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some time to conclude—for example, a divorce, seri-
ous illness, or going on welfare. Near the middle of the
spectrum is the category of daily hassles. While hassles
are not major stressors individually, their accumulation
from day to day may represent an important stress
source. More continuous in nature is the ongoing
absence of an expected or desired social role, or non-
event. Stressors of this type include joblessness and
childlessness. Chronic stress is the most continuous
type; examples include living in a dangerous neighbor-
hood, poverty, and living with a disability.

Eventful and chronic stress may be related through
a process of stress proliferation. One example is when
a worker loses a job because macroeconomic condi-
tions led to the closure of a plant. Soon the loss of the
individual’s worker role and his or her source of
income precipitate a financial crisis and increased con-
flict in the marital and parent roles—the “event” of
job loss has proliferated stressful experience in a whole
constellation of life domains. Social roles, and hence
role-related stressors, do not occur in isolation.

Sometimes, the stressful meaning of a normally
undesirable life event is negated by the context within
which it occurs. Consider the separation or divorce of
a person whose marital role history had been fraught
with disappointment, conflict, and unhappiness—the
event in such a case does not demand the kind of
adaptation that is a threat to the person’s well-being.

Stress as a Social Process

Stress may be viewed as the central means by which
the structural arrangements of society create differential
health outcomes for the people who occupy different
social statuses and roles. Stress theory does not treat
stress exposure as a health determinant in isolation:
Stress is one element within a process that is closely
linked to the social system. The amount of stress expe-
rienced is largely determined by an individual’s social
location. So are the social and personal resources that
are available to forestall or cope with stressful events
and circumstances as they occur. Stressful experiences
may motivate social support (if it is available), which
can mitigate their deleterious consequences. Successful
resolution of a stressful event, such the loss of a home
in a natural disaster, can build confidence that one can
cope with future losses. Or it could be devastating to
a person who had limited access to coping resources in
the first place. Social inequality in the exposure to
stress and in the availability of protective factors

amplifies the production and reproduction of health dis-
parities. That is because social structural arrangements
are systematically related both to the amount a person
is exposed to stress and access to the resources needed
to mitigate its ill-health effects.

Stress arises from the social context of people’s
lives. There is systematic variation in the level of
stress and coping resources across social status dimen-
sions. Greater exposure to stress is associated with
low education and poverty, unmarried status, minority
group membership, and youth. The existence of a gen-
der difference is less clear. Since stress and coping
resources are important determinants of health and ill-
ness outcomes, stress functions as an epidemiological
link between a society’s structure and the health out-
comes of its members.

—Donald A. Lloyd

See also Geographical and Social Influences on Health;
Health Disparities; Social Capital and Health; Social
Epidemiology; Social Hierarchy and Health
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STRUCTURAL
EQUATION MODELING

The roots of structural equation modeling (SEM)
begin with the invention of least squares about
200 years ago, the invention of factor analysis about
100 years ago, the invention of path analysis about 75
years ago, and the invention of simultaneous equation
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models about 50 years ago. The primary focus with
SEM is on testing causal processes inherent in our
theories. Before SEM, measurement error was
assessed separately and not explicitly included in tests
of theory. This separation has been one of the primary
obstacles to advancing theory. With SEM, measure-
ment error is estimated and theoretical parameters are
adjusted accordingly—that is, it is subtracted from
parameter estimates. Thus, SEM is a fundamental
advancement in theory construction because it inte-
grates measurement with substantive theory. It is
a general statistical methodology, extending correla-
tion, regression, factor analysis, and path analysis.

SEM is sometimes referred to as “latent variable
modeling” because it reconstructs relationships
between observed variables to infer latent variables.
Many variables in epidemiological research are
observable and can be measured directly (e.g., weight,
pathogens, mortality). However, many variables are
also inherently unobservable or latent, such as well-
being, health, socioeconomic status, addiction, and
quality of life. Measuring and interpreting latent vari-
ables requires a measurement theory. Latent variables
and its respective measurement theory can be tested
using an SEM technique called “confirmatory factor
analysis.” This involves specifying which latent vari-
ables are affected by which observed variables and
which latent variables are correlated with each other.

SEM also provides a way of systematically examin-
ing reliability and validity. Reliability is the con-
sistency of measurement and represents the part of
a measure that is free from random error. In SEM, reli-
ability is assessed as the magnitude of the direct rela-
tions that all variables except random ones have on an
observed variable. This capability of SEM to assess
the reliability of each observed variable and simulta-
neously estimate theoretical and measurement param-
eters is a fundamental methodological advancement.
The potential for distortion in theoretical parameters is
high when measurement error is ignored, and the more
complicated the model the more important it becomes
to take measurement error into account. Validity is the
degree of direct structural relations (invariant) between
latent and measured variables. SEM offers several
ways of assessing validity. Validity differs from reli-
ability because we can have consistent invalid mea-
sures. The R? value of an observed variable offers
a straightforward measure of reliability. This R* sets an
upper limit for validity because the validity of a mea-
sure cannot exceed its reliability.

Major Assumptions

Like other kinds of analyses, SEM is based on a number
of assumptions. For example, it assumes that data rep-
resent a population. Unlike traditional methods, how-
ever, SEM tests models by comparing sample data with
the implied population parameters. This is particularly
important because the distinction between sample and
population parameters has been often ignored in prac-
tice. SEM generally assumes that variables are mea-
sured at the interval or ratio level, and ordinal variables,
if used at all, are truncated versions of interval or ratio
variables. Hypothesized relationships are assumed to
be linear in their parameters. All variables in a model
are assumed to have a multivariate Gaussian or normal
distribution. Therefore, careful data screening and
cleaning are essential to successfully work with SEM.

SEM shares many assumptions with ordinary least
squares regression and factor analysis. For example,
the error of endogenous latent variables is uncorrelated
with exogenous variables. The error of the endogenous
observed variables is uncorrelated with the latent
endogenous variables. The error of the exogenous
observed variables is uncorrelated with the latent exog-
enous variables. The error terms of the endogenous
latent variables and the observed endogenous and
exogenous variables are mutually uncorrelated. This is
the result of combining factor analysis and regression
in one overall simultaneous estimation.

Steps in SEM
Specification

Models are constructed by defining concepts, clari-
fying the dimensions of each concept, forming mea-
sures of the dimensions, and specifying the expected
empirical relationships between the measures and
the construct. The accuracy of parameter estimates is
partly dependent on the correctness of the theory and
partly dependent on the validity of the measurement.
There is always more than one model that fits the
data, and thinking about these alternative models and
testing them helps refine theory. Depicted in Figure 1
is a path diagram—a common way to represent mod-
els. The circles represent latent variables, squares
represent observed variables, double-headed arrows
represent correlations, and single-headed arrows rep-
resent causal effects. The one-to-one correspondence
between path diagrams and sets of structural equa-
tions facilitates communication and clarification of all
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Figure 1 Example of a Path Diagram in SEM

parameters and their interrelationships. Model param-
eters are fully specified, which means stating a
hypothesis for every parameter.

Identification

Models are composed of a set of equations with
known and unknown parameters. Identification is the
problem of determining whether there is a unique sol-
ution for each unknown parameter in the model. It is
a mathematical problem involving population param-
eters, not sample size. A model can fail to be identi-
fied even with a large sample. There are a number of
rules that if followed ensure identification. The most
common is the ¢ rule. The ¢ in the ¢ rule refers to the
number of free parameters specified in the model.
Specifically, a model is identified if the ¢ value is
equal to or smaller than half the number of observed
variables multiplied by the number of observed vari-
ables plus 1 [t < (1/2)(p)(p + 1)]. The ¢ rule is a neces-
sary but not sufficient condition for identification.
Other rules are the scaling rule, three-indicator rule,
null-B rule, recursive rule, and rank-and-order rules.

Estimation

SEM estimation procedures use a particular fitting
function to minimize the difference between the

population and the sample. Basically, this is a recipe to
transform data into an estimate. The data matrix for
SEM must be positive definite, a mathematical require-
ment for the estimation algorithms. Maximum likelj-
hood is the default estimator in most SEM programs,
Maximum likelihood is based on the idea that the sam-
ple is more likely to have come from a population of
one particular set of parameter values than from a popu-
lation of any other set of values. Maximum likelihood
estimation is the vector of values that creates the great-
est probability of having obtained the sample in ques-
tion. This method of estimation is asymptotically
unbiased, consistent, and asymptotically efficient, and
its distribution asymptotically normal. If the sample is
large, no other estimator has a smaller variance. There
are two drawbacks with maximum likelihood. First, it
assumes a normal distribution of error terms, which is
problematic for many measures in the health and social
sciences fields. Second, the assumption of multinormal-
ity is even more problematic, again because of the
extensive use of crude measures.

In choosing estimators, the main choice is between
maximum likelihood and weighted least squares. The
weighted least squares estimator is used when multi-
variate normality is lacking and, especially, when
some of the variables are ordinal. Although weighted
least squares is computationally demanding, it is
important to have a large sample size when some
variables are ordinal. Other choices in estimators
include generalized least squares and unweighted least
squares. Maximum likelihood and generalized least
squares are very similar. The generalized least squares
estimator weights observations to correct for unequal
variances or nonzero covariance of the disturbance
terms. It is used when variable distributions are het-
eroscedastic or when there are autocorrelated error
terms. An unweighted least square is used with vari-
ables that have low reliability. This estimator is less
sensitive to measurement error than maximum likeli-
hood or generalized least squares. Research shows
estimates from the unweighted least square to be simi-
lar in models with and without error, while maximum
likelihood estimates without and without errors are
very different. ~

Fitting

After a model is estimated, its fit must be assessed.
There are more than 20 different fit measures to
assess misfit and goodness of fit. They are based on
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six different criteria: (1) the discrepancy between the
sample covariance matrix and the fitted (population)
covariance, (2) accounting for observed variances and
covariance, (3) maximizing the fit of a cross-validated
model, (4) including a penalty for unnecessarily esti-
mating parameters or creating fewer degrees of free-
dom, (5) the amount of improvement over a baseline
model, and (6) separating the measurement model
from the latent variable model.

Most of the existing fit measures are tied directly or
indirectly to the chi-square ratio. This chi-square statis-
tic is based on the same general idea as the familiar
chi-square comparison between the observed and
expected values. The difference is that in SEM our sub-
stantive interest or hypothesis is the null hypothesis. In
traditional applications, we want to reject the hypothesis
of no difference between observed and expected fre-
quencies so that we can accept the alternative hypothe-
sis of a difference. In contrast, with SEM, we want to
find no difference between the expected and observed
values. Therefore, the smaller the chi-square values the
better because this leads to a failure to reject the null
hypothesis, which is our substantive interest.

The chi-square statistic assumes that the variables
in a model are multivariate normal, that the data are
unstandardized (covariance as opposed to correlations
matrixes), that sample sizes are at least N > 100 and
preferably N > 200, and that the model holds exactly
in the population. This chi-square has been found
robust to skew violations but sensitive to Kurtosis vio-
lations. The interpretation of chi-square depends on
adequate sample sizes. With large samples tiny devia-
tions can lead one to reject the null hypothesis, which
again in SEM is of substantive interest.

SEM fit measures are not applicable in exactly
identified models. In exactly identified models (when
degrees of freedom=0), the sample variances and
covariance always equal the estimates of the popula-
tion variances and covariance because there is only
enough information to calculate one estimate per
parameter. A limitation of chi-square is that the closer
the model is to being exactly identified, the higher the
chi-square value. In other words, chi-square values
always decrease when parameters are added to the
model. With an overidentified model (degrees of free-
dom > 0), the overall fit can differ from the fit of dif-
ferent parts of the model. A poor overall fit does not
help to detect areas of poor fit. The overall fit statis-
tics also do not tell us how well the independent vari-
ables predict the dependent variables.

A good fit does not mean that model is “correct”
or “best.” Many models fit the same data well. Mea-
surement parameters often outnumber theoretical
parameters. Therefore, a “good fit” may reflect the
measurement and not the theory. There is consider-
able discussion about fit measures. The best current
advice in evaluating model fit is to seek a nonsignifi-
cant chi-square (at least p > .05 and preferably .10,
20, or better); an IFI (incremental fit index), RFI
(relative fit index), or CFI (comparative fit index)
greater than .90; low RMSR (root mean square resid-
val) and RMSEA (root mean square of approxima-
tion) values, plus a 90% confidence interval for
RMSEA < .08; and a parsimony index that show
the proposed model as more parsimonious than alter-
native models.

Modification

It is not uncommon for models to exhibit a poor fit
with the data. There are many potential sources of
error, including an improperly specified theory, poor
correspondence between the theory and the model,
and causal heterogeneity in the sample. Modifications
are typically made to poor-fitting models, and most
SEM software packages provide modification indices
that suggest which changes can improve model fit.
However, using these indices in the absence of theory
represents one of the main abuses of SEM. It is
important that a systematic search for error is con-
ducted and that modifications are based on theory
or to generate new theory. A well-fitting respecified
model does not represent a test. Respecified models
must be tested on new data.

Specialized Techniques

SEM is a highly flexible methodology that allows for
many special types of models to be examined. The
most common models are those with unidirectional
(recursive) causal effects, but SEM also allows for
bidirectional (nonrecursive) effects to be tested.
Stacked or multiple groups can also be examined,
which facilitates interpretation and tests of interaction.
Repeated measures designs can be analyzed using an
SEM technique called “latent growth curves.” This
provides a way of examining both linear and nonlin-
ear changes over time. Recent advances in software
also provide a way of accounting for hierarchical or
nested data structures, including survey weights.
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Summary

SEM is a flexible and extensive method for testing
theory. These models are best developed on the basis
of substantive theory. Hypothesized theoretical rela-
tionships imply particular patterns of covariance or
correlation. Statistical estimates of the hypothesized
covariance indicate, within a margin of error, how
well the models fit with data. The development and
testing of these models advance theory by allowing
latent variables, by including measurement error,
by accepting multiple indicators, by accommodating
reciprocal causation, and by estimating model param-
eters simultaneously. Structural equation models sub-
sume factor analysis, multiple regression, and path
analysis. The integration of these traditional types
of analysis is an important advancement because it
makes possible empirical specification of the linkages
between imperfectly measured variables and theoreti-
cal constructs of interest.

The capabilities, technical features, and applications
of SEM are continually expanding. Many of these
advances are reported in the journal Structural Equa-
tion Modeling and communicated on the international
and interdisciplinary SEM listserv called SEMNET.
This listserv also archives its discussion and provides
a forum for offering and receiving advice, which
makes it an invaluable resource for epidemiologists
and other social scientists learning and using SEM.

—David F. Gillespie and Brian Perron
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STuDY DESIGN

Epidemiologic studies have traditionally been
categorized as having ‘“descriptive” or “analytic”
designs. Descriptive studies are viewed primarily as
hypothesis-generating studies and usually take advan-
tage of routinely collected data to describe the distri-
bution of a disease in a population in terms of the
basic descriptors of person, place, and time. Analytic
studies are further divided into “observational” and
“experimental” study designs and are viewed as
approaches suitable for testing specific hypotheses
about disease etiology or the efficacy of disease pre-
vention strategies. The main categories of obser-
vational studies are the cohort, case-control, nested
case-control, case-cohort, case crossover, and cross-
sectional designs. The most commonly employed
experimental designs used in epidemiologic research
include the classic randomized clinical trial and the
quasi-experimental nonrandomized study design used
to evaluate the effectiveness of population-based dis-
ease prevention approaches.

Descriptive Epidemiology
Data Sources

Descriptive epidemiologic studies are designed to
determine the distribution of a disease in a population
with regard to person, place, and time. The numbers
of individuals in the population who are diagnosed
with or die from various diseases are obtained from
sources such as vital records files, disease registries,
and surveys. Death certificates provide information on
the underlying cause of death and provide basic socio-
demographic data on the decedent such as age,
gender, race/ethnicity, marital status, and place of res-
idence at the time of death. Birth certificates are used
to study the incidence of various birth outcomes such




