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Lecture 8:
Item-to-item; Page Rank

 SI583: Recommender Systems
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Item-Item Collaborative Filtering

High-level approach:

 For each item X find similar items Y,Z..

 For user Joe, recommend items most similar 
to items Joe has already liked

4
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Users-by-Items Matrix
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Normalize the Rows for User-User 
Algorithm
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Normalize the Columns for Item-Item 
Algorithm
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Alternative similarity measure for 
0-1 entries: co-occurence
 When X has just 0 or 1 

for each entry
 Instead of computing 

actual covariances from 
W, compute a similarity 
score based on count of 
co-occurrence in X
– Co-occur(It1, It2) = 0
– Co-occur(It1, It3) = 2
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Generalization of  co-occurrence 
similarity: Association Rules
 From a database of purchases, can find 

significant co-occurence rules, e.g.,

person who buys bread and butter => 90% 
chance of also buying milk

 It’s possible to precompute these association 
rules (Agarwal et al)
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User-User vs. Item-Item

 Compute pairwise 
correlations between 
users

 Compute pairwise 
correlations between 
items

T
W W

XX
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Computational Complexity

 With n items, m users,
– user-user algorithm (unoptimized):  about m2n 

operations
– item-item algorithm (unoptimized): about mn2 

operations

 #items may be < #users
 item-item similarities may be stable over long 

periods of time => batch computing leads to 
less inaccuracy



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

12

Predicted Scores for Target Item

 User-user
– Weighted average of other user’s ratings of 

this item
• Weights taken from user-user similarities

 Item-item
– Weighted average of this user’s ratings of 

other items
• Weights taken from item-item similarities
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Finding Items from Items

 Item-item algorithm
– Single starting item

• Find other items with highest correlation

– Starting from a group of items
• Union of results for each item
• (Why are association rules better than the item-

item similarity matrix?)

 User-user algorithm
– ??
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Finding Users from Users

 User-user algorithm
– Find other users with highest correlation

 Item-item algorithm
– ??
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Web search as a recommender

 Use links between pages as implicit “ratings”

 No separate categories of users, items
– can’t easily use user-user algorithm, etc.

 How are the “best” pages for a query 
recommended?
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Model

 Page is a node
 html link defines a directional link in the 

graph
 Terminology

– If A has an html to B
• A has an outgoing link to B
• B has an incoming link from A
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PageRank
 Google’s big original idea [Brin &Page, 1998]
 Idea: ranking is based on “random web surfer”:

– start from any page at random
– pick a random link from the page, and follow it
– repeat!
– ultimately, this process will converge to a stable distribution over 

pages (with some tricks...)
– most likely page in this stable distribution is ranked highest

 Strong points:
– Pages linked to by many pages tend to be ranked higher (not 

always)
– A link (“vote”) from a highly-ranked page carries more weight
– Relatively hard to manipulate
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PageRank, examples

 2525

25 25

(a)Total weight = 100%

(b)  Weight of node is divided 
among outgoing links.

(c) Weight of node is sum of 
incoming link weights.25

25 25

25

25

12.5

Final distribution properties:
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PageRank, examples

 

(a)Total weight = 100%

(b)  Weight of node is divided 
among outgoing links.

(c) Weight of node is some of 
incoming links

Final distribution properties:
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PageRank, mathematically

 Let the stable probabilities be xi for page i, xi>=0

 For each i,j, define aij as
– If j links to i, aij = (1/number of links of j)

– If j does not link to i, aij = 0

 Form A = square matrix of aij for all i, j.
 Then, the PageRank probabilities satisfy

Ax = x
 x is the eigenvector of the link matrix, with eigenvalue 

1

* May need to modify A slightly to ensure unique solution

optional
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Finding the PageRank eigenvector

 One approach: solve linear equation 
     (A-I)x = (0 0 0 ..0 0)T

 Alternative “power method” is more 
efficient in practice:
– Start with an arbitrary X
– Compute Ax, A2x, ... Atx (t large)
– Atx is approximately proportional to the 

correct solution!
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Aside: why the power method works 
(optional)
 Known: the link matrix A has

– eigenvalue 1 for the correct eigenvector v*
– all other eigenvalues λ have | λ| <1

 Known: any x can be expressed as a sum of 
eigenvectors of A
x = a0v* + a1v1+ a2v2 + ..

 Multiplying by A t times,
Atx = a0v* + a1(λ1)tv1+ a2(λ2)tv2 + .. 

but (λ1)t  etc. are very close to 0 for large t
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A Sample Graph
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Handling Loops

 Let E be a set of “source” weight ranks
– At each node, random surfer goes to nodes with 

probabilities in E

 Each node’s final rank is a scaled multiple of
– It’s source rank PLUS

– The sum of the rank on its backlinks

 Scale it such that the sum of final ranks is 1
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A Sample Graph
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Some Intuitions

 Will D’s Rank be more or less than ¼?
 Will C’s Rank be more or less than B’s?
 How will A’s Rank compare to D’s?
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Mathematical Expression

( )EARcR +=' 1' == � ιΡΡ
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Power Method Algorithm

 Multiply by A, and then 
normalize so that the 
sum is 1

� 

Ri+1 =
ARi + E

| ARi + E |
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Before the First Iteration

 S

r1  .3
r2  .1
r3  .3
r4  .1
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First Iteration

 AR+E

 Normalize so sum is 1 (divide by 1.1)

r1  .25
r2  .25
r3  .35
r4  .25

r1  .22727273
r2  .22727273
r3  .31818182
r4  .22727273
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Second Iteration

 AR+E

 Normalized (divide by 1.17)

r1  .25909091
r2  .21363636
r3  .44090909
r4  .25909091

r1  .22093023
r2  .18217054
r3  .37596899
r4  .22093023
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Third Iteration

 AR+E

 Normalized (divide by 1.18)

r1   .2879845
r2  .21046512
r3  .39263566
r4   .2879845

r1  .24424721
r2  .17850099
r3   .3330046
r4  .24424721
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What If  More Weight in E?

 Try (1 1 1 1) instead of (.1 .1 .1 .1)

 Try (10 10 10 10)

r1  .23825503
r2   .2360179
r3  .28747204
r4  .23825503

r1  .24848512
r2  .24845498
r3  .25457478
r4  .24848512
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Personalized PageRank

 Pick E to be some sites that I like
– My bookmarks
– Links from my home page

 Rank flows more from these initial links than 
from other pages
– But much of it may still flow to the popular sites, 

and from them to others that are not part of my 
initial set
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