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Fitting the weights: SVD

 Model weights from SVD  (U,S,V):

 Weight (item j, feature f) = √ sff Vfj

 Weight (user i, feature f) = √ sff Uif

Joe
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Sue

A B

f2

Items
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uJoe,f1

latent features

X

Alternative: get software package to calculate weights directly..
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SVD-based CF: Summary

 Pick a number of features k
 Normalize ratings
 Use SVD to find best fit with k features
 Use fitted model to predict value of Joe’s 

normalized rating for item X
 Denormalize (add Joe’s mean) to predict 

Joe’s rating for X
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SVD Practicalities

 SVD is a common mathematical operation; 
numerous libraries exist

 Efficient algorithms to compute SVD for the 
typical case of sparse ratings

 A fast, simple implementation of an SVD-
based recommender (by Simon 
Funk/Brandyn Webb) was shown to do very 
well on the Netflix challenge
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SVD and Content Filtering

 Similar idea: Latent Semantic Indexing used 
in content-filtering
– Fit item descriptions and keywords by a set of 

features
– Related words map onto the same feature
– Similar items have the similar feature vectors

 Useful to combine content+collaborative 
filtering
– Learn some features from content, some from 

ratings

8
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Where we are in the course
 Up to this point:

– Eliciting ratings
– Using implicit information
– Software architecture
– Collaborative filtering algorithms

 Next:
– Evaluation
– Scalable software (briefly)
– Interface extensions

– Manipulation and defenses

– Privacy

9
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Evaluation of  Recommendation 
Quality
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Recommendation Presentation

 Predicted score
 (Ordered) list of recommended items
 Filter threshold based on score
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Slashdot.org
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Assessing Quality of  a Threshold

 Many metrics derived from the “confusion matrix”:

Wikipedia
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Assessing Quality of  a Threshold

 Precision p
TP/(TP+FP)

 Recall r

     TP/(TP+FN)

Wikipedia
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Assessing Quality of  a Threshold

 Precision p
TP/(TP+FP)

 Recall r

     TP/(TP+FN)
 Combinations, e.g., 2pr/

(p+r)    {F1-measure}

 Which metric is best?

Wikipedia
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Assessing Quality of  a Threshold
 Precision p

TP/(TP+FP)
 Recall r
     TP/(TP+FN)
 Combinations, e.g., 

   2pr/(p+r)    {F1-measure}

 Which metric is best?
 Depends on scenario.. 
 ultimately, all are special cases 

of cost-benefit analysis
– cost of inspecting an item
– benefit from seeing a good item
– (perhaps) penalty for missing a 

good item

Wikipedia
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Assessing Quality of  a Threshold

 Other charts you might see:
– ROC (receiver operator characteristic) 

curve
– precision-recall curve
– both are different ways of showing how the 

tradeoff changes with the threshold
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Example ROC curve

18

Wikipedia
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Google
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Assessing quality of  a list

 On/off correctness; see previous slide
 Number of swaps necessary to get 

correct ordering
 Is there anything good on the list?
 Some scoring/point function

– E.g. 10 points if top choice on the list, etc..
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Rating predictions
21

www.gizmodo.com
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Assessing quality of  score predictions

 Mean Absolute Error

N

actualpred� −
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Assessing quality of  score predictions

 Mean Absolute Error

 Mean Squared Error

N

actualpred� −

( )
N

actualpred￥ - 2
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Choice of  error metric

 Why did Netflix choose MSE instead of 
MAE?

 What other metrics could they have 
used, and what impact would they have 
had?
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Minimizing MAE and MSE

 Given beliefs, probability distribution 
over ratings
– E.g., 0, 4, or 5, each with probability 1/3

 What should you predict in order to 
minimize MAE?

 What should you predict in order to 
minimize MSE?
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