THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

TREE REBALANCING IN
OPTIMAL TIME AND SPACE
Quentin F, Stout and Bette L. Warren

CRL-TR-42-84

October 1984

Room 1079, East Engineering Bullding
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

'Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the funding agency.






Tree Rebalancing in Optimal Time and Space

by
Quentin F. Stout!

Dept. of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109

Bette L. Warren

Department of Mathematics and Computer Science
Eastern Michigan University

Ypsilanti, MI 48187

'Research partially supported by National Science Foundation grant MCS-83-01019.



ABSTRACT

We give a simple algorithm which takes an arbitrary binary search tree and rebal-
ances it to form another of minimal height, using time linear in the number of nodes and
only a constant amount of additional space (beyond that used to store the initial tree).
This algorithm is therefore optimal in its use of both time and space. Previous algo-
rithms were optimal in at most one of these two measures, or were not applicable to all
binary search trees. When the nodes of the tree are stored in an array, a simple addition
to our algorithm results in the nodes being stored in sorted order in the initial portion of

the array, again using linear time and constant space.



1. INTRODUCTION

A binary search tree is a conceptually simple, reasonably efficient, and widely used
structure in which to maintain ordered data. Because the fundamental operations of
insertion, deletion, and searching require accessing nodes along a single path from the
root, for randomly generated trees of n nodes (using the standard insertion algorithm),
the expected times to perform these operations are 6(log(n)). Unfortunately, it is possi-

ble for a binary tree to have very long branches, and the worst case times are 6(n).

In order to avoid the worst-case linear times is necessary to keep the tree balanced,
that is, it should not be allowed to have unnecessarily long branches. This problem has
been studied intensely, and there are many notions of balance and balancing strategies,
such as AVL trees, weight-balanced trees, self-organizing trees, etc.[d]. Here we are con-
cerned with perhaps the simplest strategy: periodically rebalance the entire tree to make
an equivalent one of minimal height. This strategy has been discussed by many authors,
and several algorithms have been offered [1,3,5); recently Chang and Iyengar [2] surveyed
this work and presented additional algorithms. Despite all of this work, no previous
algorithm could be applied to an arbitrary binary search tree and perform the rebalanc-
ing in time linear in the number of nodes, while using only a fixed amount of additional
space beyond that originally occupied by the tree. The main result of this paper is a

simple algorithm which accomplishes this.

A tree of minimal height is sometimes called route balanced. Notice that a route
balanced tree of n nodes has height |lg(n)] (Ig(n) = logy(n)). (The height of a tree of no
nodes is -1, the height of a tree of 1 node is 0, and in general the height of a tree with
more than 1 node is 1 more than the maximum height of each of the subtrees whose

roots are children of the root of the tree.) Given the nodes to be used, route balanced



trees are not unique; for example, Figure 1 shows the 6 route balanced tree shapes with 5
nodes. A stronger requirement is that of perfect balance, which requires that at each
node, the number of nodes in its left subtree differs by no more than one from the
number of nodes in its right subtree. Every perfectly balanced tree is route balanced,

but not vice versa. For example, in Figure 1, only trees b,c,d, and e are perfectly bal-

anced.

With the exception of Day 3], previous authors concentrated on creating perfectly
balanced trees. While perfect balancing fits naturally into a top-down approach, we
know of no reason to prefer a perfectly balanced tree over a route balanced one, and our
basic algorithm creates route balanced trees. If, for some reason, a perfectly balanced
tree is needed, a modified version of our basic algorithm, still requiring only linear time
and constant additional space, can be used. No previous algorithm produced a perfectly

balanced tree using only constant additional space.

Our algorithm proceeds in two phases. The binary tree is first transformed into an
ordered ‘vine” in which each parent node has only a right child, and then the vine is
converted into a route balanced tree. This strategy is the same as Day's [3]. However,
Day requires that the initial tree be threaded and we do not. Threading requires extra
space at each node to store a flag indicating whether a pointer points to a child or to an

ancestor. (In Day's case an extra sign bit was needed.)

Chang and lyengar [2] assume that the nodes are stored in an array, while we do
not. One of their algorithms has the side benefit that when finished, the nodes are
stored in sorted order. In section 3 we show how an easy addition to our algorithm will

also perform sorting for nodes stored in an array, again using only linear time and con-

stant additional space.



Throughout, we will use n to denote the number of nodes in the tree. Our algo-

rithms do not require prior knowledge of n.



2. REBALANCING

We will use the following declarations:
type nodeptr = tnode;
node = record right, left: nodeptr;
{other components, including the key}

end;

While we use this standard pointer implementation of trees, our algorithms require no
special properties of pointers (nor of Pascal) and can easily be modified for a variety of

tree implementations with no loss of efficiency.

A procedure tree_to_vine reconfigures the initial tree into an increasing vine, and
also returns a count of the number of nodes. Then the procedure vine_to_tree uses the
vine and size information to create a balanced tree. To simplify our algorithms, each

vine will have a dummy root which contains no data.

Tree_to_vine

The tree_to_vine procedure is quite straightforward. The algorithm proceeds top-
down through the tree, creating an initial portion which has been transformed into a
vine and a remaining portion of nodes with larger keys which may require further
transformation. A pointer ‘‘vine_tail” points to the tail of the portion known to be the
initial segment of the vine, and a pointer ‘‘remainder” points to the root of the portion
which may need additional work. Remainder always points to vine_tail{.right. When
remainder is nil the procedure is finished. If remainder points to a node with no left
child, then that node can be added to the tail of the vine. Notice that this happens

exactly n times. Finally, if remainder points to a node with a left child then a rotation



is performed, as illustrated in Figure 2.

Any node initially reachable from the dummy root via a path of right links retains
this property after the rotation. Further, after the rotation, the node which was initially
pointed to by remaindert.left also is reachable via right links. Since each rotation
increases by 1 the number of nodes reachable from the dummy root via right links, at
most n-1 rotations can occur (it is n-1, and not n, because the root is initially reach-
able). Therefore the while-loop can be executed at most 2n-1 times (and must be exe-

cuted at least n times), and tree_to_vine finishes in ©(n) time.

Vine_to_tree

Two versions of vine_to_tree are given. Each modifies a restricted version of a sim-
ple algorithm of Day[3] which creates a complete binary tree from a vine with 2™ -1
nodes, for some positive integer m. The k** step of this algorithm is illustrated in Fig-
ure 3. The triangles represent complete binary trees of 2* -1 nodes, and the circles
represent 2'-1 spine nodes, where I+k=m. Each white triangle is reattached to the
right side of the black spine node above and the resulting tree is attached to the left side
of the white spine node below. The result is an ordered tree with 2F'-1 spine nodes and
gkt

complete binary subtrees of 2¥'-1 nodes each. We call this operation a compression.

If compression is performed m-1 times it will produce a complete ordered binary tree.

When n+1 is not an integral power of two we alter the first step by reattaching
only n—(QU”(")Ll) nodes. The result is a tree with 2L%(")_1 spine nodes and 2L%(")
attached subtrees with either 0 or 1 node in them. The algorithm then uses compression
as before for |lg(n)]-1 more steps, producing a route balanced tree regardless of which

nodes are reattached in the first step.



Our basic algorithm uses the first, third, fifth, etc. nodes as the choices to reattach
in the first step, producing a route balanced tree in which all of the deepest leaves are as
far left as possible. This is achieved by doing a compression on an initial portion of the
vine. Day’s algorithm also works for vines of arbitrary length, producing trees in which
the deepest leaves tend towards the right. The sole reason for our adjustment of his

algorithm is to simplify the discussion for perfectly balanced trees.

To produce a perfectly balanced tree it is necessary to skip over some nodes at the
first step, creating somewhat evenly spaced conceptual holes in the lowest level of the
final tree. Imagine a vine with olle(m+11_1 nodes. In such a vine the odd numbered
nodes would be the leaves in the final perfectly balanced tree, and the even numbered
nodes would form the spine after the first step. The tree created would have 1=2*lls(n)
leaves. The actual tree we will build has h=(2[%("*1_1)- holes where the imagined
tree had leaves. We place the i® hole at the |i*(I/h)] leaf position. (Note that I>h, so

different holes will be placed at different leaf positions.)

To see that the final tree will be perfectly balanced, identify the 7% leaf of the
imagined tree with the interval [j,j4+1). The leaf positions associated with the left and
right subtrees of any node correspond to two disjoint half-open intervals of the same
length. Since the rational numbers 1*(I/h), 2*(I/h), . . . ,h*(I/h)=! are evenly spaced,
the number of rational numbers falling into one of the half-open intervals cannot differ
by more than one from the number falling into the other; consequently, the number of

holes in the two subtrees cannot differ by more than one.

The algorithm for producing perfectly balanced trees is obtained from the basic
algorithm by replacing the first call to compression with a call to perfect_leaves. Since

perfect_leaves goes sequentially through the vine, it runs in linear time. Vine_to_tree



uses only a constant amount of extra space, and runs in linear time, regardless of which
version is used, because each call to compression runs in time linear in the number of
spine nodes, and at each step after the first, the number of spine nodes after compres-

sion is less than half the number before it.



procedure rebalance (var root: nodeptr);

var pseudo-root: nodeptr; size: integer;

procedure tree_to_vine (var root: nodeptr; var size: integer);
var vine_tail,remainder,tempptr: nodeptr;
begin {tree_to_vine}

vine_tail:=root;

remainder:=vine_tail{.right:

size:=0;

while remaindersnil do

if remaindert.left==nil
then begin {move vine_tail down one}
vine_tail:=remainder;
remainder:=remainder{.right;
size:=size+1
end {then}
else begin {rotate}

tempptr:=remaindert.left;
remainder?.left:=tempptrt.right;
tempptri.right:=remainder;
remainder:=tempptr;
vine_tailf.right:=tempptr
end; {else}

end; {tree_to_vine}

10



procedure vine_to_tree (var root: nodeptr; size: integer);

var temp: nodeptr; leal_count: integer;

procedure compression (var root: nodeptr; count: integer);
var scanner: nodeptr; i: integer;
begin {compression}
scanner:=root;
for i:=1 to count do begin
child:=scannert.right;
scanner }.right:=child{.right;
scanner:==scanner?t.right;
child}.right:=scanner{.left;
scannert.left:=child;
end; {for}
end; {compression}
begin {vine_to_tree}
leaf_count:=2[%Cise+1)l _j _gize.
compression (root, leaf_count); {create deepest leaves}
size:=size-leaf_count;
while size > 1 do begin
compression (root, size div 2);
size:=size div 2;
end; {while}

end; {vine_to_tree}

11



begin {rebalance}

new (pseudo_root);

pseudo_root t.right:=root;
tree_to_vine (pseudo_root, size);
vine_to_tree (pseudo_root, size);
root:=pseudo_root}.right;
dispose (pseudo_root);

end; {rebalance}

12



procedure perfect_leaves (var root: nodeptr; leaf_count: integer; size: integer);
var scanner leaf: nodeptr;
counter, hole_count, next_hole, hole_index, leaf_positions: integer;
begin {perfect_leaves}
leaf_positions:=2["(sire+1)]-1,
hole_count:=leaf_positions-leaf_count;
if hole_count>0 then begin
hole_index:=1;
next_hole:=leaf_positions div hole_count;
scanner:=root;
for counter:=1 to leaf_positions-1 do
{The upper limit is leaf_positions-1, and not leaf_positions,
because the last position is always a hole.}
if counter=next_hole
then begin
scanner:=scanner}.right;
hole_index:=hole_index+1;
next_hole:=(hole_index*leaf _position) div hole_count;
end {then}
" else begin
leaf:=scanner?.right;
scanner].right:=leaf?.right;
scanner:=scanner }.right;
scannert.left:=leaf;

leaft.right:=nil;

13



end; {if}

end; {perfect_leaves)

end; {else}

14



3. SORTING

Sometimes trees are implemented by using arrays of records, where a pointer to a
node is an index into the array. (For FORTRAN-style implementations, instead of an
array of records one uses parallel arrays, one for each of the record’s components.) In
this case, one of the algorithms in Chang and Iyengar [2] provides a fringe benefit: when
finished, the tree occupies the first n positions of the array, and the items are stored in
sorted order. However, their algorithm requires a significant amount of extra space, as it
first copies the entry array into an auxiliary array. For such an implementation, a call
to a new procedure sort_vine, made between the calls to tree_to_vine and vine_to_tree,

also provides a sorted array, while still using only ©(n) time and 6(1) space.

Sort_vine moves the vine so that its items are stored in order in positions 1 - - - n.
We will use the following declarations:
const
node_array_limit={some positive integer};
null=0;{equivalent of nil for pointer}
type
nodeptr=null..node_array_limit;
node=record data: {arbitrary, and includes the key};
left,right:nodeptr;
end;
node_space=array|[l..node_array_limit] of node;
var

nodes: node_space;

15



Sort_vine proceeds top-down, moving data from the vine to its desired position in the
array. The i** node from the vine is moved to the i** position of the array by switch-
ing data parts. It may be that position ¢ held a node of the vine, in which case some
pointer still points to 1. To ensure that this data can be found later, the left pointer at
position 1 is used to point to the position to which the data has moved. (Since the vine
uses only right pointers, no pointer information is destroyed.) In general, when the next
vine node is to have its data moved, the pointer to it points only to its initial position.
The variable “alias’ is used to find the current location of the data by following left

pointers until a null one has been found.

To verify that the algorithm takes ©(n) time, we note that any left link is
traversed at most once, and hence the total number of iterations of the while-loop is at

most n-1. (It is n-1, and not n, because the last left link created cannot be traversed.)

16



procedure sort_vine (var root: nodeptr; size: integer);
var next_node,next_node_alias: nodeptr;

counter: integer;

begin {sort_vine}

next_node:=nodes[root).right;

for counter:=1 to size do begin
alias:=next_node;
while nodes[alias).left7#null do

alias:==nodes|alias].left;

switch(nodes[alias].data, nodes|counter].data);
nodes|counter].left:=alias;

next_node:=nodes[next_node].right;

end {for};

{The remainder of this procedure merely sets up the correct left and right pointers for
the vine, enabling vine_to_tree to be used unaltered. If vine_to_tree is rewritten to use
the fact that the nodes are now sorted in positions 1 - - - size, then the remainder of this

procedure can be eliminated.}

root:=size +1;

nodes|root].right:=1;

for counter:=1 to size-1 do begin
nodes|counter].right:=counter +1;

nodes(counter].left:=null;

end {for};

17



nodes[size].left:=null;

nodes|size).right:=null;

{Note: in actual use, there would also be some allocation procedures which obtain and
release nodes, just as new and dispose are used for pointer variables. Positions

size+2 - - - node_array_limit should be made available for future allocation}

end {sort_vine};

18



4. SUMMARY

We have presented a simple algorithm which takes an arbitrary binary search tree
and transforms it into one of minimal height, using linear time and constant additional
space. Previous algorithms required more time or space[2,5], or both[1], or could not be
applied to arbitrary binary search trees [3]. The basic algorithm produces a tree of
minimal height, which should be an optimal tree for any application. In case there is
some need to produce a perfectly balanced tree, we also provide a slightly more compli-

cated algorithm which accomplishes this, again using optimal time and space.

Finally, our last modification can be used when the nodes are stored in an array.
The tree is rebalanced, and the nodes are stored in order in the initial portion of the
array. This modification uses only linear time and constant space, unlike the P2 algo-
rithm of Chang and Iyengar|2], which also sorts and rebalances in linear time, but needs

a second array.

19



REFERENCES

1. Bentley, J.L., Multidimensional binary search trees used for associative searching,

Comm. ACM 18 (1975), 509-517.

2. Chang, H. and Iyengar, S.S., Efficient algorithms to globally balance a binary search

tree, Comm. ACM 27 (1984), 695-702.
3. Day, A.C,, Balancing a binary tree, Computer J. 19 (1976), 360-361.

4. Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and Searching,

Addison-Wesley, Reading, MA, 1973.

5. Martin, W.A. and Ness, D.N., Optimal binary trees grown with a sorting algorithm,

Comm. ACM 15 (1972), 88-93.

20



4

a)

C)Vine_tail

remainder

IO

Figure 1.

vine_tail

rotate

Figure 2.



IIIIIIIIIIIIIIIIII

®

A0
AR
A C
A

B—
’ compress
A / g
A C
I/'l

Figure 3.



