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Meta-Analysis of Genetic Association Studies and Adjustment
for Multiple Testing of Correlated SNPs and Traits
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Meta-analysis has become a key component of well-designed genetic association studies due to the boost in statistical power
achieved by combining results across multiple samples of individuals and the need to validate observed associations in
independent studies. Meta-analyses of genetic association studies based on multiple SNPs and traits are subject to the same
multiple testing issues as single-sample studies, but it is often difficult to adjust accurately for the multiple tests. Procedures
such as Bonferroni may control the type-I error rate but will generally provide an overly harsh correction if SNPs or traits
are correlated. Depending on study design, availability of individual-level data, and computational requirements,
permutation testing may not be feasible in a meta-analysis framework. In this article, we present methods for adjusting for
multiple correlated tests under several study designs commonly employed in meta-analyses of genetic association tests. Our
methods are applicable to both prospective meta-analyses in which several samples of individuals are analyzed with the
intent to combine results, and retrospective meta-analyses, in which results from published studies are combined, including
situations in which (1) individual-level data are unavailable, and (2) different sets of SNPs are genotyped in different
studies due to random missingness or two-stage design. We show through simulation that our methods accurately control
the rate of type I error and achieve improved power over multiple testing adjustments that do not account for correlation
between SNPs or traits. Genet. Epidemiol. 34:739–746, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

The large sample sizes necessary to detect subtle genetic
effects are often attainable only through the combination
of samples of individuals across multiple studies. When
significant genetic associations are detected, replication in
additional studies is essential to validate initial results. For
these reasons, meta-analysis is now standard in both
candidate gene and genome-wide association studies
(GWAS). This presents a unique multiple testing problem,
since standard approaches to multiple testing correction
that require access to individual-level data may not be
useable in this case. For GWAS, the common approach of
defining significance based on a pre-set genome-wide
cutoff such as Po5� 10�8 can be easily applied to meta-
analyses as well. However, candidate gene studies have
study-specific multiple testing burdens requiring signifi-
cance thresholds to be customized based on the number of
tests and degree of correlation between the tests. In many
candidate gene meta-analyses, computation of the appro-
priate significance level will be complicated by the
unavailability of individual-level data.

Since the first meta-analysis was published by Pearson
[1904], most meta-analyses have been retrospective studies
carried out by combining summary statistics from previously

published studies. The lack of access to individual-level
data for these studies necessitated the development of
meta-analysis techniques to appropriately combine
summary statistics, including the popular Mantel and
Haenszel [1959] test for combining 2� 2 tables and the
inverse-variance weighting approach of Woolf [1955].

In contrast, meta-analyses in the current genetic associa-
tion literature often employ a prospective study design in
which the data are analyzed with the intent to combine
results across studies; these prospective meta-analyses
often take place as collaborations between multiple centers.
When individual data can be combined for analysis, a
meta-analysis can be performed in a regression context by
including fixed or random effects to control for genetic
and/or phenotypic differences between centers. However,
due to limitations on data sharing, it is not always possible
to combine individual-level data in a single analysis. Thus,
in many cases, prospective consortia-based meta-analyses
will face the same issues as retrospective meta-analyses,
and will be forced to rely on meta-analysis techniques to
combine summary statistics such as counts, test statistics,
or P-values across studies. Although no efficiency is lost
when meta-analyses are performed using summary statis-
tics rather than individual-level data [Lin and Zeng, 2009],
lack of access to individual-level data may limit the
available options for multiple-testing adjustment.
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Several methods of meta-analysis are commonly used in
genetic association studies. In case-control studies or other
studies involving binary (dichotomous) outcome vari-
ables, SNPs are often tested for association via the
Cochran-Armitage test for trend [Cochran, 1954; Armitage,
1955]. To combine the results of several trend-test-based
studies, a natural approach is the Cochran-Mantel-Haenszel
test [Mantel, 1963], which extends the Mantel and Haenszel
[1959] test for combining 2� 2 tables to a trend test setting.
For studies involving quantitative traits or more compli-
cated statistical models, more general approaches for
combining results such as the inverse-variance approach
[Woolf, 1955] or sample size weighting can be used. These
methods can be applied to tests with quantitative or binary
response variables, and dose variables that are continuous
rather than integer-valued, and are especially useful in
genetic studies involving quantitative traits, environmental
and demographic covariates, and continuous dose variables
such as probabilistic imputed genotype scores [Li et al.,
2009].

Although the methods typically used to combine data
across genetic association studies are well-established, only
recently have these methods been applied to the multitude
of SNPs and traits tested in genetic association studies, so
adjustment of meta test statistics for multiple testing has not
been addressed. Bonferroni-type methods that do not
account for correlation between tests usually will be
conservative, given the degree of correlation between dense
SNPs and between related traits. Permutation tests are
generally not possible in retrospective meta-analyses, and
also may not be possible in prospective meta-analyses if
individual-level data cannot be shared across studies.

We previously described PACT, a multiple-testing adjust-
ment that accounts for the correlation between tests
and provides a faster alternative to permutation testing
[Conneely and Boehnke, 2007]. PACT (P-value adjusted for
correlated tests) can be used to adjust the most significant
P-values or test statistics from tests of K traits for association
with M genetic variants. We showed that in a generalized
linear model framework, the K�M test statistics often
follow an asymptotic multivariate normal distribution
N(0,R), where R is the correlation matrix corresponding to
the covariance matrix V, the Kronecker product of the
sample covariance matrices of traits and genotypes, condi-
tioned on covariates. Here, we show that this result readily
extends to a general class of meta-analyses that includes all
those described above. We describe how PACT can be applied
to meta-analyses with the prospective or retrospective
designs discussed above, as well as to meta-analyses in
which SNPs are not all genotyped in all studies.

Data can be missing on many levels in genetic studies.
Within a single study, individuals may be missing data for
certain traits or SNP genotypes. In meta-analyses involving
multiple studies, certain SNPs or traits may not be available
in all studies due to decisions made prior to data analysis. For
example, SNPs may be genotyped in some studies but not
others due to platform differences, assay failure, poor
performance on quality control measures, or constrained
resources. When missingness occurs independently of
association results in other studies, it is straightforward to
deal with in the context of computing meta-statistics and
adjusting them for multiple testing with PACT.

In contrast, when the association results observed in an
initial study determine which SNP or trait data are
analyzed in subsequent studies, a different approach is

needed. In two-stage analyses, many tests may be
performed on an initial sample of individuals, but only
SNPs or traits passing a pre-set significance criterion in
stage one are followed up in stage two. Skol et al. [2006,
2007] present a sample-size weighted meta test statistic
that accounts for the conditional selection of SNPs for
inclusion in stage two. Multiple testing adjustment of two-
stage analyses cannot be performed with standard
permutation tests, although alternative methods have been
proposed [Lin, 2006; Dudbridge, 2006]. We show here how
PACT can be used in two-stage studies to adjust for
multiple testing while accounting for the correlation
between tests.

Finally, we present simulations to assess the validity and
power of our approach in the situations described above.
Our simulations suggest that our method provides a valid
adjustment for correlated meta-analysis statistics with
Cochran-Mantel-Haenszel, inverse variance, and sample-
size-weighted meta-statistics, with binary or quantitative
traits, with prospective or retrospective design, and with
SNPs missing for an entire sample of individuals either at
random or through threshold-based selection of follow-up
SNPs in two-stage analyses.

MATERIALS AND METHODS

META-ANALYSIS TECHNIQUES

The Cochran-Armitage trend test [Cochran, 1954;
Armitage, 1955], a special case of the score test from a
logistic regression, can be used to test for a linear
relationship between an ordered ‘‘dose’’ variable (for
example, a dose of a treatment) and the log odds of being
a case vs. a control. This test is commonly used in genetic
association studies to model additive genetic effects by
defining ‘‘dose’’ as a genotype score defined as the
number of copies of a reference allele (0, 1, or 2); this is
the genotypic trend test suggested by Sasieni [1997].
Results from the Cochran-Armitage test can be combined
across multiple studies via the generalized Cochran-
Mantel-Haenszel test [Mantel, 1963]. If we assume that in
J independent samples of cases and controls, individuals
vary according to their doses of a treatment such that dose
d ranges from 0; 1; 2; . . . ;D, then the counts of cases and
controls receiving each dose within study j can be
expressed as in Table I.

The generalized Cochran-Mantel-Haenszel statistic,
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where counts are defined as in Table I, has an asymptotic w2
1

distribution under the null hypothesis of no association. Note
that this statistic is equivalent to the original Cochran-
Armitage test statistic when J 5 1, to the genotypic trend test
when J 5 1 and D 5 2, and to a traditional Mantel-Haenszel
test when J41 and D 5 1. To combine the results of several
genetic association studies, we are typically interested in the
case where J41 and D 5 2.
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Although the genotypic trend test is often used in case-
control genetic association studies, it is not suitable for
many studies. Studies that include quantitative outcome
variables, continuous genotype scores (e.g. probabilistic
scores for imputed SNP genotypes), additional covariates,
or different statistical models cannot be summarized with
simple genotype counts. In these situations, meta-analysis
techniques that rely on basic summary statistics such as
test statistics and their associated variance estimates may
be useful. The inverse-variance approach [Woolf, 1955]
uses a test statistic formed by taking the sum of point
estimates (e.g. regression coefficients or odds ratios)
divided by their estimated variance. Alternatively, nor-
mally distributed test statistics from different studies can
be combined as a sample-size-weighted sum, where the
weights are the square root of the ratio of each sample size
to the total.

MULTIPLE TESTING ADJUSTMENT OF META-
ANALYSES

For subject i, define Yi as a vector of K traits, Gi as a
vector of genotype scores for M SNP markers, and Xi as a
vector of other covariates. If we test the K traits for
association with the M SNPs in a sample of N individuals
via linear regression, logistic regression, or a Cochran-
Armitage test for trend, the KM-length vector of score
statistics is U ¼

PN
i¼1 ðYi � ~YiÞ �Gi, where ~Yi is a vector of

predicted trait values based on Xi alone and � represents
the Kronecker product between two matrices. If we
standardize the score statistics by dividing by the square
root of their variance V, the vector of standardized score
statistics has an asymptotic multivariate normal distribu-
tion under the null hypothesis. For L 5 KM tests,
ðU1=

ffiffiffiffiffiffi
V1

p
Þ; . . . ; ðUL=

ffiffiffiffiffiffi
VL

p� �
� Nð0;RÞ, where R can be esti-

mated as the correlation matrix corresponding to the
Kronecker product of the sample covariance of traits
and the sample covariance of genotype score conditioned
on covariates: Cov(Y)�[GGT

�GXT(XXT)�1XGT] [Conneely
and Boehnke, 2007]. It is then possible to adjust for the L
tests through integration of the multivariate normal
distribution, as discussed below.

We can apply this result to groups of standard normal
(N(0,1)) meta-analysis test statistics as well. Any meta-
analysis test statistic that is a weighted sum of J standard
normal statistics will itself follow a standard normal
asymptotic distribution:

T ¼
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As shown in Table II, the commonly used meta-analysis
test statistics discussed above can be rewritten in this form.

A vector of L meta-analysis test statistics taking the form
in (1) is a vector-weighted sum of J multivariate normal
vectors of single-study test statistics:
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Under the null hypothesis of no association, T will be
distributed multivariate normally with mean vector zero and
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where R
ðjÞ
kl represents element k, l of the correlation matrix

between tests for study j, RðjÞ. If L is small relative to sample
size, the empirical correlation matrix for study j will provide
a good approximation to RðjÞ, but the quality of this
approximation is decreased as L increases relative to sample
size. Due to the high dimensionality of the covariance
matrices to be estimated and variation in sample size
between studies, we will estimate all correlation matrices
using the shrinkage estimators of Schäfer and Strimmer
[2005] as implemented in the R package corpcor.

For a given realization of T 5 [T1,T2,y,TL], we can
compute a P-value for the most extreme test statistic
Tmax ¼ max

1�j�L
jTjj as PACT 5 1�P(�TmaxoW1,W2,y,WLoTmax),

where W1, W2,y,WL are random variates from a multi-
variate normal distribution with covariance defined as in
equation (2) [Conneely and Boehnke, 2007]. PACT

(P-value adjusted for correlated tests) can be computed
as a multivariate normal integral. As we have previously
[Conneely and Boehnke, 2007], we will use the computa-
tionally efficient method of numerical integration devel-
oped by Genz [1992] as implemented in the mvtnorm
package [Genz et al., 2007] for R [R Development Core
Team, 2008]. The mvtnorm package can perform numerical
integration for Lr1,000, although we have previously
recommended computing PACT for 500 or fewer tests to
avoid imprecise estimates of the correlation matrix R
[Conneely and Boehnke, 2007]. This will not be a major
limitation in the context of most large-scale candidate gene
association studies. For roughly independent genes, a
gene-specific PACT can be computed separately for each
gene based on the correlation matrix for SNPs within
that gene and the most extreme test statistic experiment-wide
(Tmax). PACT can then be adjusted for the number of genes
tested via a Bonferroni-like correction that is analogous to

the method of Šidák [1967]: PACT ¼ 1�
QG

g¼1 ð1� PgÞ,

TABLE I. Counts of cases and controls in study j
receiving possible doses of a treatment

No. individuals receiving dose d

0 1 2 y D Total

] cases r0j r1i r2j rDj Rj

] controls s0j s1j s2j sDj Sj

Total n0j n1j n2j nDj Nj

TABLE II. Some common meta-analysis test statistics
that can be written as in Equation (1)
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where G is the number of genes tested and Pg is the gene-
specific estimate of PACT for gene g.

TREATMENT OF MISSING DATA

Estimation of the covariance matrix in (2) is straightfor-
ward when all genotypes and traits are observed for all
individuals. To estimate PACT in the presence of missing data
at the individual level, we have previously suggested that
each association test be performed using all available
observations, but setting missing genotypes or phenotypes
to their mean values for purposes of covariance estimation
[Conneely and Boehnke, 2007]; this ensures that the
covariance matrix is positive definite and is equivalent to
setting to zero the individual component of the score statistic
for missing observations. In the context of genetic association
studies, this choice requires estimating the variance on the
full data set where missing values for trait k have been set to
the mean value for trait k and missing values for marker m
have been set to the mean genotype score for marker m.

A similar approach can be applied in a meta-analysis
framework when the complete set of traits or markers is not
necessarily available in every study. If the availability of traits
or markers in certain studies is independent of results in
other studies (e.g. if genotypes for a particular marker are
missing in certain studies due to assay failure or limited
funding), unavailable traits or markers can simply be treated
as missing data. If test l is not performed in study j, then the
meta test statistics and variance can be computed with Zij and
wij set to zero for all individuals in sample j, since this test is
missing-at-random for these individuals. This allows compu-
tation of the meta test statistics and covariance estimates
based only on studies with data for the relevant traits and
markers while ensuring a positive-definite covariance matrix.

TWO-STAGE DESIGN

A different approach is required if availability of
markers and/or traits in one study is dependent on test
statistics from another study, since in this situation the
missingness of genotype and/or trait data is not random.
The two-stage design, another type of meta-analysis
commonly employed in genetic association studies, in-
volves the genotyping of many markers in an initial study,
followed by the genotyping of only a subset of markers
whose test statistics exceed a pre-determined cutoff in an
additional study. For Z-statistics with N(0,1) distributions
under the null hypothesis of no association, Skol et al.
[2006, 2007] showed that if test statistic z1 is observed in an
initial study and only SNPs for which |z1|4T1 are tested
in a replication study, the conditional probability of the

weighted meta-statistic zjoint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1=NÞ

p
z11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2=NÞ

p
z2

reaching significance, Pjoint ¼ Pðjzjointj4Tjointjjz1j4T1Þ,
can be obtained through integration of the conditional
normal cumulative distribution function. The overall
P-value for the joint analysis is then P1Pjoint, where P1 ¼

Pð z1j j4T1Þ and P1 and Pjoint are both computed under the
null hypothesis of no association.

For a two-stage meta-analysis involving L correlated
tests, PACT can be used conditionally to adjust for the
correlation between tests while taking the conditional
selection of tests into account. The appropriate adjusted
P-value for the best observed meta-statistic is the joint
probability that under the null hypothesis, at least one of
the L tests would (1) pass the predetermined cutoff T1 in

the initial study and (2) equal or exceed the best observed
meta-statistic Tjoint:

PACT�2s¼Pðjzl;1j4T1; jzl;jointj4Tjoint for some l2f1; 2; . . . ; LgÞ

ð3Þ

Defining the L initial test statistics as z1,1,z2,1,y,zL,1 and
the L joint test statistics (of which some or all will be
unobserved) as z1,joint,z2,joint,y,zL,joint, the set of 2L initial
and joint statistics has a multivariate normal distribution
with covariance matrix
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where RðjÞ and wj are the sample correlation matrices and
weights for study j as defined above. PACT�2s (Equation
(3)) can then be computed as a piecewise sum of multi-
variate normal probabilities or a much less computation-
ally intensive approximation that yields near-identical
results (see Appendix A for details).

SIMULATIONS

To assess the validity and power of our method of adjusting
meta-statistics for multiple testing, we simulated candidate
gene association tests in an initial study and five replication
studies. In each simulation, we randomly drew individual
genotypes for 59 SNPs covering a 1-Mb region that included
the lactase gene (LCT). To simulate variation between studies,
we drew the individual genotypes from six different
collections of subjects from The Population Reference Sample
(POPRES) [Nelson et al., 2008]; this allowed the correlation
between SNPs, and hence between SNP association tests, to
vary between studies as it would in a meta-analysis of studies
from highly diverse populations. The POPRES data were
obtained from dbGaP at http://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000145.v2.p2
through dbGaP accession number phs000145.v2.p2.
Table III shows some characteristics of the six simulated
studies and the respective POPRES subject collections
from which they were drawn.

For each simulated individual, we simulated four
correlated traits (two binary and two quantitative) with
frequencies and means varying between studies. To obtain

TABLE III. POPRES study collections used in
simulations

POPRES study
collection

No. genotyped
QC1 subjects

available

No. sampled
in each

simulation
HapMap

counterpart

CoLaus (Switzerland) 2,507 300 CEU
UCSF African

American
346 300 ASW

Japanese 73 60 JPT
Mexican 112 100 MEX
LOLIPOP: Indian

Asians
359 325 GIH

LOLIPOP: European
Caucasians

481 325 CEU
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correlated traits, we first simulated four continuous traits

such that for individual i in study j, trait k ¼ YðkÞij ¼ ZðkÞij 1

mj1bðkÞðGðmÞij �
�GðmÞij Þ, where Z(1),y, Z(4) are random variates

from the multivariate normal distribution, bðkÞ is a constant

effect size that is 0 except in power calculations, and GðmÞij is

the number of copies of the risk allele of SNP m possessed

by individual i, with mean �GðmÞj in study j. We then defined

the quantitative traits as Y(1) and Y(2), and the binary traits
as 1 if Y(k)40 and 0 otherwise for k 5 3,4. Traits were
simulated so that the correlation between each pair of
traits was approximately 0.7.

To assess type I error for each of the above study
designs, we performed 5,000 simulations, where all four
traits were simulated independently of genotype (i.e.,
bðkÞ ¼ 0 for k ¼ 1; . . . ; 4), and we compared the 5,000
multiple-testing-adjusted P-values to the expected sample
quantiles. To assess power, we created 1,000 simulation
replicates where one of the binary traits was influenced by
a single SNP. We estimated power as the proportion of
1,000 simulations in which the adjusted P-value o0.05. We
performed simulations to assess the rates of type I error
and power for three types of meta-analysis, representing a
prospective, retrospective, and two-stage meta-analysis.

Prospective meta-analysis. In each of the six
studies, we tested each of the 59 SNPs for association
with each of the four traits, for a total of 236 unique tests.
Depending on whether each trait was binary or quantita-
tive, we used either a Cochran-Armitage test or linear
regression to test for association between the trait and the
number of copies the minor allele for each SNP (0, 1, or 2).
We combined each of the 236 test statistics across six
studies with one of two meta-analysis approaches. First,
we performed a sample-size weighted meta-analysis
where the Z statistic for each study was either the signed
square root of the w2 statistic from the Cochran-Armitage
test (binary traits), or the t-statistic from a linear regression
of the trait value on the number of allele copies
(quantitative traits). Second, we used a Cochran-Mantel-
Haenszel test to combine tests that involved the binary
traits, and an inverse-variance meta-analysis based on the
linear regression coefficient to combine tests that involved
the continuous traits across the six studies. To adjust for
multiple correlated tests, we computed the 236� 236
correlation matrix for the meta-analysis as the weighted
sum of the within-study correlation matrices as in
Equation (2), using the weights shown in Table II. To
simulate an extreme case of the scenario where the set of
SNPs does not fully overlap across studies, a large number
of SNPs (�20%) were missing in each study for random
reasons; the weights and correlations involving these tests
were set to zero as described above. We then computed
PACT to obtain a multiple-testing-adjusted P value.

Retrospective meta-analysis. We performed the
same meta-analysis as in the preceding paragraph, but
here we assumed that (1) only summary statistics were
available for each test in each study, (2) the correlation
matrix between the traits was available for the initial study
only, and (3) correlation matrices between the SNPs could
not be computed for any study. To estimate the SNP
correlation matrices for each study, we used genotypes
from the closest available Phase 3 HapMap sample for
each POPRES study collection, as shown in the rightmost
column of Table III. For each study, we computed the

overall correlation matrix for the 236 tests as the Kronecker
product of the HapMap correlation matrices and the trait
correlation matrix from the initial study. We computed the
weighted correlation matrix based on equation (2), and
computed PACT based on this correlation matrix.

Two-stage meta-analysis. We assumed a two-stage
design where all 236 SNP-trait combinations were tested in
an initial study (CoLaus, described in first row of
Table III), but only SNP-trait combinations with individual
association test P-values of o0.1 were tested in the five
follow-up studies. In practice, the number of tests passing
the criteria for further testing in each simulation under the
null hypothesis ranged from 0 (in 0.5% of simulations) to
131, with a median of 19 tests followed up. For those tests
selected for follow-up in all studies, we computed meta
test statistics and adjusted the most extreme meta test
statistic for multiple correlated tests and conditional
selection for follow-up with PACT as in equation (3), using
the approximation described in Appendix A.

RESULTS

We performed simulated meta-analyses for a variety of
study designs in which four traits were tested for
association with 59 SNPs in the vicinity of the LCT gene
across six studies.

Adjusted P-values for several simulated meta-analyses
are plotted on a log10 scale against their theoretical
quantiles in Figure 1A–C. Figure 1A and B reflect the
prospective and retrospective study designs described in
Methods in which all four traits were tested for association
with all available SNPs in each study, and results were
combined via either the Cochran-Mantel-Haenszel test (for
binary traits), or the inverse-variance method (for quanti-
tative traits). For each simulation, we adjusted the best
meta P-value in each simulation for multiple testing with
PACT. We carried out the adjustment assuming either that
individual-level data were available and could be used to
compute study-specific correlation matrices (Fig. 1A), or
that only summary-level data were available (Fig. 1B), in
which case we used HapMap correlation matrices as
proxies to estimate study-specific correlation matrices. In
general, values of PACT fall within the 95% confidence
bounds and follow the identity line quite closely for the
entire range of P-values, indicating that the appropriate
type-I error rate is maintained at all levels of significance.

Figure 1C reflects a two-stage meta-analysis, where all tests
with association P-values of o0.10 in the initial study were
tested in the five follow-up studies. As in Figure 1A and B,
results were combined across studies via either the Cochran-
Mantel-Haenszel test or the inverse-variance method. We
computed PACT for each simulation using the approximation
to equation (3) described in Appendix A and plotted the
values against their quantiles on a log10 scale. PACT once again
tracks its quantiles quite closely, indicating that it achieves the
correct type-I error rate for all reasonable a-levels.

A comparison of the power of the methods described
above is presented in Table IV for 1,000 simulated meta-
analyses based on Cochran-Mantel-Haenszel and inverse-
variance test statistics. By accounting for the correlation
between tests, adjustment for multiple testing with PACT

leads to gains in power over Bonferroni adjustment.
Notably, little power is lost when study-specific correlation
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matrices are estimated from the HapMap populations
rather than the individual-level study data.

Although the results in Figure 1A–C and Table IV are all
based on the Cochran-Mantel-Haenszel and inverse-variance
meta-analysis approaches, we obtained very similar results
using a sample-size-weighted approach (results not shown).

To illustrate our method, we applied it to a recently
published meta-analysis. In a two-stage analysis involving

116 candidate genes, Wang et al. [2010] tested 894 tag SNPs
for association with coronary atherosclerosis in the Han
Chinese population. After follow-up of 51 SNPs with P
o0.05 in their stage I study (N 5 586), they found that three
SNPs in ITGA2, PON1, and THBS2 had P-values of o0.05 in
both the stage I study and the stage II study (N 5 1,794).
Since the meta-analysis P-values for the three SNPs
(P 5 9.2� 10�5, 1.9� 10�4, and 3.0� 10�3) exceeded their
chosen Bonferroni significance threshold of 0.05/
894 5 5.6� 10�5 for the 894 SNPs, the evidence for associa-
tion could be classified as merely suggestive rather than
significant. However, the Bonferroni approach does not
take into account the correlation between SNPs within
genes or the two-stage design. To address this issue, we
used genotype data from the CHB (Han Chinese in Beijing)
HapMap sample to estimate correlation matrices for SNPs
in each of the 116 genes using the shrinkage estimators of
Schäfer and Strimmer [2005]. Since CHB genotype data
were available for 726 of the 894 SNPs, we treated the
remaining 168 SNPs as though they were uncorrelated with
all others, which should have made our estimates of
PACT�2s slightly conservative. We computed PACT�2s for
the generalized Cochran-Mantel-Haenszel test as described
in Methods, by first computing an estimate of PACT�2s for
each gene, and then adjusting for the number of genes via
the modified version of the Šidák [1967] procedure shown

A B

C

Fig. 1. �log10 of PACT-adjusted P-values plotted against theoretical quantiles (diagonal line) with 95% confidence intervals (curved lines).

P-values are from 5,000 simulated meta-analyses where 59 SNPs were tested for association with four traits (A) in six studies under a

prospective design where individual-level data were available, or (B) in six studies, under a retrospective design where only summary statistics

were available, or (C) in an initial study, under a two-stage design where only tests with Po0.10 were followed up in five additional studies.

TABLE IV. Estimated power to detect a heterogeneous
genetic association between a SNP and a binary trait,
based on 1,000 simulated meta-analyses of 59 SNPs and
four traits

Multiple testing adjustment

Type of study performed Bonferroni PACT

PACT

based on
HapMap

Full meta-analysis of six studies
All 236 tests performed
in all studies

0.72 0.79 0.78

�20% of SNPs missing
in each study

0.68 0.73 0.72

Two-stage analysis 0.58 0.69 0.68
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in Methods. While adjustment for multiple tests via the
standard Šidák [1967] procedure yielded adjusted P-values
of 0.079, 0.16, and 0.93 for the top three SNPs, our estimate
of PACT-2s was 0.042 for the top SNP (PACT-2s40.05 for the
other two SNPs), so that this SNP, from ITGA2, attained
experiment-wide significance in the two-stage analysis.

DISCUSSION

We have presented a new approach for adjustment of
multiple correlated association tests in meta-analyses that
can be applied to any number of independent studies, and
have made software available at http://csg.sph.umich.edu/
boehnke/p_act.php. In simulations of 236 correlated asso-
ciation tests analyzed across 6 studies, our methods attained
the appropriate type I error rates for a range of study
designs and provided a gain in power over Bonferroni-style
adjustments, which do not account for correlation between
tests. Our approach remains valid and powerful even when
all SNPs are not genotyped in all studies, when only select
SNPs are followed up in additional studies, and when
individual-level data are not available for analysis.

A potential limitation of our analysis is that we restricted
our focus to fixed effects, rather than random effects,
approaches to meta-analysis. This decision was guided by
the fact that even for the largest consortia, the number of
studies combined is generally too small for the between-
study variance to be accurately estimated or for the
assumption of asymptotically normal sample effects to be
realistic. Pfeiffer et al. [2009] recently evaluated the perfor-
mance of both fixed and random effects meta-analysis
approaches in a variety of settings, and observed that the
fixed effects approach performed as well as or better than
the random effects approach in all settings considered.

Since the methods we suggest here are based on estimation
of large covariance matrices and numerical integration of the
multivariate normal distribution, there are practical limitations
on the number of tests that can be included in a single analysis.
The R package mvtnorm [Genz et al., 2007] is capable of
computing multivariate normal integrals of dimension up to
1000; however, we have previously observed that PACT works
best for 500 or fewer tests [Conneely and Boehnke, 2007]. One
issue is that the precision with which we can estimate the
covariance matrix suffers as the number of parameters
overtakes the sample size. To address the precision issues
inherent in estimating covariance matrices of large dimension
based on moderate sample sizes (or small sample sizes when
HapMap samples are used as proxies), we employ the
shrinkage estimators of Schäfer and Strimmer [2005].

Because the number of tests is limited to hundreds, rather
than the hundreds of thousands of tests performed
routinely in GWAS, the methods presented here are best
suited for collaborative candidate gene studies rather than
genome-wide approaches. However, candidate gene studies
may be in a position to benefit the most from new methods
of multiple-testing adjustment. As the density of SNP
coverage in GWAS studies continues to increase due to the
availability of larger arrays and methods for imputing SNPs
not present on the arrays, the common approach of
adopting a genome-wide significance threshold that reflects
all of the potential testable hypotheses may be the best
solution (see, for example, Dudbridge and Gusnanto
[2008]). On the other hand, candidate gene studies
remain targeted efforts with discrete hypotheses that

require study-specific significance thresholds. The methods
we present here can be applied to the full spectrum of
collaborative candidate gene studies, ranging from studies
of a single gene to large-scale studies testing thousands of
genes, and can be applied in situations where permutation
testing may not be feasible, due to lack of individual data or
lack of data on SNPs not selected for follow-up in two-stage
studies.

Due to a wealth of available data and the drive to combine
information as a means of affirming valid results and ruling
out spurious ones, meta-analyses have become increasingly
common in the genetic association literature. Given this
current emphasis and what will likely be a continued focus,
we feel that the development of methods to integrate meta-
analysis techniques into genetic association studies are timely
and have the potential to be useful in a variety of settings.
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APPENDIX A

APPROXIMATION FOR PACT�2s

The probability PACT�2s 5 P(|zl,1|4T1 and |zl,joint|4Tjoint

for at least one lA1,2,y,L) from equation (3) may be computed
as 1 minus the probability that there is no lA1,2,y,L for which
both |zl,1|4T1 and |zl,joint|4Tjoint. This probability can be
computed as a piecewise sum of 3L probabilities. For example,
when L 5 2,

PACT�2s

¼ 1� Pðz1;14T1; jz1;jointj � Tjoint; z2;14T1; jz2;jointj � TjointÞ

� Pðz1;1o� T1; jz1;jointj � Tjoint; z2;14T1; jz2;jointj � TjointÞ

� Pðjz1;1j � T1; z2;14T1; jz2;jointj � TjointÞ

� Pðz1;14T1; jz1;jointj � Tjoint; z2;1o� T1; jz2;jointj � TjointÞ

�Pðz1;1o�T1; jz1;jointj�Tjoint; z2;1o�T1; jz2;jointj�TjointÞ

� Pðjz1;1j � T1; z2;1o� T1; jz2;jointj � TjointÞ

� Pðz1;14T1; jz1;jointj � Tjoint; jz2;1j � T1Þ

� Pðz1;1o� T1; jz1;jointj � Tjoint; jz2;1j � T1Þ

� Pðjz1;1j � T1; jz2;1j � T1Þ

Given that

½z1;1; z2;1; . . . ; zL;1; z1;joint; z2;joint; . . . ; zL;joint�
T

� N 0;

Rð1Þ
w1Rð1ÞffiffiffiffiffiffiffiffiffiffiP

w2
j

q
w1Rð1ÞffiffiffiffiffiffiffiffiffiffiP

w2
j

q P
w2

j
RðjÞP

w2
j

2
666664

3
777775

0
BBBBB@

1
CCCCCA;

each of these probabilities can be computed numerically
based on the multivariate normal distribution. However,
the computation of 3L separate probabilities is feasible only
for small L. Alternatively, if the between-test correlation
matrices can be assumed to be similar across studies such

that

P
w2

j
RðjÞP

w2
j

can be approximated with R(1), a good

approximation to (3) is available.

To perform this approximation, we adjust the minimum P-
value Pmin from the two-stage meta-analysis in two steps. We
first adjust for the two-stage test by computing the probability
P05 P(|z1|4T1, |zjoint|4|Tjoint|) that a single test passes
both the initial cutoff in the first study and attains the
magnitude of the best test statistic observed in the combined
studies, Tjoint. Using the fact that the joint distribution of z1

and zjoint is bivariate normal with correlation w1, P0 can be
easily computed as the sum of four probabilities:

Pðz14T1; zjoint4jTjointjÞ1Pðz14T1; zjointo� jTjointjÞ

1Pðz1o� T1; zjoint4jTjointjÞ

1Pðz1o� T1; zjointo� jTjointjÞ

By computing the probability P0, we have computed a P-value
for the best test statistic that reflects the joint probability that
(1) for a single test, the magnitude of the stage 1 test statistic
exceeds the cutoff T1 and (2) the meta-analysis statistic attains
the magnitude of Tjoint. Thus, P0 has been adjusted for the
additional burden of the stage 1 test statistic having to exceed
T1, but has not yet been adjusted for the multiple tests that
were performed in the first stage. We can adjust for the L tests
in a second step by transforming P0 to a Z-score
Z05F�1(1�P0/2) and adjusting Z0 for the L tests that were
performed by computing PACT assuming L tests with
correlation matrix estimated as in equation (2), where weight
wlj is set to 0 if test l was not performed in study j.

To test the performance of the approximation, we
computed PACT�2s using both the exact method and the
approximation described above for 1,000 simulations
similar to those presented in Results involving L 5 8
correlated tests. As Figure A1 shows, we obtained near-
identical results with the two methods, demonstrating that
the approximation is highly accurate in a situation with
heterogeneous samples of individuals and high correlation
between tests.

Fig. A1. Comparison of PACT�2s estimated for 8 correlated tests

as either a piecewise sum of probabilities or a faster 2-step
approximation.
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