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VALVE STROKING FOR COMPLEX PIPING SYSTEMS

by Victor L. Streeter,l F.A.B.C.E.

Cynopsis

The theory for movement of valves in complex piping systems has been
developed so that the transient ceases when the valve movement ceases.
One pipe in the system is selected and the head-time relations worked
out so that this flow is adjusted in a controlled manner not exceeding
predetermined head limits. In a complex system, the flow changes are
apportioned among the branches as a linear relation of initial to final
steady-state flow in each pipe. The combination of these two procedures
leads to values of head and flow at each control point in the system;
hence the valves or other moving boundaries may be adjusted to cause
the desired transient change to occur. Frictional effects are included
in the analysis, which is based on the method of characteristics solution

of the transient flow equations.

lprofessor of Hydraulics, University of Michigan, Ann Arbor, Michigan.
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Introduction

The analysis of transients in fluid piping systems has been carried
out by arithmetic methods? since the turn of the century, by graphical
methods since around 1930, and by digital computer methods starting around
196C. In general a change in boundary conditicns is hypothesized, such as
the closing of a valve in some manner, then the resulting transients are
calculated. If they are toc severe, other boundary changes are tried un-
til a satisfactory soiution has been found,

Valve stroking, on the other hand, is the design or synthesis approach
wherein certain allowable pressure fluctuations are specified, and the changes
in boundary conditions are calculated which cause the changes in flow to
take place so that steady-state flow conditions are established upon cessation
of boundary movements.

More specifically, in reducing the flow in a pipe from one steady-state
value to another steady-state value (perhaps rest), the flow change is ac-
complished in three phases, the first and last phases of time duration one
round-trip wave travel time, and the central phase of such duration that
the change can be effected within the specified pressure limits. The head
does not decrease below initial steady-state values and does not exceed the
predetermined maximum.

In 1957 E. Ruus3 studied the problem of optimum valve closure.

2For a bibliography on waterhammer prior to 1954 the reader is referred
to the references in "Waterhammer Analysis," by John Parmakian (Dover
Book Company). pp. 143-1L5,

3"Bestimmung vor Schliessfunktionen, welche den kleinsten Wert des
maximalen Druckstosses ergeben," by E. Ruus, thesis submitted to the
Technical University of Karlsruhe in Germany in partial fulfillment
of the requirements for the degree of Doctor of Engineering.
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At about the same timeLi

the author was studying a similar closure method.
In 1963 the author? presented a study in which valve stroking was defined
so that heads would not drovr btelow steady-state during closure and so that
the transient ceased when tre valve movement ceased. This werk applied to
2 single pipe with friction taken into account for opening or closing, and
incluced a study of several reaches of pipe of constant diameter but with
varying wall thickness (hence, varying wave speeds). The concept of ad-
Justirg the flow in a pipe from any unsteady zituation to uniform flow
with a constant inclined hydraulic gradeline in one round-trip wave travel
time was presented for frictionless conditions.6 This concept was then
applied to valving during failure of power to a centrifugal pump to control

the transients during reversal of the flow and runaway of the pump. In

1965 valve stroking was extended to series pipes for frictionless flow only.7
bip

These methods have now teen superseded by more convenient and exact methods
that tazke friction into account.

In 1966, E. RuusB externded his studies to the closing of turbine gates.

bFluid Mechanices, by V. L. Streeter, McGraw-Hill Book Co., Inc.,
2nd Editionm, pp. 372-37h, 1958,

®"Valve Stroking to Control Waterhammer," by V. L. Streeter,
Journal of Hydraulics Division, ASCE, Vol. 89, No. HY2 Proc. Paper 3452,
March, 1963, pp. 39-66.

6'"VWaterhammer Analysis of Pipelines", by V. L. Streeter, Journal of
Hydraulics Division, ASCE, Vol. 90, No. HYL, Proc. Paper 397k, July,
19€L, pp. 151-172.

TComputer Solution of Surge Problems", V. L. Streeter, Sympcsium on

Surges in Pipeline, Institution of Mechanical Engineers, London, Proc.
1965-66, Vol. 180, Part 3E.

8"0Optimum Rate of Closure of Hydraulic Turbine Gates", by E. Ruus,
presented at 1966 ASME-E1C, Fluids Engineering Conference, Denver,
Colorado, April 25, 1966€.
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In his studies he holds the hydraulic gradient in its maximum adverse position
until the fluid comes to rest; this causes a severe fluctuation to be set up
in the penstock after gate closure.

The present status of valve stroking, the subject of this paper, includes
series, branching, and parallel systems with detailed inclusion of friction.
The application of these principles to the design of piping systems, whether
industrial or hydro and water supply, should result in safer, more complete
utilization of materials.

Examples of practical applications are:

(&) Closing a valve on the end of an oil pipeline from a storage
reservoir to a barge. The valve is to close as rapidly as pos-
sible without exceeding allowable pipe stress and without column
separation.

(t) Closing a valve on refueling of aircraft from underground supply
pipes.

(c) Establishing flow in a penstock of a pumped-storage project when
switching over from pumping to turbining.

(d) Control of a wholesale water supply system so that flow may be
changed for certain clients without disturbing flow to other
clients.

(e) Control of flow in reciprocating or intermittant cases such that
steady-state flow is obtained immediately after the adjustment.

In this paper the theory is first developed for a single pipe with
inclusion of friction, which forms the basis for extention of the method to
complex systems. Series, branching and parallel systems are then considered
followed by examination of several special boundary conditions. Experimental

verification is then presented for several configurations of piping systems.



Valve Stroking Theory for Single Pipe with Friction

In this section a sequence of events that might take place in a
single pipe are first hypothesized, based on results of earlier studies
of valve stroking. It is then proved that conditions at the boundaries
can be found that cause this seguence of events to take place, thereby
proving existance of the hypothesized solution. The detailed discussion
is based on a situation where the velocity is being reduced from V,; to Vg,
as shown in Fig. 1, by closure of a valve at the downstream end of the
pipe. The maximum permitted head is HMAX. The relationships for increasing
the velocity are very similar and in fact, are incorporated into the same
computer program. Dimensionless presentations are used for convenience.
Heads are divided by Hp the initial loss through the valve, velocities are
divided by V,1 and time by 2L/a, the round-trip wave travel time for the

pipe of length L and wave speed a, thus,

x' =X t = ve Y h= 1 g =2 Vol (1)

L 2L/a Vol Ho g Ho
B is the dimensionless parameter relating changes of head Ah to changes in
velocity Av, ie., Ah = BAwv, when no reflections are present.

The concept of the solution is presented on dimensionless, independent
variable plots with x' as abscissa, measured positive in the flow direction,
and with t' as ordinate.

First Phase. For the first phase of valve closure, from t' = 0 to

t' =1 (t

0tot = 2L/a), it is assumed that the velocity is reduced to
a uniform value V1 at t' = 1. 1In Fig. 2, the head and velocity h, v are

required for x' = 1 over this time period so that the velocity V1 (yet
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a) Steady State t =10

— —= V] to V2 —

b) Uniform flow with straight adverse hydraulic
gradeline at t=2L/a (Velocity V1 at 2L/a and
V2 at 2L/a sec before final valve movement.)
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|
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c) Final steady state flow after valve stroking

Figure 1. Initial, central phase, and final hydraulic gradeline
for valve closure.
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undetermined) occurs over the whole pipe at t' = 1 and so that the hydraulic
gradeline is straight. With h and v known the valve position T = v/\f*ﬁ>
may be calculated as a function of time. Minor losses and entrance velocity-
head changes are neglected in this presentation. At the upstream end of the
pipe (x' = 0) h = BR/H, = h, remains constant for all time. The pipe is
divided into P reaches of equal length with P any convenient integer number.
In Fig. 2, P has been selected as L, Below and to the left of the lower
diagonal line from x' = 1, t' = 0 to x' = 0, t' = 0.5 steady, known conditions
prevail. To the left and above the diagonal line from x' = 0, t' = 0.5 to
x' =1, t' =1 the velocity is assumed to be uniform (same throughout this
portion of the pipe at any instant) and the hydraulic gradeline constant,
with dimensionless change over a reach of (hmax - hr)/ P in which hp,, =
HMAX/HO. It should be noted that once the velocity is made uniform, and the
hydraulic gradeline is constant, the velocity must remain uniform although
it is undergoing a deceleration. It is now necessary to show that values of
h, v can be found at x' =1, t' = 0 to t' = 1 to produce these hypothesized
conditions.

Only two equations are needed to develop the detailed information.
They are the C* and C- characteristic equations obtained from the method of

characteristics.

Equation (17) of reference 3 when solved for hp yields
ct: hp = hp - B(vp - vA) - 2 hro valva|At! (2)

Lt' is the dimensionless time for the wave to travel from A to P, Fig. 3,
and hey is the dimensionless steady-state (VA = 1) head loss over the whole
pipe. Since At' = 1/2P, by letting he = hfo/P, the Ct characteristic

equation for one reach is



ct: hp = hp - B(vp - va) - he va|val (3)

If the equation is to be applied over more than one reach, then he must be
multiplied by this number of reaches. Similarly the C~ characteristic

equation is
C: hp = hg + B{vp - vg) + hr vp|vp] (L)

If exponential friction is to be used the friction term becomes hs vA|vAin'1

for Eq. (3), with n the exponent of the velocity. For tabulated friction,
as obtained by steady-state measurements, the friction term may be indicated
as he (vA) and is evaluated by parabolic interpolation from the tabulated
values for equal velocity increments. In general, when considering valve
stroking, the absolute value signs are not needed as the velocity is not
permitted to reverse.

The next step in developing the procedure for the first phase is to
find the value of v for each horizontal line of Fig. 2 between t' = 0.5
and t' = 1., to the left of the diagonal. By writing Eq. (3) from x' = 0,
t' = 0.5 to point P, remembering that hy - hy = (hy - h,)/P

1,bp-hy
vp = 1. - 5(—=5— + hy) ()

as vg = L.

Now, since vp = vp for uniform flow, the same equation is applied from

b to ¢ of Fig. 2 for the same hydraulic gradeline,

ve = vb - = (PERE 4 pp v?) (6)
B P
This process is repeated for each horizonal line in turn until t' = 1.,

which then yields vi. Now h and v are known for all points on and to the



left of the two diagonal lines.
The value of h and v at point 1 may now be found by writing the ct

equation [Eq. (3)] from a to 1 and the C- equation [Eg. (4)] from 1 to b

ct: hl - hy + B(v] - 1) + h = O (1)

o he = h; - B (vy - vy) - he le =0 (8)

The quadratic in vy obtained by adding the equations may be solved to yield
v1, then Eq. (7) will give hi. If tabulated or exponential friction is used,
an iteration procedure is utilized to find v.

In exactly this same manner v and h at the other numbered points are
found which yields the necessary information at the valve so that it may be

stroked to yield the hypothesized flow and pressure relations for phase one.

Second Phase. After the straight adverse hydraulic gradeline has been
established, along with the uniform flow v = v1 throughout the pipe at t' = 1,
tae hydraulic gradeline is maintained constant and flow continues to reduce
uniformly due to both the adverse gradient and friction. Equation (6) is
used repeatedly along the short C*+ diagonals, Fig. 4 until the calculated
velocity v is less than the final desired velocity v,p. The time for the
complete valve stroking sequence can now be determined as follows:

The dimensionless time step is At' = 1/2P with P the number of reaches

of pipe. The time t' may then be expressed as
t' = JAL! (9)

with J an integer; hence at the beginning of the second phase J = 2P. When

the first value of v is calculated that is less than vgp [i.e. v(J)], an
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interpolation is made for the time t' of valve stroking.
g1 =005+ [Yo2 = v (J-1) 4 5 _ 1] At (10)
ve v (J) - v(J-1)

The actual time in seconds is t'yg (2L/a). It is shown in the discussion

of the third phase that final steady-state conditions can be established L/a
seconds after the velocity in the pipe at the reservoir end reaches its
final desired valve.

The second phase ends one round-trip wave travel time before t'ys.
Let JJ be the integer number of time steps to the last calculated values
in the second phase, Fig. k,

tlys - 1
At

JJ = (10a)

The right hand side of Eq.(10a) is truncated to its next lower integer value.

Third Phase. During the final phase, of duration one round-trip (cal-
culated from J = JJ to J = JJ + 2P + 1), the final desired conditions are
hypothesized, and then it is shown that values of h and v at the valve can
be found that permits this solution. Conditions have been calculated and
are known below the diagonal dashed line, Fig. 5, from x' =1, J = JJ and
cannot be affected by subsequent valve movements (after JIxAt'). Final
steady-state is hypothesized for conditions above the other diagonal dashed

line; hence, the velocity is everywhere v,p, there and the pressure is known

at all points because the final steady-state hydraulic gradeline is known.
The problem now is to calculate v and h at points 13 to 20 for these con-
ditions. By starting at point 1 (Fig. 5) and by writing the C* and C-

characteristic equations (3) and (L4) from a to 1 and from 1 to b
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c*: hy - hy + B(vy - v,) + hp v, = 0 (11)

1]
O
—~

'._J

no
~—r

Cc™: hp - h] - B(vp - v1) - he v1°

By adding the equations a quadratic in vy is obtained; by substitution in
Eq. (11) hy is then calculated.

By taking the remaining numbered points 2, 3, 4, - - 20 in order v
and h are calculated for each point in turn. This proves that a solution
can be found for the downstream boundary so that the final hypothesized
steady-state conditions are realized. Now by calculating T = v/ JFB
for each time increment at x' = 1, the valve stroking is completely pre-
seribed.

If it is desired tc increase the flow in a pipe, a minimum allowable
head is selected for the downstream end of the pipe that must be less than
the final steady-state head. The procedures for finding the solution are
then similar to the case for reducing the flow. In one round-trip wave
travel time the flow is made uniform with the hydraulic gradeline straight
and from the reservoir to the minimum selected head at the valve. Figures
3 to 5 apply except hp,, becomes hp;,. The two methods are so similar that
the same computer program may be utilized. It is listed in the appendix.
Figure 6 shows the solution obtained for reducing the flow in a pipe; Fig.

T is a confirmation of the method by the method of characteristics solution.
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Figure 7. Configuration of Valve Stroking Method by the Characteristics Method

Solution with HA(J) of Figure 6 being used as Boundary Condition at
the Downstream End of the Pipe.
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Extentions of Valve Stroking to Complex Systems

In this section configurations of piping systems are considered in
which the flow originates from a reservoir and terminates with valves, dead
ends, or reservoirs at the downstream ends of the system. Figure 8 repre-
sents such a system. There are two controlled outlets, at J1 and at the
terminus of pipe 4 and a reservoir at the terminus of pipe 3 where the head
is held constant. By adjusting the two valves in the proper manner the
transients may be controlled in the system and will disappear when valve
motion ceases. With initial and final flows through the valves given, and
by using ve friction throughout, the initial and final steady flows through
each pipe may be accurately calculated by solution of a quadratic equation.
By considering first a case in which the total flow through the two valves
is to be reduced, a maximum head at J1 is selected (it must be somewhat
above the final steady-state head at J1) which determines the duration of
the valve stroking.

The valve stroking procedures on a single pipe are now applied to pipe
1 for its change in flow for the specified maximum head at J1, which yields
the head at Jl for all time of the transient as well as the flow into J1l
from pipe 1 for the complete transient.

A basic assumption is now made regarding the distribution of the flow
change coming into J1. Let QF represent final steady conditions and QS
represent initial steady conditions, with Q the value of the transient flow.

The change of flow in pipe 2 is taken to be proportional to the change in

flow in pipe 1. Hence for flow out of J1 into pipe 2

as(2) - o(2) _ es(2) - oF(2) (13)

Qs(1) - q(1) 0s(1) - qr(1)
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Figure 8. Branching and series pipe system with flow originating from a reservoir.
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Since all quantities are known except Q(2) it is completely determined for
the duration of the transient. With Q(2) known

Q1 = (1) - q(2) (14)
Qy1 is the flow out of the valve at Jl.

With the flow and head known at the upstream end of a pipe for all time,
the flow and head at the downstream end of the pipe may be calculated. Figure
9 illustrates the procedure. With values of h and v known at all points en-
closed by a circle, by use of the C* and C~ equations applied at points 1,
2y, «++y in order, h and v are evaluated at the downstream end of the pipe for
the complete transient. Therefore, the head and flow into J2 are known.

With the head known at J2 for all time, and the head constant at the
reservoir downstream from pipe 3, the flow into and out of pipe 3 may be cal-
culated for the transient by the procedure shown in Fig. 10. By selecting
the points in order 1, 2, 3, - -, enough information is always available to
calculate the unknowns at the point. At points 1 and 2, v is the only un-
known in the C~ characteristic equation. At point 3 the c* and C- equations
are used to find v3 and k3. By continuing this procedure v is found for

each end of the pipe. Hence by continuity the flow leaving J2 by pipe 4 is

found. With h and v known for the upstream end of pipe L, h and v may be
calculated for the downstream end of the pipe by the method outlined in Fig. 9.

Now to find valve movements

Ty, = vJ1 L (15)
J1 755 h,
vjl is the dimensionless velocity through the valve and v), is the dimension-

less velocity through the valve on pipe L with h), the head at the downstream

end of pipe 4. These T equations assume free outflow from the valves.
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The motion of the valves with time have now been fully specified to
cause the transient to occur. If the duration of transient should be de-

creased a larger value of H

max at J1 may be taken. There are certain

limitations to valve stroking. A maximum head at Jl cannot be assumed
that would cause the transient in pive 1 to occur in less than LL/a. For
certain dimensions of systems other limitations in rapidity of stroking
may show up, such as the case where pipes 1, 2, and U are short and pipe 3
is long.

In all pipes considered it is assumed that the same time increment At

is utilized for all calculations, i.e.,

La Lp
t = = te. 16
aiPl aobp T C (16)
In order to make P}, P» - - Py suitable integers this may require a slight

adjustment of the wave speeds or the lengths of the pipes. Wave speeds are
probably not known with great precision in most piping systems.

For changes in the system of Fig. 8 causing an increase in flow through
pive 1 a minimum head at J1 is selected that is below the final steady-state
head and the same procedures are applied to find the required valve movements.

A parallel piping system has been studied to find the valve movement
needed to bring the flow to rest in a system consisting of a reservoir, =a
pipe, 2 pipes in parallel followed by a pipe containing a valve. Due to the
complexity of the egquations, characteristic equations are written over whole
lengths rather than reaches, but the time increment is still based on the
pipe leaving the reservoir, i.e. 1/2P. After the upstream pipe transients

are specified, five equations are needed to solve for velocity in each of the
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parallel pipes at each end and for the head at the downstream junction. An
interesting feature of the parallel system is that a flow circulation is set
up in the loop when flow is stopped, due to the unequal momentum originglly
in the system.

When one member of a branching system has a dead end, in general it
is not possible to cause the flow in this line to terminate its fluctuations

at the instant the valve motion ceases.

Special Boundary Conditions
Situations arise where it would be desirable to have valve stroking
vhen there is no reservoir at one end of a system. Two examples are con-
sidered, first a pipe with a centrifugal pump upstream and a valve downstream,
and second, a pipe with a moveable diaphragm upstream and an orifice down-
stream. The object is to first hypothesize a set of conditions such that the
transient is under the control of the designer and ends when valve or boundary

motion ceases; then to demonstrate that the desired solution exists.

Centrifugal Pump. To avoid cumbersome solutions with systems of many
nonlinear equations, the characteristic equations are written for the whole
pipe which in effect lumps the friction as the value at the earlier time L/a.

With reference to Fig. 11, a value of hy at t' =1, x' = 1 is selected;
by writing the C* characteristic from t' = 0.5, x' =0tot'=1, x' =1,
the velocity vy is found. The hypothesis is made that flow is uniform at

t' = 1 and that the hydraulic gradeline is straight. The points on t' =1

are located by this assumption. The pump h-v relation permits h at x' 0,
t' = 1 to be found. Now by writing the appropriate C* or C~ characteristic

equations for 1/k, 1/2, or 3/4 of the whole pipe, the values of h and v, for
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each of the cireled points of the chart, Fig. 11, at x' = O between t' = 0.5

and t' = 1 are determined.
With these points and the initial steady-state values, points at x' =1
for t' = 0 to t' = 1 are found from the C* and C- characteristics for the

pipe or portions of the pipe, as indicated by the dashed lines.

For the central phase, to find v and h at points 5 and 6, the as-
sumption is made that Vg = vg. By writing the C7 equation from 3 - 5 and
by use of the pump curve hg and vg are found; then by the ct equation 4 - 6
hg may be found as vg = Vg is known. This procedure continues until the
desired velocity is reached at x' = 0, which is labeled t,' - 0.5. Along
x' = 0 from t,' - 0.5 to t.' final steady-state conditions are known and
by use of the C* and C~ characteristics, such as 5 - 8 and 8 - 9, hg and vg
are found. This completely determines h and v at the valve for all time of
the transient. The procedure applies for both increasing and decreasing
the flow depending on the selection of hj and calculation of final steady-

state.

Diaphragm Pump. This case is of interest when a volitile liquid is
to be pumped. Figure 12a shows one set-up where liquid is being pumped
through the pipe into the receiver through an orifice at the downstream end
of the pipe. A diaphragm is to be driven by a cam in such a manner that
the transients in the pipe are under the éontrol of the designer. The head
discharge relation for the orifice is shown in Fig. 12b. Figure 12c¢ shows
the complete sequence of events for the liquid to start from rest and be
brought up to steady-state discharge, then be brought back to rest at the
end of the stroke. All procedures involved in the solution of Fig. 12c have

already been discussed, since this problem is very similar to the one in Fig. 1l.
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The velocity at %' = 0 is determined for all time of the transient; hence,
knowing the ratic of effective diaphragm area to pipe area, the motion of
the diaphragm on its forward stroke is completely specified. The complete
course of the transient is under control. The preselected hpi, is the
minimum pressure at any time during the transient and the selected hpax

is not exceeded.

Experimental Verification of Valve Stroking

Although many of the various valve stroking cases have been verified

by computer simulation using the method of characteristics solution for
the appropriate boundary conditions, it was deemed desirable to actually
demcnstrate the methods in piping systems. These experiments were per-
formed on various configurations by valve stroking using low-pressure,
pneumatic-servo systems to stroke the valve.

The procedures were as follows:

1. Calculate the 1 -time curve for the desired transient using
tabulated steady-state friction for the system.

2. From a calibration of the valve, which produces a relation be-
tween stem position and T, the stem position versus time is
calculated.

3. A template is prepared relating valve stem position to time;
it is then mounted in a turntable.

4. A motion transmitter converts the template height to an air
pressure signal which is transmitted to a valve positioner.

5. The valve positioner places the valve (micro-flute) in the
position called for by the template.

The pressure at the valve is measured by a "Dynisco" transducer and
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recorded con a paper strip recorder along with a trace showing the stem
position of the valve,
Figure 13 - 1k shows results of the tests plus cases of linear valve

closure,

Summary and Conclusions

The thecry for control of transients in liquid piping systems has
teen developed for various configurations and boundary conditions, start-
ing with a single pipe with reservoir upstream and valve downstream, then
proceeding to complex series and branching systems, parallel systems and
then to special boundary conditions such as centrifugal pumps, diaphragnm
pumps and orifices. Friction has been included in each case by use of
waterhammer eguations. Experimental verification was given for two
cases involving long lines. including establishment of flow, series and
branching systens.

Design methods are now available for control of a very wide range of
itransient flow problems in piping systems by proper valve movements or by

suitable change of end boundary conditions.
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APPENDIX

VALVE STRUKING FIOR SINGLE PIPE WITH RESERVOIR UPSTREAM.TABULA
TED FRICTIONLFRICTION CALCULATED AT & AND S FUR P SECTIGNS AS
IN CHARALTERISTICS PROGRAMJCHARACTERISTICS CHECK.
DYLESS CLUSURE FROM 1. T3 VMIN,OR OPENING FRUM VMIN TO 1.
14=0 10 CLIOSELAND [J=1 TO OPEN.

INTEGER [9JaPPyP yNyUsNNyJIJsPIsKyMy 11 PPP,I1J

DIMENSION (tHyHP Vo VP yHH) (20) s (HAZ VA VB) (600 y (WeY 9 Wha YY) ( (0.0 e20) 2 (
Jeasa2ul) ) o TAULLGEOD ) 2w (F4FPYL20)

REALU ANL PRINT uUATA

PRINT RESULTS NusDVyAKy GyHRES ¢ VMINGPeHMO ¢JJJ 9 PUyHHe e s HHINN)
yVMAX, [J

JJJd=¢

INTERNAL FUNCTION HF.(VV)

VIi=vVsVMAX

M=vT/OV

TH=(VT-M#DV)/DV

WHENEVER M.E.O

M=1

TH=TH-1.

END OF CONDITIGNAL

HFl=HH{M)+ . 5%# TH®# {HH{(M+ 1) -HH{M=-1 ) +TH# {HH(M+]1 ) +HH({M—-1)-2. *HH(M)
))

WHENEVER JJJd.E.2

FUNCTION RETURN HFL/HOP

OTHERWISE

JJd=2

FUNCTION RETURN HFI

END OF CONDITIONAL

END OF FUNCTION

FH=HF < (14)

HO=HRES-FH

HOP=HU=P

HFO=FH/HO

DT=14/(2.%P)

HR=HRES/HU

HM=HMO /HO

b=A®VMAX/ (G=HQ)

VMN=VMInN/VMAX

PRINT RESULTS FHy,HOsHFO, DT yHR y By VMNyHM

FHM=HF . (VMN)

WHENEVER 1J.E.C

vST=1.

H00=1.

VSP=VMN

HV2=HF. (VSP)

UTHERWISE

VST=VMN

HOO=HR-P#FHM

vSP=1.

HV2=HFQ/P

END UOF CONDITIONAL

THROUGH aBl,FURI=0,1,1.5.P

THROUGH ABL1,FOR J=0yl9debP-1



ABl

AB2

AB3

ApS

AB4

AB6

AAT

AA9

AC1

AC2

AC3

AC4

ACS
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wllysd)=vSi

Y(LyJd)=((P=1)*HR+1#H30)/P

HAIM={HR-1iM) /P

THRUUGH AB29FIR J=P+1929JeGa2%P

Wl lOgd)=Wl Oy d-1)+(HRM-HF. (Wl UyJd-1)))/B

WlOsJ+1) =W (04 J)+{HRM-HF. (W(0,J))})/B

THROUGH AEB3,FOR J=P, LqJ.iloZ*P

THRUUGH AﬁijQR [=091l 9 leGed=-P

N(l)J)=W(51J)

Y([yJ)=HI-HRM=]

THROUGH AB4yFOR [=191,1.0G.P

THRUUGH AUG,FUR J=P+]l-Ty19JeG.P+[-1

nFF=HF. (W {1-1,J-1))

Wllsd)l=ooe(w(I-1yJ+1)+W(I-1,yd=-1)+(Y(I-1,J-1)-Y(I-1,d+1)))/B

THROUGH ABSyFGOR TI1=041411.G.5

wllod)=eos{wlI=-1lyd+ L) +W(I-14J-1)+(Y(I-140-1)=-Y(I-1,J¢1)~-HFF+
2 HF.(w(1,3)))/78)

Y(I,Jd)=Y(I-1,J-1)-ts#(W{]lyJ)-W(I-1,y,J-1))-HFF

IHROUGH AB6yFOR J=0y1l9JeGa2%P

VvB{Jd)=nluyed)

VALJ)=W(yd)

HA(J)=Y(P,J)

J=2#P+1]

vB(I)=vB(J-1)+(HRM-HF. (VB(J-1)))/B

WHENEVER [JeEO.AND.VBLJ)L.VSP,TRANSFER TO AA9

WHENEVER [JeEoleAND.VB{J) G.VSP,TRANSFER TO AAS

HA(J ) =HM

VA(J)Y=VB(J)

J=J+1

ITRANSFER TO AA7Y

PP=J-pP-1

TC=1a+(P2+(VBIPP+P)=VSP)I/(VB(PP+P)=VB(J)})/(2.%P)

PRINT RESULTS TLPPyVB(J),VBIPP+P)

THROUGH ACL4FOR [=04141.G.P

THROUGH ACLyFOR J=091lyJeGaP-1

YY(1yJd)=HR-HRM=®]

WW(L,d)=VB(PP+J)

THROUGH AC2,FUR J=P+1l,1,J.6.2%P+]

THROUGH AC24FOR [=0y9191.6.J-P-1

YY(IyJd)={R-HVZ2=]

Wl I,d)=VSP

IHRUUGH AC44,FOR I=1,1,1.G.P

THROUGH AC4,FOR J=P+1~-1419J.G.P+]

HFF=HF e (AW (l=19J-1))

WW(lyd)=wW(l-1yJ-1)

THROUGH AC3,FOR II=0,1,11.G.95

WW T )= 5% {WWlI=-1 3 J+L)+WWII-1yJ=1)+(YY{I-1,0-1)=-YY(I-1,J+1)+
2 HF o lAdW(lyJd))-HF+)/B)

YY(T9d)=YY(I=13J-1)-Bs(WwllyJ)=-WW({I-1,J-1))-HFF

PPP=PP+2%P+1

THROUGH ACS53F0OR J=PP+l,ylyJeG.PPP

VA(J)=Wh(PyJ-PP)

HA(J)=YY (P4 J-PP)

VB(J)=Win(0yJ-PP)

HA(PPP+1)=HA(PPP)

-

I=4-1
PRINT CUMMENTS1 SOLUTION BY ALGEBRAIC METHODSS
PRINT CUMMENTS$GC J TIME
2 VA({J) ve{J) HA(J) T

3 AUS
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PRINT COMMENT$0%
THROULH AALLFOR J=04s19J.6.1
TAULJ)=vVvALJ)/SQRT.LHA(J))

AALL PRINT FUSKMATDLIN o1 L2+5F20.4%5,J,08DTyVA(J) VBLJ)yHALI)»TAU(J)
WHENEVER PJ.c.0y TRANSFER TU HERE
N=pP
J=T2/DT+2
H=HR
HP =HR
FFG=HF.(VST)

THRUUGH AASL1 FUR [=04,191.5eN

FLI)=FFG
VII)=VST
AAS L HOI ) =HR-T1%FF;
I=0.
TAU=VIN)}/SQRT. (HIND)
u=0
PRINT COMMENTS1 TIME TAU X/L= G .25 «5
2 .75 l1.%
AAG L PRINT FORMATSLIHUWFT.4,F8.443H H=y 5F10.4/51643H V=, 5F10.4%

2 39Ty TAUCU) yHeH{2) 9H{4) yH4(6)sH(B) o Vv (2)4V(4),VI(6),VIY)
AATL F=T+DT
U=u+l
WHENEVER UeGoJy TRANSFER TO HERE
INTERIOR PUINTS
THROUGH AABLsFOR I=lyslyl.EeN
VP (I =e0a(VII-D)+V{I+1)}+{H(I-1)-HII+1)-F(I-1L)-F(I+1))/B)
HP L) =R(I-1)-B=(VvP(1)-V(I-1))-F(I-1)
AA8L FP(I)=HF.(VP(I))
UPSTREAM SOUNDARY CUNDITION
VP=V(L)+({HR-H(L1l)-F(1))/B
FP=HF . (VP)
JUOWNSTREAM BOUNDARY CONDITION
HP (N) =HA({U)
VPIN)=VIN-1)+{HIN-1)-HP(N)-F(N-1))/8
TAU(U)=VP(N) /SQRT.(HP(N))
FPIN)=HF.(VP(N))
THROUGH AA9L1.FOR [=04141.GaN
FlL)=FpP(1)
VII)=vP(I)
AAS1 HII)=HP(I)
WHENEVER U/K#K.t.U,TRANSFER TO AA61
TRANSFER TO AATL
END OF PROGRAM



