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Abstract 
Learning to teach is difficult for prospective teachers because of the complex nature of the work of 

teaching. Practicing (Lampert 2010), interacting with the practice of teaching from a first-person 

perspective, may give them a unique experience in learning to teach. Computer-based simulators in which 

the apprentice teacher can interact with virtual students may be used to create that kind of experience. In 

this paper, we show how to apply techniques in artificial intelligence to design an intelligent learning 

environment. We show how to model the apprentice’s decision-making and resources that can help him or 

her improve the practice of teaching. 

Keywords: representation of teaching, teacher education, teaching simulator, intelligent 
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1. Introduction 
Teaching is a unique practice: Every instance of that practice is a performance 

that takes place over time, where the teacher needs to make strategic decisions, where 

s/he can seize or miss tactical opportunities, and where s/he can use various kinds of 

resources (Lampert 2001; Shavelson 1983) to help students learn what s/he expects them 

to learn. Leinhardt and Ohlsson (1990) point out that “teaching is socially dynamic, ill 

structured, and extremely complex” (p. 22). In other words, the teacher often deals with 

highly variable situations from student to student, moment to moment, and class to class. 

One or few solutions are insufficient for the teacher to handle all situations. In addition, 

the problems of teaching are often hard to predict: novice teachers frequently meet 

problems in their practice that they have never met before (Lin, Schwartz, and Hatano 

2005). Therefore, one of the important goals in teacher education is to help them develop 
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the ability to adapt themselves and their environment in response to a wide range of 

classroom and student variability (Lin 2001). 

Different approaches to learning that focus on practice have been proposed and a 

variety of technologies have been implemented to attain the above objective. Fishman 

and Davis (2006) provide useful reviews of those approaches and technologies. Some of 

those are specific to learning the practice of teaching and Lampert (2010) provides a 

framework for learning teaching from practice. 

Video records of classroom teaching are often used in those approaches to support 

teachers’ learning to do practice; see for example, Lampert and Ball (1998), van Es and 

Sherin (2008). Indeed, video artifacts may sustain teachers’ learning about, for example, 

subject matter or pedagogical knowledge (Wang and Hartley 2003), pedagogical content 

knowledge (Lampert and Ball 1998), and noticing (van Es and Sherin 2008). 

Video records of classroom interaction have obviously provided teachers with 

useful learning experiences from a third-person perspective (i.e., to observe other 

teachers in action). There seems to be, however, a critical limitation of this kind of 

representations of teaching: it is very difficult for the apprentice teacher to practice 

alternative actions and get immediate feedback (e.g., to see students’ reactions) in 

response to critical events while watching video records of classroom instruction. Also, it 

is obviously impossible for the apprentice to perform that kind of “try-and-see” 

experiences with real students in a real classroom. A number of virtual environments 

(e.g., Second Life: http://secondlife.com, Unreal Engine: http://unrealtechnology.com) or 

software pieces (e.g., The Teaching Simulator, see http://teachsim.com; or the lesson 

sketching software of project ThEMaT, see Herbst, Chazan, Chen, Chieu, and Weiss this 

issue) may provide platforms for that purpose. Indeed, based on those platforms or tools 

one can develop virtual environments in which the apprentice can interact with virtual 

agents or other apprentices who play the role of students. We argue, however, that while 

practicing teaching in that kind of virtual settings, the apprentice needs support or 

scaffolding to be able to learn how to practice effectively. We are interested in intelligent 

support that is automatically generated to tailor to the individual needs of the apprentice 

in a specific learning context.  
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Our contribution here aims at sketching and exemplifying the design of an 

intelligent computer-based simulation system, an interactive representation of teaching, 

that could provide significant help to overcome the previous limitation. An intelligent 

teaching simulator is a software in which the apprentice can interact with virtual students, 

freely make decisions, and receive immediate feedback from the system on his or her 

decisions (in the forms of reactions by virtual students or judgments by the system). We 

believe that such a simulator could provide apprentices with a unique and useful 

experience—to investigate the practice of teaching from a first-person perspective—an 

experience that is closer to the work of teaching they would eventually do in a real 

classroom. A simulator would allow them to get relevant, immediate, and 

multidimensional feedback from the system that helps them improve their professional 

practice, and they would not see any potential harm in interacting with virtual students. 

The microteaching approach (Allen and Eve 1968) using complexity-reduced 

teaching contexts and video records of practice was an early attempt to create first-person 

engagements with practice. This approach can help the apprentice examine and reflect on 

his or her own professional practice and get feedback and comments from peers and 

instructors. Some research has documented the value (e.g., see Fernandez and Robinson 

2006) and the limitations (e.g., see Macleod 1987) of microteaching. The simulation 

approach we propose pursues similar goals as microteaching: to reduce some complexity 

and enable reflection. Our approach also contributes the possibility of feeding research-

based knowledge about students’ responses to instructional tasks into the problems the 

apprentice needs to handle through the actions of the virtual students. In working with the 

simulator we envision, the apprentice is more likely to encounter more cognitively 

demanding problems of practice than those that they may encounter when they 

microteach in front of their peers (where performative demands may be especially 

salient). 

Computer-based simulations have been largely used in the professional education 

of practitioners other than teachers (Lajoie, Faremo, and Wiseman 2001). For example, 

Luengo and associates (Chieu, Luengo, Vadcard, and Tonetti in press; Luengo, Mufti-

Alchawafa, and Vadcard 2007) developed a simulation-based intelligent learning 

environment to support the novice surgeon in mastering pragmatic knowledge in the 
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domain of orthopedic surgery. Mulgund, Asdigha, Zacharias, Krishnakumar, and Dohme 

(1995) built a simulation-based intelligent flight trainer for the neophyte student to 

develop practical skills on a suite of initial entry rotary wing maneuvers. 

In this paper, we show how to design an intelligent teaching simulator, which 

aims at helping apprentice teachers develop the ability to manage students’ engagement 

in proving in geometry. We have chosen the instructional situation of doing proofs 

(Herbst and Brach 2006; Herbst, Chen, Weiss, and González 2009) because it provides a 

simple but sufficiently complex context to illustrate our approach, which we believe 

could be applied to other instructional situations as well. By instructional situation we 

mean a system of norms for interaction, usually tacit, that regulate how the teacher and 

students trade the work they do in and through classroom interaction in exchange for 

claims on having taught and learned the knowledge at stake. The situation “doing proofs” 

(Herbst, Chen, Weiss, and González 2009) consists of a set of norms that regulate the 

work that students and teacher do producing a proof of a specific proposition in such a 

way that the work can trade for the more general claim that students know how to do 

proofs. While situations organize classroom interaction into relatively stable, predictable 

patterns, they do not determine it—classroom interaction is complex not the least because 

individuals may depart from what they are expected to do. In particular when students 

depart from what they are expected to do this creates a problem of teaching in Lampert’s 

(2001) sense—not an undesirable event that needs to be eliminated but a legitimate 

demand of the work that needs to be handled deliberately. The notion of practical 

rationality of mathematics teaching proposed by Herbst and Chazan (2003) after 

Bourdieu (1998) designates a set of categories of perception and appreciation with which 

experienced teachers handle departures from the norms of an instructional situation (see 

also Nachlieli and Herbst 2009). In the work presented here we illustrate how some of the 

dispositions of practical rationality could be learned in interaction with a simulator. 

2. Context for the Examples 
Let’s assume that an apprentice confronts the following situation (adapted from 

Nachlieli and Herbst 2009): In a high school geometry class, students are given a sheet of 

paper in which a parallelogram had been drawn and were asked what happened with its 
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angle bisectors. After students conjecture that the angle bisectors make a rectangle 

(Figure 1), the teacher encourages the class to prove that conjecture. The teacher draws 

the two-column form for statements and reasons (which the students had been 

accustomed in their earlier work). A student, Eamonn, volunteers to go to the board and 

lists what was given (e.g., ABCD is a parallelogram; 

€ 

AL  bisects ∠BAD). Then, Eamonn 

states that the angle bisectors of opposite angles in the parallelogram are parallel  

(

€ 

AL // 

€ 

CJ , see Figure 1). He pauses for a while, staring at the figure and at the two 

column form. It seems that he does not know what to say next. The apprentice is now 

asked to play the role of the teacher and figure out how to handle that event. 

 
Figure 1. Angle bisectors of a parallelogram make a rectangle. 

The apprentice needs to decide what to do next. The teaching simulator needs to 

be designed in a manner that allows the apprentice to express his or her decisions. It must 

be able to diagnose the conceptions about how to manage “doing proofs” behind those 

decisions. Finally, on the basis of the diagnosis result, the simulation system needs to be 

able to give relevant feedback on the apprentice’s decisions to help him or her develop 

the ability to manage students doing proofs. 

The design of such an intelligent teaching simulator has been inspired by the 

TELEOS (Technology Enhanced Learning Environment for Orthopedic Surgery) project 

directed by V. Luengo (Luengo, Mufti-Alchawafa, and Vadcard 2007). On the basis of 

didactical analysis results of apprenticeship settings, the TELEOS researchers built a 3-D 

intelligent simulation system that allows the apprentice surgeon to use a virtual pin to 

interact with a virtual pelvis object for the problem of sacro-iliac screw fixation, so as to 

develop professional practical skills. 
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3. System Architecture 
Figure 2 shows a global architecture of a simulation-based intelligent learning 

environment (a teaching simulator), adapted from the TELEOS architecture.

 

Figure 2. A global architecture of a teaching simulator. 

 The representation or user-interface component is a key part of the system to 

frame the learning context. It can be used to present problems of teaching, to receive the 

input from the user (i.e., his or her decisions), as well as to give feedback to the 

apprentice. It consists of a web-based lesson sketching tool designed in the context of 

project ThEMaT2 (see Herbst, Chazan, Chen, Chieu, and Weiss this issue; Chieu, Weiss, 

and Herbst 2009). The tool enables representations of lessons in the forms of graphics-

based slideshows (Figure 3). Each slide may consist of a classroom background, a 

cartoon teacher, a number of cartoon students, and props (e.g., compass). Facial 

expressions (e.g., confused, happy) and hand gestures (e.g., a low or high position) of 

those characters can be customized. Text-based dialogs in different forms (e.g., talking, 

shouting) can also be put into a slide. Whiteboard content can be added and edited by 

using an embedded drawing tool, which enables the creation of diagrams and texts. A 

slide can be zoomed in and out so that the viewer can better see the whiteboard content or 

students’ work, for example. The tool, therefore, can be effective and flexible to represent 

problems of teaching such as the one illustrated in the previous section. Given a 

slideshow that represents one such problem, the apprentice can input his or her proposed 
                                                
2 A research and development project directed by P. Herbst and D. Chazan. ThEMaT stands for Thought 
Experiments in Mathematics Teaching. 
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actions through new frames where they might, for example, edit the whiteboard content 

or add more virtual teacher’s dialog. The simulation system could respond to those 

actions, for example, by modifying virtual students’ facial expressions, adding lines of 

dialog for virtual students, and so forth, thus giving feedback to the apprentice. 

 

 
Figure 3. A screen shot of ThEMaT’s lesson sketching tool. 

Assume that the problem of teaching described in the previous section has been 

presented to the apprentice using the cartoon-based representation component. The 

apprentice is expected to say something when Eamonn (a virtual student) seems to be 

stuck. Imagine that the apprentice, through the virtual teacher, decides to ask Eamonn for 

a justification by entering a teacher dialog “Why is that?” The diagnosis component of 

the simulation system uses a knowledge model of teaching expertise (we describe this 

model in the following section, see also Figure 2) to analyze this decision and try to 

detect the control(s) that account for the decision made by the apprentice.  

The diagnosis result is then sent to the feedback component, which in turn uses a 

knowledge model of scaffolding techniques in teacher education and teaching expertise 

to compute the most relevant feedback for the apprentice teacher (we give more details 

about the diagnosis component and the feedback component in the following sections 

about learner modeling and feedback modeling). For the time being, we consider four 

kinds of feedback (Figure 2): (1) reactions of the virtual students expressed in the 
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representation component; (2) text-based prompts to encourage the apprentice, for 

example, to pay attention to his or her instructional objectives; (3) alternative solutions by 

expert teachers shown in video clips of real classroom interaction, animation clips and 

slideshows of designed classroom interaction, or text that narrates any of those kinds of 

classroom interaction; and (4) theoretical resources in the forms of hypermedia web 

pages that connect categories of questions about the problem of teaching at hand (e.g., 

students’ thinking, teachers’ tactics, mathematics) with classroom discourse tactics, 

student conceptions about geometric figures, functions of proof in mathematical practice, 

and so on.  

When the system detects that the apprentice has been able to manage the teaching 

task at hand (e.g., how to respond to a student who appears not to know what to do after 

making a statement when doing a proof) well in that particular problem of teaching, the 

system moves to other problems of teaching that could happen in the same instructional 

situation. The iterative process of feedback continues until when the system has evidence 

that the apprentice has developed the ability to manage a diversity of teaching tasks 

effectively or when all problems of teaching in the database of the system have been 

presented to the apprentice. 

4. Theoretical Framework 
Piagetian epistemology (Piaget 1985) has contributed the notion that students 

learn by adapting their prior knowledge to the feedback provided by the environment that 

they are confronting. Considering this view of learning as adaptation, Brousseau (1997) 

contributes the notion of the milieu as a critical element for an instructional theory. In 

Brousseau’s technical sense, the milieu refers to the system counterpart to the learner in 

an adidactical situation. In particular, the milieu plays a dual role: the target of the actions 

of the learner and the source of feedback on those actions (Vergnaud 1981). When the 

apprentice interacts with the teaching simulator described previously, it can generate 

feedback for the apprentice; the feedback is “computed” and presented to him or her with 

regard to principles of Brousseau’s theory, as described in the following paragraph. 

The notion of knowing has been used to refer to the cognitive structures that 

describe the interaction between a person and an object of knowledge (Brousseau 1997; 
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see also Foucault 1972, p. 15). Knowing is different from knowledge which refers to 

socially shared, explicit intellectual artifacts that are the target of knowing (Cook and 

Brown 1999). The notions of knowing and conception have been formalized in the 

context of the ck¢ (conception, knowledge, and concept) model (Balacheff and Gaudin 

2010), whereby conceptions are modeled as quadruplets of problems (P), operators (R) 

used in the solutions of the problems from P, a representation system (L) enabling the 

representation of P and R, and a control structure (Σ). Conceptions describe stable 

spheres of practice that might, in particular, include productions that (from the 

perspective of a different conception) could be described as errors. The notion of 

knowing, in turn, identifies a set of related conceptions, for example the different 

conceptions that might be useful to describe different responses to the same problem. 

Brousseau’s theory of didactical situations is founded on the notion that to learn a new 

conception the learner may need to locally engage and refute older conceptions that the 

new conception regards as leading to error (see for example Castela 1995). In our present 

work the diagnosis component is designed in such a way that it uses a model of teaching 

expertise and analyzes the apprentice’s decisions to model the conceptions behind those 

decisions. A model of the apprentice’s conceptions is critical for the system to be able to 

generate relevant feedback automatically. By relevant feedback from Brousseau’s 

learning point of view, we mean scaffoldings that help the apprentice understand why his 

or her knowings in use are correct or erroneous so that s/he can improve how to manage 

the teaching task at hand. 

The knowledge or domain of teaching expertise needs to be represented using 

computational models for the purpose of automatic feedback. We use the cK¢ model, a 

computational framework for didactic research (Balacheff and Gaudin 2010) and for 

developing intelligent tutoring systems (Chieu, Luengo, Vadcard, and Tonetti in press; 

Webber 2004). The aspect of the cK¢ model that concerns the design of the teaching 

simulator is the formalization of a conception. The fourth element, the set of controls, 

allows the apprentice to decide whether an action is relevant or not, or to realize that a 

problem or sub-problem is solved (Balacheff and Margolinas 2005). Researchers (e.g., 

Schoenfeld 1985) have pointed out the critical role of control elements in problem 

solving and decision-making. Indeed, the apprentice may use the control elements to 
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justify the appropriateness of an operator, and the teaching simulator can use them as 

criteria (i.e., evidence it has about how the apprentice accounts for the controls) for 

generating relevant feedback. 

The cK¢ model is sometimes insufficient to completely model the problem-

solving situation at hand. Chieu, Luengo, Vadcard, and Tonetti (in press) thus introduce a 

particular kind of variables (i.e., variables that account for the pin position on the X-ray 

views) to handle that issue. We use task variables, in addition to the cK¢ elements, to 

better model the teaching task at hand. A task variable is an important factor of the 

teaching task at hand; its different values may affect the apprentice’s decision-making 

differently. For example, what a student doing a proof at the board does after making a 

statement is a task variable because it may have multiple values: the student may give a 

reason or the student may be unable to give a reason. Depending on what the virtual 

student does, the apprentice may have different moves. We discuss more about the role of 

task variables below. 

5. Knowledge Modeling, Learner Modeling, and Learner 
Diagnosis 

To build the cK¢ model for the teaching simulator, we used results from studies 

of geometry classrooms (Herbst, Chen, Weiss, and González 2009) and results of 

analysis of teacher discussions about an atypical instance of the situation of “doing 

proofs” in geometry classrooms (Herbst and Chazan 2003; Nachlieli and Herbst 2009; 

Weiss, Herbst, and Chen 2009). In that instance, the teacher breached a situational norm 

(that the teacher needs to see that each statement in a proof is justified by a reason before 

the next statement in the proof is made) to solve the impasse of having a student silent 

after making a statement; instead the teacher suggested that the student assumed the 

statement made for the time being and continued on with the proof. Researchers used 

teacher discussions of that video to elicit the practical rationality that guides the 

experienced teachers’ usual moves and in particular to learn what they judged could have 

been done instead or how they would have justified doing what the teacher in the video 

did. This methodology of engaging teachers in discussions about breached instances of an 

instructional situation has been the basis of project ThEMaT, in which researchers invited 
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experienced teachers to study group conversations in which they watched and discussed 

animations of classroom interaction that represented breached instances of situations like 

“doing proofs” (Herbst and Miyakawa 2008). By analyzing teacher conversations while 

watching and discussing breached norms, the researchers have been able to identify 

problems, operators, and controls that can be used to model teacher’s conceptions that 

contribute to the work of “doing proofs” in geometry teaching. 

Tables 1, 2, and 3 shows examples of the elements of the cK¢ model and of the 

task variables we identified for the task of teaching described earlier (to find out what to 

do when a student is silent after having produced a statement in a proof). To model the 

conceptions that could account for the apprentice’s response to that task, the ck¢ model 

requires us to describe the set of problems that those conceptions might address. One way 

to do this is by identifying cognitive variables, that is variables whose values might call 

for different actions or decisions on the part of the agent (Vadcard and Luengo 2005). 

Cognitive variables are called didactical variables when they can be manipulated by the 

instructor to produce a change in conception (Brousseau, 1997). For the sake of 

illustrating our approach, we consider two didactical variables (in the task of teaching at 

hand) that are at the source of different kinds of teaching problems needed to model 

conceptions at play (see Table 1). One of those variables is the teacher’s role vis-à-vis the 

student task. This variable has, at least, two values: (1) assisting students in proof 

production or (2) checking the quality of students’ proof production. The other variable is 

the knowledge at stake in the student task (i.e., the learning objective). This variable has, 

at least, three values: (1) a specific student’s knowledge of how to prove the conjecture; 

(2) the class’s capacity to prove the conjecture; and (3) the class’s capacity to produce a 

specific proof of the conjecture correctly. The combination of those variables yields the 

list of problems in Table 1. Note that didactical variables are used to present the 

apprentice with strategic demands whereas task variables (e.g., TV1 and TV2 in Table 1) 

are used for tactical demands (see more in the discussion section). 

Table 1.  Examples of problems and task variables.  

P1 To assist a specific student’s production of a proof of a conjecture. 

P2 To assist a group of students in the production of a proof of a conjecture. 

P3 To assist a student or group of students in producing a specific proof for a conjecture. 
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P4 To check the validity of a proof done by a specific student or a group of students. 

P5 To check whether a specific proof has been achieved by a student or group of students. 

 

TV1 What a student doing a proof at the board does after making a statement: giving a reason or being unable to 

give a reason or assuming the statement to be true and continuing. 

TV2 Whether or not the student’ statement to be justified is relevant to achieving a proof. 

Table 2.  Examples of operators.  

OP1 The teacher asks: “Why is that?” 

OP2 The teacher asks: “Does someone else know why is that?” 

OP3 The teacher asks: “What will you say next?” 

OP4 The teacher lets the student assume the statement to be true and continue. 

OP5 The teacher asks: “Do you really need to prove that those lines are parallel?” 

OP6 The teacher says: “The justification is that they are parallel because they make congruent corresponding 

angles when intersecting the same line.” 

OP7 The teacher asks the student to sit down and call another student to continue. 

OP8 The teacher asks: “What angles would you need to show congruent to prove that those lines are parallel?” 

OP9 The teacher says: “I am sorry Eamonn, let us move on to the next problem because this is too difficult.”  

 
 To model the conceptions one needs to specify the operators that could be 

engaged in handling these problems at the moment of figuring out what to do with the 

student’s silence.  Table 2 lists examples of those operators. Many of those operators 

come from the work of Nachlieli and Herbst (2009) who identify various tactical 

responses to deal with the student’s silent, for example, bounce (the teacher challenges 

the need for the student’s statement, see OP5), giveaway (the teacher provides the reason 

for the statement, see OP6), dismiss (see OP7), scaffold (the teacher gives the students 

more resources to produce the reason, see OP8), take back (the teacher withdraws the 

problem, see OP9). 

The control structure in ck¢ consists of a set of propositions and proposals that 

regulate the execution of the solution to a problem and verify the solution arrived at. For 

the specific task of teaching at hand, we are interested in controls that determine whether 

an operator may or must be engaged and whether it has been correctly engaged. Herbst et 

al. (2009) identified a large number of controls for the situation of “doing proofs.” As 

regards the specific task of teaching at hand for the apprentice, the controls could be 

classified into four main categories (examples in Table 3): (1) situation norms, specific to 
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the instructional situation of “doing proofs”; (2) didactical contract norms that define in 

general the role and responsibilities of the teacher and the students vis-à-vis the 

knowledge being taught; (3) task norms that include mathematical propositions known as 

well as knowledge of student conceptions; and (4) professional obligations to four 

stakeholders (the discipline of mathematics, the students as individuals, the students as a 

group, and the school institution; see Herbst 2010). The classification of the set of 

controls could be useful for the system to generate fine-grained feedback for the 

apprentice. We discuss more about this point in the next section. 

We believe that the representation system of graphic-based slides (see also Figure 

3) that uses 2-D cartoon characters, with variable facial expressions and gestures, and the 

use of speech bubbles (that can be positioned at will and that can be coded for prosody 

such as shouting and whispering) to record conversations, recitation patterns of classroom 

discourse (triadic dialogue) with individual student at the board, and so on is sufficient to 

represent interactions between the apprentice and the teaching simulator. They compose 

the semiotic register for the conceptions being modeled. 

Table 3.  Examples of controls.  

Situation norms 

Σ1 After a statement in a proof is made and before the next statement is made, the student must provide a reason 

for the first statement. 

Didactical contract norms 

Σ2 A mathematical task issued to one student may be issued to any student in the class.  

Σ3 If a student cannot do a task the teacher may modify the task. 

Task norms 

Σ4 If lines a and b make congruent corresponding angles when they meet line c, then lines a and b are parallel.  

Σ5 If a child states that two angle bisectors are parallel when he is trying to prove that angle bisectors of a 

parallelogram make a rectangle, he may be thinking that a rectangle is a parallelogram with a right angle.  

Professional obligations 

Σ6 Assertions about mathematical objects that are not postulated need to be proved intellectually rather than 

verified empirically or grasped perceptually (obligation to the discipline of mathematics) 

Σ7 Individual students are capable to think and reason as well as capable of having cognitive difficulties 

(individual cognition) 

  
The elements of conceptions described and illustrated above serve the purpose of 

modeling the apprentice’s knowledge. A model of the apprentice’s control structure (Σ) in 
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particular, can help understand on what basis the apprentice would do one or another 

thing (Schoenfeld 1985). The goal of the diagnosis component is to identify the controls 

that could be associated to the apprentice's actions (i.e., to make hypotheses about his or 

her knowings) after each of the decisions s/he makes during his or her interaction with 

the simulator. Performing such a diagnosis, however, is difficult. For example, when the 

apprentice takes OP1 (Table 1) the first time, it is difficult to diagnose whether Σ1 (Table 

3) is associated with his or her knowing: he or she may have made such a decision 

randomly because the control is not associated with his or her knowing, or his or her 

knowing is associated with the control in a positive manner that might guide him or her to 

trigger that decision timely. In other words, it is uncertain to diagnose the learner’s 

knowing state (while the presence of a control might recommend a given action, the 

presence of that given action may or may not attest to the presence of the control) in 

many situations that are similar to that situation. Bayesian networks are an effective 

means for modeling uncertain factors (Mayo and Mitrovic 2001). Indeed, Bayesian 

networks have been proven to be effective in diagnosing the learner’s knowing state not 

only in academic subjects but also especially in complex and ill-structured domains (e.g., 

orthopedic surgery in project TELEOS) for which it is very difficult to diagnose the 

learner’s practical knowledge. 

A Bayesian network is a directed, acyclic graph in which nodes represent random 

variables and arcs encode conditional dependencies. If there is an arc from node A to 

another node B, A is called a parent of B and B is a child of A. A node without parents is 

a root or unconditional node. A node with parents is called a conditional node, which is 

associated with a conditional probability table that quantifies the effect of its parents on 

itself. Researchers often use Bayesian networks to encode probabilistic relationships 

among variables of interest. 

Chieu and associates (in press) advocate that considering the temporal dimension 

in learner modeling and diagnosis is critical because it may help model the learner’s 

knowing state and cognitive behavior more completely. It is particularly true in the 

context of professional learning. In orthopedic surgery, for example, even an expert often 

needs several attempts to be able to arrive at an acceptable solution and s/he often uses 

the previous unsuccessful actions as adjustment reference to make the next operations. In 
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teaching practice, the teacher frequently refers to the reactions of the students to his or 

her previous moves in order to make the next moves, sometimes to correct unsuccessful 

moves made earlier. It is hence important to monitor the apprentice’s actions and 

decisions over a period of time to better diagnose the association of the controls with his 

or her understanding behind his or her decisions. For example, in the above situation both 

novice and expert teachers may take the same OP1 (the teacher asks: “Why is that?”) for 

the first time, but for the second time the novice teacher may take OP1 again whereas the 

expert teacher may choose another operation. By considering both moments of decision 

making (the first time and the second time), the system may be better able to detect that 

the apprentice needs help and thus produce relevant feedback to help him or her get out 

of that difficult circumstance. Temporal or dynamic Bayesian networks (Russell and 

Norvig 2009) can be used to model such a temporal dimension. A temporal Bayesian 

network is a Bayesian network in which stochastic processes are modeled. 

We adapt the Bayesian network technique used in project TELEOS to model 

teachers’ decision making in the context of managing students’ doing a proof. We start 

with the hypothesis that the teacher is working on a given problem (e.g., P2: to assist a 

group of students in the production of a proof of a conjecture) and a subset of controls 

that are related to that problem (e.g., Σ1: “After a statement in a proof is made and before 

the next statement is made, the student must provide a reason for the first statement”, and 

Σ2: “A mathematical task issued to one student may be issued to any student in the 

class”). For each control, we identify the task variable(s) and the operator(s) that are 

related to the control (e.g., TV1: “What a student doing a proof at the board does after 

making a statement” and OP1 for Σ1 and TV1 and OP2 for Σ2). Those problems, 

controls, task variables, and operators are used as nodes for the Bayesian network. 

Finally, we create arcs for the network, mainly from task variables, operators, and 

problems to the related controls. Figure 4 illustrates a part of the learner model (solid 

arrows and round-dot arrows are used to only distinguish arcs connected to Σ1_1 and 

those connected to Σ2_1, we explain more about those arrows in the following example). 

The network shown in Figure 4 models two critical moments of decision making by the 

apprentice to account for the aforementioned temporal dimension: the current moment 

represented with variables having suffix “_1” and the preceding moment represented with 
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variables having suffix “_0” (we explain more about this design in the following 

example). The network is still preliminary at this design phase; we plan to improve and 

evaluate it both in quantity (number of nodes and arcs) and in quality (structure of the 

network) at the next phase of implementation. 

 

 
Figure 4. A part of the temporal Bayesian network for modeling the apprentice’s decision-making. 

For each control, the system can assign one of three states to the association of 

that control with the apprentice’s knowing: 

• BPV (brought into play validly): The apprentice’s knowing could be associated with 

the control in a “positive” manner that might allow him or her to trigger the right 

action in the right context at the right time (the condition is necessary but not 

sufficient, i.e., if the right action is done one may not be sure that the control exists 

but one may claim that the control cannot be refuted). 

• BPI (brought into play invalidly): The apprentice’s knowing could be associated 

with the control but in a “negative” manner in the current given circumstance, but the 

association could be “positive” in other circumstances. 

• NBP (not brought into play): The apprentice’s knowing may not be associated with 

the control on the basis of the observed actions. 

Because there is no evidence about the association of the controls with the apprentice’s 

knowing at the beginning of a problem-solving process, for each control the probability is 

equally distributed for the three states BPV, BPI, and NBP. The probability of those 

states is increased or decreased depending on the apprentice’s decisions or actions over 

time. Note that each apprentice has his or her own Bayesian network. 

For example, the apprentice deals with P2 (to assist a group of students in the 

production of a proof of a conjecture) and TV1 at moment 1 (the value of TV1_0 and 

OP1_0 is set to be undefined at the beginning of the problem-solving process), the value 

of TV1_1 is that Eamonn is unable to give a reason for his statement. The apprentice 
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decides to take OP1 (so the value of OP1_1 is “the teacher asks ‘Why is that?’”). His or 

her temporal Bayesian network is updated, for example the conditional probability table 

of Σ1_1 is recalculated by taking into account Σ1_0, TV1_1, and OP1_1 (TV1_0 and 

OP1_0 are undefined), see the solid arrows in Figure 4, making the probability of BPV 

(brought into play validly) for control Σ1 (after a statement in a proof is made and before 

the next statement is made, the student must provide a reason for the first statement) 

increased. It is increased because it seems that the apprentice’s knowing is positively 

associated with Σ1, which might guide him or her to ask Eamonn to give a reason (OP1). 

Suppose that at the next moment (moment 2), however, the apprentice takes OP1 again 

when Eamonn once again says that he is unable to give a reason for his statement. In this 

case, by considering the temporal dimension of the decision-making process, meaning 

that both the previous moment (TV1_0: Eamonn is unable to give a reason, OP1_0: the 

teacher asks “Why is that?”, Σ1_0) and the current moment (TV1_1: Eamonn is still 

unable to give a reason, OP1_1: the teacher asks again “What is the reason for your 

statement?”), and the nature of P2 (see the solid arrows connected to Σ1_1 in Figure 4), 

the network will increase the probability of BPV for Σ1 again, but also increase the 

probability of NBP (not brought into play) for Σ2 (a mathematical task issued to one 

student may be issued to any student in the class, see Σ2_1 in Figure 4). The latter is 

increased because if there were a positive association between the apprentice’s knowing 

and Σ2, s/he would take another action, but not OP1 again. 

Now assume that another apprentice deals with the same task of teaching, and 

s/he takes OP1 at moment 1. At moment 2, however, s/he takes OP2 (the teacher asks 

“Does someone else know why is that?”) instead. In this case, his or her temporal 

Bayesian network will increase the probability of BPV for Σ2, because it seems that his 

or her knowing is positively associated with Σ2 in the current teaching task, guiding her 

to call another student up. Note that the nature of the problem of teaching (P2) is 

important, for example, if the apprentice were in P1, calling on another student would not 

be a relevant option. 

The above Bayesian network models the apprentice's decision-making process 

only at two points in time: the current moment and the preceding moment. The 

apprentice's decisions at other points in time (i.e., before the preceding moment) are 
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considered when the network is updated at the preceding moment. More specifically, the 

control nodes ending with “_0” (e.g., Σ1_0) cumulatively represent the diagnosis result of 

the apprentice’s knowings from the beginning of the decision-making process to the 

preceding moment. In other words, modeling the temporal dimension of the sequence of 

the apprentice’s decisions in the previous Bayesian network could be considered as a 

means to incrementally construct the learner model: after each of the apprentice’s 

decision, the Bayesian network is updated to account for the system’s new diagnosis 

about the apprentice’s current knowing state (see Russell and Norvig 2009, chapter 15). 

6. Feedback Modeling 
Once the diagnosis component updates the probability of the three states of the 

controls in the apprentice’s Bayesian network, it notifies the feedback component about 

that update. The latter in turn analyzes the diagnosis result in order to produce relevant 

feedback for the respective apprentice. The main problem is to identify on which specific 

control(s) among the set of controls the feedback component should focus because after 

each update, there may be many controls for which the probability of the three states has 

changed. In addition, there usually are a large number of controls in each subject of 

tutoring (e.g., over 100 controls in project TELEOS). 

In principle, the feedback component selects the controls that are closely related 

to the current task the apprentice is confronting (i.e., the current problem and task 

variables, the recent operators taken by the apprentice). Then, among those selected 

controls the feedback component chooses one or more controls with which the 

probability of BPI (brought into play invalidly) is highest; if the probability for BPI of 

two controls are equal, then the probability of NBP (not brought into play) is considered. 

Finally, the nature of the targeted controls is examined (e.g., on the basis of the categories 

identified in Table 3) to produce one or more kinds of feedback for the apprentice from 

the main four types of feedback described earlier: (1) dealing with a new situation 

presented in the simulator (e.g., reactions from students); (2) reading a prompt or 

assessing one or several rubrics; (3) exploring alternative solutions; and (4) examining 

theoretical resources such as pedagogical principles, teaching tactics and strategies, 

student conceptions, mathematics, and connections among those kinds of resources. The 
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first three kinds of feedback can be used if the targeted controls are situation norms or 

contract norms; the fourth kind of feedback can be used for all types of targeted controls. 

This feedback technique is based on a number of techniques used in other intelligent 

tutoring systems (e.g., Mitrovic and Ohlsson 1999; Mufti-Alchawafa and Luengo 2009). 

Our feedback component slightly differs from others in the classification of controls 

(which is dependent on the subject being taught, see Table 3) and in the use of semantic 

networks (Russell and Norvig 2009), as an additional means, to represent many different 

kinds of resources used for feedback. 

For example, if there is no targeted control, the feedback component may adjust 

the current situation of teaching to probe more the apprentice’s knowing state. At 

moment 1 of the previous scenario, for example, after the apprentice takes OP1—to ask 

Eamonn “Why is that?” (an expert teacher may also make this decision in the same 

situation)—the feedback is to show in the simulation that Eamonn (a virtual student) 

admits that he is unable to give a reason. By doing so, the system anticipates that the 

apprentice takes either OP1 again or another action. If s/he takes OP1 again at moment 2, 

the system has better evidence that his or her knowing may not be associated with Σ2 (a 

mathematical task issued to one student may be issued to any student in the class). Then, 

by considering the nature of Σ2 (a didactical contract norm) the feedback component first 

pops up a prompt reminding the apprentice of the nature of the problem (P2: to assist a 

group of students in the production of a proof of a conjecture). If the apprentice is still 

stuck and asks for more scaffolding, the feedback component may adjust the current 

scenario by presenting some confused students and an eager student (who might be 

thinking she may know the reason for the statement). This scaffolding may provide the 

cues that help the apprentice think about other students in the class and hence decide to 

call the eager student to the board. If the apprentice still requests more help, the feedback 

component can ask him or her to watch a video clip of teaching practice by an 

experienced teacher in a circumstance that is similar to the apprentice’s. S/he can also 

read experienced teachers’ comments on the video clip. 

If at moment 2 the apprentice takes another action (say OP2: the teacher asks 

“Does someone else know why is that?”), the feedback component may present a new 

task of teaching in which a new virtual student (Alice) admits that she can continue to do 
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the proof if she can assume that the current statement is true. This new task is useful for 

teacher learning (Nachlieli and Herbst 2009) because it can destabilize Σ1 (after a 

statement in a proof is made and before the next statement is made, the student must 

provide a reason for the first statement) by the apprentice. If s/he does not know what to 

do next and asks for help, the system may lead him or her to navigate several web 

resources about mathematical content knowledge, which show how to do the proof in 

other ways, for example, to prove that each angle of the quadrilateral IJKL (see Figure 1) 

is a right angle. By reading those resources the apprentice may ask Alice and her peers 

whether they can try another ways at the proof instead of looking for a justification of the 

statement they have made. If the apprentice lets Alice assume the statement to be true and 

to continue to do the proof, the system may ask him or her to examine the alternative 

stories proposed by experienced teachers apropos of the same scenario (Nachlieli and 

Herbst 2009). Those comments by experienced teachers help give reasons why one might 

or might not let Alice make an assumption and continue. 

The same scaffolding process is used throughout different problem-solving 

interactions and sessions, so as to increase the probability of BPV (brought into play 

validly) for all of controls the system models for the apprentice. We propose that as the 

criterion for learning by the apprentice. So, that process continues until the system has the 

evidence that the apprentice is able to use a variety of controls wisely in diverse problems 

of teaching. 

The previous presentation of the feedback component indicates that the system 

needs to manipulate artifacts and resources in different formats (text, video clips with 

comments, web pages, etc.) and of different nature (problems, controls, operators, task 

variables, prompts, alternative solutions, theoretical resources). We believe that semantic 

networks (Russell and Norvig 2009), an important tool in artificial intelligence to 

represent computational logic models, could be an effective means to represent different 

resources and relationships among them. 

A semantic network is a directed graph in which nodes represent objects and 

categories of objects and arcs represent relations among objects. Figure 5 shows a part of 

the semantic network for the situation described earlier. The labels of categories and of 
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relations among objects (e.g., “Student facial expressions”, “UsedFor”) are standardized 

so that the software system can “understand” and search for particular objects.  

 
Figure 5. A part of the semantic network for modeling feedback resources. 

We have considered the previous four kinds of feedback to build the above 

semantic network. For example, the category of simulation parameters is used to generate 

new situations presented in the simulator. If the system searches for a virtual student’s 

spoken words to challenge the apprentice (see the examples described earlier), it can 

navigate through the sub-category of “Student speech”, then “Talking” (or “Shouting”), 

and choose an instance of the last sub-category, depending on the current interaction 

between the apprentice and the system. The system can also search for students’ facial 

expressions such as “Confused” in a similar way.  

7. Discussion 
Constructing the knowledge model, the learner model, and the feedback 

component are keys to implement an intelligent tutoring system. We have identified 

sample problems, operators, controls, and feedback resources in the situation of 

managing students doing proofs for those models and component. It would be necessary 

to enrich that set of elements by extending the review of the literature of research on 

teaching expertise or even conducting new empirical studies for that purpose. Note that 
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the main objective of the diagnosis component is to model collective teaching knowledge 

of expert teachers and that the main objective of the system is to help the apprentice 

gradually acquire that collective knowledge. 

An important lesson from the design of the teaching simulator described 

previously is that while teaching is extremely complex, teaching expertise has many 

dimensions, and creating conditions of learning for the apprentice is very difficult, the 

artificial intelligence approach gives operational tools to manage that complexity and 

proceed incrementally to a fine grained theory of teaching. The work presented in this 

paper shows that modeling even a single teaching task requires a lot of effort. Modeling 

other teaching tasks may not be as hard as the first one because we can utilize the 

modeling process, though it still requires a large amount of work for identifying specific 

elements and models for specific teaching tasks.  

Indeed, firstly we relied on the expertise of a group of experienced teachers to 

identify the controls and operators of the ck¢ model for the instructional situation of 

doing proofs. The studies of practical rationality in project ThEMaT provided those 

elements (other studies may be needed for other instructional situations; see Herbst, 

Nachlieli, and Chazan in press for another example). Then, we identified didactical 

variables to be able to create a set of problems of teaching (Table 1), as strategic demands 

for the apprentice. We also created task variables (for the task of the apprentice, see 

Table 1). The task variables can be used to present various tactical demands to the 

apprentice and hence help him or her learn how to handle those demands, while 

accounting for strategic demands. For example, the simulation system deliberately 

presents the apprentice with the impasse (Eamonn is unable to give a reason for his 

statement) to try to detect how s/he handles the tactical demand (the impasse) and the 

respective strategic demand (P2), so as to produce relevant feedback for the apprentice. If 

Eamonn were able to give a reason, then the system would not be able to detect the 

apprentice’s behavior that is valuable for generating useful feedback. Considering 

strategic and tactical demands is crucial in problem solving in general (Jonassen 2000) 

and in teaching practice in particular (Herbst, Chazan, Chen, Chieu, and Weiss this 

issue). Note that the work of determining the elements of the ck¢ model is dependent on 

the specific teaching task. 
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Another difficult work is the creation and validation of the temporal Bayesian 

network, especially the identification of relations among ck¢ elements to create arcs of 

the network. This work is also dependent on the specific teaching task being modeled. 

Finally, the work of categorizing the controls to help the system generate relevant 

feedback and the work of modeling the feedback component are time-consuming and 

dependent on the specific teaching task as well. The crucial point is to produce feedback 

that can help the apprentice improve the practice of teaching. The four kinds of feedback 

presented earlier may make learning happen as follows: When the system presents the 

apprentice with virtual students’ reactions, it tries to help him or her attend to, for 

example, students’ emotions or mathematical conceptions; noticing and interpreting 

critical events of classroom interactions is important in teacher education (van Es and 

Sherin 2008). When the system recommends the apprentice to read a prompt or assessing 

one or several rubrics, it tries to engage him or her in reflecting on his or her decisions; 

reflection on one’s own practical skills is also critical in teacher learning (Hatton and 

Smith 1995; Schön 1983). When the system encourages the apprentice to explore 

alternative solutions by expert teachers, it may help him or her examine and evaluate 

alternative teaching tactics and pedagogy to be able to adapt to various tactical and 

strategic demands of teaching; Lin, Schwartz, and Hatano (2005) advocate that 

adaptation is a key skill for successful teaching practice. When the apprentice is engaged 

in examining theoretical resources, s/he may have the opportunities to explore and learn 

about, for example, how to do the proof in other ways. 

We also have learned a couple of lessons regarding the artificial intelligence. 

Firstly, we slightly extended the notion of operator (e.g., the teacher asks “Why is that?”) 

in the cK¢ model to make a pragmatic use of the model. We might have used general 

operators such as “asking questions” and make “the teacher asks ‘Why is that’” as a value 

of the operator. We instead used very specific operators to account for the nature of 

complexity and specificity of instructional practice (i.e., for the same general operator 

such as “asking questions”, different questions may lead to various problems of teaching 

that may be really different from each other). Consequently, the Bayesian network for the 

learner model may be more complex in the case of using specific operators than in the 
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case of using general operators, but we believe that it could help the system better 

diagnose the apprentice’s knowing state. 

Secondly, the challenge of the use of language in teaching practice (Chazan and 

Ball 1999; Lobato, Clarke, and Ellis 2005) is critical. For example, to integrate a huge 

number of web resources for teacher education and development (Fishman and Davis 

2006) into our system, it may be necessary to develop the Semantic Web and the 

ontology, at least for the domain of mathematics teacher education. The Semantic Web 

“has been proposed as a common language that can ensure that the meaning of each web 

[page] is represented and available for computer understanding.” (Woolf  2009, p. 366). 

Unlike web search engines that search for keywords that appear in web pages, the 

Semantic Web would allow users and software systems to make complex requests. 

Ontology is a system of explicit representations of encoded topics and concepts in a 

certain domain or sub-domain (Woolf 2009). According to Mizoguchi and Bourdeau 

(2000) the terminologies used by teachers, practitioners, researchers, authors, and 

developers differ and must be reconciled. We would need a uniform representation of 

knowledge (e.g., teaching expertise of mathematics education) and a common vocabulary 

so that different people and different software systems can communicate to each other 

more effectively. The ontology systems and semantic networks are core elements for 

building the Semantic Web successfully. 

8. Conclusion 
We have shown how to use artificial intelligence tools and models to unpack the 

complexity of the work of teaching and to design a simulation-based intelligent tutoring 

system that can be used to help the novice teacher improve the practice of teaching. 

While the specific practices modeled are admittedly narrow, the paper demonstrates an 

approach to representing teaching with simulations. Obviously taking this approach to a 

scale that enabled the learning of all of mathematics teaching is a much larger enterprise. 

The paper does show, however, that interacting with an intelligent teaching simulator 

may provide the apprentice teacher with a unique experience from a first-person 

perspective, closer to what s/he does when teaching a real classroom.  
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