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Abstract 

 

Peromyscus leucopus (White-footed mouse) is a common species found throughout the eastern 

United States and a key component of midwestern ecosystems.  Recently, the species has been 

expanding its range from the Lower Peninsula of Michigan, to the Upper Peninsula, possibly due 

to increasing temperatures.  Given the shifting environmental conditions, understanding current 

environmental determinants of current P. leucopus distribution can help predict how the species 

will respond to global climate change. Such insight in turn, is both important for understanding 

how N. American species communities are likely to be influenced by ongoing climate change and 

also for applied local conservation efforts.  Data on the presence/absence of P. leucopus and 

environmental variables including elevation, land cover, and climate, such as temperature, and 

precipitation, were used to predict habitat suitability and current distribution in Michigan.  We 

assessed the fit of a model that uses maximum entropy approach (MaxEnt) to relate presence to 

environmental variables by using a cross-validation process and the receiver operating 

characteristic.  Response curves were used to illustrate the relationship between each of the 

environmental variables and the probability of presence of P. leucopus.  And a jackknife test was 

used to identify those environmental layers that were most important in predicting White-

footed mice distribution.  Future temperature and precipitation layers were used to predict the 

possible future distribution of White-footed mice in Michigan and northward.  Our analyses 

indicated that the final model provided a reasonably good fit to the current distribution of the 

species.  Average minimum temperature of April was the environmental layer that contributed 

most to predicting the current distribution of White-footed mice, whereas, February 

precipitation reduced the gain of the model most when omitted from the analysis.  April average 

minimum temperature and April precipitation were both positively related to the probability of 

presence of P. leucopus.  The importance of temperature and precipitation suggests that the 

distribution of this ecologically important species is going to change under future climatic 

regimes. Indeed fitting the present model to future conditions indicates that the species will 

expand dramatically northward in the next 50-70 years with many Canadian areas north of 

Michigan becoming suitable habitat for P. leucopus by 2050.   
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Introduction 

The White-footed mouse (Peromyscus leucopus, Rodentia) is a widespread and common species 

found throughout Eastern North America and with a range extending from southern Maine to 

Alabama and southern Mexico (Lackey et al. 1985).  In the northern parts of their range, White-

footed mice most often inhabit deciduous forests or mature coniferous forests and shrubby 

fields (Iverson et al. 1967; Lackey et al. 1985).  In southern localities, the species is found in 

forested and brush habitats, as well as ravines and riparian areas within drier, desert habitats 

(Lackey et al. 1985).   

Because Peromyscus leucopus occurs generally in high population densities, it is an important 

component of North American forest ecosystems (Marcello et al. 2008).  Particularly, it plays an 

essential role as prey for many predators, including other mammals such as raccoons, fox, and 

mink, (Fanson 2010), and birds such as owls and other raptors (Myers et al. 2009a).  White-

footed mice are influential in high mast years, having a profound effect on forest pests and as 

seed predators (Clotfelter et al. 2007; Kelly et al. 2008; Ostfeld et al. 1997).  As a result, 

increases in mice densities impact seedling growth at forest edges (Ostfeld et al. 1997).  Also, 

during mast years with high acorn production, White-footed mice populations increase 

dramatically and can effectively control Gypsy moth densities (Clotfelter et al. 2007; Kelly et al. 

2008).  This relationship among acorns, White-footed mice, and Gypsy moths has important 

implications for ticks and the prevalence of Lyme disease (Jones et al. 1998; Ostfeld 2009).  High 

acorn densities not only increase P. leucopus populations, but also attract deer, which bring 

ticks. White-footed mice are then important hosts for the tick larvae and infect them with Lyme 

disease (Jones et al. 1998; Ostfeld 2009).  Therefore, being able to predict P. leucopus 

populations may be important in protecting human health and predicting Lyme disease risk 

(Jones et al. 1998; Ostfeld 2009).  Furthermore, Peromyscus species are also important hosts for 

Hantaviruses; therefore, changes in distribution of White-footed mice can have epidemiological 

consequences for humans (Gedeon et al. 2009; Ignacio and Abramson 2006). 

Climatic changes have a clear effect on White-footed mouse populations.  While the empirical 

field research has suggested links between climate and P. leucopus as well as other small 

mammal populations (Deitloff et al. 2010; Iverson et al. 1967; Myers et al. 2009b) these 

relationships have never been modeled.  Because field studies typically involve trapping mice 

over a small area they are can be spatially limited in the scope of predictions they can make.  
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Modeling that utilizes empirical data can not only make predictions on a larger scale but can also 

provide information on the relative importance of various environmental variables.  As a result, 

predictive distribution models can help estimate how the occurrence of White-footed mice 

might change as the result of changes in temperature and precipitation patterns.  

The ability to predict species distributions can be vital in wildlife management plans.  For 

instance, wildlife agencies often use potential habitat estimations and distribution data to make 

decisions about hunting quotas (Baldwin 2009).  Predicting locations that fulfill a species’ 

ecological niche is also very useful in conservation decisions, such as where to reintroduce a 

species or where to locate reserves (Baldwin 2009).  Distributional data can also aid in 

understanding how future conditions will affect organisms (Anciães and Peterson 2001, 

Cameron and Scheel 2006). 

The most common way to predict a species’ distribution is to explore its relationship to 

environmental variables.  The use of statistical modeling techniques to predict locations that 

fulfill the species habitat requirements has become very popular, especially in the context of 

application of geographic information system (GIS) tools (Guisan and Zimmerman 2000).  

Predictive distribution modeling or niche modeling has been used in the fields of biogeography, 

ecology, conservation biology (Guisan and Thuiller 2005; Brito et al. 2009; Kumar et al. 2009; 

Suarez-Seoane et al. 2008; Wang et al. 2010). Distribution point files and environmental layers, 

such as land-cover type, elevation, and climatic variables that are typically used in the models, 

are relatively easy to manipulate using GIS software.  With a changing climate, these models are 

beginning to be used not only to predict current distributions of organisms (Brito et al. 2009; 

Kumar et al. 2009; Suarez-Seoane et al. 2008; Wang et al. 2010) but also to predict the impact 

climate change on future species distributions (Guisan and Theurillat 2000).  While the number 

of species affected by climate change has increased greatly in recent years, there have 

nonetheless, been very few studies that examine distributional shifts, especially in mammal 

populations. 

MaxEnt (Phillips et al. 2006) is a new modeling software and is a general-purpose machine 

learning method.  It uses the maximum entropy principle to predict species distributions and has 

many advantages.  This software accepts continuous and categorical predictor variables and 

avoids commission errors or predicting a species is present incorrectly (Pearson et al. 2007).  For 

species distribution models, data on the presence of an organism is often more accessible than 
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data on its absence, due to the vast occurrence records in museums and herbaria.  MaxEnt can 

build models based on data on presence and absence, or on presence-only.  MaxEnt has been 

shown to create models that better fit available data than previously used techniques such as 

GARP, GLM, CART (Kumar et al. 2009; Wang et al. 2010).  In addition, MaxEnt results have also 

been shown to be fairly robust to the existence of spatial errors in location data and MaxEnt 

requires very few location points to create an accurate model (Baldwin 2009).  Therefore, 

MaxEnt is a good choice to make predictions about the distribution and habitat requirements of 

species.  

Due to the apparent relationship between climate and the occurrences of P. leucopus and the 

importance of understanding species distributions, I used field observation records and 

environmental layers, including modeled climatic conditions in 2050, to understand the habitat 

preferences and predict the future distribution of P. leucopus using MaxEnt.  Variables 

describing land cover, elevation, precipitation levels, and average minimum temperatures in 

February, March, and April were used to determine habitat requirements and effects of climate 

changes on White-footed mice distribution. 
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Methods 

Study area 

This study focuses on the Upper Midwest region of N. America. In particular the model was 

created using data from Michigan’s Upper and Lower Peninsula, from around 41°N to 48°N.  We 

trained the MaxEnt software using previously collected presence and absence data of P. 

leucopus.  They represented unpublished field records collected by Dr. Philip Myers using 

standardized sampling methods.  To ensure that recorded absences represented true absences 

of the species rather than inadequate sampling effort, we limited our absence points to those 

loctions where 1. other common species (Peromyscus maniculatus, Glaucomys volans, 

Glaucomys sabrinus, Tamias striatus, or Eutamias minimus) were detected and 2. trapping effort 

exceeded > 100 trapping nights.  By including points of documented absence, instead of 

allowing MaxEnt to generate background points randomly from the study area, any inherent 

sampling bias within the points was eliminated.  Because all presence and absence points are 

from Michigan and because range limiting factors may vary regionally, we restricted the 

predicted current range area to Michigan.  However, model predictions were then extended to 

cover areas north of Michigan, to evaluate the likelihood that habitat conditions favorable for P. 

leucopus like those currently found in Michigan will be extended to locations further north. 

 

Environmental Variables   

The environmental variables used represented land cover, topography, and climate, and were 

chosen based on their likely ecological influence on the distribution of White-footed mice as 

mentioned in the species relevant literature (Deitloff et al. 2010; Myers et al. 2009b) (Table 1).  

All manipulations of environmental layers were done within ArcMap GIS (ESRI version 9.3.1).  

Both the land-cover grid and the digital elevation model (DEM) have a spatial resolution of 30 

meters and were obtained from the National Map Seamless Server on the United States 

Geological Survey website.  We used the NLCD 2001 data (Homer et al. 2007) for the land-cover 

file (Table 2) and NED data (Gesh et al. 2002) for the DEM.  We obtained average minimum 

temperature and precipitation levels for February, March, and April from WorldClim.org, a data 

distribution site maintained by the Museum of Zoology at the University of California, Berkeley, 

in collaboration with CIAT (the International Center for Tropical Agriculture) and Rainforest CRC 
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(a Cooperative Research Centre for Tropical Rainforest Ecology and Management) (Hijmans et 

al. 2005).  Minimum temperature was chosen as an indicator of the length and severity of 

winter, since areas with pronounced winters are thought to be less suitable for the survival of 

White-footed mice populations (Myers et al. 2009b) and precipitation was chosen to provide 

further information on the severity of winter.  The climate layers have a resolution of 1 

kilometer and cover the entire globe.  

All environmental layers were converted into WGS 1984, a standard coordinate frame for the 

Earth, and then clipped to cover only Michigan using the Raster Calculator in ArcGIS.  The land 

cover and elevation layers were also aggregated to a resolution of 1 kilometer to match the 

climate layers.  We assigned the majority class to each 1km cell on the land-cover file and the 

average elevation to each 1km cell on the digital elevation file. 

To predict the future distribution and potential range expansion of P. leucopus under the 

current trend of a warming climate, land cover and digital elevation models for areas north of 

Michigan were also used.  The present land cover data for Ontario, Canada were obtained from 

the Institute for Fisheries Research at the University of Michigan Department of Natural 

Resources and Environment, and the DEM for Ontario was obtained from the GTOPO30 dataset 

from the USGS Earth Resources Observation Center (eros.usgs.gov) and had a resolution of 30m.  

The land-cover data used the same classification scheme as the Michigan data, and therefore 

did not require any reclassifying.  Predicted future climatic layers of average minimum 

temperature and precipitation levels for February, March, and April were obtained from 

WorldClim.org.  The predicted variables were obtained from the Canadian Centre for Climate 

Modelling and Analysis model (CCCMA), created under a worst-case scenario, in which a 

heterogeneous world economy has a high rate of population growth, energy use, and land-use 

change, but slow technological change (referred to as the SRES A2 scenario; IPCC 3rd Assessment 

Report 2001).  Two sets of predicted distributions were created from the MaxEnt model, one 

using the future climate layer predicted for 2050 and the other for 2080. 

Occurrence data   

A total of 753 points at which P. leucopus was either observed (473) or not (259) were used to 

develop a model of its distribution across the study area.  The data were from field observations 

and collections recorded by Dr. Philip Myers of the University of Michigan.  All of the 

observations are from 1950 to the present, with most of the records occurring from 1980 
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onwards.  All of the points (752) were intersected with the environmental layers to create a 

table with information representing all of the environmental data to use in the model.  A 

shapefile of the distribution point file was created within ArcMap GIS (version 9.3.1) by 

displaying the XY data from an Excel sheet of latitude and longitude coordinates of the 

occurrence points.  The datum of the file was then converted from NAD1927 into WGS1984.  

Any points that were outside the study area (i.e., the State of Michigan) were deleted.  Presence 

points that did not overlay one or more of the environmental layers (due to a recording error), 

but were within 0.5 kilometers of the nearest environmental data were moved to the closest 

cell.  This file was used to represent the presence points in the model.    

MaxEnt Analysis 

The MaxEnt software (version 3.2.2) (Phillips et al. 2006), which utilizes a maximum entropy 

approach to species distribution modeling, was used to model the predicted distribution of P. 

leucopus. 

The presence and absence points were intersected with the environmental layers (elevation, 

land cover, temperature, and precipitation) using the sample tool in ArcMap and saved as a 

comma delimited file representing the environmental data.  These two comma delimited files 

were used to train the model and predict the current distribution pattern.  For the future 

projection model and for validation, the environmental data was used in the form of a table in 

place of the ascii girds.  The future predictions were projected using land-cover, elevation, and 

climate files with a greater extent than the original model, covering areas north of Michigan in 

order to predict P. leucopus’ projected distribution in the face of climate change. 

Results were obtained using the logistic output option, which creates a probability map showing 

the probability of P. leucopus occurring in each cell on a scale from 0 to 1.  Two types of 

response curves were created to demonstrate the relationship between each of the 

environmental variables and the probability of the species occurrence.  The first presented are 

the response of the probabilities to individual variables taken one-by-one in the models. The 

second, are the marginal response curves, which show the response of each variable in the 

multi-variate model when all other variables are set to their mean values (Appendix C).  The 

percent contribution of each variable was calculated as the model was generated by showing 

which variables contributed most to the explanatory gain of the model measured using the path 

the MaxEnt code uses to achieve the optimal solution.  Next, the jackknife feature in MaxEnt 
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was used to measure the importance of each environmental variable to the training of the 

current model.   With the jackknife test, a number of different models were created.  Firstly, 

each variable was excluded, and a model created with the remaining variables.  Then a model 

was created using each of the variables separately and without any other variables.  In addition, 

a model was created using all of the variables.  The results are shown in a figure depicting how 

the model performed with and without each of the variables as compared to with all of the 

variables. 

Evaluation 

The model was evaluated using the bootstrap feature within the settings of MaxEnt, where a 

random selection of 75% of the presence points was used to train the model, leaving the 

remaining 25% to test the model, with 100 replicates of randomly sampled test points and the 

presence and absence file as the background points, allowing for the elimination of sampling 

bias since environmental data around both presence and absence points were used.  After an 

evaluation of model accuracy, all of the presence points (n=493) were used for the final model, 

in order to include all possible data when creating the probability map of predicted distribution.     

The receiver operating curve (ROC) was used to assess the accuracy of the model.  The ROC 

plots the sensitivity values (i.e., the rate of false positive predictions) against specificity values 

(i.e., the percent of area mapped as presence for a given probability cut-off value).  In applying 

the model to predict current and future patterns with presence and absence points, the ROC 

was calculated using the presence and absence points as the specified background points. 

Table 1. Environmental variables used in MaxEnt models. 
Variable 
Code 

Variable Type Units Data 
Source 

Mean Min Max 

tmin2 February average minimum 
temperature 

Degrees C*10  WorldClim -122.5 -185 -60 

tmin3 March average minimum temperature Degrees C*10 WorldClim -65.5 -120 -11 

tmin4 April average minimum temperature Degrees C*10 WorldClim 1 -38 40 

prec2 February average precipitation Millimeters WorldClim 37.8 15 77 

prec3 March average precipitation Millimeters WorldClim 44.9 25 65 

prec4 April average precipitation Millimeters WorldClim 61.9 37 105 

dem Elevation Meters USGS 300.1 106 676 

lc Land-cover  USGS - - - 
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Table 2. Definitions and areas of land-cover categories. 
Land Cover Category Definition Area (km

2
) 

21 Developed, Open Space   31,584 

22 Developed, Low Intensity 52,900 

23 Developed, Medium Intensity 7509 

24 Developed, High Intensity 4809 

31 Barren Land 1913 

41 Deciduous Forest 180,254 

42 Evergreen Forest 155,662 

43 Mixed Forest 132,238 

51 Shrub 6558 

71 Grassland/Herbaceous 22,625 

81 Pasture/Hay 106,954 

82 Cultivated Crops 159,209 

90 Woody Wetlands 68,634 

91 Palustrine Forested Wetland 20,430 

95 Emergent Herbaceous Wetland 13,002 
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Results 

Environmental factors related to species occurrence 

The environmental variable with the most useful information and with the highest gain in 

explaining the pattern of P. leucopus when used in isolation was minimum temperature of April 

(Table 2).  Therefore, the minimum temperature of April contributed the most to the model; this 

percent contribution is calculated as the model is being generated and shows which variables 

were used most or contributed most to the model.  Another way to assess the importance of 

the variables is to look at how well each variable fits the training data.  When used in isolation, 

April minimum temperature fits very well to the training data and can predict much (over 50%) 

of the distribution of P. leucopus without the use of any other variable (Figure 1).  Precipitation 

in February reduced the gain the most when omitted (Figure 1), meaning that this variable 

contained some information not present in the other variables.  However, it did not reduce the 

gain considerably, so this variable is probably not very important in predicting P. leucopus 

distribution.  When variables are highly related, the percent contribution and jackknife 

procedures may give very different results.  When one variable is left out of the model in the 

jackknife test, if there is second variable that contains similar information, the gain of the model 

may not be reduced considerably.  Therefore, the particular variable may not stand out in the 

jackknife test.   However, the variable may still show up as important in the percent contribution 

analysis.  In this analysis, none of the variables were highly correlated, and the percent 

contribution and jackknife procedures gave similar results.     

 

Table 3. Estimate of relative contributions of the environmental variables to the MaxEnt model 
for current distribution, showing that minimum temperature of April contributed the most. 

Variable tmin4 prec4 prec2 tmin2 lc prec3 dem tmin3 

Percent 
Contribution 

34 30.9 10 9 6.1 5.5 3.1 1 
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Figure 1. Jackknife test for current prediction showing that minimum temperature of April had 
the highest gain when used by itself and precipitation in February reduced the gain the most 
when omitted. 
 

The relationship between each of the environmental variables and the probability of presence of 

Peromyscus leucopus is outlined in the response curves (Figure 2).  Minimum temperature for 

February and March had fairly little effect on the model (Table 3), and therefore, their 

apparently opposite effect on the probability of presence of P. leucopus (Figure 2) is probably 

not particularly biologically meaningful.  However, April minimum temperature did have a 

substantial effect on the model (Table 3) and as this variable increases, the probability of P. 

leucopus occurring in that area also increases (Figure 2).  The minimum temperature response 

curves all show a drastic decline in probability at the lowest levels of temperature to a minimum 

probability, occurring at -140 in February, -90 in March, and -20 in April (Figure 2).  However, 

this is probably due to a small number of locations with these low temperature values.  The 

majority of locations experience higher temperature values and the mean minimum 

temperature for each month (Table 1) is above the point of rapid decline.  Therefore, most 

localities are probably associated with the remainder of the response curve above this minimum 

value. 

April precipitation has the second largest effect on the model (after April minimum 

temperature), and has a more linear positive relationship with the probability of presence of P. 

leucopus.  As April precipitation increases, the probability of presence of White-footed mice also 

increases.  This positive relationship is particularly strong at the lower values of April 
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precipitation, and can be seen more clearly in the marginal response curve (Appendix C).  

February and March precipitation do not strongly affect the model, and therefore, their 

relationships with probability are probably not as biologically meaningful.   

Since land cover is categorical, it does not portray a clear linear relationship with probability of 

presence of P. leucopus. The highest probabilities are associated with the developed, forested, 

cultivated crop, herbaceous/grassland, shrub, and forested wetland land cover categories.  

White-footed mice typically occur in forested areas (Lackey et al. 1985, Myers et al. 2009), and 

therefore the high probability around the forested and forested wetland land cover categories is 

consistent with the ecology of the species.  Most of the elevation in the area is around 100m 

(Table 2), and up to around 200m, as the elevation increases, the probability of presence of 

White-footed mice decreases (Figure 2).  After about 200m, the probability of presence is more 

erratic and probably associated with few localities. 

 

 
Figure 2. The relationship between individual environmental variables and the probability of 
presence of P. leucopus. 
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Biogeographic patterns in Michigan 

When using all of the points to train the model and Michigan as the study area, the MaxEnt 

results showed that the model predicts all the Lower Peninsula to be suitable areas for P. 

leucopus (Figure 3).  Much of the southern parts of Michigan’s Upper Peninsula are also suitable 

for P. leucopus.  However, P. leucopus is not predicted to occur in the northern tips of the Upper 

Peninsula; this is consistent with Dr. Philip Myers’ field work and the hypothesized ecology and 

habitat requirements of White-footed mice.    

 
Figure 3. MaxEnt output for current distribution of P. leucopus within Michigan using all 
presence points and current data to train model; warmer colors show higher probability of 
occurrence and habitat suitability.  White squares represent presence localities. 
 
Evaluation of models 
 
The area under the receiver operating characteristic curve for all of the training data was 0.699 

(Figure 4).  This shows that the model is fairly accurate with a high probability of correctly 

predicting presence points within sample.   
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Figure 4. Receiver operating characteristic curve showing the fraction of true positives against 
the fraction of false positives. 
 

When using the bootstrap validation process (Phillips et al. 2006), where 75% of the points were 

used to train the model and 25% to test the model, and the minimum training presence 

threshold, the mean test omission was 0.00356 +/- 0.006899, meaning there was a 0.3% 

omission error.  Minimum training presence threshold is set equal to the minimum probability 

score under any of the training points and represents the minimum suitable environmental 

conditions for P. leucopus (Liu et al. 2005). 

 
Projections North of Michigan 

Consistent with current field work, when the model was trained using current data layers, 

MaxEnt predicts that areas north of Michigan are unsuitable habitat for White-footed mice 

(Figure 5).  Using climate layers predicted for 2050 using the CCCMA model, the areas north of 

Michigan are predicted to be much more suitable for P. leucopus (Figure 6).  Temperatures and 

precipitation levels in areas north and west of Michigan are predicted to be outside their current 

range and will impact habitat suitability for P. leucopus (Figure 6), with much of the area 

predicted to become highly suitable for the species (Figure 6).  In 2080, the model predicts all of 
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the area north of Michigan will become habitable for White-footed mice, with no areas showing 

a probability of occurrence less than around 0.5 (Figure 7).     

 

 
Figure 5. MaxEnt output for current distribution of P. leucopus using all presence points and 
current data to train model, showing predictions north of Michigan.  Legend is the same as 
Figure 3.  Red dotted line outlines the predicted current northern limit of the species in 
Michigan. 
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Figure 6. MaxEnt output for predicted distribution of P. leucopus in 2050 using the CCCMA 
model.  Legend is the same as Figure 3.   
 

 
Figure 7. MaxEnt output for predicted distribution of P. leucopus in 2080 using the CCCMA 
model.  Legend is the same as Figure 3. 
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Discussion 

MaxEnt output showed that climate, particularly the conditions towards the end of winter, is 

critical in predicting the spatial distribution of P. leucopus.  The minimum temperature of April 

was the most important variable in predicting current White-footed mice distribution and 

produced the highest gain in prediction in the model when used alone.  Also, the response curve 

showed that as the minimum temperature in April increased above zero, so did the probability 

of P. leucopus.  This makes biological sense, since as the temperatures warm at the end of 

winter, White-footed mice are better able to survive.  Therefore, minimum temperature 

towards the end of winter is probably very useful in predicting P. leucopus occurrence.  Without 

any other information, this variable will still produce fairly accurate results.  Amounts of 

precipitation in April was the second most important variable, showing that climatic conditions 

at the end of the winter season are useful in predicting White-footed mice distribution, and 

further suggesting that the end of winter climate conditions are critical in determining P. 

leucopus survival.  

 Precipitation in February reduced the gain of the model most, meaning that when this variable 

was removed, the model performed less accurately than when any other variable was removed.  

This suggests that February precipitation holds some information not present in any other 

variable, which is important in predicting the distribution of P. leucopus.  The relationship 

between February precipitation and the probability of P. leucopus occurrence is not linear 

(Figure 2).  When February precipitation is fairly low, P. leucopus probability of occurrence was 

fairly high, and then decreases as precipitation levels increase.  However, at fairly high levels of 

February precipitation, the probability of occurrence increases drastically and then drops again 

(Figure 2).  February precipitation consists mostly of snow and might be important as an 

insulator for P. leucopus during this cold part of the year when precipitation levels are fairly low.  

During this period the species forages under the snowcover, insulated from extreme 

temperatures and many predators (Lackey et al. 1985).  As the precipitation levels increase and 

snow begins to accumulate, it may become more difficult for White-footed mice to survive.  

However, these high levels of February precipitation are not common in the study area (Table 

1).   

Various recent empirical studies examined the relationship between White-footed mice and 

climate.  For instance, shifts in climate are thought to be the drivers behind recent changes in 
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the abundance and range of P. leucopus in Wisconsin (Long 1996), Minnesota (Deitloff et al. 

2010), and Michigan (Myers et al. 2009b).  The range of White-footed mice expanded northward 

in Wisconsin during the 1970’s (Long 1996).  While P. leucopus displays biennial population 

density cycles in Minnesota, it has shown an overall increase in population size since 1978 

(Deitloff et al. 2010).  Since 1980 in Michigan, warming temperatures are thought to have been 

responsible for P. leucopus extending its range over 200 kilometers northwards, and moving 

from occurring almost solely in the southern Lower Peninsula into the more northern Upper 

Peninsula (Myers et al. 2009b).  Before around 1980, White-footed mice were only found in the 

southern most parts of the Upper Peninsula in Menominee County (Myers et al. 2009b).  By the 

early 1990s, field notes and specimens from the University of Michigan Museum of Zoology 

recorded trappings of P. leucopus 70km northeast of Menominee localities (S. Meagher in Myers 

et al. 2009b).  Trapping records document a small population of P. leucopus northeast of 

Menominee County, near Seney National Wildlife Refuge in 1999 and populations continue to 

move eastward over the next few years (Myers et al. 2009b).  By 2006, White-footed mice were 

the most commonly found small mammal in some eastern Upper Peninsula locations, with some 

populations found in central and westward Upper Peninsula (Myers et al. 2009b).  Similar 

patterns in abundance of P. leucopus have also been observed in northern parts of Lower 

Peninsula where densities have increased greatly since 1981 (Myers et al. 2009b).  This 

expansion in range and increase in abundance of the White-footed mice coincided with an 

increase in temperatures, most significantly an increase in average minimum temperature.  

Because the rise in minimum was most pronounced in winter months (Myers et al. 2009b), this 

is suggestive that warmer winter temperatures and possibly shorter winters are important 

environmental determinants for White-footed mice.  

When considering projected climate change, the model predicts that future climate conditions 

in the Upper Peninsula and in Canada will be more suitable for P. leucopus than at present.  

Currently, the model indicates that areas to the north of Michigan’s Lower Peninsula are mostly 

unsuitable for White-footed mice, with the probability of occurrence ranging from 0 to around 

0.4 (Figure 5).  However, utilizing the future climate layers from the CCCMA model, our analysis 

predicts that the areas north of Michigan will become much more favorable for P. leucopus by 

2050 and 2080 with probabilities of occurrence ranging from typical habitat (0.5-0.65) to highly 

suitable habitat (0.65-0.9) (Figures 6 and 7).   
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The northward expansion of White-footed mice is likely to have important ecological 

implications for these newly colonized regions.  P. leucopus is the critical reservoir species for 

Lyme disease, a pathogen that infects of broad range of vertebrate hosts including humans 

(Ostfeld 2009).  Currently, Lyme disease is prevalent and is rapidly expanding in parts of the 

eastern United States, posing a significant public health threat (Diuk-Wasser et al. 2010).  While 

the epidemiological dynamics of this pathogen are likely to be dependent on a variety of other, 

not yet well understood, ecological processes, the northward expansion of White-footed mice 

portents of a likely expansion of the disease into regions where it used to be absent. 

In addition to these epidemiological implications, the predicted northward range expansion of 

White-footed mice could have ecological effects in forests.  White-footed mice are important 

prey items, and changes in their occurrence have likely implications on the abundance of diverse 

mammals and bird predator species such as raccoons, foxes, and raptors (Fanson 2010; Myers et 

al. 2009a).  In addition, through competition, P. leucopus can impact the population dynamics of 

other small mammals such as deer mice (Peromyscus maniculatus).  While P. leucopus is slightly 

larger than P. maniculatus, the two species overlap in many areas of the northeastern United 

States (Wolff 1996) and likely compete in some areas of habitat overlap (Deitloff et al. 2010; 

Wolff 1996).  P. maniculatus is typically a more northern species; it has more adaptations for 

winter survival and is a stronger competitor in colder climates than P. leucopus (Pierce and Vogt 

1993; Wolff 1996).  In years with low mast production and especially harsh winters, P. leucopus 

populations decline more drastically than P. maniculatus populations (Wolff 1996), further 

demonstrating the importance of winter conditions in affecting P. leucopus occurrence.  P. 

leucopus is impacted more by fluctuating environmental conditions such as food availability and 

climate than P. maniculatus (Wolff 1996); therefore, predicted future climate changes may 

drastically increase the availability of suitable habitat for the species and give them an 

advantage over Peromyscus maniculatus. 

All of the factors mentioned above, including competition, predations and parasitism have the 

potential to further influence the distribution and occurrence of P. leucopus beyond climatic 

conditions per se.  These factors are notoriously difficult to predict and have not been taken into 

account in this study.  Thus the MaxEnt model cannot such biological processes into account, 

and only predicts the differences in climate and the probability of habitat suitability for P. 

leucopus. 
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Despite the limitations of modeling, this study shows that climate conditions, particularly 

temperature and precipitation towards the end of winter, are extremely important in predicting 

current Peromyscus leucopus distribution.  With the current climate changing across the world, 

modeling studies are likely to play an important role in complementing field studies and making 

large-scale predictions about current distributions and future range shifts.  With models such as 

those from MaxEnt, we can identify the suitability of habitats and then make predictions needed 

to foreshadow the movement of ecologically and epidemiologically important species, such as 

Peromyscus leucopus.  This model predicts that as soon as by the year 2050 climate change will 

allow large regions of northern Michigan and Canada to be invaded by White-footed mice as the 

species moves northward, they are likely to affect both forest dynamics as well as the 

prevalence of emerging infectious diseases. 
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Appendix A 

 

Manipulations on Environmental Layers 

Land cover and DEM layers were downloaded as multiple files from USGS (seamless.usgs.gov).  

Within ArcMap, each file was re-projected into WGS1984 using the Project Raster function 

under Projections and Transformations in Data Management Tools.  Once each file had been re-

projected, they were combined into one file using the Mosaic to New Raster function, under 

Data Management Tools.  The last step required re-sizing the files to fit the study area 

(Michigan) and re-sampling the files to a cell size of 1 kilometer to match the files with the 

largest resolution, the climate layers.  These last steps were performed by evaluating the files 

using a file with the desired cell size and extent within Raster Calculator in Spatial Analyst Tools. 

Landcover and DEM files for Ontario, Canada were also re-projected into WGS1984 and cut 

down to fit the study area using Raster Calculator.  The US landcover and DEM were 

subsequently combined with the Ontario data using the Mosaic to New Raster function. 

 

 

Appendix B 

 

Manipulations of files for use in MaxEnt 

Each of the input variables had to be converted into the file types required by MaxEnt (comma 

delimited file for distribution points and ASCII grids for environmental layers).  The attribute 

table of the points file was exported as a dBASE table and converted to a comma delimited (.csv) 

file.  The environmental layers were converted to ASCII grids (.asc) within ArcMap using the 

Raster to ASCII function under Conversion Tools.  Prior to converting the landcover file to an 

ASCII grid, land type values 11 (open water) and 127 (non-classified areas) were reclassified as 

NoData to remove any areas that are not potential P. leucopus habitat using the Set Null 

function in ArcMap.  This step prevents these areas from unnecessarily interfering with the 

training of the model in MaxEnt. 

The table containing the information from each of the environmental layers was created using 

the Sample Function under the Spatial Analyst Tools within ArcMap.  The distribution file and 

the environmental layers were saved as a dBASE table using the Sample function and then 

converted to a .csv file to be used in MaxEnt to represent the environmental data.  
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Appendix C 

 

Marginal Response Curves 

The following set of response curves illustrates the relationship between each of the 

environmental variables at the probability of presence of Peromyscus leucopus while the values 

of all other variables are held constant at their mean value. 

 


