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INTRODUCTION

It has been known for some time that the mechanical response
of a viscoelastic material can vary drastically due to small changes in
some envirommental parameter; for example, temperature. The experimental
(1}

work of Leaderman was one of the first comprehensive studies of the

influence of temperature on the creep of filamentous materials. From
Leaderman's study, Schwarzl and Staverman(g) observed that for some
materials the family of time and temperature-dependent creep response
curves are similar, in that creep curves obtained from each constant
temperature test, when plotted on a logarithmic time axis, all have the
same basic shape, and the same initial and residual values. However, the
position of each curve along the logarithmic time axis was different.

The amount of displacement between curves depended only on the tempera-
ture. Materials obeying this logarithmic time-temperature shift rule were
called "Thermorheologically Simple."

In Reference 3 Morland and Lee establish a method of predicting
the mechanical response of a '"Thermorheologically Simple' material when
the temperature is a function of both time and spatial coordinates.

Their theory is based on the assumption that in each infinitesimal incre-
ment of time the material still obeys the time-temperature shift rule.
This basic assumption gives rise to a mapped-time coordinate representa-
tion, where the mapping function depends on temperature history and the
shift properties of the material.

A second type of property that can influence the mechanical

response of a viscoelasgtic material is age. There exists a large class of

*
The numbers raised in parenthesis designate references.
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materials, for example, concrete, mortar, adhesives, etc., whose mechan-
ical properties depend on an intrinsic material time or age.

Currently in the literature there exist two basic approaches to
mathematically model an aging viscoelastic response. The first method

is to use a differential equation with variable coefficients,l

The second,
and most popular, approach is with an integral type constitutive equa-
tion.

The motivation for the present study comes from the need for
contributions to the theory and method of analysis for treating boundary
value problems involving viscoelastic materials with aging and environ-
mental-dependent properties. Thus, the objective of this study can be
stated in four distinct parts; (1) to establish the basic theoretical
framework of constitutive equations for materials with aging and environ-
mental-dependent properties, (2) to specialize this framework for a
larger class of environmental-dependent materials and a larger set of
environmental properties than currently exist in the literature, (3) to
specialize this framework for aging materials and to obtain a constitutive
relationship useful for solving boundary value problems, (M) to apply
these specialized constitutive equations to boundary value problems.

The first part of this study is based on the constitutive
assumption that the stress is related to the strain and environmental

historieg through a functional that explicitly depends on the current

time and the time the material is made. (The environmental history

For example, see Reference L.

2 Some typical examples in this case are References 5, 6, 7, and 8.
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includes all of the constituents of the environment; for example, tempera-
ture, humidity, radiation, etc.) This general constitutive law is simpli-
fied by application of the Principle of Material Frame Indifference.

Next, it is shown that the aging response reduces to a non-aging response
when the aging process becomes complete. This transition requires in-
vestigating the effect of the environment and aging process. And finally,
it 1s shown that if the non-aging functional is linear in the strain
measure, then the functional can be represented by a Riemann-Stieltjes
integral. The generating function of the Riemann-Stieltjes integral

turns out to be a functional that depends on the envirommental history
and has the physical interpretation of a creep or relaxation response
functional.

The second part of this study establishes an appropriate repre-
sentation for the environmental-dependent creep and relaxation response
functionals. This is approached by first re-examining the time and
environmental~-dependent creep response data for temporally constant
environmental fields. It is found in many cases that the family of
creep curves which result from changes in some environmental parameter--
say, humidity--have generally the same shape. Thus, the development
rests on the hypothesis that the response curve at one constant humidity
value can be mapped onto the response curve at another constant humidity
value by; (1) displacing the curve along the logarithmic time axis,

(2) scaling the initial elastic response, and (3) scaling the long term
Oor residual response.
The mapping hypothesis, as proposed, contains three adjustable

coefficients. It is demonstrated that these three coefficients are
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sufficient for good correlation between the hypothesis and the experimen-
tal data. PFurther, it is demonstrated that the hypothesis is valid for
a larger class of materials and environmental effects than the '"Thermo-
rheologically Simple" theory. Also, a set of relationships is esta-
blished between the adjustable coefficients for associated creep and
relaxation data.

The hypotheslis is next extended to include time and spatially
dependent environmental histories. Like the work of Morland and Lee, this
extension is based on the assumption that in each infinitesimal increment
of time the material obeys the mapping hypothesis. However, the develop-
ment and final results are quite different in this case.

The third objective is to specialize the general funbtional
stress-strain law for aging materials. This is also approached by as-
suming that the functional is linear in the strain measure. Again, it
is established that the functional can be represented by a Riemann-
Stieltjes integral. The generating function of this integral depends
on two time variables and can be physically interpreted as an aging creep
or relaxation response function. This integral law is different from
any currently existing in the literature. The integral representation
which arises from the functional constitutive law gives rise to an
operator algebra which is convenient for solving boundary value problems.
Further, it is shown that this operator algebra reduces to Riemann-Stieltjes
Convolution algebra for non-aging material response functions.

To bridge the gap between the constitutive theory and a boundary
value problem, the field equations are presented next. The general con-

ditions that the solution of a three-dimensional boundary value problem
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must satisfy are stated in terms of the aforementaioned operator algebra.
Also, the field equations are given for the plane strain and generalized
plane stress type boundary value problems in terms of the operator algebra.

The study is concluded with the analysis of a thick-wall, non-
aging, environmental-dependent, viscoelastic cylinder for two different
sets of boundary conditions. The first case is for arbitrary internal
and external pressures. The second case is for a viscoelastic cylinder
supported by a thin elastic shell with an arbitrary internal pressure.
The general mapping hypothesis is used to characterize the material re-
sponse and exact solutions are obtained for temporally constant environ-
mental fields. A parameterization study is included as part of the solu-
tion to show the effect of the environment on the material response.

One final comment should be made regarding this study. A
Phenomenological approach is used throughout. While it is recognized
that aging and environmental phenomena may effect the mechanical proper-
ties of the material, no attempt is made to correlate these phenomena to

changes in the molecular structure of the material.



CHAPTER I

THE CONSTITUTIVE RELATIONSHIPS

In Chapter I two equivalent forms of the constitutive egquations
are established for aging and environmental-dependent viscoelastic mater-
ials. Next these functional equations are specialized for non-aging
materials. With the assumption of small deformations the functionals
are taken to be linear in the strain measure. The constitutive equations
then take on a form analogous to the classical theory of linear viscoelas-

ticity.

1.1 The General Constitutive Law

There are several time variables which can appear in any con-
stitutive assumption. In this section the manner in which the constitu-
tive equation depends on these variables is investigated. To begin,
denote a sequence of events on a time scale where the following times
are measured relative to an arbitrary origin. Let

t represent the creation time of the material,

C

ty, represent the beginning of a non-zero deformation history
(tr, > te)s

t represent the current time, and

J’ represent the running time variable (t,<J < t).

Here t denotes an appropriate beginning of any aging phenomenon that

C

may be present. Usually this will be the time when the material is made.
However, for a particular problem it may be more suitable to consider tc
as the time when the material is cast into some shape. In any case, t

C

is the first reference in time and no event is considered prior to tc

-6
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Let Gij(}\g,t) and Eij(:}\(/t) be the components in some cartesian
coordinate system of the stress and infinitesimal strain tensors of a
particle occupying position % at time t , in body B ; and, denote them
by SZ‘ and ﬁé respectively. Let the components of S; and ;; be defined
and continuous on [t,,®). The notation [a,b] represents the closed
interval with the endpoints a and Db ; (a,b) is the open interval
without the endpoints a and b ; [a,b) and (a,b] denotes the mixed
intervals open on the right and left ends respectively.

Next, consider the environmental parameters that can influence
the mechanical response of a material; for example, temperature, humidity,
concentration, radiation intensity, etc. Let q)g§,t) represent the set
of all environmental properties of the particle at position X 1n Dbody
B . Assume CPQ§,t) is defined and continuous for all t in the inter-
val [t,,*)

The following constitutive statement can now be made:

ASSUMPTION 1.1. The stress at any given particle A in body'HS at some
time t 1is completely determined by the strain and environmental histories
at the particle on the interval [t,,t] , and depends on the present time

t and the creation time t of the material.

c
The dependence of gf on the histories confined to the time interwval

[te,t] incorporates the property of non-retroactivity which is part of
the constitutive definition of Gurtin and Sterﬁberg.l Further it will

be assumed that the aging and environmental phenomena are not coupled to

1 See Reference 9 page 303.
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the deformation process through the constitutive equations. Any coupling
that does occur can be accounted for in the appropriate field equations.
For example, if a material has a temperature sensitive response,

assume this response is influenced only by the temperature field itself
and not the source of the temperature field. From the practical aspect
of solving boundary value problems, the strain history is assumed to be
infinitesimal and usually any coupling between the strain history and
environmental field can be neglected. Assumption 1.l can be character-

ized by the equation

t t
g(t)=j LE( ; @3&3{) 5t3tc-] (1.1.1)
A~ =t -t
ra C

where F is a functional relating a stress history'cy(t) to each strain
~~ ~
and environmental history € (t) and (b(t) for every t and t, in
P
(-o,®), The quantity £ (t) is the total strain history at a particle
P4

and represents the sum of the mechanical and environmental strains. Thus

It

if &
~L

§+)

O for t in (-w,»), then the function TFT must be such that

~~
0 for all t in (-o,)

]

The constitutive Equation (1.1.1) is subject to the restriction
of the principle Material Frame-Indifference,2 Since the current study
is restricted to infinitesimal deformations and is concerned with primar-
ily the temporal aspects of material response only the time-translation
portion of the frame-transformation is considered here. This restriction
embodies the principle that in a scale transformation of all events,
time intervals and the sense of time are preserved. The environmental

parameters to be considered are all scalars. The Principle of Material

(10)

2
See Truesdall page 22,
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Frame Indifference imposes restrictions on tensorial quantities also.
Although such restrictions can be easily imposed on Equation (1.1.1) by
standard methods, this is not the purpose of the study. Hence, the con-
stitutive law given by Equation (1.1.l) must be invariant under a shift
of all events with respect to the time origin.

In order to impose the restriction of Material Frame-Indif-
ference consider a second set of events occurring a time units earlier
than the first (See Figure 1). The significant time variables are given

by:

In= Vs d, (m=1,2) (1.1.2)
and 'tt= tt"EL
while the strain and environmmental histories are defined by
EW)=E*-2)= W)
~o 7o A

and @(@,@(t-a’):qﬂﬂ. (1.1.3)

The stress at time t' can be determined from Equation (1.1.1) as
Q)= J—[E(D") CID(U’) t,t]. (1.1.4)

ety et

The principle of Material Frame-Indifference requires
~,
Slt)=0 . (1.1.5)
la4d lad

Equation (1.1.5) together with (1.1.1) and (1.1.4) establishes a restric-

tion on the functimniyr 5

T e 5 0005k, 8] = Lm o) st A aae
T-te Vozte el N t.

Equation (1.1.6) can give rise to two representations of the functionaltFr
~S
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o(t) |
| €(t) |
| |
r ' »
0 te ty, t
¢(t-a) l
| E(t'V"l
T l ' >

Figure 1.

Application of the Principle of Material Frame
Indifference.

t
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First let a =t in Equation (1.1.2). This refers all events

to the current time. Then,

t=
D,’,: D/ -t (m=1,2), (1.1.7)
and té = t-c-'(‘, 5

and Equation (1.1.4) is

J [VW Cb(” ‘¢ tc} jr E(’c*d- ¢(t+ouf,_’ 0,t t]

Tote Tt - (-6 Tt

o— (1
Defining 0’5 = —~5n(n = 1,2) and J— (1) to be a new functional, the

A

constitutive equation becomes

C t-tc
gw{‘"[&&éxj cbct 53¢ ).

Z_

(1.1.8)

The second form can be derived by letting a = t. , i.e., refer

all events to the creation time. Equation (1.1.2) becomes

t=t-t,,
:);\': :)-f;'tc. <M=\)1>) (1.1.9)
and =0,
Equation (1.1.6) can now be written as
t-t
[6m,q>m st,e] = F LE0803 Ut £e,0],
=0 J, =0

Defining F to be a new functional, then

. t-¢ t-t
o7=(2) < s < s
oW = FLETY) (b(ﬁ’ﬁtc)) t-{:(_]o (1.1.10)
=0 J; =0
In Equations (1.1.8) and (1.1.10) the time transformation

demonstrates the fact that for measuring material response there is no
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specific time origin. Thus, the Principle of Material Frame Indifference
is satisfied if the resulting functionalsiT?%IJ and E;—(g) depend on
~
the time elapsed since creation t - t, (that is, the "age" of material),
and the strain and environmental states occurring during this elapsed
time. Since TFT-(I) and‘jfv(g) depend only on the quantities measured
A <
between tc and t , no generality is lost in setting t. equal to zero.
Equation (1.1.1) can now be written as
t +
Sw=TF[EEs) T dle-s) ] (1.1.11)
A 2z S|=O o) 57_=0 J

or

-\

+ +
5= Z>|—_&L'JT); (b@i);t], (1.1.12)
~ A ’3120 3;—:0
Note that on setting t, = O the simplest form of the constitutive equa-
tions for aging materials is obtained. For special considerations it is
often more convenient to use some other point on the time scale as the
origin.

Equations (1.1.11) and (1.1.12) describe two equivalent forms
of the stress-strain law. In Equation (1.1.11) the arguments of the
strain and environmental histories are measured relative to the present
time. In Equation (1.1.12) the arguments of ﬁé and d) are measured
relative to the creation time. For both equations t denotes the age
of the material, since +t, was chosen as the origin of the time scale.

1.2 Mechanical Response of Non-Aging Environmental
Dependent Materials

Non-aging response may be thought of as the limit of the aging

response as the aging process becomes complete. This transition from an
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aging constitutive law to a non-aging constitutive law can be considered
to have three phases. (1) The first phase consists of the aging process
which occurs in the undeformed state. The environmental history which is
present during the phase interacts with the aging phenomenon and affects
the mechanical properties on the fully cured_material. (2) The second
phase is the effect of the environment on the fully cured material prior
to any deformation. (3) The third phase is the mechanical response of

the fully cured material due to simultaneous deformation and environmental
histories.

For the purpose of investigating the first phase of the tran-
sition, it is convenient to use the stress-strain law as given by Equation
(1.1.8) or (1.1.10), where the origin on the time scale is arbitrary.

Now introduce a quantity g) that represents the amount of time required
for the material to become fully cured. That is, when t - t. 2?, the
aging process is defined as complete. In general, the amount of time

Q? required for the aging process to become complete will depend on the
environmental history occurring simultaneously with the aging process.
Also, the resulting mechanical properties of the fully cured material
will depend on the environment during the aging process.

Consider now pairs of strain and environmental histories, = For
some t,>t, + O leteach strain history satist'E;(Jﬁ =0 on (tg,ty),
while all environmental histories have the same value (t)(ﬂ’) on (te,tat+Q)- -

For such histories Equation (1.1.8) and (1.1.10) can be redefined as:
-t t-te- -t

S = j:— [E(ﬁ 33 q>(t 51) C\D(ﬁ-sz\'t-tcj (1.2.1)
-~ S:20  SEt+-P

and
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S(t) = j——m LE(U’) > CD(U’:. &2’@ yt- tl, (1.2.2)
~ :)Jt'- ,Jllt"etztc,

The mechanical response of the fully cured material depends onlg.cy)
for J° in [ty,t] and on ¢(’3’) in  [t, +Q, t] . Changing (P(U’) on
[tc,t +-Q) changes the mechanical response due to the strain history
é;(ﬁﬁ on [ty,t] . This means the aging process coupled with a parti-
cular set of envirommental properties produces a cured material with a
mechanical response that is completely described by the new functionals.
In what follows, dP(Qﬁ on [to,t. + Q) is to be considered fixed and
will be suppressed from Equation (1.2.1) and (1.2.2).

In order to obtain the siﬁplest form for a non-aging constitu-
tive law shift the origin on the time scale to ty, , and note that t.
is now measured relative to ty and is negative. The age of the material
in Equation (1.2.1) and (1.2.2) is given by t - t. . The age increment
between t, and t = 0 is fixed for a particular material and strain
history, so let t denote the age of the material relative to the new
time origin (see Figure 2). ILet X\ = t, + Q and rewrite Equation (1.2.1)

and (1.2.2) as
< E-XN
g =T LEED s bt ] (1.2.3)

and

~t ~ Y, =

where 2E7<1> and iE_(g) are again defined as new functionals.

W)= iffz’[ﬁaﬁ’n d)m’z) tl (1.2.4)

Now consider the second phase of the transition. Physically,

it is reasonable to assume for some materials that the stress at the
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present time t depends only on the strain history and the concurrent
environmental history. In other words, the environmental history on the
interval [-A,0) does not affect the stress at time t when € () = O

on [-N,0) . This idea can now be stated formally.

ASSUMPTION 1.2. Tet C\)(t) and (b(t) be defined and continuous environ-
mental histories on [-A\,t] with the property q)(t) #O(t) for t in

[-N\,0), and {(t) =®(t) for t in [0,t] . Now assume the stress

given by Equation (1.2.3) or (1.2.4) is identical for (b(t) and (\)(t)

Employing Assumption 1.2, Equations (1.2.3) and (1.2.4) become

+ +
g(ﬂ = 3’;“,) Lé (£-5) ;@('C-'Sz) 5 '!‘—l (1.2.5)
S\=O 5,_=O

and

2 N t
O'(t)=l? Lé(t’u}) ;@(U”z) : ’C]. (1.2.6)
~ ~ 7,20

T =0
The final phase of the transition from an aging constitutive
law to a non-aging constitutive law rests on the idea that for a fully
cured material, the mechanical response is the same under a shift of the
strain and environmental histories with respect to the material age.
Thus, it can be shown that the constitutive Equations (1.2.5) and (1.2.6)
are independent of the explicit time variable t
To begin let Ei(Uﬁ denote a strain history which vanishes on
(-»,0) and is non-zero on [0,t] . ILet d)(t) be the concurrent environ-

mental history. Then define a second set of strain and environmental

histories by
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€ (£-3) = EW) (1.2.7)
and

&m-a): qwa) (1.2.8)

where the constant a 1is arbitrary. The stress state 6 which results
-~/

at time t - a , due to the strain history :85 and the concurrent envir-

onmental history q> can be determined from Equation (1.2.5) as:

- + - +
S-a) = L“[Q(t;c\:—go; dle-a-s)5¢-a]. (1.2.9)

57_=O
Now for t - tc>_ Q , the two stresses are invariant under a time shift

with respect to the creation time; i.e.,

g = O t-3). (1.2.10)

Combining Equations (1.2.6), (1.2.9) and (1.2.10) establishes the follow-

ing restriction on the constitutive functional
+ +
W) . B —
I,, Lé({- S) ) q)(t‘sz) )tl -
—~ S\.‘_O SL:O

IERE P SSTEN|

S\=O

(1.2.11)

Substituting Equation (1.2.7) and (1.2.8) into Equation (1\.2.11) yields
() t + W + +
EE-8) b)) = I LEWSY 1 h-sdst-a
% L«a 50 )¢S7_=(;. ) ] &,L«. 520 ) LSL;OL D) 3.

Thus, it can be seen that the constitutive functional is independent

of the explicit time variable since the constant a 1is arbitrary.
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o(t-a) o(t)
o) e —— |
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Figure 2. Time Shift of the Strain and Environmental Histories
Relative to the Creation Time.
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Hence for non-aging materials the constitutive Equation (1.2.1) becomes

t t
gw=K ElEsys oy, (1.2.12)
™~ ~ 3=0 5,20

Now turn to the alternate form of the stress-strain law as

given by Equation (1.2.6). Again the stress E?(t') can be calculated as
- ()
S-a)= I [ay) (%) yt-a]
J=- o= -a.

- LTEER ) 5§ (3va) 340

~ Ji=-a T.=-a
Again employing Equation (1.2.10), the above becomes

+ + .
;E,Z) [A@éﬁ.) 5 (\%J('Ji) ,t] - Ij [{é('\)’-\a) C\Kﬁl’aﬁ&) L- a] (1.2.13)
‘zo Lzo A

=0 ji=-a

Letting a =t and defining trg = - S, , Equation (1.2.13)can be written as
&) ’" + 2) o 0
L TEQ) 103t ] - TOTEEs) 5 sy o|. aew
A ) J ~ S =+ p 2 .
/:r‘zo 3/7_20 \ = 57_'—'-t

Thus, for non-aging environmental dependent materials the viscoelastic

response can again be characterized by the functional equation

TwW= ‘?K[Nes) dp& s&] (1 .2.12)

Therefore, for the constitutive relationship given in Assumption 1.1
there is only one form of the stress strain law that will satisfy both
the Principle of Material Frame Indifference and the condition of trans-

lation invariance.

1.5 Integral Representation for Non-Aging Linear Material Response

The contents of this section follow closely the work of Gurtin

(9)

and Sternberg. Their developments with the linear theory of viscoelasticity
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can be easily modified to include the generalizations presented in this
study by allowing all possible strain histories for each fixed environ-
mental history. Thus, for completeness, some of the classical theorems
associated with the linear theory of viscoelasticity are extended to
include the case at hand and are presented here without proof.

The constitutive Equations (1.2.12) characterize the stress-
strain relation of the linear theory of viscoelasticity, if the deforma-
tions are small, and if the superposition principle is valid. Assuming
this to be true, it is now possible to represent the functional ?f; by

a Riemann-Stieltjes integral.

THEOREM l.l,3 (Linear hereditary stress-strain law) Let the stress be

related to the strain by

T )= a%< [Q<’° 3 d’éf 513]

where,
(a) gyand ¢) are defined and continuous on (-®,);
) ébvanishes on (-»,0) .
Further, let f¥<: have the following properties:

(c) the stress (S'(t) depends only on the past values of
strain (non- retroact1v1ty),

(d) for every EL( ) = (t - a) and any fixed "a'" and all t
in  (-e,0)%/ theng(t) =F (t - a) for all t in (-w,)
(translation-invariance);

(e) for every E,( t) and Ei1_(t) defined on (-®,»), and every
. pair of constants aj ~and ap , then

5 See Section 2 of Gurtin and Sternberga(9)
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Klat rwg,30]= X861+ A KIE 6] Qnearity);

(f) for every fixed t  and every x>0, here exists a
§;(®) > 0 such that [g;4(t)€ J(t)]l < Hy («x) for
all t in (-, ®) implles [6 (t)@ (t)] /(og
(continuity).

Then
t £
Q= S_UO,CV&‘J)OP '@\[’J)q}(g;z) ]; (1.3.1)

where G has the following properties:

(g) G is a fourth order tensor with Gjjx1 = Gjikl = Gijlk
For all t in (-»,®); :

U})Ei is of bounded variation on every sub-interval in (-m,w);
(i)}i. vanishes on (-%,0); and,
) S

(3

is continuous on the right, that is G[¥Y, @ (t-s)]
,QI[’J’*,(D (t's)] .

The constitutive equation of Theorem 1.1 does not yet embody the
restriction of Assumption 1.2. First, for convenience with the development,
let the argument of the environmental history t-s in Equation (1.3.1)
be replaced by S , then the environmental history can be written as QD(S)
in the interval [O,t] . ©Next, consider a unit step strain history which
is applied at time »toj> O , then the stress at time t as given by Equa-

tion (1.3.1) is

+
gtY= gle—t., 4‘1(352 1,

Assumption 1.2 implies that the stress at time t 1s independent of

the environmental history on the time interval (—W,to] . Thus, the
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equation above can be rewritten as
+
S = Glets, sy 1, (1.5.2)
~ S’to

The result of Theorem 1.1 must be modified so that Assumption

1.2 is satisfied.

THEOREM 1.2. Let the stress be related to the strain and environmental
histories by Equation (1.3.1) and let Equation (1.3.1) satisfy Assumption
1.2. Then the stress at time t is given by

b

T * 7
G_(ﬂ=j EJ&-TJ’)CJGI IO YN (1.3.3)

R

5=ty

g%

The stress-strain law (1.3.3) can further be specialized by
considering the isotropy properties of the material in guestion. For the
full isotropy group of rotations the fourth ordef tensor G can be
replaced by two scalar functions. Rogers and Pipkin(ll) established the
representations of A% Tor many of the sub groups of the full isotropy
group(of rotations. The extension of these results to include Equation
(1.3.3) follows directly since isotropy rotations are valid for each
environmental history.

For convenience, assume the material is isotropic and homogeneous.

Define the deviatoric stress and strain tensors as

S4f = G- S G 0 bug (1:3.4)
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and

Cij = Eiyld - 3 Ey 82q (1.5.4)

where the quantity Sjj is the Kronecker delta. Gurtin and Sternberg's
theorem for the representation of linear isotropic hereditary stress-strain

laws can now be applied.)1L

THEOREM 1.3. If the material is isotropic, then corresponding to every
linear hereditary stress-strain law there exists two real-valued functionals
G (n = 1,2) such that

. <
SHORSEINC Ny, ¢05)]
S =+=Yy

?-"\

(1.3.5)

and

Gl () = g Epple-Y) dG meb(sn
=0 S=%-Y

The function Gl is the shear relaxation function and G2 the dilata-

tional relaxation function.

It is possible to remove the necessity of continuous stress and
strain histaories. Gurtin and Sternberg treated diécontinuous stress and
strain histories as the limiting of appropriate sequences of continuous
stress and strain histories.5 This puts the concept of discontinuous
stress and strain histories on a sound theoretical basis which leads to

a natural physical meaning of the integral law.

L

See Theorem 2.5 of Reference 9.

5

See Theorem 3.1 of Reference 9.
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Finally, the Riemann-Stieltjes integrals in Theorem 1.3 can
be reduced to Riemann integrals by making use of this concept of discon-
tir;uous strain histories. For convenience, let E‘i}j<t> be continuous
for all %t 1in (0,00) . Then from the rule relating Riemann-Stieltjes
6

integrals to Riemann integrals” and employing the fact that Eij(t)

vanishes on (-»,0) , Equations (1.3.5) become |

Sai = ClOG oty + g €517 Gy, $Le),
(1.3.6)

and Gyp= Epylt)G, (000 _s}rj (NG, Ly cb(s)],yd:r.

Sty
In the préceding discussion it was assumed that the stress is
determined by the strain and environmental histories. This assumption
can be reversed, and one could assume the strain is determined by the
stress and envirommental histories. This amounts to interchanging the
roles of g and 8 in the preceding development. Thus, it follows im-

—~

mediately that
t

9 = 50 e S Sult- m[mxa] Ay
C4 A | oY
and (1.3.7)

Eaptd) = OO 05014 ]s 5 DTS 50, dx

Here J; and Jp are the creep functions in shear and isotropic dilata-

tionJ respectively.

6 See Theorem 9-8 of Reference 12.

7 a( ) _
Here iy T ( ),0, .
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Finally, it should be stated that many of the theorems of
classical linear viscoelasticity will carry over to the constitutive
equations presented here. In the remainder of this paper they will be
applied when required. At the time of first application, all necessary

clarifying remarks will be made.



CHAPTER II

NON-AGING MATERTALS WITH ENVIRONMENTAL
DEPENDENT PROPERTTIES

This chapter discusses in detail the mechanical response of non-

aging viscoelastic materials with environmental dependent properties and

obtains a specific representation for the creep and relaxations functionals

of Equation (1.3.6) and (1.5.7). In Section 2.1 an assumption is made
about the influence of time and spatially constant environments on the
mechanical response of the material. Section 2.2 presents experimental
data to show to what extent the assumption is valid. The last sections
extend the results to time and spatially dependent environmental his-

tories.

2.1 The Mapping Hypothesis

The problem now is to deduce how the temporally constant en-
vironment affects the mechanical properties of non-aging, linear, visco-
elastic materials.

Consider a typical experimental program for the determination
of a material response functional. For convenience, let G represent
a one-dimensional relaxation function. The usual procedure is to hold
all environmental parameters constant at some value @ , that is, @ =
for all t in (-o,®) . Then, if a unit step strain is applied at t =

Equation (1.3.6) gives

oW =G+ d). (2.1.1)

That is, the measured stress as a function of time is equal to the relaxa-

tion function. Also G must be associated with the particular constant

_25..
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environmental history @ during the test. A typical relaxation curve
is shown in Figure 3. For the purpose of this study a relaxation function
is assumed to monotonically decrease from a defined initial modulus
G(O,@) to a defined residual modulus G(®,®) . Now some envirommental
property, say temperature, is fixed atcbl for t in (-o,o) . If the
new temperature state dPl is not too different from @ , it is reason-
able to assume the material response will still be linear. Thus, the
constitutive equations will still have the same form as Equation (1.3.6);
and, a material response function can be determined experimentally at the
new environmental parameter (t) 1 -

In this manner a family of relaxation curves, as shown in Figure
3, can be obtained. The notation G(t, q}p) signifies the dependence of
the relaxation function on an envirommental history (t)(t) = d)p , Which
is constant throughout the body for the entire strain history.

The following assumption is now made about the nature of this

family of relaxation curves:

ASSUMPTION 2.1. (The Mapping Hypothesis) There exists a set of single-
valued functions which map the relaxation function G(t,@) onto the
relaxation functions G(t,(bp) for each value of (bp in the admissible

range. Further, this mapping has the form

G &%) = KA + (AN GG, B, (2.1.2)

where the set of functions X, g; and X‘ depend only on Ct)p

The admissible range of q)p corresponds to the range of values

the environmental parameters (temperature, humidity, etc.) can take on
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G[t:@p]
4
/f‘ G[t,o]
G[t,9q] Residual
G[t,¢2] Response
G[, 0]

// G[m)@l]
l/ . G[W,®§l

Figure 3. Hypothetical Dependence of a Relaxation

Function on the Variation of a Particular
Environmental Parameter.
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so that Equation (2.1.2) is valid.

The quantity 1(t)
unit step function defined by

O for all t in (-»,a)
i(f"&> pud )
1 for all ¢

(2.1.3)
in [a,®) .

is the Heaviside

The Heaviside step function preserves the property that G[t, Cb,pv] vanishes
on the negative time interval. The quantity @ is the reference environ-
mental constant for the mapping hypothesis.

The functions o , % and Y are subject to a set of restrictions.

The first is that the material response function G(t, ¢p) must reduce
to the reference state response when C\)p = @ . This requires that
<(®) =0,
B(E)=1,
(D) =1,

and

(2.1.4)

Next it is necessary to guarantee that the stress and strain

always has the same sense. This requires that G(t, qu) 2 0 for all
t in (-w,o) ,

Thus the inequality
o(( Py + RGN GLE,$1=20 for a11 t in [0,x), (2:1.5)

places a limitation on the range of values that o((q) ) and @(¢P) can
assume .

Finally, in order that the sense of time be preserved, \6\ (‘P
must satisfy

)

D

Tdpy>0 .

(2.1.6)
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Assumption 2.1 states that the instantaneous (or elastic)
response of the material for the environment at some value q)p is
[o((d?p) +(3(¢p) G(0,0)] , and the long term (or residual) response is
given by [o((d)p) + (5((%) G(w,i)] . The function @(%) scales the
total amount of relaxation, and X\ (C\)p) scales the relaxation time. Thus,
analyticall;y, Assumption 2.1 implies that changes in shape of the relaxa-
tion curves can be accounted for by scaling.

Having stated the basic mapping hypothesis, next a method for
calculating the scaling coefficients from experimental data i1s presented.
Assume that an experimental program has been carried out providing a
known set of curves similar to those shown in Figure 3.

First, determine the amplitude scaling factors ¢ and Q; .
Experimental data demonstrates that the most convenient variable to use
is the deviation in ePJp from the reference state rather than the variable

Cb)p itself. Therefore, define

'wbzéb'QS (2.1.7)

and, assume that O(((%) and @(%) can be approximated by a power

series in 1+% 1 Tet
N . N .
(py= 2 Wi Yy = 2 0=, (2.1.8)
and
3 : R
BUO= 14 2l = 1% Z i85 d), o)

where a; and bi are coefficients that must be determined from the

* Depending on the experimental data, other series representations for

0((%) and @(Cbp) may be more convenient.
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experimental data. Equations (2.1.8) and (2.1.9) satisfy the restric-
tions established by Equation (2.1.4); that is, when d?p = ?@,o( = 0 and
Q,: 1.

The purpose of the functions o and % is to map the initial
elastic response and the long-term or residual response of G(t,§g) onto
the amplitudes of G(O,q%) and G(ugq%) . Thus, for each value of
Q?I)zchi (i =1, 2, ... N) , two eéuations can be written by combining

Equation (2.1.8), (2.1.9) and (2.1.3); they are:

Glo,4) = [ad+ a g+ ta Y+ Div oy, + bW+ e+ + b UM G o, @))

and

G0, 4= [t Al - 4y 4 T+ Div o vorl e byl 1640, B)

In this manner a system of 2N equations in 2N wunknowns is established.

The unknowns in the system are the coefficients a; and Dj (i =1, 2,

the G(O,QDP)’S and G(W,%)'s are known from the experimental data, and

the ’\\)p's can be calculated. In general, the functions o and % can

be calculated to the accuracy desired. It requires N + 1 experimental

curves to determine Equations (2.1.8) and (2.1.9) to the NP power.
Since o and Q:. have been determined, \@ (¢p) can now be

found. First calculate G[‘G(Cbp)t,@] with the known data from

GIOREs3 ] = oy (GB) - wan 10)], (2.1.10)

This produces a set of curves reduced to a common amplitude (See Figure 4).
It is convenient to consider the relaxation curves as plotted against

loglot rather than t , therefore define a new function ’GJ by
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’é[logl 7t,d]

Glyt,2]
G[7((P2)t)q>]
G[?’(Qpl)t)@]
G(0,0) /_
G(t,o)
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L L L I ! a > ¢

i 10 102 10° 10* 105

[ I ¥ 1 I 1 'LOglo t
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Figure 4.

Reduced Material Response Curves for the

Purpose of Calculating the Time Scaling
Factor.
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G Llog 36t 5 21 = QLY (L, 31, (2.1.11)

Let

Loqm\é(%) = £y (2.1.12)

then: Equation (2.1.11) can be written as:

Gt B = ’(; Y_Loq‘;t t Ry, B]. (2.1.13)

Thus, the time scaling factor"@ (#b) is equivalent to a rigid shift

of the reduced relaxation curves on the logrithmic time scale.

(2)

This type of behavior was first studied by Schwarzl and Staverman

in connection with temperature dependence properties. Such materials

" Therefore, Assumption 2.1 has

were called "Thermorheologically Simple.'
embodied in it the special case of "Thermorheologically Simple' materials.
What remains now is to determine the function f(ﬁ%) from

reduced relaxation curves. Once again assume that f(q> can be approxi-

)
2

mated by a power series in WVH . Let

N . N .
fon = 2y = L alde B, (2.1.14)

where the ci’s must be determined from the reduced material response

functions. This can be done by picking off an appropriate amount of

shift f(¢%) for each value of Cbp ,3 and writing a set of N equations

for the N unknown c;'s . These equations are:

2 .
Ibid.
5

See Reference 13.



_33_

F@WY= P+ Y+ o W] ,
‘P(q)LB:(""PL*’CLwt"'"”"/CN’L\);’: \

.
[

?(¢N3=/C|’%+/C{¢$+”’+/CN’W: . <2~l~l5>

The final form of § (¢p) can now be written as:

N .
Log ¥ (4p)= ém(%@)“. (2.1.16)

Equation (2.1.16) satisfies the restriction that X ( %) > 0 for all cpp .
Also, condition (2.1.4) is satisfied sinceYl = 1 when (bp =® .

In Section 2.2 some experimental data are examined regarding
Assumption 2.1. Since much of the data is available in both the relaxa-
tion and creep forms, it is convenient to introduce a creep function of
the same structure as Equation (2.1.2); i.e., assume the creep compliance

function for any constant value d)p in the admissible range is given by

T (6,00 = Lgpie) + Blep T (Bdedt, 31, (2.1.17)

In Equation (2.1.17), J(t,@) is the creep function in some reference
A A 5

state & s oL, (% and § are mapping functions dependent only on (t)p .
Equation (2.1.17) is also subject to the restrictions of Equation (2.1.4),
(2.1.5) and (2.1.6). Further, at this point in the development, the

. . A
scaling factors oL, % and \6\ are completely independent of & , /Q and
N

\6\ . At the end of the, next section relationships between these quantities

are established.
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2.2 FExperimental Verification

The purpose of this section is to point out the various environ-
mental phenomena for which the material response functions (2.1.2) and
(2.1.17) may be a valid representation. First, it should be emphasized
that they will only be valid for a portion of the possible range of
variation of the environmental parameters considered. Also, Equation
(2.1.2) and (2.1.17) will not be valid for all possible combinations of
materials and environmental effects. However, it is anticipated that
this representation can produce a close approximation to a sufficiently
large class of material response situations.

The experimental data that follows i1s viewed phenomenoclogically,
and no attempt is made to correlate the variation in the environmental
parameter to the effect on the molecular structure of the material. To
be consistent with the linear theory of viscoelasticity, the data is

limited to small deformations.

A. Temperature

(14)

Hetenyi investigated the deformation of bakelite beams as
part of a study in photoelasticity. A constant and uniform bending moment
was applied to identical bakelite beams at several temperatures and the
deflection was recorded as a function of time. (The Correspondence
PrincipleLL verifies that the time dependent deflection is proportional

to the creep function.) The deformation curves shown in Figure 5 veri-

p)

fied that the maximum deflection was the same for all temperatures.

(17)

For example see Flugge page 32.

2 The study by Hetenyi was originally presente%)in Reference 14. The
curves given here were taken from Leaderman who reproduced the data,
in collaboration with Hetenyi, in a more extensive form.
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Also, the temperature change shifted the curve along the logarithmic
time axis to shorter times for higher temperatures.

Schwarzl and Staverman(g) called materials obeying this basic
time-temperature shift law "Thermorheologically Simple.'" Later Morland
and Lee 2 extended the hypothesis to time dependent temperature fields.

(15)

Ferry arrived at almost the same result from a molecular
theory. He considered the viscoelastic response to be dependent on the
movement of individual polymer chains. However, his analysis led to a
ﬁb type vertical scaling as well as a logarithmic time scaling. The
vertical shift was given by the ratio PT/POTO ; where Py and P, T4
and T represented the densities and temperatures in the reference state
and an arbitrary state respectively. The time scaling given by the W. L.
F. equation (See Reference 15, page 212) was empirically introduced.

(16)

Nagamatus and his co-workers demonstrated that a more com-
plex vertical logrithmic shifting factor is required when the crystal-
linity of the polymer is dependent on the temperature.

A specific example of a vertical shift in the creep compliance
function due to temperature changes is seen in the viscoelastic behavior
of nylon. TFigure 6 demonstrates the effect of temperature on the time-
dependent response of a nylon filament for total elongations up to seven
percent. An increase in temperature displaces the response curve upward.

Selecting 21.5 degrees centigrade as the reference temperature, the

temperature-dependent creep function (2.1.17) can be written as:

J@T) = 0.0356(T-215)A)+T(t,21.5), (2-2.1)

The data points calculated with Equation (2.2.1) are within 0.5 percent
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Figure 6. Experimental and Theoretical Data for
the Creep or a Nylon Filament at Several
Temperatures. (Experimental Data from
Leaderman H. Elastic and Creep Properties
of Filamentous Materials and Other High
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of the experimental data. This accuracy verifies that a linear vertical

shifting factor is reasonable for this application.

B. Humidity

Moisture usually affects viscoelastic response of polymers in
two ways: first, the rigid shift of the response curve with respect to
the log-time axis, and second, the vertical scaling of the response func-
tion.

The log-time shift behavior was demonstrated by Steinberger(l8)
in his studies of the viscoelastic response of cellulose acetate rayon.
Rayon fibers were loaded with a constant stress of 6.5 by 108 dynes per
Cm2 for a range of relative humidities from O percent to 100 percent.
The measured data indicated that at low relative humidities there was
little creep, while at higher relative humidities the creep was more
pronounced. Also the curves appeared to be part of a common curve that
was displaced along the logarithmic time axis to shorter times for higher
relative humidities.

Further, the work of Leaderman6 demonstrates that rayon acetate
responds as a ''"Thermorheologically Simple" material in the presence of
constant temperature fields. Thus, rayon acetate appears to manifest
the same general behavior for constant temperature and humidity environ-
ments.

Nylon exhibited the second type of behavior in the presence of
moisture variations. Ieadenmnﬁl)investigated the effect of humidity on a

nylon filament for small deformations (See Figure 7). The strain curves

6 See Reference 1, Figure 111 (Page 17h).
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were displaced upward for increasing relative humidities as shown in
Figure 7. The data suggests that nylon is more sensitive to humidity
variations at low values of relative humidity.

The strain can be written as a function of time and humidity
using the proposed mathematical model. Choosing zero relative humidity

as the reference state, Equation (2;1;17) becomes

T(£d)= (4034 - 443 MO (1- 045 -38424)Tk0).,  (2.2.2)

Calculated data points are showh superimposed on Figure 7. The maximum
difference between experimental and calculated data points is one percent.
The dependence of the scaling functions oL and Q) on the relative humid-
ity.is shown in FigureABu Here again the accuracy of the model for low
degree polynomialé indicates that the model is quite reasonable.

Meredith and Hsu(l9) confirm the humidity dependent properties
of nylon with their relaxation tests. Figure 9 shows-the decay of a
tensile load in a nylon filament at five percent elongation for three
different environments. The fiber is allowed to reach an equilibrium
state with dry, wet and 65 percent relative humidity environments before
recording_the data. The relaxation curves in Figure 9 embody the same

basic features as the creep curves of Figure 7.

C. Material Composition

(20)

In a recent study Theocaris investigates the viscoelastic

properties of plasticized, cold-setting, epoxy polymers in the transition
region. In his study he presents creep and relaxation-data of polymers

with five different ratios of plasticizer to prepolymer. The creep curves

are presented in Figure 10 for g reference temperature of 25 degrees
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Centigrade. The materials are designated as 0, 10, 20, 30 and 40. They
are all cold~-setting epoxies with 100 parts by weight of prepolymer and

eight parts by weight of T.E.T. hardner. The designation 0, 10, 20, 30

or 40 represents the part by weight of plasticizer.

It is seen that increasing the plasticizer shifts the curves
along the log time scale to shorter times. Also Theocaris: points out
that all of the curves have the same shape and could coincide if the ordi-
nates were multiplied by a constant factor dependent on the amount of
plasticizer.

The scaling factors can be determined by the method outlined

in Section 2.1. The resulting creep function is

T, =(1+ A b+ 1.4 x104¢) T Lx@)t,o], (2.2.3)

where

@)= 0.454db- 43 x10° ¢F .

Here Cb is defined as the amount by weight of plasticizer in the epoxy
and dP =0 is taken as the reference state. The calculated data points
are also shown on Figure 10. The fit is not as good here as in the pre-
vious cases. The inaccuracies can be seen by examining the reduced
creep curves in Figure 11. They do not all have the same shape; hence
the hypothesis is not quite correct in the case. However, the model is
reasonable for predicting the approximate response of epoxies in this
family.

Polystyrene resins exhibit an entirely different behavior than

that of epoxy polymers. The relaxation curves for five types of styron
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polystyrene resins manufactured by the Dow Chemical Company( are shown
in Figure 12. The material numbers (345, L75B, etc.) are codes represent-
ing the material composition and the curves shown in the figure are all
of the same family. Room temperature (23°C) and 0.5 percent strain are
constant for all of the tests. The data clearly demonstrates that changes
in composition displace the relaxation curve along the ordinate axis.
Hence, all curves could be represented by a common stress relaxation
function and an additive constant that depends on the composition of the
material.

(22)

The work on Kashimo provides one additional example of how
Equation (2.1.2) or (2.1.17) can be used to model material response. He
studied the viscoelastic behavior of }9- irradiated and heat-set nylon

6 fibers. A small portion of his results are presented in Figure 13.
Shown here are the stress relaxation curves of a wet nylon fiber in a
vacuum for various amounts of radiation and four percent strain. The
\8- irradiated specimens show a higher stress which is attributed to the
formation of cross-links between the chains. All the curves are nearly
straight lines and the mapping hypothesis appears to fit rather well.

Here an appropriate scale factor variable is the radiation dose in }9

rays.

D. Data Relationships

The mapping hypothesis, as proposed, contains six adjustable
material coefficients; three for creep data and three for relaxation
data. 1In this section the relationships between the creep and relaxation

coefficients are established for a given maferial,
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At this point it is convenient :to introduce Riemann-Stieltjes
convolution algebra. The properties and definitions associated with a
Stieltjes convolution and its inverse are given in the Appendix. Algo
given in the Appendix are the usual definitions of functions in class CN
and H' .

Now the relation between the associated creep and relaxation

7

functions can be stated.

THEOREM 2.1. Let G %be a relaxation function in H? with G(O):f 0.
Then G -has a unique Stieltjes inverse G-l g J . Thus, every strain

history E in H° giving the stress history (§ =% dG implies & =4 dJ .

Further, the associated creep function J satisfies the equation

T*dG =10, oy

Assuming the required continuity, the relationship between two
associated material response functions can now be written for some fixed

value of CPb on (-w,®) from Theorem 2.1 as:

T (:e) ¥ dG(,4p) = L. (2.2.5)

Assume that G(t,qﬁ) has been determined from an experimental program
and is given by Equation (2.1.2). Then Equation (2.2.5) is an integral
equation to determine the associated material response function J(t,Q%) s
which is not necessarily of the form of Equation (2.1.17). The general

solution of Equation (2.2.5) can be easily obtained by the method of

7 See Reference 9, Theorem 3.5.
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successive approximations8 for a specific G(t,¢£) . For certain special

forms of G(t,qﬁ) Equation (2.2.5) gives rise to two useful, simple results.

CORQLLARY 2.1. For every fixed cbp in the admissible range let G(t,q%)
and J(t,(bp) satisfy Equation (2.2.5), and let G(t,cg) ve given by
Equation (2.1.2). Then the associated material response function J(t,Q%)

can be written as

Jt,dp)= 3'[8‘(%0\*—»@;3- (2.2.6)

Proof. First note that 1(t) = 1[~@(¢p)t} . Then define a relaxation
function @ for a new time variable T =‘K(d%)t by rewriting Equation

(2.1.2) as

&(%,0p) = Q(\-&%B bp) =K@pYAN + RUEAGIT, B, (2.2.7)

Expressing Equation (2.2.5) as an integral, employing Equation (2.2.7) and

the change of variable theorem9 for Riemann-Stieltjes integrals gives

£
iﬂ%%%%@%ﬁwg (2.2.8)

where ? =}§3’ Next define

T (%) =T (1,4, (2.2.9)

' A
The G is. the unique inverse af. @ . 8ince ”3. satisfies” ﬁde =1(t) .
When the relaxation function is givén by Equation (2.1.2), the
associated creep function defined by Equation (2.2.5)_does not have a

simple analytic form. In particular, it is different from Equation

8
9

‘For examp%¢ see Reference 252 Section 9.
See Theorem 9.7, Reference 12.
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(2.1.17). For the special case when{ = O in Equation (2.1.2), the

solution of Equation (2.2.5) can easily be obtained.

COROLLARY 2.2. For every fixed 42p in the admissible range, let G(t,¢£)

and J(t,%) satisfy Equation (2.2.5). Further, let

Glerdp) = BRI GL¥ et , B, (2.2.10)

where G(t,p) is the relaxation function associated with J(t,); that

is J(t,P Hac(t,§) = 1(t) . Then
-\
J&9p) = WJY_‘@@Q‘L:)@]. (2.2.11)

Proof. Let ¥ =\@((\>p)t . Corollary 2.1 and (2.2.10) permits (2.2.5)

to be written as

3(?@@*&{@@&@(?)@)} = 1(7). (2.2.12)

Convolute (2.2.12) with J(T,@) and note from the change of variable
theorem for Stieltjes integrals that J(?,@)*d(}(f@) = 1(}) - Then,
using the linearity and associativity properties of Stieltjes convolutions,

Equation (2.2.12) becomes

(8T (14 xd 40 = Amx dT(1,3), (2.2.13)

A
Solving for J(T,Qﬁ) and employing Equation (2.2.6), Equation (2.2.13)

can be written as

Ttebp) = T (5, dp) = G I Dswrt; 31,
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Thus for the case when o = O , J(t,@%) is given by Equation (2.1.17)
provided

A

X (Pp) =0 .

Blde)= /ey,
and B (4= vid o)

2.3 Time-Dependent Environmental Fields

In this section the results obtained for temporally constant
environmental fields are extended to include time dependent environments.
Recall that G[t,ﬁb] is the one-dimensional relaxation responsevfor a
material in a temporally constant environment 4>P . The relaxation func-
tional which depends on a time-variant envirommental history is given by
G[t-to,d)(g) ] for a unit step strain applied a time t, . For the devel-
opment inszﬁgs section it is convenient to let to5 = O . The results for
the more general case will be stated later. The following assumption

permits extension of the mapping hypothesis from temporally constant

envirommental fields to the case under consideration.

/
ASSUMPTION 2.2 Let ﬁ) be a representative value of the environmental
history d}(S) in the infinitessimal time interval (t, t+At) . Then,
assume the response of the material is such that
) + + At : ) +
Gl se ) | = GG ]+ AG | (2.5.1)
S'::O ‘:):—'-O .
where the incremental change AG of the response functional is some
portion of the response function G(t,df) which corresponds to the environ-

mental state 4Y
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Assumption 2.2 implies that the amount of change of the relaxa-
tion functional in the infinitesimal interval of time [t, t+At] depends
only on a representative value of the environment in that interval of
time. 1In effect, the environmental history on [O,t] has no influence
on the stress in the time interval [t, t+At] other than to determine
the stress at time t

In order to examine the underlying aspects of this problem, first
consider the effect of time-dependent environmental histories on a "Ther-
morheologically Simple' type of material. Thus, by definition, the time-
invariant mapping is given by Equation (2.1.2) when X = 0 and @ =1 ;
i.e., the initial and residual responses are unaffected by environmental
changes. Further, the relaxation (or creep) functional is assumed to
monotonically decrease (or increase) between the initial and residual
values for every environmental history.lo Thus, the environment affects
only the rate at which the response occurs.

Let the environmental history Q)(t) be partitioned into N
sub-intervals. Let At; represent the length of a typical time interval
and let ¢)i be a representative value on the environmental history in
that interval. Denote the value of ﬁ)(t) at t =0 by d)o .  Further
assume that this approximation of Q)(t) is plecewise continuous function.

+

Now at t = 0O we have

GLo,¢(] = GLlordl= Lo, 2L (2.5.2)

Since Cbo is the initial value of the environmental history then G[0,§]

follows from Equation (2.1.2).

10
The development presented here is for a relaxation response; however,

extention to a creep response follows directly.
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During the first interval of time (O,Atl] , the relaxation
functional will monotonically decrease an amount A Gy from the initial

response. Hence, we can write

At,
GLAE 6 1= GLosg1 ¥ 86y - (2.5.5)

During (O, At;] , the stress is assumed to relax along the G[t,§]

curve, so

AG = Glac, 9,1~ Glo,d. (2.5.4)

Using Equation (2.1.2), AG, Decomes

NG, = GTYG A, B - Glo.R], (2.3.5)

This means the amount of relaxation AGy; that occurs in the time interval
(0, At;] for the envirommental state ¢ will require a time interval

1 1
DS (¢1)Atl in the reference state @ (see Figure 14). Combining (2.3.3)

and (2.%.5) gives:

G?[At;DCp:(%Sz}: G,[_\&(Q\\/.\t' NP (2.3.6)

In the next time interval [Atl, Aty + Ato]  and (\) can be
approximated by the value ¢2 . During this time interval the response

functional changes an amount AGo , then

ISR ¢
GUBt b, BLSY 1= ot , i) )+ NGy,  (B3.7)
S=0 9=0
where Assumption 2.2 implies that A\Go, depends on G(t‘)(p?_) . The amount
of relaxation NGp that occurs in the time interval (Aty, At] +Ats]

for the environmental state Cbg is equivalent to that which occurs in
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an elapsed time x\ (CP&)AtZ in the reference state. Then by accounting
for the relaxation in the first time interval (O, At;] by ¢ (d)l)Atl

in the reference state @ ,. the incremental response AGo 1is

AG, = Y@M A B - G @A),  (2:3.8)

Thus, from Equation (2.3.6) and (2.3.8), (2.3.7) becomes

k)
Glat+Aty 3’4_552] =G s Wy, B ). (2.3.9)

N
Continuing in this fashion, it is seen that at some time t =3 Aty ,
i=1

G\L‘Mdﬁ?ﬂ:' Q[g?ﬂ‘@;\[s’q)@l (2.3.10)

Letting N - o for a fixed value of t , Equation (2.3.10) goes over to

G T 6] = G, B) (2.3.12)

where ? is defined as the following functional of (t)(’J’) :

+
T=Je=  ¥renndy. (2.3.12)
@)

Thus, the environmental history can be accounted for by a or1e—to-=omell

mapping of the time coordinate, which depends only on the material function
\@ (d%) , and this mapping is given by Equation (2.3.12). Although the
development above differs,the reduced time T is identical to the results

(3)12

of Morland and Lee.

M1t was pointed out by Sternberg(gu) that Equation (2.1.14) and (2.1.16)

are sufficient to guarantee that (2.3.12) has a unique inverse.
12 For additional reference regarding the reduced time concept and its
application see References 24, 25, and 26.
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Now, it is easy to extend the temporally constant environmental
results to time-dependent environmental fields when all three scaling
functions are present. In this case the initial elastic response and
residual response are influenced by the environmental history.

Let Cbo be the initial value of the environmental field. Then

at t = O the elastic response 1is

G043 1= k) + BWGOBEG,  (@2:3)

Again, define Cbl to be a representative value of C\) occurring in the
interval (0, At;] . The incremental change in the relaxation functional
AGl , that occurs in interval of time (0, Aty] , is comprised of two
parts. The first part is the monotonic decay of the stress that occurs
in the time interval (O,Atl] at the environmental value 7 . The

second part is the vertical shift in the response curve due to q; changing

from ¢, to @, . That is,

AG= TGN -x@] + e lnt 31 - G Lo,&ﬂ}) (2.3.1)

since the second quantity in brackets is the same as in Equation (2.3.5).
Note in this case AGl could be positive or negative depending on the
t
value of DO , and hence, G[t,(b(s)] may not be a monotonically de-
S5=0

Aot = X (62) - X (e,
C‘:‘L&tw:(ts'g] - G+ AG, (2.3.15)
- (6 + %, + BBt B G0 B B0,
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In the next time interval ([;tl,[gtl +Ats] q) takes on the

representative value ¢>2 . Then
Ot 4,
Glat, *b’czaCPLS) l G * DG, + DGy, (2.5.16)
where

DG Ao, + %«mi@ L) At ¥ @) . BT - G T, ,@]}, (2.3.17)

Combining (2.3.14) and (2.3.17) with (2.3.16) gives:

At +

G (ot M, Cb(%\ 1= oK) + Dk, + Ak, *+ BOIGLH GO + YA B
~G(o, BB -84 - C:;ES‘CM&DM{@(@- GOSN R

Hence, after some time 1t = :E:l&t
i=1

; » the relaxation functional can be

n | N N
GLEG) =) 2 Ad; + QI1GLZ ¥(0k:, G
- ngLpZmX(%%p,@]{@(w- Q) ¥ (2.5.19)

Letting N—»» for a fixed time interval [0,t] , Equation (2.3.19)

can be written as:
G CW 7= o L) + RLOW) Q{S ¥emldy ,§ |
j G!%_ KEC"(@)-\CJ 6)@} d&é[cb('y)] (2.3.20)

Integrating Equation (2.3.20) by parts yields:
Glt, ct>§_§g]= X L)+ Q)G Lo, 3
~ w _
+( grawnde( [Yuwende,g). o
o o*
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Equation (2.3.21) can be arrived at by interchanging the summation order
in Equation (2.3.19). Equation (2.3.21) embodies the reduced time concept,
but is more complicated due to the vertical scaling. In fact, a history
of the vertical scaling must be included; but, only'o([¢xt)] enters

into Equation (2.3.21).

The two forms of the relaxation function (2.3.20) and (2.3.21)
are equivalent; however depending upon the nature of the scaling functions
o and g? , Equation (2.3.20) may be more useful in the solution of
boundary value problems. In either case it will probably be necessary to
use a numerical technique to determine the relaxation functional for a
"real' material.

If Equation (2.3.21) does not depend on §§ , then on setting

Q?[d%t)] = 1(t) , Equation (2.3.21) reduces to
t
G, 98] =X (4110 + G [¥Landy, §)

=« pWII®) +G(1,d) , (2.3.22)

with ? defined by Equation (2.3.12). For the special case of an elastic
material G[T,@] is replaced by ERl(t) ; where Ep 1is the elastic
modulus corresponding to the reference state @ . Then Equation (2.3.22)

becomes:

GLy Cbs(?g 1= E WbmlAw), (2.3.23)

Here E[@(t)] is an environmental-dependent elastic modulus which depends

only on the current value of the environment.
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Next the material response functionals given by Equations (2.3.20)
and (2.5021) can be modified to be compatable with the relaxation function
given by Equation (1.3.2). Since the relaxation functional in Equation
(1.3.2) depends only on the environmental history in the time interval
[to,t] . The representation of this functional can be obtained by carry-
ing out the above derivation for the time interval [to,t] . Therefore

the relaxation functional of Equation (1.3.2) is given by
-+ ~
G Lt 1) 1= o L4001+ RG] G [¥ibends, @}
. iy o
-+ g 1
- G | ¥L4de,3 | dBLown, (23-2)
e o)

when t >ty ; also
Gleto, (EéE 1= (L 1469) + R BN GLo. 3]
e, A .
+ f @L@Ls\]o[éx{ f ¥ Ld(s)de, E\_)] (2.3.25)
e, t

2.4 Spatially-Dependent Environmental Fields

Next consider spatially dependent enviroanmental fields. Recall
that Assumption 1.1 stated that the stress of any given particle is com-
pletely determined by the strain and environmental histories at that
particle. The environmental history of the neighboring particle does not
affect this response. This is an application of the Principle of Local
Action (See Reference 10, page 34).

Thus, for spatially variant environmental fields a?(tazﬂ the
scaling factors become functions of position. The particle at X is

affected only by the history of ¢)(t,x) » The response function of the
7o

particle is given by
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G [_t-to)(fp(s)_\ £ Lh 23] + RPldle, x NG (0, &)

jgw( ﬂd‘c"{,j\é‘&\x%%)lde@}. (2.4.1)
“ o

The scaling factors %9 and ¥' are now function of time and position.

The scaling factors o ((‘)), ‘%(({)), and 3 ((\)) , and the material
response function in the reference state G(t,@) are known from an experi-
mental program. The environmental history dp(t,gg) can be found from the
appropriate physical law and boundary conditions. Then Equation (2.4.1)
can be evaluated to give the material response function.

Finally, the results of this chapter can be easily generalized
to include three-dimensional stress and strain histories. For convenience

with the notation, write the scaling factors as:

Kt %) = L LPLt, 2 U,

@l(@ x)= 2519 (’c,%)]) (2.4.2)
and ¥, x)= W LR, %)),

Now the isotropic relaxation functions in shear and dilatation can be written

G, L“t‘foﬁtsb] L6 2) + Qlte, ) Gy (0 8)
j@ oda jw@J 2o, )

If a creep response is considered, a similar development gives

the isotropic creep functions in shear and dilatation as¥



+£,§>A(s,ag)d il :‘6‘(%«)0\9)@} (2.0.14)

The development in this chapter was devoted to finding a
specific representation for environmental-dependent material response
functions. Next it is desirable to correlate the results of this chapter
with the constitutive models established in Chapter I. In view of the
complicated form of Equations (2.3.24) and (2.3.25), it appears to be
convenient to use a modified form of the constitutive law derived in
Chapter I. Therefore, integrate Equation (1.3.6) and (1.3.7) by parts to

obtain

<
54 = C1j(OG, 000 j G E-% 41 €5 (0 ok,

’?&&5 ékh(o) Gh_(.t (-l\)(s)‘l j Y_'l:- ’:)/Cb(S)]é k(ﬁ')yyol')’ (2.h. 5)

and

+
613 ® = 544D dy [x, C\?Sf:sg] SJ\[ -w)q,tsn Sqm,y d,

<
- +
6&5&(0 = %‘Q(O\ Jz [‘h) ¢(5§1 ‘\‘S J2 L’E"xo ¢;5(§%:] G&\a(’y)fff Ch‘f. (2.4.6)

The material response functions G; and J; in Equations(2.4.5) and

1

(2.4.6) are given by Equations(2.4.3) and (2.4.4) respectively.



CHAPTER III

AGING VISCOELASTIC MATERIALS

Chapter III discusses the constitutive relationshipsfor aging
and environmental-dependent viscoelastic materials. Section 3.1 intro-
duces an operator algebra and establishes the properties of a Riemann-
Stieltjes integral for use throughout the rest of the paper. 1In Section
3.2 an integral representation is presented for the functional form of the
constitutive equations derived in Section 1.1 and the representation is
specialized for isotropic materials. Finally, the resulting creep and
relaxation functions are related to the other work in the field and some

experimental data is presented.

3.1 Mathematical Preliminaries

For use later in this chapter and in subsequent chapters, it is
convenient to introduce an algebra for the integral operator arising in
the representation of the constitutive equation presented in Section 3.2.

To begin, define the following scalar quantities.

DEFINITION %3.1l. Let the scalar function f(t) be defined and have the
following properties on (-»,) :

(a) f(t) vanishes on (-%,0) ;

(b) f£(t) is continuous on the right in the interval [O0,«) ;

(c) f£(t),+ exist and is continuous on [0, )

DEFINITION 3.2. Let the scalar function'ikﬁf;t) have the following
properties:

-62-



-63-

(a)ﬁy@r;t) is defined for all t and ¥ in (-®,®), and is
continuous on the right for o in (-%,)}

(b)Y (¥,t) vanishes for t in (-%,0) , for ¥ in (-%,0)
and for I >t ; |

(c)’q/Cf,t%o, exists and is continuous with respect to Y on the

right in [0,t] .

DEFINITION %.3. Let the functions £ andﬂy have the properties given

by Definitions 3.1 and 3.2. Then the Riemann-Stieltjes integrals

t
1\L-B=j -P(‘c-’ﬂd P () (3.1.1)
oD

and

£
Iz&‘)=j w(t-’b‘)‘cXCJ-?(’:f) (3.1.2)

exist for all t in (-o,®) ., The notation 1%;Cy) indicates the integra-
tion variable is 7Y and "t is fixed at some value in (-®,®) . Further,

let

Wczd\\)t=1\ (5.1.3)
and ’\Vh;(ip = IZ (3.1.4)
also represent the integrals given in Equation (3.1.1) and (3.1.2) re-

spectively.

THEOREM B,ll (Properties of the Operator Algebra). Let f have the
properties given in Definition 3.1; and, let 1¥ have the properties

given by Definition 3.2. Then

1 This is the counterpart of Theorem A.l given in the Appendix.
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(a) f:dl’l]{D and ‘L\/t:df both vanish on (-®,0) and exist on
[0,t] 3

(b) :E’:d‘(L/G =’\|Jt:df ;

(c) f:d¥, is linear and homogeneous in f " and Vs

(d) if £ = 1(t-ty) then W, :af =W(t-tp,t) ;
(e) f:d‘-l{c = 0 implies f = 0 ;

t
(£) sy ~Ylo,e)z(e) + | 2T t) 2T

40

Proof: Parts (a) and (c) follow directly from the properties of Riemann-
Stieltjes integrals as given in Chapter 9 of Apostol.<12) Part (d) results
from the direct application of the theorem on step integrators (Theorem
9-9, (12)y,

To prove (b) define o and \?) to be positive constants. Then

t+a
hdmfj-ﬂbwwﬂwﬂ, (3-1.5)
e

since ’q}(ﬁ’,t) =0 fork Y on (-%,-9) , and f(t-y) = O when 7y is on

(t,t+o) . Now integrate by parts to obtain

4ol <t
fdy = FE-MNVO)| - S'\\’t@’)d{‘(’c"b’) , (3.1.6)
-3 A

or

®
fade= | dfey.
++o{
Let T =1t -7’ , and observe that the upper and lower limits of integration

become t +€ and -o{ respectively, then Equation (3.1.6) becomes
t+©

£z = J Y-y dF D, (5.1.7)

=X
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This can be rewritten as

£
£acly,= S_ww&t-m\d‘?m- (3.1.8)

Comparing Equation (3.1.8) with (3.1.2) and (3.1.4) yields part (Db).

A
For part (f) define the function Y by:

WY = G (me) + P o,1) A, (3.1.9)

Then, substituting Equation (3.1.9) into (3.1.1), and using part (b) and

the theorem on step integrators (Theorem 9-9 of Reference 12), yields

| | "
fedt = Wit o + XF(tmd«km. (3.1.10)

Observing & = 0 for t in (-»,0) , and that1*'ﬂr;t%1f is continuous

on [O!,t] , then

/LTJ(?)t\D’X = Wty (3.1.11)

for all 7Y in [O,t] . Hence, substituting Equation (3.1.11) into (3.1.10)

yields

<

frd= Yoot S(f =Py, 0, y el
which is the desired result.

To verify (e) :sét f£:dYy equal to zéro in part (£) to
obtain

t
0="1ot)fe + S £ (-9 Y(wt sy oY, (3.1.12)

0

Now make the change of wvariable

T=t-7 (3.1.13)
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in Equation (3.1.12) to obtain

o=xy(o,t3{-‘<u+) fon LEEDO 5, (5.1.14)

Thus, Equation (3.1.14%) is a homogeneous Volterra integral equation of the
second kind for f(t) , when'lp(o,t)=f O . The uniqueness properties
(Reference 27 page 35) of Volterra integral equations verify that f(t) = O

on [0,t] . For the case when qy(o,t) =0 let

- ~ QY (E~$Ht)
TEE =0

then differentiate Equation (3.1.14) with respect to t to get
0= %(OMP&) + Stfmlcé—@ﬁ—} a3
o Lt
Thus, once again it follows that f(t) must equal zero.

3.2 An Integral Constitutive Law for Aging Viscoelastic Materials

In this section an integral represenation of the aging consti-
tutive law is presented. 1In Section 1.1 two equivalent functional rela-

tionships were established for aging and environmental-dependent materials,

| t t
Sy = OI*>[§(§_=%,\ : d;usfg) ], (1.1.11)

and

Qrt) = J"z)y_ 6(7) Cb(’d’) t] (1.1.12)

A

In both cases t = O represents the time when the aging process begins.
For the current treatment it is convenient to use the form given by Equa-

tion (1.1.11). Also, it is convenient to drop the dependence of the stress
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history on environmental history in Equation (1.1.11). Due to the lack of
experimental evidence for materials in this area, it is difficult to make
a reasonable assumption for a specific form of the functionaLfFT l).
~

Before proceeding to an integral representation of Equation (1.1.11),
it is convenient to show that if‘sz is linear in the strain history, then
EET is a fourth order tensor valued functional. Let X denote a Cartesian
frame of reference, then Equation (1.1.11) is written in the X frame as

% = E&i [Eg, et ], -2
where the repeated indices imply the usual summation convention. Define

R to be the rotation that carries the X frame into the X' frame,

that is,

K = Qg g, (5.2.2)
and

Oy Cyp= 045 5 Detlagl=\

Now by direct application of Equation (l.l,ll), the stress in the X'

frame can be written as:

X' _ x/ v
P A 2:2:2)

X! '
But Q. and fi are second order tensors; therefore
mn jole] ’

a—kg M

Cc,mamé(rx' (3.2.4)

and

X! X
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Substitution of Equation (3.2.4) and (3.2.5) into (3.2.3) yields

u.

3

Employ the linearity property of ZFT and compare Equation (3.2.6) to (3.2.1)
~

QIYY\AQMQT Y_ pha%gg (Jf-'b’)t‘\ (3.2.6)

to get

X
3;’8 x Lens (e9),6)

meamAaPhO%k?T L&h¢ﬁ3%t1

X

Considering strain histories where all components are zero except Eiki

=g ,

then the equation above becomes
X [ Pel=
Egm Fe el = Qg Gy Clpr g MM%L%Q:—W),Q (5.2.7)

Thus?F? transforms as a fourth order Cartesian tensor. For completeness,
~J

from the symmetry properties of Gij and Eij it also follows that

Egksf O&EKM b O:E-.gxk . (3.2.8)

Hence, the assertion of linearity allows the usual tensorial properties
of a material response function to carry over to a functional type consti-
tutive law.

It is possible to obtain an integral representation for the
constitutive equations given in (3.2.1) if the functional ?F~ is assumed

A

to be linear in the strain history, non-retroactive, and continuous.

1 2
Konig and MEixner( 9) consider a similar functional having all of the

above mentioned properties along with that of translation invariance.

These properties are defined in Theorem 1l.l.
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They prove that the linear hereditary law can be expressed as a Riemann-
Stieltjes integral whose integrator is uniquely determined from the func-
tional ;ET and is independent of the strain history.

Let each strain history belong to a class of functions f£(§) which
is continuous on (-w,») and zero on (-©,0) . For each t> O define a
linear space of continuous functions on the closed interval [O,t] with
the property that for each function f£(0) = O . Then for each fixed time
interval [O,t] , every'?Fzgkl represents a linear functional defined on
the above space of functions. The Hahn-Banach Lemma (Reference 30 page 11h)
allows extension to a class of functions which is continuous on [O,t] when
f«a)gé O . Then the Riesz Theorem (Reference 30 page 110) can be applied
to represent the functional as a Riemann-Stieltjes integral with a generat-
ing function that depends on the integration variable 7y in [0,t] and
the size of the integration interval [O,t] . At this point in the proof
a translation-invariant condition for non-aging materials, can be invoked
to remove the dependence of the generating function on interval size. Thus,
employing an intermediate result of Kgnig and Meixner the following consti-

tutive representation can be arrived at for aging materials.

THEOREM 3.2 (Linear hereditary aging stress-strain law) Let the stress
history be related to the strain history by (3.2.1) where:
(a) ﬁ; is defined and continuous on (-®,©) ;
(b) g; vanishes on (-%,0) ;
and, the functionalfyr has the properties of linearity, non-retroactivity,
~
3

and continuity. Then Equation (3.2.1) can be written as

5 Ibid.
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o

f & =jb Ele-md glyey, (5.2.9)
)

where G has the following properties:
NS

(¢) G@,t) is defined for all t in (-»,®) and 9J’ in

(-»,t]4 and is continuous on the :c"ightlL for Y in (-%,t] ;

(d) ;iﬁy;t) vanishes for t in (-%,0) ;
(e) G is of bounded variation in Q7 for every sub-interval

in ("oo:oo) 5
(f) ;3 is a fourth order tensor whose components with respect

to a Cartesian coordinate system satisfy

Qujxx= Giinx = GQigax

for all t and {0’ in the domain of definition.

The proof of (c), (d), and (e) of Theorem (3.2) follows directly
from Kgnig and Meixner with the understanding that G 1is defined as zero
before the beginning of the aging process (for negative t ). The proof
of (f) is a consequence of Equation (3.2.7) and (3.2.8) since the Kgnig
and Meixner representation is valid for each stress and strain component.

The constitutive law presented in Theorem 3.2 is for continuous
strain histories. Once again the theorem of Gurtin and Sternberg (Reference
9, page 312) will allow extension of the constitutive law to a class of
strain histories which is discontinuous on [O,t] . Application of the

theorem in the case of aging materials is valid since the proof of the

theorem does not depend on the size of the time interval [O0,t]
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For convenience, assume the material to be isotropic. (As men-
tioned earlier, if this is not the case, then the appropriate material
restrictions can be placed on the material response functional.) Now from
Theorem 2.5 of Reference 9 it is possible to replace the tensorial function
Al in Equation (3.2.9) by two scalar function s. Introducing the devia-
toric and hydrostatic stress and strain components as defined in Equation
(1.3.4) and using part (f) of Theorem 3.1 the constitutive equation can

be written as

-E
Siikk) = G“(ojt)e,{i('&\ T 5 ell(ﬁ"ﬁ’)en(’yﬂ‘—)pg’ oy
)

3
TG = GONE, *({HSO Eple- 1) G (e )y, (230

Here G; and Gp are the relaxation functions 1n shear and dilation
respectively.

By interchanging the role of the stress and strain histories
in Equation (3.2.1), a similar constitutive relation can be obtained. The
counterpart of the relaxation law given in Equation (3.2.9) is the creep

law

4
)= J -9 CJ\;L’)’, ). (3.2.11)

For an isotropic material the aging hereditary creep law is
&
€4§(0= TOOSH)* | Sty (-MT(3;),
+
nd Eyp 0= (0,000 () + j N T Q@ sydy. 5:2:32)

fo!
where J; and Jo are the creep functions in shear and dilatation

respectively.
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3.3 Correlation with Material Response Data
and Existing Response Functions

To investigate the physical meaning of the variablesin the relaxa-

tion function of Equation (5,2,9), let the strain history be given by

E(8) = Ale-tl), (3.3.1)

Then apply parts (b) and (d) of Theorem 3.1 to Equation (3.2.9) to get

S &)= Gle-ty)+). (3.3.2)

Thus, G(t-tL,t) is the stress at the present time t due to a step

strain that was applied t; . The quantity (t-tL) represents the time
that has elapsed since the strain was applied. A typical relaxation surface
is shown in Figure 15.

At this point it is easy to introduce the relationships between the
creep and relaxation functions for aging materials. The relaxation func-
tion ﬁg{ in Equation (3.3.2) may be interpreted as the stress history
required to produce the unit-step strain history l(t—tL) o Thus, sub-
stituting (3.3.1) and (3.3.2) into (3.2.11) yields

+
Alt-t) = Seo 9 (t-i)’:t._,t*y)d;]: (¥t)

-

+
= 5 J(ﬁ-ﬁgt}dg(y-tL,y). (3.3.3)

Two additional relationships may be arrived at when a unit-step stress

history is applied to Equation (3.2.11). They are:

t
A= [ G000 d T, )

+
= [ Jv-to,t-3dg (7). 5-3:4)
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» t- tL
ELAPSED TIME

Figure 19%. A Typical Relaxation Surface for the Response
Functions of Equation (3.2.9).
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Equations (3.3.3) and (3.3.4) will yield four equivalent forms of a
Volterra integral equation which may be solved for one of the material
response functions when the other is determined experimentally.

Alternate constitutive laws for aging materials exist
in the literature. These alternate forms can easily be related to the
above forms by a change of variable.

One of the first investigations in the field of aging concrete
response is given by McHenry in Reference 6. His development is based
on an unusual definition of creep. McHenry observed in the laboratory
that as concrete ages the elastic modulus increases. That is, if identi-
cal loads are applied to similar concrete specimens of different ages,
the amount of corresponding instantaneous strain decreases as the age
increases. Thus, McHenry defines the true creep to be the difference
between the total deformation and the decreasing instantaneous response.

For example, let fj(t) be a unit-step stress applied to the
material at time tL o Then the strain at some later time t is given by

E(ﬂﬂ?‘{) + Jle, -ty (3.3.5)
where %/E(t) is the instantaneous strain resulting from a unit step stress
applied at time € . J(tL,t—tL) is the creep response as a function of
the age of the material t;, at loading, and t-ty 1s the elapsed time
after the lcad was applied.

McHenry constructed a super-position integral from Equation
(3.3.5) to determine the response for one-dimensional time dependent stress

histories. His results are

+
ER) = S +5 J(T+-7y S (v (3.3.6)
E(®) e a2y

L
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for the special case when §(ty) = O . Equation (3.3.6) reduces immediately
to the linear elastic constitutive law in the absence of a creep response.

An alternative to the McHenry formulation is presented by Saokman§5)
His material response functidns involve the current time and the time of

loading as the two independent variables. The constitutive law from

Reference 5 is
++ tt _

E® = 5 H-Gc,’x) O(Cig) o ¥ =—j S (M R}g(gy cL:); (3.3.7)
r L

employing the fact that the derivative of unit step functions give rise to

a Dirac delta function. For the stress history §(t) = l(t—tL) the

solution (3.3.7) is
)= H €Y. (3.3.8)

Thus fﬁ(t,tL) is the strain that results at time t due to a unit-step
stress applied at time tL .

Sackman's result can be related to Equation (3.2.11) by letting

J(t) = I t-,t), (3.3.9)

where t-Y corresponds to the actual time of loading. This new creep
function S(t-ygt) gives rise to an additional form that Equations(2.3.11)
and (2.3.12) can assume. For example, the first of (2.3.11) can be re-
written as

tLA A
Le-4,) =5 & (L, AT (k-3,8),

—0d

~
where G is the relaxation function associated with f?‘
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(7)

In another independent study Arutyunyan obtained a similar
stress-strain relation. He used his result to solve many problems in
reinforced concrete structures.

In general, the creep or relaxation response modulus of an aging
material must be determined experimentally as a function of the two inde-
pendent time variables. For example, Sackman's model J(t,tL) represents
the strain at time t due to a unit-step stress applied at time tg, .
Thus to determine J(t,tL) experimentally it is necessary to perform a
series of one-dimensional creep tests initiated at different values of <ty .
This results in a family of curves that may be represented as a creep
surface.

(8)

Bresler and Selna establish a creep surface for mortar using
Yashin's datao(Bl) The curves in Figure 16 represent the early age creep
of mortar loaded to about 20 percent of its compressive strength. The
tests are carried out at a relative humidity of 75 to 80 percent and for
temperatures of 60 to 70 degrees Fahrenheit. The surface is presented
using the absolute time t and the age of the material <ty at which

the load is applied. Consequently, the surface can only exist in one
half of the first quadrent.

Comparing the three forms of the constitutive relationship
presented in this section, it can be seen that they all are valid represen-
tations of the stress-strain law. In fact, it is easy to pass from one
form to another by appropriately redefining the time variables and response
functions. Sackman's model appears to lend itself to experimental in-
vestigations rather well, while Equation (5.2.9) may be better for analyt-

ical studies since many of the Riemann-Stieltjes convolution algebra

properties carry over.
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Age at Loading, tg

Figure 16.

Farly Age Creep Surface of Mortar.

(From Bresler and Selna, "Analysis

of Time-Dependent Behavior of Rein-
1"

forced Concrete Structure?8 Sympos-
ium on Creep of Concrete ))



CHAPTER IV

APPLICATION TO BOUNDARY VALUE PROBLEMS

The first section of Chapter IV gives the quasi-static field
equations and boundary conditions which the stress, strain, and displace-
ment field histories must satisfy to qualify as a solution to a boundary
value problem. Section 4.2 specializes the field equations for plane

strain and generalized plane stress boundary value problems.

4.1 Field Equations

Recall that Cfij and Esij are the Cartesian components of the
second order, symmetric stress and strain tensors Si' and _g; . Further,
let_uz{{( be the Cartesian components of the displacement vector~f¥
The quantities S;‘, é; amduﬁg' are all taken to depend on position and
time unless otherwise specified. Let the viscoelastic state defined by
‘gj ,ié and & exist in body JB . The time dependent surface S(t) of
body /B 1is comprised two complementary subsets S1(t) and So(t)

For convenience with the notation let Giﬁr,ta§) and J;0,t,%) ,
(i = 1,2) represent the material response functions of Equation (2.4.5)
and (2.4.6) or (3.2.10) and (3.2.12) respectively. The operational nota-
tion introduced in Section 3.1 can be used to represent the constitutive
equations mentioned above. For the case when the material is not depend-
ent on the environment or is non-aging then CT:.L and J; become independ-
ent of either X or respectively.

For environmental dependent materials, it is assumed that dP(g,t)
can be determined from the appropriate physical law and boundary conditions.

Also the strain history which results from time and spatial gradients in

qPQg,t) is assumed to be known.

-78-
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Further, assume that the initial conditions are given by

(4.1.1)

\
0

<Sg§ = CIZJ = Uy =

for all x in bodyB and all t 1in (-»,0) . That is, the body in the
undeformed state is stress free.
Now the governing field equations are stated. The equilibrium

equations which must be satisfied in B for all t are

Cr e = . 1.2
0‘13%(?3,%) +F (%t =0, (k.1.2)
where Fi(%,t) is the body force history per unit of volume. The strain

history is related to the displacement history by

(Xt) =% Lux)gc%)t) el (2t ). (4.1.3)

4
To state the constitutive equations, recall that the deviatoric stress

and strain components are

Saq = G&g-‘-\g Crk 8;&

and

Cii= &y~ % Eng Szg— (1)

Then the isotropic hereditary relaxation law for a general material

54*& = E’_,{g:d(;“ , (4.1.5)

O = Cppt o (4.1.6)

and the integral creep law can be written as
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&g = Séé:dj‘3 (4.1.7)

E)MQ:; G:He: d3J,. (4.1.8)
Equations (4.1.5) through (4.1.8) use the operator notation introduced in
Theorem 3.1.

It should be noted that if the volumetric response is assumed
to be elastic then Equation (4.1.6) and (4.1.8) can be replaced by

where K is the elastic bulk modulus. This assumption 1s wvery often a
good approximation since many viscoelastic materials demonstrate an
elastic dilatational response.

If the material is nearly incompressible, the dilatational
effects can be neglected. This amounts to letting K-~ in Eguation

(4.1.9). Thus,

E\+ €t €43 =0 (%.1.10)

and Cjkk cannot be determined from Equation (4.1.9). The indetermancy
can be removed by relating Cﬂd& to the boundary conditions. An example
of this type is considered in Chapter V.

Next, the boundary conditions are considered. If U(x,t) is
the prescribed displacement on the boundary S(t) or portion of the

boundary of body B during the time interval [0,©) then,

2ty = Ue(xt) (4.1.11)

for all X on S and all t in [O,m) . The stress type boundary



-81-

condition takes on the form

Ciy (2 ) = Til(x, ) (4.1.12)

where 77. is the unit normal vector at x and T. 1is the prescribed
J ~ i

surface traction on remaining boundary of the body in [O,w) . In addition
to these boundary conditions, suitable boundary conditions must be pre-
scribed so that it is possible to calculate the value of QD(g,t) from

the appropriate physical law for all X in B and t in [0,®) .

Now the displacement equilibrium equations are established.
From Equation (4.1.4) and (4.1.5) the stress-strain relation can be re-

written as:

Gij = €y7dg, 5 0if Eper A6y G, (4:1.15)
where Gy and Gpo represent the genefal material response functions
introduced earlier. Substituting in the strain-displacement Equations
(4.1.3), Equation (4.1.13) becomes

O, I : ) S > ol e
\3,«’§ =i</(/(,¢’)4' +/(,/3'u.‘)‘ CIGh‘i' -'5 (S/:d /((‘ﬁyk 'd((?I‘C72>‘ (L; 1 lu)
Substitute (4.1.14%) into (4.1.2) to obtain

ALy 44 I 7 VL] S % 84 u”‘izk:d%a{r (4.1.15)

+ {_,u;%‘ tatg i %50 M,&J&}Zdéwé +T1F=0,

where
K=%(G +2Gy) - (k.1.16)

In conclusion of this Section, it should be mentioned that many of the

existing field theorems ih viscoelasticity can be applied here. Gurtin

(33)

and Sternberg, established g reciprocal theorem for anisotropic linear
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viscoelastic solids. Then in 1966 Lubliner and Sackman<5h) extended the
theorem to include aging materials. Also Lubliner and Sackman(BS) developed
a general uniqueness theorem for linear viscoelasticity which is valid for

both aging and anisotropic materials.

4.2 Plane Strain and Generalized Plane Stress

In this section the general field equations are specialized for
the two-dimensional problem. For this purpose introduce the convention
that when lower case Greek subscripts appear they take on the values (1,2).
Let body ES occupy a right cylindrical region of space with a lateral
boundary S . Let the generators of B ve parallel to the Xz axis.

Let Xz = O be the midplane and let Xz = + h Dbe the boundary surfaces
normal to the Xz axis.

For the general two-dimensional mixed boundary value problem
these additional restrictions are necessary on the boundary parallel to

the x5 axis:

O =Uulx,t) 5 U3=0O 3

To( ""TOL(%)'t) ) Tg::o; (Ll"2°l)

where x denotes (xl,x2) . The applied body force AE must have the form

f:“__ FgU‘-;"‘—) , ,:5:-.0' (k.2.2)

Since all mechanical quantities are limited to two spatial variables, let
the environmental field history cb also be independent of Xz - Then it

follows that the general material functions are of the form
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GOL: CTOl Qﬁ'nt)%>
Jow = Je (71, %) (4.2.3)

and

PLANE STRAIN. Consider first the case of plane strain. By definition set

Ay = A () sy Ke) 5 A3=0. (b.2.4)

Then as a result of Equation (¥.1.2), (4.1.3), (4.1.5) and (4.1.6) the

following are obtained

€420 5043 =0 § (h.2.5)
Cup =5 (Ut g u) 5 (4.2.6)
Cup.@t Fu=0 j (k.2.7)
Cup = Expi G+ Sua Eyyidq s (4.2.8)
wrere G =4 (GG, (+.2.9)

Next determine the relationship between and . Begin
P Q5 SV g
by setting i= j=3 4in Equation (4.1.5). Introduce (4.1.6) into (4.1.7)

and employ the linearity properties of the integral operator to get

2 Ca3 - Caw = - Eun 1 d Gy, (4.2.10)

noting that Ekk =E gy since 855 = 0 . Next rewrite (4.1.8) as

Euo = (C33+ Cuc) s AT (h.2.11)

Substituting Equation (4.2.11) into (4.2.10) and rearranging yields
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2633"' [(Gg,;ﬁﬁuhd&]‘; dc‘h = S&d\ P (u‘2°12)

Equation (4.2.12) establishes the governing Volterratype integral equation
to determine 6‘55 once Qqu 18 known. This equation can be solved when

a specific material is considered. The solution will be of the form

+
Cya(%,t) = K (k%) + SoKth,(‘)’)%) 6_0(0((’\\):74>d’\\)/3 (4.2.13)

where Kl(t,x) and X5(t,¥,x) are functionsof J,, G; and Ot -
For future reference it is useful to have the inverse of the
stress-strain relation given by Equation (4.2.8). Substituting Equation

(k.1.4) and (4.1.10) into (4.1.7) yields

Eue =CueicdTi+ 3 0up Loy ol T+ Gaazalg], (2.

where J = J, - J; . In Equation (4.2.14) all of the stress components
are required in order to determine the strain components EO((?)’ therefore,
it is necessary to solve Eguation (4.2.12) prior to using (4.2.14).

Thus for the solution of a plane-strain boundary value problem

the quantities 4, and @(@ must satisfy Equation (4.2.6), (4.2.7)

Ec(g
and (4.2.8) or (4.2.14) and the boundary conditions

/{z/o(-‘- ?/&_(’Z,t) on 8y for (0<t < ™),

(704@7(@,‘—‘-‘&(%;&) on 8, for (0Lt &), (4.2.15)

together with the initial conditions

A (27t)=Coa(%,8)=0 in B for (-w<t<0) . (+.2.16)
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In Equation (4.2.15), S and Sp are complementary subsets of the

boundary of body ES ami??e is the unit normal.

GENERALIZED PLANE STRESS. The governing condition for a plane stress

boundary value problem is
O (x,e)=0. (k.2.17)

Introducing Equation (4.2.17) into (4.1.7) and (4.1.8), and in view of

(k.1.4), the constitutive equations become

E-OL@) = 604(5:(*3-\ + 60{&6xsx\:d\<
€43 = Ouaidk (4.2.18)

where the material response function K is defined as

K=5(J32-30. (4.2.19)

The equilibrium equations, (4.1.2) reduce to

GDL@)@-\-EL:O (4.2.20)

in view of Equations (4.2.2) and (4.2.17).
All of the above equations resemble those for plane strain; but
the dependence of all field histories on x5

generalized plane stress boundary value problem eliminates this dependence

is still present. The

by the averaging technique

W
Q) = R, %ajt) = é_k SQ@”%“%’JCMX"" (4.2.21)
Zh
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In Equation (1+,2.21) (/3\2 represents any typical field history and h is
small compared to all other dimensions. Further, for convenience, let
aok and ,3« represent the relaxation and creep moduli associated with
the generalized plane stress problem. Note that ,J\oL and ,C\}°L are indepen-
dent of the X3 coordinate since q) is independent of Xz .

Applying Equation (4.2.21) to (4.1.3), (4.2.18), (4.2.19) and

(4.2.20), the field equations for the generalized plane stress problem

becomes
é&®)© + FOL:O ; (Ll-.2.22)
g()@: %’_(Ao(,@ + AAAaJo(> 3 (4.2.23)
é\‘*@ = C%'oags s d S+ E)oa@%\mg ol K ;
A A A
Eay = Oyp:0l K (h.2.24)
where \A = %’(ffz- 3\ ‘) . (4.2.25)

Then the field histories 6:(@360(@ and (g, must satisfy BEquations (4.2.22),

(k.2.23), and (4.2.24) together with the initial conditions
A N
’%L(”“f‘:) = 6;@@4,15) =0 in B for (-»<t<0), (L.2.26)
and the boundary conditions
A
L4 (5t) = Ux{2t) on 8 for (0g t< =)
A
and Qg MNp = T (%t) on s, for (0Lt< ) (4.2.27)

to qualify as a solution of the generalized plane stress boundary value

problem.
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In view of Equation (4.2.13), the coefficient of 60@ in

Equation (4.2.14) defines a linear integral functional in Quo -« Compar-

ing this result to Equation (4.2.24) it is apparent that an analogy between
the Plane Strain and Generalized Plane Stress problems exists. This cor-
respondence can be established by replacing Gl and ‘% in FEquation (h,2.2h>
by J; and the above mentioned linear integral functional of Ot respec-
tively. In some special cases this correspondence may take on a particular-
ly convenient and useful form. For "Thermorheologically Simple'" materials

this relationship is given by Gurtin and Sternberg in Reference 25.



CHAPTER V

INCOMPRESSIBLE THICKWALL CYLINDER IN PLANE STRAIN

This chapter investigates the influence of temperature on the
stress components in a thickwall cylinder composed of a material which
Obeys the constitutive relationships of Chapter II. Section 5.1 contains
the formulation of the cylinder problem for two sets of boundary conditions.
First, two arbitrary pressure histories are applied at the internal and
external boundary. The second situation considers an internal pressure
history with the external boundary supported by a thin elastic shell. 1In
the second section the material response functional is established for a
three parameter solid under the influence of a temperature field. Sec-
tions 5.3 and 5.4 give the exact solutions for the unsupported and supported
cylinders for temporally constant temperatures. Also a parameterization

study is included for the unsupported cylinder.

5.1 Formulation of the Problem

To illustrate a method of solution for the viscoelastic models
considered earlier, a thickwall cylinder is examined in the state of plane
strain. The problem is formulated for a linear incompressible viscoelas-
tic material which has an aging or non-aging environmental-dependent
shear response in creep J(t,¥,x) and relaxation G(t,¥,x) . Later in
the study, the shear response is specialized for non-aging materials with
temperature-dependent properties.

Let (r,@,z) denote a generic point in a cylindrical polar
coordinate system which is centered in body'EB . Body ES is a cylinder

of inner radius r = a , outer radius r = b , and height 2z =+ Z .

-88-
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The cylinder is analyzed for two sets of boundary conditions.
Case I is for arbitrary internal and external pressure histories which
are uniform on the boundaries. Case II considers the viscoelastic cylin-
der to be supported by a thin elastic shell. The internal surface at the
elastic shell is assumed to be in a uniform stress-free contact with the
external bbundary of the viscoelastic cylinder prior to time equal to
zZzero. At time equal to zero an arbitrary pressure history is applied
uniformly to the inner boundary of the viscoelastic cylinder. The external
boundary of the elastic shell is taken to be stress-free for all time.

Due to the symmetry in the boundary conditions and body, the
(r,0,z) coordinate system coincides with the principal directions of
the stress and strain tensors. Denote the components of the principal
stress and strain tensors by (0;, G'e,GZ) and (Ef, Ee’Ez) respectively.
Also, for this particular coordinate system and for the case of plane
strain, all field quantities are independent of the © and z coordin-

ates. Assume the displacement field is given by

A=A (1) 5 A= Ay =0 ., (5.1.1)

Then the strain-displacement equations reduce to

EpNe)= Ly 5 Eglrt)= 5 7 &= O (5.1.2)

In the absence of body forces the only non-trivial equilibrium equation
is

Oye Gr“r@ =0 (5.1.3)

Since the object of this study 1s to investigate the effect of temperature
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sensitive material response on the stress distribution, assume that the
dilatational strain due to temperature is negligible. The stress-strain

behavior in shear becomes
C.-Ce = (Er-Eo)idG (5.1.4)

where G 1s the aging, environmental-dependent shear response function
and : denotes the integral operator given the Theorem 3.1.

Thé incompressibility condition requires that the dilatational
response reducé to

/
E—(‘+&e: U,,\ + ,;(:’1 = F (r’c()J,':()

N )

therefore,
A
AL = f—}— ; (5.1.5)

where f(t) is an arbitrary function of time. Then from Equation (5.1.2)

the strain histories became

Er -Eg=- F—(;,_)- . (5.1.6)

Further the incompressiblity condition in combination with Equation (4.2.10)

gives

Ge = 3 (O + Go). (5.1.7)
Combining Equation (5.1.4k) and (5.1.6) yields

Op-Co = - Z..%fil cdg . (5.1.8)

Substitute (5.1.8) into the equilibrium Equation (5.1.4) to obtain



Cr.p = 24w ch:l (5.1.9)

Integrating with respect to r , Equation (5.1.9) becomes

Splne) = J{Z%’) d@(?,t,q)} Jde + hwy. (5.1.10)

Thus Equation (5.1.10) is the governing field equation that must be
satisfied together with the boundary conditions.

Since the boundary condition on the internal surface is the
same in both cases, it is convenient to consider this boundary condition
first. Let Pa(t) denote an arbitrary time dependent pressure function.

Then at r = a the normal stress must satisfy
@(‘ (o,e)= - B ). (£.1.11)
Applying Equation (5.1.11) to (5.1.10) gives

j{z {o) dG(T,R) pde - Rule) (5.1.12)

Then ellmlnatlng h(t) from Equation (5.1.12) and (5.1.10), and inter-

changing time and spatial integrations yields

Se (0t = ‘Po.(,’c)*?(ﬂid K(3,t,0), (5.1.1%)
where
KT ¢, M) = ZJ Gl(“ +' 95 de. (5.1.14)
o

Combining Equation (5.1.13) and (5.1.8), the tangential stress component

is given by

Sollt) = Pm:d{w A K(tr,t)r‘)} - RW.  (5.1.15)
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CASE I. Consider first the unsupported cylinder. Again define Pb(t)
to be an arbitrary time dependent pressure function. The second boundary

condition can now be written as

Cp (.b;{‘—) = - Pb(ﬂ . (5.1.16)

Introducing Equation (5.1.16) into (5.1.13) gives

Pa(*)‘Pb(*)='P(’3’)'-’d\<(’D’)t) b). , (5.1.17)

From Definition 3.3 it is seen that Equation (5.1.17) is a Volterra type
integral equation which is to be solved for the function f(t) . A solu-
tion of Equation (5.1.17) can easily be obtained for non-aging materials
in the presence of at temporally constant environmental fields. 1In this
special case the integral operator in Equation (5.1.17) reduces to a
Stieltjes convolution. Thus, employing the notation in the Appendix, the

governing field equation for f(t) becomes

R - B = T @) * d kit b)), (5.1.18)

The solution of Equation (5.1.18) can formally be written as

fwr = [Rm-P@]* d K, (5.1.19)

where K(t;@-l is the Riemann-Stieltjes inverse of K(t,b) . Intro-
ducing Equation (5.1.19) into (5.1.13) and (5.1.15), and using the associa-

tivity and communativity properties of Stieltjes convolutions, yields

Cr(0) = (K1Y * d (e, T A [Palt) - Rt ] = Rl)  (5.1.20)



_93_
and

VRRSE {\<(Jc)b5\*d[\<(t,r\* %&%ﬂ]}*d[&w—&@} RO, (5.1.21)

For the special case when the relaxation function is independent

of r , then Equations(5.1.20) and (5.1.21) reduce to the Lime solution L

of an elastic thickwall cylinder:

_ ot [Pat) - Pt ] o2 Blt) - Bt P
o= =T o TR

a8 (R - Bel®) & Pult) - ot Pulb)
Qelt)= (-5 + )

(5.1.22)

CASE II. When the exterior surface of the viscoelastic cylinder is
supported by a thin elastic shell, the governing boundary conditions at

the interface are:
Aip (675t) =l p(67,4)
Grlbyt) = anlb™t) (5.1.23)

see Figure 17.
Entering the first of Equation (5.1.23) into the strain-dis-

placement equation for the tangential strain yilelds

Eel(lo,t) = ié_(-éf}f—) = ’4_<_(2‘:J_{’2 = Ee(b“,é) (5.1.24)

for all t .
The radial stress in the elastic shell can now be related to the

tangential strain. The general solution of the elastic problem is given

1 See Reference 36, Section 26,



Figure 17.

-9&-

b (+) og(t,b7) og(t,b")

o, (t,b7) 0,.(t,0")

A Thick Wall Cylinder Supported by a Thin
Flastic Shell.
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by Timoshenko and Goodier,(56) thus for h<<b it follows that
Ee(\o+>t>=-O?Qb*)t5li-\3[\+‘!i(l-v)} (5.1.25)
E n s

where E and ) are the elastic modulus and Poisson's ratio of the
shell. Thus employing the second boundary condition of Equation (5.1.23)

and (5.1.24), (5.1.25) becomes

O}(\J,t3=—)\c§9(b')t§3 (5.1.26)

where

L L BV e
A E DJ’ h(‘ v)l (5.1.27)

But Eiélﬁt) is given by Equation (5.1.6), so the governing condition

on the stress field at r = Db 1is given by

Gp(g)t) == -)\—f—'f({—)_ - (5-1—28)

Substituting Equation (5.1.28) into (5.1.13) and replacing

by * gives

- 7\;&(“\ =-Pw+ fwr dr ik, .,

Thus

t
(31 K@= R~ [ for Kixb) dy (o)

for non-aging materials in the presence of temporally constant environmental
fields. Equation (5.1.29) is a Volterra integral equation of the second

kind which is to be solved for f(t) .
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5.2 Evaluation of the Material Response Functional

To proceed, it 1s now necessary to pick a particular material
or class of materials., Since one of the objectives of this chapter is to
investigate the effect of the vertical scaling and shift factors of map-
ping hypothesis introduced in Chapter II on the mechanical field histories,

let the temporally constant relaxation response be given by

QY = G+ A+ &GP G B, (5.2.1)

where 1# is defined as the deviation of some environmental parameter

from the reference state §’ . Thus, Equation (2.1.7) becomes

Pt = Pzt - § . (5.2.2)

Further, assume the mechanical response in the reference state

2
is that of a three parameter solid, then

GluB) = Got § EXP(-3). (5.2.5)

Now from Equation (2.3.20), the material response functional for a non-

aging, environmental-dependent, three parameter, viscoelastic solid is

Gl[ﬂﬂi%] =Y + (1+ Czﬂ’)[ic*% eXp ‘J/c“p):\
- Sé‘:%“ . exp (-5 yy do (5.2.4)

for t >0 .
Let the initial temperature be Tb throughout the cylinder

prior to t =0 . Let Cb = Tlr,t ) denote the temperature field which

2
See Reference 17, page 16.
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arises when the temperature at the internal boundary r = a 1is changed

from Tb to Ta at t = 0 . The governing equation for this temperature

field is
2_-_’-_2&(32_74. &I.)
p)

At (5.2.5)

where k 1is the coefficient of thermal conductivity. Equation (5.2.5)
is to be solved together with the boundary conditions

T, for t in (-%,0)

+) = - (5.2.6)
Tut) To. for t in [0,®)

and T(bt)= Ty . forall ¢t .
The solution of Laplace's equation is a special case of a general solution
given by Carslaw and Jaeger,(BY) thus
T Loo, (B) + Ty Lo (%)
T((’,t) = N b +
Loy (&
S Uo(rom) Jo (Geton) Jo(ben) 2
To~T CXP(~Rolmt

T (Te Qg:‘ o (G = T2 (oK) <% " >3 (5.2.7)

where
Us )= To (o) Yo (ool ~Too (otlin) Yo (Mol (5.2.8)

JO(?O%Q and YOCnxwg are the Bessel functions of the first and second

kind respectively. The K 's are the roots of?
n

Jo (@) Yo (o) =T (oo VY (a Y= O (5.2.9)

2 These roots are given in Appendix IV, Table IV of Reference 37.
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t
Tt is now possible to evaluate G[t, (S)] . Without loss of
S=0
generality, let Ty correspond to the reference state ?é , then Equation

(5.2.2) becomes

() = e s Ao+

Sar Uo ()T (610X ) Tol bXom) CXP ‘&0(2
TT(TCL b)wz_‘ J-‘L(%) U-I(bo(m\ ( ) @

(5.2.10)

Then on substituting Equation (5.2.10) into (5.2.4), and integrating

term by term, the relaxation response function becomes
=< &
G\BJ“&&?] = [o+q, exP (-‘1'0)}*’

' - _ b
[Cl'\'Cz_%o-l-Czqﬁexp(—%\l{'( \a&;—bSb%S( /d + (5.2.11)

Uo(Polm) To (ot m) Jo bk ) - 2.
T, - ExXP L
Tr( < TQMZ.' z(ao(m\) Joz(bO(m) ( &dm >‘} +

od
j n (o] (&) m \
concuo MR

W —‘-‘

L

z l m dmlf*._
futerl mek- 1 ek - 2hih ) ]

The combining Equation (5.2.11) with Equation (5.1.14) gives

Kn=R+ Bexer(-%) +
2 L
Zz|{'CmEXP (“i}m\* Dmexp<—%)}9 (5.2.12)

where A, B, C, Dn’//ni and 7/n are given by
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A= Z(ria) | (+C 2 )(Ta-Te) [ 2 de (b)) _ rh-qr
ar,rz O L ﬁcq‘(b/a) ,g(,%(b?/azx

o> N
4+ C-L(To.‘TbBNé [%l /{7”\ - Zol E‘N\ 9

G (r*-at) . CoUlTa-Tp) (k) _prog
B= Tl i e L-a” |,
a. s [oR X1 E /eo_% (5/0) ’20‘3(\02/03 1

C”\:‘: T (C‘ + Zcz%o)(Ta.-T\a) E(v\

D= 2 G g, (Ta-To) 1 + A2VEm 3 (5.2.13)

- . UB(0.0(M\JQUOQMB %(\OO(M)
S0 T lamy- 3 cbom}/ de 3

Y= ke
SpRi +1) .

5.5 Solution of the Unsupported Cylinder
for Temporally Constant Temperature Fields

The results of the preceding section verify that the details
of obtaining an analytic solution are quite involved. Since the objec-
tive of this study is to investigate the influence of the vertical scaling
coefficients Cl and Co on the stress fields, assume that the tempera-
ture field is constant for all time. Hence the solution corresponds to
heating the cylinder and letting it come to a steady-state temperature
distribution prior to applying the external loads. The thermal boundary

conditions for this case are given by
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T@t= T for t in (-x,®) ,
Tlot) =Ty for t in (-x,®), (5.3.1)

then, the solution of Equation (5.2.5) together with (5.3.3) yields

T (r) = Yo Loy () +To Log(Va) (5.3.2)
/ Loy (o/s)

The deviation 1P from the reference state Ty is then

¢=% L (o] (5.5.3)

and the relaxation function becomes

Gl M) = G +(C 4+ C G ) Ta. -T M
i ) ﬁ) ( \ zc% \ o) Jaogf(&x&x)

i, 1\ Log (Y -k
+9, [+ Co(TaTo) %]exp( ). s

Substituting (5.3.4) into (5.1.12) gives
Kun=R+ Bexp (-%), (5.5.5)

where A and B are given by Equation (5.2.13) provided E, = 0.
The Stieltjes inverse K(t,b)“l must satisfy Equation (Al.3).
Applying the Laplace transformation technique to (Al.3), and in view of

part (f) of Theorem (Al.3), it follows that the transform of the inverse

function K(s,r) is given by

—_— 1 |
K5, = —= =
S K0 s’-{%+ —E—'J%—
. ‘/R _ B /rt (5.3.6)

= |+ (B18)ps
\

il




-101-

Inverting Equation (5.3.6) and setting r = b yields

B _eypl_ Bl __* 1}

-1 \
KL= 'R_LE\{‘ T RO+BEB - R@+BE) P (5:3.7)

The resultant stress field can now be determined. Let the pressure

functions be given by

Rutt) = Rdey 5 Rw=o, (5.3.8)
where P, is an arbitrary constant. Then Equation (5.1.20) and (5.1.21)
become
Op(rt) = P { k(&b xed ke, m) - 2e) § (5.3.9)

To(Pt) = pa{K('blo)-‘ skl (kg + iﬁﬁﬂ‘—] i&)} (5.3.10)

Substituting Equation (5.3.5) and (5.3.7) into the above and evaluating

for t in (0,w) yields

Op(0t) = Pa %ﬁ) R(b\ LB“ Bl NQ;@S]X

o= [~ sam) 71" } (5:3-11)
and
Oo (M) = P “2';)) W 8- 26 2%:%&}%

exp [~ R(b?ib\%(m P —\} (5:3.12)

In Equation (5.3.11) and (5.3.12)
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R = AWM+ FM
and Br) = B+ Fo ) 3 (5.3.13)

A(r) and B(r) are given by Equation (5.2.13) provided E, = O ; and,

Fl(r) and Fo(r) are given by

- _Z‘__ - ’e'd'Q/(b/f"\ )
F (M= X ‘\Cﬁo‘*‘ G+ cz%oﬁ(-r& To) /&;% (b/@l 3

T &gb/)
F ()= L | + Co (Ta-Ty) . (5.3.14)
2 r?_ .
- LO'C& (b/a) -
It is now possible to evaluate the effect of the Mapping
Hypothesis given in Assumption 2.1 on the resulting stress distributions.
For the special case when T, = Ty 1t follows that

r_:\ (r\) =%Oir‘1_03> ; BU‘) - q)l (r\’L_G}) .

> arpr )

HGETUI VA )

/
ﬂ (p): az Pt ) arpv e

(5.3.15)

Then it is easy to show that the coefficients of the exponential terms
in Equations (5.3.11) and (5.3.12) vanish, and that the remaining terms
reduce to the temporally constant stress-state given in Equation (5.1.22),
Thus the temperature sensitive material properties introduce a time-
dependent response.

Next consider the special case when C; = O in Equation (5.2.1).
This corresponds to scaling the initial response and residual response by

the same factor. From Equations (5.2.13) and (5.3.13) it can be shown

DM _ B
Do iy
and n(n _ BN (5.5.16)

%o iy
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Introduction of Equation (5.3.16) into (5.3.11) and (5.3.12) also causes
the exponential term to vanish and the resulting stress field is again

independent of time. The stress components for Cl = 0 are

1o deg (ki)  plgz
Gr(r)= - B =) T C ()~ St

L !‘L&b‘-wﬁcz(n-‘rb) - - y:l-ogl
( Lo (b /az)\} 5.3.77

1 o ékﬁ%( /Wb Pt - o>
el HE) G lo:;(b/a\ »eoe(b?‘;c@)ﬂ

- @) G5 -

Similarly it follows that

Se(f‘>‘-‘- - Pa

’Q"%Qb /OU‘) ] (5.3.18)

To study the effect of temperature on the stress components,

it is convenient to let
a=\ b=2 , eand Tz'_' C,(Ta-Ty) « (5.3.19)

Figures 18 and 19 show the influence of TEE on the radial and tangential
stress components. The variable “Tg may be viewed in either of two ways.
The first is to consider C, fixed, then ?22 represents the effect of
temperature on the response of some particular material. This corresponds
to the vertical scaling suggested by Ferry, which is discussed in Section
2.2A. The second approach is to hold (Ta-Tb) fixed, then i}é shows
the response of a general class of materials which exhibit vertical
scaling.

As shown in Figures 18 and 19, ¥, has very little influence
on the radial stress; but, the influence on the tangential stress is
quite pronounced. For a given material ( Co  held fixed) the curves

indicate that as T,-Ty increases, the magnitude of the stress component
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Figure 19. Influence of £, on the Tangential Stress Component
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increaseson the inner boundary and decreases on the outer boundary. If
Ta—Tb is held fixed, then as ?:2 increases the magnitude of the stress
components increase at r = a . Note that the effect of the vertical
scaling causes a significant deviation from the elastic solution which
corresponds to '?2 =0 .

Consider next the material response when C;# O and Cp =0 .
This corresponds to changing the initial and residual response moduli
by the same additives constant. Under these circumstances the equations
for the stregs-state retain the same basic form as given in Equation
(5.3.11) and (5.3.12). Thus it is the presence of C; that introduces
the exponential time term. For both stress components, the time indepen-
dent behavior, as well as the rate and amount of viscoelastic response,
all depend on Cl(Ta—Tb)

For the purpose of studying the influence of the temperature

term Cl(Ta—Tb) on the stress histories, again set

\
=15 b=\5 q,=7 =125
and, = G (Te-Te) . (5.5.20)

Figures 20 and 21 show the result of introducing Equation (5.3.20) into
(5.3.12) and evaluating §'e(r,t) at r=a and r=5b . As Tl in-
creases the general long time trend is to increase the magnitude of the
stress components on the inner boundary a decrease the stress on the
outer boundary. The relaxation time does not appear to be altered signi-

ficantly by changes in ?]_
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Co =0 .
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5.4 Solution for the Supported Cylinder

Consider now the supported cylindrical shell. Here also an
exact solution can be obtained for a temporally constant environmental
field. Let G(t,r) and K(t,r) be given by Equation (5.3.4) and (5.3.5)
respectively. Now the Volterra integral Equation (5.1.29) can be solved
for f£(t) since K(b,t) is known.

Set r =Db in Equation (5.3.8), then the Laplace transform

of Equation (5.1.29) is

Bb)

Teas (542

/Q‘;n(—%3 = TS;“—(S}S-\-

where Pa(s) and f(s) are the transformation of Pa(t) and f(t)

respectively, and

x={;—1+mm+3® , (5.5.2)

Solving Equation (5.4.1) for f(s) yields

-
= J_' S

f(o = Fals)’ -
) 3 A2-80)|| + -8 BUo) 5})}

Inverting Equation (5.4.3) glves

Fy = .P“m + B(b) SPG ’5’)“6)“3( X - B(")) ]O{’)’ (5.4.5)

(5.4.3)

T ew )

For the special case when P, (t) = P 1(t) , Equation (5.4.5) reduces to

ch " { R-B(b\) g

o= BM{ eXP T t (5.4.6)
for t> 0 .

The radial and tangential normal stresses can now be determined.

Substitute Equation (5.3.4), (5.3.5) and (5.4.6) into (5.1.13) and (5.1.15),
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and evaluate to get

> X r 2 B(
Sellit) = P«{)\i E(:(b) t 5 t_B(r) _ & BWLRM+ M’_\]x

X+ R(b) A+t (R + BoY)
CxpP { )\>\+_;1\?_;E\Llog®1 ,p] } (5.4.7)
Sote) = Pof 5y * e ~ S aaes )X
expl Shtaweamy U, 04

where A'(r) and B'(r) are given by Equation (5.3.14). From Equation
(5.1.28) it can be seen that N = 0 corresponds to stress free boundary
condition at r = b . Therefore, on setting }'\: 0 in Equation (5.4.7)

and (5.4.8); Gr and 6‘9 reduce to the unsupported cylinder solution.



APPENDTIX

REIMANN-STIELTJES CONVOLUTION ALGEBRA

For the convenience of the reader, the definitions and properties
of Riemann-Stieltjes convolution algebra are stated here. The results

given below are verified by Gurtin and Sternberg in Reference 9.

DEFINITION Al. Let the function f be in class CN if it is defined,

continuous and has N continuous derivatives on (a,b) .

DEFINITION A2. Define the function f to be in class

defined on (-%,®) , vanishes on (-%,0) , and is in class ¥ on [0,%)

DEFINITION A3. Let ’q) be in class H! and ¢> in HO . This is suf-

ficient to guarantee the existence of the Riemann-Stieltjes integral

"
9&)=J cb(t-a’)dxy('x) (Al.1)

-od

for all t in (-o,©) ., The function @(t) defined by Equation (Al.l)
is the Stieltjes convolution of Cb and ﬂ? . Let the function ©(t) be

denoted by

@‘d)*d"\’- (A1.2)

THEOREM Al. Let @ be in class H and 4 and W in gl . Then

(a) dkaV is in H0 and Wk a¥Y is in H ;

(b) Pxay = Wxdd;

-111~



-112-

(c) Pxd(Yxrdw)=(dx dv)* dw= Pxd¥ * dw
) P+ w)= Pxdy + dxdw;y

(¢) dxdp=0 implies d=o or Y=0;

(£) dxAY = cbcmp(o;+5:cbu-yww)wdys

(5) Dskd ) = ).

(a

1

THEOREM A2. Let ¢ be in H Then there is only one function '4’ in

Hl such that

dk b= 1) (11.5)

for all t in (-w,©) , If ’L\/ exist it is called the Stieltjes inverse

b

of (b and 1t is denoted by'q/ =C\)_l . Let the functions o and (?3 be

in HO , then

O(*dd}-:(ﬁ implies X = %*ddj\, (AL.4)

THEOREM A3. If d) is in H2 , then a necessary and sufficient condition

that &' exist is that ¢(o) +o.
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