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Predicting treatment effects using biomarker
data in a meta-analysis of clinical trials
Y. Li∗† and J. M. G. Taylor

A biomarker (S) measured after randomization in a clinical trial can often provide information about the true endpoint (T)
and hence the effect of treatment (Z). It can usually be measured earlier and more easily than T and as such may be useful
to shorten the trial length. A potential use of S is to completely replace T as a surrogate endpoint to evaluate whether the
treatment is effective. Another potential use of S is to serve as an auxiliary variable to help provide information and improve
the inference on the treatment effect prediction when T is not completely observed. The objective of this report is to focus on
its role as an auxiliary variable and to identify situations when S can be useful to increase efficiency in predicting the treatment
effect in a new trial in a multiple-trial setting. Both S and T are continuous. We find that higher efficiency gain is associated
with higher trial-level correlation but not individual-level correlation when only S, but not T is measured in a new trial; but,
the amount of information recovery from S is usually negligible. However, when T is partially observed in the new trial and
the individual-level correlation is relatively high, there is substantial efficiency gain by using S. For design purposes, our results
suggest that it is often important to collect markers that have high adjusted individual-level correlation with T and at least
a small amount of data on T. The results are illustrated using simulations and an example from a glaucoma clinical trial.
Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

A biomarker (S) in a clinical trial is a type of variables intended to provide information about the true endpoint (T )
and the effect of treatment (Z ). It is often an intermediate physical or laboratory indicator in a disease progression
process, and can be measured earlier and is often easier to collect than T . Examples of biomarkers include CD4 counts
in AIDS, blood pressure and serum cholesterol level in cardiovascular disease, and prostate-specific antigen in prostate
cancer studies. Early measurements are also used as biomarkers for the later measurements, such as the earlier vision
test result as a biomarker for the later result in a study on patients with age-related muscular degeneration [1]. Different
investigators use different terminologies for the roles of the biomarkers [2]. In this paper, we call S a surrogate endpoint
when the potential use of S is to completely replace T to evaluate whether the treatment is effective [3]. Alternatively,
when S is used to help provide information or enhance the efficiency of the estimator of the treatment effect on T when
T is not completely observed, we call S as auxiliary variables [4]. When the true endpoints are rare, later-occurring or
costly to obtain, the proper use of good biomarkers can substantially reduce the trial size and duration, hence lower the
expense and lead to earlier decision making.

Previous research on the biomarker has often focused on the potential role of S as a surrogate endpoint for T . In a
landmark article, Prentice [3] proposed a formal definition for perfect surrogacy and provided validation criteria for a
single-trial setting. The criteria require that changes in S fully capture the effect of treatment on T . This paper inspired
much research in the field, but the criteria are considered too restrictive for practical use. To relax the criteria, a surrogacy
measure based on the proportion of the treatment effect explained (PTE) by S was proposed [5] and further studied and
extended by several other authors (e.g. [6--8]). Freedman [5] also suggested that the PTE confidence interval’s lower
bound be >0.75 for a marker to be acceptable as a surrogate endpoint. However, this requires the treatment effect on T
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to be very strong, which is rarely observed in practice [7, 9]. The PTE estimator is also highly variable and can be out
of the [0,1] range [6, 10]; hence, its practical use is limited.

From a biological aspect, there are often multiple causal pathways leading to disease and complex mechanisms by
which the treatment functions; hence, a biomarker may or may not mediate the effect of the treatment on T and the
surrogacy measures are often not directly transferable from one study to another. Another problem is that S may not
capture the harmful side effect of the treatment. These associated uncertainties in the use of S in replacing T to test
a new treatment can lead to incorrect, even harmful conclusions [10, 11]. As a result, very few biomarkers have been
accepted as valid surrogate endpoints for T and their potential use as substitutes has been less than promising.

With new biomarkers being discovered and developed at a phenomenal rate, the clinical research community continue
to be extremely interested in biomarkers in clinical trials. In this paper, we focus on the use of S as an auxiliary variable
in helping predict the treatment effect on T . As we shall see, this role of a biomarker proves to be more promising.
One of the most common scenarios for S to be useful as an auxiliary outcome is when one has more information on
S than that on T for a study population. This occurs often in practice, since patients are usually recruited into a trial
sequentially in calendar time and S is observed more often and earlier than T , particularly on those enrolled early.
Previous surrogacy measures are often proposed based on summary statistics in order to identify a replacement for T ,
and they are not usually suggested explicitly for the purpose of prediction. In the presence of individual-level data, a
biomarker may actually be effective as an auxiliary outcome in enhancing inference, but not be identified as such using
existing surrogacy measures. A strong association between S and T does not suffice for S to be a substitute for T ; as
Baker et al. [12] stated, ‘a correlate does not make a surrogate’. However, when individual data on T exist, a strong
association can inform and increase the efficiency of treatment effect prediction, as we shall demonstrate.

A number of authors have explored the role of biomarkers as auxiliary variables. However, the opinions on their values
have been mixed, as noted by Cook and Lawless [13]. In much of the previous work, the information recovered from S
appears to be very small [4, 14, 15] unless in rare situations when S and T are very highly correlated; however, when
there is more structural relationship between S and T , it is more likely to achieve significant efficiency gain by using
S [13]. Most of the work mentioned above has focused on the situation when T is the time to an event. When S and
T are continuous data, Venkatraman and Begg [16] proposed fully nonparametric tests that incorporate the information
from S and found that the amount of efficiency gain through S for these tests is small except in rare occasions when the
correlation between S and T is extremely high. A homogeneous sample such as the single trial setting has often been
considered in the previous work. When we can identify a group of trials which have similar treatment groups and patient
populations, it is natural to use a meta-analytic approach to predict the treatment effect in a new trial. This approach
could allow one to account for the heterogeneity among different trials and borrow information from previous trials to
improve the efficiency.

In this paper, we will focus on examining the extent of information gain from S in a multiple trial setting. We will
examine the situation when T is either completely missing or partially missing in a new trial when we have information
on S, T , and Z in the previous trials. The objective is to predict the treatment effect on T in the new trial when S and T
are continuous and Z is binary. We examine the factors, particularly, the correlation between S and T and the fraction of
missing T that impact the extent of increase in the precision of the treatment effect estimate resulting from utilizing S to
identify the situations when S can be beneficial. The results are intended to be of practical value and directly applicable
to clinical trials.

In Section 2, we introduce a commonly used bivariate mixed model. In Section 3, we summarize several related
methods used to predict the effect of Z on T in a new trial when T is either completely missing or partially missing in
the new trial. The methods include those proposed by Buyse et al. [9], Gail et al. [17], and Henderson [18]. In Section 4,
we examine the extent of information recovery from S and its relation to the correlation between S and T . In Section 5,
we evaluate the methods and efficiency gain through simulations. In Section 6, we give a data example. In Section 7, we
present conclusions.

2. The model

Suppose we have n randomized trials, i =1, . . . ,n, where the nth trial is labeled as new and there are mi patients in the
i th trial. Let Z =0,1 denote the placebo and treatment groups, respectively, and (Sij,Tij, Zij) represent S, T , and Z for
individual j in trial i . We are interested in predicting the actual treatment effect on T in the new trial (�T n) based on
previous (n−1) existing trials and whatever data are available in the nth trial. A commonly used bivariate mixed model
used to describe the joint distribution of Sij and Tij [9] is

Sij = �0 +�1 Zij +a0i +a1i Zij +�Si j

Tij = �0 +�1 Zij +r0i +r1i Zij +�T i j , (1)
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where (
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⎞
⎟⎟⎟⎟⎠ . (3)

The treatment effect in the nth trial is �T n =�1 +r1n . Let Y T
i = (Sij,Tij), �T

i = (�Si j ,�T i j ), �T = (�0,�0,�1,�1) and
�T

i = (a0i ,r0i ,a1i ,r1i ). The model (1) can be written in a general mixed model notation as Yi = Xi�+Ui�i +�i , where �
denotes the fixed effects, �i denotes the random effects, Xi and Ui are the corresponding design matrices. The vector Yi
follows a bivariate normal distribution with mean Xi� and variance Vi =Ui DU t

i +�i where �i is a 2mi ×2mi matrix
with mi blocks of � on the main diagonal and zeros elsewhere.

3. Methods for predicting the treatment effect dTn in the new trial

In this section, we introduce several related methods used to predict the effect of Z on T in a new trial when T is either
completely missing or partially missing in the new trial.

3.1. Buyse et al. method

Buyse et al. (BMBRG) [9] assumed the same model and suggested a method to estimate �Tn when T is completely
unobserved in the nth trial. First, they fit a bivariate mixed model to the data from trial 1 through (n−1) to obtain the
estimates of D, �0, �0, �1, and �1, denoted by D̂, �̂0, �̂0, �̂1, and �̂1, respectively. Second, they fit a linear regression
Snj =	0Sn +�Sn Znj +�Snj in the nth trial. One then obtains that â0n = 	̂0Sn − �̂0 and â1n = �̂Sn − �̂1 where 	̂0Sn and �̂Sn
are estimates of 	0Sn and �Sn based on data from the nth trial. Given that �, D, �, a0n , and a1n are known, BMBRG
showed that �Tn follows a normal distribution with conditional mean

E(�Tn)=�1 +(dsr dar)

(
dss dsa

dsa daa

)−1(
a0n

a1n

)
, (4)

and conditional variance

var(�Tn)=drr −(dsr dar)

(
dss dsa

dsa daa

)−1(
dsr

dar

)
. (5)

While various methods can be used to obtain the estimate for �Tn, denoted by �̂Tn, in our simulations, we replace �, D,
�, a0n , and a1n with their estimates in equations (4) and (5) as often done in practice. Specifically, we obtain �, D, and
� using a restricted maximum likelihood method from PROC MIXED in SAS. We estimate 	0Sn and �Sn using PROC
GLM in SAS and then obtain the estimates for a0n and a1n . However, this often leads to underestimation of var(�̂Tn).

3.2. Gail et al. method

Gail et al. (GPHC) [17] proposed to estimate �Tn without involving models for the joint distribution of (Sij, Tij)
at the individual level. The method applies to the situation when T is completely unobserved in the nth trial. Let
	T

T i = (	0T i ,	1T i ) represent the marginal means of T in the Z =0 and 1 groups in the i th trial and similarly for
	T

Si = (	0Si ,	1Si ). GPHC assume that (	0T i ,	0Si ,	1T i ,	1Si )
T follows a multivariate normal distribution with covariance


, where 
 is a 4×4 matrix representing the between-trial variance; hence, its estimate (	̂0T i , 	̂0Si , 	̂1T i , 	̂1Si )
T follows

a multivariate normal distribution with the covariance 
+�i , where �i is a 4×4 matrix with two block diagonal
matrices denoting the within-trial variance for each treatment group. The elements of 	T i , 	Si , and 
 are connected
with the parameters in the model (1) in the following way: 	0T i =�0 +r0i , 	1T i =�0 +r0i +�1 +r1i , 	0Si =�0 +a0i ,
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	1Si =�0 +a0i +�1 +a1i , 
11 =dtt +dbb +2dtb, 
12 =dts +dab +dta +dsb, 
13 =dtt +dtb, 
14 =dts +dsb, 
22 =dss +daa +
2dsa, 
23 =dst +dta, 
24 =dss +dsa, 
33 =dtt, 
34 =dst, and 
44 =dss.

GPHC show that 	Tn given 	̂Sn (and �, 
, and �) follows a normal distribution with mean
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,

and variance
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)T

,

where �22n denotes the variance of 	̂0Sn and �44n for 	̂1Sn .
The treatment effect on T in the new trial, �Tn, has mean

E(�Tn)= (−1 1)E(	Tn), (6)

and variance

var(�Tn)= (−1 1)var(	Tn)

(−1

1

)
. (7)

If we drop the terms w22n and w44n from the above expressions, we obtain the identical expressions as those of the
BMBRG mean and variance. The GPHC formula takes into account the uncertainty associated with estimating a0n and
a1n while BMBRG does not. Similar to BMBRG, GPHC also assume that �, D, and � are known in deriving equations
(6) and (7). Since the uncertainties of �, D, and � are not accounted for here, var(�̂Tn) is often underestimated. Gail
et al. (2000) noted that this method is analogous to the generalized estimating equations (GEE) [19]. We note that the
GEE approach can handle the situation when T is partially observed in the new trial, thus the GPHC method could be
generalized and would be worthy of further investigation.

To estimate �Tn and var(�̂Tn), in our simulations, we first obtain 
̂+�̂i by calculating the covariances of the treatment-
and trial-specific means where 
̂ and �̂i denote the estimates of 
 and �i , respectively. We then calculate the treatment-
specific covariances of S and T within each trial and then average them over different trials to obtain �̂i . From these,
we calculate 
̂. We calculate the overall treatment-specific means as �̂0 and �̂1 (i.e. the estimates of �0 and �1) and the
variances for each treatment group in the new trial for �̂22n and �̂44n ( i.e. the estimates of �22n and �44n). We estimate
	0Sn and 	1Sn and then calculate a0n and a1n . Then we plug in these estimates into (6) and (7) to obtain the mean and
variance for �̂Tn.

3.3. Henderson method (HD)

While both BMBRG and GPHC methods only apply to the situation when T is completely missing in the new trial,
the HD method applies to the situations when T is either completely missing, partially missing, or completely observed
in the new trial. Using the general mixed model notation, we can obtain the estimates of � and �n (denoted by �̂ and
�̂n) by solving the mixed model equation which is described by Henderson [18] (details in Appendix A) and their sum
follows a normal distribution with mean

E(�̂+ �̂n)=�+ DU T
n V −1

n (Yn − Xn�). (8)

and variance

var(�̂+ �̂n −�−�n) =
(

n∑
i=1

XT
i V −1

i Xi

)−1

+ D− DU T
n V −1

n Un D

+DU T
n V −1

n Xn

(
n∑

i=1
XT

i V −1
i Xi

)−1

XT
n V −1

n Un D−2DU T
n V −1

n Xn

(
n∑

i=1
XT

i V −1
i Xi

)−1

.

The treatment effect for the nth trial has mean

E(�̂Tn)= (0 0 0 1)(�+�n) (9)
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and variance

var(�̂Tn)= (0 0 0 1)var(�̂+ �̂n −�−�n)(0 0 0 1)T. (10)

Note that �̂n is the best linear unbiased predictor (BLUP) and can be derived as an empirical Bayes estimator [20, 21].
When T is completely missing in the nth trial, the expression of E(�̂Tn) in (9) is exactly the same as the GPHC estimate
in (6). Different from GPHC and BMBRG, the variance formula in (10) accounts for the uncertainty associated with
estimating �, but it treats D and � as known quantities. In the implementations, we obtain these estimates using PROC
MIXED in SAS.

3.4. Empirical Bayes estimate and conditional posterior variance (EB-CPV)

Let r be the number of patients in the new trial on whom we have information on both S and T . The empirical Bayesian
estimate of �Tn can be obtained as the posterior mode estimate when we assume flat priors for the fixed effects and
multivariate normal priors for the random effects [21]. Its expression is identical to the HD estimate in equation (9)
[21]. When �, D, and � are known, the conditional posterior variance (CPV) of �Tn can approximate the variance of
�̂Tn [22]. We obtain the CPV of �Tn as (details in Appendix C)

var(�Tn)= (0 1)(�−1
d +�−1

e )−1(0 1)T, (11)

where �d is a function only of the between-trial covariances given by �11 −�12�
−1
22 �21, and �e is a function only of

the within-trial covariances given by �e =
(

�11
�12

�12
�22

)
. The elements of �d and �e are listed below:

�11 =
(

dtt dtr

dtr drr

)
, �12 =

(
dst dta

dsr dar

)
, �21 =

(
dst dsr

dsr dar

)
,

�22 =
(

dss dsa

dsa daa

)
, �11 = (�tt −�2

st�
−1
ss )

∑r
j=1 Z2

nj

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

,

�12 = (�tt −�2
st�

−1
ss )

∑r
j=1 Znj

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

, �22 = r (�tt −�2
st�

−1
ss )

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

.

When T is completely missing in the nth trial, i.e. r =0, the CPV simplifies to

var(�Tn)= (0 1)�d (0 1)T, (12)

an expression equivalent to the BMBRG variance formula in (5). The CPV formula can be viewed as the generalization
of the BMBRG variance formula. Note that the CPV underestimates the prediction variance because they treat �, D, �,
a0n , and a1n as known quantities. Morris [23] and Ghosh and Rao [22] showed that a better estimator of the prediction
variance can be obtained by adding to the CPV a second term that takes into account the uncertainty about all parameters.

3.5. Bayesian estimation (denoted by Bayes)

An alternative method to obtain the distributions of the parameters of interest is a fully Bayesian estimation method
which is also applicable when T is either partially missing or completely missing. We assume that flat priors for the
fixed effects, i.e. p(�0)∝1, p(�0)∝1, p(�1)∝1, and p(�1)∝1, and vague priors for the rest of parameters, specifically,
�−1 ∼W (a, E) and D−1 ∼W (c, F), where W refers to the Wishart distribution. We use a =3, c=5, E = (a+1)−1 I2 and
F = (c+1)−1 I4. A data augmentation method is used to implement the procedure (details in Appendix B). The Bayesian
estimation method naturally takes into consideration the uncertainty associated with estimating every parameter [24],
but it can be sensitive to the prior specifications. While it is computationally intensive to conduct extensive simulations
to evaluate the properties of this method, it is very feasible to analyze data using this method.

4. Efficiency gain and correlation

In this section, we study the precision of the predicted treatment effects (�̂Tn) and the factors that impact the precision,
particularly, the correlation between S and T and the fraction of missingness.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 1875--1889
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4.1. Correlation

In a multiple-trial setting, with a bivariate mixed model assumption, the treatment adjusted individual-level or within-trial
correlation between S and T is R2

indiv =�2
st/�ss�tt. The trial-level correlation between S and T is defined by Buyse

et al. [9] as

R2
trial =

(dsr dar)

(
dss dsa

dsa daa

)−1(
dsr

dar

)

drr
.

The between-trial correlation R2
trial assesses how well the treatment effect on T in the new trial can be predicted by that

on S. While R2
trial is identified as the key factor that impacts the degree of efficiency gain from S in the research by

Buyse et al. [9] and Gail et al. [17], as we shall see in the following, R2
indiv plays an even more important role than R2

trial
in obtaining substantial efficiency gain from S with respect to the estimated treatment effect on T when T is partially
observed.

4.2. Prediction precision and correlation

We examine the impacts of R2
indiv and R2

trial on the prediction precision using the CPV formula in equation (11). We
note that when there is an equal number of patients per treatment group in the new trial, the elements of �e in CPV
simplify to

�11 = 2�tt(1− R2
indiv)

r
, �12 = 2�tt(1− R2

indiv)

r
, �22 = 4�tt(1− R2

indiv)

r
.

When T is completely missing in the new trial, the CPV simplifies to var(�Tn)=drr(1− R2
trial); hence, the factors that

determine the precision of the predictor of the treatment effect on T are R2
trial and drr which are between-trial level.

When T is partially observed, the additional important factors are within-trial level including R2
indiv, �tt, and r . Since the

within-trial covariances in �e are usually significantly smaller than the between-trial covariances in �d , we find that �e
usually dominates and �d has a negligible impact on the CPV. Although the CPV usually underestimates the prediction
variance, our simulation studies show that it usually accounts for the majority of the total variance, and a comparison
between (11) and (12) should suffice to provide algebraic intuition about the prediction variance.

5. Simulations

5.1. The setup

We conduct simulation studies to evaluate the bias, efficiency, and coverage rates (CR) of the confidence intervals for
the predicted treatment effect in a new trial using the above methods. For comparison purposes, we also estimate �Tn
based on observed T using the simple estimate without any distributional assumption (denoted by SIMPLE). That is,
�̂Tn =∑

k Tnk1/mn1 −∑
l Tnl0/mn0, where Tnk1 represents T on patient k in the Z =1 group in the nth trial and similarly

for Tnl0, mn1 represents the number of patients in the Z =1 group in the nth trial and similarly for mn0.
We generate 500 data sets based on the bivariate mixed model in (1). We assume equal number of patients per trial

and let mi =m. The parameter specifications are �T = (1,2,1,1), dss =0.5, dtt =0.2, daa =3.5, drr =1.6, �ss =1, and
�tt =0.3. To examine the impact of the trial-level correlation, we vary the correlation matrices for the random effects⎛

⎜⎜⎜⎜⎝
1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.3

0.22 0.21 0.3 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.7

0.22 0.21 0.7 1

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.9

0.22 0.21 0.9 1

⎞
⎟⎟⎟⎟⎠ ,

which correspond to R2
trial =0.1,0.5, and 0.8, respectively. To examine the impact of the individual-level correlation, we

vary R2
indiv from 0.1, 0.5, to 0.9. We vary n, m, and the percentage of missingness in the new trial (denoted by p). For

each different data sets, we have a different underlying true treatment effect �Tn because �Tn is not fixed and follows
a known distribution. Its average across 500 data sets is denoted by �̄Tn. For each data set and each method used, we
obtain �̂Tn, its standard error (SE), its CI as �̂Tn ±1.96×(SE) and an indicator variable for whether the 95 per cent CI
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Table I. Simulation results based on 500 data sets.

n m Per cent missing Methods Bias RMSE SE CR

10 100 0 SIMPLE −0.005 0.111 0.109 95.0
HD −0.005 0.112 0.106 94.8

Bayes −0.006 0.112 0.109 94.8
EB-CPV −0.005∗ 0.112∗ 0.093† 90.8

50 SIMPLE −0.002 0.149 0.139 95.4
HD 0.000 0.143 0.139 94.0

Bayes −0.004 0.145 0.145 94.8
EB-CPV 0.000∗ 0.143∗ 0.132† 91.2

100 BMBRG −0.013 1.193 0.736 76.6
GPHC −0.010 1.125 0.755 80.2

HD −0.011 1.125 0.795 82.0
Bayes −0.037 1.139 1.105 94.8

40 100 0 SIMPLE −0.005 0.111 0.109 95.0
HD −0.005 0.110 0.108 95.0

EB-CPV −0.005∗ 0.110∗ 0.093† 91.4
50 SIMPLE −0.002 0.149 0.155 95.4

HD 0.003 0.140 0.142 95.8
EB-CPV 0.003∗ 0.140∗ 0.130† 93.2

100 BMBRG −0.008 0.965 0.887 92.8
GPHC −0.008 0.965 0.877 92.6

HD −0.008 0.965 0.869 92.4

40 300 0 SIMPLE 0.002 0.063 0.063 94.2
HD 0.002 0.063 0.063 94.4

EB-CPV 0.002∗ 0.063∗ 0.066† 90.9
50 SIMPLE −0.002 0.089 0.090 94.4

HD 0.000 0.085 0.083 93.6
EB-CPV 0.000∗ 0.085∗ 0.077† 91.4

100 BMBRG −0.002 0.920 0.868 93.8
GPHC −0.002 0.919 0.871 93.8

HD −0.002 0.919 0.882 94.0

55 100 0 SIMPLE −0.005 0.111 0.109 95.0
HD −0.005 0.110 0.108 95.0

EB-CPV −0.005∗ 0.110∗ 0.094† 90.8
50 SIMPLE −0.002 0.149 0.155 95.4

HD 0.002 0.140 0.142 95.8
EB-CPV 0.002∗ 0.140∗ 0.131† 93.4

100 BMBRG −0.033 0.950 0.883 93.8
GPHC −0.033 0.948 0.898 94.0

HD −0.033 0.948 0.898 94.2

�T = (1,2,1,1), dss =0.5, dtt =0.2, daa =3.5, drr =1.6, �ss =1, �tt =0.3, R2
indiv =0.5 and R2

trial =0.5. SIMPLE: simple
estimate. HD: Henderson method. Bayes: Bayesian estimation. CPV: conditional posterior variance. BMBRG: method by
Buyse et al. [9]. GPHC: method by Gail et al. [17]. EB-CPV: EB estimate with CPV: variance. ∗: obtained using HD.
†: obtained using CPV.

contains �Tn or not. Let ¯̂�Tn denote the average of �̂Tn across 500 data sets. We examine the method’s performance by its

average bias (Bias = ¯̂�Tn − �̄Tn), the average SE, the root mean squared error (RMSE =
√∑

(�̂Tn −�Tn)2/500), and the
CR over all simulated data sets. As we will see all estimates are unbiased, the relative efficiency (RE) of two estimators
can be approximated by the inverse of the ratio of the two corresponding RMSE2s.

5.2. Method evaluation

In Table I, we present Bias, RMSE, SE, and CR of �̂Tn using the respective methods including SIMPLE, HD, BMBRG,
GPHC, Bayes, and EB-CPV from simulations with various combinations of n, m, and the percentage of missingness. We
let R2

indiv =0.5 and R2
trial =0.5. When T is completely or 50 per cent observed in the new trial, SIMPLE and HD generate

estimates which are unbiased, have similar RMSE and confidence intervals with nominal-level or close-to-nominal-level
CR; on the other hand, CPV consistently gives underestimated prediction variances (i.e. SE < RMSE).
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When T is completely missing in the new trial, BMBRG, GPHC, and HD all underestimate the variances of �̂Tn.
When the number of the trials is relatively large (n =40,55), the extent of underestimation is minor; however, with a
small number of trials (n =10), the extent can be more severe and the CRs can be less than 85 per cent. Although HD
is expected to have better CR than GPHC and GPHC is expected to be better than BMBRG because they account for
more uncertainty of the parameters, the advantages of HD and GPHC over BMBRG are small and all methods give
similar CRs. The Bayes method we used gives more precise estimates of the variances and the CRs are around the 95
per cent nominal level.

The SIMPLE and HD methods give estimates with similar precision which shows that the efficiency gain from the
bivariate normal assumption is small. When T is partially or completely observed, the increase in m can improve the
precision of the estimates while a larger n does not necessarily improve much precision. When T is completely missing,
there is a minor gain in the precision when n and m increase.

5.3. R2
indiv, R2

trial, percentage of missingness and information recovery from S

Figure 1(a) shows the RE of �̂Tn when T is completely missing in the new trial compared with the estimate before
any deletion in T occurs using the HD method. RE is defined as the inverse of the ratio of the two variances. We vary
R2

indiv and R2
trial and let n =40 and m =100. We find that while the increases in R2

indiv have negligible impact on the
precision, the increase in R2

trial can improve the precision more than any other factor. These findings agree with the
algebraic intuition from the CPV variance formula in (12). Relative to the estimate based on completely observed data,
the RE varies from 0.7, 1.2 to 3.4 per cent as we increase R2

trial from 0.1, 0.5 to 0.8. As a result, when we completely

rely on S and summary statistics from previous trials to predict �̂Tn, the extent of information recovery is often limited
and the precision of �̂Tn is usually insufficient to be clinically useful.

Figure 1(b) presents the RE of �̂Tn when T is 50 per cent missing compared with the estimate before any deletion of
T using the HD method. We find that high R2

indiv can lead to a large gain of efficiency from the use of S. When R2
indiv

is large (e.g. 0.7 or 0.9), most of the information on �Tn is recovered from S and the precision of the estimate is close
to that when T is completely observed. On the other hand, the magnitude of R2

trial does not have much impact on the
amount of efficiency gain from S. The observations here are in agreement with the CPV variance formula in (11).

Figure 1(c) shows the RE of �̂Tn when T is partially or completely missing compared with the estimate before any
deletion of T . Naturally, the higher the proportion of available T , the smaller the RMSE, and thus the greater the
precision for the treatment effect prediction. Interestingly, we find that there is a substantial efficiency gain from the
information on S with even a small fraction of observed T , particularly when R2

indiv is high. For example, when 30
per cent T are observed, the lost information due to missingness is almost completely recovered from S when R2

indiv =0.9.

6. Data analysis: a glaucoma study

The evaluation of the extent of information recovery from S in predicting the treatment effect on T in a new trial is
illustrated using the Collaborative Initial Glaucoma Treatment Study (CIGTS) [25]. Glaucoma is a group of diseases
that cause vision loss and is a leading cause of blindness. High pressure in the eyes, i.e. intraocular pressure (IOP), is a
major risk factor of glaucoma. The CIGTS is a randomized multi-center clinical trial to compare the effects of two types
of treatments, surgery and medicine, on reducing IOP among glaucoma patients. Patients are enrolled between 1993 and
1997. A total of 607 patients are included in the study and among them, 307 are randomly assigned into the medicine
group. IOP (recorded in mmHg) has been measured at different time points following the treatment. For the purpose
of this paper, we take the IOP measurement at month 96 as T and that at month 12 as S. We assume that the IOP
measurements are normally distributed. To evaluate the situation of a meta-analysis where data are from different trials;
we treat the different centers in the CIGTS study as independent trials testing a similar group of treatments. A preliminary
analysis of these data shows that the estimate of the between-trial variances, D̂, is nonpositive definite. Mimicing the
approach of Gail et al. [17], we rescale up the data size by simulating Sij and Tij from bivariate normal distributions for
each trial and treatment group with the trial-specific and treatment-specific means and variance–covariances from the
real data. Nonetheless, our results are generalizable. The CIGTS study includes 14 centers from which we delete five
centers (i.e. 5, 7, 12, 13, 14) either because they had too few observations or because of nonpositive definite covariance
matrices within center. We also deleted two outliers that are greater than 35 mmHg. For the centers included (n =9), we
increase the sample sizes to 335, 176, 385, 264, 539, 368, 286, 528, and 319. The trial-specific and treatment-specific
means and correlations for S and T are listed in Table II.

The HD method is used to fit the rescaled data for which D̂ is positive definite and the estimates of R2
trial and R2

indiv,

denoted by R̂2
trial and R̂2

indiv, are obtained as 0.25 and 0.15, respectively. We randomly select Center 8 as the new trial
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Figure 1. Simulation results based on 500 data sets. Relative efficiency of the new treatment effect estimate using S when
T is not completely observed to that when T is completely observed. A: 0 per cent of T observed in the new trial; B: 50

per cent of T observed in the new trial; C: Percentage of observed T varies in the new trial.
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Table II. Description of pseudodata in glaucoma study: treatment-specific means and individual-level
correlations for each center.

Medicine Surgery Individual-level correlation

Center Sample size (Means of S, T ) (Means of S, T ) Medicine Surgery

1 670 (17.63, 16.52) (13.76, 14.59) 0.367 0.608
2 352 (17.22, 16.42) (14.63, 12.98) −0.455 0.467
3 770 (19.27, 17.58) (15.81, 16.17) 0.589 0.548
4 528 (17.17, 15.51) (10.93, 12.88) 0.176 0.540
5 1078 (18.52, 18.67) (14.99, 15.32) 0.435 0.407
6 736 (18.62, 18.89) (15.13, 17.11) −0.16 −0.0056
7 572 (18.35, 15.34) (14.59, 14.53) 0.177 0.396
8 1056 (18.59, 16.16) (13.60, 13.72) 0.31 0.95
9 638 (17.56, 16.82) (14.19, 14.61) 0.042 0.756

Table III. Estimate treatment effect on IOP at the 96th month utilizing information from early IOP
measures at the 12th month in the glaucoma study.

p Estimate Standard error p-Value

Center=8
SIMPLE∗ −2.45 0.29 <0.0001
No missing† −2.33 0.22 <0.0001
100 per cent missing† −1.58 0.79 0.063
90 per cent missing† −1.50 0.47 0.0059
80 per cent missing† −2.37 0.39 <0.0001
50 per cent missing† −2.61 0.29 <0.0001
20 per cent missing† −2.19 0.23 <0.0001
Center =9
SIMPLE∗ −2.21 0.30 <0.0001
No missing† −2.32 0.27 <0.0001
100 per cent missing† −2.68 0.82 0.0053
90 per cent missing† −2.19 0.61 0.0023
80 per cent missing† −2.30 0.49 <0.0002
50 per cent missing† −2.04 0.36 <0.0001
20 per cent missing† −2.15 0.30 <0.0001
∗: Based on complete data before any deletion. †: HD method was used.

and delete some proportion of T in Center 8 to examine the extent of efficiency gain through the use of S. The missing
mechanism is missing completely at random [26]. The results are listed in Table III. Without missing T , �̂Tn is −2.45
with the SE of 0.29. When T is completely missing, �̂Tn is −1.58 with the SE of 0.79. When 20 or 50 per cent of
T are missing, the precision of �̂Tn using S is comparable to that based on completely observed T . Even with 80 per
cent missing, the SE is substantially smaller than that when 100 per cent of T is missing. For further illustration, we
treat Center 9 as a new trial and obtain similar results. With this rescaled data, we have artificially increased the sample
size by approximately five-fold for each trial, hence, the power to detect the treatment effect is much larger than the
original data. When �Tn is predicted solely based on S, the RE is only about 10 per cent compared with that when T is
not missing, and �̂Tn reaches the significance level of 0.05 for Center 9 and is not quite significant for center 8. In this
particular study we completely observe S by the end of year 1998 but only start to observe T in year 2001, thus by solely
relying on S to predict �Tn, we can significantly shorten the trial length, but the result is only of borderline significance.
In practice many trials do not have such a strong effect so when �Tn is predicted solely based on S, the substantial loss
in precision often results in failure to detect any real treatment effect difference. In the CIGTS, by October 2002, about
20 per cent of T would have been observed and the treatment effect is clearly significant, illustrating the benefit of
significant increase in the precision of �̂Tn by utilizing a small fraction of T . There is a also a considerable time saving
compared with collecting T on all subjects, which would have required follow-up to 2005.
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7. Discussion

In this report, we examine the role of biomarkers as auxiliary variables in predicting the treatment effect and identify
situations when biomarkers can be beneficial in a multiple-trial setting. While previous literature on the use of biomarkers
as substitutes for the true endpoints has been mostly negative and the proposed surrogate measures are often not useful
in practice, we show that it is possible for S to be useful as auxiliary variables in helping provide information and
enhancing the inference on T . Although a high correlation between S and T does not qualify S as a good surrogate
[12], we show that the correlation is a critical measure in determining the extent of information recovery from S.

In a multiple-trial setting, when T is completely unobserved, R2
indiv has little impact on the amount of information

recovered from S; on the other hand, the higher the R2
trial, the higher the efficiency gain from S. However, even with

a relatively high R2
trial, the predicted treatment effect based on data from other trials and biomarkers in the new trial

solely is usually too imprecise to be clinically useful. On the other hand, when the predicted treatment effect on T solely
based on S would be sufficient to detect the difference in the treatment effect, the benefit of reducing the trial length
can be enormous. Examples include the situation when the statistical power to detect treatment effect is very large or
when R2

trial is close to 1 such as the ovarian cancer example in [9]. However, these cases are usually rare in practice. On
the contrary, when T is partially observed in the new trial, we find that a high R2

indiv is a very important determinant
in increasing the precision of the predicted treatment effect from S but the impact of R2

trial is negligible. With even a
small fraction of T and a high R2

indiv, the information on the treatment effect is mostly recovered and the prediction
precision is close to that when T is completely observed. It appears that some data on T are essential to provide the
basis for individual-level predictions of T from S and take advantage of the distributional assumption between S and
T , and hence to give a much more efficient treatment estimate.

We compare the BMBRG, GPHC, and HD methods when T is completely missing. Each method gave unbiased
estimates; but the variances were underestimated, particularly when the number of the trials was small. Either a bootstrap
[17] or fully Bayesian or measurement-error approach [27] could remedy this problem. When T is partially observed,
we use two methods: HD and EB-CPV. We find that the underestimation of the variance from the HD method becomes
negligible but CPV consistently underestimates the variance. We note that we only consider the case of missing T
being missing completely at random and that all methods are applicable when the missing mechanism is missing at
random [26].

In conclusion, biomarkers would seem to have a useful role as auxiliary variables. Future research should focus on
their roles as auxiliary variables and identify scenarios when biomarkers can increase the precision of the treatment
effect. For design purposes, our results suggest that it is often important to collect at least some data on the true endpoint
and more information on biomarkers which have high adjusted individual-level correlations with the true endpoint.
With appropriate utilization of high-quality biomarkers in estimating the treatment effect when the true endpoint is not
completely observed, one can reach a desired level of precision earlier, hence shortening the study period and reducing
the cost. In our study, we consider continuous S and T . For future research, it would also be interesting to investigate
the factors that impact the efficiency gain and the extent of it when S and T are other types of data such as binary,
categorical, and time to an event.

Appendix A: Henderson method [18]

Let Y = X�+U�+�, where the vectors Y , �, and � and the matrix X are obtained from stacking the vectors Yi , �i , and
�i and the matrices Xi , respectively, underneath each other, and where U is the block-diagonal matrix with blocks Ui
on the main diagonal and zeros elsewhere. Let D and � be block-diagonal with blocks D and �i on the main diagonal
and zeros elsewhere. We have the following relationships: E(�)=0, E(�)=0, var(�)=D, var(�)=�, cov(�,�)=0 and
we let V=UDU T +�. The estimates of D, � and V are denoted by D̂, �̂, and V̂. Henderson [18] proposed a method
to obtain estimates of � and � by solving the mixed model equation as follows:⎡

⎣XT�̂
−1

X XT�̂
−1

U

U T�̂
−1

X U T�̂
−1

U +D̂
−1

⎤
⎦
[

�̂

�̂

]
=
⎡
⎣XT�̂

−1
Y

U T�̂
−1

Y

⎤
⎦ .

The solution can be written as:

�̂ = (XTV̂
−1

X )−1 XTV̂
−1

Y,

�̂ = D̂U TV̂
−1

(Y − X �̂).
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The covariance matrix of (�̂−�, �̂−�) is

C =
[

XT�−1 X XT�−1U

U T�−1 X U T�−1U +D−1

]−1

.

McLean and Sanders [28] and McLean et al. (1991) [29] show that C can also be written as

C =
[

C11 C21

C21 C22

]−1

,

where

C11 = (XTV−1 X )−1,

C21 = −DU TV−1 XC11,

C22 = (U T�−1U +D−1)−1 −C21 XTV−1UD

=D−DU TV−1UD−C21 XTV−1UD.

In practice, the estimate, Ĉ , is often obtained by substituting D and � in C with their estimates, as we have done in
this paper. From the above, we can obtain the expression for the mean and variance for �̂+ �̂n as follows:

E(�̂+ �̂n) = �+ DU T
n V −1

n (Yn − Xn�),var(�̂−�+ �̂n −�n)= (XTV−1 X )−1 + D− DU T
n V −1

n Un D+ DU T
n V −1

n Xn

×(XTV−1 X )−1 XT
n V −1

n Un D−2DU T
n V −1

n Xn(XTV−1 X )−1

=
(

n∑
i=1

XT
i V −1

i Xi

)−1

+ D− DU T
n V −1

n Un D

+DU T
n V −1

n Xn

(
n∑

i=1
XT

i V −1
i Xi

)−1

XT
n V −1

n Un D−2DU T
n V −1

n Xn

(
n∑

i=1
XT

i V −1
i Xi

)−1

.

Appendix B: Bayesian estimation

Iterate the following two steps until the parameters reach convergence:
Step 1: Impute missing Tnj’s from a normal distribution with mean and variance:

E(Tnj|Snj, Znj) = �0 +r0n −�st�
−1
ss (�0 +a0n)+(�1 +r1n −�st�

−1
ss (�1 +a1n))Znj +�st�

−1
ss Snj,

var(Tnj|Snj, Znj) = �tt −�2
st�

−1
ss .

Step 2: Apply the Gibbs sampling to the complete data to estimate the parameters

D−1|�∼W (n+c,

(
n∑

i=1
�i�

T
i + F−1)−1

)
,

�−1|X,Y, Z ,�,�∼W

(
n∑

i=1
mi +a, (V S+ E−1)−1

)
,

�i |X,Y, Z ,�, D ∼MVN

(
V E ×

(
mi∑
j=1

ZT
ij�

−1(Yij − Xij�)

)
,V E

)
,

�|X,Y, Z ,�i ,�∼MVN

(
V B ×

(
n∑

i=1

mi∑
j=1

Xij�
−1(Yij −Uij�i )

)
,V B

)
,
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where

V S =
n∑

i=1

mi∑
j=1

(Yij − Xij�−Uij�i )(Yij − Xij�−Uij�i )
T,

V B =
(

n∑
i=1

mi∑
j=1

XT
ij�

−1 Xij

)−1

,

V E =
(

mi∑
j=1

U T
ij �

−1Uij + D−1

)−1

.

From the distributions of � and �i , we can obtain the distribution of �Tn.

Appendix C: conditional posterior variance of dTn

Let �0 +a0i =	0Si , �0 +r0i =	0T i , �1 +a1i =�Si and �1 +r1i =�T i . We can rewrite the model (1) as

Sij = 	0Si +�Si Zij +�Si j ,

Tij = 	0T i +�T i Zij +�T i j .

Assume that there are r observations with both S and T observed and mn −r observations with just S observed in the
nth trial. The likelihood can be written as

L(�|S,T, Z ) =
{

n−1∏
i=1

[
mi∏
j=1

N (Yij|�,�i ,�, D, Zij)

]}{
r∏

j=1
N (Ynj|�n,�, Znj,�, D)

mn−r∏
j=1

N (Snj|	0sn,�sn, Znj,�ss)

}

=
n−1∏
i=1

⎡
⎣ mi∏

j=1

1√
2|�|1/2

exp

⎧⎨
⎩−1

2

(
Sij −	0Si −�Si Zij

Tij −	0T i −�T i Zij

)T

�−1

(
Sij −	0Si −�Si Zij

Tij −	0T i −�T i Zij

)⎫⎬
⎭
⎤
⎦

×
r∏

j=1

1√
2|�|1/2

exp

⎧⎨
⎩−1

2

(
Snj −	0Sn −�Sn Znj

Tnj −	0T n −�Tn Znj

)T

�−1

(
Snj −	0Sn −�Sn Znj

Tnj −	0T n −�Tn Znj

)⎫⎬
⎭

×
mn−r∏

j=1

1√
2�1/2

ss

exp

{
−1

2
(Snj −	0Sn −�Sn Znj)

2
}

×
n∏

i=1

1√
2|D|1/2

exp

⎧⎪⎪⎪⎪⎪⎨
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−1

2

⎛
⎜⎜⎜⎜⎝

	0Si −�0

	0T i −�0

�Si −�1

�T i −�1

⎞
⎟⎟⎟⎟⎠

T

D−1

⎛
⎜⎜⎜⎜⎝

	0Si −�0

	0T i −�0

�Si −�1

�T i −�1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

which is proportional to the posterior density when we assume flat priors for the fixed effects and multivariate normal
distributions for the random effects. The conditional posterior distributions of 	0T n and �Tn given the data and all other
parameters are proportional to

	0T n

�Tn

∣∣∣∣∣ · ∝
r∏

j=1

1√
2|�|1/2

exp

{
−1

2
MET ×�−1 ×ME

}
1√

2|D|1/2
exp

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

2

⎛
⎜⎜⎜⎜⎝

	0Sn −�0

	0T n −�0

�Sn −�1

�Tn −�1

⎞
⎟⎟⎟⎟⎠

T

D−1

⎛
⎜⎜⎜⎜⎝

	0Sn −�0

	0T n −�0

�Sn −�1

�Tn −�1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
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∝ exp

{
−1

2

r∑
j=1

[Tnj −	0T n −�Tn Znj −�st�
−1
ss (Snj −	0Sn −�n Znj)]

2 ×q−1

}
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×exp

{
−1

2
MDT ×(�11 −�12�

−1
22 �21)−1 ×MD

}

= A× B, (C1)

where

�11 =
(

dtt dtr

dtr drr

)
,�12 =

(
dst dta

dsr dar

)
,�21 =

(
dst dsr

dta dar

)
,�22 =

(
dss dsa

dsa daa

)
,

ME =
(

Snj −	0Sn −�Sn Znj

Tnj −	0T n −�Tn Znj

)
, M D =

(
	0T n −�0

�Tn −�1

)
−�12�

−1
22

(
	0Sn −�0

�Sn −�1

)
.

and q =�tt −�2
st�

−1
ss .

The covariance contribution for 	0T n and �Tn from term B is �d =�11 −�12�
−1
22 �21.

We define Qnj =Tnj −�st�−1
ss (Snj −	0Sn −�n Znj). From (C1),

A = exp

{
−1

2

∑
(Qnj −	0T n −�Tn Znj)

2q−1
}

= exp

{
−1

2

[∑
Z2

nj

q
�2

Tn + r

q
	2

0T n +
∑

Q2
nj

q
−2

	0T n
∑

Qnj

q
−2

�Tn
∑

Znj Qnj

q
+2

	0T n�Tn
∑

Znj

q

]}
.

A is proportional to a bivariate normal density. The covariance contribution from term A is defined as �e =
(

�11
�12

�12
�22

)
,

where

�11 = (�tt −�2
st�

−1
ss )

∑r
j=1 Z2

nj

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

,

�12 = (�tt −�2
st�

−1
ss )

∑r
j=1 Znj

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

,

�22 = r (�tt −�2
st�

−1
ss )

r
∑r

j=1 Z2
nj −(

∑r
j=1 Znj)2

.

Combining the variance contributions from terms A and B, we can obtain the conditional posterior covariance for 	0T n and
�Tn as: (�−1

e +�−1
d )−1. The corresponding conditional posterior variance for �̂Tn −�Tn is (0 1)(�−1

e +�−1
d )−1(0 1)T.
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