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I. INTRODUCTION

The problems of characterizing pulsatile patterns of pressure
and flow in the arterial system are intriguing and complex. Ejection of
blood from the left ventricle initiates non-linear transients in pressure
and flow at the root of the aorta. These transients initiate complex
pulse patterns that are propagated throughout the arterial tree. Some
of the factors that must be reckoned with in an analysis of these patterns
are itemized in the list that follows: 1) The force initiéting the trans-
ients is itself complex; the velocity of ventricular ejection increases

rapidly with the opening of the aortic valve, then declines slowly to
reach a negative nadir with the closure of the aortic valve. 2) The
distensibility of the walls of the arteries receiving this positive
increment of pressure and flow has an important influence on pulse
patterns. This physical property of the arterial wall is also responsible
for changes in configuration and velocity of the transients as they pass
over the arterial tree. The pulsatile patterns are further distorted by
3) fractional losses of both positive and negative flow of the blood,

and by the h) branching and tapering architecture of the arterial tree.
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5) The resistances to forward motion of blood through the distal
arterioclar beds also have their effects on the contours of the arterial
pulses observed upstream.

Both experimental and theoretical methods have been used to
analyze and to quantify the influence of these factors on the arterial
pulse pattern. The experimental approach has profited substantially
from new instrumentation which permits a recording of the transients
of both pressure and flow with a high degree of fidelity at various
levels of the arterial tree(l’g’B’u). The theoretical approach employs
established mathematical relations between known physical parameters
which permit the prediction of pressure and flow at specific points
in the arterial tree and specific times in the cardiac cycle. If an
adequate mathematical expression were available to describe these rela-
tions, the fit of these predictions to the actual measured values would
then become a valuable tool both for assessing the accuracy of the
selected values for the physical parameters and for checking the signifi-
cance to the various factors that influence the transients in the arter-
ial tree.

The theoretical analysis of these transients then has two
requirements: 1) realistic values for these factors that influence
the transients, and 2) a mathematical statement of the inter-relationship
of these factors which will define pressure and flow with respect to time
and position in the arterial tree. Approximations of the required quanti-
tative values for the physical factors involved can be found in the liter-
ature. However, one of the more unyielding problems has been the develop-

ment of a mathematical expression for the inter-relation of these factors



in pulsatile flow in a distensible vessel. Owing to the difficulties
encountered, greatly simplifying assumptions have been made, such as
lumped parameters, laminar flow, linear frictional resistance, and
steady oscillatory flow(l’g)o The resulting equations, despite the
restrictive assumptions, are very complicated and do not lend themselves
to ease of computation when practical boundary conditions are introduced.
The current study presents a new mathematical approach which
permits a more realistic solution of specific equations describing these
inter-relations. ©Specific values for pressure and flow with respect to
time and position in the arterial tree can be computed. This approach
has not previously been applied to a study of the transients in blood
vessels. It starts with two established equations dealing with these
transients and the physical factors that influence them. These simul-
taneous equations are: 1) the continuity equatidn which equates the
net influx of blood entering a small segment of the arterial tree with
the increase of volume of that segment, and 2) the momentum equation
(Newton's second law) which equates the forward force acting on this
segment of blood with the backward force plus the force exerted by the
arterial wall and the force required to overcome friction in the artery
(Figure 3). The inclusion in this equation of the statement for fric-
tion makes it a non-linear, partial differential equation which could
not be solved by previous methods. The new aspect of the current approach
is the application of the method of characteristics which permits the

solution of these two simultaneous equations. Specific values can be

computed for the unknown functions of pressure and velocity along
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characteristic lines relating the independent variables of time and
distance (Figures 4 and 5). With the aid of a high speed computer
these unknowns have been determined for frequent periods of time
(1/400'th of a physiological pulse cycle) and for short segments
along the arterial tree (1 cm).

The problem of reflections and their interpretation in an
analysis of unsteady flow become less significant with this approach.
A pressure pulse is transmitted through the vessel at a speed that
depends upon the tube properties and the pressure within the tube.

As the pressure varies both with distance along the tube and with
time, the speed of the pulse wave changes continuously with the inde-
pendent variables, distance along the tube and time. ¥For any change
in speed of the pulse wave, reflections are set up which move in the
reverse direction, and the transmitted wave is affected was well. As
reflections also occur at boundaries, i.e., entrances, exits, branches
and obstructions, previous methods of keeping track of all these
reflections became hopelessly complicated.

The new method outlined here automatically takes all these
reflections into account, not by keeping track of them separately, but
by satisfying all of the basic equations at closely-spaced sections
along the vessel at frequent time intervals, and by satisfying the
boundary equations. Owing to the relative ease of handling the computa-
tions for interior sections and for boundaries, solutions may be program-

med simulating branching arteries with satisfactory accuracy.



The theory of characteristics, which applies to the solution
of hyperbolic partial differential equations, first gained prominence
in solution of supersonic flow problems by Courant and Friedricks.(B)
These methods were extended to applications of free-surface flow cases
later, by Stoker.(6) More recently they have been applied to water
hammer situations by Lai(7), Streeter and Lai(8), and Streeter(9), in
which non-linear terms for wall expansion and for wall friction have
been retained in the equations. This paper presents an extension of
the theory to flexible vessels, tapering vessels, and vessels with dis-

tributed outflow along their length, together with in vivo experimental

confirmation of the method.



II. THEORETICAL METHODS AND RESULTS

In this section the mathematical and physical relationships
for flow through flexible tubes are derived, including equations for

tapering vessels with distributed outflow.

A. Derivation of Basic Equations

The assumptions required for analytical handling of pulsatile
flow are first discussed, followed by development of elasticity relations
and the continuity and momentum equations for vessels of constant initial
diameter. From these relationships the characteristic equations are
obtained and finite difference methods applied to develop the equations
for the method of specified time intervals. After discussion of boundary

conditions, an example is presented.

1. Basic Assumptions

The basic assumptions required in developing the working
equations are:

a, One=dimensional flow; the velocity at a cross section
is given by the average velocity at the section at a given instant.

b. The vessel walls are elastic, with a Poisson ratio of
0.5, and they are tethered; hence the volume of elastic vessel wall
per unit length remains constant.

c. The fluid density is constant. Compressibility of
blood is small compared with expansion of the vessel walls under

increased pressure, and



d. Pressure losses due to wall friction may be expressed
as proportional to some power of the velocity at a cross sectionm.

2. Elasticity Relationships

Although arteries have viscoelastic properties, their effect

lO) have concluded that

seems to be minor and previous investigators(
the stress-strain curve may be linearized without introcducing appreciable
error.

If D i1s the inside diameter of the vessel, and t' the effective
wall thickness, then as a consequence of the constant volume of elastic
wall material resulting from the assumption of Poisson's ratio of 0.50,

1

Dt' = Dyt (1)

D, is the unstressed diameter and té is the corresponding wall thickness.

o}
If the tube is subjected to an increment of pressure dP internally, the

tensile force AT resisting this pressure increment per unit length of

vessel, Figure 1, is

Since the diameter change, on a percentage basis, is much less than the
pressure change, the term dD/2 is neglected in expanding the right hand

side, leaving

D

- 2
aT 5 ap (2)

By dividing through by the wall thickness the change in tensile stress

dS (force per unit area) is obtained

dT _ DdP

s = =
t' 2t
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Now, by dividing through by the elastic modulus of the vessel wall, Y,
the unit strain is obtained, which is the change in length per unit
length caused by dP. Since circumference changes are proportional to

diameter changes, the unit strain is dD/D,

D 2t' Y

d.D dF (3)

After use of Equation (1) to eliminate t' and after separating variables

daD
1
dP = 2Yt D 53 (L)
Integrating
' 1 1
P =Yt D (Dg - 2 (5)

in which the condition has been used that D = Dy when P = 0. By multi-
plying and dividing the right-hand side by ﬂ/4 to introduce the vessel

cross sectional area A, and correspondingly Ao’

A _ 1
NS (6)

t' Y
0

The pressure P has been expressed as force per unit area (dynes/cmg).
It is customary to express it in terms of the height of a liquid column
(the fluid flowing). These are related by P = pgH in which p is the
mass density (gm/cc), g is gravity (980 cm/secg), H is the pressure in

height of fluid flowing (cm). Two additional substitutions are made, let

N
ct+
<
no
+
<

(7)

o
I
o
i

e}
(o)



Then

]
a2 t, D _D° A
82 t' Dy DI Ag

2 2
_ao—gH
and from Equation (9)
D a
D = 20

a 1is the speed of the pressure pulse wave through the vessel.

(10)

(11)

It changes

both with time t and with distance x along the vessel, and whenever a

changes reflections are produced.

The partial derivatives of A with respect to the two independent

variables, time t and distance x are needed later and result from Equa-

tions (8) to (11) (a variable subscript x or t represents partial differ-

entiation with respect to that variable, i.e., A_ = OA/Ox.

s _ %
Ag 52

2 2
By = .28 &y » At = . 239 ay
Ag 8’ Ay ad

In these equations AO is considered to be constant.
Then, from Equation (10)

2a - a, = -gH,, 2a - ap = ~gHy
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Now, by eliminating a,, a;, and Ay from the last three sets of equations

A A H
X = %EE ot oo &t (12)
A a2 A a2
Also, from the relation P = pgH
P, = pgH, (13)

These elastic relationships are used in the continuity and momentum
equations that are now developed.

3. Continuity Equation

The continuity egvution is a material balance for a small segment
of vessel, which states that the net mass inflow per unit time is just
equal to the time rate of increase of mass within the segment, Figure 2.

If V is the average velocity at the entrance to the element,
the rate of mass inflow is pAV, and the rate of mass outflow 1s pAV +
(pAV)de. The net mass inflow per unit time is then - (pAV) dx and must
Just equal the time rate of increase of mass within the segment (pAdx)te
Equating these expressions

- (pAV)de = (pAdx)t (1)
p is constant for all practical purposes when considering flow in a
distensible vessel. A and V are dependent variables. After expanding
Equation (14%), remembering that x is independent of t, and then dividing

through by the mass of the fluid segment, p Adx,

VA
—Z£ +V_+2L =0 (15)
A X A

which is the continuity equation and must hold throughout the wvessel.
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L. Momentum Equation

The momentum equation when applied in the x-direction to the
fluid in a segmental volume, Figure 3, is a statement that the resultant
x-component of force on the segment of fluid is just equal to the net
efflux of x-momentum plus the time rate of increase of x-momentum within

the segment. The resultant force component, Figure 3, is

dx
F=PA+ (P+P, > ) Adx - [PA + (PA),dx] - 7 nDdx

The first term is due to pressure within the fluid acting over the cross
section at x, the second term is the force component in the x-direction
due to the tube wall pushing against the fluid (zero for constant A, as
Axdx is the increase in cross section in the length dx). The term in
brackets is the force pushing against the element on the distal side.
The action of fluid friction at the tube wall is given by the product

of shear stress s at the wall and area of wall surface snDdx. This
force is assumed to act wholly in the x-direction. By expanding the

expression for F it becomes

2
P =_P Adx - T Ddx + P.A L(9x)T
X o) X X )

Since the term with square of dx becomes of a higher order of smallness
as dx approaches zero, it may be dropped from the equation.

The momentum influx at x is pAV2 and the momentum efflux at
x + dx is pAV® + (pAV®) dx, with a net efflux of (pAV2)XdXo The time
rate of increase of momentum within the segment is given by (pAdXV)tn

After combining the force and momentum terms,
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T +dT
3 PD+d(PD)
T+dT

Figure 1. Relation Between Tensile Force Change in
Wall 4T and Pressure Change dP.

l%
pav —=| | ———=PAV+ (pAV) dx

=

— x—ldxl=—

Figure 2. Material Balance Showing Mass Per Unit Time Entering
and Leaving an Elemental Volume.

b —
r - O —

TIME RATE OF INCREASE
(P+PRdX/2)A,dX OF MOMENTUM

|
| (PAVdX)
PA Y PA+(PA), dX
___..._l | I N
MOMENTUM IN MOMENTUM OUT

———
I l
PAV? ~/\ PAVZ+ (pAV?) dx
To ¥ DdX
— X dx

Figure 3. Force Acting on Segment of Fluid (Solid Lines), and
Momentum Relationships (Dotted Lines).
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- P Adx - TonDdx = (pAvg)de + (pAdxV )y

By expanding the partial derivatives, then dividing through by the mass

of the segment pAdx, and after replacing PX by pgh,,

T D A A
O L Xy? L ovvV. 4V, +V
oA A X t A

gy, + = 0 (16)

The wall shear stress To MY be written in the form
r o= x & (17)

For established, steady laminar flow k = 16/52 with R the Reynolds number
VDp/u, in which u is the fluid viscosity (Poise). For turbulent flow

k = f/h, with f the commonly used Darcy-Weisbach friction factorn(ll>

By inserting Equation (17) into Equation (16), using f,

2
e Ay 2
gH& + D + K_ vV o+ 2V Ve + Ve + V

A
=t _

I 0 (18)
This is the momentum equation for flow through a distensible vessel. By
multiplying Equation (15) by V and subtracting it from Equation (18),

substantial simplification results®

2

gHy + V Vy + Vi + g%— =0 (19)

Equations (15) and (19) contain the continuity and momentum
principles. After substituting the elastic relationships given by
Equations (12) into Equation (15) it becomes, upon simplification,

e
VH, + Hy + é—:vX = 0 (20)

*By writing the V2 term in the friction expression as V‘V}, it will reverse
sign if the flow reverses, and hence act in the proper direction at all
times.
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Equations (19) and (20) are used to develope the final equations.

5. Development of Characteristic Equations

By calling Equation (19) L, and Equation (20) Lo, they may be

combined linearly using an unknown multiplier A, as follows:

2a2 2
L=Ty +2p = MEE +v) + 5]+ [V (v + —g—) V) + =0 (21)

If two distinct values of A are taken, two equations result which contain
the momentum and continuity principles. The theory of characteristics
determines two special values of X which result in great simplification
of the equations. To review some fundamental relations in calculus, if

H = H(x,t) and V = V(x,t), then the total derivatives of H and V with

respect to t are

@:H 'd-—x"l‘H-t g.v_=v g'—}g-i—vt

it X at at  *at
where in these relationships H and V are pressure and velocity of a
particle as it moves (x becomes a function of t). By examining Equation
(21) it is seen that the first bracket contains dH/dt if

5 +V = 93‘. (22)
A at

and the second bracket contains dV/dt if

2
g dt

These expressions must be the same. By equating them and solving for A

2
g— = l\é;—
=+ \ V +

g
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and

o= o+

(25)

o jog

Now, by restricting the applicability of Equation (21) to
those characteristic lines for which Equations (22) and (23) are satis-

fied, it may be written in the simple form

2
L = A éﬁ + g‘ + _fV = 0 (25)
dt dt 2D

By applying A = +g/a to Equations (22) and (25)

2
g di + v + v 0 (26)
a dt d4dt 2D
‘s
&= Vs (27)
dt

and by applying A = -g/a to0 the same equations

2
g i + av + - 0 (28)
a dt dt 2D
C
dx =
P = V - 8, 2
" (29)

Equation (26), a total differential equation, is valid only along a
line defined by Equation (27), if a plot is made on an x - t plane,

as shown in Figure 4. If C+ in the figure represents the character-
istic line defined by dx/dt =V + a and passing through a point R
where V, H, x and t are known then Equation (26) may be used as one
relation between pressure H and velocity V along this line. BSimilarly
Equation (28) is valid only along a line defined by Equation (29),

Figure 4. Now with V and H known at the known points R and S, four
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equations are available at the intersection P of the two character-

istic curves, for computing V, H, x and t.

6. The Method of Specified Time Intervals

For computation purposes, Equations (26) to (29) are written
as finite difference equations. For use with a high-speed digital com=
puter, the theory of characteristics method may be extended to a system
in which the time and distance intervals are preselected,(lg) This is
called the method of specified time intervals, and entails interpolation
of values of V and H at unknown points R and S, Figure 5, such that P
occurs at equally spaced distances Ax along the vessel for equal time
increments. In Figure 5 consider that V and H have been computed for
the first two rows at the equally spaced sections. Values of V and H
are to be computed next for point P at time tp, which is t¢ + At, and
values of V and H are known at A, B, and C.

Equations (26) to (29) are written as finite difference
equations, for points R and P on C+ and for points S and P on C_ ,
with At = tp = tg = tp - tg. The mesh (Ax, At) is assumed to be so
fine that the velocity in the friction term may be evaluated at known

conditions at C. Also ap and ag are replaced by ap, as well as Dg and

Dg by D¢.
g i . fove Vel &6 _ 0
Ea (HP HR) + VP VR + 2DC (5 )
Xp = XR = (V + a)C At (51)
g (HP - HS) + Vp = Vg + fcve |VCI 4ot =0 (32)

ap 2D¢
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C+

’—x

Figure 4. Characteristic Lines C, and C_ Drawn
Through Points R and S Respectively,
Where V and H are Known. Their Inter-
section P is a Point Where x, t, V, and
H May Be Determined From the Equations.

P
i SN
A R c S 8

®

fad

Figure 5. By Specifying At and Ax, Which Locates
Point P, Values of V and H at R and S
May Be Found by Interpolastion From Values
at A, C, and B.
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xp = xg = (V = a)g At

The V2 friction term has been replaced by VIVI°

(33)

Vgrs Hps Vg» and Hg are now to be computed from the equations,

with reference to Figure 5, by linear interpolation.

The mesh (values

of Ax, At) is assumed to be fine enough so that the slopes of the

characteristics lines are given adequately by evaluating V + a and

V - aat C. From Figure 5
VR-Va _XR-X _*R "% (51)
VC_VA XC-XA X
By remembering that xp = Xq, from Equation (31)
Xc'XRZ(V‘Fa)CAt
Then
xg - Xp =& - (Xg - xg) =M% = (V+a)g &t (35)
For convenience the grid mesh ratio Am/Ax is called ©. Substituting
into Equation (35), the first of the following four equations is
obtained,
Vg =V, + (Vo - V) (1 - 6(V + a)c) (36)
Hp = Hy + (Hy = Hy)(1 - 6(V + a)g) (37)
Vg = Vg + (VC - VB)(l + 6(Vv - a)c) (38)
Hg = Hp + (Hg - Hp)(1 + 6(V = a)¢) (39)
The last three equations are found in a manner similar to that used in

obtaining Equation (36).

In
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6 = — (ko)

At must be selected so that R and 5 lie within the reach defined by

points A and B.
With the interpolated values of Vg, Hp, Vg, Hg known,

Equations (30) and (32) may now be solved for Hp and Vp,

Hy + H
Hp = B8+ 2C (v - vg) (41)
2 2an
Vo o+ V fVe Vol At
vy, = B—S8+ L (5 -Hy) - LE Vel (k2)
2 28, 2D,

Equations (36) through (41) permit all interior points of the
grid to be computed, i.e., all points where corresponding points, A, B,
and C are known. At the end points an additional condition is needed
to solve for Vpend Hp, since only one of the Equations (30) and (32) is
available at a given boundary. This additional condition is called the

boundary condition.

7. Boundary Conditions

Boundary conditions may take on many forms. Some examples
are given here to illustrate procedures in developing them. At the

proximal end of the vessel Equation (32) applies, Figure 6.

foVe [Vl At
2D

Vp = Vg + & (Hp - Hg) - (43)

5
in which Vp and HP are the unknowns, as VS and HS are given by the
interpolation Equations (38) and (39). If a known pulse inflow Qp

into the vessel is known at this instant, then a second equation becomes

available, as follows:
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2
Q.P = VP -IE[DP ()-H-I-)
But from Equations (10) and (11)

2
D 2 Do ao2 _ D02a02 (45)
P =752 - a02 - gHp >

By substituting Equation (45) into Equation (44) to eliminate Dp, and

after solving for Vps

- gHP) (46)

which is the second relationship required. With the pulse inflow given
for each time increment, Vp and Hp at the proximal end may be computed
progressively as the rest of the solution proceeds. Another example is
to have the pressure pulse specified as a function of time at x = O.
In this case the known Hp is inserted into Equation (43) and Vp may be
computed.

At the distal end, Figure 7, the outflow may be expressed in
terms of the pressure difference between the vessel Hp and the terminal

bed HB as

QP = kl (HP = HB)m = VP %IFDPE (47)

Equation (30), solved for Vp is

faVe | Vol &6

2Dg (48>

VP = VR = %6 (HP = HR) -
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Figure 6. Proximal Boundery Rela-
tions. One Relation
Between V and H at P is
Obtained from Values of
V and H at S.

>o
20

Figure 7. Distal Boundary
Relations.
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By use of Equations (10) and (11), Equation (47) may be solved for Vp
in terms of H?
by

=2 2 (Bp - Hy)" (a02 - ghp) (%9)
T a

o “o
A trial solution may be required, depending upon the value of exponent
m in the terminal bed resistance relationship. Care must be taken in
applying a terminal bed Q - H relation. Within the vessel proximal to
the bed, there is no simple Q - H relation, primarily due to the complex
reflections. If a segment of an arterial system is to be analyzed, the
boundary conditions should generally be expressed as H versus t, Q versus
t, or VP versus t.

For known pressure as a function of time, Vp is found directly
from Equation (48).

8. Example

To illustrate the application of the characteristics theory
to a flow situation, a known pulse flow is injected into a distensible
vessel, with a linear terminal bed at the distal end. The computer
program, Figure 8, is in the MAD (Michigan Algorithmic Decoder) language
and an IBM 709 is used in performing the calculations. The pulse flow
from the heart, measured at the ascending aorta of a dog using the
Square Wave electrio magnetic flowmeter®* has been expressed by a series
of empirical formulas. The average flow is 35.65 cc/sec over the 0.4 sec.

pulse cycle, with a maximum inflow of 160 cc/seco A friction factor

*¥carolina Medical Electronics, Inc., Winston-Salem, North Carolina.
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PULSATILE FLOW THROUGH A DISTENSIBLE TUBE

DIMENSTON V(20),VP(20),H(20),HP(20),0120),Q(20),AA(120) 001
oo oo ... INTEGER I1,UsNyPyKK __ . ... .®0G2_
"PRINT COMMENTSL GIVEN DATA FOR PROBLEMS *003
Al READ DATA e 2004
PRINT RESULTS Y, THICK,DOsLyHByHOyQAVE,RHOGsSG)FyN,DELT ,PTIM 005
_.29PyKK R *005
PRELIMINARY CONSIDERATIONS
______ TM=.12#PTIME : =006
PMT=,25#PTIME *007
_PPT=,32ePTIME . O, e emmene... #008 .-
PTT=.34#PTIME +009
....... QOM=160, .- . e MOLO
AO=SORT. (YTHICK/ (RHO®D0) )’ #011
V0=,7854#D0#D0*A0*A0 012
TH=DELT#N/L *013
A=SQRT. (AO®AO-G*SG#HO) e 014
D=D0*AD/A 015
VP=QAVE/ (. 7854%0#D) N 0l6
DHE=F L s VP*VP/ (NeD#2.%G#5G) 017
THROUGH A2,FOR 1=0,141.6.N #018
V(I1)=vP 019
e HULI)=HO=UHF & SRS 020
PISSET 021
o Q(I)=0AVE o o . €022 K
Y] AA(TY=SQRT.(AO*AO-Gw*SGoH(T)) *023
K=QAVE/ (HO-HB) #024
T=—5.#DELT %025
R u=-5 e *026
C1=K/(.7854#DCeD0O*A0*A0) 027
e C2=CLl#(AQ®AD+G*SG#HB) o 028 _____
C3=C1+G#SG «029
C4=Cl=HB=AQ#AQ I =030
ACN=SQRT.(AO*AD~G#*SG*#HI(N) ) «031
) . _______PRINT COMMENTS$0 HEADS{CM HG), _ VELOCITIES(CM/ *032
2SECY, DIAMETERS(CM}, ~AND FLOW(CC/SEC)S$ *032
PRINT COMMENTSO TIME  FLOW  X/L= .0 .1 .2 %033
T2 .3 4 "5 .6 .7 .8 .9 1. «033
3$ e *033
A3 PRINT FORMAT B1,74Q,H{0),H(2i,H{4),H(6),H(8),H{10),HI12Y,H(14 *034
2)4HI16) 4 H(2B) ,H(20) o o ®034
Tt PRINT FORMAT B23VI0),VI2) 4VI4) V(6] 4VIB)yVILO)4V(L12),VIT4),V( *035
216),V(18),4V(20) *#035
"""""""""""" PRINT FORMAT B3,0(07,0027,014),D(6),D(8),0{10),0(12),0(141,01 %036
2161,D(18),0(20) e e e .. *036
PRINT FORMAT B4,Q(0),Q(2),Q(4),Q(6),Q(8),Q(10),Q(12),0t14),Ql( 637
216),0(18),Q(20) w037 __
VECTOR VALUES B1=$1HO,F8.3,F9.2,52y3H H=,11F8.3%$ %038
VECTOR VALUES B2=$1H ,520,2HV=,11F8.3e$ *039
VECTOR VALUES 83=$1H ,520,2HD=411F8.3#$ 040
.. .. VECTOR VALUES B4=$1H ,52042HQ=y11F8.3e$_ - 2041
A4 T=T4+DELT (42
Usuel #0643
. WHENEVER U.G.P,TRANSFER TO Al 044
“CALCULATION OF INTERIOR POINTS -
THROUGH AS,FOR I=1,141.E.N 2045
. CHR=HUI-D) 4+ (HUI)=H(I=-1)) el 1. ~TH*(V(I)+AA(]))) L #046
VR=VII-1)4(VIT)-VII=1))#{1.-THe (VII)+AALI))) %047
VS=VII+1)+(VII)=VII+1) I e (1 +TH(V(1)=-AALI))) } R .. wU4B
TTHSSRUTA DI # THITT=HUT#1) ) s (1. + THe (V (1) -AA(1))) ®049
HP(1)=(HR+HS) /2. +AA(T1)#(VR-VS)/(2.462SG) *050
VP(I=(VR+VS172.+GoSG* (HR=HS) /(2. #AATI) ) =F«V{ ) ¥, ABS.VI1T#DEL *051
2T/7¢2.#D(1)) 051
‘AA{T)=SQRT.{AG*AD-G#SG*HP(}) #0652
D(I)=DO®AO/AALT) *053 .
AS QUI)=.7854#D(1)=0(I)evP(]) 054
CALCULATION OF PROXIMAL BOUNDARY CONDITION
WHENEVER T.L.0.,0=0AVE ) o . *055
WHENEVER T.GE.Oe.AND.T.LE.PMT,Q=QM*T/ (TM#EXP.(T/TM-1.)) #056
WHENEVER TaGoPMToAND.T.LE.PPT,Q=QM#T/(TMeEXP. (T/TM-1.))-.56%0 w057
2Me (T-PMT)/IPPT-PMT) 057
WHENEVER T.G.PPT.AND.T.LE.PTT,Q=QMs{T-PTT)/PPT 0458
WHENEVER T.G.PTT.AND.T.LE.PTIME,Q=04 059
WHENEVER o ABS.{T-PTIME).L..001,T=0. #060
AC=SURT, (AO*AD-G#SGaH) *061
VS=V(1)+(V=V(1))#{1.+THe{V-AC)) #062
ASEHTI + (A=A I {10+ TR (V=ACY) 063
HP={0Q/(.7854%D0#D0)~VS+GeSG#HS/AC+FeVs, ABS. V#DELT/(2.4D))/(G® #0064
2SG#(1./AC+Q7V0)) %064
A=AQ®AO-G#SGeHP *U65
T TTVP=QwA/VO *066
D=D0*A0/SQRT. (A) o o 067
DISTAL BOUNDARY CONDITION
VR=V(N=L1)+(VINI=VIN=1))#{1.~TH# (V(N)+ACN)) #0068
HR=H{N-L1)+ (HINI=HIN=1 )1 # (1. =TH* (V(NY+ACN)) *069
VEE=VR+G#*SG#HR/ACN~F#VIN) *. ABS.V{N) #DELT/(2.¢D(N)) #0170
C5=G#SG/ACN *071
C6=(C5+C2)/C3 *072
C7=(VEE+C4)/C3 073
HP{N)=C6/2.-SQRT.(C6#C6/4.-CT) e 074
VPIN)=VEE-C5*HP (N) *075
ACN=SQRT.(AQsAO-G#SG#HPIN}) . R B o *076
D(N)I=DO®A07ACN *CTT
Q(N)=VP{N)».7854%D(N}#D(N) o *078
THROUGH A6,FOR I=0,141.G.N *079
VIII=VPLI) ) *080
A6 HITI=AP(T) #081
WHENEVER U/KK#KK.E.U, TRANSFER TO A3 %082
TRANSFER TU A4 #083
END OF PROGRAM %084

“Figure 8 (Cont'd)
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__GIVEN DATA FOR PROBLEM

L]

.=.2:000000E 06, . THICK

- - +100000, po = 1.300000, _ L= 50.0G0000C
_HB = 10.000000, HO = 14.000000, QAVE = 35.650000, RHO = 1.00000¢
o 6 = 980,000000, 56 = 13.600000, F = .300000, N = 2¢
DELT = "-OOOOOOE‘OBQ _'___P[IME_ = n400000' P = JOQ. KK = _2
i HEADS(CM HG),  VELOCITIES(CM/SEC), DIAMETERS(CM),  AND FLOW(CC/SEC) )
TIME  FLOW  X/L= .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.
.000 .00  H= 12.945 12.959 13.009 13.11Z 13.289 13.543 13.846 14.138 14.364 14.496 14.536
= .000 2,891 5,573 7.863 9,600 10.716 11.390 12.038 12.946 14.033 15.116
= 1.751  L1.751 1.754 1.760 1.770 1.785 1.802 1.820 1.834 1.843  1.845
o em .000  6.964 13.469 19.128 23.619 26.803 29.062 31.325 34,214 374428 40.421
+008  61.36 H= 13,713 12.899 12.962 13.083 13.275 13.533 13,823 14.096 14.309 14.442 14.485
o TVETTZ40261 2135 73,803 4.672 4.T48  4.542 40910 T 6.45377779.029 12.022 T 15.000
o D= 1.794 _ 1.748  1.752 1.758 1.769 1.784 1.801 1.818 _ 1.831 _1.839 _ 1.842 _
0= 61.359 5.125 9.164 11.344 11.670 11.352 12.510 16.743 23.772 31.942 39.975
016 103.88  H=14.203 I3.458 12.948 13.093 13.297 13.540 13.793 14.027 14.218 14.345 14.390
V= 39.743 18.362 1.591 1.083 -.154 =-1.161 =-.783 1.510 5.350 9.965 14.779
D= YGB2577 1.780 1.751 1,759 1.770  1.784  1.799  1.813 1.825 1.833 1.836
= 103,879 45.673 3.831 2.630 -.380 -2.903 -1.991 3.900 13.999 26.300 39,130
<024  131.90 H= 14.531 14.047 13.366 13.134 13.339 13.553 I3.756 13.940 14.098 14.210 14.253
T TR T 49UST4 34,381 104433 -2.881 ~4.875  -6.044 -5.389 -2.563 2.121  8.015 14.453
) b= 1.845 1.815 1.774 1,761 1.773  1.785 1.797 1.808 1.818 1.825 1.827
- U IB1LBY8T T 88.915  25.796 -7.017 -12.032 -15.125 -13.669 -6.580 5.505 20.958 37.906
2032 148.87  H= 14.760 14.468 14.004 13,446 13.384 13.558 13,710 13.843 13.958 14.044 14.080
o  54.790  44.065 24.657 <401 -9.090 =-9.899 -8.809 -5.621 -.420 6.379 14.028
T 1.860 '1.841 1.812 1.779 1.775 1.785 1.79¢ 1.8062 1.809 1.814 1.817
- Q= 148.865 117.297 63.581 <998 ~22.500 -24.782 -22.274 -14.340 ~1.080 16.493 36.301
.040  157.51 H= 14,931 14,772 14.517 14.034 13.568 13.550 13.654 13.738 13.806 13.857 13.862
V= 57.272 48.927 34.803 12.226 -8.132 -12.697 -11.097  -7.590 =2.077 ~5.225 13.527
D= 1.871 1.861 1.844 1.814 1.786 1.785 1.791 1.796 1.800 1.803 1.805
- TQEISTLST5 33,045 0 92.424  31.591 -20.373 -31.771 -27.957 -19.228 ~5.285 13.341 34.598
048 160.00° H= 15.067 15.001 14.877 14.570 14.009 13.610 13.587 13.624 13.646 13.661 13.674
V= 57.605 50.660 39,903 23.704 1.939 -12.017 -1 ~8.488 -2.770 _4.625 12.980
D=  1.881 1.876 1.868 1.848 1,812 1.788 1.789 71.791  T1.791 1.792
Q= 160,000 140.041 109.327 63.548 5.002 ~30.188 -31.006 -21.343 -6.975 11.657 32.746
.056 158.01 = 15,182 15.179 15.127 14.941 14.502 13.888 13.554 13.503 13.484 13.468 13.471
T ' 256,414 50.487 42.366 31.446 15.210 -3.545 -11.313 -8.421 -2.595 4.545 12.426
= 1.888 1.888 1.885 1.872 1.843 1.805 1.785 1.782 1.781 _1.780 _ 1.780
= 158.010 141.377 118.190 86.553 40.583 ~9.070 -28.315 -21.007 -6.465 11.313 30.932
L0647 152,86 H=E15.280 15.316 15,299 15.176 14.871 14.302 '13.688 13.400 13.325 13.289 13.263
V= 54,184 49.269 43.332 36.230 26,047 10.333 4,154 -6.794 -1.773____4.855 11.898
b= 1.895 1.898 1.897 1.888  1.867 1.830 1.793 1.776 1.7i2 1.110 1.710
= 152.860 139,357 122.410 101.431 71.330 27,191 -10.489 -16.835 ~4.371 11.945 29.262
.072 145,57 H= 15.358 15.415 15.411 15.318 15.095 14.662 14.000 13.427 13.190 13.129 13.119
V= 51.303 47.573 43.567 39.271 33.548 23.801 9.307 ~-.746 -.129 5.372 11.422
b= 1.901  1.905 1.904 1.898  1.882 1.854  1.812  1.778 1.764 1l.Tol  1.760
0="145.567 135.552 124.100 111.094 93.368 64.222 23.994 -1.852 ~-.316 13.061 271.799
L080 136.91  H= 15.412 15.478 15.476 15.395 15.215 14.889 14.343 13,650 13.162 12.999 12.980
e N= 48,061 45.716  43.475 41.353 38.732 33.984 24.347 11.306  4.416  6.193 11.009
D= 1.904 1.909 1.909 1.903 1.891 1.868 1.833 1.791 1.763 1.754 1.753
,,,,,,,,,,,,,,,,,,,,,,,,,,, Q= 136,911 130.871 124.443 117.655 108.741 93.185 64.250 28.476 10.776 14.957  26.558
.088  127.48  H= 15.436 15.505 15.502 15.425 15.264 15.001 14.588 13.960 13.332 12.958 12.8173
V= 44.671 43.833 43,242 42.915 42.536 41.148 36.540 26.253 14.109 8.925 10.686
___________________________ D= 1,906  1.911  1.911 1.905 1.894 1.876 1.849  1.811  1.772  1.751 __ 1.747
Q= 127.4827125.737 124.021 122.370 119.858 113.744 98.084 67.589 34.807 21.501 25.607
L0968 T TINT.TZ T HE 150428 15,498 15.494  15.416  15.266  15.0640 14.722 14.266 13.656 13.096 12.873
V= 41,273 41.964 42,935 44.175 45.489 46.240 44,981 39.174 27.549 15.984 10.686
D= 1.906  1.911 1.910° 1.905 1.894 1.879 1.857 1.828 1.791 1.759 1.747
Q= 117.721 120.312 123.059 125.883 128.195 128.181 121.886 102.836 69.414 38.844 25.607
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15.453
42.558
1.907
121.604

15.382
42.089
1.902
119.630

15.243
40.230
1.893
113.185

14.930
33.612

1.871
92.440

14.521
24.715

1.844
66,032

14.053
14.555

1.815
37.658

13.774
10.237
1.798
25,995

13.654
10.400

1.791
26.201

13.601
15.155

1.788
38.047

13.421
12.558

1.777
31.161

13.264
10.333

1.768
25.382

13.133

8.552

1.761
20.830

13.029
7.075
1.755

17.120

12.952
5.644
1.751

13.592

15.376
45.195
1.902
128.410

15.309
45.947
1.897
129.900

15.220
46.356
1.891
130.193

15.089
45.628
1.882
126.930

14.821
40.711
1.864
111.092

14.450
32.732

1.840
87.019

14.020
23.014

1.813
59.410

13.698
16.326

1.794
41.250

13.709
22.433

1.794
56.723

13.535
19.440

1.784
48.596

13.370
16.378

1.775
40.506

13.227
13.465

1.766
32.997

13.118
10.702

1.760
26.046

13.049
7.919
1.756

19.187
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15.235
47.817
1.892
134.445

15.179
49.574
1.888
138.821

15.107
50.728
1.883
141.301

15.021
51.233
1.877
141.825

14.912

50.651
1.870
139.118

14.700
46.535
1.856
125.900

14.388
38.955
1.836
103.121

14.026
28.922

1.813
14.691

13.794
28.587

1.799
72.690

13.652
25.834

1.791
65.077

13.506
22.351

1.782
55.766

13.374
18.385

1.775
45.481

13.275
14.114

1.769
34.692

13.217
9.622
1.766

23.565

15.035

49.912

1.878
138.312

15.005
52.501
1.876
145.168

14.959
54.168
1.873
149.286

14.903
54,999
1.869
150.970

14.841
55,024
1.865
150.361

14.769
53.872
1.861
146.466

14.641
49,252
1.852
132.698

14.456
40,162
1.840
106,661

13.840
32.857

1.802
83.803

13.753
30.596

1.797
17.587

13.659
27.027

1.791
68.111

13.570
22.302

1.786
55.878

13.502
16.729

1.782
41.729

13.463
10.726

1.760
26.686

14.781 14.449 13.986 13.431 13.123
50,529 48,052 40.219 26.690 11.434
1.861 1.840  1.811 1.178_ l.761.
137.489 127.740 103.589 66.269 27.834
14.797 ' 14.549 14.236 13.881 13.667
54,100 53,496 48.837 35.952 12.961
1.862 1.846 1.826 1.805 1.792
147.373 143.201 127.934 91,951 32.681
14.790 14.604 14.434 14.356 14.335
56.279 S6.477 52.540 39.295 14.648
1.862 1.850 1.839 1.834 1.833
153.232 151.768 139.530 103.791 38.632
14.771 14.656 14.648 14.801 14.9C6
57.331 57.222 51.515 36.964 15.9:7
1.861 1.853 1.853 1.863 1.8/0
155.894 154.335 138,860 100.722 43,728
14.757 14.745 14,903 15.173 15,301
57.123 55,345 46.689 32.113  16.721
1.860 1.859 1.869 1.888  1.897
155.169 150.211 128.151 89.887 47.244
14.769 14.891 15.1/3 15.450 15.548
55.139 50.627 39.861 27.417 17.182
1.861 1.869 1.888 1.907  1.914
149.910 138.848 111.567 T78.325 49.446
14.825 15.083 15.409 15.634 15.698
50.696 43,687 32.988 23.8/5 17.448
1,864  1.882 | 1.904  1.920 . 1.925
138.379 121.484 93.953 69.158 50.787
14.881 15.277 15,582 15.747 15.708
42,365 35.793 27.232 21.403 17.662
1.868  1.895 1.917  1.929  1.932
116.103 100.950 78.570 62.530 51,587
13.857 13.874 13.913 13.960 13,971
34,743 33,861 29.862 22.823 13.754
1.803  1.804 1.806  1.8u9  1.810
88.716 86.562 16.536 58.680 35.389
13.841 13.934 14.042 14.138 14.169
32,738 31.724 27.678 21.464 14.248
1.802 1.808 1.814 1.820 l.822
83.503 81.422 71,557 55.855 37.153
13.821 13.991 14.154 14.273 14.310
29.159 28.147 24.527 19.658 14.589
1.801 1.8i1 1.821 1.829 1.8l
764.276 72.518 63.891 51.628 38.414
13.799 14.035 14.23% 14.362 14.396
24.108 23.387 20.858 17.710 14.797
1.800 1.814 1.826 1.834 1.837
61.323 60.435 54.637 46.953 39.197
13.778 14.054 14.273 14,402 14.439
17.988 17.872 16.968 15.901 .14.892
1.798 1,815  1.829  1.837  1.839
45.691 46.244 44.564 42.133 39.561
13.757 14.043 14.265 14.396 14.436
11.432  12.121 13.012 13.967 14.866
1.797  1.814 1.828  1.836 1.839
28.997 31.338 34.155 37.046 39.536

Computer Program and Sample of Calculations for Pulse Flow Into

& Flexible Tube.

Pulse Time 0.k

t' =0.1cm, Y =5, x10 dynes/cm?. Problem was started as a
steady state flow with flow of 35.65 cc/sec. and head of 1k. cm

Hg at proximel end.
as square of the velocity.

Friction factor F = 0.3 and losses varying
The calculations are printed out for

the third pulse after steady flow, with values given for each
0.008 sec, time interval.

sec, Unstressed Tube i.d. = 1.3 cm.
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f = 0.3 was used and a time increment of At = 0.004 sec. taken with
twenty equal reaches of Ax = 2.5 cm. The pressure H, velocity V,
diameter D and flow rate Q were calculated, and values printed out
for every .008 sec. time interval and at 5 cm distances along the
tube. The terminal bed pressure was taken as 100 mm Hg, and the problem
was iniated by first setting up a steady flow equal to the average flow
(QAVE).

The sequence of main calculations in the program are as
follows (see Figure 8):

1. Calculation of steady state problem, storing of
H, V, D, and Q for the 21 sections 2.5 cm apart
for time t = 0.

2. Calculation of interior points, statements 45
through 54, for the next time increment.

3. Calculation of the proximal boundary condition,
statements 55 through 67.

4. Calculation of the distal boundary condition
equations, statements 68 through T78.

5. Print out of every second set of results, incrementa-
tion of T and U, and check on determination of end of
solution.

The program was run through 3 pulse cycles. The end of the

second and third pulses showed rather close agreement, indicating that
steady oscillatory flow has almost been established. A gross check on

continuity was made as a measure of the accuracy of the finite difference
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method. The total inflow in the 3rd pulse is 35.65 x 0.4 = 14.26 cc.
The total outflow is 14.34 cc, and the volume of fluid within the tube
has decreased by 0.29 cc. This indicates an error in continuity of
about 1.5%, which could be further reduced by taking shorter reaches
and smaller time increments, or by going to a method of calculation(B)

having second order accuracy.

B. Equations for Tapered Distensible Vessel with Distributed Outflow

Since the vascular system is so complex, and several computer
statements are generally required for any boundary condition, a special
program has been developed for flow through a vessel having its unstressed
diameter varying with length along the tube, Figure 9, and with flow
leaving the vessel in a distributed manner. Such a vessel could repre-
sent the aorta, with branches of various sizes along its length. The
outflow along the vessel is set up as a flow per unit length of vessel,
with rate proportional to the head difference inside and outsfde the
tube.

If q represents the outflow per unit length, then

q = ¥ (2 - ) (50)

in which ki has an assigned value for each of the N sections of the

vessel. The continuity equation, Equation (14), now has an extra term

- (pAV) dx - pgdx

(pAdx )y (51)

which simplifies to

Ay Ay g .
= 4 +—+ 2 =0 2)
Voo Vst (52
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By assuming that the fluid leaving through the walls has
its axial momentum reduced by contact with the branch, the momentum

equation becomes
2
- P,Adx - T nDdx = (pAV"), dx + (pAVdx), + pqVdx

After reducing this equation in a manner similar to Equations (18) and
(19), one obtains Equation (19) as before.

In order to take the tapering effect into account A, is
evaluated as follows:

a02
A = Ag 22

with Ao a function of x. Then

ao2 o2
Ax = on 22 2Aoa5 8y
But
2 _ 2
a = a; - gH
and
2a-a, = - gy
Hence
é& = AQE + %ﬁﬁ =% . gy (53)
A Ay a2 Al a2

in which o is the rate of change of unstressed vessel area per unit
length. Ai/A is obtained as before.

Following the previous procedures in developing the finite
difference equations, the two controlling equations become (the inter-

polation equations Vg, Hp, Vg, Hg are unchanged ) :
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g e [Vo| at ac acd At
V, =V, - = (H, - H) - -0 = VAL - ———  (54)
P~ 'R P - "R
an 2D Ao 082
Vo Vol ot a B AL
g c IVC C A
Vo, =Vg + = (Hp - Hg) - +a—= VAt +
p='s aC(P 5) = e (55)

By addition, and then by subtraction, the two equations yield values of

Vp and HP at interior points:

Ve + V Ve Vol At
V, = & S+ & (@, -H,)-—L—CL= 56
P 2 280 @ R ) 2D (56)
Hp + a 2a ONAt  2ap oAt
H, = R * Hs + C [VR - Vg - C — < qg ] (57)
2 2g i ,Wn“AO Aoao

The boundary conditions are handled exactly as before, except
that either Equation (59) or Equation (55) is used, depending upon
whether it is a right-end or a left-end boundary, respectively. TFor
actual computation Equation (50) is used to eliminate g from the working
equations. As very small time increments are generally used (.001 sec.),
it is a satisfactory approximation.éo allow H to equal Hy in Equation
(50), although this is not absolutely necessary. With this type of
distributed outflow (Equation 50), each branch is treated as if it were
a terminal bed, i.e;, a definite relation between pressure H and flow ¢

is established for each branch.
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IIT. COMPARISON OF MEASURED FLOW WITH FLOW COMPUTED
FROM PRESSURE-TIME DATA IN A TAPERING VESSEL

To compare a calculated flow with experimentally measured
flow an in vivo experiment was performed. Pressure and flow data were
obtained from the femoral artery of a dog. Pressure was determined by
inserting short needles at two points in the artery 9.4 cm apart. Small
branches between were ligated at the vessel wall. Suiltable catheters
and fittings were connected between the needles and two Sanborn differ-
ential transducers. Flow was measured by means of a non-cannulating
electromagnetic flow probe placed immediately upstream from the proximal
pressure needle. Data was recorded on a four-channel Sanborn (350)
system. Figure 10 shows the proximal and distal pressure obtained for
one cycle. The solid line in Figure 11 is the flow obtained for the
same cycle. The dashed line in Figure 11 is the flow calculated by
using the experimental pressure data as boundary conditions.

In computing the flow from the pressure-time data values of
pressure were read off the strip chart for each 0.ClL sec. By parabolic
interpolation these values were replaced by 0.001 sec. interval values
over the pulse cycle. These computed values then provided the boundary
conditions needed to compute flow during the cycle. The diameter of
artery was assumed to decrease linearly along the length under consider-
ation, and the length was split into seven equal reaches. Initially
the flow was assumed to be steady at about the average flow, with the
head (pressure) constant along the artery. After two cycles have been

computed the flow has almost achieved its steady oscillatory character.
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The calculated flow does not coincide exactly with the
experimental: several factors contribute to this discrepancy. Pressure
measurements are extremely critical; errors of 1 mm in locating the zero
pressure datum line can result in a computation that reverses the direc-
tion of average flow. Physical dimensions of the transducer fittings and
lines may well introduce their own values and transients that alter the
recorded pressure pulse. Dampening of the recorded flow from amplifier
filtering factors in the flowmeter must also be considered.

Several of these factors have been made an object of special
study using programming and the theoretical model. Results of these
studies, though not a subject of this paper, have shown that more re-
fined raw data will produce better correspondence between calculated
and experimental results.

In meking the calculations the frictional effects are quite
unknown, but very important. By a gradient method, values of f and n

in the friction term

£ n-1
i

2DC

were obtained that gave the best fit (least square method) with the

flowmeter data. These results yielded values of f of about 0.4 and

n about 2.0.



SUMMARY

The basic differential equations for elastic wall material
and for continuity and momentum are derived, including fluid frictional
resistance of the wall of the tubes, based on one-dimensional flow.

These partial differential equations are transformed into four ordinary
differential equations using the theory of characteristics. Then differ-
ence equations are developed and by an interpolation method (method of
specified time intervals) equations are obtained for computation of
velocity and pressure at equally-spaced sections along the vessel at
specified equal time intervals. The equations are first applied to a
flexible tube of initial constant diameter, with a pulse flow taken

from in vivo experiments.

Equations are then developed for tapering tubes with distributed
outflow along their lengths (to simulate branches). Pressure-time data
from femoral artery measurements are then used to compute flow through
the artery, and the results are compared with electromagnetic flow-

meter data.
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NOTATION

speed of pressure pulse through vessel

speed of pressure pulse through vessel at zero pressure
area oOf vessel cross section, point on x~-t plot

area of vessel cross section at zero pressure

point on x-t plot

designation of characteristic curve, point on x=-t plot

diameter of vessel

dismeter of vessel at pressure zero

Darcy-Weisbach friction factor

force on fluid element

acceleration due to gravity

pressure expressed in length of column of fluid flowing
constant

label for a differential equation

exponent

pressure, or point to be computed

outflow per unit length

flow through vessel

known point on characteristic curve

Reynolds number

tensile stress in vessel wall; known point on characteristic

curve

time
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thickness of vessel wall

thickness of vessel wall at pressure zero
tensile force per unit length in tube wall
velocity 1in vessel

distance along vessel

elastic modulus of vessel wall

rate of change of unstressed vessel area per unit length
ratio At/Ax

undetermined multiplier

dynamic viscosity

density of fluid

friectional wall shear stress



AC
AO
ACM

c1l, C

DELT

DHF

HO

HB

NOTATION FOR MAD PROGRAM

speed of pressure pulse at pressure HO
speed of pressure pulse at pressure H
speed of pressure pulse at zero pressure

speed of pressure pulse at pressure H(N)

2, 03, Ck, ¢5, C6, C7T = constants

diameter

time increment

steady state pressure drop in reach Ax
friction factor

gravity

pressure, from previous calculation
bed pressure

initial pressure

pressure to be calculated
interpolated head

interpolated head

integer

constant in terminal bed relation
constant

number of reaches

constant

PTT = constants in computing pulse
pulse period

flow
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QAVE = steady-state flow

aM = maximum pulse flow

RHO = density

SG = specific gravity of mercury in terms of fluid flowing
T = time

™ = constant in computing pulse

U = integer

Vv = velocity, from previous calculation

A velocity to be calculated

VR = interpolated velocity

Vs = interpolated velocity
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