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INTRODUCTION

Closure of a valve in a pipe network may cause a rupture a
short time later at a point remote from the valve. Owing to the reflec-
tions from junctions and dead ends, the maximum pressure at a point in
the system may not be attained at passage of the first pressure rise due

1,2,3,4 are

to closure, and numerical methods of analysis formerly used
tedious to apply to complex systems, even with the neglect of fluid
friction. The new methods presented here, worked out by Streeter and
Lai,5 include friction and are based on the theory of characteristics

with use of a high-speed digital computer. Courant and Friedrichs6 first
applied these methods of computation to supersonic flow.

The equation of continuity and the equation of motion are first
derived in this paper. The resulting nonlinear partial differential
equations are then transformed into total differential equations which
are valid along certain "characteristic" lines. These equations are
expressed as finite difference equations, ahd interpolations are used to
apply the method of specified time intervals. Boundary conditions for a
reservoir, a valve, and pipe junctions are then discussed, and the methods
applied to three complex pipe situations: a) a series pipe system with

a dead-end branch; b) a parallel pipe system; and c) a pipe network with

three simple circuits.



DEVELOPMENT OF EQUATIONS

The continuity equation and the equation of motion are developed
for a segment of an elastic tube, assuming that deformations are small,

as 1is the usual case with metal pipes.

Continulty Equation

The continuity equation is written for a short segment of pipe,
Figure 1, of unstressed length Ax. When subjected to a change in pressure
within the pipe, the walls are stressed both circumferentially and axially
causing the segment to change in diameter and length. With p the Poisson
ratio,7 oy the axial stress and 0y the circumferential stress, the unit

axial strain @l due to change in stresses Acl and A02 is

- AU]_ - M A02

1 E
and the unit circumferential strain 52 is
A02 - M Acl

52 =" 5
in which E is Young's modulus of elasticity. The increase in volume of
the pipe element is then

D

A&l Mx + wD §-§2 Ix
neglecting second order terms. A is the cross-sectional area of the pipe
and D is the inside diameter.

The extra volume that can be stored in the segment because of

compressibility of the liquid is

A Ax pg AH
K
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in which p is the mass density of liquid, g the acceleration of gravity,
K the bulk modulus of elasticity of liquid, and AH is the increase in head
in time At. The net inflow into the element in time At is then the sum

of the last two expressions

f2 AH
A Mx(e, + 25+ RELR
() + 22 + 2840
and is, from Figure 1b, equal to
-A V. Ax At
in which V is the velocity at distance x along the pipe, and the subscript
x denotes partial differentiation with respect to x.

After equating the last two expressions and after substituting

for El and 52 their values,

pg AH
K

% [Aoy(2 - w) + a0 (1 - 2p)] + +V =0 (1)

Three cases of pipe restraint2 are considered (Figure la):

a) Pipe fixed at upstream end, free otherwise,

Ao, = P8 AED Ao, = P8 LHD
1 IR 2 a2t!

in which t' is the pipe wall thickness. After making these substitutions

into Equation (1) and by writing dH/dt in place of AH/&&,

i)

?g%%[l+—(é~u)]+\f=0 (2)

b) Pipe anchored throughout its length,

_pg AHD

Ao, = p A02 A02 ot

1



e

and

%@[1+@(1-p2)]+vx=o (3)
K dt Et

c) Expansion joints throughout,

Aol=o

>
s
]

and

el Et‘( 21+ Vg (%)

By defining cq as the modifying expression involving the Poisson

ratio (ine., cq = g - p for case a) the continuity equation may take the

form
ag | a°
g x=0 (5)
in which
a2 =‘\/-————j£————— (6)
p(1+ 29

Et?

8 is the speed of the pressure pulse through the pipe.

Now, by expanding dH/dt

2
dx a
H oo+ Hy + 5 Vg =0 (7)
The first term may be shown to be small when compared with the second

term,2

and 1s dropped from the equation, leaving

2
Hy + %; V, =0 (8)

Equation of Motion

The equation of motion, Figure 2, for the x-direction states

that the resultant x-component of force equals the product of the mass
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of the element by its acceleration,

_ av
PA - [pA + (pA), Ax] + pA, Ax - T uDAX = pA Ax =

T, 1s the fluid shear stress at the wall. After simplifying

lI-TO a
+ — + = 0
Px T Pt

By replacing py by pg Hy, 75 by of V2/8 to introduce the Darcy-Weisbach

friction factor8 T, and by expanding dV/dt

£7°
gHX+—2—]5-+VVX+V_t=O (9)

The term VV, may be shown2 to be small compared with Vi and is dropped

from the expression, yielding

AN
gH, + Vi + —5%—l<= 0 (10)

as the equation of motion. The absolute value sign is introduced into
the frictional term so that it has the proper sign for reversal of flow
direction in the pipe. If an exponential form of friction expression is
desired in place of the quadratic term it may be substituted at any step
in the derivation. If f is appropriate for the steady-state condition

V = V5, then an exponential form is

with losses varylng as V? in the exponential equation.
Equations (8) and (10), labeled L; and L, respectively, are
two hyperbolic partial differential equations, one nonlinear, that con-

tains the continuity principle and Newton's second law of motion, plus
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elasticity and compressibility requirements. They are now solved by the

method of characteristics.

Characteristic Equations

By combining Equations (8) and (10) linearly, using an unknown

multiplier A,

_ _ 218 Aa? £ vlv]
L—L2+xLl~x[XHX+Ht]+[_.g__vx+vt]+ =0 (11)

By selecting any two arbitrary (non-equal) values of A, L provides two
new independent equations in V and H. However, by taking two particular
values for A, L may be transformed into a pair of total differential
equations. In the first set of brackets in Equation (ll), by making the
restriction g/A = dx/dt the quantity in brackets becomes the total der-
ivative dH/dt. Similarly, by making the restriction dx/dt = lag/g, the
quantity in the second set of brackets becomes dV/dt.

The two expressions for dx/dt must be identical, hence,
22

g
After solving for A, the unknown multiplier is

g =
A

|+
W |og
—~
=
no
~—

A =

Hence the restriction imposed on the equations is

%Zia <l3)
dt

The Equations (13) together with Equations (11) with A given by Equation

(12) are



g, rDt’

Viv, Ax

pDZ&X

(a) (b)

Figure 1. Segment of Pipe for Application of Continuity Equation.

Figure 2. Segment of Pipe Showing Forces
Exerted on Fluid in the x-Direction.

’-x

Figure 3. Characteristic Lines on the x - t Plane.
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g dH 4+ AV 4 £V|V] = o (14)
a dt dt 2D
C
+
dx
& (15)
_5@+§K+M=O (l6>
a dt dt 2D
b o
X = 4 (17)
dt

These four equations now replace Equations (8) and (10). Equa-
tion (14) is subject to the restriction of Equation (15). Since a is
generally constant for a given pipe, Equation (15), dx/dt = a, plots as
s straight line on an x - t plane; and similarly Equation (16) is limited
to lines dx/dt = -a on the x - t plane. These lines on the x - t plane
are the "characteristic" lines along which Equations (14%) and (16) are
valid.

Equations (14) and (16) may be written in terms of finite dif-
ferences, Figure 3, in which P is the unknown point and R and S are

respectively points on Equations (15) and (17) that are known.

% (HP - HR) + Uy -V ¥ (g%%l)R (tP - tR) = 0 (18)
xp = X - alty - tg) = 0 (18a)
- % (Hp - HBy) + Vp - Vg + (f%—gl)s (tp - tg) = 0 (19)
xp - %g + altp = tg) = 0 (1%)

If the pipe thickness varies along the pipe, a becomes a function of x.
With conditions known at R and S (i.e., with X trs Vg» Hps Xg, tgs Vg,
and HS known) the four equations permit solution for Xp, tP, VP, and Hp.
In this manner solutions may be built up from known initial conditions

and from end conditions.
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Method of Specified Time Intervals

The procedure outlined for solution by the method of character-
istics is not very suitable for systematic machine solution of transient
flow problems. By means of interpolation;9one may find values of VR’ VS’
HR, and HS for points on the characteristic lines that go through spec-
ified points on the x - t plane, Figure L. Consider that values of V and
H are known for the evenly spaced points along the pipe, Ax apart, at
time t = t,. From the values of V and H at A, C, and B, values of VR’
HR’ VS and HS are computed by linear interpolation, as follows:

¢ -* _ V¢ - VR
Xe - X Vg - T

from Figure 4. By use of Equation (18a), since Xp = X

Xy = Xp = Xp = Xp = a(tP - tR) = a At

Now, solving for Vg

Vg = Vg + 0 a(vy - V) (20)

in which © is b&/Ax, the ratio of preselected time increment to distance

increment. Similarly

Hy = Hy + 6 a(H, - Hg) (21)
= - 22

Vg =V, +0a (V; - V,) (2)
H = H, +0 - H 23
g = Byt oali - B (23)

For convergence of the solution At should be less than Ax/a.
By use of the interpolated values, only two equations are

needed, Equations (18) and (19) to solve for the two unknowns, HP and VPO
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The friction terms in Equations (18) and (19) may be evaluated for condi-
tions at C without appreciable error; if increments Ax and At are kept

sufficiently small. After solving Equations (18) and (19) for Hp and Vp

H + H
R S a
Vo + V f. V.|V
VP.—__R;_____S_+§_(HR-HS)~—-C-—9-1—9-!—A’5 (25)
2 2a, 2D

These equations, together with Equations (20) to (23)J permit computa-
tion of velocity and head at interior points in the pipe. Special rela-
tions for computation of end points are needed, known as boundary

conditions, and are discussed in the following section.

Boundary Conditions

At the end of a pipe, only one of the two Equations (18) and
(19) is applicable. At the upstream end (x = 0), the interpolation
Equations (22) and (23) are appropriate, and with Equation (19), one
equation is available in the two unknowns HP and VPO An auxiliary
equation is needed that specifies VPy HP or some relation between them,
50 that two equations in two unknowns are availlable. The simplest case
is probably that of a reservoir, where H? is constant, or a function of
time.

At the downstream end of a pipe Equations (18), (20), and
(21) are available and an auxiliary relation is needed to solve for V?

and HP' The relationships between VP and HP for a valve are worked out

to illustrate the procedures for determining boundary conditions.
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The valve is treated as an orifice. With the steady-state head
loss Hy across the valve and the steady-state velocity V5 in the pipe,

the orifice equation becomes

VA = (Cq A )Odeg Hy (26)

d "G
with A the pipe cross-sectlonal area, Cyq the valve coefficient and Ay the
valve opening. In general
VA = Cq AgN2g Hp (27)
After dividing Equation (27) by Equation (26) and substituting

T = Cd AG/(Cd AG)O, the dimensionless valve opening

XE = T ﬁE (28)

Vo H,

In this dimensionless equation T varies from 1 to O for closure, in a
manner depending upon the rate of closure. 7T is usually expressed as a
function of time, as shown in Figure 5. Equation (28) provides the second

relation between Vp and Hp. By eliminating Hp in Equations (18) and (28)

2 V2
a T ! H fo Vol|Va| At
VP - 0 ﬁy/ + he Ho (g R £ Vg - c cl Cl ) -1 (29)
2g H, aTe V% a 2D

In the solution of the quadratic in VP the positive sign was taken before
the radical so that VP =V, for T = 1 in the steady-state case. After VP
is determined from Equation (29) Hp is found from Equation (28). For the
special case T = 0, VP = 0, and HP is found from Equation (18).

In general, boundary conditions are easy to formulate. Special

cases are included in the applications to complex piping situations.
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T —_— -
At

4t
Alt

] *

Figure 4. Preselected Points on the xt-plane for which
Calculations of H and V are to be made,

Figure 5. Valve Closing
Relationship.



APPLICATIONS

Three applications are presented that show the general adapt-
ability of equations and the boundary conditions. The Poisson's ratio
effects have not been specifically taken into account, since its inclusion
affects only the speed of pressure wave, and the pipe thiocknesses have
been arbitrarily assumed for the examples. First a series pipe system
with a deadend branch is taken up, followed by a b pipe system with
two of the pipes in parallel;, and concluding with a network having 9 pipes

and 3 simple circuits.

Series Pipe System with Dead-End Branch

In Figure 6 a series pipe system with a dead-end branch is taken

for the first example., The valve closure is

T=1- %L
c

in which te = 0.518 sec. is the time of closure of the valve. It is the
round=trip travel time of a pressure pulse in pipe 1. The computer pro-
gram, written in MAD (Michigan.Algorithm Decoder) language, together
with & sample of the calculations, is shown in Figure 7. A plot of head
versus time for the dead end of pipe 2, the junction of pipes 1 and 3,
and the valve are shown in Figure 8. Constant friction factors have been
assumed [F(1) ... F(3)], which results in V> losses. The steady-state
solution is first obtained with 7 = 1, and the head and velocity at li
equally-spaced sections along each pipe are computed, stored and printed
for time t = O, The time is then incremented (DELT) by an amount such

that the interpolation points R and S lie within A and C, Figure 4,

for g1l three pipes. The interior points are next calculated,

-13-
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_505.61
1500' s 30'D. 1000'— 36"D. %
) ) o
f=0.03 ~ t=0.72" f=0.025  VALVE, Hy=600
] t'=0.72" Q=20cfs

Figure 6. Series Pipe System with Dead-End Branch. Steel Pipe.
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RWATERHAMMER IN SERIES PIPE WITH DEAD END BRANCH
INTEGER IsJoNsUsW
DIMENSION L1310 () s FUZ T v AT s THITA s THIB VW HF(3) 9 QT3) »yLATI T oH
2RR(3)9sVT7(3)sHJ(300) sHVI300) s TT(300)sV(999sDIM)sVP(999DIM) sH(99
T Sy DIMYPHP {99y DIMY»DIM(2)y T
VECTOR VALUES DIM=23»26511
HERE READ DATA
PRINT COMMENTS1 GIVEN DATAS
“““““ PRINT RESULTS Q(l)oF(l)’F(Z)oF(3)9L(1)tL12)OL(3)¢D(1700(27’D(
23)sTHI(1) oTHI(2)9THI(3) sHOSRHOSEsKsNsW9G9CON
R .
RSTEADY STATE RELATIONSHIPS
LAMIN=10.
THROUGH Z19FOR I=19191eGe3
""""""""""""""" VITTY=QTIV 71 7854#D(TY*D1IYY -
HE(I)=FOIY*RL(I)RVT(TIIRVT(I)/(2%GXD(1))
ALY =SQART G IK/ZIRHO* (1 o #K¥DITI/Z{EFTHI(INIT)
LA(E)=L(I)/7A(])
WHENEVER LA{TYeLoLAMIN
LAMIN=LA(I)
e T
21 END OF CONDITIONAL
"""""""""""""""""" HF=HF(LY+RF(3) 7~
HRR=HO+HF
TCxZ# L ATJV*CON
DELT=LA(J)/N
_______________ PRINT RESULTS HRRDELTsHF IV »ATI Y s ATZT AT sLA(T ) LA(Z2THLA(3)
29TC
T "T"HRR({3)=HRR T
HRR(1)=HRR=HF(3)
HRR12)=HO
HJ=HRR (1)

THROUGH Z29FOR J=1s19sJeGe3
THUJY=DELT*N/7L(J)
THROUGH Z29FOR 1209191eGeN
ViJy1=vT71J)
Z2 H(JsI)=HRR(J)=HF (J)*I/N
HP(350)=HRR
PRINT COMMENTS1 VELOCITIES AND HEADS AT TENTH POINTS FOR EQ
2UAL TIME INCREMENTSS

PRINT COMMENTSOPIPE TIME TAU  X/L= o0 ol .
22 3 oh 5 Y] o7 8 9
S 2 X 2
23 THROUGH Z59FOR J=1919JeGe3
25 PRINT FORMAT Z&49sJsTeTAUsH(J90) eastH{JIN) s Jo¥V{Jp0)eeeViJoN)

VECTOR VALUES Z4=$1HO#1392F6439S694H H= 911F843/1H 9139S18s4H
. 2 V= _911F843%$ _
Z6 T=T+DELT

Us=u+1l e

WHENEVER U+E+H¥»TRANSFER TO PLOT
R

RCOMPUTATION OF INTERIOR POINTS

THROUGH Z9sFOR J=1919JeGe3

J—— - ———
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THROUGH Z9sFOR I=1slsleEeN
VR=V{Js I)4+TH(J)¥A(J) ¥ (V(JeI=1)=V(JIs1})

HR=H{Js TI+TH(J) ¥ATIV ¥ (H{Js T=TT=H{J» T¥)
HS=H{J» II+TH(J)®A(J) R (H(J9I+1)=H(Js»1})

VSEVIUZ TI+TH(JIRA(JIHIVID T+ =V{JeI Yy~ i
VP(JoI):(VR+VS)/Zoflboli(HR-HS)/A(J)‘F(J)*V(J.I)*.ABS.(V(J.I)_

Z2Y¥DELT7(24%#D(J))

HP(JsI)=A(J)#{VR=VYS)/64e4+(HR+HS) /24

R
RBOUNDARY CONDITION AT RESERVOIR

TTVEEV(3 S0 FTHIB N RA(3) R IVI391)=V(3507) T

HS=H(390)+TH(3)*A(3)%(H(391)=H(3s0))

T VP(390)=VS+G*¥(H(390)=HS)/A(3)=F(3)*#V{3s0)*sABS.V(390)*DELT/(2

2¢%D(3})

R : : R

'RJUNCTION BOUNDARY CONDITION
VSSVIIsO)+THIL)I®A(L) % (VI1e1)=VI1y0}) 7
HS=H(190)+TH(1)*A(1)*(H(191)=H(190))
VR=V(3sN)+TH{3)*A(3)%(V(3sN=1)=V(3N))
HR=H(3sN)+TH(3)*A(3)%¥(H(3sN=1)=H(3sN))

TTC1=VS-GXHS/A(L)=F(1)%V(190)%eABSaV (190 *¥DELT/(24%D (1))

C2=VR+G*HR/A(3)=F(3)%*V (39N} * e ABSsV(3sN)*DELT/(2.%D(3})
"HP{3sN)=(C2=C1*D(1)*D(1)/(D(3}*D(3)))/(G/A(3)+G*D(1)*D(1)/ (DI

23)%D(3)%A(1)))

HP(190)=HP(34N) I
VP{3sN)=C2-G*¥HP (39N} /A(3)

VPITs0)=CI+G*HP (3yN) /A(1] S o T

R

RDEAD END BOUNDARY CONDITION .
VP({2eN) =00
VR=V{Z2sN)+TH(2)#A(2]%#(V(29N=1)-V(29N)Y)
HR=H(2sN)+TH(2)*¥A(2)*#(H(29N=1)-H(29N))

HP(ZgN)‘HR+A(2)*VR/G ) S

"""""""""""""" R”BOUNDARY "CONDITION AT VALVE T e

WHENEVER TeLEeTCsTAU=14=SQRTe(T/TC)

VR=V(19N)+TH(1)*A(1)*(V(10N~1)-V(10N))

HR=H(1oN)+THIL)*A (1) *{H(1wN=1T-H(1»N))
VS=V(290)+TH(2)%*A(2)*¥(V(2+1)~V(290))

C1=V$~G*HS/A(2)-F(2)*V(290)*0ABS.V(290)*DELT/(2.*0(2))

C2=6/A(2)
C3=VR+G*HR/A(1)=F(1)*V(1sN)*¢ABSeV(1sN)¥DELT/(2,%D (1))

C4==G/A(1)
Cé6=(C3=C1*D(2)%D(2)/4(D(1)*D(1)))/(C4=C2%D(2)%D(2)/(D(1)*D(1))

2y e
WHENEVER TAUeEeOe9HP(1sN)==C6

WHENEVER TAUsGeOs '
C5=TAURVT (1) /({C4=C2%D(2)*D(2) /(D(1)*D(1)) ) *SQRTe(HO))

CT=SQRTe (C5*#C5/44=C6)
HP(1aN)=(C5/2e+CT7)*(C5/2+C7)

END OF CONDITIONAL
HP(290)=HP(19N)

—— g

VP{1lsN ) :é?;tA*HP’(I’.Nf’f— [

_VP{250)=Cl+C2*HP (19N}

R
RSTORAGE OF PLOTTING INFORMATION
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TTCOYETTTUSITSDELT ~ 7
HJ(U}=HP (3sN)
HVIUT=HP{IsN]

THROUGH Z10sFOR J=1919JeGe3
THROUGH ZTI0%FOR TEU3 T TeGeN
H{Js1)=HP (Js1)
ZT0 VITSTTEVP(I D)
WHENEVER U/5%54E¢UsTRANSFER TO 23
TRANSFER TU Z6

PLOT PRINT RESULTS HJseoHJ{W=1)sHVeesHVIW=1)
PRINT COMMERTSY 77 7 HEAD AT VALVE VS TIMES
EXECUTE SETPLTe(1sTToHVoW93#592490RD)
VECTUR VALUES "ORD=$ HEADS -
PRINT COMMENTSO TIME IN SECONDSS )
PRINT COMMENTSI E

2 3 VS TIMES
""""""""""""""""""""""""" EXECOTE SETPLT«TIsTToHI s W $¥8524y0RD) T
PRINT COMMENTSO TIME IN SECONDSS
TRANSFER TO HERE
END OF PROGRAM

SDATA
L{1)2100069200069150069D(1)=3¢92092659F{13=6025940394039THI(1)24069405»

0069 HU28004 yRHO=T 4935 s B34 32ETsK343ZETIN=10yW=300+6=32,2yCON=1¢
Q(1)220,900920e%

GIVEN DATA

Qll) = 2C.000000, Fll) = +025000, F2) = 2030000, F{3) = 030000
L(1) = 100C.000000, i L{2) = 2000.000000, Li3) = 1500.000000, D(1) = 3.000000
Di{2) = 2.000000. 0(3) = 2.500000, THI(1) = 060000, THI(2) = .050000
THI(3) = «06000C, HO = 600.000000, RHO = 1.935000, E = 4.320000E 09
K_ = 4.32CCO0E 07, N = 10, W= 300, G = 32.200000

CON = 1.0000¢C
HRR{O0) = 605.675774, DELT = .025921, HF{1) = 1.035920, : A(l) = 3857.942596
A{2) = 3993,349976, Al3) = 3969.790161, LA(l) = +259206, LA(2) = .500833

L LA(3) = . 377854, 1C = .518411
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TIME INCREMENTS

VELOCITIES AND HEADS AT TENTH POINTS FOR EQUAL

21PE _TIME TAU X/L= .0 .1 2 .3 4 5 ) .7 .8 .9 1.
1 .000 1.000C H= 601,036 600.932 600.829 600.725 600.622 600.518 600.414 600.311 600.207 600.104 600.000
1 V= 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.829
2 .000 1.000 H 600,000 600.000 600.000 600.000 60T0.000 60C.000 600,000 600,000 600.000 600.000 600.000
2 3 .000 .C00 __.000 000 .000 +000 .000 .000 .000 .000 .000
3 .000 1,000 H= 605,676 605.212 604.748 604.284 603.820 6G3.356 602.892 602.428 601.964 601.500 601.036
3 V= 4.074 4.074 4,074 4.074 4.CT4 4.074 4,074 4.074 4.074 4.074% 4.074 |
1 .130 .500 H=""601.036 600.932 600.829 600.725 600.621 600,518 646,505 666.565 682,413 696.0987 708,384
1 V= 2.829 2,829 2.829 2.829 2.829 2.829 2.445 2.277 2.144 2.029 1.926
2 130 .500 = 708,384 680.888 647.781 618.438 603.307 600.000 600.000 600.000 600.000 600.000 600.000
2 V= .874 <652 .385 . 149 027 . 000 .000 . 000 .000 .000 .000
3 130 .500 H=""605.676 605.212 604,748 60%4.284 603.820 603.356 607.892 602.428 601.964 601.500-601.036
3 V= 4.074  4.074 4.074 4,074 4,074 4.074 4.074 4.074 4.074 4.074 4.074
1L .259 .293 H 601,036 647.022 667,017 682.840 696.505 7084776 720.082 730.637 740.622 750.121 759.237
1 v 2.829 2.445 2.271 2.144 2.030 1.927 1.832 1.743 1.659 1.579 1.503
2 259 .293 H=""759,237 740,537 719,338 634.,5837666,731 839.447 618.216 606.032 601.257 600.123-600.000
2 V= 1.283 1.133 962 763 .538 .318 .147 - 049 .010 . 001 000
3  .259 .293 H=  605.676 605.212 6044748 604,284 603.820 603.356 602.892 602.428 601.964 601.500 601.036
3 V= 4.074 4.074 4.074 4.074 4,074 4,074 4,074 4,074 4.074 4.074 4.074%
TR LIRS T T THE TTS0L 216 T39. 090 146,955 153830 TS A IS TS0 S T 188 336 T 16 82U 185,038 193056 BOULBAT
1 V= 2.103 1.988 1.877 1.768 1.655 1.504 1.430 1.359 1.290 1.223 1.157
— {
2  .389 .134 H= 800.841 785.188 7684527 750.440 730.295 707.540 682.453 656.968 634.625 619.339 613.918
2 v 1.618 1.492 1.358 1.212 1.050 867 665 «458 271 »121 .000
3 .389 .134 H= 605.676 605.212 604.748 604.284 603.820 603.356 ET5 080 644641 679,030 707559 730.216 ™
3. V= 4,074 4.074 4.074 4.074 4.074 4.074 3.975 3.732 3.450 3.215 3.029
1 _..518 -.000 H 7190.899 797.850 804.444 810.689 816.606 822.177 827.388 832.164 836.385 839.659 837.773
1 v 1.764 1.675 1.588 1.503 1.418 1.334 1.250 1.165 1.078 985 .851
2 .518 -.000 H=  837.773 823.713 809.114 793.844 777.786 760.932 743.634 126.886 712.448 702.512 698.953
2 V= 1.914 1.801 1.684 1.561 1.429 1.284 1.114 907 <649 +341 .000
i
3 __.518 -.000 H= _605.676 607.C063 615.390 634,504 661.826 690.746_T716.613 738,587 757.677 774.910_790.899
3 V= 4,074 4.059 3.988 3.829 3.604 3.366 3.154 2.972 2.815 2.672 24540
1 .648 .000 H= 840.615 846.677 852.534 858.209 863.697 869.013 870,768 B870.441 869.701 868.694 867.457
1 V= 1.487 1.410 1.334 1.259 1,185 1.111 1.066 1.037 1.009 983 +956
2 648 __.000 H=__867.457 859,696 848,976 836,197 824,739 817.013 813.305 813.113 815,225 817.706 818.774
2 V= 24150 2.084 1.987 1.853 1.695 1.510 1.286 1.015 .703 +359 .000
3 .648 .00C H= 605.676 653.004 693.180 723.680 146,667 765.551 782.437 798.125 812.932 827.054 840.615
3 . V= 3.352 3,315 3,215 3.071 2,914 2.763 2.623 2.493 2.370 2.253 2.141

Figure 7. Computer Program and Sample Calculations for Series Pipe with Dead-End Branch.
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Figure 8. Head Versus Time at Junction, VYalve and Dead End, for Series Pipe

System of Figure 6. 7 =1 -~Nt/t, , t. = 0.518 sec.
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then the various boundary conditions. At the reservoir the head [H(%,0)]
is held constant, and the velocity [VP(B,O)] is calculated from Equation
(19)° At the Junction between pipes minor losses are neglected, and the
conditions to be satisfied are continuity and equality of head (this
neglects change in velocity head, as is customarily done). At the dead-
end the velocity is zero [VP(2,N) = 0], and the head is computed from
Equation (18). The friction term drops out of statement 067 (Figure 7)
since Vo = O.
At the valve, the boundary conditions are continuity and equal-

ity of head. For continuity

V) Ay - Vy Ay = Cp AgN2g E
and for steady flow

Vo Al = (CD AG)O Jéé—ﬁ;

After dividing the first equation by the second equation

.y
I-IO

By substituting for Vl and V2 from Equations (18) and (19), a quadratic

V1

7

<1|m<
FlF

o O

inVE is obtained. The proper root of the radical term in the quadratic
solution must be selected so that when»Jﬁ is squared it equals H, in the
limit for steady flow.

This completes the calculation of all points for this time.
These values are stored temporarily, and after 5 time increments, the
results are printed. Figure 8 illustrates the complex variation of

head with time due to the reflections from the various boundaries.
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Parallel Pipe System

A parallel pipe system, Figure 9, is the second example of
waterhammer in a complex circuit. Boundary conditions must be worked
out for the reservoir, the upstream and downstream Junctions, and the
valve. At the reservoir the head remains constant, so Equation (19)
provides the value of Vp after VS and HS are computed. The junction
boundary conditions are continuity and a common head for the 3 pipes.
Fox”%ﬁ downstream  junction Equation (18) is applied twice, to pipes 2
and 3, and Equation (19) to pipe 4. With continuity this yields 4

equations in 4 unknowns, VP2 s Vp_ s VP% ; and Hp. A similar procedure

3
applies to the upstream junction. For the value Equation (30)may
be applied when T > 0. For 7 =0, Vp = O, and Hp is given by Equation
(18).

Owing to space limitations, the program is not presented, but
head versus time for the two junctions and the valve are presented in

Figure 10, with initial head at the valve Hg = 500 ft. and for instan-

taneous valve closure.

Pipe Network

As the final example of flow through a complex system, a net-
work, Figure 11, is selected having 9 pipes and % simple circuits. A
valve at the downstream end is closed uniformly in twice the round=-trip
travel time of the pressure wave through pipe 9. The steady-state flow
through the system is first determined by the Hardy Cross methodlo of

distributing flow in a network, and the results are shown in Figure 11.
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1200'-24"D, £=0.03

1000'-36"D. 4,/ - [1200'-39"D, 20,024, :

f =%Yﬁo.oz' t=0.03 @

Figure 9. Parallel Pipe System. Steel Pipe; Q,l = 20 cfs.,
Qo = 8.39 cfs.

2100'- 27.6"D
£=0.018 t=0.02'
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In writing the watehammer program double subscripting is used,
i.e., V(3,4) is the velocity in pipe 3 at the fourth section. The vel-
ocities and heads were computed for 9 equally-spaced sections in each
pipe (inea, 250 ft. apart in pipe 1, and 375 ft. apart in pipe 2), and
the time increment At = 0.04695 sec. was selected on the basis of pipe
8 calculations so that At does not exceed Ax/a in any pipe.

The boundary conditions at the reservoir, the valve, and the
5 interior junctions were satisfied for each time increment. The head
was held constant at the reservoir, and at each Junction continuity was
satisfied and the head made the same for end sections of each plpe enter-
ing or leaving the Junction. The program is not included to conserve
space, but plots of head versus time at the 5 interior Jjunctions and the

valve are shown in Figures 12 and 13.
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Figure 12. Head Versus Time Plots for Junctions Ji, J2, and J3 for Network
of Figure 11 for Uniform Valve Closure in 2 Seconds.
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Figure 13. Head Versus Time Plots for Junctions Jh, J5, and Valve for
Network of Figure 11 for Uniform Valve Closure in 2 Seconds.



SUMMARY

Equations are derived for the numerical solution of transient
liquid flow in a condult with nonlinear friction by use of the theory
of characteristics and the method of specified time intervals. Boundary
conditions for various cases have been discussed to show their ease of
formulation. The methods are applied to % complex pipe systems: series,
parallel, and network, using an IBM 709 high-speed digital computer to

generate solutions which are presented as plots of head against time.
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