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ABSTRACT

If one considers a paraboloid of revolution of focal length N, With an interior
point source located anywhere on the axis, the exact solution to the Dirichlet or
Neumann problem (Green's function of the first or second kind) may be written in
the form of an integral representation. In this report we consider the asymptotic
evaluation of these integrals for both low (k M<K 1) and high (kn 0> 1) frequencies.
The low frequency results are obtainable from an infinite series over the zeros of
a particular Whittaker function, corresponding to a Mie series found in the scattering
by closed convex bodies. For high frequencies, we find multiple reflections and
caustics arising from saddle point evaluations as well as "whispering gallery' waves,
which arise from the nature of the behavior of the above zeros at high frequencies.

The work at high frequencies is only briefly discussed since it covers research
that is actually in progress at the present time. The aim of this discussion is to
introduce possible approaches to the solution.

This work on the paraboloid is preliminary to a description of scattering by
general concave surfaces. Having integrated the formalism in terms of the physical
phenomena such as the whispering gallery waves, multiple reflections and caustics,
we now are in a position to search for generalizations of these to other concave sur-
faces. The scheme we propose is to determine the dependence of the physical effects
on the local geometry of the paraboloid and then to make the essentially physical
argument that this geometric dependence is the same for other concave shapes.

This approach is similar to that used in determining creeping waves on general con-
vex shapes and is an application of the physical arguments used in Keller's geametric
theory of diffraction.
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I
INTRODUCTION

1.1 Preliminary Discussion

For the most part the solutions of scattering problems have been confined to
convex surfaces; relatively little has been done in the case of concave surfaces. The
latter usually give rise, in the short wavelength limit, to such effects as caustics,
multiple reflections and whispering gallery waves (a form of traveling waves). Some
of the early considerations of these effects are found in the book by Rayleigh (1945);
modern investigations are illustrated by the papers of Kimber (1961a, b) which treat the
circular cylinder and sphere respectively. In this paper we will consider the paraboloid
of revolution (Dirichlet or Neumann boundary condition) with an interior point source on
the axis, but not necessarily at the focal point.

The scattering by a paraboloid of revolution differs from the circular cylinder
and sphere mentioned above (both closed bodies). AIthough it is found that multiple
reflections, caustics and whispering gallery waves occur when the point source is not
at the focal point, the point source at the focal point gives a concave surface scattering
problem which does not exhibit these effects. In the short wavelength limit it shows only
a single reflection. The case of a dipole, with moment perpendicular to the axis, at the
focal point of a perfectly conducting paraboloid of revolution has been investigated by
Fock (1957) and Skalskaya (1955). Pinney (1946a, b) considered the moment both perpen-
dicular and parallel to the axis. Although there is a double reflection, it is natural to
consider the plane wave problem in this category. The scattering of a high frequency
plane wave by the interior of a parabolic cylinder (Dirichlet boundary condition) was
studied by Lamb (1906), who indicated that the method could be extended to the paraboloid
of revolution,

Perhaps the best starting point for a study of scattering problems pertaining to
the paraboloid of revolution is the book by Buchholz (1953) which includes a complete
bibliography. Alsowortty of mention is the earlier written paper by Buchholz (1942/3).
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1.2 Mathematical Statement of the Problem

Let D be the closed interior domain of the paraboloid of revolution and let p(r)
(r is the usual position vector) denote the point source distribution. The precise form
of p(r) depends on the definition of a point source; it will be specified later. The argu-
ments of Ritt and Kazarinoff (1959, 1960) can be applied to characterize the solution to the
problems stated above as the ergodic limit

T
¥(r, t) dt,
0

lim 1
T2 T

where
v(r,t) = u(x,t) o Wt

and u(r,t) is the twice continuously differentiable in D for fixed time t, twice contin-
uously differentiable in time, function in the space time domain {DxO <t< cx)} satisfying

2

VZ 1 du iwt
u- 5 — = plre
c ot
ou
uor o= 0 on the boundary of D

some prescribed initial conditions.
Ritt and Kazarinoff (Ibid) also show that the above limit, which we call v(r), is a twice
continuously differentiable function in D satisfying

2
V2v+k v = p(r)

vV or % = 0 on the boundary of D

lim r (_a_v + ikv) = 0 (Sommerfeld radiation condition).
r—>00 ar

This, of course, is the more familiar formulation of the scattering problem. Ritt and
Kazarinoff (Ibid) further show that v(r) is the limit 81_1:104. v(r, s) where v(r, s) is the
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function, differentiable as above, in the domain {Dx 0<s8< m} satisfying

V2v+12v = p(r) (y= '(l;(w-is))

vor — =0 on the boundary of D

[v(z, 8) |2 dV<ow ;
D'

dV is the usual volume element and D' is the closed exterior to D.

1.3 Coordinates of the Paraboloid of Revolution

The natural system of coordinates, i.e. the system for which the wave equation
separates and the boundary of D is a level surface, is defined in the following manner:
two. families of confocal paraboloids of revolution &= Eo' n=n, with focal point at the
origin, given by the equations

ol = 42E-2), p? = dnin+z) 0= x2+yd)

together with the usual azimuth angle . If we make the natural choice for the domains
of these variables, 0§, n<om, 0P <27, they can be related to the rectangular
(x,y, z), cylindrical (p, §, z) and spherical (r, 6, §) coordinates by the following equations

x = pcosfP = rsinfcosP = 2{En cosp

y = psinf = rsindsinp = 2Y&n sinp

Z =2z =rcosf = §-n.

This system of coordinates is called the coordinates of the paraboloid of revolution and

is illustrated in Fig. 1. Thus if a physical problem is shown in Fig. 2, we see that the
domain D under consideration may be represented by 0 < n< o’ 0<& <o, 0 P<2r,
the boundary of D by n =n0. The point source is shown lying to the right of the focal
point, since this is the case that will occupy most of our attention. The case of the point
source lying to the left of the focal point will be introduced, but no calculations performed.
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x
E= 'S'a
_E=0 > n=0_
y

FIG. 1: Coordinates of the Infinite Paraboloid of Revolution

- ¢

> 2z

FIG. 2: Point Source at (=, 0), Field Point at (&, n)
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1.4 Integral Representations of the Solution

Integral representations for the solutions v(£,n, §) can be derived from the
second and third formulations of (1.2). We first show how the method of Ritt and Kazarinoff
(1959, 1960) can be applied to derive an integral representation from the third formulation.
Thus we begin with the inhomogeneous wave equation in which the wave number has an

imaginary part.
A+ yzv = p(r) (‘y = -:;(w-is) (1.1)

In the coordinates of the paraboloid of revolution Vzv has the representation given by
(Buchholz, 1953)

2
1 )2 fpe &), B (5 8n), Etn 2
V= e {ae (25 %) " on (Z”an)‘“zsn a¢2}'

But since p(x) represents a point source on the axis of the paraboloid of revolution, the

problems have axial symmetry; hence the § dependence can be removed. Therefore
equation (1.1) becomes

9 (ev), 9 ( OV 2 -
Y (E a§> + an (n 8n>+7 (E+n) = (E+n)p(E,n) . (1.2)

For the point source at (=, 0), (§+n)p(§,n) = cé(§-=)s(n) where c is a constaat which
depends on the precise form of p(r), i.e. on the definition of a point source. We now make
the stipulation (or normalization) that our definition of a point source is such that c=1.
(This implies that p(r) = 4ré(r- _x_'o), r the position vector of the point source. The
normalization is discussed further in Appendix A.1.) Substitution of this choice in (1.2)
yields

) ov 0 ov 2 - .=
% <E 2 + n (n B ) +y (E+n) = 6(E-2)é(n)
which can be written as

—an— Lgv = §(§-=)é(n) (1.3)
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ny = - é (p(x) %) +q(x)y with p(x) = x, q(x) = --yzx .
In order to proceed we must consider the operators Ln, Lg defined by the relations
Ly= -j‘%(n%‘é - ¥ny 0Ln<n,
LEy=-d1§(s§§ - vty 0¢E <o

inasmuch as they do not correspond exactly with the ones studied in Ritt and Kazarinoff
(1959, 1960) . However, since p(x) = x, q(x) = -"yzx implying Imq(x) = __Zw_zs_ x i8 >some q
c

the conditions on p and Imq correspond. For er the homogeneous differential equation
h

to be studied is Lny— Ay = 0. It can be written as

2 _
9_;2:+19x+<72+a)y=0. (1.4)
> M n

The substitution y = un-ll 2 results in the equation
2

_q_121+<72+_7g+_1_2>u=0
dn o4y

or

2
d%u ( 1 X 1 )
—_— et + u=20
Tar T 2im
d(+ 219m) 4 T2(R2AM o

which is Whittaker's equation. It has the two Whittaker functions M, J2iy O(‘l‘ 2iym),
W, A/ 2ty O(i’ 2iyn) as linearly independent solutions. A complete discussion of the
equation together with these functions is found in Buchholz (1953). The solutions

+ =
Mi‘)\ /21y, O(-Zi'yn) are regular at n=0 and e,Cz(O, no) where .[2(a, b) is the class of
all square integrable functions on (a,b). Except for certain values of A the solutions

+
Wy /21y, o{¥2tm) are not regular at zero, but are e.[z(o, n,) for all values of 1.
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To see which solutions should be comidIered for the definition of the resolvens
Green's function we maks use of the condition

vz, 8) [2 dv < c.

D’

For large n
1
LS| [—(w - is):l n
+ ~oFim _ c - Fikp ¥8n
W‘i’ \/21y, 0(.. 2im) ~ e e e e ,
thus the solution W 3[4, 0(-21711) cannot be used to build a linear component of v(r, s)
2im). t

\ 21y, 0( fm). Since the solutions My /214, 0( 2iyn)
are linearly dependent the solution MX /21, 0(21711) can be considered. Therefore

-1/2
yl(n. M)\ J2ty,0 o(2im) and Yo X) =
independent solutions of (1.4) such that

and we must consider the solution W

W)L [2t, o(Zi'm) are two linearly

(1) yl(n, A) i8 regular at n=0
(2) yz(n, A) is not regular at n=0 except for the value E% = n+-;- or
A = iy(2n+1).

This leads at once to the properties of Ln, 0<n< U

(a) n=0 is a regular singular point of Lny-ky =0, p(0)=0

(b) p(no) #0

(¢) For ImA< q = 0 (hence A cannot equal iy(2n+1)), the homogeneous equation
Lny- Ay = 0 has exactly one linearly independent solution regular at n=0.

Now to find the resolvant Green's function of the operator Ln, 0<n< no, we
need a solution ¢1(n, A) of Lny- Ay = C which satisfies the boundary condition at Ny’
together with a solution ’2‘"' A) of Lny-ky = 0 which is regular at n=0. Considering
first the Neumann problem, this is accomplished by the choice

dy, (n.2) dy,(n, \)
¢1(n. A) =y, M( an - y,(n.2) o)
n=n, n=n,

(.0 =y ,(n2)




THE UNIVERSITY OF MICHIGAN

7030-4-T
(Hereafter we shall denote the derivative d;; A) by F'(no, A).) With these

n=n
o
definitions the Wronskian W,:¢1(n, A), ¢2(n, )L)] of ¢1(n, A) and ¢2(n, \) becomes

W [8,(n. 0, B, | = @y, a2 W[y, m 0,3, 0, )

which reduces to (Buchholz, 1953)

(217)y'1(n°. A)

1 X
"P(Z ) 217)

W[$,(n. 2, fyin )] =

It should be noted that

— _ 2iy
¢1(n0, x-) - Zi‘YW [yz(non A-)t yl(ﬂo, hﬂ - (}_ _X_._
o \2 2iy

The resolvent Green's function G(n,n',A) thus has the value

1 A

@ivly; (n . 2) B, NP0 n<n

G(n,n',A\) =

the resolvent operator the representation

nO
Ry = S G(n, n', My(n') dn'
0

For the Dirichlet problem we can choose the two-functions

x//l(n, A = yz(n. l)yl(no. A) - yl(n. k)yz(no. A)
wz(n, A) = yl(n, A) .

Thus

W[wl(n. X).wz(n, X)] = (Ziv)yl(no, K)W[yz(n. X).yl(n. Xﬂ
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which reduces to (Buchholz, 1953)

(2i'r)y1(no.k)
1 A\
nr.(Z - 217)

The resolvent Green's function then has the value

w [wl(n. A), Yo, l)] =

p(_;. ) _2_}_ ACRYAC IRV n>n'

G(na n'. X) = -(217) yl (no' x)

¢/1(ﬂ'. AWy, \) n<n'

»

the resolvent operator the same representation as above.

The properties of the operator LE can be written down at once.

(a) £ =0 is a regular singular point for Lgy-)ty =0, p0) =0.

(b) For Ima< q, = 0 the homogeneous equation Lgy-)«y = 0 has exactly one
linearly independent solution

-1/2
&N = €M, ((206)

which is regular at £ = 0 and e.(é(O, Eo) 0< Eo <, plus exactly one linearly
independent solution

-1/2W

A/ 21y, 0(217'5)

which is regular at infinity and efz(E o’ ™).
The resolvent Green's function 6(& ,E',A) thus has the value

1 JL.) y, (€, Ny (&', ) g<g
~ _ P(z - 24 1 2
G(E,§'.0) = o

yl(E'.X)yz(E,l) §>¢,

the resolvent operator il the representation
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Q0
= | GEyED .
0

Ry
It should be observed that in this case E)\ is not only analytic in ImA < q = 0, but also
in the larger domain Im A < k.==< As in Ritt and Kazarinoff (1959, 1960) the papers by Sims
(1957) and Phillips {1952) are the basis for the work on resolvents and resolvent Greeen's
functions.

We can now proceed with the method of Ritt and Kazarinoff to find the integral

representations for the solutions. Consider the Neumann problem and let [ be a path

in the complex A-plane defined by the straight line running from
- -io to o-io 0<o<k.

Then applying the resolvents R ’ﬁ_ successively to equation (1.3), using the resolvent

A’ A
relation y-Ay) =y and integration along !, noting that the singular points o
lati (L y-2y) d integration along I, noting that th ul ints of

lie above " while those of }ﬂi_ lie below I’, we arrive at the integral representation

A

1\ aes
VN(gs n, S) - o9ri G(g’;: 'A-)G(n, 0, X)dk
r

where VN(E , N, 8) will denote the solution to the Neumann problem.

Substituting for é(g ,=,-A) we obtain

1_ (1 _>x_)
im 1\ P(2-2i7>F2+2iL

ot 27i 2
s —> 27ri (2i7) y,l(no, 3

vN(E, n =
r

where El =min(£,7), §2 =max(§,Z). But

*See Appendix A.2.

10
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7,0, = @1y

B, = y,(n,Ny; &, N -y, (n, Nyyn , 2

and therefore

v(Eq = Um (2iy) "%/ (2'1)221)
N)

s— 0t 21ri yl(n A) -

AV AN

¥ [yz(n. X)yi(no. k)-yl(n. A)y'z(no. A)] (1.5)

When n = ny

"o"('é "'2?2})

thus the field on the surface is given by the simpler formula

1, A
_1/2 P(_ + ..__.)
_ lim (2iy) 2 2y

r

The above procedure may be repeated exactly to obtain vD(E ,n), the solution to
the Dirichlet problem. Let " be a path in the complex A-plane as before, then

1 2 1.
lim (211)'3/ 2 dk”(z } 2{1/)'1 (2 * 211)

+
s—0 2ni - yl(no. \)

TR AR R AR AR U] B

vD(E N = yl(E 1 l)yz('s'z, A) -

The surface field for the Dirichlet problem is given by the normal derivative

inD(E ,n/ 8n)n=n . This derivative is governed by the relation
o

11
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vy i n1/2 vy
on 1/2 98 !
(E+n) / n

thus the equation for the surface field is given by

-lim 1, A
ovp&.n) et ept? r (2+211) €. Ay (€. -2)
on _ [(§+ /2 el y,tn ) AT O A T
n=n, |n, n)]

r (1.8)

Consider now equations (1.5) through (1.8). We note that there is an essential
difference between these equations and the similar equations in Ritt and Kazarinoff (1959,
1960). For these equations I is independent of s, thus it may be possible to take the
limit as 8 — 0% inside the integral. According to Buchholz (1953) the functions yl(x, A),
yz(x, ) are entire functions of \/2iy; the path I" is defined so that the functions

r %Y + %) , l"(-— -2%; + %) are analytic functions of A/2iy on I. Therefore we can take
the limit as 8 — 0 inside the integral and equations (1.5) through (1.8) are valid without
lim

the s —>0t condition when the parameter vy is replaced by the parameter k.

Buchholz (1942/3, 1953) derives an integral representation from the second formu-
lation of section 1.2. For p(r) = 4ms(r- _go) (where x, denotes the vector to the point

source at (=, 0)) the free space Green's function has the form - e—ikR/ R (time dependence
; elh’t, R=|r- _gol). Thus he first derives (Buchholz, 1953) an integral representation

for -e—ikR/R as

-g'+im

-ikR 1 1
dsl"(s+ '2',) M(-s+ 3 )m

e _ 2ik
R 2ri

(0)

(0)

-8

(0)
. (zmgl)w

(2ikn)

(2ﬂ(82)w
-og'-i0

(0)

(2ikx) = (21kx)'1/ ’M (2ikx) and
8 8,0

where |o'|<1/2, £ 43, n>0, m

w(so)(2ikx) = (Zikx)-ll 2Ws O(Zikx). Then he assumes v(£€,n) has the form

-ikR
vI(E, n) + <° = >

!

v(E, n)

with

12
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-g'+ie
1 1. (0 0
asPla+3)Pia+d) mi )(2ﬂt§1)w(s ’(mgz)Asm‘_?(zmn)

-o'-{fmo

v'(E,n) = 2’ :

where again |o'| <1/2 and A 18 an unknown function of s. Thus v(E,n) formally
satisfies the inhomogeneous wave equation while the boundary condition may be satisfied
by a suitable choice of As' For

O

av g (2tkn )
e 0 on the boundary A = 2ik (0)
(21kn )
(0)(21kn )
v=_0 on the boundary A8 = 2ik --(-bT———-—-
(Zikn )
where again
d
F'(21kno) = (d_n F(2ikn)>
TFTIO

We continue by considering explicitly only the Neumann problem. The obvious
modifications can be made for the Dirichlet problem. Substituting for As we have

<o'+im (0) (0)
2ik

v = 5% s Mo+ Byrierd) =

(21k€, )w
(0)'

L (21 )

g 2ikn )

-{io

(0)' (0)

[»® ten ymD2kn) - =Y 2 T 2tew] (1.9

as a formal solution to the inhomogeneous wave equation which satisfies the boundary
condition. From the asymptotic behavior of w( )(2ik§ ) at infinity it i8 seen that v (S n
satisfies the radiation condition. Thus it rema.lna to show that the integral exists. Let
us return to the previous yl(x, A), yz(x, A) notation and substitute -s for s in equation
(1.9). Then we obtain

13
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'-{0
-1/2 (¢ v, (., -2ika)y, (€., -2iks)
_ (21K 1, .10 015 252
0
o'+ioo
[y, 0. 2tk8yy0n , 21k8) - v, n, 21Ky, 2tks)]| (1.10)

It is shown in the Appendix A.3" and Buchholz (1942/3, 1953) that

1 ' t
F-s+3)]5, n, 20ksyyn , 21k8) -3, (n, 20kaly; (n , 20ks)|

is analytic in the complex s-plane, y'1 (no, 21iks) has simple zeros which lie along the
imaginary axis and the integrand of equation (1.10) vanishes exponentially on a large
semi-circle in the right half s-plane. Thus the integral for 0 <o' <1/2 represents the
zero solution which can be omitted by the further restriction -1/2 <o' < 0. However,

for o' =0 the integral is not defined and so we arrive finally at the restriction -1/2 <¢' <0.
In addition it is seen in the appendix A.3 that along this path the integral converges. Thus
vN(E ,n) given by equation (1.10) together with the restriction -1/2 <o' <0 is a solution

of the Neumann problem given by the second formulation of section 1.2. We write it as

'-joo
-1/2 ? y, (§., -2iks)y, (£, -2iks)
_ (2ik) 14 1,711 2°°2 ]
& = S ds M(s+3) M-s+y) y}(n_, 2iks)
o'+ia o
(-1/2<0'<0)
. [yz(n, 2iks)y'1(no, 2iks) - 2 (n, 21ks)y'2(no, 2iksﬂ (1.11)

If in (1.11) the substitution s = A/2ik is made, vN(E,n) becomes

+21ko

(€., -Ny,(E,, -2)
T A YA N A WA A Uids A Tl
dw(?u_c*'z' PQ 21k+2> By

(21k)'3/ 2

2ri

vN(E. n =
-0+ 2iko!

- [ vyt 0=y, 0, 0yt )

* In the Appendix A.3 we again consider only the Neumann problem. The computations
can be easily modified for the Dirichlet problem; the results are essentially the same.

14
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with -1/2 <¢' <0 which implies

274 21k 2 yl(no X)

&, k)y &.,-
@i~ A 11\l 2,1 Y15y 2
vN(§.n) d)d" lk 3 P(
(0<o<k)
'[yz(n. X)y'l (no. A) -yl(n, l)y'z(no. XZ] (1.12)

As is expected, equation (1.12) agrees with (1.5). Substituting n=n_ in (1.12) yields
the equation for the surface field

-1/2 ®-lo ¥, €y Ny, €, -
_ (21K 1 25y’
W) = @D ‘D‘r(zxk 2) yl(n \) (1.13)
° o - io
(0 <o <Kk)

which of course agrees with equation (1.6). Repeating the above arguments we obtain
for the Dirichlet problem
- io
) = (o1)”3/2 o ( A, 1) . ( 2, 1) D& e
D" 2ri 21k 2 21k 2 y.(n_, N
17
- - io

(0 <o <k)

SR AR AR AT RS Y) IR

while for the surface field-

® - io
an 1/2 211 Ao *2 y. (0N
=N, [ﬂ (@+n ﬂ - - 1o 170

(0 <o <k (1.15)

These integral representations (equations (1.12) through (1.15)) will be used throughout
tbe paper in preference to the corresponding representations obtained by the substitution
s = 1 /2ik.

15
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As indicated previously the above derivations correspond to the point source of
(=.0). The integral representations corresponding to the same point source at (0, H)
can be derived in a like manner without any difficulty. For n = min(n, H), Ny = max(n, H)

they are
- {o
-3/2 (® ¥ (&, -Ny. (1., %)
_ L /" 2 L1 (L %) 2 1M
vN(E, n = 2ri cW.'(Zik*' 2)!‘ < 2k T y'l(n L)
-0 - io 0
(0 <o <k)

y [yz(nz, A)y'l(no, A)- yl("Z' k)y'z(no, K):l (1.16)
for the Neumann problem, and

o - io

-3/2 Yo (&, =Ny, (n.,2)
ey o (21K __)t__1_><_l_1>2 1'
VpiE) 271 N GR*2) am*s ¥, (10
- - io °
(0 <o <k)

. [yz(nz. K)yi(no. k)-yl(nz. A)yz(no. A{’ (1.17)
for the Dirichlet Problem

1.5 Discussion of Integral Representations with Respect to Asymptotic Expansions

For the present discussion we consider the integral representation given by equa-
tion {1.12). The statements made can easily be changed to apply to the other represen-
tations. We have already mentioned that part of the integrand of (1.12),

A1
ro- 5T 5 )'[yz(n, k)yi(no. )L)-y1 (n, )t)y'z(no, kﬂ

is analytic in the complex A-plane, y’l(no, A) has simple zeros which lie along the real
axis, and the integrand of equation (1.12) vanishes exponentially on a large semi-circle
in the upper half A-plane. Therefore the singularities of the integrand of (1.12) are of

two types:

16
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(1) simple poles at the zeros of yi(no, A) which lie on the real axis,

(2) simple poles at the poles of the function l"(- _2x1_k +%> which lie at the points
A =-ik(2n+1) n=0,1,2, ... on the hegative imaginary axis.

Since the contour of integration runs between the two sets of poles and the inte-
grand vanishes as described above, the contour can be closed around the poles corresponding
to the zeros of yi(no, A). In this manner, by use of the residue theorem, a series expan-
sion for the solution can be obtained (Buchholz, 1953). The same asymptotic expansions
used to demonstrate the vanishing of the integrand show that the series converges (Appendix
A.3). However, the seriesdessmot lend itself to asymptotic analysis when kno >>1 and
thus corresponds to the situation found in the scattering by closed convex bodies (Ritt and
Kazarinoff; 1959, 1060). If the correspondence is complete the series should readily yield
the first term of the asymptotic expansion when kno <<1. This is found to be true; the
calculations are performed in Chapter 3.

There are two cases of interest when kno <<1. Oneis k§1 1, kgz >>1 which
corresponds to the point source (field point) in the near field and the field point (point
source) in the far field. These conditions correspond to the most likely physical situations;
a possible application is the use of the surface field to consider scattering from a body
whose surface has a concave portion. The other case of interest is k§1 <<1, k& 9 X1
and corresponds to both source and field points in the near field. This case is of interest
because of the relationship with the potential problem. In Chapter 3 it is shown that the
solution to the Dirichlet potential problem agrees with the first term of the asymptotic
expansion of the solution to the Dirichlet problem when kno <<1, kI <<1 and kf << 1.

While these low frequency results are complete, further low frequency inves-
tigations are in progress. In particular the Neumamn potential problem as well as a
physical interpretation of the far fleld results are being considered. The work for
kn°>>1 is being carried out at the present time. Thus, Chapter IV is only a summary
of a possible approach to the analysis.

17
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UNIFORM ASYMPTI(I)TIC EXPANSIONS
In this section we will consider separately the two asymptotic representations
of the Whittaker functions necessary for later use. The cases studied all correspond
to those used in the problems investigated in future sections. The results obtained are
based on the work of Langer (1935, 1949). More detailed results are obtained in the
memoir of Erdélyi and Swanson (1957) which discusses the necessity for the two repre-

sentations, and the paper by Taylor (1939).

2.1 Airy Function Representation

For this section the Whittaker equation will be written as

2

%+[—%+!Z+J§:|u=0; 2.1)
dz 4z

hence the two Whittaker functions of interest are MI 0(z) and (z). We make the

40
substitution s =z/4f, thus equation (2.1) becomes

+ [412(-1-;—5)+-—13:} u=0
48

and upon defining p =-2if we obtain

Lu

d52

d—zg + [132(5'2—1)*I-L2 u=20. (2.2)
ds 4s
Considering § to be a complex parameter such that |5 | >>1 and s belonging to a simply
connected, closed domain of the complex plane which includes the point s =1 but excludes
the point s =0, we find equation (2.2) can be of the type studied in Langer (1949) and his
results may be applicable.
Let ¢2(8)=‘s-§-l where ﬁ(s) is the root of ﬁz(s) such that

im )__ 1 3(59 =1.
g—>1 (s-1)1/2

18
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We also define
8
O = \ fmar , € =5e (2.3)
1
and
P = [0/ O[Fe] 2 wien Fo = M2 g (2.4)

these are the functions to be used in the theory. For the applications we must consider

the region args = [—6, 6] where 6 is a small positive number. Then, provided

|s|>> |’|12 73 Langer's results are applicable (Taylor, 1939). For |s|>1 we can write
P
$(s) = Vs(e-1) -log(Ye-1 + {&) (2.5)
while for |8|X1 we use
8
&) = txg (_17;1)1/2‘# (2.6)

1

where the upper (lower) sign corresponds to the argument of negative real s being
7(-x). When 8~1 []a— 1| = 0(1/5~2/3).(Taylor, 1939; Erdelyi and Swanson, 1957;
Buchholz, 19531_1 we employ the expansions

Be) = (s-1)1/2 [1-36-D+06-1%] a8 81 2.7

and

d(s)

In order to derive the desired asymptotic representations we need the behavior of the
above functions as 8 —> . Thus expanding (1 - 1/3)1/ 2 about 8 = leads directly to

-§-(s-1)3/2-%(3-1)5/2+o((s-1)7/2> as s—1. (2.8)

;(s) =1- % + 0(1/32) as 8—> (2.9)
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and using (2.5) and (2. 3) respectively yields

6(s) = s- % -log2Vs + 0O(1/s) as s—>w (2.10)
and
€ = [s-— = -log2\s + O(1/ ] as s>w (2.10a)
We wish to find the asymptotic representations of the functions M (z) 0(418)
asymptotic to
-2 21s 2s  -mi(2- =)
(4fs) e . (45 ) 2
FE-0 MG+
(418)1 -21s
for large fs, -m /2 <argfs <3r/2, and WI 0(415) asymptotic to 1 2 for
’ <= -12)
2

large Is, larg Ls | < 3r/2. We shall accomplish this by finding the asymptotic represen-
tations for W (418) and W (—418) and using the relation (Buchholz, 1953)

Ty, as) it mif2
M, (4fs) = : + W, (4ls) . (2.11)

1 1 4,0
re -1 MG +4)

(In choosing the particular form of (2.11) we make use of the value argfs = 7 /2 which
occurs in the applications.) To find these asymptotic representations we must compare
w, 0(415) and W_, 0(418) with the functions

(j)

7 = (ﬂ/2)1/2 torif12 3

ZETEAR XIS

which are solutions of the differential equation

_x+ [2 s-1, sz'(s):ly -0
¥(s)

called the related equation of (2.2). These functions have the asymptotic behavior for

large 4
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. s 1, -1r<argf<21r
- — =16 *i =
W = Fort /% i+ 0w/d) )

j=2, -27 <argl<w
Now if args=ae€ [— S, 6] then due to the nature of the applications arg{ must have the
value argf=7/2-a and thus as s > argf—)o. Therefore either of the above expan-
sions is valid as 8 —»; from (2.10a) we see that \7(2)(5) has the correct exponential

dependence in s for W (425) v( )(s) the same for W_l 0(-443) and hence according to
Langer (1949)

W, ol-4t8) = C, v+ o(1/3)] e N (2.12a)

W, gl-dts) = 01[ () 4 HELE /6 KO(”] 1> N (2.12b)

WI, olats) = (":2 :V(Z)(s) +0(1 /5)__] ltlg N (2.13a)

W, f4te) = c, |V )+ HELE 1‘/)6 ’Eom:l lg]>N (2.13b)

where N is & large positive number and the E_ j=1,2 are determined by the relations

-4 218

~ um Mgt _ {-ats)

C
1 s=>w (1)(8) e T 1/6 i§

- im ", ol4te) _ (ats)’ 72

2 s—m V(?‘)(s) - s?(s)?'l/s e—ii"

Using the definition (2. 4) and the expansions (2.9) and (2.10) we obtain

c, - (-211)}/6 g tlog-t/e g, - (21016 Llogtle
Thus (2. 12) and (2. 13) become for Cl=e“°gl/e
cas) = 'l [§V%+ ourm] I3l 1
W_y of-4ts) = (-2u)77C_ [V + 001/p)| 1K1 >N (2. 14a)
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= =1/6 it _
W, (-4ts) = (-2i1)1/60_£ l:i'r(l)(s)+ s) € > 2 0(1)] lgl>n (2. 14b)
w, 0(42s) = (-zu)l/ S¢ 1[7(2)(s)+ 0(1/5ﬂ HES! (2.15a)

1/6 -ig
olats) = (-2it) 1/6 2[V(Z)( )+ LOE - 0(1)] lg]>N (2.15b)
Using (2.11) and the relations (Erdelyi et al, 1953)
+
Fty = \ar o tlosTYe [1+0a1/2)]

valid for [1 [>> 1, we obtain

n1/6 -mit .
M, (ats) = CBO_e — [5W) 4+ o™V257®) + 001/

2,0 - \2r
lgl¢ (2. 16a)
: 1/6 = «=-1/6 1 il -i€
(=210 (1) 722, . &) & e o) + e o)
Ml, 0(418) = m (s) + e V' 7(s) + 5 :l

Ig]>N (2. 16b)

For purposes of calculation it is often more convenient to represent the Hankel

G

) /3(§) in terms of the Airy function Ai(g) defined by the integral representation

functions H

®
Ai(z) = lg cos(153+ zs)ds .
v 3

0
We can use the relations (Abramowitz and Stegun, 1964)

1 i/6 s - - - 352/3
1@ = VOB [aieo- 1) 5= oY

-7if3 21;1/3)

[Ai(-a)-iBi(-aﬂ = 26 Ai(-Ge

@ 16 G575 Tais) + 1Bi] . 5 = (38203
Hyo® = \3/5 [a1-3)+iBi(-3)] . &= (%)
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[Ai(—o) + iBi(-o] = 2e ml Al(-o 9_27“/ 3)
(Bi(g) is an Airy function linearly independent of Ai(g) which does not enter in the final
result and so it is not defined here) to find

g
1/3

/2 @3/

213

- 27ri/3)

(3] Ai(-ce

4/3,..1/6
(2) _owif2 (2)77(3) -
Hyjp® = o Sgyy— AllGe

£

-211/f3,

Thus equation (2.14) and (2.15) become

1/67r1/2 1/6 -rif12

W_l, 0(-41s) = 2(3) (-10) C_, E(s)Ai(-aez’”/ 3) + O(I/E]

lElsN  (2.170)

=-1/6 i€
(-415) 2(3)1/6'”1/2(—il)l/ﬁe-“/lzc_l[Z(B)Ai(-3e2”1/3)+‘@(8)g .

LN
REX (2.17b)

W, (4t = 29"/8 22026 [Feaige ™) +.00/5)]

1,0
lElgN (2.18a)
1/6 1/2, ,1/6 =wif12  |= -27if3 Z(s)E’l/Ge’iEou)
W, [(4L8) = 23) " T(-10 " e Cl&(s)m(-&e )+ = :'

IFl>N  (2.180)
with
-3 2/3
2
Finally, upon using (Abramowitz and Stegun, 1964)

Ai(-5) = e—n/s Ai(_aezn/s) + e1ri/3 Ai(_ae-2w1/3)

equations (2.16) become
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M, ats) = "3 6)8e™8 ()16 e ™ [Ge)an-5)+ 011/7)]

HES (2.19a)

= =-1/6p iC -1t
M, 4ts) = <2>1/6<6>‘/6e"‘/“u)l/“e"'u@smu-m gt Te "ot 0@:]

lEl>N  (2.19b)

2.2 Bessel Function Representation
If after the substitution s =2z/4¢ in (2.1) we define p =21, then equation (2.1)

becomes

92—‘; +[o%dz8 4 —1—5] u=0. (2..20
ds 4s

Suppose then we consider p a complex parameter such that |p| >>1 and s belonging

to a simply connected, closed domain Rs of the complex plane which includes the point

8 =0, but excludes the point 8 =1, then (2.20) is of the type studied in Langer (1935)
and his results may be applied providing Rs has all the properties he requires. We will
assume that Rs has these required properties since it is straightforward to show that
the domains used in the applications have them.

Let ¢2(s) = % (1-s) where f(s) is to be the root of ¢2(s) determined by the

sl-i-x)no {sl/zmsﬂ =1.

relation

We also define

8

Bts) = \ Plr)ar, ¢ = pPls) (2.21)
0
—1/2 lIim
o(8) = [P(s) Bs)] with g0 = "7 ge) 2.22)
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For the applications we must consider three regions of s, flefined for 6 small, positive

as

(1) argse[r-¢,7] , (i) argse [-7,-7+5], and (iii) argse[-5,5] ,
|s|<1 .
When argse[r-6,7] , equation (2.21) can be written as
s

Bls) = -1 (1;—1)1/2&r , (2. 23a)
0

while for argse[-7,-7+8] we can write

8
ds) = 1 (I—;-—l>1/2d-r : (2.23b)
0

In either case (region (i) or (ii))

=
0

-1 1/zdrr = -\s(s-1) + log(\VT-8 - \{=8) (2.24)

where again the square root is such that lim V -8 =1. For region (iii) Langer's
results are applicable provided

|1-8] > (Taylor, 1939)

1
3
o/
In order to derive the asymptotic representations, the behavior of these functions
as 8—>0 and s — o must be known. As 8—0 we expand (1-:3)1/2 about 8 =0 resulting
in

#s) = 11/2 -‘,12 1/2 + O(s /) as 8—0 (2.25)
8

Therefore equations (2.21) and (2. 22) yield
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d)(s) = 281/2 - % 83/2 + 0(55/2) as s—>0 (2.26)
¢ =pP(s) = 2psl'/2 [1— -és-i-o(sz)] as 80 i2.26a')
1 1 2
Us) = — 5 [1+—s+0(s ):I as s—>0 (2.27)
,1/2 3

and

¥ _, [1+1 +o(2£| 0

) - 8 3 8 8 as s—> (2.28)
In examining the behavior at infinity we will only consider regions (i) and (ii) since in
region (iii) we are concerned only with |s|<1. Thus expanding (1 - %)1/ 2 about s =0
in region (i) yields

. 1 2

fe) = -i|1- 25 ¥ Oo(1/s ﬂ as 8 —>w (2.29a)

while expanding about s =0 in region (ii) yields
1 2
#(s) = 1[1— 25t O(1/s )] as s>w . (2.29D)

Equations (2.21) and (2.24) then given for region (i)
1
¢ = p(I)(s) = —ip[ -3 -log(2 y=8) + O(l/sﬂ as 8 —» (2.30a)
and for region (ii)
1
¢ = os) = ip[s- 3 -log(2\-8) + O(l/s)] as s—>0o . (2.30b)

We wish to find the asymptotic representations of the functions M, (z)=M,6 _(4ts)

4,0 £0
I - » L]
regular at the origin and WI O(z) = WI 0(415) asymptotic to (4s) e 2s for large Is,

]arglsl <37 /2. Then for Vo(s) = SD(S)CJO(C) the theory in Langer (1935) asserts
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5
M, (#te) = C Vo + HEEOW T ey (2.31a)
' p

1/2 18 -8
(ate) = C [v°(e) + B8 [e 2(1)*‘0 Oﬂﬂ]

lg|>N (2.31b)

where N is & large positive number and C a function of £ determined by a comparison

of the behavior of V°(s) and M (413) as s—0. V (s) is a solution of the differential

equation
_d_zx 2 l-s @'gsz
2 e 8
ds

which is called the related equation of (2.20). For the value of C we can writ~

M, (4fs)
C lim 0
s—>0 Vo(s)

and thus

C = &)1/2 = 1
12, 12

(2.31b) become

i 1/2 5
1/2 CP(s)] Jo(§)+ﬂ.8)_€_0i1.) l¢|< N (2.32a)

Therefore, equations (2.31a),

MI' 0(413) =p T(’) p9/2
1/2
_ 1/2 9] e 2 o) + 0% o)
M, ol4ts) {W_ J (©) + e 372

le] >N (2.32b)

In Chapter 3 we will be primarily concerned with the case |pa| <<1. Hence

s —>0 and we can use expansions (2.26) through (2.28) to find for |¢|< N
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(418) (2p8) 1/2 J (L’) [1+O(s +0 (ps)ll2 )
Upon retaining only the order term of the lowest order in s this becomes
M, (4te) = o) /%3 0 [1+0t)] (2.332)

except at a zero of Jo(§), where then the additional term is the required estimate. For

|§|>N and ¢ not a zero of Jo(§) we have

MI, 0(413) (2ps) J (!)[_1+O(s)+0(i/p:|

while at a zero of JO(C) the estimate

( s)1/4
MI, 0(418) =0 '%Z—

p

is valid. Upon comparing order terms the above equation reduces to
M, (4t8) = (2ps)1/2J (9] [1+ O(l/p)] (2.33b)
L0 o : ’

We note that the above results for M ), 0(415) are valid for s in any of the regions
(i), (11) or (iii). However, in deriving the asymptotic representations for Wl 0(418) we
must be careful to distinguish between regions. In any case we need the following solu-

tions of the related equation

1/2 tin/4

vie) = (r/2) pocalm =12

with asymptotic expansions for large |¢| given by
j=1, -r<argf{<2w

+
Vo) = gars/2e™ [1+ ot1/e)]
j=2, -2r<argl{<w .
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Case 1: argse[n-6,7]
Let args = 7 -a€ [1r-6, ﬂ . Due to the nature of the applications argp = —1r/2 +a
and thus as s —>m, arg{—0. Hence, either of the above asymptotic expansions are

(2)(8) has the correct exponential

valid as s — @ and from equation (2.30a) we see that V
dependence in & for W, 0(418), V‘l)(s) the.same for W_, o(—4ls). Therefore according

to Langer (1935)

W, ol-ats) = C [vm(s)+ ﬂs”mgo(”:, l¢|<N  (2.34a)
A 1 p
1/2 it
W, oFts) = l:V(l)(s)+ 2s)e 0(1):] l¢|>N  (2.34b)
W, o(dts) = C, Lv(z)(s)+Jp(s)il‘?§§°m:] [¢|]sN  (2.35a)
; 12 -it
W, (ate) = C, |vPe) + ekt e 'Oﬂl—] l¢]>N  (2.35b)
’ 21 p

where N is a large positive number and the Cj j=1,2 are determined by the relations

. - lim —l 0( -41s) ( 4ks) -{ 2ls
17 smo - Dy se )gl/z it
I e T o

C = =
2 8—>wm V(Z)(s) s )§1/2 it

Using the definitions (2.21) and the expansions (2.26) and (2.27) we obtain

c = (—1)1/2 -tlog /e d c = (-i)l/2 e!log-f/e
1 /2 ° an 2 1/2 '
p p
Thus with
D, = ellog—l/e

equations (2.34) and (2. 35) become
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/
W (eatg) = SR i) ![V(l)( )+ Q(S)glogsO(l:]

1/2 1/2 oI
Cats) = (-11>/2 I[ (1)) 4 HEE ou)]
iz D

W, (4fs) = L.i.)__._ D [V(Z)( )+ Q(s)glogQO(l:\

1,0 1/2

|¢|gN (2.36a)

le|>N (2. 36b)

lelg N (2.37a)

1/2 1/2 -ig
Wz,o(‘us) = $_1)1/_2 ![V(Z)(s)+ﬂ5)5 pe '0‘1{] l¢|>N (2.37b)

Case 2: argse[-§,6] |s|<1, args = for s negative real.

In this region we cannot directly derive an asymptotic representation for W

1/2
wis) = & 1)1 7D D, [VPe) + Ls)glogco(l)]

1/2 1/2 _-i¢
- _(_-_11)___ D [V(Z)(S)+_ﬂs)§ e 0(1):]
0 /2 1 P)

,, ol4ts).

(418) and can show (Erdelyi and

l¢]s N

[¢|>N

From the definition of

(s) we see that these two solutions are linearly independent and thus

WI, 0(418) = AM‘. 0(41s) + B W(s)
W, o(dts) = 1 /2 Bp(s)gJ () + O(term]
. 1/2
+B ——— ()

1/2
o

30
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where we have used Ofterm) to denote the two order terms for |{|< N or [¢|>N. Now
we have the relation

1Dy + 5@

(€)
_ o 0

thus the above equation may be written as

(M (2)
. [p(s):no ©  HTH @)

WI, 0(418) = A ) 1 /2 2 + 5 + O(termﬂ
1/2
+B (_i:'17§ DI [(1r/2)1/2 e-”/ﬂb(s)rﬂ(()z)(ﬁ + O(termi].

(2.38)

Since the representation (2.32) holds in region (iii), ‘1 -8 |>> 14pf/ 3, so does equation
(2.38). Now from section 2.1 we know that equations (2.15) hold in region (iii) provided
|s|>>1/]p IZ/ 3. Then we can substitute this representation in (2.38) provided
|s|>1/]p |2/3 and since [s-1]|>>1/|p [2/3 the asymptotic expansions of the Hankel
functions may be used in equation (2.38) provided -r <arg{ <w, -27< arg{<r. Con-
sider then args = 0, from the nature of the applications argp =arg! = 7/2 implying
arg¢ = 0. But then argp = 0 implying arg¢ = -x/2. Thus for args =0,

(_zwl /6 e!log!/e E(s)?'l/ee'ig
i(g- %) -i(g- )
1 1/2 1/2
~ Ap1/2 @(S)!EZ/W() / 2——§—+(2/1r§) / Lé—-"]

1/2
+ B 1-1)1/2 ellog-l/e LD(BKI/Z RY

This then immediately implies the values
1 1/2 - Llog -1
A =3 20r/2) /2(_1) / o i7r/4e log-/e

B=11
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Therefore equation (2. 38) becomes

1/2 -ir/4
e 1/2 (1)) , UE)EIogEON)
o) =3 /o D, [stere ey + HeIB LW |
lelsN  (2.390)
1/2 -in /4 1/2 ol
e = 5 S (/22D [gp( e (o) + LelE—e °‘”:|
p

le|>N (2.39b)

The question of sign can be resolved by again considering args =0. Then we have
arg! = /2, thus we can compare equations (2.39) with the result in Erdélyi and Swanson

(1957). Therefore we see that the negative sign must be used. Since
-(- 1)1/2 /e, (1)1/2 em/4 we obtain

1)1/ 2

Sp_f/? D, l_—v(”(s) + @(‘)Ll;’ﬂ 0(1)] lelg N (2. 40a)

WI, 0(4!8) =

1/2 1/2 ¢
(418) &__ l:(l)(s)+ﬂ8)§ pe 0(1):] IE]>N  (2.40b)

1/2
ot

As previously for the case |ps|<<1 we can use expansions (2.26) through (2.28)
to find for |§|\<N

) = im*/2 b g218) 2 8 [1+ Ote) + (1 /o]
(1)

)(C) (there are no zeros of Ho

(

except at a zero of H (¢) on the principal branch,

Erdélyi et al, 1953) when the addition term in (2.40a) is the required estimate. Upon

comparing order terms this becomes
W, Jats) = um*?p ts > 51 [1+ 061 /o] (2.41a)

Similarly for |¢|> N (with the above exception for zeros of Hil)(lf))
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W, oate) = i(n)'/? DI(ZIG)I/ 2 Hf,l) [1+001/0)] (2.41b)

Case 3: argse[-7,-7+5]

For this case, we consider p to have been defined by p =-2f. Then equation (2. 20)
remains the same together with the resulting definitions and expansions. We let
args = -1 +ae [-1r, -1r+6:]. From the nature of the applications argp = 7/2-a, and thus
as s—m argf{—0. The asymptotic expansions for H(j)(s) are valid as 8 —> o and
from equation (2.30b) we see that V(z)
for W (418) V(l)

(s) has the correct exponential dependence in s

(s) the same for W , (-4fs). Therefore according to Langer (1935)

4,0

W, gl-dts) = E [ v(e) + f“’)mﬂo(”] ltl<N  (2.420)
1/2 i¢

W, oHdts) = EIEV(I)(8)+ MB—PJH__] le|>N (2. 42b)

W, (4ts) = E, V@) + ﬂ!ﬁl}mﬂ] [¢|<N  (2.438)

@, , deg! ze"‘om]
p

v, olats) = l¢|>N (2. 43b)

£

where N is a large positive number and the E j J=1,2 are determined by the relations

m  Vog o8 yg)te2E

E = =
1 s—>w (1)() Q““I/zeig

o~ lm &0(418) _ (ats) e-le
2 s—>m V(Z)(s) s )§1/2 -i¢

Using the definftions (2.21) and the expansions (2. 26) and (2.27) we obtain

1/2 1/2
_ () -Llog /e ) Llog-2fe
£ = anil? ° ‘ Ea a2’

But for args = -r+a, arg! = -7/2-a, bence (-1) = e“r 1. Therefore,
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1 1
E, = D E = D
1 (w)l/z 2 (zml/z 1
and equations (2.42) and (2.43) become
- 1 (1) A)cloggou)
W_y ol-4ts) 1/2 _,[V (s) + :l (2. 442)
(210
1/2 i¢
ats) = —L _ p |yWig) + HEK " e O(1)
Vo o( s (21012 _1[ (s) + > (2. 44b)
1 (2) _Q(s)!loggo(l)
Wy otts) = —7 IEV (s) + :] (2. 458)
(210)
1/2 -i¢
W, (4ts) = —%75 D1|:(2)(s)+ )t 0(1’] (2. 45b)
’ (210 p

Having done this case we note that the restriction of args = 7 for s negative
real can be lifted from the results of Case 2. To demonstrate this we consider |s| <1,

args € [—6, 6] , args=-7 for s negative real, and show that the result for Wl O(Ms)

is the same as in Case 2. We have the representation (2.32) for M 1 0(428) and can show

as before that the function

w'(s)

1 _ o ((Hﬂs)!l%cou)] I¢) <N
(210

1/2 72 |

- 1/2 -i¢

_ 11/2 DI V(2)(s)+ Us)¢ ' e 0(1)-] l§|>N
(2if) - P

is a solution of the differential equation (2.20) in this region. But then we must have

= A! Ay 4]
Wf, O(4£s) A Ml, 0(4123) + B'W'(s)

and arguing as previously, we find
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-1X
A = 4'-2(1/2)1/2—i-/-2- 4 D,
(1
B =1t1.
This implies
-iz

. 1/2 1 /1 1)
W, ate) = (—2—57— (/2 /%D [yl( ye ! ’(r>+ﬂs—”——‘"591——] lt|¢N

-12

1/2 Rl
ate) = 3 ——)—,—u/ml/z [,v(sxn‘”(mﬂ"" 0“’:] HER
21

whereupon we see that as in Case 2 the negative sign is correct. But since

-ilr T
e 4 _ (1)1/2012
(1)1/2
we have
WY W s g 00)
10(418) = 1/2 [ (s) + ] lelsN
1/2 it
_ (l) (1) 4GNS o(1)
Wl’0(418) 1/2 |: (s) + . :| g]>N

(20)

This agrees with equations (2. 40) since there p = 2¢ by definition.
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m
LOW FREQUENCY (THIN PARABOLOID) SCATTERING
As indicated in section 1.2 the paraboloid of revolution may be characterized by
the focal length o' Then for a given wave number k, the mathematical condition
kn°<< 1 corresponds either to small k (low frequency scattering) or small % (thin
paraboloid). We wish to investigate the integral representations in this case. For con-

venience these representations are now given a slightly different form. Let us define

_© _ rona-1/2
vl(x, A) = m, /2 ik(2i.kx) (2ikx) M)L /21K, O(ZIkx)

(2ik)-1/2 yl(x, A)

v,(x,2) = @ o) = (i)Y

= 10" 1/2
A/ 21k (2tix) = (210) " “y,(x, 1)

W) /21k, 0

Vi N = <d(21kx) vylx, 7")

o

(This notation is different from that of Chapter 1 and Appendix A.3 where the primes
simply refer to differentiation with respect to x.) Then equations (1.12) through (1.15)

become
o - o
(E,,-Av (5., -N)
1 A T AR A W A W s
& = 2 d"r(zik" 2)P (‘ 21k T 2) vin .2
-0 - io °
(0<o <k)
v 0w, 20 - v, 0, 0w, xi]
(3.1)
o - io
(8., -2V (5., -N)
_ 1 A 1) V1S ey
vN(§,n°) ~ 27i(2ikn ) dkr‘(Zik". 2) vi(n ) (3.2)
o 1
-00 - io
(0 <0< k)
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® - o

v e = L 2 1) a 1) I8 Wy N

vpl&on) = 34 d"r(ztk+z>r('mk+2> V.V '
-~ o 1l 0o
(0 <o <k)

- [vyn 0% tn 0 - v tm A tn xﬂ (3.3)

<avD(s, n)> 4 A G A, 1) TaEp ey N
R, A = & — e -
on _ /2 2xi <2ik 2) v.(n )
n-no l'_r’o(gﬂ'o)-—-l1 -0 - io 170
(0 <o <k) (3.4

with the conditions of the derivation £ # =, n >0 mentioned for completeness.

3.1 Low Frequency (Thin Paraboloid) Poles
The low frequency poles are those of the integrands of equation (3.1) through (3. 4)

which lend themselves to asymptotic analysis only when kno <<1. Hence they correspond
to the zeros of the functions vi (no, A) and vl(no, A) when kno <<1. In order to analyze
these zeros we consider M). J21k, O(Zﬁm) when kn <<1. I A =0 then (Buchholz, 1953)

M, g o(2k0) = M, 2t = @ik’ 2"0“‘"’

and thus vl(n, 0) = Jo(kn) = 1+O((kn)2> . Hence for kno <<1 A=0 is not a zero of

vl(no, A). But v'l(n, 0) = O(kn); therefore for kno << 1,A=0 is a zero of vi(no. A). Suppose
now 0 < |)\/ 2k|\< 0O(1), then M)\ /21K 0(21kn) has the power series expansion (Buchholz,
1983)

My gg ol2tkn) = @tk 2 [1+ 0tk

which implies vl(n, A) = [1+0(knﬂ and vi(n, A) = O(1). Then vl(no, A) = O(1) and
v'l(no, A) = O(1) indicating that there are no zeros for 0 <|x/2k [< 0o(1).

To investigate the zeros for |\/2k|>>1 or |A/k|>>1 we can use the theory
developed in Chapter 2. For the Whittaker equation
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2
d“u 1 A 1
—_—t =4 + u=20
d(21kn)? <4 21k(21kn) 4(2ikn)2>

£ =)/2ik, z=2ikn and thus & = % = -kzn/k = -kn(k/\) where |s|=kn|k/A|<<1.

Now for 6 and B small positive numbers the results of section 2.2 for M! 0(41 8) can be

applied in the domains defined by
[s|<B, argse[r-5,7] or argse[-5,6]
|s|<B, argse[-w.-m+5] or argse[-5,§].

But since the zeros of Mh /2ik O(Zikn) occur for real A, 8 = -kzn/)\ lies in one of the
above domains. In particular I-i)-;—s’ = kn/2 <<1 and we can use equations (2.33).

Therefore, we have

My gy o2 = @25 0 1+0(0)] el

M, /21, ol2ikn) = (2ikn)1/ ZJO(K')[I-i-O(k/Aﬂ l¢|>N

where ¢ is given by equation (2.26a). In order to use this equation we must specify

argA = 7 for A real and negative. Then we can write

2
k
¢ = /2,112 E+ ko &, an)z %ﬂ 5.5)
A

It immediately follows that

vl(n, A) Jo(?:) E+o ((k‘n) l—f)] RS (3.6a)

v,n.0) = 3 (0 [1+0(/N)] ¢|>N (3. 6b)

from which
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vi(n, A = J;(!) d—(g-fl;;) [1 +0 ((kn) !-;)] + Jo(r) Ok/1) |¢|<N

vitn,2) = J! (g) (21kn) [1+O(k/)\:| +J_(8) Olk/N) le|>N.

The second term for [{|> N is present since the order term O ((kn) l;) also occurs
in equation (3. 6b) but is not written explicitly since it is of lower order than O(k/)).
Using equation (3.5) we obtain

1/2

Vi) = s —75 50 1+o((kn) )] +J 0k [g|sN (3.7a)
21kn
1/2
vin) = — 31(8) [1+00c/2)] + 3 () ofic/2) ¢|>N (3.7b)

Let !r, r=1,2,3,..., r=-1,-2,-3,... denote respectively the positive and negative
zeros of J;)(C). Then the zeros of the function v'l(n, \) are given by the equation

3/2
_ 1/2 k
§ = §r+ 0 an) WE) (3.8)

for arbitrary §. Since we are explicitly interested in the zeros )Lr in the complex
A-plane, we must solve equation (3.8) for )tr. Substituting for § we obtain the equation

3/2
2)\1/2 nl/z [1+0 ((kn) l—;) = §r+0 an)1/2 k3/2>

which has the solution

¢ 2
(kn)~
xr 4” [}+0< §2 )] (3.9)

r

But since §r= 'é!_r we need only consider r =1,2,3,... . Then kn <<1 implies
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Ar/k >>1 since
2 2
kr gr §1
P ~ -‘:} > 4—k17 >1

because ¢ = 3.832. This demonstrates consistency with the assumption of [A/i]>>1

and therefore v'l(no, A) has positive zeros given by the equation

2 2

§r l: (kno)
A = — [1+0| —— r =123, ... (3.9a)
r 4no < §2 >
r

To find the zeros of vl(no, A) we need, in addition to equation (3. 6), the esti-

2
0 @n)l/ 2 e 1‘—2->
A

of vl(n, A) at a zero of Jo(§) (Chapter 2). Thus if Br r=1,2,3,..., r=-1,-2,-3,...

mate

denotes respectively the positive and negative zeros of Jo(’;), the zeros of vl(n, A)

are given by the equation

2
¢ = Br+ o an)l/z(kn)2 ‘k—2> (3.10)
A

for arbitrary §. Substituting for { we obtain the equation

2
12 112 [:1+o ((kn) 1—;)] = B_+0 ((kn)l/ 2(kn)? 1‘—2>

A
which has the solution
2
B 2
v = =L |1+0( ol . (3.11)
r 4n B2
.
Again since Br = -B_rwe need only consider r=1,2,3,.... Also kn<<1 implies
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>
kr/k 1 since
2 2
MaoEk AL
k 4kn “ 4kn

because B 1’_" 2.405. Therefore we again have consistency with the assumption of

|x/k|>>1 and vl(no, ) has positive zeros given by

2 (e )?
Xr = -‘iﬂ— 1+0 5
o Br

>] r=1,2,3,... . (3.11a)

From cos (- 14r ) which governs the zeros of Jo(t) for large ¢ we note that the
zeros given by equation (3. 9a) for large §r go into the zeros given in Agpendix A.3.
That this limiting relationship exists follows from the fact that s = - k_;l = ~kn(k/})
can go to zero for any kn provided k/\ is small enough (\/k is large enough). Then

although

A
X sl = kn is not small the asymptotic representations (equations (2.32)) and
expansions (equations (2.26) through (2. 28)) still apply. Since in this case ¢ is large,

cos (¢ - %) governs the zeros.

3.2 Residue Series for the Near Field

Let )\0 =0 and )\r r=1,2,3,.. denote the positive zeros of v'l(no, A). Then
we have shown in appendix A.3 that equation (3.1) can be written as

[00)
X A v.(E.,-A v (E,-1)
= plx 1oL 1) 171 252 ™y
V&, Z (21k+2> F< 2ik+2> d
r=0 a"vi(no,)t)
k=)xr

. 1 - ]
v2(n, kr)vl(no’ Ar) Y1 (n, xr)v2(no’ kr)__]

which upon separating the r =0 term reduces to
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r@/2yr/2) v, (€ 10 07,55, 0
V&) = e vo(n, 0)‘"1("0' 0) - vl(n. 0) "é("o' 0):]
vl(no. A)
A=0
a
)L v(E l)v(E X) v(n.l)
+§FLTZ < ) v( “ (3.12)
o r=1 ( (n X)) lno r

We make this separation since although vi(no, 0) ~0, vz(n. 0) and v'z(no. 0) ~ o and thus
the ratio

l:vz(n. 0) vi(n o’ 0)- vl("' 0) vé(n o’ 0;_]
(n l)

must be carefully evaluated.
In order to compute the derivative in the r =0 term we need the definition
(Buchholz, 1953)

o 2/2 1.
M‘x,o(") 1Fl(2 -%X;1;2)

and thus

/ / 2 (‘1'-1) zr
- 1/2 = 8/2 E 2 r

If we consider small z we can write

1 1
2 (-5 -x+1)
2.2z 3 1 2 2 2 3
mxo(z)= [--2-+-4-+0(z):|[1+(2-7.)z+ 2 z+0(z£]
1 1
2 2 ($-0(5-%x+1)
(z) = 1_— +(... _'l) +_.. (_. zz + 2 42 22+ 0(23)
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d - z_d 1 3 _ 2 2
dz ™, ol?) = -x+ 5 - (5 -Nz+ (3 -D(3 -5+ 0(z)
and
ad—x-g-z-m 0(z) = -1+1z+0(22) )

Using these forms with x= 2>;k and z = 2ikn we have

L v = -5k +an+ 0 (G?)
and

(n A) = ——+O<kn)

a1 oo 2IK

The other members of the r =0 term are given by (Buchholz, 1953)

vl(El.O) =J (k§ )
1/2

s
o 1%,

vz(gzo O) = -

vl(n, 0) =4J o(k'n)
kr'o 2
0,0 = 2 i ooy
(n,0) = i"—-2—211(2)&)- S 11:11‘-'1+0(1)+—"—7—“‘)2 m 514 0 ((kn?)
Vi ¥ = =T By ""W172 2 o122 n

kn kn
1 0 o
2t 12 "2 + Ofkn,)

v' (n ,0) = -
27 2ikn°1r

Therefore equation (3. 12) becomes
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vglem = 25 3 68 D (e, | 140 (kn ) )]

0

(E.l)v(E v.(n,A)
1 E r( >"1 1 A) v

+ . (3.13)
2ikn 2ik 4, (n k) v (n ,Xr)

—7(

To compute the n members of the rth (r >21) term we use the asymptotic repre-
sentations obtained in Section 3.1.

2
v =J (g(‘") l} + o<(-l-‘ﬂ‘,:—>] et <N (3.6a)
¢ n
r
vina) =3 (g(r)) [1+ o(—lfg):] ¢O| >N (3. 6b)
¢ n
r
x1/2
v'l(n WA = 7 I (§ )[1"'0((1(71) ;_-J**J (. )O(k/X) ,§ <N (3.72)
° 21kn / o
A Kl/z J( )[1 O(k/k)]+J (¢ )o(k/A) ¢ | >N (3.7a)
' = 1 + .
1 " el o, on, fy,) :
where
1/2 1/2 k)|
(no , L1 +0 ((kno) )\>J
(r 1/2 1/2][. kY]
cn r _1 *o (‘k") lr)J
Thus
2
(m )
d 1 (r) 0o (r)
L, x)> J"(§ )[1+ o( >:I e <N
<d" E x=xr e ri "o
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kn
d 1 (T
L ») = o ) [uo(z)]
k=)t o

$

r

(r)

o

§ >N

and using Bessel's differential equatiun

(r) S § | (r)
) + lr)J(l: )+ J(&' ) =

O O O
o

Jn(g

these derivatives become , since L’;r) = gr the positive zeros of J:)(!),

o

(0 2
'{n_,A) = I )| 2
dx" "o’ 2u< £ ) K |€N  (.140)
M ¢
r
(kn)
v(n k)) J(!;)I:Ho( >] €| N (3.14b)
<d). 1 X-h §2 lr'

r

In order to further evaluate (3.13) we must use the mathematical conditions of the
near field. Since the near field corresponds to the physical problem of both the source

and field points near (with respect to wavelength) the origin, these conditions are k= << 1
kE <<1. Then we have

]

2
Jo(kel) =1+ o((ksl) ) (3.15a)
kE k&
(2) 1 2 2

where v is the Euler constant. We now find vl(E Y ) and v (E Y ) for 21,
k&i <<1, i{=1,2. It suffices to obtain M-krl«m.ﬂ(zikg ) and W 2 /2ik 0(2ik§2). These

functions are solutions of the equation
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2 ( A >
du 1 r 1
—_— t - - + u=0 i=1,2
d(21k§1)2 4  2ik(21kE i) 4(211‘51)2
which upon the substitutions
2
21kE k& A
8 = 1 = i 1 & R
A A ' 2ik
g r
21k

reduces to

Since equation (3.9a) implies 8 positive and

4(kE i)
8 = ~ 5 (k'no) <1

r ¢

r

we can apply the results of section 2.2 (equations (2.33) and (2. 41)) to obtain

1/25 o) 0t )”
Mo Jaik, o2lKE,) = (1)) TEI “&1) ”O( 2 )
r

k§
a 1/2 (r) 1

M—J\IjZik. 0(2ik§1) = (21k§1) JO(KEI)E+ o<—_§2 >]
r

(r)
§1

XN

1/2
_ 1/2 (1) (r)
W o, o2 _?5 Dy a2 )|:1+o( >]

As before,

A
- expd- L log —I-
Do otk = °"p{ 21k %8 2ike}
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and from equation (2.26a) we have
(r)

(k€ )(kn )
¢ 21)\1/2 U2 of—t ) | .
3 & ¢

r

B (k&)
_ (r) 1
vl(El.-Kr) = JO(CEI) :+ 0< gz 3:' (3.16a)

r

-
vy ) = 3 (€7 1+ o(—%)] (3.16b)
2L g

T

Hence

1
1r/2
2

i (1) (r)
v2(§2,-7tr) = j— D Y /2ik |;1+ O( 1 (3.17)

Now |k r/ Zikl 2 §f_/8kn° >>1, thus from Sterling's formula (Erdelyi, et al, 1953)

r <: ) \ﬁ; exp log TP }l—_'*' O(k/x )]

Substituting this and equations (3.6), (3.14), (3.15), (3.16) and (3.17) into (3.13) we
obtain

” i 5 (g(r) (1)(g(r))J (§'
ir 7r ir 2
v.(,n =-—#mki - (vy-1) [1+0 >-:|
N 21,0 2 o T “r=1 [Jo(§r)]2
(3.18)
(r) (1), ,(r)
where only the largest order term has been retained. Expanding J (( ) and H (¢ g )
1 2
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(1/2 (r)

2
about §( )(O) = 21>t 1/2 (O)E i=1,2, kr(O) = §r/4n0; expanding Jo(gn

gi ) about

(r)(O) = 2X 1/2 (0)n 1/2 and substituting into equation (3.18) we find

1/2 1/2 0 Jo(g,(gr)(o) Hil)<§ér)(°9‘] (g(r)w»
ey = AT e (_1)_11;_2 1 g 7 0\
N T 2" T2 7 '

2710 Ty o r=1 [Jo(gr):F
k’g‘z
. E+ O(-'?)] (3.19)
¢
r

where again only the largest order term has been retained.

The solution for the Dirichlet problem is found in much the same fashion as above

beginning with equation (3.3). If Xl, lz, . .lr, ... denote the positive zeros of vl(r;o, A)

(given by equation (3.11a)), then equation (3.3) may be written as

Qo0

A A v (€ ,-A)v (E,,-1)
_ E r 1 r 1)\ 171" r 272 r
VD(E» n) = F(Zlk + 2) r’< 21k + 2> d [‘Vl(n: xr)v2(nb' kr)]

r=1 < v, (n )t))
a1 yo
r

and on using the Wronskian relation this becomes

®
o g S ) TR [
Tl r=1 <E_A vl(n )\)> 1Mo’ *r
A= A

(3.20)

In order to write equation (3.20) when k& q <<1, i=1,2 we need only find

é; (n Ab ; the remainder of the asymptotic representations have been given
A=A

r
previously (equations (3.6), (3.7), (3.16) and (3.17)). From equations (3.6)
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(‘ljl (n A) = ncilz [1'*' O <(kn) l‘{)] |§ <N
A no
12
d 0
v.(n,A) = 1+ O(k/2) i >N .
d?L 1 77 X1/2 [ / ] 'fnol

Thus

r

d _, 2170 kno
<ﬁi "1("0' ) " = -BT Jo(Br) 1+ o(;z— IBrl >N (3.21b)
r

T

4 2n, (k6 )?
o 17, M>x=x =5 J.6) [1+o< 2 >] 8| <N (3.2ta)
r r

A
Substituting (3.21), the equations mentioned above, and the asymptotic form of P<21k -%)
into (3.20), we obtain upon expanding as before

(r)(0)> H(l)(c(r)(0)> J ( §(r)(0)>

© o\>n k&
_ _ix E _2
vD(E.n) = - - [J'(B )] l:l+ o( 2>] (3.22)
0O r= B B

r

(r)
§i
the largest order term has been retained.

(r)

where £."(0) = 20 1/2 (0)51/ 2 4=1,2, A (0) =B /4n 50 = 2 200,112 2nd only

3.3 Dirichlet Potential Problem

It can be shown that the term in equation (3.22) which is independent of k agrees
with the corresponding Dirichlet potential problem. For the paraboloid of revolution
coordinate system defined by

Pt

x=Mcosf , y = Wwsinf , —(12 -w ) <r= ?12‘(7&2+w2)>

[\

Morse and Feshbach (1953, chapter 10) give an integral representation for 1/R. For
the source at the point (A =)xo, w=0) this reduces to
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Q0
1 (1)
R lrS J (VI (B )H (i) tat w>0.
0

Then if the substitutions X =\2§ , w = V'2_ , Xo = \ff are made, the above coordinate
system reduces to the one which we are considering and the above integral representation
for 1/R becomes

@

1 1

L. ug 5 VDI yE)E v e n >0 (3.33)
0

where we have used 51 = min(§,3), §,= max(§,Z).
The potential problem corresponding to the Dirichlet problem poktulated in Chapter
1 18 the solution ﬁD(E. n) of the equation

VP = drs(zr r) (z, 1s the vector to the point (Z, 0))

together with the boundary condition
g=0 on the boundary,

and the condition at infinity

ﬁ*D(E;l';-D a8 [r|-w.

The free space Green's function for the above problem has the form -1/R where 1/R
is given by (3.28). Then we can assume that ¢D(§, n) has the form ¢D(§.ﬂ) =% + ¢s(§, n)
where ﬁs(E.n) is given by

Q0
pE.n) = ix &Jo(tm;)Jo(tm;)AtJo(it\/?ﬁ)tdt

with At an unknown function of t. The boundary condition implies
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Hf)l)(it\/% )
A = 3 (tVZn_)

and hence

(0 0)
J (t\2E ) (t\2E,)
_ 0 1% 2" |.(1) (1)
¢D(E. n =-inr S tdt T f?__no) Elo (it\2n )Jo(it Vzno)-no (m/zno )Jo(it\IZn;_]

0

is a solution of the inhomogeneous potential equation which satisfies the boundary condi-
tion. That ¢D(€ ,m) has the proper behavior at infinity follows from the fact that 1/R
has the desired behavior and the form of ¢S(E ,n). Thus we have a solution, in the form
of an integral representation, to the potential problem posed above.

If in this integral representation we substitute t = W, we obtain
®
J (2vVE, ) (2v\E.)
_ 0 170 2 |1
ﬂD(E,n) = -2118 vdv T @) H (Zivﬁ)Jo(ZivVﬁ:)
0

1
-H(o )(21VV'TE )J O(ZIVV?TH
(3.24)

In order to analyze equation (3.24) we consider the function
Uv) = 1 [H(l)(ZiVV—)J (2iv\m_) - H(l)(ZivV_ )J (ZivV')]
JO(ZivVﬁ;) o < V_o o "5 n
whereupon we note
-xi, _ 1 (1) (2)
Hve ) = -—-—-—-Jo(mvvﬁ.;) [2110 (2ivym) + H_ (2ivﬁ{} J (2t \/r'f))

- {2Hf)1)(2ivV'n; )+ Hf)z)(Zivﬁ; } JO(ZIV\[HZ|

which reduces to
~-ri _ 1 (1) _ (1)
Uve ") = ————Jo(ziv\ﬁf,) [Ho (2ivﬁ)Jo(21vVﬁ;) Ho (21V\/W;)J0(21V\/_ﬁﬂ

or
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wve ™) = yv) .

Therefore if we write equation (3.24) as

o
¢D(‘s", n = -ir SO vdv Jo(2V\]'E_1_ ) Hf)l)(2v \]—5_2- W(v)

(o)
(2)
- ir S vvao(2v \/"g‘_l)Ho (2v \/E_z')w(v) ,
0

we can consider the substitution v = we'-wi in the second integrand to obtain

(0 0]

¢D(§.n) = -ir S vdv JO(ZVVEI)Hf)l)(ZV\fgé)W(V)
0

0

This reduces to

a0
g€ = -mj vdv 3_(2v\E]HL (2v V&) iAv)

-
and thus the equation for the potentinl becomes
@ 3 ewE] )Hi”(zv\/g '
Po&n) = -tr | vav — T @iy H " (2tv\7) T _(21vy7_)

-

(

o

52

-0
+ i7 S wdw Jo(2w\[§_1) Hf)l)(2w \[E; Yulw) .

- B ey v \[ﬁ] .

(3. 25)
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For large |v| in the upper half plane the usual asymptotic representations for

J (2v V%), Hu) (2v\E), H(l)(ZIVW) and JO(ZIVVT';') hold, therefore it is straightforward
to show that the integrand of equation (3.28) is vanishing exponentially for large |v| in
the upper half plane provided £, <£,. Suppose then £, <&, (€ #=) and let Br r=12,...,
r=-1,-2,... again denote the positive and negative zeros of JO(B). Thus V.= iB r/ 2Vn—o
r=1,2,3,... denotes the zeros of Jo(2ivVﬁ;) along the positive imaginary axis and
hence also the poles of the integrand of equation (3.28) in the upper half plane. Using the

residue theorem we obtain

2 J(zv\f—)n (2v\/§“)
<va (2iv\fn—)

p (& = 2r ) 2 l—:HiI)(Zivr\ﬁ;) Jo(2lvr\[ﬁ£]

which upon using the Wronskian relation for the Bessel functions J (ZivV——) H (2iv V'_)

reduces to

® (1)
ir J°(2er§) Ho (2vr )
¢D(§: n) = -

Mo “r=1 [J :)(Br)_]2

Equation (3. 26) yields the Dirichlet potential subject to the conditions § # =,

i)

J (Btv_\7) (3.28)

n >0. These conditions were also assumed in the derivation of equation (3.22). Upon
comparing the k independent term in equation (3.22) with the Dirichlet potential of (3.26)
we see that they agree.

3.4 Residue Series for the Far Field

Suppose we consider equation (3.13) without any assumptions on k& { i=1,2.
Then using the formulas developed in section 3.2 we can write

~" AT (2)
® J (r) N
Vor Q T i}
" Th Z P 71k 1% Zikg | V161 ) V2l N
o r=1 ET (€ )]

(3.27)
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where the error terms have been omitted for the sake of simplicity. We will continue
to omit them throughout most of the section.

The physical situation of interest is the source (field point) in the near field and the
field point (source) in the far field. This corresponds to the mathematical conditions
kE 1<< 1, k'g'z >>1, thus the behavior of v1(§1, -)Lr) is at once determined by equations
(3.16). It also immediately follows that

Jo(k‘s'l) ~ 1

1/2 -ikE
@pey (2 2 ir/4
Ho (kEz) (wk§2> e e .

However, we will write equation (3. 27) as

P2 -ik§ @, 9, <§1(1r)(o)> Io (g;r)(oD
VN(E. n ~ Jo(kEI) [-‘;7]“("2'1‘1?)1 e 2——| - \{1—5 /. - 1 .
o 2 o r=1 [Jo(gr)]

A A
=L o —Em -
- exp {Zik log 2ike}v2(52' ).r) (3.28)
so as to retain the dependence on k& 1 in the first term.

To find v2(§ 9’ —)lr) we will make use of the methods of Chapter 2 and thus need
to determine the order of magnitude of

2
k' & 4kn
2 k 0
%, T3 W) 2 &Y
2 r r .

Since k& 9 >>1 there are two different possibilities for k& o they are k€ 2 > 1/ kno and
kg, = O(l/kno). For kg, >> 1/kno we can write the series in equation (3.28) as

o4
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2 EM: To (rf)r)(( Q)> I (gér)(o)> l
.8 1
SN, 43 T (grﬂz %P 7y 18 21k} ez

N g (g;r)(0)>Jo<§§r)(09 N .
Az Z P °"p{2—111; log Eii'} valp A
"o r=Mtl [:I (¢ ):| e

© J (c"’(m) (c(r’(m)
A

r r
exp{ oo log 5= ¢ v, (§,,-1)
0 r=N+1 E]»o(gr)jz 21k 2ike 272 r

(3. 29)

where M is such that r<M implies gi = 0(1) (s, >>1), N is such-that r > N implies

§2
2 2
+ = =
§r ;O(kEz) (852 <<1), and re[M 1, N] implies §r Oano)(kiz)) <s§2 0(1)). We
will refer to the three sums as Zl' Zz, ZB' Thus the problem of finding v2(§ 9 -xr)
is reduced to finding it for the three sums . , }_—_:2, Z3.
1
In order to evaluate v2(§2, -Ar) for Z we need the expansions (2. 9) and (2.10).
1

Then § =-2il =-21(-Xr/21k) = lr/k x Ci/‘lkno, thus ¢ is large with 8
equations (2.15) yield

large and so
€2
X

21k IOS(ZikE ) -1kE,

VA )~ (21k§2)’1/ 2 e (3.30)

2~2

Hence Z becomes
1

(r) (r)
Z V__Z J (t ©)3, (% (O)exp . log A }exp{ log(zmgz}.
k&, Elo(gr:l 2ik " 2ike

—1k§2
- e

Evaluating the two exponentials we have

55



THE UNIVERSITY OF MICHIGAN

7030-4-T
i J (g(r)(0)>.1 (g(r)(o)> o ke
Sy I 2
Zl n. Vike, £ b JP oxp { 8kno}e

it 1 2
exp{' Skno °g 16(k§2)(kno)e}

The expansions (2.7) and (2. 8) apply to VZ(EZ, -)\r) for Z . From equations (2.15) we
2

have

n o200 10l6 o £0) ) 1@ (50
vyl 1) ~ (21kE) %00 /1) 7 1% - 7k | (55, 0) B, OFy /S(cgz(m)

(3.31)
with
4kr;o
8. (0) = — (k&,)
52 c2 2
r

5(r) _; T

and §2(0) ” ¢@§2(0)> :

Therefore 22 becomes

Z~

7/6 (r) (r)
< >/ o <§r: (O)> Jo <§§Z (0)> 2
2 rerir1 N1 Elo(rrﬂz { Sk"

( (0)> c(r)(o) H(12/)3 (c(r)(of)

(3.32)
In finding v2(§ 9’ —)tr) for Z we need only use the results of section 3.2, in particular

3
equation (3.17). Then we find for 3
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o 5, (&)1, (0) s ()

[Jo(rrﬂz
(r)

Since §E 0) = 1¢ (E /n ) 1/2 we may write 23 as

E ir
A - ——
3

o r=N+

—

Em J (g(r)(0)> 1/3 1/2

2 exp {(r(sllno) }exp {-L‘ (Ezln ) }

Z‘s Mo r=N#l Er (¢ )] rao

Thus we can show that 23 is vanishing exponentially along with Z‘l and Z by considering
2

the product of the two exponentials. We write it as

1/2
£, e('s'l/rro)

e

¢ &,/ )"

r
e

e

which of course reduces to

1
& )" ? e, )2
e e

But El/ n,= O(1) and so the latter product is

1/2
-(§,/n)
O(l)e 2o

However, k& 9 > l/kr,o implying Ez/ n,>>1 /kzni . Therefore
1/2
-(Ez/ﬂo) / '1/kno
Ol)e << 0O(l)e

and ZB is vanishing as asserted.

We have now shown that the contribution from the residue series in equation (3.27)
is exponentially vanishing and thuis is much smaller than the order terms involved in the
approximations for the r=0 term. Therefore we should write equation (3.27) as
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vy = 5= I (KE )H(Z)(kE ) [+0<kn) ]
Upon using the conditions k& 1 <1, k& 9 >>1, and k§2 >1/ kno this becomes

! 1/2 -ikE

R Sy 2 2
vN(E, n = - n. \2ik, e E+ O(k§1) + 0(1/k'€2) +0 <(kno) )tl (3.33)

In the case of k§2 =0(1/ kno) we can write the series in equation (3.28) as

M T (cf’r)(o)> Jo< cér )(0)> .
- _? 5 1 exp 51-12 log 21ke}v (Ez,
o

o 5, (0 0
_V_2z Z 5 1 exp{ log 21k} v2(§2, x)
Mo r=Mtl EIO(CrE] ®

where M is such that r <M implies f2r= o(1) <s§ = O(l)), and for r >M Ci >>1
(S's' <<1). Thenthediscussion above for ZZ applies to the first sum here, a similar

2 —
discussion to the one above for }__3 applies to the second sum (here we have

1/2
~(E,/n ) / -1/kn_
O(1)e = O(1)e ). Thus both sums are vanishing exponentially, again the

contribution from the residue series in equation (3.27) is much smaller than the order
terms involved in the approximation from the r=0 term. This time equation (3.27)

becomes

1/2 -ikE
. Sy 2
vN(E, n = - (2 > [1+ O(kE ) + O(1/kE ):] (3.34)

since 1 /kg»z >> (kno)z.
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For the Dirichlet problem we must consider equation (3.20) without any restrictions
on k& ¢ i=1,2. Using the formulas developed in section 3.2 we have

@ (r)
1,(800)
"o “r=1 EI'(B )]

(3.36)

However, the preceding arguments for the Neumann problem show that this residue series

is vanishing exponentially, thus we have the result that

vD(€. )~ 0

This result is also true for the field on the surface. Writing equation (3.4) as a residue
series we find

o)
av )y v (§ -2 )v (E A)
(f— (€.n> = - - 72 Zf‘(zﬁ} ;) S L (3.96)
n:no l:no(6+n0) r=1 Q& Vl(n X)) k

which upon using the results of section 3.2 becomes

o)
<a_v2 13 n> - . V2r 1 Z oxp {X og } Vi€ A V(80 A B
an nen, 2n b S+ oﬂlfz S 2tk " 2ike [Jé(Brﬂ

(3.37)

Again the arguments above can be used to show that the residue series is vanishing

ov
D
<§n— (g, n)> ~ 0.
n=n°

exponentially and therefore
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HIGH FREQUENCY (FAT PARABOLOID) SCATTERING
For this chapter we will consider only the surface field for the Neumann problem.

In addition we will consider the point source to be located anywhere on the axis. Con-

sequently the pertaining integral representations are

o -io
_ 1 _L _1_ vl(gli —K)vz(gzi -X)
vN(E,no) = m dx F(Zik + 2) Vi(”o- ) (4.1)
-0 - io
(0<o<k)

with £ # =, for the point source located at (=, 0) to the right of the focal point, and

@ - io

1 1 vz(E, —A)vl(H, \)
vEin ) = 27 itk ) dxr‘(m +5> EIOMY | (4.2)
° - - io °
(0 <o <k)

with A # H, for the point source located at (0, H) to the left of the focal point.

4.1 High Frequency (Fat Paraboloid) Poles

As shown in Chapter III the poles of the above integrands which lead to the residue
series readily summable for kno <<'1 correspond to the zeros oi the function v’l(no, A).
If we wish to consider an analogy with the scattering by closed convex bodies we must now
seek an alternative set of poles which, when the geometric term (terms) is (are) removed,
lead to a residue series readily summable for kno >>1. The other set of poles of the
above integrands are the poles of the [-function F(L +-1'> at » = -ik(2n+1),n=0,1,2, ...

2ik 2
in the lower half plane. However, as seen in Appendix A.3 these poles lend to a residue series

only provided \JE; + \,&2 < Jr—;; (or E+ y/ﬁ< \/r_;; in the case of equation 4.2). Although
this residue series may be analyzed for kno >>1, the inequality sharply limits the range
of source and field points which may be considered. Therefore we derive an integral

representation which can be analyzed for a wider range of source and field points. In

2

performing this analysis we find the poles of [ _X-lk +l> play only a minor role, while
once again the poles of l/v'l(no, A) are of paramount importance. Thus we must consider

in detail the zeros of v'l(no, A) for kno > 1.
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According to Buchholz (1953) the zeros of v'l(no, A) all lie on the real axis to the
right of the value -kzno. In Appendix A.3 we found the positive zeros of v'l(no, A) for
A>> kzno. Thus it remains to consider the three regions:

(1) X negative, X 'v0(k2no)
11 |A/kx| <o)
(iii) A positive, A ~O(k2m°)

In region (i), vl(n, A) is governed by the Airy function representation while in region (iif)
the Bessel functionrepresentation determines the behavior of vl(n, A). The explicit repre-
sentations in these regions are derived from the results of Chapter II. The zeros of

vl(n. A) in region (i) give rise to the "whispering gallery" waves and thus can be called
the "whispering gallery' poles. In region (ii) we can write the asymptotic representation
(Buchholz, 1953)

Y A _Am
i . 21k _ikn 2tk -ikn "2k 2
v, (n, ) ~ (2ikn) 1/2 (211‘”)1 — + (2ikn) g0 e . (4.3)
f‘(z*m) "(5*'5&)

In addition to the zeros of v! (n A), we have need for the zeros of the function
v'z(noe -k) in the region -7 < arg)\ < 0. Again an explicit representation of thess:zeros
can be found using the results of Chapter II. They are found to arise from the Airy

function representation of v'z(no e l, -A).

4.2 Equivalent Integral Representation

Consider the integral representation (4.1) together with the following representation
(Buchbolz, 1953) of v'l(no, A)
Y LA ix
2k i 2k 2
e e

v! (n ,
vy, A) = + T
(z 211;) r (2 ¥ Eﬁ)

Then we can write
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o
e 2k v'(n e“, -\) A l"(l-—k— viin .2
2 0 2 2 2i 2 '0
V'l(n.)\)= l+e
° Fl-—L Fl+i vi( e’ri Y
2 ~ 21k 2" 21k) '2° ¢

and if we define

_ 1 r L1

F(Ell 52: Tlo. k, A) - 27”1(211(”0) F(Zik + 2> Vl(glo -X)Vz(gz. -l)

s

e 2k V'Z(ﬂ e“, -
(o)
gn k) = T
o r! - _2
(3-2)
ir A\
£} P( ~2) Y2y

X(no, k,A) = e

-o-ig to o-ioc (0 <o <k) by ¢,

equation (4.1) becomes

F ’ ? ‘k))’
o) = &(8152110 )_ o
N>’ "o v'l(n ,A) g(1-X)
c ° c
But then we have the decomposition
F F
&) - | e R i-x X
c c
F(E ,E,n .,k
= dr 12 o * X(n ,k,).) .
vitn .2 o

c

If we now assume
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N-1
E F Kk _ F_ (N
VN(gono)‘— s dk g Xk = dk g_(l_x) X »
c c
then
N
F ok F (N_F
V&) kZO: a o\ afEn o ng}
c c
B F_ . N+
= dkg(l-X) X

c

and so by mathematical induction we have shown that for any M we can write

M
F .k _ F__ M+
vN(E.n)-; dh-g- Xk— &g(l-x) X

c

FEE.8,,n .k 2)
— (n o [xn k. o s

(]

If we examine the integrand of the remainder term in (4. 5) we see that it is of the

+
form of the original integrand of equation (4.1) multiplied by the factor [X(no, k, X)]M 1.
Therefore its behavior on a large semi-circle in the lower half plane may be investigated

+
by considering the behavior of [X(no, k, l):]M 1 together with the already known (Appendix
F(E,, 65 m k)

Vi("o' A)
lower half plane provided the inequality

\[g—l+‘/§;-\[5;-2(m+1)\[r;<o (4.6)

is satisfied. But for any triplet (£,=, no) there must be some Mo such that the inequality

A. 3) behavior of We find that the contour ¢ may be closed in the

(4.6) is satisfied. TFor this Mo we can determine the value of the remainder by the sum
of its residues in the iower half plane. Now
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FE,, 850 kN T rh +2) v vyle, 0 10
vitn N (xtog ] = 27 1(2tkn Jvi(n, ) °

1 ), M+1
_ r1(2 3 211) vp{ng M)
1 A i
o] E P .
(2 * 2&) valnge ", -h)

and hence the only poles of the remainder integrand are ones of order (M+1) at the

zeros of vé(no e“, -1A) which lie in the quadrant ~7 <argX < -7/2 of the lower half plane.
However, for kno >>1 the residues as well as their sum are exponentially small, con-

sequently (4. 5) implies

M
5z
e L cd)\ o X"

or to be more precise
M

~kn
VN(E,no) =i dl'E'Xk*'O(e ) (4.7)

k=0
c

4.3 Source Located "Far'" from Focus, Surface

Since the representation (4.7) was derived from (4.1) for the source to the right
of the focal point we already have that the source is "far" from the surface. If in addition
we consider the source to be "far" from the focus (k= >>1) and the field point to be "far"
from the tip of the paraboloid (k§ >>1), we can evaluate the integrals occurring in (4.7) by
saddle point integrations. The first term corresponds to the usual geometric term (twice
the incident field) while the higher order terms correspond to the multiple reflections.
Since the number of higher order terms is governed by the inequality (4.6), we can for
a fixed source identify regions of the surface with the number of multiple reflections

received.
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4.4 Source Located '"Near'' Focus

In the representation (4.7) we can consider k= = O(1) (8source "near" the focus)
or k& = O(1) (field "near" the tip of the paraboloid) but not both. The effect obtained is
that the saddle points of the various terms of (4.7) disappear. In addition we can estimate
the neighborhoods of the focal point or tip where this effect occurs. As the source
approaches the focus this neighborhood corresponds to the rays leaving the surface almost
parallel so that no multiple reflections occur. In the region of the tip this neighborhood
corresponds to the region where no multiple reflected ray is received. In order to ex-
plicitly evaluate the terms of (4.7) we note that the portion of the contour contributing
most to the integrals corresponds to I)t/ k IS O(1) where the functions vi(x, A) are governed
by asymptotic representations of the type (4.3). The functions can then be replaced by
these asymptotic representations and the resulting integrals evaluated. In either case only
the term corresponsing to twice the incident field remains.

4.5 Source Located ''Near'-Surface

If we wish to consider the source to the left of the focal point we must derive a
representation corresponding to (4.7) starting with equation (4.2). In this case we must
pay careful attention tl? the "whispering gallery' poles, since when H is close to A they
are no longer of Ole ©) as in the case of (4.1),but are of order comparable with the
other terms. Thus the "whispering gallery' wave which travels along the surface of the
paraboloid becomes more evident as H approaches Mo’ While this is true for kno >>1
it is felt that this "whispering gallery' wave is the key to the behavior for kno not so

large, even when the source is not close to the focal point.
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APPLICATION OF RESULTS }I"O CONTINUING INVESTIGATION

This work on the paraboloid is preliminary to a description of scattering
by general concave surfaces. Having integrated the formalism in terms of the physical
phenomena such as the whispering gallery waves, multiple reflections and caustics
we now are in a position to search for generalizations of these to other concave surfaces.
The scheme we propose is to determine the dependance of the physical effects on the
local geometry of the paraboloid and then to make the essentially physical argument
that this geometric dependance is the same for other concave shapes. This approach
is similar to that used in determining creeping waves on general convex shapes and

is an application of the physical arguments used in Keller's geometric theory of diffraction.
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APPENDIX A.1
NORMALIZATION (POINT SOURCE NORMALIZATION)

In the text we first assumed the point sburoe in question to be represented by
p(xr). Let J(§,n,P) denote the volume Jacobian in the coordinates of the paraboloid of
revolution. Then for the point source at (=, 0)

- 1 ] - - - ——-—C - -
p€,n) = TEn P C'6(E-2é(n) = ) 6(E-Ds(n) ,

and so
27 ~OO (OO
p(€,n)dV = 2C 6(£-2)6(n)dE dndp = 4nC
0 Jo Yo
=47 for C=1.

Therefore for C =1 we must have
p(r)dv = C"6(£-£o)dV = 471,

implying C"=4x and p(r)=47r6(r- 50). Since the free space Green's function for this
_-IkR
p(r) is R

by the agreement of equations (1.5) and (1.12)) we must show the solution to

(R= | I-r, |), then in order to have consistency (already demonstrated

—an-L v = 6(§-2)é(n)

3
o)
2
lv(§.n, s)l dV <
all space
_e-ikR
has —— (R= |£-£o| ), for the limit as s — O+,

The solution to (*) can be represented as

v&n,8) = 37 | 86T 06, 0,04
r‘
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where [ is a straight line contour between the poles of 6(8,?_, -A) and G(n,0,2). But

1_ 2
G(n, 0, = —2_ZYL ¢ (0 N)y (n,2) o<
r 7 21‘}' 1 ’ 2 )
analytic in Im A <Kk, * and
. r %4._2):._ y (&, -Ny,E,-0  E< 2
G(gﬁ:'l_k') = 217

y 5Ny, >3

analytic in ImX > -k.™ Therefore if I" is a path defined by

~-0-i0<A<w-ic |o|<Kk,

Lo a-3/2\ pfl A \p(1, X _
v(E,n,8) = 5 (271) F(z - zw)l"(fzw) ¥, (€ -y, (E, -Ny,(n, Nar.

Arguing as in section (1.4) we see that the limit as s —»0* may be taken inside the integral

by replacing the parameter vy with the parameter k. But then the integral representation

~ikR
for <= in Buchholz (1953) shows that
lim “IkR
S%O+V(E'n’8) = - R

which demonstrates consistency.

See Appendix A. 2.
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APPENDIX A.2
ANALYTICITY OF RESOLVENT GREEN'S FUNCTION ﬁl

The analyticity of ﬁk follows that of G(&, £',A) which was represented as

) (i) [nErnEn  s<s
Gle. 5 n = oo

y, €% X)YZ(E. AN E>E

According to Buchholz (1953) the functions ¥ and y, are entire functions of A, thus

the singularities of E(E ,E€',A) are those of f'(% - E}-y ) which are simple poles at the
1

points -é—:; = n+-§ , n=0,1,2,... . 5(5,5',7\) will be analytic in any domain which
excludes these points. Consider then the expression A/2iy with A =x+iy and

v= %(w—is). We have

1
A _ - -y '1(“"')&5(‘”“))

22 )y f 2y f
Thus
Bx , wy  lux sy
A - c c C [
2ty 2y P

and if this is to be real -? = %! implying x= :s)y. Then

2 2
sy Wy
A we we y 2, 2
oy - = (s"+w).
2lvf 2uc]y [
=yt = L (2482 : A _xye
Now I'y[z—w = 2((.J +8") and so for real A/2iy, we have 2y - 2

c
To exclude the pbles of the [-function we need for real A/ 21y

A - 1 yc
— << impl <
2y <2 plying o~

D=

or y<-— = k.

ole

But since A = x+iy, y=ImA and therefore we arrive at ImA <k.
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APPENDIX A.3
CLOSING THE CONTOUR (CONVERGENCE OF RESIDUE SERIES)

In this section we consider the integral representation given by equation (1.12)

32 (7Y v (€, -Ny.(E.,-))
vlEsm —————(2k). ar(x +1 rl-2 1) L1 2 2 .
27i 2ik 2 2ik 2 y'l(n ,A)
- - io 0
(0 <o <k)
[y 0300 -3, 0Ny 0]
We first show that
A 1 . ’
r(— ok T §> [yz(n, l)yl(no, A)—yl(n, A)yz(no, AZ‘ (A.3.1)

is analytic in the complex A-plane, and for |7\] —>®
(i) the zeros of y'l(no, A) lie along the real axis, (in the text we discuss the zeros
of y'l(no, A) (when kno <<1 and kno >>1) for other ranges of ])\I, a discussion
for arbitrary kno appears in Buchholz (1942/3, 1953))
(ii) the integrand vanishes exponentially in the upper half plane (ImX > -0).
Thus the contour may be closed and the residue series obtained. We also show that

the residue series converges.

The only possible poles of (A.3.1) occur at the poles of r‘<— _2k1_k + %) which lie

on the positive imaginary axis at A =ik(2n+1), n=10,1,2,... . But at these points

-1/2

i 0)
yl(n, A) = Y [n, 1k(2n+1£| =n Mn+1/2, O(zikn) (2ik) 1/2 lkn (

(2ikn)

-1/2

. 0!/ 2 o1k (0)
n Wn+1/2, 0(21kn) = (-1)"n! (2ik) / n

Yol 2) =y, [n. ik(2n+1ﬂ (2ikn)

where L( )(Zlkn) is the corresponding Laguerre polynomial. Thus
1. 3 - . ' .
v, [, ik(2n+ 1)] | {”o' ik(2n+1)] y, [n. ik(en+ 1)] vy [n_, ik(2n+ 1))

equals
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(-1)%n! (21k) e~ KN (O)(zik )[ ( ~1kn (0)(211( >]

- (0 n (i o L M 2 >[ ( ~tln g, ‘0’(211{,-,)2

and therefore cancels the simple pole at A =ik(2n+1), n=0,1,2,... . This implies the
analyticity of (A.3.1).
In order to investigate the zeros of y'l(no, A) for IAI—)oo we first note that the
A-plane will be considered to be cut at A=7 or A=-7. Thus the upper half plane
(ImA > -0) for [)xl—)a) can be characterized by |A\| >, -6 argA <7, argA=7 or -,
-7 <argA £ -n+6, where § is a small positive angle which decreases as IA] increases.
Similarly the lower half plane (ImA < -0) is characterized by |X|—->m, -m+6 argA <-4
where & is as above. Therefore we can investigate the zeros of y'l(no, A) in these regions.
For -7 LargA <0, yi(no, A) has the representation (Buchholz, 1953, p. 98, per-
taining to equation 17a)

Ziﬁo -:ji

yilngN ~e e (A.3.2)

and thus there are no zeros in this region. For 0 < argA € 7, Buchholz (1953, p. 98,
eq. 17a) can be used for yl(no, A). Thus

2 \1/4
y, (0,0 ~ U2 (_ iliz_nj cos [2V'n_x - ﬂ (A.3.3)
T A
which implies
1 4kzr’o)k 1/4 n
y'l(no,k)rv --1-_'; - 12 sm[:Z\Ino)t -ﬂ. (A.3.4)

' X
Therefore for || —> o the zeros of yl(no, A) are the zeros of sin EZ \F’o 4] which
obey the equation
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ooy

2
-1l (x4 Nrm
AN == ( =% ) N—>wm
o
and consequently lie on the positive real axis.

To demonstrate the exponential vanishing of the integrand we will examine the

factors
(., -Ny (E,,-N)
S AR W W
F(Zik * 2) y'(n ,A) (4.3.9)
1o
and
A 1 ' '
f'(- ot '2') [yz(n, Ny;(n . M -3, (n, ysln , Xﬂ (A.3.1)

separately. We further divide the upper half plane into the intervals -6 <argA <0,
0<argA<7/2, argh=7/2, 7/2<argh<m, -7 <argh<-7+5. (We make this choice
so that either argA =7 or argA =-7 may be considered.) Then in order to estimate
(A.3.5) we need to investigate yl(sl, -A) and yz(Ez, -\A) on these intervals. For
0 <argA <7, Buchholz (1953, p. 98, eq.17b) applies to yl(E X -)A). Therefore as
| |—> ©

yl(gl,-)t)'vcos[z\fgl—ke "Z]Ne e +e e .

(A.3.6)

When -7 CargA £ 0, we can use the same equation with the opposite sign to assert

as |h|—>oo

7 7 m
i< —ZV A -1 2\} Ad=
y, (€ -k)~cos[2\[§‘_x e 2-2]~e "1 o *+o "1 o ?
171 1 4

The function yz(S 9 -1) is not so simple. In order to examine its behavior we

(A.3.7)

must consider the intervals defined above. The first two intervals may be combined,
the rest must be considered separately. Upon obtaining the behavior of y2(§ 99 -A) in

each interval, the factor (A.3.5) can then be examined.

14



THE UNIVERSITY OF MICHIGAN
) -s<argr</2 => Rpa >0 0% T

In this region we cannot obtain the behavior of yz(E Y -A) directly. Instead we must make
use of equation (21b), p. 19 of Buchholz (1953) which asserts

1 A A A
r(4 ) .y . X
oy = 2 2u<) (2 21k { T yz(’s'ze“.k) e 2k &, e-ﬂ.{}

¥o(€y 27

Now -5 Sargi<w/2 =>-1r/2—6\<arg§% <0 #Ima% < 0. In addition

argﬁ 21k§297rl = argle” e [7-8, 37/2)

argi%‘ 21k§2e"” = arg(}\eﬂri)e [-7-6.-7/2) ,

therefore Buchholz, (1953, p..99, eq. 19a) applies to both yz(‘g'ze“, A) and y2(§2e-ﬁ, A).
But since RpX >0 wae have

A
ST RN P U W B I 2

Using the above-mentioned equation for yZ(EZe-“, )

A ‘{ -7i
A } ka e-21 lEze
e

-7l A
AT °"p{21k 198 21k

7r— 2 k§2
Nexp{ logzik}
we arrive at

A A
& )L)Nﬁl_.L>p_1._L ETINETINY RN -2,
A 2 2k/) \2 2ik/) ® © PN B oike | ©

The range of arg -Z_TE implies that Stirling's approximation is valid for the ["-function

F(l +—-L) , thus from Erdélyi et al (1953)

2 2ik
1
F(2+ﬁ) ~ exp{z'%k log'z-&-"} (A.3.8)
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and 8o y2(§2, -A) becomes

) A
oo (b2 V(1A (2 T 2R
Yo'Sg 2 2k) \2721k/°® 2 2k/® ° .
However, from Erdelyi et al (1953) we also have

1A \pf1, 2\ _ .«
f’<2 - zm)r(z + 2m> = x (A.3.9)

COo8s™ 'é'ﬁ('

and using the exponential representation of the cosine

A
T -2\(&’"
TyEg-N) ~ r‘(% -ﬁ) e Mo 2 (A.3.10)

Therefore using (A.3.2), (A.3.7), (A.3.9) and (A.3.10) we find

1\ Y y,E,, -0 -2RpAE, 2Rp|AE,

,-.(_ ' 11 77 e e
2" 21k yj(n .2 -21Im\n_

e

on -6 <argA <0 => -§/2 <arg\x >0 = RpVX >0, Im{X <0,

and using (A.3.3), (A.3.6), (A.3.9) and (A.3.10) we find

-2Rp|XE, 2Rp\AE,
yl(gl' 'X)YZ(EZ, -k) e r; e 1

1 A
=+
F(Z 2ik) y'l(no. A) ~ 2 Imeno
e

on 0 CargA <7/2 => 0<arg\X <r/4 => RpYX >0, ImVX >0.

In either case (A.3.5) i8 vanishing exponentially since §2 >E X

(1) argr =7/2 =>xr=ir| argyX = /4 = RpVX >0, ImVX >0.

= R W PY §

2tk = 2k ' 2tk 2k °

For arg) = 7/2 we note -

can be used to give

16

Thus Buchholz (1953, p. 100, eq. 20)
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T
Il -2\,i|)t|§2
y2(§2, -A) ~ exp<- ok log — ke [ ©

A e
~ exp{——lo ke [ © (A.3.11)

But (A. 3.8) applies for F<2 K %) , and using this together with (A.3.3), (A.3.6) and
(A.3.11) we have

2\VInk, cos T 2y|re. cosZ
- - 4
2 2ik y’l(no, \) eZ\“A]no cos /4

which vanishes exponentially since § 9 >E x

(iii) 7/2<argA<7 => r/4<arg} <7/2 = Rp\X 30, Im\X >0.

A A = oim A
2ik>0 But in addition T e ik ’

argi—?k 21k§2 = argAe (-7, 37). , Hence Buchholz (1953, p. 100, eq. 20) applies to y2(§2, -A)

giving
A ) } e'2 \P‘gz

Tplfgr A ~ exp {' 21k "% 2ike

In this region we note that 0 <arg Z?k /2 => Im

(A.3.12)

Now equation (A.3.8) also applies, hence, using it together with (A.3.3), (A.3.6) and
(A.3.12) we find

-2Rp|ME, 2Rp[AE
yl(gl: -K)y2(§2’ —X) e 2 e 1

F(%*ﬁ) . 2Tm
1 Y1\My . myAn,

which vanishes exponentially since & 9 > 1 and Imyx >0,

(iv) -7 <arghg-7+6 = RpA <0

NN A _gr A D
In this region -A = e " A, thus - =8 ST oKk-

2k In addition

-rLargAL -1ty = —1r/2\<arg%(\<-7r/2 +6 = Im%-{ <0. We also have
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argZikE(%{) = arg-A€ [0, 6]C E), 27). Then we can use eq. (19a), p. 99 of Buchholz (1953)

to assert

A
— =2iy-A
¥o(§,,-A) ~ exp "-10115i WZke "2
272 2k 2k
S S W W B S L
P 17 21k %8 T 2ike
But for this region Stirling's formula for the ["-function [ (—;— - -2%-1() is applicable
(Erdelyi et al, 1953). Thus
1 A A A
f"(z - 21k> ~ exp {— zﬂ(log - Zike} (A.3.13)
and so

A .
2
1 2\ Tk 2
y2(§2. -\) v F(E--ZTJ e e (A.3.14)

Then using (A.3.2), (A.3.7), (A.3.9) and (A.3.14) we have

2 R’pv-)g 2 Rpﬁ:
e e

2 2ik yy(n 2 e-2 Imyxn
since -r/2 <arg{X < -7;+6 => Rp{x >0, Im{ X <0. Butas |A\|> o Rp|A <k

while Im{X decreases without bound, therefore

2Rp‘h&2 2Rp\[>Fg; 2k\f§; ZkV-E_l
e e

e

e
< —
e-2 Im\] Xno e-2 Im VXno

and (A. 3.5) is vanishing exponentially.

We now examine the factor (A.3.1). We consider first the interval -7 Sarg A < -71+6.
Thus from Buchholz (1953, p. 98, eq. 17a) we can derive the representations valid in
-7 LargA <0
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yl(n.k) ~ ez:\/iﬁ (A.3.15a)
y'l(n,k) ~e2h,i; . (A.3.15b)

In order to derive yz(n, A), y'z(n, A) in this interval we recall equation (A.3.10) valid in
0 <argA <7 /2. If we then consider the substitution v = ke-ﬂ and also recall that in
0LargA<n/2, -A= e-ﬂ)., (A.3.10) implies for -x <argv < -x/2

. A ‘/ Lt e -
(€ v)'vl"l\‘—V e’rzkeze vg2=f'-l'+-l' ewzke21 "2
Yo'%er 2" 21k 2" 2tk :
But since v,§2 are dummy variables we can write for -7 < argA <-7/2 and in particular
for -7x <argA < -7+

A
-
Yz(n, K)NF(';'+'2%{) e 2k e-mm (A.3.16a)
A
y'z(n.k)~f'<-;-+fﬂ-(> e 2k e-ZIW . (A.3.16b)
Therefore
A
-T 2iyAn -2iyan
1o\, T s B0 a2
(A.3.1)w/"(2-21k>r(2+21k> e IE e +e e

and using (A.3.9) together with the exponential representation of the cosine, as well &8s
RpA <0, Im{x <0 and ngn,, we find

-2i\An 921\/)?0 '

(A.3.1) ~ e

Hence the integrand (product of A.3.1 and A.3.5) behaves as

2Rp\/ & 2Rp\/k§
2 A
Integrand ~ e 2 e 1 e Imﬁ .
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As previously

2va5[ 2Rp‘/)‘_1 21m»/'x_n' Zk\/_ 2kyE, 21m\[§ﬁ

which vanishes exponentially since ImV_A— <0.

Consider the interval -§<argA £0. Equations (A.3.15a) and (A. 3.15b) for
yl(n, A) and y'l(n, A) apply; thus it remains to find yz(n, A) and y'z(n, A). But now we
recall equation (A.3.12) valid in 7/2 <arg)A < 7. If we again make the substitution
v=xe ™ and recall that in r/2<arghgm, -A = e_“)\, equation (A.3.12) implies
for -7/2 <argv<0

Zlke 71k 198 35ce

v —
_ _ _v _v_ "5{ -2 v§2
y2(€2 V) = exp 1 = exp<3 —re e .

Again v and E are dummy variables, thus for -7/2 < argA <0 and in particular for
-5 LargA <0

A 2k -21 A
yz(n, ) ~ exp{zik log 3 lke} 1 (A.3.17a)
7r-—
=2iyx
Y'2(n. A) ~ exp{z?k log 23{3 e 2k e i\/—r; (A.3.17b)

Now for -7 /2 <argA <0, -7 <arg 2?1{ -7/2, hence equation (A.3.8) applies for

r‘(l +—L> and equations (A, 3.17) become

2" 21k
1 2k —21V
Yo )~ F(z*zm) (A.3.18a)
s
1 2 2k -2i\an
yy(n,2) ~ P(2+—21k>e e ) (A.3.18b)

We proceed exactly as before except that in this case RpA >0; therefore we find
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— 2{\|An
(A.3.1) ~ o 210 10

and the integrand behaves as
-2Rp )\ez e2 Rp‘,xgl 92 Im{%;

which vanishes exponentially since Imyx <0, Rp/A >0 and EQ >E,.
We can now examine the behavior of (A.3.1) on the interval 0 LargA < 7. Equa-

Integrand ~~ e

tions (A.3.3) and (A.3.4) apply for yl(n, A) and y'l(n, A); we must derive equations for
yz(n,)t) and y'2(n, A). For 0<argr &, -71/2< argﬁi L /2,
and argﬁ (21kn) = argre[0, 7], thus Buchholz (1953, p. 99, eq. 19) ylelds

(2)1/2 1/4 .

1/2
Y'z(ﬂ. A) ~ - L (-4k2ﬂ>\)1/4 exp log '2—1;-} sin [: m 1-2—& +Z

Now equation (A.3.8) for the ["-function [ ( -1-> is valid, hence

2ik 2
1/2 1/4
(2) n 1
yz(n,k) n172 <— X ) F(Zik 2> cos[Z\lX ”21k 4 (A.3.19a)
g}/ 2 1/4
yz(n,k) ~ - (-4k TN P(2ik E) sinl:Z An - 1r—- + 4] (A.3.19Db)
Therefore

(A.3.1) ~ P( ﬁk +2) (211{ 2>|:cos[2m ""“*4] B‘nl:z M '4]
- cos |2k - § Jetn [2n_ - ”"*Zﬂ

which upon using the exponential representations of the sine and the cosine becomes
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A
o 21\/)&11 -2 J’)-\n
l"( =21\ 21y
(A.3.1) ~ r'(.—zi\k +-;-> -—zilk-;-%)e 2k |:e 21 Xne °4e 0, i kri]

A
+ I"(- A +l)f‘<—l— +l> e-ﬂﬁ{ EZI\/'X_n e-2i\li?;:+ ezh/W e-2iﬁﬁ]

2tk 2/ \2ik 2
(A.3.20)

Let us now divide 0 < argX < into the sub-intervals 0 <arg\ <= /2,
argA =7/2, n/2<argh <.

(i) 0gargh<7/2 => Rpr >0, 0<argyx <7/4 => Rp{Xx >0, ImyX 30

Using (A.3.9) and (A. 3. 20) together with the exponential representation of the cosine
and n< n, we have

2Im\/An
A.3.1) ~ o 2mVAn °.

Then the integrand obeys

-2Rp\AE 2Rp\NE
Integrand ~ e 2 e 1 e_2 Imm

which vanishes exponentially since 52 > El'
(if) argh = 7/2 => RpA =0, argh=7/4 => Rp/X >0, Im{X >0

Thus using (A.3.9) and (A.3.20) as above

r

T
~2\[A|n cos= 2 IMno cos

(A.3.1) A e 4e

while the integrand obeys

—2V|nle, cos X 2\|rf, cos -2V|Rln cos =
Integrand ~ e '9'2 4 e 1 4 e 4

which vanishes exponentially since §2> El‘

(if) 7/2 <argA <7 => Rp\ <0, /4 <argx <7/2 = Rp\x 20, Im\x >0
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The arguments here are the same as above. We find

'ZRP\/’—@ 2RPW‘T -2Im
e e

which vanishes exponentially since EZ >E 1 and Im\lx >0.

Integrand ~ e

If we now consider equation (1.12), the above argument implies that the path of
integration may be closed by an infinitely large semi-circle in the upper half plane
(ImX >-0). Then by use of the residue theorem vN(E, n) can be evaluated as a sum.. of
residues.

Let A, <A_<A_ ... denote the zeros of y'li(no, A) along the real axis. (For finite

1 2 3
X we appeal to Buchholz (1942/3, 1953) for the location of the zeros.) Thus

= /) A ¥, (8 AV, Eq )
vN(E.n)=(21k)-3/ZZF<Ein-E+-;-> < n l) 1°1 272" "n

n=1 2k 2 [&yl(n \x)]
AR

) [_yl(n‘ Xn)y'Z(no' Anj]

But from the Wronskian relation we have

-yl(no. ln)y’z(n o’ kn) =

therefore vN(§ ,n) becomes

(v 1)
v.(§,n = M Zp _)fg_ 1 yl(ﬁl, -A )YZ(E -A n yl(n’ )\n)
o " 2k 2 [L Y, ()
o d)tyl(n K)] 17’ “a

n=

In this series arg An= 0 for n sufficiently large. Hence the previously developed
asymptotic forms can be used to investigate the convergence. By arguing as above, it is
seen without difficul ty that the series converges. We should remember, however, the
conditions El = min(§,3), 52 = max(§,Z), £ #=, n >0 under which the integral repre-
sentation was developed; they still apply to the series.
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For the most obvious attempt to represent the total field as the sum of the incident
plus scattered fields, we use the integral representation for -e-ikR/R (Appendix A.1)

to write equation (1.12) as

-kR -3/2 (@0 N\ ¥, (€, Ny (€, -}
_ e (21k) A N\ pef A1) N5 Y5,
v = -S tn ARt +2> |«<' 2ik+2> y;tn_, )
-0o-io 0
(0 <o <k)
ARAURY Y

The integrand of the remaining integral now vanishes exponentially in the upper half plane
if and only if \/-‘g'_l- - \[.g; + ﬁ < 0. But this integrand posses, in the upper half plane,
poles not only at the zeros of y'l(no, ), but also at the poles of the [-function

r (— -5%]-( +-12-> which lie along the positive imaginary axis at the points A = ik(2n+1),
n=0,1,2,... . The contribution of these latter poles to the total residue series (con-
vergent when VEI- - VE; + ﬁ <0) simply cancels —e-ikR/R. This follows immediately
from the existence of a residue series for e-ikR/ R when \[EI - \I_EE +\n <0, and the
oalculation which shows (A.3.1) analytic in the upper half plane. Thus we arrive at the
previously obtained residue series. Evaluating the remaining integral by residues in the
lower half plane is discussed below.

The other set of poles of the integral representation of (1.12) are the poles of the
[’-function f‘(ﬁ +-;-> and lie along the negative imaginary axis at the points A =-ik(2n+1),
n=0,1,2,... . We now investigate the behavior of the intégrand as lk]—)oo in the lower
half plane (ImA < -0) which we characterized by the relation M| o, -7+5 gargh -6
where 6 is a small positive angle that decreases as |\ | increases. It will still be con-

venient to examine the factors

¥, (&, =Ny (&, , -))
yl no’
and
A1 , \
[’<— Ik +E> EACRVACIRVES AT Nyyn., N] (A.3.1)
separately.
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Let us first consider the factor (A.3.5). Equations (A.3.15) apply for yl(n, A)
and y'l(n, A) while equation (A.3.7) is valid for yl(E X -)). Thus it remains to find

y2(§2, -A). We can derive an expression for y2(§ -A) which is valid for -7 <argi <0,

2’

A in A7 Tid
In this region -A = e )\ and so - ok - ® 20k 2K ° Then
-7 <argA <0 => -7/2 <arg2&k <7 /2 while arg21k§2( -ZTIE) = arg(eiw)\) = r+argre (0, 7).

Hence Buchholz (1953, p. 99, eq. 19) may be used for yZ(EZ, -A) giving

y2(§2, -A) ~v exp log Zke} cos [}Ve AS riil-{ + 4]

We write it as

A
yz(E o -A) ~vexp { log -7 2 ik cos EZI xg - i ok += 4]
Since in this region equation (A.3 13) applies for [~ ( 21k %) we can also write
7pEy N~ M- 55 + 2] cos| 21|AE, - mi 2+ (A.3.21)
272’ 21k 2 2k 4 e

In order to calculate the behavior of ’(A. 3.5) as [A\| >, the interval
-71+5 < arg\ < -6 is divided into the sub-intervals -7 /2 <argA < -8, argh=-7/2,
-7+6 <argA <-7/2 and (A.3.5) examined on them separately.

(1) -7/2 <argh<-5 => RpA >0, -7/4 <arg{X <-5/2 => RpyX >0, ImYX <0

From (A.3.21) we find

(A.3.22)

A
Y 1> 2k e'zmz

Vglfgr N~ T ( 21k 2

and using (A.3.7), (A.3.9) and (A.3.15b)

) 2Rp|[ME e-z Rp\E,

f"( A +1) 7€ Y& N _
21k 2 Y e-2lm‘ﬁ;

which vanishes exponentially since § 9 >§ 1
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(it) argk = -7/2 => x = -4|2|, arg{X = -7/4 = RpyX >0, Im{X <0

From (A.3.21) we find

2 k. cos Z
N 2

and using (A.3.7), (A.3.9) and (A.3.15b)

T T
2 I)tlEz cos % 62\“)« 1 G087

(A.3.5) ~ 2
zulkho cos /4

e

(A.3.23)

which vanishes exponentially if and only if \[EI + \/'«5_2 < \/—r_;; .

(i) -7+6 Largh <-7/2 => RpA <0, -—7r2—+-6-$argv—>:<-7r/4 => Rpfx >0, Im|X <

From (A.3.21) we find

A
-r— 2{A§
A 1) e 2ke 2 (A.3.24)

Yo(€gs-R) ~ P("z'ﬁ"'i
and using (A.3.7), (A.3.9) and (A.3.15b)

2RpV)L§1 znpﬁ'{;
(A.3.5) A 2 °
-2Imv_x~no
e

But in this region RpyX <-Im\{X, thus
2Rp\/X§1 2Rp )sz -2Im XEI -2Im )d;'z
e e < @ e
6-2 Im \’Xno e-2 Im VXno

which vanishes exponentially if \/’g'_l + §2 < E . But as arg\/f approaches -7 /4,
-ImVi- approaches RpYX ; hence (A.3.5) vanishes exponentially only if V'g_l + ‘fg'; < \/}7;.
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To obtain the behavior of the integrand the factor (A.3.1) is now investigated.
As above, yl(n, A) and y'l(n, \) are governed by equations (A.3.15a) and (A.3.15b). Let
us consider the previously defined intervals.

(1) -7/2 <argh £-6 => RpA >0, -v/4 <arg\|X <-6/2 => RpVXx >0, Im\X <0.

Here y2(n, A) and yé(n, A\) are governed by equations (A.3.18a) and (A.3.18b). Therefore

A
T2k Zim -2i\yAn
a3 NF(' g +1>F(j- +l> o [e'Z‘Wne o, 2 0]

2ikk 2 2ik 2

Arguing as previously,

2 Im\lﬁe“2 I lno

-2 xmvx—nj‘m fn,

(A.3.1) v e +e

Thus for the integrand

-2Rp\AE, 2RoE; ,p

Integrand ~ e e e n 4

-2Rp\RE, 2Rp\AE,
. 2 12 Im\xn
e-z Im\%n_ e-z Im (%

which vanishes exponentially since § 9 >& 1 and n< no.
(if) argh =-v/2 =>x =-i|A], arg\X =7/4 => Rp{X >0, Im{X <0.

Here we can use Buchholz (1953, p. 100, eq. 20) to assert

|M I -2\|x cos%r

yz(n, A) exp{ ok ogzke}e (A.3.25a)
N -2\|xln cos‘l;

yz(n, A) ~ exp{ ok °g2ke e (A.3.25b)

But now equation (A.3.13) holds for the M-function [ ( Z?k ;) , hence
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-2\1 A b coa-z ezﬂxlno OOB‘E

Therefore the integrand obeys

2 |7t‘§2 cos-:';r 2 |l|¢l cos:-ir -2\1|lhoou%
e e

(A.3.1) ~ e

Integrand ~ e

which vanishes exponentially if and only if VEI + ﬁ; < {r_;- .

(iii) -7+5 Cargh <-7/2 => RpA <0, "2+6\<arg\/>T< -71/4 => RpyX >0,

ImVX <0, RpX <-Im{Xx

Here yz(n.lM and yy(n,A) are governed by equations (A.3.16a) and (A.3.16b).
Arguing as previously

2Im\[i_n_ e-ZImV no_’_e-ZIm\/Xn— e2lmfkno

(A.3.1) ~e

Then for the integrand

By arguing as above we see that the first term vanishes exponentially if and only if

\/q+ \/;5'_2_ <\/E the second term vanishes exponentially if and only if ‘[6_14- ‘/'E_Z_-F fn_< 2 fn_o.
But the first condition implies the second, therefore the integrand vanishes exponentially

if and only if it holds.

Suppose then ‘[5: +iE, < |7 and we again refer to equation (1.12); the above
argument shows that the path of integration may be closed by an infinitely large semi-circle
in the lower half plane. Then by the use of the residue theorem, vN(E ,7) can be evaluated
as a sum of residues. The residues of F(—L +l) at the poles A = -ik(2n+1), n=0,1,2, ...

2ik 2
-1)n
are ﬁli()- (—1-1-1—)- , thus equation (1.12) yields

!
.
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o ¢)

v (€, = (212 2 (1" iy e ],y n ) [ [, ~tk(zn+ 1)}
N n= Y'l [no, -ik(2n+1) l] V2

. y'l [no’ -ik(2n+ ]_H -yl [n, -ik(2n+ 18: Y'z I:nO' -ik(2n+ lﬂ]

From the form of the residue series it is seen that the asymptotic forms and arguments
given above imply convergence for \[EI + \[E—z < \/1—7_ .

The restriction V'E_l' + \ﬁ; < \n may be slightly eased. Using the integral
representation of -e—ikR/R we again write (1.12) as

o-io
I e g ! ikl WO A S\ P A W AR /L U Vel
W& = - TR - T zm *2) a2 =T Y
) )
-oo~-io
(0 <o <k)

. yl(n, k)y'z(no, N .

The exact arguments used above show that the path of integration of the integral can be
closed in the lower half plane when {'g'_l + {E_z <2 \[n_ - Jn_ . We obtain then

02)
vy(En) = -2 111:1{ + (211()1/22(; 1) yl[ﬁ” 1k(2n+1):]y2L§2, ik(2n+ 11
n= yi{m,, -tz +1)]

Yy [n, -ik(2n+ l)] y'z[no, -ik(2n+ 1ﬂ ,

and V'g_l' + JE; <2 f—o - {n implies the series converges.

It is instructive to consider the behavior when VE—I' + ﬁ; =\t \/g_l * \/E:; =2 \[,_,; -n.

Then the exponential amplitude factors are equal to 1 and the behavior of the integrand

as IAI—-) o is governed by the powers of A which appear. The arguments above show that
we need only consider the behavior for -r+5 < argA < -7/2; the pertaining asymptotic
forms show that the integrand ~1/|\ [3/ 4 Thus the path of integration can be closed

4n the lower half plane. But at the poles lxl= k(2n+1), consequently the residue series,
whose terms behave like lklll 4 for large A, does not converge.
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