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Moving Toward More Authentic Proof Practices in Geometry  
 

 Through the introduction of the Standards documents (1989, 2000), NCTM put forth 

some significant recommendations related to the Reasoning & Proof and Geometry standards 

that have had the potential to impact the high school geometry curriculum. First, it has been 

recommended that reasoning and proof should not be taught solely in the geometry class. Rather, 

instructional programs in all grade bands should enable students to: 

• recognize reasoning and proof as fundamental aspects of mathematics; 

• make and investigate mathematical conjectures; 

• develop and evaluate mathematical arguments and proofs; and 

• select and use various types of reasoning and methods of proof. (NCTM 2000, p. 56) 

Despite these recommendations, the high school geometry course continues to be the dominant 

place where formal reasoning and the deductive method are learned. One reason for this is 

practical: After students conjecture about the characteristics and relationships of geometric 

shapes and structures found in the real world, geometry offers a natural space for the 

development of reasoning and justification skills (NCTM 2000).  However, even in the high 

school geometry course, students have typically not been provided with the kinds of experiences 

recommended in the Reasoning & Proof standard.  

A second recommendation that has had the potential to impact the high school geometry 

curriculum is related to the modes of representation that are used to communicate mathematical 

proof. In the 1989 NCTM Geometry Standard, two-column proofs were put on the list of 

geometry topics that should receive “Decreased Attention” (p. 127). In the 2000 Standards, 

NCTM clarified its position, stating, “The focus should be on producing logical arguments and 
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presenting them effectively with careful explanation of the reasoning rather than on the form of 

proof used (e.g., paragraph proof or two-column proof)” (p. 310).  

Since these recommendations have been published, we have begun to see some changes 

to the written curriculum (i.e., textbooks). For example, many authors have addressed the proof 

form recommendation by promoting paragraph and flow proofs in their textbooks (see, e.g., 

Larson, et al. 2001). Discovering Geometry is another example of a curricular shift where Serra 

(2008) expanded the role of the students by asking them to discover and conjecture through 

investigations but saves the opportunity to write formal proofs for the final chapter of the 

textbook. Most recently, the CME Project’s Geometry (Education Development Center (EDC)  

2009) asks students to conjecture and analyze arguments, proposes a variety of ways to write and 

present proofs, and asks students to identify the hypotheses and conclusions of given statements.    

While we do not necessarily endorse all of these changes, we see these curricular 

adjustments as evidence that mathematics educators and textbook developers are, in fact, 

rethinking the geometry course. Through our research, however, we have also noticed that even 

when it is their goal to do so; many teachers find it difficult to move away from the two-column 

proof form where students are provided with “Givens” and a statement to “Prove” (Cirillo 2008, 

Herbst 2002). In fact, the two-column form is so prominent that some research has shown that 

when proofs are written in other forms (e.g., paragraphs), high school students are unsure of their 

validity (McCrone and Martin 2009).   

One reason that the two-column proof holds such a prominent position in the geometry 

course is historical and will be discussed shortly. A second reason is likely related to the 

“apprenticeship of observation” (Lortie 1975) where teachers tend to teach in ways that are 

similar to how they were taught as students. In this article we argue that this version of “doing 
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proofs” does not do enough to involve students in the manifold aspects of proving that are found 

in the discipline of mathematics. This is important because unless we expand our vision of 

proving in school mathematics, we cannot fully realize the aforementioned goals of NCTM’s 

Reasoning & Proof and Geometry Standards. The focus of this article is on the two 

recommendations discussed above. In particular, we focus on the Council’s recommendation to 

expand the role of the student in the work of constructing and writing proofs and support this 

work through various proof representations. We became interested in this topic through our own 

experiences as former classroom teachers and current mathematics teacher educators who have 

research interests related to teaching proof in geometry.  

In this article, we first provide some historical context that sheds light on the prominent 

position that the two-column proof form holds in the geometry course. We do this in order to 

show how the student’s role in proving has been narrowed down over time. We then present a set 

of problems that are intended to expand the role of students by providing them with opportunities 

to make and investigate conjectures and develop and evaluate mathematical proofs.  Finally, we 

discuss various proof forms as representations used to communicate mathematics. We conclude 

with a brief discussion of how these activities allow students to participate in more authentic 

proof practices in geometry.  

Historical Context 

A perusal of geometry textbooks covering the last 150 years reveals that problems where 

students are expected to produce a proof have changed quite a bit. As Herbst (2002) noted, this 

custom of proving developed gradually. Before the 20th century, students could be expected to 

prove statements that had been given to them in a conceptual register where geometric objects 

are referred to by their general names (e.g., triangle, angle) rather than by the labels for specific 
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objects (e.g., ABC, ∠ABC). Students also had the chance to use proof to determine what 

could be concluded, for example, in response to a question about a figure described in general. 

While less common, some “original” problems (those problems left for independent exploration) 

included finding the conditions or hypothesis (i.e., the “Given”) on which basis one could claim 

a certain conclusion (i.e., the “Prove”).  

Over the 20th century the scope of labor for students in proving has substantially 

narrowed down. Perhaps there were reasons for that narrowing down. It is interesting though that 

this narrowing down occurred simultaneously with the standardization of the “two-column form” 

for writing proofs. If a goal for our students is simply to construct the statements and the reasons 

that prove a conclusion follows from the “Givens,” then the two-column form offers a useful 

scaffold to assist students in this work. Were we to increase the share of labor that students do 

when proving, however, we might have to think of other types of problems and forms of 

representation to support and scaffold their work. In thinking about expanding the student’s role 

in the proof process, two questions are important to consider: What kinds of problems might be 

posed to increase students’ share of the labor? What kinds of support could be provided to 

students to do this work? We address these two questions in the sections that follow.  

Expanding the Role of the Student through Alternative Problems 

One reason that the two-column form has come under so much scrutiny in recent times is 

related to the belief that it is not an authentic form of mathematics. A critical piece that has been 

lost in our modern version of what doing proofs is like in school mathematics today is related to 

conjecturing and setting up the proof. This is important if you believe, as Lampert (1992) argued, 

that “conjecturing about…relationships is at the heart of mathematical practice” (p. 308). Related 

to this is the importance of determining the premises (“Givens”) and statements to be proved: 
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Many people think of geometry in terms of proofs, without stopping to consider the 

source of the statements that are to be proved….Insight can be developed most 

effectively by making such conjectures very freely and then testing them in reference to 

the postulates and previously proved theorems. (Meserve and Sobel 1962, p. 230) 

Because we believe that students should play a larger role in the important work of setting up 

and carefully analyzing proofs, here we present problems that are reminiscent of the historical 

problems described above in that they do not simply provide students with the “Given” 

hypotheses and ask them to “Prove” particular statements. Rather, we propose nine different 

problems that provide students with opportunities to expand their role in the process of proving.  

In Problems 1-3 (see Appendix A), students are asked to participate in setting up the 

proof by either providing the “Givens,” the “Prove,” and/or the diagram for the proof. In 

Problem 1, the student is provided with a conjecture (i.e., The diagonals of a rectangle are 

congruent) and a corresponding diagram and asked to write the “Given” and the “Prove” 

statements. In contrast, in Problem 2, the student is provided with the “Given” and the “Prove” 

statements but is asked to draw the diagram. Finally, in Problem 3, when provided with a 

particular theorem (in this case: If the diagonals of a quadrilateral bisect each other, then the 

quadrilateral is a parallelogram) the student is asked to do all three of these tasks (i.e., write the 

“Given,” the “Prove,” and draw the diagram).    

 Problem 4 is similar to the first three in that students are invited to determine the 

“Given,” but this time, they are not provided with a conjecture or a theorem to be proved. Rather, 

here, students are asked to determine what would have been “Given” in order to construct the 

proof that is provided. They are then asked to condense those two “Givens” into a single, more 

concise statement. This exercise asks students to reflect on two different ways that the line 
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segment bisector premise might be handled. Problem 4 is similar to the “fill in” type proofs that 

we have seen in some textbooks (e.g., Larson et al. 2001 and Serra 2008) except that rather than 

having students fill in the statements or reasons, they are filling in the “Given” premises.  

  Next, in Problem 5, students are asked to draw a conclusion or determine what could be 

proved when provided with particular “Given” conditions and a corresponding diagram. This 

type of problem can be a useful scaffold in that it isolates particular geometric ideas such as 

definitions or postulates of equality, for example. In Problem 6, students are asked to determine 

what auxiliary line might be drawn in order to prove that two angles are congruent. This is not a 

common problem posed to students because, typically, teachers either construct the auxiliary 

lines for their students or a hint is provided in the textbook that helps students determine where 

this line should be drawn (Herbst and Brach 2006). We view these first six problems as scaffolds 

that could eventually allow students to conjecture and set up a proof on their own.  

 Problem 7 is unique in the sense that the student is asked what could be proved, but the 

givens are ambiguous. It is expected that the student will consider two different cases 

corresponding to whether the quadrilateral is concave or convex. In both cases the student could 

argue that the remaining pair of sides are congruent to each other.  

Finally, Problems 8 and 9 students have the opportunity to take part in analyzing proofs. 

In Problem 8, a paragraph proof is provided, and students are asked to find the error. In this 

proof, the corresponding parts that are proved to be congruent are two pairs of angles and one 

pair of sides. The student author determined that the triangles were congruent by ASA based on 

the order that these corresponding parts were proved congruent, rather than attending to how 

these parts are oriented in the triangles. In Problem 9, students are provided with a proof and 

asked to determine what theorem was proved.  
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In this section, we proposed nine problems that would allow teachers to increase their 

students’ involvement in proving by having them: make reasoned mathematical conjectures; use 

conjectures to set up a proof; and evaluate mathematical proofs by looking for errors and 

determining what was proved. In the next section, we address the issue of supporting students in 

proving by commenting on multiple proof representations.   

Proof Representations that Support Constructing and Writing Proofs 

 Representation is one of five Process Standards that highlights the ways in which 

students acquire and make use of content knowledge (NCTM 2000). Here, we are thinking about 

various proof forms as representations of geometric knowledge. Providing students with access 

to various proof representations is useful because: “Different representations support different 

ways of thinking about and manipulating mathematical objects” (NCTM 2000, p. 360). And 

while it is important to encourage students to represent their ideas in ways that make sense to 

them, it is also important that they learn conventional forms of representation to facilitate both 

their learning of mathematics and their communication of mathematical ideas (NCTM 2000). 

The purpose of this section is to highlight four different ways that proofs can be represented in 

geometry and discuss how these various representations have the potential to facilitate proving. 

 As pointed out by Anderson (1983), successful attempts at proof generation can be 

divided into two major episodes – “an episode in which a student attempts to find a plan for the 

proof and an episode in which the student translates that plan into an actual proof” (p. 193). 

Here, we refer to these two activities as constructing and writing a proof, respectively. The proof 

forms that we highlight include: proof tree, flow proof, two-column proof, and paragraph proof. 

Descriptions and examples of each representation can be found in Appendix 2. Here we briefly 

discuss the ways in which these proof representations can support students in proving.        
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Proof Trees. The proof tree is an outline for action, where the action is writing the proof. 

Anderson (1983) described the proof tree as follows: 

The student must either try to search forward from the givens trying to find some set of 

paths that converge satisfactorily on the statement to be proven, or [s/he] must try to 

search backward from the statement to be proven, trying to find some set of dependencies 

that lead back to the givens. (p. 194) 

In other words, students might begin by asking themselves: What would I need to do in order to 

prove this statement? Using a proof tree to think through a proof could be a useful scaffold to 

support students in constructing a proof. The proof tree could also be a useful tool to scaffold the 

work of finding out what the givens are or what conclusion can be proved.  

Flow Proof. A flow proof uses the same statements and reasons as a two-column proof, but the 

logical flow connecting the statements is indicated by arrows (Larson et al. 2001). The flow 

proof helps students to brainstorm, working through the most difficult parts of solving a proof: 

(1) understanding the working information – analyzing the given and the diagram, and (2) 

knowing what additional information is needed to solve the proof – analyzing what is being 

proved (Brandell 1994). A disadvantage to this proof form might be that students are not 

required to supply reasons that justify their statements in the way that the “Reasons” column of 

the two-column proof forces them to do so. For that reason, however, it allows students to focus 

on making the argument and thus could be particularly useful toward constructing a proof. 

Two-column Proof. A two-column proof lists the numbered statements in the left column and a 

reason for each statement in the right column (Larson et al., 2001). The two-column form 

requires that students record the claims that make up their argument (in the statements column) 

as well as their justifications for these claims (in the reasons column). In this sense, the two-
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column form appears to be a rigid representation. This could be intimidating to students. 

However, students can be flexible when using this representation. For example, they might leave 

out a reason that they do not know but still move ahead with the rest of the proof; the incomplete 

form reminds them that they still have something to complete (Weiss, et al. 2009) However, the 

consecutively numbered steps of the proof  may lead students to believe that the deductive 

process is more linear than it actually is. The deductive process, in general, hides the struggle 

and the adventure of doing proofs (Lakatos 1976).    

Paragraph Proof. A paragraph proof describes the logical argument using sentences. This form 

is more conversational than the other proof forms (Larson et al. 2001).  Paragraph proofs are 

more like ordinary writing and can be less intimidating (EDC 2009). For this reason, they look 

more like an actual explanation than a structured mathematical device (EDC 2009). While 

paragraph proofs may seem less intimidating, they are also less structured (EDC 2009). One of 

the teachers that we studied concluded that the paragraph form was not appropriate for high 

school students because students tended to “forget” to write the reasons that justified their 

statements. As a result, students would often come to invalid conclusions (Cirillo 2008). Yet, if a 

goal is to help students develop mathematical literacy, this proof form most closely resembles 

the representation that a mathematician would use to write up a proof. Another advantage of this 

form is that when writing a proof by contradiction, the paragraph form seems a more sensible 

choice than some of the other options (Lewis 1978).  

Conclusion 

 Through their Standards documents, NCTM has called for changes related to Reasoning 

& Proof and Geometry. There is some evidence that these recommendations have been taken 

seriously by mathematics educators and textbook developers. In this paper, however, we argued 
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that if we are truly to realize the goals of these standards, we must pose problems to our students 

that allow them to play a greater role in proving. We presented problems that asked students to 

write the premises (“Givens”) and the statements to be proved as well as construct the diagrams. 

We suggested that students should be provided with opportunities to make reasoned conjectures 

and evaluate mathematical arguments and proofs. Last, we suggested that teachers promote and 

allow various types of reasoning and methods of proof.  We believe that this is important 

because adherence to a specific proof format may elevate focus on form over function. A focus 

on form potentially obstructs the creative mix of reasoning habits and ultimately hinders 

students' chances of successfully understanding the mathematical consequences of the 

arguments.  
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APPENDIX A: ALTERNATE PROBLEM TYPES 
 
 
 

PROBLEM 1: Writing the “Given” and “Prove” from a conjecture  
 
Suppose you conjectured that the diagonals of a rectangle are 
congruent and drew the diagram on the right. Write the “Given” and 
the “Prove” statements that you would need to use to prove your 
conjecture. 
 
 
-------------------------------------------------------------------------------------------------------------- 
 
PROBLEM 2: Drawing a diagram when provided with the “Given” and the “Prove” 
 
Draw a diagram that could be used to prove the following: 
 
Given: Parallelogram PQRS where T is the midpoint of PQ  and V is the midpoint of SR . 
Prove: ST QV≅  
 
 
------------------------------------------------------------------------------------------------------------ 
 
PROBLEM 3: Setting up the “Given,” the “Prove,” and the diagram when provided with 
the theorem 
 
Determine what you have been given and what you are being asked to prove in the theorem 
below. Mark a diagram that represents the theorem. 
 
Theorem: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a 
parallelogram.   
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PROBLEM 4: Determining the “Given” from a Flow Proof 
 

1. Provide the two missing “Given” statements for this proof. 
2. Write a single statement that could replace these two given statements.  

 
Given: _________________ 
 _________________ 
Prove: CL MB≅  
 
 
 
  
   ?      ? 
 
         (Given)           (Given) 
 
 
 
 
                   CJ MJ≅            JL JB≅      1 ≅   2 
       (Definition of Midpoint)       (Definition of Midpoint)  (Intersecting lines form  

congruent vertical angles) 
 
 
 
      CJL ≅  MJB 
         (SAS ≅ SAS) 
 
 
 
           CL MB≅  
           (CPCTC) 
 
(Adapted from Serra, 2008, p. 239) 
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PROBLEM 5: Drawing Conclusions from the “Given” 
 
What conclusions can be drawn from the given information? 
 
Example A:              Example B: 
 
Given: ABC



, DEF


                   Given: Quadrilateral ABCD where 
 AB DE≅              FG  is bisected by diagonal AC   
            BC EF≅         

 
 
 
 
 

(Adapted from Lewis, 1978, pp. 135 & 68) 
 
---------------------------------------------------------------------------------------------------------------- 
 
PROBLEM 6: Drawing an auxiliary line.  
 
What auxiliary line might we draw in to construct this proof?  
Is it possible to construct the proof without considering an auxiliary line? 
 
 
Given: Kite ABCD with AD AB≅  and DC BC≅  
Prove: B ≅  D 
 
 
 
 
 
----------------------------------------------------------------------------------------------------------- 
 
PROBLEM 7: Solving a problem that involves writing a conjecture 

 (i.e., deciding what to prove) 
 

Consider a quadrilateral such that it has two congruent consecutive segments and two opposite 
angles congruent. The angle determined by the two congruent sides is not one of the congruent 
angles. What else could be true about that quadrilateral? What could you proved in this 
scenario? What are the “Given” statements? 
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PROBLEM 8: Finding the error in a proof. 
In the figure at the right, AB ED

 

  and AB ED≅ . 
Luis uses this information to prove that ABF ≅  DEF. 
Explain why his paragraph proof is incorrect and give a  
reason why he may have made this error.   
 
Proof: 
It is given that AB ED

 

  so ∠ DEB ≅ ∠ ABE, because parallel lines form congruent alternate 
interior angles with a transversal. It is also given that AB ED≅ . And ∠ AFB  ≅ ∠ DFE because 
they are vertical angles, and vertical angles are congruent. So ABF ≅  DEF  by ASA.  
 
(Adapted from EDC, Inc., 2009, p. 122) 
 
-------------------------------------------------------------------------------------------------------------- 
 
PROBLEM 9: Determine the theorem that was proved by the 
given proof. 
 
Write the theorem that was proved by the proof below. 
 
 
 

Statements     Reasons 
 

1. Let CD be the bisector  1. Every angle has one and only one bisector.  
of vertex ACB, D being 
the point at which the  
bisector intersects AB . 

2. 1 ≅  2    2. A bisector of an angle divides the angle into two  

    congruent angles. 
3. CA CB≅     3. Given. 

4. CD CD≅     4. Reflexive property of congruence. 

5. ACD ≅ BCD   5. Side-Angle-Side ≅ Side-Angle-Side 

6.  A ≅  B    6. Corresponding parts of congruent triangles are 

    congruent.   
 
 
 
 
(Adapted from Keenan & Dressler, 1990, p. 172) 
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APPENDIX B: PROOF REPRESENTATIONS 
 
THEOREM: If a parallelogram is a rectangle, then the diagonals are congruent.  
 
                A          B 
Given: Rectangle ABCD with                                
            diagonals AC and BD  
 
Prove: AC BD≅  
                 D          C 
 
Proof Form Proof 
A proof tree is an 
outline or plan of 
action that specifies a 
set of geometric rules 
that allows students to 
get from the givens of 
the problem, through 
intermediate levels of 
statements, to the to-
be-proven statement.  
(Adapted from 
Anderson, 1983) 
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A flow proof uses the 
same statements and 
reasons as a two-
column proof, but the 
logical flow 
connecting the 
statements is 
indicated by arrows. 
Depending on 
whether it is the plan 
or the proof itself, 
students may or may 
not choose to write 
the reasons beneath 
the statements.  
 

 

 

 
A two-column proof 
lists the numbered 
statements in the left 
column and a reason 
for each statement in 
the right column. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Statements Reasons 
1. Rectangle ABCD 

with diagonals 
AC and BD  

2. AD BC≅  
 

3. DC DC≅  

4. ADC and BCD 

are right angles. 
5. ADC ≅ BCD 

6. ADC ≅ BCD 

7. AC BD≅  

1. Given 
 

2. Opposite sides of a rectangle are 
congruent. 
 

3. Reflexive Postulate 
4. All angles of a rectangle are right 

angles.  
5. All right angles are congruent.  

 
6. Side-Angle-Side ≅  Side-Angle-Side 

 
7. Corresponding Parts of Congruent  

Triangles are Congruent (CPCTC) 
 

 

 
A paragraph proof 
describes the logical 
argument with 
sentences. It is more 
conversational than a 
two-column proof.  

 
Since ABCD is a rectangle with diagonals AC and BD , then AD BC≅  because 
opposite sides of a rectangle are congruent. By the reflexive postulate 
DC DC≅ . Since all angles in a rectangle are right angles, then ADC and 

BCD are right angles. Thus, ADC ≅ BCD. By Side-Angle-Side, ADC ≅ 

BCD. Thus, AC BD≅ . 

 
 


