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NECESSARY CONDITIONS FOR
OPTIMIZATION PROBLEMS WITH HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS*

M. B. Suryanarayana

1. INTRODUCTICON
In the present paper we consider a system of nonlinear hyperbolic partial

.differential equations (state equations) of the form

i

az/axéy = fi(x’ Y, Z, ZX’ Zy: V)) (X: y) € G,

] 1 n 1 m

i = 1,...,n, 2(x, ¥y) = (27500052 ), v(x, y) = (V,.e..,v ),

G = [a<x<a+h, b<y<b+kl], (1.1)
with Darboux-type boundary conditions

z(x, b) = P(x), a<x<a+h, z(a,y) = ¥(y), b<y<b+k

(1.2)

with constraints

v(ix, y) € U, (1.3)
and we are concerned with the minimum of a functional of the form

I[z, v] = oA zi(a +h, b + k). (1.4)

’ i=1 "1 ’

*This research was partially supported by research project U. S. AFOSR-69-1662
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Lamberto Cesari for his valuable guidance and constant encouragement during
the writing of this paper.



Hwe@x)=wa”.w%,a5x5a+h,mdwy)=wa“”f5,
b<y<b +k, are given absolutely continuous functions (AC) in the respec-
tive intervals, with §(a) = ¥{b). The control space U above is a given fixed
set of the u-space Em. The constants Ai’ i=1,...n, are given.

The minimum of the functional I[z, v] is sought in suitable classes O of
pairs z(x, y) = (zl,...,zn),v(x, y) = (vl,...,vm), (x, y)e G, satisfying
(1.1), (1.2), (1.3), the functions zi belonging to a Sobolev space W; (G)on
G 1 <p< +x and continuous on G, and the functions vj being measurable
on G. Iﬁ the present paper we give Pontryagin-type necessary condition for

the minimum.

First,inno. 3 we obtain an existence and uniqueness statement for the

solution z(x, y) = (zl,...,zn), (%, v) € G, z € (W; @) )n, of the Darboux
problem (1.1-2) (the original problem) for a given p, 1 < p < + », for given
®, ¥, and for a given measurable function v(x, y) = (vl,...,vm), (x, y) € G.
We derive this existence and uniqueness statement from our previous paper
[6b ] on multidimensional integral equations of the Volterra type.

The ‘optimization problem (1.1-4) can be written in the form proposed by
Cesari [2] with state equations of the Dieudonné-Rashevsky type, the Hamiltonian
function H then containing 2n multipliers%.i, My 5 i=1,,..,n. As sghown in
[2], these 2n multipliers are expected to satisfy a suitable system of lineax
partial differential equations and corresponding boundary conditions (the
conjugate problem).

Inno. 4 we formulate the conjugate problem pertinent to the optimization

problem (1.1-4), and for the first time we prove, in the present situation,



an existence theorem for the solutions Ki’ by of the conjugate problem, 1In
other words, we prove, under hypotheses, that there are multipliers Ki’ Wy s
i=1,..,.,n, in Lw(G), satisfying in a suitable sense the partial differential
equations and boundary conditions pertaining to the conjugate problem of
problem (1.,1-L4), As inno.3, again we derive the existence statement from

our previous paper [6b ] on multidimensional integral equations of the Volterra
type.

In.ﬁo.5we give a new proof of the increment formula of [2], under a set
of hypotheses different from those in [2]. Inno.6we derive as in [2] the
Pontryagin-type necessary condition for the optimization broblem (1.1-4) with
the existence of suitable multipliers actually proved,

In no.7 we make a number of remarks on the obtained results, particularly
in relation to the previous papers by Cesari [2] and A, I, Egorov [3a ]. In
particular, we show that the present necessary condition yields—under strong
smoothness hypotheses—the necessary condition previously proved by A. I.
Egorov [3a]. On the other hand we show (no. 7, example 3) that these smoothness

hypotheses under which Egorov's condition has been proved are not known

a priori, while our necessary condition holds.

2, NOTATIONS
n
If (X, | |I) denotes any normed linear space, then X , n > 1 denotes
. . ; . 1 n n
the cartesian product of X with itself, n times; for x = (x ,...,x ) ¢ X ,

. i : n
we define Hx” = Z?z X ”. If x ¢ E, the n-dimensional Euclidean space, then

Ny
we take ”x” = lxl = Z?=l lxll. We shall denote by I', a rather arbitrary



family of measurable control functions, Precisely, let I' be any set of mea-

1 ]
surable functions; v:G + U, v = (v ,...,vm), with the following property:

(*) For every function v € I'y any point u e¢ U, and any closed subset S € G, the
control function Vs defined by v =V in G - S, and v.=u in S, belongs

to I,

Thus, every constant function v:G - {u}, u € U, belongs to I,

For functions ¢ ¢ Lp(G), 1<p< +e, we denote by |of| or ”w”P the usual

Ess Sup ,q>L For functions in a Sobolov space

1

Li norm; in particular, Hcp”°°
1 n n 1
[Wp (¢)] in G, say, z(x, y) = (2 ,...,2 ), we shall denote by 2, = (zX,...,zz),

1 n
and zy = (Zy,...,zy), the usual generalized first order partial derivatives

of z, and we take “Z”W S ”Z“W%(G) = “z”p + ”Zx”p + ”Zy’p

3. THE ORIGINAL PROBLEM

We shall need the following hypotheses:

1 .
(H,): The functions ¢(x) = (o ,...,@n) and ¥Wy) = (w,...,wn) are defined and
absolutely continuous on [a, a + h] and [b, b + k], respectively. The
derivatives mx and wy which exist almost everywhere belong to

Lp([a, a + h]) and Lp ([b, b + k]), respectively, for some p, 1 < p< + o,

¥(b).

Furthermore ¢(a)
(H.): The function f = f(x, y, 2

¢ x B x U, and each £

1 Zpr Py u) = (fl,...,fn) is defined on

is continuous in u and measurable in (x, y)

n
for fixed (zl, 29 23) € E5 .

i



(H,): For each v e I' the function so(x, y) = £(x, y, 0o, 0, 0, v(x, y))

belongs to LP(G) with p as in (Hl).

The functions fi are differentiable as functions of (Zl’ 2,9 23)

and the derivatives éfi/ézi, afi/az;, dfi/dzJ i,j = 1,...,n,

5)

are continuous in (z s 23) for fixed (x,y,v). Clearly they are

1 %
measurable in (x, y).

(H_): There are functions Kjr(x’ vy, w, j=1,2,3 r=1,...,n, such that
for all (x, ¥y, u) € G x U and (Zl’ Zo z5) € EBn we have

, Z

fafi/azg(x, Y, 2 ’ u)] < Kjr(x’ ¥, u) (3.1)

17 %p7 %3

and such that Kjr(x,,y, v(x, y)) e L (G) for v e T, j = 1,2,3,

i,r =1,...,n0.

We state below an existence theorem (3.i) for the solution z of the
Darboux problem (1.1-2) and a theorem (3.ii) concerning their behavior. We
refer to [6b ] (or [6a ]) for proofs of these and other statements. Theorem
(3.1i) provides norm estimates on the solution z as an element of W; (G), along
with pointwise estimates on z, 2 s and zy. Theorem (3,ii) shows the dependence

of the solution on the data,

(3.1) Theorem: Let v e I' be given, If Hl-H5 hold, then there exists a unique

1
z € (Wp (G))n (with p as in Hl), continuous on G, satisfying (1.2), for
which the generalized partial derivatives 2 s Zy’ zxy exist and satisfy (1.1)

a.e., in G, Furthermore, there are constants B, and B2 depending only on h, k,

1

p and on K = {”Kij(x, v, v(x, y)”m; i=1,2,3; j=1,...,n} such that

5



/p -1
(HWpr +2 H\lflfp)

lell, < 307 ol + 27l ) + ot
+ (0 + k) fls (x, 9L, (3.2)

2, )] < 27 elloll + vl + BB,(h + %)

¢ BT E g s (@,0)008)] (5.5)
|26 D1 < 0,(x) + BBz (x, 9] < o) +BB,  (3.4)
wnere B =l n % ey IO n (ol + I ¢ 1f s (00)
and o () = & [fp ()] +Klo(x)] + 2™ s (x,8)a81,
0,(v) = v +mlun) | + 120 s (oy)aa) .

The existence of the solution and the norm estimate (3.2) follow from
[6b, Appendix, Theorem 5, A-2] while pointwise estimates are a consequence
of the absolute continuity (in the sense of Tonelli) of the solution z, and
a repeated application of Gronwall's lemma. [See 6b, Appendix, (A-10)] or

[6a ].

(3.ii) Theorem: For i = 1,2, let z, denote the solution of (1.1-2) corres-
ponding to the data (cpi,' Wi) satisfying (Hl) and control function v, in T,

Let Z = Zl - Z2, q) = q)l = q)g’ ‘b‘ = \lrl = \ife and s(x’ y) = IF(X’ y’ Zl’ le)

, Z , v2) |. wWith this notation, the above inequal-

1x’ Zly

Zly) Vl‘) = f(X, y} Zl

ities (3.2), (3.3), (3.4) again hold with s, replaced by s and no further

changes. [See 6b, Appendix, A,10; or [6a ].]



= v_ outside a square S =

Furthermore, if ml = ¢2; wi = Wg and vl 5

[x -8, x +8] x [y -5,y +8] G, then the pointwise estimates become

l2(x, y)| = izl (x, ¥) - 2z, (x, )| < B, [l s(a,B)d0dp
2 (5, )] < & 277 s(x,8)a8 + B, J) s(a,B)a008
x 7 -5
2,06 ) < & 122 sloyy)aa + B, [T ge(0r8)d00 (3.5)

where Bl and B2 depend only on h, k, and on K = max (”Kij(x, ¥ vr(x, y)Hw,
i=1,2,3; Jj=1l,0e.,n; r =1,2}., We shall need in the sequel these

particular pointwise estimates.

Remark 1, In view of the uniqueness of the solution z of the Darboux
problem (1,1-2) for any given element v ¢ I', we shall denote the functional

I[z,u] of (1.4) simply by I[v], or I:T - El'

Remark 2, By introducing the notation zl =
Darboux problem (1.1, 1.2) can be written in the equivalent Dieudonné-

Rashevsky form:

|
N

le 23 25X = f(x, vy, Zl’ 22) Zj; v); Zly = 33

I
H
—
b
-
<
-
N

Z

2y 5! V) (306)

with boundary conditions,

z,(x, B) = o(x); z(x, b) = o (x)s z,(a, ¥) = Wy);
ZB(a, y) = W&(y) (3.7)



It is to be noted that even though the system (3.6) seems overdetermined
(four equations in three unknowns), it is not actually so, since the second

and the fourth equations are equivalent.

4, THE CONJUGATE PROBLEM
Cesari [2] has proved Pontryagin-type necessary conditions for problems

of optimization with state equations in the Dieudonné-Rashevsky form

Z' = fo(x) y} Z’ V); Z- = gi(x, y, Z’ V)’ z = (z

ix N iy .,z ), i=1,2...n; and

1’7" n

taking as Hamiltonian the expression H=A_f. + ...+ A £ + + ...t
P 171 nn M Mol By

assuming the Z4 5 xi, ui,to be in suitable Sobolev spaces, Cesari [2] showed

| )
i.e.,

that the multipliers xi, by should satisfy the "conjugate problem,'
partial differential equations of the form Kix + uiy = -BH/Bzi, i=1,2...n,
along with boundary conditions, which are complementary to those for zl,...zn
and in relation to the cost functional under consideration. In view of remark
2 of no. %, weuse here the same Hamiltonian with the remark that since ZEx
and Z5y do not appear in (3.6) we take xg = u3 = 0, and the Hamiltonian

reduces to

= + f + + f )-L,
H )\122 %.3 u125 p,2 s (4.1)

1 1 .
where N = (Xi,...,xi), My = (ui,...,u?) and the products are inner products
in En. By taking the cost functional I in (1.4) in the equivalent form

(Cesari, [2])

- +
I = » 1 fa h

-1 ,b+k
. B ZE(X’ b + k)dx + 2 fz A 23(a +h, y)dy (L.2)

1l

where A (Al,...An), the conjugate problem becomes

8



xix “iy -7 z§=l (h; * “g) afj/azi’

“;y = A o N (xg + ug) X /az;,

K;x = -ui - Z;,’:l (x§‘+ ug) afj/az;, i=1,2,..n (4.3)
xl(a +h, y) = ul(x, b +k) = O

uz(x, b+k) = rx(a+h,y) = A2 (L4.4)

In the present paper, we show first that the conjugate problem (14.3), (L. u)
is equivalent to a system of two-dimensional Volterra-type linear inte-
gral equations of the type we have studied in a previous paper [6b]. The
results obtained there will enable us to prove in this paper, the existence
of multipliers xi, by as solutions of the conjugate problem in a suitable
class of functions, in L (G) (not a Sobolev space).

In order to obtain the equivalent system of integral equations, we treat
A. as arbitrary and formally integrate both sides of (4.3) as follows (in

1x

conjunction with boundary conditions in (L4.k4)):

i % i

7\.1(}{, y) = fa+h Xlx (05) y)da:

i y i .

i (6 ¥) = =l M B) = fL L e (38/32)) (x, BB,
A(x, y) = 27+ 5 N (a, B)dudp +

3 i a+h btk 1 ’

Foon Tl (32/32))(@, Blance - [X (v (3¢/32])) (0, y)a,



i _ ol X i
i, ) =2y = S o My (o, B)dodp
- Y (38/353)) (%, B)aB, (4.5)

where w stands for kE + Moo It is clear that w satisfies the integral equa-

tion w = Tw where

i a+th ,b+k i b+k i
(Tw)™(x, y) = A, + fx fy W e af‘/le + fy Woe af/az2
a+h i
v /oy (4.6)

(4,i) Theorem: If H2, Hh’ H_ hold, if v € I' and z is the corresponding solu-

5
tion of the Darboux problem (1,1), then there exist infinitely many sets of
. . n . .
solutions Kl’ kj’ nys u, in (A _(G))", with hl(x, ¥), xi(x, y), (%, y) € G,
AC with respect to x for almost all y,'ul(x, v), ue(x, y), (x, y) € G, AC
with respect to y for almost all x, Kl’ KB, Mys My satisfying the beundary con-

ditions (4.L4), and having generalized partial derivati .
(b4, gg partial derivatives, A, , Ag , byy? Hoy

Proof: As a consequence of (Theorem 3, no, 5; [6b]), it is seen that
there is a unique w € [KW(G)]n with w = Tw, where T is defined by (4.6). The
conclusion of the theorem follows now by defining the functions kl, Hyo k3,

u, as in (4.5), in terms of the unique solution w of (L4.6), and an arbitrarily

chosen [Xuo((})]n - function Moy

Remarks: (a) Since w = x5 + By is uniquely determined as the fixed
point of T, for different choices of xlx, we still get the same XB + Hye

(v) The solutions of (L4.5) need not belong to a Sobolev class since,

10



for example, Bf/azé and hence Al as given in (4.5) need not possess derivatives

3
with respect to y. (See example 3, no. 7.)

), then by choosing A = C, it is

(¢) If f does not depend on ( 1x

z
zl, 2,z5
seen that a possible set of multipliers is given by the constant functions

A= O0=p 3 AL =p

1 1M = Ao, If bf/bz;, r = 1,2,3, are continuous in (x,y), as

2
is the case when they depend on z only, then the multipliers can be chosen %0 be
continuous. Finally, if f is linear in (zl,zg,z ) with coefficierts analytic ir

3

(x,y), then the multipliers can be chosen to be analytic in (x,y) (see [6b]).

5. THE INCREMENT FORMULA AND AN ERROR ESTIMATE

Let v, and v, be any two elements of I', the set of control functions
Let z and z be the solutions of (1.1-2) corresponding to vO and Ve respec-
tively. Let (A, up) = (Kl, KB, Ky “2) and (ke, ue) = (Xle’ XBG’ Mg uge)
be solutions of (4.3-4) corresponding to (vo, z) and (v€, Z€> respectively,
O s s w) € [L (@)1 as in (b 1)

1) 5) 1) o o - * °

In the sequal, when there is no confusion, the symbol H(u) stands for

the expression

H(u)

H(x, y, 2z2(x, y), z (s, ¥), Zy(X, vhu Nx, y), u(x, v))

it

H(X) y, z (X) y)) Z (X) y), Z5(X’ y)’ u) >\‘(X) y)’ “’(x) y)'

1 2

where z, ), 4 are related tc v, and u denotes a point of U Also, for the
sake of simplicity, we shall denote by z the expression
z = (2(x, ), 2z (%, y),. Zy(x, v)) = (2,(x, ¥), 2,(x, ¥), ZB(X’ v)).

In any case, we have 2_ =2, z2_ = 2 Z, =2 .
y ) 1 b4 2 X) 5 y

11



In order to obtain a necessary condition of the Pcntryagin type we
express the increment I[Ve] - I[Vo] in terms of the integral of H(ve(x, ¥))

over G.

To this end, let us observe that, by simple calculations involving in-

tegration by parts of the expression

ath ,b+k
fa fb D\l(zlex B le) * u1(zley B Zly) *-KB(ZEex - Z}x)
+u(z, -z, )ldxdy

2 2¢ey 2y

and the boundary conditions (1.2) and (4.5) we obtain
Ifv.]- I{v.] = 0+, (v (x, ¥)) - B(v (x, y))laxdy,

where

n = Z§=l ffG [&I/BZJ(X, ) ZQ) V€’ A, U-) - a{/azj(x: ) Zi: VQ,

A - dxd

and zbg(x, Y) = Zj(X, y) + O(X, y)[zje(X; y) - Zj(X, Y)]) 0< O(x, y) <1,

For details we refer to Cesari [2], or the author [6a ].

Error Estimate: It is clear that if fi (in the state equations (1.1)) are
linear, i.e.,, of the form Az + BzX + CZy + D(x, y, u) where A, B, C are matrix-
valued functions on G, then n reduces to zero., For the nonlinear case, we
shall now obtain an estimate on 1, and for this purpose, we need the following

hypotheses:

12



(H6): There exists a function M(x, y, u), (x, ¥y, u) € G x U, with M(x, y,

v(x, y)) € Lh(G) for any v ¢ I', such that, for (x, y, Z,5 2 3,u) € G

o7 2

X EBn x Uand 1 < p< +w, we have [f(x, y, Z)s Zpr 2 w) | < M(x, y, u)

+ B5 [[zl} + fzel + }25,]p/u for some constant B, > O. For p = + x,

3
we require |f| < M(x, y, u) + ¢(lzll + ,22| + 123]) for some function

f(e) >0, 0<t <+ with f(¢) < K& for some K.

(H_): There exist functions Kij(x, y, u), i =1,2,3; j =1,...,n, such that

Kij(x, v, v(x,y)) € L (G) for any v ¢ I', and such that for (x, y, u)
3n

€ GxUand z, z ¢ E , 1=1,2,5, j =1,...,n, we have,
i i - - -
laf/aza (%, ¥, Zl’ Z2, ZB) u) - af/ézj(x, ) Zl’ 22, ZB, u)l

S K:{,j(x’ ) u) Zz=1’2s = Es, (502)

Remark 1: Let, as before, s(x, y) denote |f(x, ¥y, 2(x, y), vl(x, y))
- (%, v, 2(x, ¥), v2(x, y)) | where 2 = (z, Z s Zy) and z is the solution of

(1.1, 1.2) corresponding to v, and Vs Uy € ' Then it is seen from H5’ Hh

1 2

and H5 that s € LP(G); (p as in Hl). Indeed, |f(x, v, 2(x, y), vi(x, )|

< K,é(xy Y)l + 'f(x; ¥, 0, v.(x, y))l where K = max {”Kjr(X: Y, Vl(X,ycj)”m: j=1,

1

2,3; r = 1,...n); (see H5). Since |2] ¢ Lp and |f(x, v, o, vl(x, v | e Lp

(vy Hj)’ it follows that s ¢ LP(G).
The assumption (H6) is made only to guarantee that in addition, s e,Lu(G).

The same conclusion can be macde under the following hypothesis:

(Hé): There is a function M(x, y) defined on G such that (i) M(x, ¥y) v (x, y)

€ LM(G) for every v € I', and (ii) for (x, vy, on

Zy5 Zps 25) € GxE

15



and u), u, € U, we have |£(x, v, 205 %y 25, ul) - f(x, y, 2. By g

u2)| < Mx, y) | u) -, |

Indeed, s(x, y) = [£(x, v, &(x, y), v (x, ¥)) - £(x, ¥, 2(x, ¥), v (%, ¥))]
< M(x, y)lvl(x, y) - VE(X’ y| < Mlvll + M|v2| and s € LM(G)'

Further, if (H!) and (HY) hold with M(x, y) e L (G) and I < [L (G)1",
[o.0] [o'e]
then statement (3.5) in theorem (3.11) can be replaced by

2]+ 2 (o)) + Lo (59) Belv, - v, (oo) € 6, (5.3)

where the constent B depends only on M| , h, kX and on all Kij’ Kij.
(o]

We shall denote below by u an arbitrary fixed point u € U. Let vo be
an element of I', let z(x, y), (x, y) € G, be the corresponding solution of
the Darboux problem (1.1-2), and let z denote the 3n-vector function z(x, y) =
(z, Z_ Zy) = (zl, Z,) 23) as above. Let (%, y) be an interior point of G.
Let _ > O be the minimum distance of (x, y) from the boundary of G. Let
K/n denote the maximum of the 12n numbers ”Kij(x’ Y, u)”w, ”Kij(x, v, u)”m,

Iy 5 Ges vy v Gy K G vy v ey, 4= 2,23, 5 = 1,00 ,m5 where

00’
the K, are as in (H_) and the K' as in (H ). By (H ) the function
ij -5 ij T 6
s(x, y3 u) = [£(x, v, 8(x, y), w) - £(x, ¥, &(x, ¥), v (x, y))| belongs
2
to LA(G>' Thus, given ¢ > O there is a > O such that ffcls(x, v; u)| dxdy
2 L 2
<t and ffcls(x, y; u)| dxdy < ¢~ for every measurable set C < G of
2
measure < 437, We mey well assume O < < 60. Let SS denocte the square

[x -5 <x<x+8%,y-8<y<y+5] and let C be any closed subset of SB'

Let v be the function defined by v€'= vo in G-C, and v.=u in C. Then the

1h



function s(x, y) = 1f(x, v, 2x, y), Ve(x; y)) - f(x, vy, #(x, ¥), VO(X, Y))’
is zero outside C and equals s(x, y; u) in C. Note that v € I'y, we denote

by z_ the solution of problem (1,1-2) relative to v and as usual we write

ée = (Ze’ 20 Zey) = (Zle’ 2o 236). Inequalities (3.5) yield in this case
y+5
Iz, (%, ¥) - z(x, ¥)| < BJS, s(a,B)dadp + [. s(x, B)ap
je J Sg -8
- _
+ 2 s(a,y)dal (5.4)
X=-0

for all (x, y) € G, J = 1,2,3, independently of the particular closed set
C c SS’ and where B depends only on h, k and K, This inequality and the fact
that s € LM(G) under He (or (Hé)) can now be used to estimate 1.

The integrand in the expression for n can be written as

i

{Zir.l=l’>\3 + H;“afi/azj(x: e é@’ Ve) - afi/azj(x’ y, %, Ve),

i i .
R L L A A A A N N A AL RECREEN

)

which yields, using (H7

5 §J
ln' _<_ ”>\'3 + HEHOO * K ¢ ffG Zi____l ZlelZig - Zil IZJ'E - Zj’(x’ Y)dxdy
# g+ ugll, 1, B0 T2, - 2l (x, v, 2, v)

- 8f/azj(x, ¥, 2, vo)ldxdy (5.5)

But, since the integrand in the last term above is zero outside SS’ we have

Inl < g +ugll, « K+ (ny +2n)) where
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- ) _ _
N, = ffG Eﬁ,j=l ]Zi@ Zi] ]zj€ zjl(x, y)dxdy and
- 3 _

To obtain an estimate on 7n, we observe that [z, - z,l < Iz, - Z,| and then,
ie 1 — ' le i
by (5.4), we get
2
5> -
I I < JIGEZ 2y, - 2100 9))7 axdy
2 y+5
< 368 J[, [J], s(a,B)dcds + [I ~ s(x,p)ap
G SS v-8

-8
+ f? s(a,y)da]QdXdy
x-0

Using Holders' inequality and the fact that s ¢ Lh(G) under (H6), it is seen

that
Iy 1/2
Il < u, 8% (S, s%(0,Pacms + (J1 s'(c,P)a0a®)/?]  (5.6)
5 5
for some positive constant M, . Similarly, using (5.4) and HOlders' inequality,
we get
§r+5 ‘ ;C+5
Ing| < [y 3BUJS, s(oyB)dodp + [0~ s(x,B)dp + [ s(a,y)dalaxdy
5 8 y-8 X-5
< 3B(8% + 25 + 28)[f_ s(0,p)dasp
5
2
< 68018 + 1)8% (/] s%(c,B)d0ap)"/ (5.7)

o)

Using (5.6) and (5.7), the inequality (5.5) can now be written as

In] < m 52[ffs s2(a,B)dadp + (S, o 1/2
5 8

Q, B)dodB)
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+ (S, s*(0,B)acap) /21 (5.8)

e}

where M 1s a constant depending only on K, B, and HXB + “2'

2
Given € > 0, let us now choose a positive number £ with 0 < { <t< e/6M.

2 2 L
Let 8 > O be now chosen as before with ffS s < ¢ and ffs s < CE. Then

2, .2 2 ® 2 ®
Inl <mM8™ (¢ +t+¢) <M « 3+ (¢/6M) = €8 /2, In conclusion, if voerT,

u e U, and € > O are given, then there exists a & > O such that for a function

v =v outside S_ and v = u in a closed subset of S
€ o) o) € o)

(v) - Mv) = n+ v (59) - Ky () lady  (5.9)

with |n| < 8° e/2.

6. A NECESSARY CONDITION FOR OPTIMALITY

In this.section, we shall state and prove a necessary condition for
optimality, analogous to the one-dimensional Pontryagin's necessary condition.
We need the concept of "minimum condition" for the class of problems under

consideration, and this is made precise in the following definition:

Definition 6.1: Let v, e T'. Then vy is said to satisfy the "minimum

condition" if there is a set B C G with meas B = meas G such that for (x, y)

€ B, we have H(vo(x, y)) < H(u) for all u € U, We recall that H(u) stands for

H(X: Y Z(X) Y): ZX(X’ Y): Zy<x) y), u, AM(x, Y); w(x, y)) where z and (A, u)

= (A ) satisfy (1.1, 1.2) and (4.3, L,4) respectively., The fol-

l) >\‘3’ I‘J'l) U-2

lowing hypothesis is needed in the proof of the necessary condition:
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(H8): The functions fi = fi(x, Vs 2ys 2y Zxs uw), i =1,...,n, are continuous

3n

on G x B x U,

Remark: In the proof of the necessary condition, the inequality (3.1)
of (H5) is needed only for (Zl’ %05 23) = (z(x, v), zx(x, ¥), zy(x, y))
where z is an optimal trajectory. Further, the hypothesis (H6) can be replaced

by (Hé).

(6.1) Theorem: (Pontryagin-type necessary condition): Let v, € I' be optimal

for I; i.e., I(vo) < I(v) for all v ¢ I'. Let conditions H -

H8 hold. Then, there exists a unique function z ¢ [W;(G)]n

satisfying the Darboux problem (1.,1-2) and © - many sets of

)bn

multipliers (Xl,'KB, My p2) € (Qw(G) satisfying (4. 45)

with v replaced by v With this z and any of these sets of
multipliers, the optimal control Vo necessarily satisfies the

minimum condition.

Proof: The existence of z and of kl, XB, Hys B under the hypotheses Hl -

2

H_ has been shown in no. 3 and no. k4, . Before proving the necessary condition,

5

let us note that throughout this proof, z, =z, z, = z_, 25 = 2 (Ayp)

= (A ) have the same meaning and they correspond to v_. Further,
o

17 KB: Hl; UE
as inno, 5, H(u) = H(X; Y u) = H(X; E) Z(X) Y); ZX(X) y): Zy(X) Y),u; 7\-(){) .V))

U(X: y)).

For each natural number n, let Cn be a closed subset of G such that (i)
-1 . .
meas (Cn) >(l-n") meas G, and (ii) on C, the functions vy 2= (Zl’ Z,5 23)’
(%5 1) = (A, Ag5 uyy wy) are all continuous. Let C! be the set of all points
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of density of Cn so that meas Cﬁ = meas Cn and the functions Vs Zs A, u are
continuous on CA with respect to itself, Now, for any u ¢ U, let R(x, y; u)

= H(x, v, vo(x, y)) - H(x, y, u). Then, this function is continuous on Cﬁ

for each n. Let B = (interior of G) N (nﬁicg)' Then meas B > meas Cé > (l-n—l)
meas G for all n and hence meas B > meas G. Further, since B < G, it follows
that meas B = meas G. We shall prove that B is the required set, i.e., for
(x,y) € B, we have H(x, ¥y, vo(x,y)).s H(x, y, u) for all u ¢ U, Let (xo, yo)
be an arbitrary point of B, Then there exists an N such that (xo, yo) € Cﬁ.

Now, let us choose 61, 82, 8., 6h as follows:

3

(i) Since (xo, yo) € Cﬁ, it is a point of density for C& and hence there

1
. . . 1 —
is a 8 > 0 such that 0 <8 < 8, implies meas (CN n SB(XO’ yo)) > 5 meas (S8

(xo, yo)) where, as before, Ss(xo, yo) is a square of side length 2% with

t .
center at (xo, yo)

(ii) ©Let us suppose that the minimum condition does not hold at (xo, yo).
Then, there is a u ¢ U with ¢ = R(xo, V3 u) > 0. Using the continuity of

R(x, y; u) we obtain a 5, > O such that |R(x, y; u) - R(xo, Y, u)| < ¢/2

2

whenever (x, y) € CN and |(x, y) - (xo, yo)] <28 Thus, R(x, y; u) > ¢/2

2.

for all (x, y) e Cy ns (xo, yo).

5
(iii) The function s(x, y; u) = [f(x, v, z(x, y), v) - £(x, v, &(x, y),

vo(x, v))|, with u as in (ii), belongs to LM(G) (by (H6)); and hence there

exists a 63 > 0 such that for 0 < d < 63, we have ffs sg(u, a, B)dadB < §2

o}

and ffS su(u, a, B)dadB < C2 show ¢ is some number with 0 < §2 <t < e/tM
o)

19



(€ as in (ii) and M as in the equality (5.6)).

(iv) Since (xo, yo) is in the interior of G there is a &), > O such

that S6 = SS(XO’ yo) cGfor 0<8< Sh'

Let o > 0 be such that o < min(Sl, 8 80) and let v be a function

2) 63’
defined by ve(x, y) = uif (x, y) € CN n Sc and = vo(x, y) otherwise. Clearly,

v_is an element of I'. Also, R(x, y; VE(X, y)) is zero outside CN N Sc and

is > ¢/2 for all (x, y) € CN n Sc' Thus

I{v_] - Iv ]

1l
=3
+

[1 TB(v (%, ) = By (x, ) Jaxdy

= n-J/

O R(x, y; v _(x, y))axdy

c

-1
- n -
< n -2 T¢ meas (CN So) <1n-U47 ¢ meas Sc

2 2
where |n| < € ¢7/2 from no. 5. Thus,I[ve] - I[vo] < - €0 /2 < 0. This is
contrary to the assumption that vy is optimal. The contradiction arose because
of (ii). It follows that for any {(x, y) ¢ B, we have H(x, y, vo(x, y)) <

H(x, y, u) for all u € U, This concludes the proof of the theorem,

7. DISCUSSION AND EXAMPLES

In this section, we shall discuss the Pontryagin-type necessary condition
given in theorem (6.i) in relation to the results of Cesari [2] and A. I. Egorov
[3a2 ], We shall first show that our results yield those of A, I. Egorov under

conditions of smoothness, We shall also give examples where our necessary
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condition applies. In particular, example 3 of (D) below will show that our

results are actually more general than those of A, I. Egorov,

A, The Linear Case

If the state equations are linear, i,e., of the form zxy = Az + BzX +
Czy + D(x, y, u) where A, B, C are matrix-valued functions on G, then we
have seen that the increment formula reduces to I(Ve) - I(vo) = ffGH(ve(x, v))
- H(vo(x, y))dxdy. Now, if a control v, € I' satisfies the minimum condition,
then in particular H(vo(x, y)) < H(ve(x, y)) a.e. in G and hence I(vo) < I(ve)
for all v€ in 'y i.e., v, is optimal for I, Thus, the necessary condition is
also sufficient in the linear case. For the existence of solutions for the
Goursat problem (1.1, 1.2) [as well as the conjugate problem (4.3, 4,4)] in
this case, we may require that the matrix-valued functions A(x, y), B(x, y),

C(x, y) be in L (G) and that D(x, y, u) be continuous in u. Further, we

shall require D(x, y, v(x, y)) to be in [Lp(G)]n for v ¢ T,

B. Various Types of Cost Functional

Bl. It is clear that the cost functional (1l.4) or I[z,v] =

Z?_l Aizl(a+h, b+k) can be written in the Lagrange form

Jlz , v] = ffG fo(x; ¥, 2(%, ¥), ZX(X, 7)) Zy(x; ¥)s V(X) Y))dXdY

with £ = 5.0
O =

A.f, and the £, as in (1.1).
i=1 "1 1 i

However, the Lagrange problem of the minimum of J[z, v] with fo not
necessarily equal to 2, Aifi’ and z, v satisfying (1.1-3) can always be formu-
lated as the Mayer problem (l.l—h)\by suitable transformations., This is done,

. . . o o
as usual, by introducing a new variable z with zXy = fo(x, Y, Z, Zx’ z_, v),

y
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z%(a, y) = 0, 2°(x, b) = 0. Then, the functional J can be written in the
form J = zo(a +h, b + k) (cfr, Cesari [2] or the author [6a ]).

B2, The general Mayer problem with cost functional I'[z, vj =@ (z(a + h,
b + k)) with z, v satisfying (1.1-3) and an arbitrary ¢ (t), ¢ ¢ En (twice
continuously differentiable) can be reduced to problem (1,1-4), As above,

this is usually done by introducing a new variable 2° satisfying

o} n 2 i gy i i n i
ey = Zi,j=l (3 ¢/ 2 )zX z; + zi=l(a¢/azl)fi(x’ Yo By Zys 2o v)
and 2%(2, ) = POV(¥) e ' (3)); 2%, b)) = B@N(x),...0%(x))

where @(x) = (@l,...,$n), Wy) = (Wl,...,wn), are the initial data as in

(1.2). (See A. I. Egorov [3a ] and the author [6 a]).

+
B3. The problem of minimum of J[z,v] = f: n F(x, z(x, b+k), zx(x, b+k))dx
can be reduced to that of zo(a+h, b+k) where 2z is defined by Z;y =

Z£21 [(aF/Bzi)zi + (BF/Bzi)fi(x, Yy 2y 25 2o v)] and zo(a,y) = 03 zo(x,b) =
fz Fla,p(a), ¢'(a))da (see A, I, Egorov [3a]).

B, Let J denote any linear combination of the functionals mentioned
above in Bl, B2, B5., It is clear that the functional J can be reduced to the

form (1.4) by suitable addition of an auxiliary variable 2°,

C. Comparison With A, I, Egorov's Results
The optimization problem (1.1-4) was studied by A, I. Egorov [3a ] where

he proposed a necessary condition in terms of the Hamiltonian

n i
H(x, v, 2, ZX’ Zy, vV, 0) = Zi=lg fi(x, Y, 2, ZX, Zy: v)
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and multipliers o(x, y) = (OL,...,@H) satisfying the Goursat-type problem

o, = W/a - ()W) - (Y w/2), (7.1)

(x, y) ¢eG, i =1,...,n,

with boundary conditions

@i = -(aH/Sz;) for y = b+k, @i = —(SH/Bzi) for x = a+h, (7.2)
G)i(a+h, b+k) = A, 1 =1,...,m, (7.3)

In (7.1) the derivatives are evaluated at (z, Z_ s Zy’ v, ©) and the
numbers A in (7.3) are those in (1.4).

In [3a ] the control variables v, are assumed to be piecewise continuous.
In the present paper the controls Vi are assumed to be only measurablé, and

we proved, under our general assumption (Hl) - (H_) that the functions 2"

5
belong to a Sobolev class Wi(G) and are continuous in G, In any case, the
derivatives (B/SX)(BH/ézi), (B/Qy)(aﬂ/azi) which appear in (7.1) need not
in general exist, as example 3 below in D will show.

On the other hand, under suitable regularity conditions, equations
(7.1-3) can be derived from the conjugate problem (4.3-4), by defining

1

0= (o ,...,Qn) in terms of the multipliers Kl’ X}’ Hys Hoe

We need the following assumptions:
*¥For a given optimal pair (z, v) and corresponding multipliers Ay xB, bys Mo

let us assume that the following partial derivatives exist as generalized
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derivatives

(a7 (0 + e /), (YD (] +ud)cee /ey,

i = l’clc,n

. i i .
From (4,5) and (*) it follows that Kixy and Moy i=1,.s.,n, exist as gen-

eralized derivatives, and in view of (L,3) we have

i i n . J J 1
A = - - > A ol
i _ i n, 3. 3 i
a.e., in G, 1 = 1,...,,n., Thus, if © = A, + pn_., that is Qi = Xi + ui
’ ’ ’ 3 ke ? 3 2’

i=1,...,n, then gxy exists a.e., in G as a generalized derivative and, in

view of (4.3) we get (7.1) with H + Xigifi. Again, from (4.5) we get
o = v 3 BH/azi) = —(éH/azi) for y = b+k, (7.4)

and analogously

9; = —(aH/aZ:{) fOI‘ X = a+h, i = l,o‘o’no (7‘5)
Finally,
o(a+h, b+k) = (>\3 + pg)(a+h, b+k) = A,

i i i
Thus, under assumption (*), the sums © = A+ Moy i=1,...,n, act as multi-

P

pliers 91 described by (7.1-2). It is of interest to note that © = kB + oy

is obtained as the fixed point of the contraction operator T (see remark (a)
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in no. 4), and thus © is unique, in harmony with the uniqueness of Egorov's

solution © of (7.1-2).

D, Examples
(1) ([3a], p. 560), Let G = {(x, y)]o <x<1; 0<y <1} and consider

1
the problem of minimumof S = fo fi (1 - 2y)z(x, y)dxdy with side condition

z = -2z - 22 =~ 22 =~ V,
Xy X y

boundary conditions z(x, o) = z(o, y) = O; here z is a scalar and v is a
control variable with values [0, 1]. To obtain the multipliers (and use
theorem (6.1)), we first introduce a new set of variables 2,5 i=1,...,6

X
defined by z. = 2} 7_ =172 3 7 = 2 =/ fz (1 - 28)z (a, B)d0dB; z = =

1 2 x* 73 Ay; “ by’
Zg = Zhy' Then S attains minimum together with zh(l, 1) and the side condi-
tions are now
z2y = 2y = zlxy = —221 - 222 - 2y " v Z5y =z, = thy = (1 - 2y)zl.

The corresponding conjugate problem is

Moty = /3y =200+ p) - (1= 20) (0 * ug)s
Moy = -H/oz, = oM ¥ 2(ng My) 3

Mg -SH/az5 = -py * (xB t )

Mg TRy T -aH/azu = 0;

hoy T T/ = N NG o= <&/ = -wg



with boundary conditions, xi(l, y) =0 = uj(x, 1) for 1 # 6 and j # 5;

= = e + + - - .
K6(l, v) u5(x, 1) = 1/2, Here H A2, M2 (KB + uz)( 221 222
2y - v) + xuz5 et (x6 + u5)(l—2y)zl. It is seen from the boundary con-

ditions that one can take A =p) = 03 po = A = 1/2 on G, Further, if © = p

5 2

+ A, and ¢ = OX - ©, then by formal differentiation of the above equations, we

b}
get Oxy= Qy+ 2(9X - 0) +(1 - 2y) or §y =2t +1 - 2y; t(x, 1)
_ 2(y-1)

il

0, Solving

for ¢t as a function of y, we get &(x, y) =y . Thus, & - © =

o(v- -
- e (y l). Solving for © as a function of x, we get o(x, y) = (ex l-1)

eE(y-l)). x-1

Tt is clear that for (x, y) € G, e < 1 and hence 6(x, y)

(y -
2yo-2
> 0 or < O according as y < yo or y > yo where yo = e . But then, H as

a function of v is minimum for vo(x, y) where vy is a function on G defined
by: vo(x, y) =1 fory < yo; = -1 for y > yo.. Now, to obtaln the value of
the functional, we first solve the following for z: zXy = -2z - 2zx - zy - v

with z(x, o) = z(o, y) = 0. It is seen that z is given by

z(x, y) = 2_1(1 - e-x)(e"2y - 1) for y < Vo
e ¢ T YE NP A 26 Vo " Yy for y >V,
and the functional takes the value
g = e—l(yi + % e-2 - yo) where v, = e2y°-2.

This is the optimum value obtained in [3a ] also,

1
(2) ([3a2], p. 561): To find the minimum of the functional S = fo z(x,1)dx

1
- fo z(1, y)dy where the side conditions on z are given by
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ny = v; [vl <1, 0<x<1; 0<y<1; z(x,0) =2(0, y) =0 (7.6)

If Zo is a variable satisfying the relations

2y = %y - % w8 2(0, ¥) = 2(x, 0) = 0 (7.7)

then the above optimization problem reduces to the problem of minimum of zo(l,l)

with (7.6, 7.7) as side conditions. The conjugate problem is described

. . as . + - A
in terms of the multipliers Xl’ Hys XB, Mo s xu, M) K6’ p5, xlx uly 03
= - + + : = - - (N, + : + = O = - s
N = THLS with boundary conditions Ki(l, y) = 0; pj(x, 1) = 0 for i # 6,

and j # 5 x6(1, y) =1/2; p5(x, 1) = 1/2. 1In order to obtain a set of solu-

]

tions, we may introduce the auxiliary equations xl 0 and xu = 0 on G. Then,.
we obtain . = 03 p) = 03 by = 1/2 and N = 1/2 on G. Also, My = (y - 1) and

= -(x - 1). Thus, the Hamiltonian reduces to H = (y - x)v + (zy - Zx)'

A3

It follows that as a function of v alone H is minimum at vo(x, y) where vo

is defined on G as follows:
vo(x, y) =-lfor 0<x<y<1l;=1for 0<y<x<1,
Substituting in (7.6), and integrating we

2(x, y) = -xy + f(x) for 0<x<y<1l; =xy +Yy) for 0<y<x<1

(7.8)

where ¢ and ¥ are absolutely continuous functions defined on [0, 1] with
#(0) = W0) = 0. Now # and ¥ are to be chosen so that the two expressions

of (7.8) coincide for x =y, Thus #(y) - y2 = y2 + Wy), i.e., Wy) = B(y) - 2y2.
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: 2
Hence z(x, y) = -xy + f(x) for 0<x<y<1l; =xy -2y + @(y) for 0<y<x<1;
where ¢ is some arbitrary absolutely continuous function defined on [0, 1]

with @(0) = 0. The corresponding value of the functional is
1 1 1 1
s = Pl Dax - a1, vay = Lo - x3ax - Lol ¢ -
2
2y lay = -1/3
This again is in harmony with the optimum obtained in [3 a ].

(3) ([6a], p. 207). Let G be the rectangle [0, 1] x [0, 1]. Let us

consider the problem of minimum of the functional S = z(l, 1) with side con-

siderations and constraints

ny = (1+ ZX)V; z(x, o) =0, z(o, y) = 05 -1 <v<l1 (7.9)

Let us first observe that for any v(x, y) in Ll(G), the solution of (7.9)

is given by

2(x, y) = [, [-1 + exp ([ v(a, B)aB) Jdo (7.10)

Now, since v(a,B) > -1 for all (o,B), fﬁ v(a,B)dp > -1 and hence fi exp(fi
v(a,B)dB)da > 1/e, Thus, S = z(1, 1) > -1 + (1/e) for any admissible pair
(z, v) satisfying (7.9). It follows that the function vo(x, y) defined by
vo(x, y) = -1 for almost all (x,y) € G, is optimal for S, and vice versa.

In order to verify that Vo satisfies the minimum condition, we formulate

the conjugate problem A, +

1x T My T -‘éH/azl =03 p. = —BH/BZ2 = ->\l - v(>\.3 + “2)3

2y

X5X = -5H/8z3=— M3 with boundary conditions, xl(l, y) = “1(x’ 1) = 0;
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x3(1, y) = u2(x, 1) = 1/2. Here the Hamiltonisn H is given by H = Mzo

+ (xB + uz)f where 2, =23 2, = 23 Zg = zy; f = (l+zx)v. The multipliers

U«lz3
corresponding to v are obtained as solutions of the above system of equations

= 0; and A, = 1/2

with v replaced by vo(x, y). Clearly, we may chose xl = 1y

5

on G, But then Moy = -vo(u2 + 2-1);'u2(x, 1) = 1/2, A solution of this
equation is given by pz(x, y) = exp (ﬁ; vo(x, B)aB) - (1/2). Substituting
in the Hamiltonian, we get H(x, v, 2z, u, A, p) = u(l + Zx) exp (fivo(x, B)ap)
where z corresponds to v, Now, if vO(x, y) = -1 on G, then H = u(1l + zx)
exp (y - 1) = u(exp [ v (x, B)aB) exp (y -1) = w/e. Clearly, H(u) > H(v_

(x, y)) for (x, y) e Gand u ¢ U= [-1, 1].

Remarks: It 1s to be observed that in the above example, the optimal
solution vo(x, y) = -1 happens to be smooth, and as mentioned in no. 7 (c),
Egorov's condition also holds. However, this example (3) can be easily modi-
fied into another one for which Egorov's necessary condition cannot be applied.
Indeed, if w(x), 0 < x < 1 is a fixed continuous, positive nowhere differen-
tiable function (such a function exists), we consider instead of (7.9) the

equation ey (1 + zx) v + W with the same boundary conditions and constraints

as above, Then (7.10) is replaced by

2(x, y) = [r -1+ exp(w(a) [V v(a, B)a)lau

and the optimal control is still vo(x, y) = -1 a.e. in G. Here, Egorov's
Hamiltonian H [3a] is given by o(1 + zx)vw and the second order derivative

(Hz,)x required in (7.1) does not exist,
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Also of interest, in the above example is the fact that the multiplier
MQ(X: y) need not have partial derivative with respect to x. Thus, in general,

the multipliers need not have partial derivatives with respect to both the

variables; as such they may not belong to a Sobolev class.
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