) > 0 such that, for every system Dg = (7] in O@G with

8G(DG) <N ,Dy,G), we have

) ldn - ) 4l < £

IeDog JcI

and
L < £

where %' ranges over all JeDg not completely contained in any IeDpg.
If ¢ satisfies condition (j%2¢), then B(G), V(G), V4(G), Vi(a),
and V;( G) exist for each Ge % If also V(A) < o, then |8, |¢4|,
;:, yﬁ; satisfy condition (?‘;ﬁ), and all the integrals above are finite.
From now on, we shall require (a) ? c %,’ (c) each Ie{I} is
'L{ -connected.

Under hypotheses (a), (b), (c), (4), (%;ﬁ), and V(A) < o, every

disjoint sequence (G} with Gi and UGse %has
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v(Uey) = v(Gy)

-+ -
and similarly for B, V,, Vi, Vi.

Congider the following conditions for sequences Gi in 5%2
(Hy) If Gy ~ @, then V(Gy) - O and similarly for B, V., V&, V.
(Hp) If Gy C Gy and Gy > Ge %?7 then V(G;) + V(G) and similarly
for B, Vy, V§, Vi.
(Hg) If §:ﬁGiejﬁk for each n and UGie:?P, then V(UG;) <2V(G;) and
similarly for V., Vi, Vi.
The condition
(e) "For every pair of distinct sets Gl,Ggetia with G = G1(¢)Gge§iJ
G () Gz # ¢, and any Ie(I)} with IC G, I/1G # ¢, TN G2 # ¢, there
exists X(I,G1,G2) > O such that any Dge o@G with 8g(Dg) < X(I,G1,G2) and
JeDg with J C I have J C Gy or J C Gz or both,' with (Hz) and V(A) <« im-
plies (Hs).
Also, the condition
(g) "The sets Ie{I} are ){ -compact'with (e) and V(A) < w implies (Hp).
From now on, we require that
(a') S;L is a subtopology of W,
For each XC A, define
wx) = dinf  V(G) ,
GDOX
and similarly for py, ph, pp from Vp, V;, Vp. If V(A) <o, all these are

finite, and we can define
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Vr(X) = U}-‘(X) - U-f‘(X>) V(X) = [Vr(X)]

It can be shown that, for every set X C A, there is a sequence {Gi},
Gie;, XCGy, with V(Gy) » w(X), V(G1) » up(X), Vi(G1) » wi(X),

Vi(Gy) > p(X), and, if V(A) <o, B(G;) > v(X). Also

ue(X) = ui(X) + up(X) ;
and
K
M0 £ WD) <) w0,
r=1

1/2

v(X) < [Zp2(x)] < u(x)

In addition, for every Ge‘;%; w(G) = (@), and similarly for uy, p;,
pp, and, if V(A) <, v.

(xiv) If condition (Hy) holds, then u(@) = 0, and similarly for
Hpy ey Mo

(xv) If conditions (Hy), (Hz), (Hsz) hold, and V(A) < o, then ,
Ky p?, and py are other measures.

We shall then define measurable sets in the standard way.

Consider the condition

(Hy) TFor every Ge ;;7 there exists a sequence (G4}, Gie;;L, such that

G; C G, G; C Gy4q (where Gy is the ;;Q—Closure of Gi), and V(Gy) » V(G),
and similarly for B, Vy, Vi, Vo.

The condition

(P) "For every GGE?Q, there exists a sequence {(Gil, GiEE;Z, such that
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G © G, Gy < Gy, and Gy > G'with (Hp) implies (Hy).
(xvi) If conditions (Hi), (Hz), (Hs), (Hs) hold and V(A) < o, then
j .

all Ge;;g(and so all sets of the minimal o-algebra (55 containing E%Z)

are U, My, u?, and pp measurable, so that the restrictions to Zﬁ{ are
/’ \p‘» 7

measures; these measures on féi are 7$~-regular; and the v, on ;Z) are

signed measures. Also, for each r, there is a Hahn decomposition of A

) s + - P

into two disjoint measurable sets Ay, A, such that, for every Heﬁﬁ),

v (AL/)H) >0, vp(AL/)H) <0. Writing

vi(H) = vp(83/) H),  vi(H) = -v(s3/] H) ,
Vi o= v+ v,
we have
+ +
O S Vl" S p’r’
0 < vi S H;;
%
0 < vy £ dp -

From now on, we suppose that ¢ satisfies a stronger quasi additivity
condition (g') in which sums are taken over J C (or)z%) I°, the j;L;

interior of I, rather than just I.

. . +
(xvii) If (Hy), (Hz), (Hs), (Hy) hold and V(A) <, pp. = v7,

MR = v;, Hp = v? on ti?; and for any He‘%gg,

s ) @)Y - ep ) )l

] g o )y, Py

u(H)

where [H] is any finite decomposition of H into disjoint sets Hielf?a



18

Farlier inequalities imply absolute continuity appropriate to the

existence of the Radon-Nikodym derivatives

e, = dvr/dp ; Bp = dur/du s
+ + - -
Br = dup/dp, B, = dup/dp
p-almost everywhere in A, and
71, = dvr/dp'r J
o= aul/a © = daul/a
Y. = GHp/GHr Yy = GHp/dM

up-almost everywhere, together with their respective measurability.

have -1 < Op, 7y <1, 0 < By 5;) Brs 7;; Yr <1l. Let © = [er]'

(xviii) If (Hi), (Hz), (Hs), (Hs) hold and V(A) < o, then

+ - + -
By = Br *PBr, Or = Br - Br
+ + - - +o -
Br = 7rbBr Br = 7rBr » BrByr =0,
2 2
lor| =B, el = 283 =1
p-almost everywhere, and
=1, A
7irn o= 0, el =2

and either 7; =1, 7. =0or 7; =0, 7z =1

Hp-almost everywhere.

We
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2.5 REPRESENTATION OF BC-INTEGRALS
We mention here the following main theorems proved in Ref. 7. By
T = T(w), weA, is meamt a mapping from A into Ey.
(xix) Under hypotheses (a'), (b), (c), (d), (4'), (H1), (Hz), (Hs),

(Hy), V(A) <o, (@), (£), the integral [f(T,d) can be expressed as

1) () A1)

o(D)-0
( ) IeD

(xx) Under the same hypotheses as in (xix), the function
f(T(w),0(w)), weh, is defined p-almost everywhere in A, is p-measurable
and p-integrable in A, and the integral ff(T,¢) has the following repre-

sentation as a lebesgue-Stieltjes integral in the measure space (A,CB,

E
Je(T,¢) = (A) [elT(w),6(w)]lan .

In particular, if we take T constant and f(T,d) = ¢, then w(D) = O

for every D, so the relation (®) is certainly satisfied, and we have
fg‘]f' = (A) fdvr ) r = 1,2,50.,1{ P

or, in vector form



3, THE ILEBESGUE-STIELTJES INTEGRAL AS A BC-INTEGRAL

In Ref. 6, Section 4, Cesari has shown how the finite Lebesgue-
Stieltjes integral on any measure space can be expressed as the BC-inte-
gral of a certain quasi additive interval function ¥ with respect to a
certain mesh function &. The objective of this chapter is to show that
this can be accomplished also by another interval function J with the

usual mesh function & of Lebesgue-Stieltjes theory.

3,1 THE INTERVAL FUNCTION V¥

Let (X,77Z,p) be a measure space, and f a p-measurable real function
on X, and let (X)ff dp be the corresponding Lebesgue-Stieltjes integral.
Since f can be decomposed into its positive and negative parts, we shall
assute £ > 0. Iet p, denote the p-measure of the set {x: f(x) > p}.

In the setting of Section 2.1, let us take for the set A the ex-
tended set of non-negative real numbers, A = [0 <y <o]. Let us take
for {I} the collection of all half-open half-closed intervals I(p,q) =

(p,q]n Letcéybe the collection of all finite systems
D = {(pi_l,pi]: i=1,2,...,n-1},
0 = py<pp <...< Phoq <o , n>2,

of non-overlapping intervals I covering some finite interval (O,pn_l]°

Let ¥(I) = ¥(p,q] be the interval function

20



21

Wpyal = (a=pulx: £(x) > vyl ,

where v_ . denotes any number with p < v

< qg.
pq =4

ba
Let &(D) be the usual mesh function of Lebesque-Stieltjes theory,
3(D) = | mex (Pj_"Pi_]_) +1/Pn_]_

i=1,..n-1
This function is obviously a mesh function.
Theorem 3.1. If ppo <o, then the function @ is quasi subadditive with

respect to the mesh function &, and the corresponding BC-integral coin-

cides with the Iebesque-Stieltjes integral of f:

I (x) [e(x) ap .

il

If py = o, then the same is true with the particular choice Vpg = -
Proof: The proof is divided into parts (a), (b), (c), and (d).

(a) For pg <o, ¥ is quasi subadditive with respect to 5. In fact,
we shall prove a more general result which will be used in part ().

For any é; > 0, take any
Do = ((pj_1sp3]: i =1,2,...,n-1]
with g(Do) < n(fi) = &£/uo; and any
D = {(qj_l,qj]: j=1,2,...,m-1]

with 8(D) < M(§& ,D,), where
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n-1
M E,Dy) = min e/ z lp 7 l/pn_l, p;-p;.; for i=1,2,...n-1
i=1
Iet
U(y) = mex 9yt gy SR
) = me Ly pg S )

these exist in [pi_l,pi] since q _; > p,_; and SERCEN} <Py D -
Iet V1, Vo denote the interval functions corresponding to two choices

of v. Denote a sum over (qj-l’qj] C(py_15p4] by Z(l). Then

yl(pi—l’pi] - Z(i) ﬁé(QJ_lJQJ]

IN

(pi-pi_l>upi_l - (ag(1)=93( 1) Hp4
(pi—pi-l)(Mpi-l_ppi) + (pi—qJ(i)+qj(i)—pi-l)“pi
Hence
_ (i)— +
Z{Wl(Pi_l;Pl] - Z 1‘lf2( qj_l)qJ]}

n-1

< maX(Pi‘Pi_l)(Ho'Hpn_l) + 2 maX(Qj'Qj_l> }: Hpi
1

< 3&E.

The particular case ﬁl = Eg gives the required quasi subadditivity.

(p) f& is independent of the choice of v__. in [p,q].

b

Iet the notation be as in part (a), but denote (pi_l,pi] by 14,

] by J

and (qj_7,94

jo
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Since Vo 1s non-negative,

(1)

W1 < ) W1y - 2 UR)T + Talay)

i
Hence, for any & >0, if 8(D,) < n(&E ) and 8(D) < N E.,Dy), then

T (1) < £+ Wa(3,). Hence, if 8(Dy) < 7(£), then

Z‘,L_EL(Ii) < E + V2,

S0
f\|71 < 2 + [z
Thus
le S IJé )
50, by symmetry,
N = [z

(¢) For py <o, [¥ = (X)[e(x)dp.
By part (b), we need prove this only for the choice Vpg = @ For
this choice, we shall not assume p, < .

Consider the set
n-1
8(D) = iié ((x,¥): p, 1 <¥v <py, £(x) > py)

Let m be the product measure £ x pu, where [ is real Lebesgue measure.

Then
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where Vpq = 45 SO

1im  w{S(D)} = [¥ .

3(D)-0
Now
((x,5): 0 <y < £(x)} C 1in inf (D)
3(D)=0
Hence
(%) J(x)ap < m{lim inf S(D)]
5(D)~0
< lim m{s(D)}
5(D)~0
Also
s(D) C {(x,y): 0 <y < £(x))
Hence
lim m{s8(D)} < (X) [f ap .
3(D)+0
Thus
¥ = _lim a(s(D)) = (X) /£ au .
5(D)-0

Remark: The condition pg < © cannot be omitted here when Vpq is chosen

-2

arbitrarily in [p,q]. For example, let f(x) = x™ on {x > 1} in E;.

Then [f du = 1. However, if p1 < 1, p2 = pi/4, and v = p,, then

P1P2
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(pompylulxs £(x) > vy o} = (pi/”‘—pl)(pzl/&l)

>© as p, * 0 .

(d) For po possibly infinite, if v then

pq=q)

¥(p,a] = (g-p)rlx: £(x) > q)

is quasi subadditive with respect to 3.
Let the notation be as in part (a). For any £,>’O, take any Dg;

and take any D with 8(D) < AM( & ,Dg). Then

¥ pi-l’pi] - Z( l)W q5-1-93 ]

< (P13 (1) Py-1 M0,

Hence

R O

L(¥W(p; _yop3] - X ;

< 2 max (qj—qj_l) L Moy

< 2¢&.

3.2 COMPARISON WITH PREVIOUS RESULILS

For (X,???,u) as in Section %.1, and f a non-negative p-integrable
function on X, Cesari considers the following situation (Ref. 6, p. 101-
105).

The set A = X,
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Intervals I(p,q) = {x: xeX, p < £f(x) < q} , where O <p < q <=,
Systems D = {I(p;_q,p3)t 1 =1,2,...,n} with O = Py <Py < +r <Py

The interval function
V(p,a) = pu{x: p < f(x) < q}

The mesh function

=
o) = _max (pipig) * /eyt ) g G 2(x) = py)
i=1,..n-1
i=1

Then Vis quasi additive with respect to & (Ref. 6).

Classical theory, for example (Ref. 22, p. 117-121), (Ref. 11, p.
179-185), shows, though in a somewhat different and restricted form, that
(X) [f(x) du is the BC-integral of ¥ with respect to d. Since
8(D) < 8(D), the BC-integral of ¥ with respect to & is also (X)[f(x) du.

In fact, provided p, <, (X) [f dp (even possibly infinite) is also

the BC-integral of the more general interval function

Vip,al = vy pixt p <f(x) < al

with respect to S(D), for any Vpq satisfying

pSVPqSQJ npao=p°

The following example shows that ¥, and more generally V', need not

be even quasi subadditive with respect to ©.

let (X,sz,p) be a measure space with w(X) = 1, and consider
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f(x) = 1 for every x in X. Then ¥'(p,q) = v, for p <1 < g, O other-

pa

wise. If V' were quasi subadditive with respect to 5, then

: T +
Z (v (1) - » " < £
IeDg
for (Ds) less than some n( £) and 8(D) less than some M E,Dy). Take
£_:-1/2; Do with g(Do} < n(1/2) and some member I(,1) with o > 1/2 (so
¥'(I) = vgy > 1/2); and D with 3(D) < AM(1/2,D,) and some member J(B,7)

with B <1 < 7 (sc ¥'(J) = 0 for JC IeDy). Then

Z [y (1) -Z(I)W'(J)}+ = v, > 1/2.

ol
IeDg



L., THE BEND OF A CURVE AS A BC-INTEGRAL

Tseki™® has introduced the concept of "bend" of a curve in E,, as a
generalization of total curvature. He develops the theory of this bend
in Ref. 13-15, and other papers. Results relevant to this chapter are
given in Section 4.1 below.

The obJjective of this chapter is to obtain the bend of a curve as a
BC-integral from a generating interval function as simple as possible.
This leads to a systematic treatment of the bend. As is to be expected,
the simplicity of the generating function that can be achieved depends
on the strength of conditions imposed on the curve. Sections 4.2, k.3,
and L.t below deal with the problem under different sets of conditions.

In the present chapter, the set A of Section 2.1 will be a fixed
interval [a,b] with the Euclidean topology, and the systems D will be
finite subdivisions of [a,b], so that the subsets I are closed subinter-

vals of [a,b].

4.1 THE BEND OF A CURVE
Consider a curve X(t), a <t <b, in Ep. Its bend Q = Q(a,b) can

be taken as the supremum of angle sums
N-1
) la)Hay), Kag)Kay)

i=1

over all subdivisions &g,81,...,ay Oof [a,b] with a = ag < a1 < .. < ay=b,

for which X(a;_7) # X(ay), i=1,...N. Here < A,B > denotes the geometric

28
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angle between the non-zero vectors A, B, 0 << A,B > < nr; angles involving
zero vectors are not defined. This is not quite the same as Iseki's
definitions in Ref. 13, p. 141 and Ref. 14, p. 115, but is easily seen

to be equivalent.

We shall need a continuity property of the bend for continuous curves
with finite bend. This is given essentially in Ref. 13, Section 32. We
shall cast it as follows: For every posifive é; and t in [a,b], there is
a positive A( € ,t) such that (t-8,t) < £ and Q(t,t+d) < & for

0<8<AM&E,t). (When t = a or b, one of these must be omitted.)

4,2 CONTINUOUS LIGHT CURVES WITH FINITE BEND
Let X(t), a <t < b, be a light curve, that is, X(t) is constant on
no subinterval of [a,b].

The simple interval function

sup CX()-X(w), X(v)-X(£})

where the supremum is taken over all t in (u,v) with X(t) # X(u) or
X(v), cannot in general generate the bend. This can be seen by con-
sidering a circle, where Q = 2n, while every D sum of the interval func-
tion has value 7.
Consider the interval function
V(u,v) = 1lim sup ‘{%?(u+6)-X(u), X(v-%')—X(u+6§>
(8,5 )+ 0+,0+)

+(K(v=8")X(ut8) , X(v)-X(v-5" >>}



30

Here lim sup £(5,5') means inf sup
(8,5")+(0+,0+) r>0 [|(8,8")]l<r
8§50, 8'>0

£(5,5").

¥ is defined, because, if not,

(i) X(utd) = X(u) for all ® in some positive neighborhood of 0O,
or

(i1) X(v-8') = X(v) for all ®' in some positive neighborhood of O,
or

(1i1) X(v-8'") = X(u+d) for all 8,d' in some positive neighborhood

(8,8 <r, 8 >0, 8 >0, of (0,0).

In all three cases, X could not be light.

Note that the simpler symmetric lim sup, that is, with &' = &, need
not be defined; for example, for u = 0, v = 1 with X(t) = (£t-t%,0) on
0<t<1.

Using subadditivity of angle and lim sup, one can easily prove that
Ylu,w) < V(u,v) + ¥(v,w) + o(v)
where u < v < w, and
wWv) = lim sup <?(v)-X(V-6”), X(v+6)-X(VX> .
(8,5")>(0+,0+)

Now 2y( v) < Q for any sum over a finite number of v. Hence, if

Q <o, 9(v) = 0 except at a countable number of points. Thus
N-1

5() = max(ag-a) + ) ey
i=1

is a mesh function cn the family CE? of finite subdivisions D = [Ii],
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Ij_ = [ai,ai+l], a =8y < a3 < ... <aN = b, of [a,b].

Theorem 4.1. If X(t), a <t <b, is a light continuous curve with finite

bend Q, then ¥ is quasi additive with respect to &, and [V = Q.
Proof: Consider any positive & . Take any

Do = [Ii], Ij = laj,a541); a = ag <ay < ... <ay=h,
and any

D = [Jj], Js = [bj,bJ_,_l], a =by <by < <Dy = b,

with
8(D) < min{ajiy-ay for 0 < i < N; A(i/N,ai) for 0 <i<N;& }

Here A is the function involved in the continuity of bend in Section 4.1.

Let

v
o
e
~—

min(bjz by .

o
|

max(bj: by <

AN

]
}—la
+
—

These exist in [aj,a;i47] since bj+l‘bj < aj41-a8i. Then

W1y - 5y
J(1)
< Wag,by(1)) + ¥bg(1),8141) * 7(o5)
3(1)

with special simplification at a for 1 = 0 and at b for i = N-1. Now
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2wy - X yarT < se

Thus w is quasi subadditive with respect to ©, and so has a BC-
integral V. Now [V < @ immediately, so [V is finite. Hence, since V¥
is non-negative, ¥ is quasi additive with respect to O.

To prove that v = ), consider any angle sum 2 appearing in the
definition of Q. For any positive E;, using continuity of angle and
of X, shift the points of subdivision to where y = O (such points are
dense), while keeping Zl < 22+£, where 2o is the angle sum for the ad-
justed subdivision. Since [¥ <o, [ZW(I)-f¥] < & for (D) less than
some C(E,). Subdivide the second subdivision further at points where
v = 0 to obtain a subdivision Ds with 8(Dg) < ¢(&E ). Now put in pairs
of points about the points of subdivision of Dg, sufficiently close to
make the part of the new angle sum 24 corresponding to the points of Dg
less than 6 (this is possible since y = O at these points) and the rest

of 24 less than

Zw(l) + &

D3
By subadditivity of angle, Lo < Lg < 4. Hence

To<Ta v £ < ) WD) +3E <y +uE .

a1

D3
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Thus 21 < [¥, so 0 < [v.

This completes the proof of Theorem L4.1.

Continuous light curves with finite bend have right and left tan-
gents R, L at every point (with obvious restriction at a, b) (Ref. 13,

p. 162). Hence, by continuity of angle,

Wu,v) = <R, X(v)X(u) + <K(v)-X(w), L v)>

and

W) = UV, .

4.3 GENERAL LIGHT CURVES
Let us consider the discontinuous plane curve X(t), 0 <t < 2, de-

fined by

X(t) = (t,0) on0<t<landl<t<2,

1.

(1,1) at t

We have here sup Zw =1n. JIf we consider the modified interval function

V' defined by

\lf'(u;V) = 8up {<X(S)—X(U.), X(t)'X(SD

+ (x(4)-x(s), x(v)-X(tD}

where the supremum is taken over all s,t for whichu <s <t <,
X(u) # X(s), X(s) # X(t), X(t) # X(v), we have sup V' = 3n/2. Finally

0 = 2n. The discrepancy between these values shows not only that we



3L

cannot generate Q from ¥ by adjusting the mesh function, but that any
adjustment of ¥ keeping to "two angles" will fail to generate Q.
Thus, in order to deal with discontinuous light curves X(t),
a <t <Db, we shall consider the "three angle" generator
V(u,v) = sup @(u,t,v)
u<t<v

where

55( U';t;v)

lim sup {}:X(u+6)—X(u), X(t)-x(u+éi>
50+

+

K1) -X(u), X(v-a)-x(ti>
G(v-8)-x(t), X(v)-X(v—6)>} .

-+

¥ is defined, because, 1if not, ¢ would not be defined for any t. Then,

for all © in some positive neighborhood of O,

(1) X(uwtd) = X(u),
) (11) X(t) = X(ut+d)
. (1i1) X(v-3) = X(+t)
) (iv) X(v) = X(v-38).

In all four cases, X would not be light.

Some manipulation shows that ¥V has the same property
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V(u,w) < Wu,v) + ¥(v,w) + Av) (u<v<w)
as V¥, but with

7v) = lim sup <{X(v)-X(v-3), X(v+6)-X(v)> .
5-0+

For a <u < b, define

AM(w) = 1lim sup VWu,u+d),
o0+

AN (u) = 1lim sup V(u-d,u),
50+

Mu) = AT(w) + aT(w)

Then, for any positive £ s

Wuw,utd) < Auw) + £
and

V(u-d,u) < A(u) + £
for all positive ® less than some A( ¢ ,u).

Define

|
Il

sup 27(t)

=~
il

sup 2a(t)

where the sums are over a finite number of distinect t. In order that

N-1 N-1
8(D) = max(aj41-aq) + Z 7 (ag) + Z Mag)
1 1

be a mesh function on the finite subdivisions
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D = [Ij], Ij = [a3,8y11], a =ag <a1 < ... <ag=b ,

it is sufficient that {t: 7(t) = AM(t) = O) be dense in [a,b]. This will
be true if I' and A are finite. Since I' and A < Q, 3 is certainly a mesh
function for a curve with finite bend.

Theorem 4.,2. If X(t), a <+t <b, is any light curve (not
necessarily continuous) for which ® is a mesh function (in particular,
for ' <w, A <), then @ is quasi subadditive with respect to 5, and

v =aq.

Proof: TFor any positive é:, take any

Do = [I4], Ij =[aj,854q], a =8y <ar<...<agy =D
with 8(Dy) < & , and any
D = [Jj], Js = [bj,bj+l], a=by <by<...<by=ho

with 3(D) < min{a;iy-ay for 0 < i < N A(éZ/N,ai) for 0 < i < N;¢J}.

Then

W) - 2 )

o
N
l—l-
~—

< W(ai;bj(i)) + 1l-F(bJ(i);aiﬂ_) + 7(bJ)

o
TN TN
P
S~—

A\

M(a)+E/N + N (ag49)+E/N + 7(b;)

.
—
[N
~~

with special simplification at a for i = 0 and at b for i = N~1. Hence
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S - 5 g1

N-1 N-1
< ) ey + ) by + 2t
. Lo
1 1
< LWE .

Thus V¥ is quasi subadditive with respect to 8, and so has a BC-
integral [V.

Now ¥ <  immediately, so J¥ = gives [¥ = Q. For f$ <o, we
shall prove that Q < [V.

Consider any subdivision D; of [a,b] with angle sum 2,. For any

positive EZ,
W) - < £

for'E(D) less than some n( & ). Subdivide D further to get Dz with

max (ai+l—ai) < % n(E.). Form a subdivision Db with 5(Ds) < n(Z) by
taking a point with 7 = N = O in each subinterval of Do. From Do and
D5 combined, form Dz by adding pairs of points symmetrically about the
points of D2, close enough to make that part of the angle sumAzs cor-

responding to the points of Dz less than é; , and the rest less than

Then

FrsTeslo< £+ ) WD+ £ < F+36

Do
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Hence Zl < fﬁ, so0 { < fﬂ.

4.4 ANGIE SWEPT OUT BY DIRECTION

Consider a field of directions on [a,b]}, that is, a function T(u)
defined almost everywhere on [a,b], with values unit vectors in En. We
wish to express the "angle swept out by T" as a BC-integral. The pres-
ent discussion of the problem is similar to Cesari's treatment of the
length of a discontinuous curve in Ref. 6, Section L.

Let U be the set in [a,b] on which T is defined. Define on U

+
A(u) = lim sup<<T(u),T(u'i> as u'> ut on U,
A(u) = lim sup<fT(u'),T(ui> as u' - ut on U,
k+(b) = 0, h—(a) = 0 if these are relevant,
+ -
Mu) = A(u) + A (u) .

Then, for any éf > 0 and any u in U, there exists A(E ,u) > O such that

<ﬁ(u},T(u’i> <Af(w) +& for O<u'-u< M & ,u), u'el
and

<¢(uﬁ),T(u;> <A (u) +& for O <u-u' <a(E,u), u'el .

Define A = sup Zk(u), where 2. is taken over a finite number of u.
If A <o, then Mu) = O except at a countable number of points. Hence,

if A < w,

5(D) = max(ai+l-ai)+a1-a+b-aN+A-Zk(ai)
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is a mesh function on the partial subdivisions

D = [1i], I; = lega3ml,
a<ay <az < ...<gy<Db, asel .
Theorem 4.3. The interval function

9(u,V> = <I'<U_),T( V)>

is quasi subadditive with respect to d.

Proof: For any £?> 0, take any

Do = [Ii], Ij = [ai,ai+l], a<a; <agp < ...

D = [JJ], J [bj’bj"'l]’ a_<_b1 <b2<.

j =

with

8(D) < min{ajiq-ay for 1 < i < N; A( E/N}ai) for 1 < i<

Then, by subadditivity of angle,

o(13) - Z(i>©(Jj)

<ay < b,

.<bM_

< Bleg), ™oyy)> + (oogpy), Tay

< Aeay) + £/ + 2 (a;4) + E/N

1

with special simplification when bj(i) = a,; or bJ<.) = aj47-

a)
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Thus

i +
Z (a(1;) - 2 Ma(a));
i
< 2& +Z>\(ai) s
where 2. is taken over ay # any bj, so that
“Nag) < A -Zx(bj) < £ .
Hence the BC-integral of © with respect to 0 exists, and equals

co(T) = sup26(Iy).

Note that A < C, so A <w if C < w,

Now consider the variation
V(T) = Sup ) HT( ai)—T( ai+l)H

of T, that 1s, the length of the curve traced out by T on the unit sphere.

Since

20/n < A

i
=
£
]
=
=
A
©

2C/n <V

IN
Q

Simple examples in which T is discontinuous show that V can be less
than C.
However, for T defined everywhere and continuous on [a,b], we shall

identify C with V. Obviously V = oo if C = ©. Congider C <. For any
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¢ > 0, @ <na/2 < E; for |u-v| less than some £(& ). Since 20 - C
as 8(D) + 0, |Xe-C| < é; for ®(D) less than some n(éj), Take D with

(D) <min[t(&),n(E)]. We have

6-A = 6-2 sin (8/2) < 6%/2k
S0
26 < LA +2e%/2h
Hence
c-E < v+ €°¢/2h
which gives C < V.

We now apply these results to any continuous curve X on [a,b] that
has a right derived direction T (Ref. 13, Section 73) at all but a count-
able number of points of [a,b]. Then C(T) = Q(X) (Ref. 13, Section 95),
so that we have another formulation for Q as a BC-integral.

Also, if X is continuous with tangent directions T (Ref. 13, Sec-
tion L2) everywhere in [a,b], and V(T) < ®, then T is continuous (Ref.

13, Section 67), so that we can identify C(T) with V(T).



5. GENERALIZED WEIERSTRASS-TYPE INTEGRALS
J£(¢,4) AS BC-INTEGRALS
In the definition of the Weilerstrass-type integral ff(T,é) in Sec-
tion 2.3, the expression T(1) is essentially an interval function. Our
objective in this chapter is to replace T(T) by a new interval function

€(I), and so consider the BC-integral of the interval function
o(I) = £(t(1),4(1)) .

The original reason for doing this was in order to express more con-
veniently integrals involving higher derivatives in the Weierstrass form,
and thus as BC-integrals. Let f(p,q,r} be homogenecus in q, and let
D(w) be a point function which is a derivative. In the previous formula-

tion, the integral
(&) Je(T(w),0(w),D(w))dn
would be expressed in the Welerstrass form as

lim }: £(T(),4(1),D(1)) , tel ,
8(D)-0 1eD

with explicit use of the derivative D(w). In the new formulation, we

can consider limits of the form

m ) A2, 401),0(0)
8(D)=0 [

L2
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where A(I) is a quotient of interval functions giving the derivative D{w)
in the limit. Here T(1) and A(I) can be thought of as a single (vector

valued) interval function {(T).

Thus we shall consider interval functions of the form
o(1) = £(&(1),4(1))

where f(u,v) is a real function of two vectors u,v, positively homogeneous
of degree one in v, where {(I), #(I) are vector-valued interval functions,

and ¢(I) is quasi additive with respect to some mesh function d.

5.1 A LEMMA

We shall need here and in later chapters a lemma that appears in a
concrete form in Ref. 6, p. 109 (the first member of relation (5.1)).
We shall state it here in an abstract form, and prove it directly.
Lemma 5.1. Let {#y: 1 =1,2,...,n) and {553: J=1,2,...,m} be two sets

of vectors in Ek¢ Define

"¢i/”¢i“ for ¢i % 0,

any unit vector otherwise,

and similarly aso Let J be a mapping from {1,2,...,n} into the subsets

of {1,2,...,m}. Denote by‘2<l> a sum of terms over j for which jeJ(i),
i y

and byzy+ a sum of terms over j for which jeJ(i) and Hai-ajH > 7.

Then
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. (1)
2 ) nt g

i

o [+

< ) I T gl ) L -2 gl

Froof: We shall denote by a-b the inner product of two k-vectors a,b.

For y < Hai~a5H, we have

o< eyl® - 200l losl® = 2 - 204-a

1

3

and hence

o |-

2 < I8yl - ayg

Quite generally,

O

3 g
< “éj“ = @i“éj .
Hence

i - ) 0 ? i LR
Lot gl < s 0600 - oy + on (4, 50Hg))

a
LI]
<

J

IN

A Y I P I PR o

The required result follcws with summation cver 1.

5.2 EXISTENCE OF THE INTEGRAL [f((,d)
In the setting of Section 2.1, let {,$ be vector functions on (I},
¢ into Ep, ¢ into Ey. Consider a real function f on K x By, ({I}CKCE,,

satisfying condition (f) of Section 2.3, namely f is positively homo-
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geneous of degree one on Ey, and bounded and uniformly continuous on
K x U vhere U = {q: [la| = 1, qeEx} is the unit sphere of Ep.

We shall now formulate for the set function C(I) a condition which
extends condition (@) of Section 2.3. For every DOeSQQZ let &(Dg) be

the number

&(D,) = max lim sup max [((I)-6(JI)]
IeDy B®(D)»0 JcI
JeD

We shall assume that
(¢)
lim  ®(Dgy) = O

(D, )0

We consider now the set function
o(1) = £(¢(1),4(1)), Te(I)
I the 1limit

lm ) (D) = Lm ) #(t(D),HD)
5(D)-0 s(D)»0
IeD TeD
exists, we dencte this limit by J£(f,d4).
We extend now the result (xiii) of Section 2.3,

Theorem 5.1. If é is quasi additive and of bounded variation with respect

tc a mesh function & (Section 2.2), and cconditions ({) and (f) hold, then
o(1) = £(¢(1),4(1))

is quasi additive and of bounded variation with respect to ©. Thus the
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BC-integral of @ exists and is finite, that is,

Jo - JHE4) - 1m ) f(H(D),KD)

Lo
3(D)~0 IeD

Proof: The conditions on é give Hé” quasi additive also, so, for any

& >0,
) g -2l < €,
LeDg
) Lol -2l | o< €,
LeD,

and

gl < &

for 8(Dy) less than some N &) and 8(D) less than some n( & ,Do); and

) gl -y < g

JeD

-

for ®(D) less than some o( & ).
The condition () gives, for any & > 0, that there exists
A(£) > O such that, for every Dy with (Do) < A(%Z ), there exists

X( & ,Dg) > O such that, if JCI, IeDy, JeD with 8(D) < X( ¢ ,Dg), then

le(n) - LDl < £.

The conditions on f give that there exist M and, for any & > O,
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E(& ) > 0 such that

lf(p,a)] < M on KxU
and |£(p,a)-£(p',a')| < & for [lp-p'[| and [lq-a'|| < &(£ ), p,p'eK,
q,q'€U.
Take any Do with 8(Do) < min[a(&(£ )),ME),M& €% €)1, and any D
with 8(D) <minlo( £ ),n(€ ,D5),n(€ £%(£),D0),X(&(£.),Dy)]. Denote by
Zéf) the sum over J (I for which [|o{I)-a(J)| > &, and by Zéf) the cor-

responding sum for which [a(I)-c(J)| < &. Then

) Ise(m,8m) - X P2t 400))]

TIeDg
< [£(e(T), )] | KD - 2 (
<I€26 o sl -2 g
) Oy I D, D)D), o)) [43)]
IeDg

<) LIl -2l 145 ) I8l

IeDy jgé
I R RN

IeD, IEﬁ;

-2 g ﬂ

<ME + £(V+7) + 8ME

= (MHV+£)E
L |£(6(a),4(3)) |

= 2" |2(8(3), N lIp(3)]
M B3]

IN

< My o,
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Hence both sums are less than any positive s by taking

€ = min(1, & /(om+vH1), & /)

Since the conditions (f) on f carry over to |f|, I@l is also quasi
additive. Hence ©® is quasi additive and of bounded variation.
Remark: By this theorem, the Welerstrass-type integral ff(C,é) depending
on two set functions C,ﬁ, of which é is quasi additive and of bounded
variation with respect to a mesh function &, is defined as a BC-integral.
Only the axioms (é), (C), and (f) are used, as for the integral ff(T,é)
only the axioms (4), (w), and (f) were used in Section 2.3.

We shall show that Theorem 5.1 extends the result (xiii) of Section

2.3. There T(w), weA, is a map from A into Ep. Take

¢(r) = ()

where T 1s some point of I. Then

max [6(T)-¢(D)| < sup [T(w)-T(v)] ,
Jcl u,vel
JeD

so that
&KDO) < o(Dp)

where w(Dy) was defined in Section 2.3. Thus our condition ({) is satis-
fied if w(Dg) » O as &(Dg) -+ O, which is certainly the case if

(D) < &(Dy)-
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5.3 TRANSFORMATION OF THE INTEGRAL [£(¢,d)

We now wish to transform [f({,) to the form

1w ) £(8(T), B(1%))

i
3(D)-0 Iep

as 1n Section 2.5. TFor this we need a lemma that is essentially rela-
tion (6.2) of Ref. 7, p. 1L1.
Lemma 5.2. Under hypotheses (a'), (b), (d), and (p') of Section 2.k, we

have

) IHD-RI)] >0 as 8(D5) +0 .

IeDg

Proof: Our conditions give, for any 2 >0,

2 Hsé(I.)-Z(IO)sé(J)H < &£

TeDg

for 8(Dg) < M &) and 8(D) < n( & ,Dy);

24810y < £

for

5o(Pro) < A &,1°) ,

and

810(Do) < = for 8(D) < v(£,1°)
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Now take any Dy with 8(Dy) < A £ /2), and having n members, say;

and take D with ®(D) < min[n( €/2,D,),v(A( £/2n,I°),I°) for IeD,]. Then

5 o(Dpo) < (€ /20,1%)

gy -B(0)) < E/en .
Hence
Z 14(1) - B(1°)|
I
o]
< ) oI+ ) E ke
T T
< E/2+n€/2n = & .
Corollaries:
(a) Z B(I°) - B(A) as d(Dg) ~ O.
IeDy
(6) since | 14D - (B | < I4D)-B1)]
) LIS - o) | >0 as 8(3o) 0,
IeDO

(c)

S0 Z IB(I®)|| = v(A) as 8&(Dy) -0 .

IeD,

Ir ||g| satisfies axiom (4') (which is so if @ satisfies axiom

(4') and V(A) < =), then

Z | 14CT)II - W(1°)] »0 as &(D,) » O,

IEDO
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50 y V(I®) > V(A) as 3(D,) = O.

oo

IeDy

We are now in a position to extend the result (xix) of Section 2.5.

Theorem 5.2. Under hypotheses (a'), (b), (a), (¢'), V <o, (C), (£),

we have

Z £(¢(1),B(1°)) > [£(¢,p) as B(Dy) + O .

IeDo

Proof: We have, from Lemma 5.2,

) IRl < g

IeDO

for 8(Dy) less than some o(E ). Iet B(I) = B(I°)/[IB(I®)|. Otherwise
we use the notation of Theorem 5.1.
For any & >0, let £ =min(&,Zt2(&)), and take any Dy with

8(Dy) < min(p( & ),0(E)). Then

oe(e(1),4(1)) - £(6(1),B(10))]
< 2 eIy, | - I3 |
+ % |e(6(1),a(1)) - £(6(1),B(1))]| llA(T)]]

AN

| gDl - B [+ EZg(D]]

-+

W2 LAY -B(O + | gD - IB()] [)
< ME + £(V+E) + BM T

E(VHoM+Z) .

Hence Lf(¢(I),B(I°)) converges to the same limit as LF({(I),4(I))
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5.4 THE INTEGRAL [£(¢,4) AS A IEBESQUE-STIELTJES INTEGRAL
We now express, as in Section 2.5, [£(¢,4) as (A)[f(2(w),6(w))dy,
where Z is an appropriate limiting point function of {. TFor this we
need a lemma, which is the result (5.i1ii) of Ref. 7.
For a given D, define
v(19)/W(1°) for weI®, IeD, w(I°) £ 0,

nD(W) =
O otherwise .

Lemma 5.3. Under hypotheses (a'), (b), (c), (d), (Hy), (Hz), (Hs), (Hy),

(4') and V(A) < o,

(8) J llo(w)-ny(w ap ~ 0 as (D) »o0.

Proof:

(8) [ lle

WDH2 dp

(A) [ ap - 2(8) [ ey au + (8) [ [Inpl® an

u(a) = T v(10)I7/W(1°)

w(a) = Z v(zo + 2 () IR(T0)-[lv(T)I)) /(1°)
< 2lu(a) - T [W(1o)]]

2[v(a) - Z [[B(1°)]]
+ 0 as 8(D) -~ O by Corollary (b) of Lemma 5.2.
We are now in a position to extend the main result (xx) of Section
2.5, that is, to prove that the integral ff(C,é)——which was defined in
Section 5.2 as a BC-integral—admits a representation as a Lebesgue-

Stieltjes integral.



53

We suppose that the interval function { converges to a mapping Z
from A to Ep in the following sense. (Z) For p-almost every w in A and
any > O, there exists 7(Er,w) > 0 such that if weI®, IeD with

8(D) < y( &£,w), then

16CT) - z(w)|] < & .

We also assume that K is closed.
Theorem 5.%. Under hypotheses (a'), (b), (c), (4), (Hy), (Hz), (Hs),
(He), (4'), v(a) <o, (&), (2), (£f), the function £(Z(w), o(w))is

p-integrable on A, and

J£(¢,6) = (A) [£(Z(w),6(w))au .

Proof: We have (A)[]|o-np/du + 0 as 8(D) + 0. Take a sequence (D} with
8(D,) < 1/n. Then there exists a subsequence {Dny,} with corresponding
My = ©  u-almost everywhere in A (see, for example, Ref. 18, pp. 226,
229). Thus there exists a set ATC A with p(A~) = u(A), [lef| = 1, ana

Ny > © on A .

For weA-, 1/2 < Hnm(w)H for m > some N(w), so weI° for some IeDy, -

Define
¢(1) for wel®, IeDpy, ,
Zm( W) =
an arbitrary point in XK otherwise .
Then, for m > N(w), ||Z,(w)-Z(w)| = [|¢(I)-2(w)] < ¢ for 1/ny < A€ ,w),

so Zy(w) + Z(w). Since K is closed, Z(w)eK.
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Although f is assumed uniformly continuous and bounded on K x U
only, its positive homogeneity gives f uniformly continuous and bounded
(M') on K x {q: a < |la] < b} for any a,b satisfying 0 < a <b <, In

particular, f is continuous at each point of K x U, so, on A7,

£(Zp(w) ,ng(w)) > £(2(w) ,8(w))

Now Zp, ny are obviously up-measurable (coordinate-wise) on A%, so
f(Zm,Nm) is p-measurable, so f(Z,0) is p-measurable. Indeed, f is
bounded and u(A) < », so £(Z,0) is p-integrable on A.

Also (A)[e(Zy(w),np(w))an > (A)[£(2(w),6(w))du. But

(A) [£(Zp(w) (W) )ape
= (A-VUI°) [2(Zp(w) ,ng(w))ap + Z£(6(T),v(10°))

Now

|(A-U10) [£( 2y w) ymy( W) )it ]

< MY (u(A) - Zu(I°))

]

M (V(A) - Zv(I9))

+ 0 as m > © by Corollary (c) of Lemma 5.2.

Also v(1I°) = B(I°), and, by Theorem 5.2,

2e(e(1), B(1°)) - [£(¢,8) .

Hence (A)/[£(Z(w),8(w))du = [£(€,9).
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Remark: The relation
I£(¢,8) = (8)]£(2(w),6(w))an
applies to "non-parametric" integrals of the form

(8) [e(z(w))an .

For this, we put

f(p,a) = elp)al ,

so that f(Z(w),8(w)) = g(z(w)). Then

(8) felz(w)as = 1m ) gUIIAD] = (Ol

(D)-0 4=

IeD

provided g(p) is uniformly continuous and bounded on K. Of course, the

conditions on { and é must still be satisfied.

5.5 THE CONDITIONS ({) AND (Z)

We wish to examine the relation between the condition (C) used in
Theorem 5.1 and the condition (Z) used in Theorem 5.3. We shall show
that a slight strengthening of each implies the other. In order to do
this, we need the following lemma.

Lemma 5.4. ILet u be a measure induced as in Section 2.4 by an interval
function ¢ under hypotheses (a'), (b), (c), (d), (Hy), (Hz), (Hs), (Hy),
(') and V(A) < . Then for p-almost every w in A and any & > 0, there

exists D with 8(D) < & and weI® for some IeD.
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Proof: By Corollary (c) of Lemma 5.2, Z R(I°) > p(A) as &(D) + 0, so

IeD
for any & > O, there exists p( &) > O such that

w(a) - WU < &

for 8(D) < p(& ). Take p(£) < T . TFor each positive integer n, take
Dp with 8(Dy) < o(1/n). Iet Ay = VI IeD . Then u(A)-u(Ay) < 1/n.
Take B = lim sup Ap = m U Ap. We have u(A) <, so
m n-om

p(B) > lim sup w(A,) = u(A), so w(B) = p(A). For weB and any & >0,
wesome Ay with n > 1/£, so weI® for some IeD with 8(D) < 1/n < §_.

| Now consider the following strengthening of condition (C)

(¢') For any E > 0, there exists A(e) > 0 such that, for every D,
with 8(Dg) < A( &), there exists X( £ ,Dg) > O such that, if JO)I° # @,

IeDo, JeD with &(D) < X( ¢ ,Dy), then
le(T) - el < & .

Theorem 5.4, If { satisfies condition ('), then there exists a mapping
Z from A to By satisfying condition (Z).

Proof: Consider any w in A to which the result of Lemma 5.4 applies.
Then, for any & > 0, there exists I, weI®, IeDy with &(Dy) < (£ ). By
condition ({'), if wed?, J1eDy with 8(Dy) < X(Z,Ds), and wed2, JoeDs

with 8(De2) < X( & ,Do), then [[€(J1)-6(J2)|| < 2§ . Hence

7Z(w) = 1im [€(J): wed%eD]
8(D)-0

exists. Again from condition (§'), if weI®, IeDy with 8(Dg) < A(E ),
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then

() -zl < & .

Now consider the following strengthening of condition (Z):
(z') TFor any & > O, there exists »( &) > O such that if weI®, IeD

with 8(D) < (& ), then
le(x) -z < &

Theorem 5.5. If there exists Z(w), weh, satisfying condition (Z'), then
¢(I) satisfies condition (C').
Proof: Consider any Dy and D with 6(D ) and 3(D) < é:/2 For IeDg,

JeD with J°(|10 £ ¢, take wed°(1I°. Then

leC)-¢(a)ll < HleCT)-z(w)ll + [[z(w)-t(a)||

< &



6. INVARIANCE PROPERTIES OF INTEGRALS [£((,d)

In this chapter, we study relations between interval functions (,d
and {'¢' which ensure that the corresponding integrals [f(§,d), [£(¢',4")
have the same value. The present discussion was suggested by Cesari's
treatment of the invariance of surface integrals under Frechet equiva-
lence in Ref. 3. Integrals over rectifiable curves present an analagous
invariance under Frdchet equivalence.

We consider a system A, U, {I},géy; 8 as in Section 2.1, with { a
vector function from {I} to K CEy and ¢ a vector function from {I} to
Ey; and then a second system A',/uL', {(1'}, &9', 8', with §' from (I
to K and ¢' from {I'} to Ej.

Let f(p,q) be a real function on K x Ex, satisfying the conditions
(f) of Section 2.3. Sufficient conditions on {,4 and {',d' for the

existence of the integrals [f({,4), [f(§',4') were given in Section 5.2.

6.1 RELATIONS R BETWEEN INTERVAL FUNCTIONS
We consider three relations (Ry), (Rz), (Rs) of C',¢‘ to C,¢ with
increasing strength.

(R,) For any 2l>-0, there exists a homeomorphism h from A to A' and
systems Dejéz D'eggr with (D) < é?, 5'(D') < ¢, satisfying conditions
() and (B) below.

(Rz) For any E > 0, there exists a homeomorphism h from A to A' and

a number A& ) > O such that, for every D' with 3'(D') <M &),

58
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there exists Deé@) with 8(D) < £, satisfying conditions (o) and (B) be-
low.

(Rz) For any £ > 0, there exists a homeomorphism h from A to A' and
a number M E) > 0 such that, for every D'e & with 8'(D') < N ),
there exists a number n( g,,D') > 0 such that every De @ with
8(D) < n(& ,D') satisfies conditions () and (B) below.
Condition (a): [[€'(I')-¢(I)|| < & for hIC I', IeD, I'eD'.
Condition (B):

) e -2t < g,

IteD?!

() ) 1 lgl -2 o < g,

I'eD?
and —
(111) 2 (D)) < €,
[T'] &
where L denotes a sum over all IeD such that hIQTI', and 2. denotes

a sum over all IeD such that hl is contained in no I'eD'.

We shall say that C',é' are related to C,é in the sense (Ri), or
¢',4' are (R;)-related to §,p, or (£',4")Ri(6,4), 1 = 1, or 2, or 3.

For point functions T(w), T'(w') respectively from A,A" to K, in-

ducing interval functions

¢(1) = T(r) for some Tl ,

¢ (1)

T'(t') for some T'el' ,

condition () becomes
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T (' )-T(7)|| <& for nICI', IeD, I'eD'

This condition is closely related to the standard condition in Frechet

equivalence:

(a') sup T (nw)-T(w0)] < & .

Lemma 6.1. Assume that w'(D') - O as 8'(D') » O (see Sections 2.3, 5.2);
that is, for any E' >0, w(D') < Qif for 8'(D') less than some ol £ ).
Then, for D' with 8'(D') < o( £/2), condition (a') relative to &£ /2 im-
plies condition ().

Proof: For hIC I',

16 (z)-E(T)ll [z () =2()

T (vt )-T' (br)]| + [T (hr)-T( )]

IN

< o'(1') + &/2
< &,

6.2 INVARIANCE OF INTEGRALS [f({,4) UNDER RELATIONS R

Theorem 6.1. Let f(p,q) be a real function on K x By satisfying condi-
tion (f). Let {,d, {',4' be vector interval functions such that the
integrals [f(¢,4), [£(C',p') exist, and

V- umen ) DI < o

8(D)*0  1ep

Then, if {',4' are related to {,$ in the sense (Ry),
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£(¢,6') = JE(¢,8)

!
Proof: The conditions on f give that there exist M and, for any f >0,

E(E') > 0 such that

|f(p,q)] < M on KxU
and

|£(p,q)-f(p',a")| < £

for |lp-p'll  and [la-q'll < &(E"), p,p'ek, q,q'€U .

Further,
Ze(6(1),4(1)) - [e(t,p)] < &
for 8(D) less than some o(§£ )
Ze(6r(T),6 (1)) - [e(t,40)] < £
for 8'(D') less than some o'( & ); and

Lol < ¥+ &

1

for (D) less than some ol & ).

In the relation (Ry) in Section 6.1, take

E = min(& 0 £),0(EN),a(E£),E(EN, £ 2 £M)

1

to get h, D, D' with &(D) < p E') and o( & '); (D) < p'(E"); and
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conditions (o), (B) satisfied; in particular, ||('(T')-8(I)|| <& <&(E")
for hI C.I'.
Then

) EE(T), 4T - ) 2(e(1),4)

T'eD! IeD

< ) lseran,g ) e, dm))

I'eD!

+ 2 |£(6(T),4(1))]

w6 (1), (1) [l (e 12 g

I'eD'

re )-£(t(0),0] KD |
+ 2 12(6(1),0(T))] llg(T)]
<M Z g canl<E gl 1+ €]

T'eD!

sugs(£ ) (g2 o)
T'eD?

s | g ol gl 1) + o 14

<ME + EN(V+E) + lMe™3( £1) 26 + ME

< (1oM+V+E 1) &

Hence

|f£(8,4)-J2(8,8)] < (Lo gr) £
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for any £ > 0, so [f€1,4") = [£(t,4).

Note that we have assumed that [f(f,4).and [£({',4') are finite.
This is certainly so for the first, by the conditions of f and V. The
possibilities ff(g',é') = * o are easily eliminated by examination of
our argument above.

In Theorem 6.1, we have assumed that both integrals [f(f,4) and

f(t',4") exist. If we use the stronger relation (Rz), then the exist-

ence of [f(t',4") follows from the existence of J£(t,8).
Therem 6.2. If [£({,$) exists, V< o, and {',#' are related to {,¢
in the sense (Rs), then [f(¢',4') exists and equals [f(¢,d).

Proof: For any £' > 0, take

E = min(E,0(En), o(En), (&), Ee3(E

in relation (Rz) in Section 6.1. This gives h and A(§ ), such that,

for every D'e. " with 8'(D') >N (£ ') = A(£), there exists D with

8(D) < £ < p(E ')€", satisfying conditions (&) and (B); in particular
ler (1) - eIl < € <&(£') for KIC I'.

Then, as before,

) e 4T ) S(E(D)LHI))] < (anTe )€Y

I'eD! IeD
SO

)T, 41(1) - J2(,4)| < (QomTasLr) £

I'eD?!
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For any éf >0, take £' = min(1, 57(10M4§+2)). Then, for
3'(p') <N(&) =n(EY),

) s, #(1) - Jeeg)| < &

I'eD?!

Hence

)G (T),41 (1) + Tt $) s 81 (D1) » o,

I'eD!
As particular cases, we consider in turn

f(p,a) = ap, lagl, lall

The conditions on f are satisfied. Then, under the other conditions,
B, V., and V are invariant. However, some of the conditions assumed
in the general theorems are superfluous here. We shall prove directly
the invariance of B and V under these relaxed conditions.
Theorem é:é“ If B,B' exist and ¢‘ is related to é in the sense (Ri)
restricted to conditions (B)(i) and (B)(iii) only, then B' = B.

If V,V' exist and é' is related to é in the sense (R1) restricted
to conditions (B)(ii) and (iii) only, then V' = V .

If B exists and ﬁ' is related to é in the sense (Rs) restricted
to conditions (B)(i) and (iii) only, then B' exists and equals B.

If V exists and #' is related to § in the sense (Rp) restricted

to conditions (B)(ii) and (iii) only, then V' exists and equals V.
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Proof: We shall prove only the first result. The method of proof for

the three other results will then be fairly obvious.
For any &' >0, |[Z4(1) - B < &+ for &(D) less than some p(§ '),
and ||24'(1") - B']| < €t for 8'(D') less than some p'(£'). Take
s - min(ég’,p(EZ’),p‘(Ei?)) in the restricted relation (Ri), to get
h, D, D' with 3(D) < p(E 1), 8'(D') < p' (&), and conditions (p)(i)

and (i1i) satisfied.

Then
IB* - B
| o
<l - Zpr(l v ) g -2 gl
IteD?
+ Z ()] + IZA(x) - B
< éi* + &+ E;+ EL’
< wE
Hence

6.3, SUBSTITUTION OF THE INVARIANCE OF V IN THE RELATIONS

The following result is of some importance, in that the invariance
of V can often be proved independently, for example in Ref. 5, p. 457
by semicontinuity.
Theorem 6.4. Relations (Ri), (Rz), (Rs) are equivalent respectively
to the same relations with (B)(ii) and (iii) replaced by V' = V.

Proof: The forward implication has already been considered.
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For the reverse, we shall make use of the relations ]ml = 2m+—m,
[HAH-ZHBH]+ < |A-2B||. We have, for any >0, 2N ()| -v| < ¢t for
®(D) less than some o(S '), and 12Zg (x)]]-v'| < £ for 8'(D') less
than some o'( £ ").

In the case of (Ri), for any £ ' > 0, take
£ = min(E/h,o(&/4),0 (E/N))

in the adjusted conditions to get h, D, D' with &(D) < £ < £' and

o(&/h); 8 (D) <& < £' and o' (£1/4);

[17]
) g -2 gl < £ < £

I'eD!

and 6T (1) - t(D)] < & < $1 for nIC 1.

Now

Y g -2 g« 2 gl
I1'eD? )
_ 2l an) - 2 gon” - g ann - 2P gon

+ Sig(o)]
<alg @)L PO+ v - g (] + D) - v
<oprfe+ S /h o+ £k
_ ¢,
Hence (B)(ii) and (iii).

The (Rz) and (Rs) cases can be treated by similar techniques.



67

6.4. PROPERTIES OF THE RELATIONS R

We shall discuss in this section some properties of the relations

First, we consider the reflexive property; that is, we consider
whether the relations (R;) have the property ({,$)R;((,4) for i = 1, or
é, or 3. For (£',4') = (¢,4) and h the identity homeomorphism, the
relation (Rg) reduces to condition ({) for ¢ and quasi additivity of
é and Hé“ with respect to ®. Hence, if é and Hé” are quasi additive with
respect to © (or, equivalently, ¢ is quasi additive and of bounded
variation) and { satisfies condition ({), then (¢,$)Rs(t,4), and so also
(¢,8)R=(¢,8) and (§,4)R1(6,4).

The relations (Ri) could be made symmetrical by adding the respec-
tive transposed relations.

The relations (Ri) themselves in general do not appear to be tran-

sitive. However, in the case in which

t(r) = T(7), Tel
for a point function T in the form discussed in Section 6.1, we can
show that (Rs) and (Ra) are transitive.
Theorem 6.5. Suppose that T',5' are (Rg)—related to T,4, and that
T",4" are (Rz)-related to Th4.. Then T",4" are (Rs)-related to T,d.

Proof: For any £ > 0, we get h and A(% ); and for any $' > 0, we

get h' and M (£ '). Now for any £ > 0, take € - 5_/5, £’= min

(E/50(E)). Then
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sup |T"(n'nw) - T(w)| < 2' + £< £,
weh
For any D" with 8"(D") < M S ) = A1 (£ '), there exists D' with
5'(D') <& < &) and satisfying the condition (B) on 4',4". Hence
there exists D with &(D) < él < € and satisfying the condition (B) on
1 11
é,6'. Then, denoting by Z[EI 1] a sum over all I with h'hIC I", we
have
, ({1r"]]
) g - 2 )

IH
[1"]

) g -2 g 2 g -

I”

{Z[[I”]]_ ol1"] Z[I']}?{(I)H

ZW"(I") _ Z[I"}¢¢<I‘r)” +Z”¢I(I:) _ Z[I']QS(I)H

I“ IT

4(1))

IN

+

z g0l Z (Tg(D)l| : A*RIC T BIC Tt atTrE T
Il

[1"] [1']
<) gy -2 ganl ) e -2 gl
I” I\'
C Tl ) 2T gl - g ol « 2 g
IY
< £ 4 £+ E+8& + Ei’
<g-

Also V' =V, V' = V', so V' = V. We can thus use Theorem 6.4

(although it can be done directly) to conclude that T",¢" are (Rg)-
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related to T,d.
This proof can easily be adapted to prove transitivity in the (Rs)

case.

6.5. PARAMETRIC CURVE INTEGRALS
Ag an application of the theory in this chapter, we shall prove
the invariance of integrals over Fréohet equivalent parametric curves.
ILet T, T' be continuous mappings of bounded variation into Em from
closed intervals A = [a,b], A' = [a',b?] respectively, such that
(F) for any é:’ > 0, there exists a sense-preserving homeomorphism
h from A to A" such that
sup ||T7(aw) - T(w)| < Er.
weA
Here(Ref. 6, p. leL {I} is the class of all closed subintervals
of A, ﬁé?is the class of all finite subdivisions

D = [I, :1i=01,...N], I,

i = laj q0a5), 8 = ao<ay <...<ay = b,

and 8(D) = max(aj-a;_1). We take

where I = [u,v]. A similar system is taken for T'.

We shall show that T',4' are related to T, in the sense (Rs) re-
stricted to conditions (@') and (B)(i). Then, if we assume the invar-
iance of the curve length L = V(é), the invariance of the curve integral

J£(T,4) follows from Theorems 6.4 and 6.1.
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Theorem é;é“ If the mappings T, T' are related in the sense (F), then
T',é’ are related to T,é in the sense (Rs) restricted to conditions
(a') and (B)(1).
Proof: Tor any é: > 0, consider any subdivision D' = [15 1 j=1,...M]
of A', I' = [a' _,a'l, ad = al <...<a' =b'.
J J-1" M
The condition (F) gives a sense-preserving homeomorphism h such
that
sup [|T' (nw) - T(w)|| < &/
weA
Condition (Rs)(@') is obviously satisfied.
The mapping h : A > A’ is increasing with h(a) = a', h(b) = b".
It is continuous and so uniformly continuous on A, that is, for any
1> 0, |an] < é;' for |Aw| less than some h(é:')o Uniform continuity
of T on A also gives |[aT] < é?‘ for |Aw| less than some 7(E '),
Teke any subdivision D = [I; : 1 = 1,...N] of A, I; = [aj_1,a;],

a =ao < az <°a°<aN = b, with

8(D) < minly (£ /1), K(aj-aj_l) for § = 1,...,M]
Define
aI(j) = max a, hal < aJ ,
a = min a ha > a H
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< a' by the condition on &(D).

these exist with a' _ < ha, .
- I(3) =

< ha
J-1 i(3) —

Then

+
H
—
=

1
w
&Y
H
—
o)

Hence

I (xp) - 2l < Em,

(111, "
2 gy -2l < £,
Thus condition (B)(i) of relation (Rz) is satisfied.

6.6. PARAMETRIC SURFACE INTEGRALS

As a second application of the theory of this chapter, we shall
prove the invariance of integrals over Fré%het equivalent parametric
surfaces.

Let T,T' be continuous mappings of bounded variation into Es from
respective admissible sets A,A' in Eg(Ref° 5, P 27} such that

(F) for any é;' > 0, there exists an orientation-preserving homeo-

morphism h from A to A' such that



T2

sup [l (aw) - o) < £
weA
Here(Ref. 6, p. lOQL {I} is the class of all closed simple polygonal

regions IC A, and ,Z?is the class of all finite systems D = [I] of non-
overlapping regions I € (I}. Let Tpy r = 1,2,3, be the projections from
Es onto the coordinate planes I'y of Ez. Put Cp = 15 T I*, where I* is
the oriented boundary curve of I. ILet O(p,Cr) be the topological index
of the point p € I'y with respect to Cp. Then 0(p,Cr) is integrable on

'y with respect to Lebesgue 2-measure m. Put

(Fr)fO<P>Cr>dm> r = 1,2,3,

[$o(1)]1,

$r(I)
$(1)

Uy = sup }Z |Ae(T)],

De TeD

U = sup A(T)]l.
Deugéz;

Define
a(D) = max sup [T(w) - T(v)|,
IeD u,vel
w(D) = max  m((_J [Cp])

r=1,2,3 TIeD

4(0) = mex {0~ ) B - ) (D] for = 1,23

IeD IeD



>

Then(Ref. 5, D. 55@, 8(D) = d(D)+m(D)+u(D) is a mesh function.
We shall use the result(Ref. 5, PP- 186,296> that Np.(p) =

sup j;WIO(p,Cr)| is m-integrable on T'y.
Def -
" TeD

Similar definitions and remarks apply to T'.

We shall translate the first part of Ref. 3, Section 3, to show
that T,$ are related to T',4' in the sense (R?>‘ Then the invariance
of the surface integral ff(T,é) follows by Theorem 6.2 (the second
part of Ref. 3, Section 3, is essentially the proof of Theorem 6.2).
Theorem,§iz. If T,T' are related in the sense (F), then T,¢ are related
to T',4' in the sense (Rz).
Proof': By absolute continuity of the integrals, for any'é;>'0 and r =

152,5’
(B)/[.(p) + Ni(p)lam < &

for m(E) less than some T(Ej). Take T(E:) < é?.
Consider any D = [I] e .2 with 8(D) < 7(£)/2. ILet AM(E) <& be

such that, for r = 1,2,3, the closed K(E)-neighbourhood /\r of U[Cr] has
n(Ap) <m(_Jice]) + 7(E)/2 < (&)
Teke an orientation-preserving homeomorphism h : A > A' such that

sup|[T* (hw) - T(w)|| < n(E)/2.
weh
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Put Cp = T4T'hI*; then the Fréchet distance ||Cr,Cy| < A(E)/2.
The sets hI are compact; hence T' is uniformly continuous on k)hI,
that is, for any £' >0, [|[T'(v")-T'(u")|| < £" for [|[v'-u'| less than
some (€ "), v',u' e\UhI. For each I € D, we can take I'(_ hI, I' ¢
(I'}, with |T7%,hI¥|| < n(A(£)/2). Since the hI are non-overlapping,
D' = [1'] e & . Put Cp = 7, T'I'*. Then |Cp,CL <N(E)/2. Hence
ler,cill <A (E).

Thus 0(p,C}) = O(p,Cy) for p € I'p- Ar(Ref. 5, p. 83,

Hence

pr(1) - p.(17) = (A [0(p,Cy) - O(p,CL) Jam,

sO

Zlge(I) - L(T)] < (AR Ip(p)#0i(p) Jam < &£

Tus L|g,(1)| < Z[L(T)[+E, so Up-E/2 < U+E.  Hence Uy < UL,
so U], = Up by symmetry. Also ZIA(T)-p (x)]] < 3£, so 2A(T)] <
ZH%‘(I')H+§€Z, so U- g/E < U'+Bé;} Hence U < U', so U' = U by symmetry.

From these relations, we have

UL - ZIgL(T) ] < U - ZIAL(D)] + Z]A(T) - gL(T)]
< (D) +&,

U - 2Zg (@)l < v - ZIE@ + 2IgT) - g ()l
< u(d) +3£.

Also
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d'(D') < max sup ||T'(hu) - T!(hv)|
IeD u,vel

< a(p) +n(E),
m'(D') < m(D) + T(E)/Q

Thus 8'(D') < 8(D) + M E) + 1(£)/2 + 3& < 5&. Hence for any
8' >0, 3'(D") <8' by taking 5 = 5'/5a
(1]
We have taken I' so that h™"I'CC I, so a sum 2, over I' with

h™'I'CC I is over only one member. Thus

(8) u>ﬂwuwﬂ1%wvn|=mwuwwch@£<£u
(ii) ZlHﬁ(I)H—Z[I]Hé‘<I')HI = LIA@)-Ig (xS (T)-4' (T)HI<E T,
(111) T4 (11)] = o.

In addition, if w e I, w' ¢ I', e I, then w' = hwy for some

wo € I. Hence

(o) T(w) - ()]

AN

() - TGl + [T(wg) - T (hwo) |
< a(d) +n(&E)/2
< &

< &

We have thus shown that (T,4)Ro(T',4').



7. ROTATIONAL PROPERTIES OF INTEGRALS [f(¢,4)

We now apply the results of the last chapter to the problem of the
behaviour of ff(C,é) under rotations in Ej and Ex. This problem arises
classically when the interval functions C,ﬁ are generated from a variety
in E,, that is, a mapping T from A to E,. Any orthogonal transformation
R in E, will give a second variety T' = RT in En, which will generate
corresponding C‘,é‘, and often ®'. One expects simple rotational re-
lations between B' and B, V' and V, [f(¢',4') and [£(¢,4), but not be-
ween the interval functions é' and é, ' and €, because of their ap-
proximative nature (see, for example, the remark in Ref. 28, p. 923.
However, one would expect approximative rotational relations between
é' and ﬁ, ' and {; such approximations are just what were considered
generally in the last chapter. From these approximative rotational re-
lations, we deduce the rotational relations between the BC-integrals.

Relative to a system A, 7/, (I}, VZZ we shall consider interval

functions ¢, ¢' from {I} to E, and #, #' from (I} to Ex, and mesh func-

tions ®, & on¢22

7.1, APPROXIMATTVE ROTATIONAL RELATIONS

For P, Q orthogonal transformations on E, and Ey respectively, we
consider three relations (01), (0z), (Os) between (', ¢' and ¢, 4 with
increasing strength.

(0,) For any éj > 0, there exist systems D, D' EOZQWith 5(D) and

76
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5'(D) < é; and satisfying conditions (p), (q) below.

(05) For any £ >0, there exists.k(é;) > 0 such that, for any D'
with 8'(D') < N(£ ), there exists D with 8(D) < & and satisfying con-
ditions (p), (q) below.

(03) For any é: > 0, there exists AME ) > 0 such that, for any D'
with 8'(D') < k(é:), there exists n(é:,D') > 0 such that, for any D

with &(D) < n(éf,D'), conditions (p), (a) below are satisfied.

Condition (p): ||¢'(T') - PE(T)] < for ICI', IeD, I'eD'.

(I')

Condition (q): (1) }: |41 (zt) - QX ¢(D) < Ei;

I'eD?

(1)
(1) ) -2 ol < £,

I'eD’

and

(111) 2Dl < £ .

T.2. RELATION BETWEEN INTEGRALS
Let K C E, be such that {(I) and P™Mt'(I) K for each I € (I).
Suppose that f(p,q) is a real function on XK x Ey, satisfying the con-

ditions (f) of Section 2.%3. Define

1

glp,a) = £(P'p,Q7%q)

Theorem 7.1. If [£(t,4), [g(t',') exist, V < o, and £',4' are related

to ,$ in the sense (01), then [g(t',4') = [£(L,8).
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Proof: In the setting of Chapter 6, relation (01) states that P'lg',
Q'lé‘ are related to €, é in the sense (Ri), with h the indentity homeo-

morphism. Hence, by Theorem 6.1,

[e(t,4) = [e(®7r¢r,Q78) = fe(tr,4')

Theorem 7.2. If J£(t,4) exists, V< w, and £',4' are related to ¢, in
the sense (0z), then [g(f',4') exists and equals Je(t,é).

Proof: In the setting of Chapter 6, relation (05) states that P_lC’,
Q'lé’ are related to C,é in the sense (Rz), with h the identity homeo-
morphism. Hence [T(P™%¢',Q7"4') = [g(t',B') exists and equals [£({,4).

Ag particular cases, we consider in turn

f(P:Q) = (QQ)r: I(QQ)I'I; HQH

The conditions on f are satisfied, so that, under the other conditions,

B' = QB,
v, = B(l(h)]),
vl =V
For the second, g({',p') = f(P-lQ‘,Q-lé‘) = é; ; the rest are obvious.
However, corresponding to Theorem 6.3, the relations B' = QB,
V' = V can be proved from fewer assumptions. These we now set out.

If B,B' exist and é,ﬁ‘ satisfy relation (0,) restricted to (q)(i)
and (iii), then B' = QB. If V,V' exist and ¢,p' satisfy relation (O;)

restricted to (q)(ii) and (iii), then V' = V.
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If B exists and #,4' satisfy relation (Oz) restricted to (q)(i)
and (iii), then B' exists and equals QB. If V exists and é,é' satisfy
relation (0s) restricted to (q)(ii) and (iii), then V' exists and equals

V.

T7.3. SUBSTITUTION OF SPECIAL RELATIONS

Corresponding to Theorem 6.4, conditions (q)(ii) and (iii) in re-
lations (01), (0z), (Oz) can be replaced by V' = V. This is important
because invariance of V and often be proved independently, for example
in Ref. 5, p. 355.

Furthermore, in the case in which Q(I) = T(T), Tel,for a point
function T, with T' = PT, we can deduce the relation between the Weler-
strass integrals from the B relation, as in Ref. 28, p. 925 and Ref. 20.
Theorem 7.5. Assume conditions on f, T, and é ag in Section 2.5 in

order that
2r(r(r),B(1°)) ~ J£(T,4) as 8(D) ~+ O,
Yg(T'(7),B'(1°)) ~ [g(T',4') as 8'(D) ~ O.

Also assume that for any & > O, there exists D with 8(D) and 8'(D) <Zé:.

Then, if B' = @B,

[g(T',6") = [£(T,4).

Proof: rg(T(r),B'(1°)) = Yf(P *Pr(r),Q 'QB(I°)).
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The first converges to [g(T',4') as ®'(D) »~ O
The second converges to [f(T ¢) as (D) ~ O.

Hence the result.



8. SEMICONTINUITY OF INTEGRALS

We now prove semicontinuity theorems for our integrals relative
to suitable topologies. For these, the form (A) [£(Z(w), 6(w))du is
most convenient. In this form, we shall relax many of the conditions
that we have imposed preyiously. The measure p will be arbitrary. The
continuity and boundedness condition on f will be relaxed to a meas-
urability condition. Homogeneity of f will not be assumed at first.

To distinguish this situation from the previous situation, we
shall take the function f of the form f(r,s), reEp, seBy;. New require-
ments of convexity relative to s will be imposed on f in order to ob-
tain the semicontinuity theorems.

We shall show in particular cases in Chapter 9 that our general

semicontinuity theorems give the standard ones.

8.1. THE TOPOLOGY T

Consider a set A and a class§7/of triplets T = (p,o,u), where,
in each T, p 1s a measure on A, o is a p-integrable mapping from A to
Ep, and p is a u-measurable mapping from A to E,. By "measurable"” here,
we mean that each of the component functions 1s measurable. Denote the
class of p-measurable sets in A.byk?%i

We shall denote the distance of a point r from a set R in E, by
d(r,R). Let U be the unit sphere {s:|s|| = 1} in E,.

Define an ecart on ;7pby

81
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£(T1,T0) = sup |lea(w)-po(w)| +
weh
sup inf [ (My)-po(Mo)| +

Moe% Mle'w/l

ueU . My Mg U L(M1)fordus-(Mg)  ogdng]-ul
This has the properties
t(T,,T,) = O,
t(T2,To) < t(T2,T1) + t(T1,To);
but t(T1,T0) = t(Ty,T1)
Ty = T, whenever t(T1,To) = O

need not be valid. However, the two valid properties ensure that the

neighbourhoods
e (To) = (T: 3(T,T6) <)

form a basis for a topology T on 57?Ref. 16, p. #@.

Remark: If po is regular with respect to a t0polog{;§?oC31232 on A,

as will be the case in our major theorem, thenczzg can be replaced by
;Zfo, the class of;;7o-closed sets, in the expression defining t(T1,To).

To prove this, denote the corresponding second parts of t(T1,To) by
! .

n,1M Obviously n' <mn. For any é? > 0, we have

n - é? < lpi(M1) - poMo)| + [ [(M1)fo1dp1 - (Mo)[oodpo].ul
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for some u € U, some My, and all My C My. Now [[(B)[ooduol <& for
uo(E) less than some K(é:) by absolute continuity of the component

integrals. Take FoC My, Fo € %, With ug(Mo-Fo) < min(é;, n(&i)).

Then

no- é: < Jpa(M1) - po(Fo)| + Ei + | [(M1)fordus - (Fo)foodpol.ul + &

for all MiCZ Fy. But for all u € U, all Fy, and some M1C Fo,

n' o+ E: > [p1(My)-po(Fo) | + [ [(M)[ordps - (Fo)[oodpo].ul

Hence

n-E<n +3E,  son<n.

8.2. THE FIRST SEMICONTINUITY THEOREM
Let f(r,s) be a real function on E, x E; such that, for each
T = (p,0,1) € &,
(')  f(p(w),o(w)) is p-measurable on A.
It will be obvious that it 1s sufficient for f to be defined on

LJ(DXU)(A) only.
7

In particular, condition (f') is satisfied if f is continuous.
Theorem §;£. Consider a particular triplet To = (po,ao,uo) satisfying
the following conditions.

(1) There exists & > 0 such that f(r,s) >0 for d(r,po(A)) < B,

8 € Ez.
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(2) For ug-almost every wo € A and any'é? > 0, there exist
(& o) >0, B(E wo) € B, b(& ,wo) € By, such that, for [r-po(wo)l|
< S(Ez,wo) (and (r,s) el J (pxo)(A)—this will be implicit throughout),
(a) f(r,s) > B(é;,wo) + b(é;,wo)as for all s,

(b> f(T;S)S B({:;Wo) + b(gywo)°s + g for HS"UO(WO)H < 6(5‘)"‘70)-

(3) po(A) < o,

(4) The measure Mo 1s regular in some topologykaz on.A,Zf%}r;%véo
(We use "regular" in the sense that, for anyyéj >0 and any M ei2%§,
there exists a set F;;fo—closed, FC M, with po(M-F) < EL),

(5) For any é; > 0, there exists a set K(:A, gﬁgmcompact, K 67720,
with po(A-K) < £ .

Then I(T) = (A) [f(p(w),o(w))dp is lower semicontinuous at T, in
the topology T-

Proof: The case I(Ty) <

Take any éz > 0, By absgolute continuity of the finite integral,

there exists k > O such that

(B)[£(po(w) ,00(w))dno < &

for EC A with g (E) < k.
A
Since p, and op are pp-measurable, po(A) < o, and Ho 1s ffo-regular,

we can apply Iusin's theorem(Refs. 12 and 18) to the set {wo: woe A, con-

dition (2) holds]} to obtain arjyg-closed set K with uO(AAK) < k, py and
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7
ob\g/o-continuouscw1K, and (2) holding for every woeK. By (5), we
can teke K ‘c’g/o—compact°
) . . 3 .
By'ggytj—contlnulty of po and oo on K, for each wy in K, there is

a set H(wo) 6298, containing wo, such that, for w in H(wo)(wK,
Hpo(w) - F’O<WO>H < S(E )Wo)/2

and

“UO(W) - UO(WO)” < S(EZ)WO)
Consider any r such that

a(r, 00 (H(wo ) K)) < 8(E,w0)/2,
Then there is a w' in H(wo)fWK such that

lz-po (W)l < 8(E w0)/2, s0 that [lr-po(wo)l < 8(E,uo).

Hence
(2') (a) f(r,s) > B(é:,wo) + b(Ei,wo),s for all s;

(0) £r,o5(w)) <B(& o) + b(&E,w0).00(w) + & for weH(wo K.

The collection {H(wo): Wo in K} covers K, which is ;fyg-compact,
Hence we can teke a finite sub-cover {H(wi): i=1,2,...vV}. We shall
write H(wi) as Hj, 6(&;,wi) as &1, B(E ,wi) as By, and b(£ ,wi) as bi.

Put Ey = Hy-Hi-Ho-...-H;_7. Then the E; are disjoint, E;(C Hi, and

KC By = \UHi. Next, put By = E;( K, so that | JB; = K. Also By Hif K,
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go that for weBj, d(po(w),po(Hif X)) = O and weH; [ K.

Hence, from (2'b),
£(po (W) ,00(w)) < By + by-0o(u) +&
Consequently I(TO)

< (UBL/£(po(w),00(w))aue + &
< 2, (B1)J[By + bieoy(w) +€ lapy + g’
< L Biuo(B1) + L bye(Bi) oo (w)dp, + E ) +&.

Consider any T in ;fsuch that
£(T,To) < min(®d; 81/2 for i = 1,2,..4V; E/Zlﬁils {/Z[Ibill).

Then |[p(w)-po(w)|| < & for all w in A, so f(p(w), o{w)) > 0. Also

lp(w)-po(w)|| < 81/2 for all w in A, so that for w in Bj,
d(p(w),p (B3MK)) < &4/2.
Hence, by (2'a),
£(p(w),s) > By + by*s
for w in By and all s. We can take My in"%}, MC By, with
lu(M1) - wo(B1)| < E/ZIB11,

and
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|L04y)fo(w)an - (B1)foo(w)auol e/ lIball] < /Loyl

Then

> T (M) f£(p(w),0(w))du

v

% (M )f(By + byro(w))du

2 pu(y) + L by fef o(w)an

% Biuo(Bs) - % 1By 1€ /Z1ps |

2 by (By) o, (w)dno - ZllballE /Ll byl
> I(T,) - £ no(a) - 3E.

v i

-+

The case I(TO) = oo,

The essential difference from the treatment of the first case lies
in getting a substitute for absolute continuity of I,

Lemma 8.1. Suppose a non-negative function g(w), wehy is p-measurable

on A, but (A)fg(w)du = . Then, for any {, there exists k > O such
that (E)[g(w)du > ¢ for all E such that w(A-E) < k.
Proof: (A)[gy(w)du > 2¢ for m greater than some m(t), where gy (W)

= min(m,g(w)). Then

(E)fg(w)dn > (E)[gy(w)du
= (A)fg,(w) - (A-E)[gn(w)ap

> ot - p (A-E)m

for m > m(t). Hence, for p (A-E) < ¢/(m(t)+1) we have the required
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inequality.
Returning to the proof of Theorem 8.1 in the second case, take

any {. By Lemma 8.1, there exists k > O such that, for py(A-E) < &,

(E)ff(po(w) ;GO(W))dHo > €.

Now apply Lusin's theorem to get K as in the first case. Get H(w),
Hi, bi, Bi, 81 as in the first case, but with é; = t/2(2+ug(A)). Con-

struct E;, B as in the first case. Then

¢ < (UB1)[t(po(w),0,(w))dpg

< BBipo(By) + Tby* (By) op(w)dpo + £ o(A).

Consider T as in the first case, but witk1£:== t/2(2+u,(A)), to get

(1) >t - Euga) - 26 = t/2.

Remark: In Chapter 9, condition (1) will be described by saying that
f is "non-negative near poy and condition (2) by saying that f is "To-

convex',

8.3, THE SECOND SEMICONTINUITY THEOREM

In applying our general results to particular systems, we shall
wish to obtain the standard semicontinuity theorems of the calculus of
variations. In its present form, our topology’or157/is too fine for
this. With additional conditions, we can use a coarser topology<on‘57/

to obtain a theorem (8.2) which actually contains the standard semi-
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continuity theorems as we shall see in Chapter 9.

We shall consider a neighbourhood system sz6f To satisfying the

condition

(V) sup [o(w) - po(w)| » 0
weh

and

inf (|pM) - po(Go)| +
Me™ + 0
MC Go | [(M)fodp - (Go)fdoduo]aul

for each G, € ;é;; and u € U,
as T > T, in U/,
Remark: The "local" écart
t1(T,Ty) =  sup |p(w) - oo ()| +
weA
sU inf [ [u(M) - HO(GO)I +
Goezgjo Me ‘M
uel MCG, [L(M)[odp - (Gy) [ opdngleu
gives a neighbourhood system /Z/E coarser than that given by t(TTTO),
since t'(T,TO) < t(T,TO)n The neighbourhood system ' satisfies con-
dition (1&3» but 1t ig still too fine for our purpose in Chapter 9 be-
cause 1t involves uniform convergence with respect to Gy and u.
Theorem §Lgu Assume that the conditions of Theorem 8.1 are satisfied,
together with the following conditions.

(6) The mapping po is ;%/o—continuous on A.
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(7) For any G € ;‘ﬂ/o and any 8 > 0, there exists B ¢ % with
its ;?o—closure B(C_ G and bo(G-B) < E

Then I(T) is lower semicontinuous at T, in any neighbourhood system
?/of To satisfying condition (%
Proof: We proceed at first as in Theorem 8.1, except that in the con-
struction of X, we use K/Q instead of k. Also, since P is continuous
on A, |lpg(w)-pg(wo)ll < S(E,WO)/E for w in H(wg), instead of H(wo)m,
This adjustment is to be made throughout.

Having reached the construction of H;, ®i, By, bi, we put
m = max[IBi],HbiH: i=1,2,...v]. For any &' > 0, we have (E)[|logllam

< E' for ug(E) < some A& '), Take G eyo, KC G, with
MO<G-K>I < min[k(g/m),g/m,m]; ;

this is possible by the regularity condition (4) in complementary form.

P

Let G, = ¢ JH;. Use condition (7) to teke By ¢ =% with By(~ Gy and
1 L ¢ O -

7

IJ-O(Gl'Bl) < R/Ev, Then Gl-gl € Inductively, take Bj e\f@’o with

C,r"-“ O ¢

_ i-1 _ i-1 _
B;C @ - Llj B, “o(Gi‘LlJ BJ. - B;) < k/2v

for i = 2,%3,...v. The sets B; are disjoint and contained in G, while

Bi( Hj. Note that they are not the same as in Theorem 8.1.
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Then pg(A-\UB;1)

< uo(K) + 8/2 - Zug(By)

< po(\UJGL) - Yug(By) + k/2

I

Vg (Gy u G - Luo(By) + x/2

< K.

Also |2Z(Bi-K)J(Bi+bi°0o)duol

IA

2(B; -K) [m(1+]| ool )dug

IN

m(G-K)J (Lo [ )an,

< 2£.

Hence I(T,)

< (UBy ) 1(py,00)dug + &

< (UB;MK) £ (pg,00)a0, + 2 &

L(Bs MK/ [By by 0o+ ElAue + 2 &

2(By ) [By+bi0laug - L(By-K)[ [Bi+bi-opldug +& po(a) + 2&
< TBypo(By)+ by (B1) ooduo +25 y o) + 25

AN

IA

Now consider a Vneighbourhood of T, such that, for any T = (p,o,u)

in that neighbourhood,
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sup |lp(w) - po(w)|| < min(d; ®;/2 for i = 1,2,...v),
weA

and

inf [ [u(M) - po(By)| +
Meﬁnz
MC3B; | [[M)fodu - (By)oodngl-b1/[bil |
< min (E;/Zlail; éE/ZH%iH)
fOI‘ i = l)g)aooVa
We now proceed as in Theorem 8.1, noting that in using inequality
(2'a), it does not matter that B; 1s not contained in K, because Py is

continuous on A.

Remark: Condition (7) is related to axiom (Hy) on V.

8.4. CONVEXITY CONDITIONS

The following condition is closely related to convexity of f in s,
(2) For any (ro,s0) in R x E;(RCE,) and any éj > 0, there exist
>0, B € Ei1, b eEy, such that, for Hr—roH < ® and rye R,

(a) f(r,s) >B + b.s for all s,

(b) f(r,s) <B + b.s + é: for |ls-sol < &.

Condition (2) implies convexity. For, consider any Tos S1, Spo.

Take sy = as1+(1-0)ss with O <a <1, and suppose
£(rg,80) > af(ro,s1) + (1-0) £(rg,s2).

Put ¢ = (1/2)[£(ro,80) - af(ry,s1) - (1-@) £(ry,s2)] in condition
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(2) to get B, b, &. Then
f(rg,s1) > B + besy, £(rg,s2) > B +b.sa.
i
But then f(ro,so) = af(ro,sl) + (1-a) f(ro,sg) + 2(5
>PB + b.spo + %i°

However, the condition (5) is stronger than convexity, as the ex-

ample
f(r,s) = rs on E1 x Ey

shows for ro = 0. If f(r,s) >0 is required, take

f(r,s) = [rs+l]+

For f continuous, condition (2) is weaker than the following
strengthened convexity condition:
f is convex in s; and for each r,, the graph of f(ro,s) contains
no whole straight lines.
This strengthened convexity condition can be put in the analytic form:

For every r € R, s1, sp € By, 0 <a <1,
f(r,asit(l-a)sp) < af(r,s1) + (1-a)f(r,sz);
and for no r € R, s € Ey, s' # 0 in Eﬂ’ is

f(r,s) = (1/2)f(r,ss’) +(1/2) £(r,s-1s")
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for all A.

First, for f continuous, the strengthened convexity condition is
equivalent to:

For any (ro,sg) € R x Ey and any Ei> 0, there exist & >0, v > 0,
B € Ei, b € Ej, such that for Hr-roH < ©®and r € R,

(a) £(r,s) >B + b.s + v |ls-so| for all s,

(b) £(r,s) <B + b.s + é; for ||s-sof < &

(see Ref. 27, p. 9). This condition obviously implies condition (2).

Second, f(r,s) = f + b.s for B,b constant satisfies condition (2),
but its graph contains straight lines.

Thus, when f is continuous, the strengthened convexity condition
can replace condition (2) in Theorem 8.1. However, on certain sub-
classes ofg;%i the semicontinuity theorem is valid when condition (£
is replaced by only convexity of f in s.

Theorem.§;2. Suppose the hypotheses of Theorem 8.1 hold, except that
condition (2) is replaced by f continuous and f convex in s. Then I(T)
is lower semicontinuous at T, on any subclass of<;7ﬂwith (A)[]|ollan bounded.

Proof: Take any £ > 0, and put

F(T;S) = f(r)s) + UHS“
where 1 = é:/Em, m is the upper bound of (A)f”c”du. Then F is con-
tinuous and satisfies the strengthened convexity condition. Hence

(8)[F(p(w),o(w))dp is lower semicontinuous at T, on the class mentioned.

Thus (A)IF(O(W),U(W))dH > (A>IF(po(W))0b(w>)d“O - é;/2
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for t(T,To) less than some ®. That is,

(1) + nfllollan > T(To) + nflloollane - £/2,

which gives
I(T) > I(Ty) - E
A similar adjustment applies to Theorem 8.2.

8.5. THE HOMOGENEOUS CASE

If f(r,s) is positively homogeneous of degree one in s, then con-
dition (2) reduces to: for any (rg,80) € R x Ey and any é; > 0, there
exist ® > 0, b € Ey such that, for Hr—rOH <% and r € R,

(a) £(r,s) > b.s for all B,

(b) £(r,s) <b.s + é:-for |s-sol < .

To prove this, condition (2a) with homogeneity gives
af(r,s) > B + & b.s
for all @ > 0, so O > B. Hence
f(r,s) <b.q +£

for ||s-soll <8, ||r-ro) < ®, r € R.

Also,

f(r,s) >B/a + b.s

for all @ > 0, so
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f(r,s) > b.s
for all S,Hr-rOH <%, r € R.
Now the term |H1(M1)—H0(Mo)l in £(T1,Ty) is brought into the proof
of Theorem 8.1 by the B terms. Hence, if f(r,s) is positively homo-
geneous in s, Theorem 8.1 is valid with the improved écart obtained by

omitting the above term. A similar adjustment can be made to condition

(2/3 for Theorem 8.2,



9. SEMICONTINUITY IN PARTICULAR CASES

In this chapter, we shall obtain known semicontinuity theorems for
curve and surface integrals from our general theorems. In each case,
we shall have the particular topology on gjpwhich is used in the corre-
sponding section of the calculus of variations. In each case, we shall
verify the conditions (3), (&), (5), (6), (7), and (/) of Theorem 8.2.
Henée, if the conditions (f'), (1) and (2) on f are satisfied, we have
semicontinuity theorems of the corresponding section of the calculus of

variations.

9.1 PARAMETRIC CURVE INTEGRALS ff(X,X')dl

Let the set A be a finite closed interval {w: a < w < b} in E;, with
Euclidean topology'Z( .

Let the mappings p: A > En be continuous in 2 and of bounded var-
lation.

Takeé;- =‘2( for all T. The measures p and corresponding signed

measures VvV are constructed for the interval function
$lu,v] = p(v) - p(u)

on the intervals I = [u,v] in A, by the process described in Chapter 2.
The conditions for this are easily verified in this case.
let 0 =0 = dv/du; thus o0 is p-integrable.

The triplet T = (p,0,u) is now determined by p.

97
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Since the mappings p are of bounded variation, pu(A) < w. The meas-
ures [ are é} -regular by the general theory of Ref. 7. Condition (5)
is trivial here. Condition (7) follows from (Hy) of Ref. 7.

The function f(r,s) is assumed to be positively homogeneous of de-
gree one in s, so we shall consider the adjusted condition (Qf) mentioned
in Section 8.5. We shall prove that the neighbourhood system induced by
the uniform topology on p satisfies that condition. Note that fcdu = V.
Theorem 9.1. For each Ge

inf [lv(M) - vo(@)| > 0

Me 7L
MG

as

sup [lo(w) - DO(W)” + 0
weA

Proof: We have

Z $o(I) + vo(G)
TeDg

as

Hence, for any E > 0,

vo(G) - T (1)l < &
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for some finite number (m, say) of non-overlapping intervals ICG.
Here, ¢[u,v] = p(v)-p(u) = v(u,v).

Consider any p with sup Hp(w)-po(w)H < &/m. Then
weA
V(1) - vo(1°) <2 E/m
Hence
(UI%) - vo(e) <3&
For the purposes of Theorem 8.5,

A (ollaw = w(a) = » ,

the length of the corresponding curve.
We can treat each mapping p as a continuous rectifiable curve C in
E,. The measure p corresponds to the arc length £ on C, and u(A) is the

Jordan length L of C. Thus C also has the representation

Since v[4,2'] = X(£')-X(2), we can take o also as X' = dX/d{. Thus our

%ZL £(x(2),X"(4))as

As proved in Ref. 7, if f is also bounded and uniformly continuous on

integral has the form

i

1) = () [ (et 800

KxU, then our integral also has the form of a BC-integral

1(c) = [r(p,4)
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We can now deduce from Theorem 8.2 the Tonelli~Turner theorem:
Theorem 9.2. Let f(r,s): KxE, » Ey, KCE,, be positively homogeneous
of degree one in s. Let Ci be the class of all continuous BV mappings
p(w): A > X, weA = [a,b]CE; (in other words, continuous rectifiable
curves C in K) for which f(p(w),0(w)) is measurable in the correspond-
ing measure p on A. If Cqe Cfis such that f is non-negétive near Co

and is Co-convex, then the integral I(C) is lower semicontinuous at Cg,

in Cf with the uniform topology.

9.2 PARAMETRIC SURFACE INTEGRALS [f(X,J)dudv

We shall show that Theorem 8.2 covers the semicontinuity results
of Cesari in Ref. 4 and Turner in Ref. 29. In the latter paper, our sys-
tem has the following form.

The set A is any admissible set in Ep (see Ref. 5, p. 27).

The dimensions n and £ are both 3.

The mappings p: A » Eg are continuous in the Euclidean topology UL
and of bounded variation.

Each p determines a topologylgz on A, namely the class of 2€ -open
p-whole sets in A (see Ref. 5, Section 10.2).

The measures p and signed measures v are constructed by the process
described in Chapter 2, from an interval function ¢ defined from p (see
Ref. 6, p. 107).

let o = dv/du = 0; thus o is p-integrable.

The triplet T

(p,0,1) is now determined by po.
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Since the mappings p are of bounded variation,u(A) < o, The meas-
ures p are gl-regular by the general theory of Ref. 7. Condition (5)
is satisfied (see the remark at the bottom of p. 196 in Ref. 29). Each
o is §;~-continuous. Condition (7) follows from (Hy) of Ref. T.

The function f(r,s) is assumed to be positively homogeneous in s,
so we shall consider the adjusted condition (?) mentioned in Section
8.5. We shall prove that the neighbourhood system induced by the uni-
form topology on p satisfies that condition.

Theorem 9.3. For each Gge 5%0 and each unit vector ueky,

inf  [[v(M) - v5(Gg)lu| » O

Me?”?
NK:GO

as

sup || o(w) - DO(W)“ >0
wel

Proof: Let P be a rotation taking u to the z-axis. Then

VO(Go>au PVO(GO)QPUL
= v®(Go,Ppo)

= V(Go)pé)

where we have expressed v explicitly as a function of p, v® is the z-
component, and pl is the projection of Pp, on the (x,y) plane. The
second equality follows from a rotational property of v, Ref. 28,

Thecrem 3.
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According to Ref. 29, lLemma 3, simplified for our purpose, for any
é) > 0 and any plane mapping pl of bounded variation, there exists & >0

such that, for any other plane mapping p' with

sup o' (w) - pl(w)]l <'®,
weGq

there exists MCG, with
[v(M,p') - v(Gy,04) | < (5:
Now, if we take any p with

sup [lo(w) - po(w)| <&
wel

and p' is projection of Pp on the (x,y) plane, then

o' (w) = pd(w)ll < [[Po(w) - Ppo(w)ll

lo(w) - pg(w)]]

< ©

on A and so certainly on G,. Hence

I [V(M)"Vo(Go) ]-ul
= v,0") - v(Gy,0d) |

I

< C

Note that here, for the purposes of Theorem 8.3, (A)[|lofldu = pu(A)
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=V =L, the Lebesgue area of the corresponding surface.

We can treat each mapping p as a continuous surface S with finite
Lebesgue area (see Ref. 5). The measure U is the same considered in
Ref. 5, Section 25.5, and u(A) is the Lebesgue area of S.

As proved in Ref. 7, if f is also bounded and uniformly continuous

on KxU, then our integral
I(s) = (A)£(p(w),6(w))du

also has the form of a BC-integral

As proved in Ref. 5, Section 37 and Appendix B)5(ii), under the same

conditions on f, S always admits a representation
X(w): w = (u,v)eACEs
such that
I(s) = (&) e(x(w),J(w))dudv

where J = (Jl,Jg,J3) are the usual Jacobians.

We can now deduce from Theorem 8.2 the Turner theorem {see Ref.
29, Theorem 1):
Theorem 9.4. Let f(r,s) = KxEz + E;, KCEs, be positively homogeneous

of degree one in s. Let Zﬂpbe the class of all continuous BV mappings
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o{w): A~ K, weA(in other words, continuous surfaces S in K with finite
Lebesgue area) for which f(p(w),0(w)) is measurable in the corresponding
measure u on A. If Soefé//is such that f is non-negative near So and

is Sp=-convex, then the integral I(S) is lower semicontinuous at Sp in

o

with the uniform topology.

9.3 NON-PARAMETRIC INTEGRALS [f(w,X,grad X)dw
Let A be any open set in By with finite Lebesgue k-measure u. Let
/A be the Euclidean topology on A.
Consider mappings X(w): A - Ep, W = [wi]eA, absolutely continuous

in the sense of Tonelli. Thus OX/owj exists p-almost everywhere in A

for each coordinate wy, is up-integrable, and

oX _ -
Svr T Mg=p) T A=)

for each segment (& < wi < B} in A on p*-almost every line parallel to
the wi-axis. Here p* is Lebesgue (k-1)-measure; if k = 1, we take u*
as enumeration.

Let the mappings p be of the form (w,X(w)). Thus the dimension
n = k+m. In the case k = 1, our mappings p are essentially non-para-
metric curves in Em+l on A. In the case m = 1, our mappings p are es-
sentially non-parametric hypersurfaces in Ep,; on A.

Let 0 = grad X = [0X/Ow;]. This is a kxm matrix, but here we have
to treat it as a km-vector; thus the dimension £ = km. The vector-valued

function o is p-integrable by the condition on X.
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The measure p is jb(-regular. In fact, the closed set F in the
regularity condition can be taken compact, since its compact intersec-
tions Fp with the spheres {w: || < n} have u(Fy) + u(F). Thus condi-
tion (5) of Section 8.2 is also satisfied.

To show that condition (7) is satisfied, we use again the compact
regularity of p. For any Ge 2 and any'éi >0, we take FCG, F compact,
with p(G-F) < é;. G is the union of a countable number of closed inter-
vals, and also the union of the corresponding open intervals. Since F
is compact, we can take a finite number of the open intervals Ij cover-
ing F. Put B =UI;. Then B =[inC:G. Of course, B is open, and
n(e-B) < n(a-F) < C.

We shall now show that the neighbourhood system induced by the uni-
form topology on X satisfies the condition (7).

Theorem 9.5. For each Ge 2 and each )
inf (|p(M)-p(@) |[+]|(M)] grad Xdu-(G)/ grad X,dp|) » O
Me77/
MG
as
sup |[X(w) - Xg(w)|| » ©
weA
Proof: By absolute continuity of the integral, for any Ci >0,
I(B)] graa Xodu| <& for L(E) less than some A(&).

Let F be a compact set in G with w(G-F) < min(&,A(E)). G is the
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union of a countable number of open intervals. Because F is compact, we
can take a finite number of these intervals covering F. We can contract
them to closed intervals still covering F, and decompose these into

closed non-overlapping intervals J;. Then
O N
n(G-ugy) < C and M)
Hence
[(G-UJ;)[ grad Xdp| < <

Consider any X with

sup [[X(w) - X, ()]l < € /Tu*(33)
weA

where J§ is the boundary of Ji° Then

(ug;) /[ (grad X-grad X)du

= )] (x-%5)anx|

< &
Hence
lu(UIs) - w(e) | + [[(U3;)f grad Xdp - (6)/ grad Xodull < 3C

The triplet T = (p,o,u) is determined by X. Thus we can describe
conditions in terms of X. Specifically, "f is Xy-convex" will mean that

f is T,-convex in the sense of Section 8.2.
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We can now deduce from Theorem 8.2 the following theorem.
Theorem 9.6. Consider f(p,q,s): AxEpXExy > Ei, A open in E . Let X be
the class of all ACT mappings X(w): A » E;, weA, for which f(w,X(w),
grad X) is measurable with respect to Lebesgue k-measure p on A. If
X,eX is such that f is non-negative near (4,X,(A)) and is X,-convex,

then the integral

I(X) = (M) £(w,X(w),erad X)du

is lower semicontinuous at X, in X with the iniform topology.

9.4 CURVE INTEGRALS INVOLVING HIGHER DERIVATIVES

Cinquini, in Refs. 8 and 9, deals with variational problems for
curve integrals of functions involving derivatives up to the third
order. We shall show how our theorems cover Cinguini's results for
semicontinuity in these cases.

Second Order Problems: Corresponding to the second order problems of

Ref. 9, we have the following system.

The set A is a closed interval in E;, with Euclidean topology 22:.

Let X be any absolutely continuous mapping from A to Ez such that,
when parametrized by its arc lengthrs, X' = dX/ds is also absolutely
continuous. We put p = (X,X'), and ¢ = X'AX", where A denotes the vector
product in Egs.

The measures u correspond to the arc lengths: s.. u(A) =L <o by

absolute continulty of X.
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Cinquini calls curves X satisfying the above conditions "ordinary,"
and uses a topology on them defined by the following neighbourhoods.
If Lo > 0, a ®-neighbourhood of X, is the class of ordinary curves

X for which, considering s as a function of sg,

Ié‘ll 55:
[X(s) - Xo(s0)]l < B,

HX'(S) - io(so)“ <&

To avoid confusion, we use the dot to denote differentiation with re-
spect to sp.
If Lo = 0, so that X, is constant, a ®-neighbourhood of X, is the

class of ordinary curves X for which either

L >0,

IX(s) - X,/ <8,

X' () - X' (B)]] <® for all ,B in [0,L];
or
L = 0,
X - Xl <8

If we restrict our considerations to a class of curves for which
(A)[]|X"||dp is bounded (by C, say), we can show that Cinquini's neighbour-

hoods satisfy condition (7/). This is essentially a result of Ref. 9,



109

p. 33, but we prove it in our form.
Theorem 9.7. For any ordinary curve X,, any CS >0, and any Ge:a(,
there exists © > 0 such that

N = inf ([e()-pe () [+][(M)fX AR du-(G) [XAKoduo )

Me 777

McCG

< &

for all X in the d-neighbourhood of X,.
Proof: First, consider the case in which Lj > 0.

By absolute continuity of the integtal, for any CS" >0,
H(E)fXOAioduoH < &' for by (E) less than some AMcC'). As in Theorem
9.1, we can construct a finite number (ﬁ, éay) of closed non-overlapping
intervals J in G with po(G-UJ) < A& /3) and &/3.

For *the moment, take any © < 1, and consider any X in the ®-neighbour-

hood of X,. From the condition [§-1| < &, we have
|s-s | < &8s, < BL,

Now

(I)XAx"an - (3) K AXodrg

(3)] (X7 =Ko )AK"dp + (I)] (X" -0 )AKodho

(3)] (XAX"8+X 5 AX" )dg

+
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In this,
() [ (X' -Xg )AX"du|
< 8(a)f[Ix"{|lan
< 8C
Similarly
1(3) ] (X' =% IA%odno || < BC
And
1(3)  (RoAX"S+XoAX " )di, |
= [[ZAX ) (@) = [ GEoalX-Z, 1))
< 2%
Also
w(I) - uo(J3) = (I(E-1)duy
SO
[0(T) - po(3) | < BL
Then

[(Ua)x'Ax"ap - (G)JXoAXodu, |
< 2@ [xax"ap - (J)fxo/\ioduoll + & /3

< mec+2)s + E£/3
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and
lu(UT) - uo(G) |
< @) - w) ]+ &3
< mLd + &3
Hence n < cﬁ if
5 < € /am(L +2c+2)
Next, consider the case in which L, = 0. Then po(G) = (G)fXOAxoduo
=0,

For the moment, take any 8 < l/2~f_, and consider any X in the 8-
neighbourhood of Xj.

If L = 0, then the required result is trivial.

If L >0, then, as in Ref. 9, p. 32, L < 43 8. Take any JCG.

Then p(J) < M'JB-S, and
1(3)fx'ax"ap|| < 43 8C

Hence 1 < & if 8 < € /43 (c+1).

We can now deduce from Theorem 8.2 the following theorem.
Theorem 9.8. Consider f(p,q,t):EsxEgxEz > E1. Let A be a closed inter-
val in E;. Let<ff2 be a class of AC mappings X(w): A - Eg, weA, such
that

(i) when parametrized by the arc length s, X' = dX/ds is also AC;



112

(i1) (A)J|x"|las is bounded;
(iii) f£(X,X',XX") is measurable with respect to s on A.
If Xoe (2 is such that  is non-negative near (X,xX!)(A) and is X,-

convex with respect to t in the sense of Section 8.2, then the integral
I(X) = (A)/f(X,X',X1X")ds

is lower semicontinuous at X, in Cfé with the Cinquini topology.

Third Order Problems: In this case, let X by any absolutely continuous

mapping from A to Es such that, when parametrized by its arc length s,
X' and X" are also absolutely continuous. We put p = (X,X',X'AX"), and
g = X'aAX"".

Cinquini defines a topology on these curves by the following neigh-
bourhoods .

If Lo > 0, a d-neighbourhood of X, is as in the second order case,

but with the extra condition
[X"(s) - Xolso)| <8

If Ly = 0, a 8-neighbourhood of X, 1s as in the second order case,

but with the extra condition
[x" () - X"(B)]| < B for all a,B in [0,L]

when L > 0.

We shall now show that Cinquini's neighbourhoods in the third order
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case satisfy condition (2/). This is essentially a result in Ref. 9,
p. 5k,

Theorem 9.9. For any X,, any © >0 and any Ge 2(, there exists & > 0
such that

no= inf ([e(M)-p, (6) [+ ) [XAX" du-(G) [ XoaKodus )

Me 7}
MCG

< O

for all X in the third order ®-neighbourhood of Xj-.
Proof: Consider first the case L, > O.

By absolute continuity, for any él’ >0,
1(B) xR gl <

for u,(E) less than some NME ). Construct a finite number (m, say) of
closed non-overlapping intervals J in G with py(G-¢/J) < A(C'/3) and
(f/B° Denote by K the maximum of HiOH at the end points of the Js.

For any & < 1, consider any X in the ®-neighbourhood of X,. We have

[(T)[xAx" dn - (3)/XaKau, ||

[(XTAX"-X Ao ) (T) ]

11X A (X=X, )+ (X' X0 n X0 1(3) |

< 285 + 2BK.

Also |u(J)-py(J)| < 8L, as in Theorem 9.7.
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Then

I(UIXAX dp = (6)XoaKdne |

T XAX" dn - (3)[ZonKodno|l + /3

IN

< m(2+2K)s + C/3 ;
and
w(U3) - (@) <md + E£/3
Hence 1 < (U if
5 < & /3m(Lo+2K+2)

Next, consider the case 1o = O. For the moment, take any
B < 1/2 JE} and consider any X in the &-neighbourhood of X,.

If L = 0, the required result is trivial.

If L >0, take any closed interval J in G.

Then p(J) < M~J3.5, and

(T)[XAX" dp (X'aX")(J)

il

X'(BaX"(p) - X*(a)aX" (@)

= X' (B)A(X"(B)-X"(a)) + (X'(B)-X' () )AX" ()

where O,p are the s=-coordinates of the ends of J.

Considering each component, we have
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for some © in (0,L), so
]X;(s)] <% +8/L
and
Ix"(s) < V3 8(1+1/1)
Also

(x'(B)-X" (@) )aX" (@)

() (I (01),%8(61) , X505 ]
for some 01, ©2, O35 in (a,B), so

(' (B)-X" (X" () |
< 13 83 5(1+1/1)

352 (4 V3 8+1)

VAN

< %%

Thus
[(3) /XK aul| < & + 96° < b
Hence n < (S if

5 < & /u(1+3)

-xwaQAx%a>

We can now deduce from Theorem 8.2 the following theorem.

Theorem 9.10. Consider f(p,q,r,t): EaxEaxEzxEs + E;.

Let A be a closed
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interval in E;. Let 5573 be the class of all AC mappings X(w): A » Eg,
weA, such that
(1) when parametrized by the arc length s, X' and X" are also AC;
(i1) F£(X,X',X'"AX",X'AX"") is measurable with respect to s on A.
If Xoe (5 is such that f is non-negative near (XoxXIxXAAXS) (A) and is
Xo-convex with respect to t in the sense of Section 8.2, then the inte-

gral
I(X) = (A)JE(X,X',X'AX",X'AX"")ds

is lower semicontinuous at Xy in Cfg with the Cinquini topology.



PART ITI

10. THE SHAPE OF LEVEL SURFACES OF
HARMONIC FUNCTIONS IN THREE DIMENSIONS

10.1 INTRODUCTION

Let ¢ be a harmonic function in Ez. We shall describe the shape of
the level surfaces {P: ¢(P) = k) of ¢ in terms of the corresponding re-
gions {P: ¢(P) >k} of higher potential, or "regions of potential."
The results of this chapter can be summarized as follows. If two regions
of potential are star-shaped relative to some point, then every inter-
mediate region of potential is similarly star-shaped. If two regions of
potential are convex, then every intermediate region of potential is con-
vex. On the other hand, we prove by an example that if two regions of
potential are merely simply connected, the intermediate regions of po-
tential need not be simple connected.

These results extend previous work of Gergen55 and Gabriel5l for
Green's functions in three dimensions.
HYPOTHESIS H: Let Ci and Cy be two closed subsets of Eg (C1 not empty),
and let ¢(P) be a real-valued function of Eg, subject to the following
conditions.

(i) 4(P) is continuous on Es,

1l on Cl,

—~
| —~
| d H
. H

S— S—

AN ASN

—~ —
o g

N— ~—

1l Il

O on Cgy,
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(iv) ¢(P) >0 as P> o,
(v) @#(P) is harmonic on D = (CoUCy)' = Ea-(CoUUCL) .

Since the set Cpo may be empty, the situation Just described includes the
case where ¢(P) = 1 on a closed non-empty set C1, ¢(P) + O as P~ o, and
#(P) is harmonic on Ci = Ea-Ci (see Ref. 31, pp. 397, 401). We assume
the existence of a function satisfying the stated conditions; some con-
ditions on C; and Cp sufficient for the existence are given, for example,
in Ref. 30, pp. 290-312).

Note that Ci and Co are disjoint because of conditions (ii) and
(iii), and that C; is bounded because of conditions (ii) and (iv). In
addition, by an application of the principle of the maximum in the strong
form, we can deduce from our conditions that O < ¢(P) < 1 on Eg.

We shall denote the Euclidean distance of a point P from the origin

by ||P||, the Euclidean distance of a point P from a set C by a(P,C).

10.2 STAR-SHAPED REGIONS
By definition, a set C is star-shaped relative to the origin O
if AP is in C whenever P is in C and O < A < 1.

Theorem 10.1. Let C;, Co, and ¢ satisfy Hypothesis H, and let C; and

Cé = E3-Co be star-shaped relative to O. Then the regions Dy

= {(P: d(P) > k) are star-shaped relative to O.

Lemma 10.1. Under the hypotheses of Theorem 10.1, D is connected.
Proof: Let B be the distance between Co and Cy (for Co empty, let

be any positive number). Since Co 1s closed and C; is compact, © is



119

positive. Take a point R in C; at maximum distance from O, and any
real number A greater than HRH° On each plane through OR, start from
OR to divide the disc (P:|P|| < A} into closed acute sectors Aj deter-
mined by circular arcs of length less than &. Let Ry be a point on

the compact set Ai/7Cl at maximum distance from O. Since no point of
Co is at distance less than ©® from Ry, there exists an arc L; across

A4 not meeting Co/Ci. Since C; and C4 are star-shaped, the arcs L
can be joined by radial segments to form a curve K not meeting CoUCy.
For the same reason, every point of D can be joined by a radial seg-
ment to some K, and the curves K can be joined by a segment on the ex-
tended segment OR. Hence D is arc-wise connected.

Lemma 10.2. Under the hypotheses of Theorem 10.1, O < ¢(P) < 1 on D.
Proof: ©Since D is connected, the strong form of the principle of the
maximum gives both inequalities.

Lemma 10.3. Under the hypotheses of Theorem 10.1, 4 is non-increasing
on each radius.

Proof: Suppose Lemma 10.3 is false. Then there are points Py, NoPo in
D with $(AoPo) < p(Po), O < Ay < 1. Hence the function ¥(P) = ¢(P)
-d(AoP) has a positive least upper bound m on Eg. By condition (iv) in
Hypothesis H, |#(P)| < m/2 for ||P|| greater than some positive &. Hence
V(P) < m/2 also for |P|| >&. Hence m is the least upper bound of V¥ on
the compact set (P: HPH < %}, and so is attained there. But m is not at-

tained when P is in Cp, since V <0 in Cou Nor is m attained when P is
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in Cy, since C; is star-shaped so that ¥ = O in Cy;. Also, when N\oP is
in Cy, V(P) = O since C4 is star-shaped; thus m is not attained in that
case. Lastly, m cannot be attained at P when AP is in Ci, since

¥(P) < O then. Hence m is attained at some point Pi, where Py and A\ P:
are in D.

Let d be the lesser of d(P1,Co), d(AoP1,C1)/Ao; the second is cer-
tainly finite. Then the set N = (P: [[P-P1| < 4} is contained in CJ.
Also NoN = {A,P: P in N} is contained in C}, since C} is star-shaped.
But AN = (Q: [[@NoP1ll/A, < @), and hence is contained in C1» Therefore
Niscontained in C}, since C; is star-shaped. Thus V(P) is harmonic
in N. By the principle of the maximum, V(P) = m on N. Now either (a)
|IP1-R|| = 4 for some R in Co, or (b) |[[P1-R|| = d for some A,R in Ci. In
case (a), V(R) = 0-g(NoR) < O, while in case (b), V(R) = §(R)-1 < O.
However, V(P) = m for some points in any neighbourhood of R. This con-
tradicts continuity.

Theorem 10.1 follows immediately from Lemma 10.3.

Corollary: Under the hypotheses of Theorem 10.1, the radial derivative
Bé/Br is strictly negative in D. Thus grad ¢ #£ 0 throughout D.

Proof: The function rdp/dr is harmonic and non-positive in D. Thus if
rdd/or were zero at some point of D, rdf/dr would be zero throughout D,
so that ¢ would be radially constant in D. Since each radius meets the
set Cp, it would then follow that é(P) = 1 throughout D, contrary to

Lemme 10.2.
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10.% CONVEX REGIONS

Theorem 10.2. Let C;, Cp, and ¢ satisfy Hypothesis H, and let C; and

¢4 be convex. Then the sets Dx = (P: p(P) >k} are convex.

Lemma 10.4. If the hypotheses of Theorem 10.2 are satisfied, and if P

and Q are two points in D such that #(P) = $(Q), then $(R) > 4(P) for
every point R on the open segment PQ.
Proof: For all point pairs P,Q with #(P) = 4(Q) and for all points R

on the corresponding closed segment PQ, define

o(P,Q,R) = p(P) + $(Q) - 24(R)

The function ©(P,Q,R). is continuous and bounded on its domain of defini-
tlon, and its least upper bound m is non-negative.

If m = 0, then §(R) > ¢(P) = #(Q) for all P,Q,R in the domain of ©.
If we assume that Lemma 10.4 is false, then there would be some Py, Qo
in D, and R, in the open segment PyQ,, with #(Ro) < p(Po) = $(Q). Thus
if m = O and Lemma 10.4 is false, we have $(Rg) = $(Py) = $(Qo). Hence
0(Py,Q0,Rp) =0, and m = O is attained. Since Py,Qy are in D, then
0 < #(Py) = $(Q,) < 1 by Lemma 10.2, hence O < §(Ry) < 1. Thus Ry is
in D.

If m >0, condition (iv) in Hypothesis H implies the existence of
& >0 such that ©(P,Q,R) < m/2 whenever [[P|| >8&, or [|Q] > &, and there~

fore m is the maximum value of © on the compact set

((P,qQ,R): [Pl <3,lQll <&, d(P) = £(Q),RePq)}
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Now ©(P,Q,R) = O whenever two of the points P, Q, and R coincide. Also,
o(P,Q,R) < O whenever P or @ lies in Cp; and 6(P,Q,R) = O when P or Q
lies in C1, since Cy is convex. If R lies in Cg, then (by convexity of
C4) either P or Q lies in Cg, hence @(P) = 4(Q) = ¢(R) = 0, and again
o(P,Q,R) = 0. If R lies in Cy, then ©(P,Q,R) < O because p(R) = 1.
Thus, for m > 0, © takes its maximum at some P, Q, R distinct and in D.

It follows that in both cases, either m = O and Lemma 10.4 assumed
false, or m > 0, we could conclude that © takes its maximum at some
P,Q,R with P,Q,R distinct and in D, R in PQ, and #(P) = 4#(Q). By the
corollary in Section 10.2 we have, on the other hand, grad ﬁ % O every-
where in D. Then, by a theorem of R. M. Gabriel (see Ref. 31, p. 389),
é is radially constant in D with respect to some centre.

For any point S in D, consider a half straight line J from S on
which ¢ is constant on each segment lying in D. If J 1s completely con-
tained in D, then § is constant on J, and, by condition (iv), then
$ =0ondand $(S) = 0. If J is not contained in D, then the minimum
of ||8-P|| for P in JN(C,UC1) is attained either in C,, in which case
$(8) =0, or in C1, in which case $(S) = 1. Hence, in all cases, the
results contradict Lemma 10.2. This proves that m = O and Lemma 10.4
is true.

Proof of Theorem 10.2. If $(P) >4(Q) >k and $(R) < k for some R in

PQ, then there exists a point P' in PR with #(P') = #(Q). This situa-

tion is impossible by Lemma 10.4.
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10.4 A COUNTER EXAMPLE

In relation to the results in Section 10.2, it is appropriate to
consider an example suggested by W. J. Wong, which shows that if C, and
Cd are merely assumed to be simply connected, then the regions Dy need
not be simply connected, and grad ¢ can be zero in D. We shall require
bounds for the change in ¢ with change in C;. The technique used is an
adaption of a method used by Gergen in Ref. 32.

Suppose C7 is C; with a piece removed, with corresponding é“, Then
6(P)-p~(P) is harmonic in D, continuous in Es, O on Cys» and non-negative
on Cy. Hence $(P)-$~(P) is non-negative on D. Let A be the piece of the
boundary D¥ of D removed in forming Ci, and g(Q;P,D) the Green's function
of D with pole P. If D* is sufficiently smooth (see Ref. 34, p. 237),

then, for P in D,

(04)[ [4(Q)-4™(q) ] BLBED) 44

A(R) - 47(P) -lxdn

9g(Q;P,D)
N WY~/
A)J ~Lndn do

INA

Let K by any compact set in D. Again provided D¥ is sufficiently smooth

9g(Q;P,D)

(see Ref. 35, p. 259), oS

has finite upper bound Mg for P in K

and Q in C?. Hence

p(P) - 47(P) < Mga(A) )

where a(A) is the area of A.

Now apply this result to the following system. Let the set Cé be an
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open sphere with centre X, and the set Cy a solid torus inside Cé, with
the same centre of symmetry X. We form C7 from C; by removing a section
bounded by two half-planes having the major axis of Ci as common edge.
Then Cy is a simply connected continuum. It has only one axis of sym-
metry, which cuts the inner surface of Cy at Y and Z, say, the latter be-
ing removed in forming CI. Since #(X) < 1, we can take k between pH(X)
and 1.

First, take K = {P,P'}, where P is in XY and P' is in XZ with
k < $(P) = p(P') < 1. By forming C] appropriately, make Mya(A) < $(P)-k.
This gives p~(P) >k and $~(P') >k, while §~(X) < k. Hence the compo=
nent of grad é— along YZ is zero somewhere in PP'. With symmetry, this
shows that grad ¢~ = O there.

Second, take K = {P: ¢(P) = k}. For suitably formed Ci,
Mga(A) < k-#(X). Hence, p~(P) > #(X) on K. On the major axis of Ci,
$p7(P) < 4(P) < #(X). This shows that (P: ¢ (P) > @4(X)} is not simply

connected.
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