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ABSTRACT

ELECTROMAGNETIC SCATTERING BY COATED CONVEX SURFACES
AND WEDGES SIMULATED BY APPROXIMATE BOUNDARY
CONDITIONS

Asymptotic/high-frequency solutions are developed for analyzing the non- spec-
ular scattering mechanisms associated with coated convex surfaces and edges
simulated by approximate boundary conditions. In particular, the standard
impedance boundary conditions (SIBCs) and the second order generalized
impedance boundary conditions (GIBCs) are employed for a characterization
of the edge diffraction, creeping wave and surface diffracted wave contributions.
To study the creeping wave and surface diffracted wave mechanisms, rigorous
UTD (uniform geometrical theory of diffraction) diffraction coefficients are de-
veloped for a convex coated cylinder simulated with SIBCs and GIBCs. The ray
solutions obtained remain valid in the transition region and reduce uniformly
to those in the deep lit and shadow regions. A uniform asymptotic solution is
also presented for observations in the close vicinity of the cylinder. The diffrac-
tion coefficients for a convex cylinder are obtained via a generalization of the

corresponding ones for the circular cylinder. To validate the asymptotic/high-



frequency solution integral equations are derived for both E and H-polarization
and solved numerically using the method of moments. Results are presented
for a single and three layered coated convex cylinder. Some insights are also
provided on the accuracy of the employed GIBCs versus SIBCs for application
to curved surfaces. To characterize the scattering by impedance wedges illumi-
nated at skew incidence, diffraction coefficients are derived from an approximate
solution of the governing functional difference equations. This solution exactly
recovers the known ones for an impedance half plane or an arbitrary wedge at
normal incidence and to validate it for other wedge angles a moment method
code was used. Finally, to test the usefulness of the approximate skew incidence
impedance wedge diffraction coefficient for three dimensional structures, equiv-
alent currents are derived in the context of PTD for a finite length impedance
wedge of arbitrary internal angle. These are incorporated in a standard general
purpose physical theory of diffraction (PTD) code and results are presented for

a number of different impedance structures.
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CHAPTER 1

INTRODUCTION

The subject of this dissertation deals with the characterization of the non- spec-
ular electromagnetic scattering from coated and impedance structures in the context
of asymptotic/high-frequency techniques. Nowadays, the study of both specular and
non-specular electromagnetic scattering mechanisms is crucial in the design of all
high performance airborne vehicles with low radar cross section (RCS). Shaping and
radar absorbing materials are commonly employed to reduce the radar reflectivity of
these vehicles. However, in most cases, only the specular contributions from electri-
cally large structures can be effectively reduced by shaping. This leaves non-specular
or diffraction contributions primarily caused by edges, creeping waves and surface
diffracted waves, as the dominant terms. It is, therefore, important to examine the
effect of radar absorbing materials in controlling non-specular scattering.

A common technique for RCS control is to use radar absorbing coatings and over
the past few years much attention has been given to the electromagnetic charac-
terization of such coatings. Methods have been developed to simulate the material
coatings by approximate boundary conditions which offer several advantages in both
asymptotic and numerical analyses of electromagnetic problems. For example, in the

case of asymptotic/high-frequency analysis, the coating can be replaced by a single



boundary condition suitable for the application of the Wiener-Hopf technique [1,2] or
some other function theoretic approach [3,11]. In numerical analysis, the replacement
of the profile of the coating with a single boundary condition eliminates the need
to introduce unknown polarization currents inside the coating. This, significantly,
reduces the total number of unknowns and results in a more efficient solution.

The standard impedance boundary condition (SIBC) [4] has been frequently em-
ployed to simulate composite material coatings on metallic structures. However, it is
well-known that the SIBC simulation is accurate only if the coating is very thin and
has a high index of refraction. One of the major reasons for this is because the SIBC
cannot model the polarization current components which are normal to the coating.
To improve the accuracy of the SIBC simulation, higher order impedance boundary
conditions were recently developed [5] and found to be capable of simulating thicker
coatings with greater accuracy. These conditions involve higher order derivatives of
the fields beyond the ﬁrst:. and can be thought as a generalization to the SIBC. They
are ,therefore, referred to as the generalized impedance boundary conditions (GIBC)
and one of their advantages is again a simplification in the analysis.

In our study, the SIBC and second order GIBC will be used for a characteriza-
tion of the edge diffraction, creeping wave and surface diffracted wave contributions.
The characterizations will be carried out via asymptotic/function theoretic methods
which have been traditionally used in high-frequency studies (i.e. where the scat-
terer is many wavelengths in size). An important advantage of the asymptotic/high-
frequency techniques over numerical methods is that the scattered field from a com-
plex structure is a priori subdivided into contributions from its different components.
This gives an insight into the importance of each scattering contributor which is par-

ticularly useful for designing vehicles with given radar cross section. Among the most



popular asymptotic/high-frequency methods are the geometrical theory of diffrac-
tion (GTD) and physical theory of diffraction (PTD). The GTD /PTD formulations
can permit characterizations of non- metallic geometries but require the appropriate
diffraction coefficients associated with a specific discontinuity in surface curvature
or material composition. These diffraction coefficients play a role similar to the re-
flection and transmission coefficients of the GO reflected and transmitted rays and
can be determined from an exact analytical solution of a corresponding canonical
geometry. Unfortunately, this has only been rigorously accomplished for a handful
of geometries which primarily include metallic edges and wedges at normal and skew
incidences [6]-[8], second order surface discontinuity [9,10], impedance wedges at nor-
mal incidence [11], thin dielectric and resistive edges at normal and skew incidences
[12,13], impedance or material discontinuities in a plane [14,15] and the right-angled
wedge at skew incidence with one of its faces perfectly conducting [16]. Solutions
may be also found in the literature for creeping wave characterizations and for some
non-generic configurations.

The main goal of this dissertation is to develop asymptotic/high-frequency so-
lutions for analyzing the non-specular scattering mechanisms produced by coated
convex surfaces and edges simulated by the approximate boundary conditions. Also,
to validate the accuracy of these asymptotic solutions, integral equations are derived
on the basis of the employed SIBCs and GIBCs. The integral equation solutions are
then used for benchmarking the proposed asymptotic expressions. Some insights are
also provided on the accuracy of the employed GIBCs for the subject geometries.

The organization of this dissertation is as follows. In chapter two, both the
SIBCs and the GIBCs are presented for simulating a material coating on a metallic

substrate. The GIBCs involve higher order derivatives having coefficients which are



determined using the exact reflection coefficient of the metal-backed coating. As an
illustration, the simulation of metal-baked uniform and three layer dielectric coatings
is given.

Chapter three deals with numerical solutions on the basis of a second order GIBC.
The GIBCs have so far been presented for simple planar surfaces such as a uniform
coating on a ground plane [5,17] and a resistive sheet [17,18]. Of practical interest,
hc;wever, is the application of these conditions to multilayer and inhomogeneous
coatings and layers forming arbitrarily curved surfaces. In this case, the derived
GIBC for a planar coating is extended to the curved surface by postulation. The
accuracy of such an extension as a function of curvature is, of course, in question
and its examination for surfaces other than circular, spherical or elliptical requires
a numerical solution. In chapter three, a numerical implementation of a second
order GIBC, simulating the coating on a metallic cylinder of arbitrary shape, is
considered. Integral equations, for both £ and H- polarization, are derived and
solved numerically using the method of moments. Results are presented for a single
and three layered coated circular and ogival cylinder and the accuracy of the given
GIBCs verses SIBCs is discussed. This numerical implementation is, also, needed to
validate the asymptotic/high-frequency solutions, for a convex coated cylinder which
is presented in chapter four.

In chapter four, the non-specular scattering mechanisms like creeping waves and
surface diffracted waves are considered as applied to a coated convex cylinder. Rig-
orous UTD (uniform geometrical theory of diffraction) diffraction coefficients are
presented for this geometry simulated with SIBCs and GIBCs. In particular, ray so-
lutions are obtained which remain valid in the transition region and reduce uniformly

to those in the deep lit and shadow regions. These involve new transition functions



in place of the usual Fock-type integrals, characteristic to the perfectly conducting
cylinder. A uniform asymptotic solution is also presented for observations in the
close vicinity of the cylinder. The diffraction coefficients for a convex cylinder are
obtained via a generalization of the corresponding ones for the circular cylinder. Re-
sults are presented which validate the accuracy of the ray solutions by comparing
them with those obtained from the eigenfunction solution and the numerical solution
of chapter three.

Chapter five deals with a most crucial source of non-specular electromagnetic
scattering, that of diffraction by an impedance wedge. A normal incidence solu-
tion for the diffraction by an impedance (SIBC) wedge having arbitrary included
angle is already available [11]. On the contrary, for skew incidence, solutions have
only been obtained for impedance wedges having included angles of 0 (half plane)
(12,13,14,15,19], /2 (with one face perfectly conducting) [14,15,16,20], = and 37/2
(with one face perfectly conducting) [14,15,19]. This is because enforcement of the
SIBCs on the wedge faces leads to a set of four coupled functional difference equa-
tions which can only be decoupled for the special cases mentioned above. In chapter
five, we present an approximate solution of the coupled difference equations by again
employing Maliuzhinets’ method [11]. The derived solution recovers those for an
impedance wedge of arbitrary included angle at normal incidence and an impedance
half plane at skew incidence. The reduction of the approximate solution to that for
the right- angled wedge (the only other known exact solution) is done numerically.

In chapter six, we examine the accuracy of the approximate skew incidence dyadic
diffraction coefficient (developed in chapter five) for a variety of different wedge
angles. This is accomplished by comparison with numerical data obtained from a new

moment method solution of the coupled set of integral equations for skew incidence



on an impedance polygonal cylinder. The solution of this coupled set of integral
equations provides the surface currents which are integrated to yield the scattered
field on the diffraction cone. The corresponding (first order) high-frequency solution
for the far zone scattered field for the polygonal cylinder is then compared to the
results from the moment method code.

The skew incidence diffraction coefficient for an impedance wedge is essential for
computing the electromagnetic scattering of practical three dimensional impedance
structures. To test the usefulness of the approximate skew incidence solution for
such 3-D structures, equivalent currents are presented in the context of PTD for
a finite length impedance wedge of arbitrary internal angle. These are derived in
chapter seven and are incorporated in a standard general purpose physical theory
of diffraction (PTD) code [21). Many patterns are computed on the basis of this
code which demonstrate the accuracy of the formulation for a number of different
impedance structures. These include typical shapes such as plates, finite length cones
and cylinders which have been partially or fully coated. The PTD implementation
required a dyadic physical optics (PO) diffraction coefficient which is derived in

appendix A.



CHAPTER II

SIMULATION OF COATED STRUCTURES
BY APPROXIMATE BOUNDARY
CONDITIONS

The use of composite materials, in the form of a uniform or non-uniform coating
applied to a metallic substrate, has led to the development of methods for simulating
material effects in electromagnetic scattering. A possible approach is to employ
approximate boundary conditions which offer several advantages in both asymptotic
and numerical analyses of electromagnetic problems. For example, in the case of
asymptotic/high frequency analysis, it allows an accurate replacement of a coating
or a layer with a single boundary condition amenable to a Wiener-Hopf analysis [1,2]
or some other function theoretic approach [3]. In numerical analysis, the profile of a
coating can be replaced by a single boundary condition on the surface of the coating.
This eliminates a need for introducing unknown polarization currents within the
coating and thus leading to a more efficient solution.

Traditionally, the standard impedance boundary condition (SIBC) [4] has been
employed to simulate dielectric coatings on perfectly conducting objects. However,
as is well known, the SIBC provides limited accuracy and is only applicable to lossy
and/or high contrast coatings. One of the major reasons for this is because it cannot

model the polarization current components that are normal to the dielectric layer.



The SIBC has, therefore, been found to be best suited for near normal incidence
unless the coating’s material properties are such that penetration within the coating
is limited.

The SIBC is a first order condition in that its definition involves a single normal
derivative of the component of the field normal to the modeled surface. Recently
[5], however, a class of boundary conditions were proposed whose major character-
istic is the inclusion of higher order derivatives (along the direction of the surface
normal) of the normal field components. These were originally introduced by Kane
and Karp [22], Karp and Karal [23], and Wienstein [17] to simulate surface wave
effects, but have been found to be rather general in nature. In fact, they can be
employed to simulate any material profile with a suitable choice of the (constant)
derivative coefficients. Appropriately, they are referred to as generalized impedance
boundary conditions (GIBCs) and can be written either in terms of tangential or
normal derivatives provided a duality condition is satisfied [5]. Unlike the SIBCs
they offer several degrees of freedom and allow an accurate prediction of the surface
reflected fields at oblique incidences. This was demonstrated in [5] for the infinite
planar surface formed by a uniform dielectric layer on a ground plane. It was found
that the maximum coating thickness accurately simulated by a given GIBC is related

to the highest order derivative included in the condition.

2.1 Standard Impedance Boundary Conditions (SIBCs)

The most common approximate boundary condition is the standard impedance
boundary condition (SIBC). It allows us to solve a two media problem while solving
explicitly for the fields only in one. This is achieved by relating the tangential fields

along the surface which takes into account the effective material composition of the



second medium. The idea of impedance boundary conditions was first introduced by
Leontovich (see [24]) and, later, Senior [25]-[27] reviewed and expounded upon the
use and limitations of this principle. For the metal-backed dielectric layer shown in

figure 2.1, the impedance boundary condition can be mathematically written as

Figure 2.1: Metal-backed dielectric layer.

E-(2-E)ya=nZ(7 x H) (2.1)

where 7 is the normal to the surface, 7 is the surface impedance, Z is the free
space impedance and E and H are the total electric and magnetic fields respectively.
For the metal-backed layer of thickness é in figure 2.1, 5 is given by (an e/“* time

dependance has been assumed and suppressed throughout)
N
n= ]e—tan(Nle) (2.2)

where k = 27/} is the free space wave number, N = /&%, is the index of refraction
whose magnitude is assumed to be large, ¢, and g, are the relative permittivity
and permeability of the layer, respectively. Senior [26,27] has shown that a dual

relationship exists for (2.1) where ZH — —E/Z, E — H and g — + giving

F—(ﬁ-'ﬁ)ﬁ=-niz (# x B) (2.3)
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The vector form of the SIBCs given in (2.1) and (2.3) can also be applied to curved
surfaces. However, it is required that the penetration depth of the electromagnetic
field must be small compared with the minimum thickness and minimum radius of
curvature p, of the body, and the local wavelength in the material must also be small

compared with p,. These conditions can be summarized as [27]
[ ImN|kp, > 1 (2.4)

It is to be noted that SIBCs support both electric and magnetic surface currents

J and M, respectively, where
J=axH, M=-axE (2.5)
and the use of (2.1) yields the relationship between the two currents as
M=—-nZaxJ (2.6)
2.2 Generalized Impedance Boundary Conditions (GIBCs)

2.2.1 Single Layer Coating

Consider the planar single-layer coating shown in figure 2.1. An appropriate

boundary condition that simulates the coated structure takes the form [5,23]

M e O™

—_—F =0 2.7
2 Sk o (2.7a)
Mg am

_Om 9" g 2.7b
X S g (2.75)

where the constants a,, and a}, are specific to the material and geometrical properties
of the simulated structure and must be derived to allow an accurate reproduction of

the field in the region y > 0.
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Expressions given in (2.7) are scalar forms of a class of GIBCs. Because, however,
they involve normal derivatives, they are not convenient to implement numerically
neither do they provide a physical meaning of what they represent. It is, therefore,
important to express (2.7) in terms of tangential derivatives. As shown in [5], this
can be accomplished provided a,, and a, are not chosen independently. For example,
when M =1, (2.7a) and (2.7b) can be reduced to (2.1) and (2.3), respectively, where

we identify n = ao/a; = aj/ag as the surface impedance. For M = 2, (2.7) becomes
n 1/ 8o

azEy_ aQq BEy_ (177
Oy?  jka, Oy  k2a,

E, =0

0°Hy, ey OH, a
O0y?  jkay, Oy  k%d}

H, = 0

which can also be written in terms of tangential derivatives and, thus, exposing their
non-local character. From [5] we have that (2.8) are equivalent to

!

i x (gx [E— 22 v(g-E‘)D = _Btdg. [F- 2 v(g.'H‘)] (2.9)

Jkay a Jkay
provided the duality condition

/!
a _ax+ao
a; + ag a;

(2.10)

is satisfied.
The vector form of the boundary conditions (2.9) allows us to write it in a
coordinate-free form, thus, making it applicable to non-planar surfaces. Referring to

figure 2.1, (2.9) may be rewritten as

. Lol a2 ., =\ [)_ e+ta,. | a .
nX(nx[E—jkGIV(nJE)D—— - an[H—jka;V(n-H)] (2.11)

where 7 denotes the unit normal to the surface at the point of application.
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There are a number of methods that can be employed for deriving the constant
coeficients a,, and a’,. One approach is to expand the plane wave reflection coef-
ficient in a suitable form leading to the identification of the constants. A second
method is a generalization of that employed in [1], where the boundary condition
at y = 0 is derived by transferring the fields from the ground plane to y = 0 via a
Taylor series expansion. Below we derive a second order GIBC by using the first of
the methods mentioned above.

Consider the plane wave

Hi = eiHzcond'+ysing) (2.12)

incident on the surface y = 0, shown in figure 2.1, satisfying the GIBC given in (2.7).
The implied reflection coefficient is then
M
Y (-1)™amsin™ ¢’
R( ¢I) = _m=0 -

Z Qy, SIN™ ¢’
m=0

with an analogous expression for the reflection coefficient associated with E,-incidence.

(2.13)

We are interested in finding the constants a,, when the GIBC simulates the single
layer coating shown in figure 2.1. This can be accomplished by expanding the ex-
act reflection coefficient corresponding to the given coating in a form comparable to
(2.13) and thus allowing idéntiﬁcation of the constants a,,. For an H-polarized plane

wave incidence, the exact reflection coefficient can be written as

vV NT —cos? ¢ tan (k&\/N! — cos? Z’) + jersin ¢’

Ru(4) = 2.14
VNT = cos? § tan (k&/?w — cos? 3’) — je sing’ (214)
The corresponding reflection coefficient for E-polarization is
, VNT Zcos?¢ — jp,sin ¢’ tan (k&/W’ — cos? 5’)
Re(¢') = - (2.15)

VNT Zcos? ¢ + J 4rsin @' tan (k&m)
where R;(4') and R.(¢') are both referred to y = 0.
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2.2.1.1 Low Contrast GIBCs

The low contrast conditions can be derived by introducing the approximation
tanz = z in (2.14) for |N| small [28], giving

késin® ¢' + je, sin® ¢’ + k6(N? - 1)

N~ — 2.16
RBa(#) késin® ¢' — je,sin® ¢ + k(N2 — 1) (2.16)
from which the constants a,, are easily found to be
2 _
a, = -(-N—e-&,?é (2.17a)
a = -] (2.17b)
ké
a; = — 2.17c
2= (2.17¢)

Following a similar procedure, we may also derive the constants a!, corresponding

to E,-incidence. We have

a,=1 (2.18q)
d, = jku6 (2.185)
a,~0 (2.18¢)

2.2.1.2 High Contrast GIBCs

The high contrast conditions assume |N| to be large and, therefore, using the

approximations

1  sin®¢
N?—cos?¢ x N — — 4+ ——
vV cos? ¢ 5 + 5 (2.19)
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ké k6 .,
—_ — ! 2.20
tan(2N31n qS) R oy sin (2.20)
in (2.14) leads to the constants
1 ké
= -— - 2.21
g = (N - N) [tan(k&N) tan (2 N)] (2.21a)
= —jé& |1 + tan(kéN)tan ks (2.21d)
r 2N

G = — [tan(k&N)—ta.n(ka) +46(N - L)

2 2N N
(2.21¢)
{1 + tan(k8N) tan ( 2’3‘3) }]
o= (N-o) [1 + tan(kSN) tan ( 2’“13)] (2.224)
= it [ta.n(k&N) _ tan ( 2";)] (2.228)
dh= o [1 + tan(k6N) tan ( 2";) s (N-5)
(2.22¢)

Lot - g

In the above, the boundary conditions implied by (2.17)-(2.22) are referred to the

surface y = 0%.

2.2.2 Three Layer Coating

The simulation of multilayer coatings is of more practical interest and in this

section we consider the derivation of GIBCs applicable to a three layer coating with
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arbitrary constitutive parameters. The geometry of the coating is illustrated in figure
2.2. For H-polarization the exact reflection coefficient referenced to y = 0 can be

written as

5 1
82
83
Figure 2.2: Illustration of a three-layer metal-backed coating.
’ Fy (¢')
R == 2.23
h(¢ ) FD ( ¢,) ( )
where

Fnp(¢') = eereskyokykyz cos(kyabs) cos(ky6;) cos(ky16;)
— eleskyok?, cos(ky363) sin(ky262) sin(ky1 6:)
— € Cgkyokyl kys sin(ky363) Sin(kyg 62) COS(ky1 51)

- Cfézkyokyg ky3 sin(ky353) COS(kﬁ&g) sin(kyl 51)
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F jeaeak? kyz cos(ky3bs) cos(ky282) sin(ky161)
F jaresky kz2 cos(ky363) sin(ky262) cos(ky161)
+ jesk2 kys sin(ky363) sin(ky26;) sin(ky1 61)

F jer€akyr kyakys sin(kyabs) cos(ky262) cos(ky161) (2.24)

with

kyn = ky/N2 — cos? ¢/ (2.25)

N, = \/énpin and ky = ksin ¢'.

2.2.2.1 Low Contrast GIBCs

To put (2.23) in a form compatible with (2.13) we must now expand the terms
sin(kynds) and cos(kynd,) in powers of sin¢’. The simplest case is to assume that

kynb, is sufficiently small allowing us to set
sin(kynbn) = kyndn (2.26)
and
cos(kynbn) = 1 (2.27)

Clearly (2.26)-(2.27) also implies that N,é, must be small and thus the resulting
boundary conditions will be valid for low contrast and thin coatings.

Substituting (2.26)—(2.27) into (2.23) and retaining only terms up to and includ-

ing O(6,) we obtain

s ME=DRE (N -1)kE (NG~ 1)kéy

€1 €2 €3

(2.284)
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ay = —j (2.28b)

0=k (ﬁ Lo 5_3) (2.28¢)

6 € €
When these are subsequently introduced into (2.9) or (2.11) we have a second order
(low contrast) GIBC for simulating a thin three-layer coating. The generalization
of (2.28) to any arbitrary number of layers is obvious provided the total coating
thickness remains small.

Following a similar procedure we may also derive the constants a;, corresponding

to E,-incidence. We have

ap=1 (2.29q)
a'l = jk(ﬂltsl + ,u262 + ﬂ353) (229b)
a; =0 (2.29¢)

These imply a first order condition, but by retaining higher order terms in the ex-

pansion we find that

ap = pipz — (Nl2 - 1) S (Nf - 1) (2.30a)
ay = jkpapz (1161 + p26z + pabs) (2.308)
a'2 = —(01 <+ (12) (2306)

in which

oy = kP iy paby [—j p1 k6163 + 63
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and
a = k2ﬂ251 (262 + p3bs)

2.2.2.2 High Contrast GIBCs

For large N,, the approximations (2.26)-(2.27) are not valid. In this case it is

more appropriate to set

1 sin® ¢’
— 2 2 A/ ~ -— — .
kn = k\/N2? —cos’¢' = k (N,, A + A ) (2.31)

and expand the resulting sine and cosine terms appearing in (2.24). This, however,

leads to a 12th order GIBC that is obviously impractical to employ analytically and
numerically. Instead, a more reasonable approach is to assume that the three layers
comprising the coating have varying refractive indices. In practice, the top layer
usually has a small refractive index whereas the bottom layer has a larger refractive

index. With this assumption we set

sin(kyl 61) ~ ky161 (2.32)

cos(ky16y) = 1 (2.33)

1 ¢’
kys = k\/Ng —cos?¢ ~ k (Nz - m + 3121;\[:5 ) (2.34)

sin (% sin? ¢') % sin? ¢’ (2.35)

Q

kés .
cos (-2—-N;51n2 ¢') ~ 1 (2.36)
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and

k,s = ky/N2 — cos? ¢/ & kNj (2.37)

Employing (2.32)-(2.37) into (2.23), after much tedious -algebra we find that
a sixth order GIBC is required [28] to recover the resulting reflection coeflicient.
This can be truncated to a second order GIBC with the pertinent constants for

H-polarization given by

. 1
ag = —J€z€3 (N12 - 1) (N2 - '2—]\[—2) k51

~ jeres (N2 =1) tan [(N2 - 2172) k52]

+ je& (N2 = 1) Nk, tan [(N2 - 51%2) ksz] tan(Nakss)

. 1
— J€&1€2 (N;_) - ——) N3 tan(N3k53) (2380)
2N,

1
= - N, — _)
“ 6‘6263( > 2N,

+ €les (N2 = 1) k6 tan [(N2 - L) k&z]

5N,
+ &1&N; tan [(N2 _ 1 ) ksg] tan(Nské)
A
1
+ (N2 _ —) Nyké, tan(Nskés) (2.385)
A
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1
ag = j6263(N12 - 1) (N2 - L) k51'k—51tall [(Nz - ‘_') k‘SZ]

2N2 2N2 2N2

: (N --1—) k61 — jeses(N? — 1) kS

— Jé€z€3 2 2N, 1 — J€2€3(iVy 2N, 1
ké, . 1

. 2 —
— J€ae€s (N2 - 1) m — J€&i€3 tan [(Ng 2N2) k&g]
+ je (N2 -1) N3k51k—5’tan(1v3k53)

2 1 2N2
+ jeNské, tan [(N2 - L) k&z] tan(Nskés)
2N,
. 1 ké, 1
- —_— - e ké.

T Iae (N’ 2N,) Nasn, tan [(N 2 2N,) "’5’] tan(Nskbs)

; 1
- ]€1€2§-N;N3 tan(N3k63) (2.380)

Similarly, for E-polarization, we find
1
a:) = Wo i3 (le - 1) (N2 - m) k51 tan(N3k63)
1
+ pips (N22 - 1) tan [(Ng - m) k&z] ta.n(N3k63)

+ u2(N? = 1)N3k6; tan [(N2 - —1—) ksg]
o,

— [(1\/2 - 51-1@) Na] (2.39)
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' : 1
ay = —Jp1paps (Nz - m) tan(N3kés)

. 1
+ jutus (N2 - 1) k6 tan [(N2 - -2-5,;) k62] tan(Nskés)

. 1
- ],ulllgN:; tan [(Nz - Ev_z) k&z]

1

— jHi (Nz - m) Nské (2.390)

1
@y = paps (N? 1) o, K61 tan(Nakés)

1
+ pap3 (Nz - '2—]\72) 6, tan(Nakés)

— Uai3 (Nl - 1) (N2 - i—lv—z) k61§1V2tan [(N2 g 2—1%) k&z] tan(N3k63)

1
+ K13 tan [(N2 - ‘2-172') k&z] ta.n(N3k63)

k6,
+ paps(NZ - 1)517"’2tan(1v3k53)

1 ko

1 1 ké 1
- ——N. ( N, — __) -2 [( - __) ]
pa 2 A 3+ pap2 N N3 5N, tan | [ N; A kb, (2.39¢)



CHAPTER III

NUMERICAL IMPLEMENTATION OF GIBC

In this chapter, we pursue a numerical implementation of the boundary condi-
tions (2.11) in a manner similar to that employed in conjunction with the standard
impedance boundary conditions (2.1)-(2.3) [29,30,31). Of interest in this implemen-
tation is an examination of the accuracy of the second order GIBCs over that of
the SIBCs in simulating a dielectric coating over a metallic structure. So far, GIBCs
have been generated for simple planar surfaces such as a uniform coating on a ground
plane [5,17] and a resistive sheet [17,18]. Of practical interest, however, is the ap-
plication of these conditions to multilayer and inhomogeneous coatings and layers
forming arbitrarily curved surfaces. In this case, the GIBC as derived from the cor-
responding planar structure/surface is extended to the curved surface by postulation.
The accuracy of such an extension as a function of curvature is, of course, in question
and its examination for surfaces other than circular or elliptical requires a numerical
solution. For a closed surface, the GIBCs equivalently replace the entire effect of the
coating, thus, eliminating a need to introduce polarization currents within the dielec-
tric. This is an important advantage of the GIBCs leading to a simpler formulation

and a reduction of unknowns in the numerical implementation.

22
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3.1 Integral Equation Formulation
3.1.1 H,-incidence

Consider the plane wave
Hi = ejk(zcos¢'+ysin¢') (3 1)
: .
incident upon a three-layer coated cylinder of arbitrary cross section as shown in

figure 3.1. For a two dimensional curved surface having large radius of curvature,

the GIBC given in (2.11) simplifies to

//////

77/,
//////{/

2
//////////// ///
////

Figure 3.1: Illustration of a three-layer coated cylinder.

E, = ao+a2ZH +Za2 0?

- 5l (3.2)
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where we have also employed the relation

_ jZ 0H,
B, =

3.
e (3.3)
We note that (3.2) is identical to that implied by (2.9) if we let E; — E,, E, — E,
and 9/0z — 0/0s.

To compute the scattered field by the configuration in figure 3.1, a traditional

approach is to introduce the electric and magnetic surface equivalent currents (see

figure 3.2)

element

Figure 3.2: Equivalent current model and illustration of the discretization parame-
ters.

J = axH= SH, = 8J, (3.4)
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M = Exh=3E, =:M, (3.5)
on the outer surface of the coating where E and H denote the total fields on C.

From (3.2) and (3.4)—(3.5) we then find

- _ |G0taz a2 9? = =
Mz(r) - a + k2a1 632 ZJ-’(T)’ r e C (3‘6)

Enforcement of the GIBC, thus, eliminates one of the unknown current components.
In the case of a first order GIBC (SIBC) the relationship between M, and J, is linear
as implied by (2.6). The appearance of the second derivative in (3.6) is therefore
attributed to the higher order condition and provides an added accuracy in the
simulation of the coating.

To construct an integral equation for the surface current J,, we now enforce the

condition
H,=J,=H +H (3.7)
on C where
1= -2 [ M EOkp)ds' +2 [ 1) SO ko) (39)

is the scattered field. In (3.8), H represents the zeroth order Hankel function of
the second kind and d/dn’ denotes differentiation along the direction normal to C at

the integration point. Also,
p=F-7]| (3.9)

where 7 and 7 are the two dimensional position vectors defining the observation and
integration points, respectively. The differential element ds’ denotes arc length along

the integration contour C.
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Substituting (3.8) into (3.7) and making use of (3.6) leads to the integral equation

i _ a0+a2 . d as 0? (1) ) -
Hi(F)=J,(F) 4/J,, [ g + e o3| B (ke)as', 7€ C(3.10)

To solve this numerically we may discretize C into N straight segments, as shown in
figure 3.2, and assume a constant current distribution on each segment. By enforcing

(3.10) at the center of each of the N segments, we then obtain the discrete system

[Vm] = [Zml] [Jal] (311)

for a solution of the current distribution J,. In (3.11), [J,] is a column matrix with
Jut, £ =1,2, ..., N denoting the current on the £th element of C. [V,] is the excitation

column matrix whose elements are given by
Vo = Hi(Fm), m=1,2,...,N (3.12)

in which 7, denotes the location of the observation/test point (see figure 3.2). Fi-

nally, [Z] is a square impedance matrix whose elements can be expressed as

Zot =1+ Zpy+ Zry + 23, (3.13)
with
ka + aq
7, = Fate pogg res ,
o= g [ EO ke, = (314)
2 _ _J[ 4,0 ' e =
z2 = -1 /C P UCOL I (3.15)
o?

73— @ (2) -
m 4ka, Jc, Ban (kp)ds',  T=Tn

02

4
= 1 (G p)HY )(kp)]u_%, F=Fn (3.16)



27
in which
Te = 8¢8¢ + neie
denotes the center of the ¢th integration cell of width A. The vectors 3, and 7,
represent the unit tangent and unit normal, respectively, to the surface at 7. It
is necessary to evaluate the integrals in (3.14) and (3.15) analytically for small r

and this can easily be accomplished after Z}, and Z2, are written in terms of local

coordinates. To do so, we define the observation vector 7, as

Tm = Smdm + Nty = SmeSe + Nmefie (317)

¥

s'Se + n'f, (318)

and by substituting these into (3.14) we obtain

k 8—8me+2
7l,=S%ta / T HO(eV/F  72)ds (3.19)

¢ 4 a t=3me—%
where # = ny,, — n, . Similarly, for Z2, we have
] d 8=3m. +A
2 18 / T HY (eVE A7) ds (3.20)

™ LR Jrpmamed
The analytical expressions for the integrals in (3.19) and (3.20) have been developed
in [32] by using a small argument expansion of the Hankel function to O(p*, p*In p).
Once the current distribution has been determined from (3.11), the far zone fields
can be easily evaluated using (3.8). By introducing the large argument approximation

of the Hankel function into (3.8) we find

e—jkr k. N

s x .

Hz Ir—uoo = \/F A -é;eJ 4 Z JaleJk(ﬂ[u[+2al€l)
=1

sin(kAg) [ - 2ot 22 (3.21)

kAL,
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where

ve = (fe-%)cosd+ (- y)sing

% = (3 %)cosd+ (3,-9)sin¢ (3.22)

and (r, #) denote the usual cylindrical coordinates of the far-zone observation point.

The echowidth of the structure is defined by

|H; 2
= o 1R 2
o=, i 620
and can be computed via (3.21).
3.1.2 E.-incidence
When the coated cylinder is illuminated by the plane wave
E; = gik(zcosd'+ysing’) (3.24)
the equation (2.11) simplifies to
ap + az a’2 62
E,=-———7H,—- ——=—— —FE, 3.25
a k%(ay + ap) Os? (3.29)

and we observe that this is the dual of (3.2) upon letting a,, — @/, and invoking

(2.10). The equivalent currents are given by

J = axH=—:2H,=3J, (3.26)

M = Exn=-3E, =M, (3.27)

From (3.25) we also have

/ / ! 2
Jo(F) = - (a" ta, o 9 > Y M,(F), FeC (3.28)

a} k%a} 0s?
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which is dual to (3.6).
To construct an integral equation for the magnetic current M, we follow the same

procedure as that employed in the case of H,-incidence. On C,
E.=-M,=E.+E: (3.29)
where E? is the scattered field given by

z

E = / J.(F)HO (kp)ds / M, ")-——Hm(kp)d (3.30)

Introducing (3.28) into (3.30) and substituting into (3.29) leads to the integral equa-

tion

i (=) — l - ao+ag _.d ' 0 ()
—E,(7F) = M,(7) + 4./CM'(T) [k( p ) gt Tl 83'2} Hy”(kp)ds',

This is dual to (3.10) and its numerical solution can be accomplished in a manner
parallel to that employed for (3.10). Also the far zone field is given by the dual of
(3.21).

3.2 Numerical Results

This section addresses the numerical accuracy of the high and low contrast second
order GIBCs in comparison with the SIBCs and other standard formulations. A
determination of the GIBC’s range of validity by comparison with simulations based
on exact solutions or other validated numerical techniques is also presented.

Figure 3.3 presents a numerical comparison between the GIBC, SIBC and the
exact solution with TE-incidence on a uniformly coated circular cylinder. As seen,

the SIBC is quite accurate in simulating thin coatings. However, as the coating
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thickness increases, it no longer remains accurate and this is demonstrated in figures
3.3(b) and 3.3(c). We note that the low and high contrast GIBCs employed to
generate the curves in figure 3.3 were obtained by setting 6; = é3 = 0.

Figures 3.4 and 3.5 show a comparison of results based on the low and high
GIBCs for different permitivities and coating thicknesses. In particular, figure 3.4
includes data corresponding to constant thickness, single coatings. As expected, the
low contrast GIBC shows a better agreement with the exact solution in the case
of low contrast material and the high contrast GIBC is more accurate for higher
permitivities. The curves in figure 3.5 correspond to constant permittivity coatings
and it is now seen that the high contrast GIBC is more accurate over the low contrast
GIBC as the thickness of the coating is increased. Data obtained from numerous tests
suggest that the agreement between the low contrast GIBC and exact solutions is
acceptable for /e § < 0.15\ with H-polarization and for /e § < 0.20)\ with E-
polarization. The range of validity of the high contrast GIBC is unfortunately a
function of the refractive index and thickness as depicted by the plot in figure 3.6.

The aforementioned conclusions on the range of validity of the high and low
contrast GIBCs were based on data for a single uniform coating on a circular cylinder
of radius 1. Of course, other parameters such as the radius of the cylinder and
homogeneity of the coating are of importance. Although these were not accounted
for in this preliminary study, some general suggestions can be noted based on our
experience. In particular, when the relative permeability is not unity, it is reasonable
to assume that the range of validity of the conditions will be between those stated for
the E and H polarizations. Also, when the conditions are applied to model multiple
layer coatings, an average permittivity can be computed before making use of the

criteria given above. Representative scattering patterns from a multilayer cylinder
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are given in figure 3.7 and as seen, the agreement with corresponding numerical data
[32] is good.

Since the presented GIBCs were derived on the assumption of a planar surface,
it is of interest to examine their accuracy in simulating surfaces having small radii
of curvature and/or discontinuities in the first derivative. With regard to the first
issue, the conditions have been employed to model smooth coated cylinders down to
at least A/4 in radius without any appreciable deterioration of their accuracy. The
second is addressed by using a second order GIBC to simulate a uniformly coated
ogival cylinder. Scattering data based on the low and high contrast GIBC are shown
in figure 3.8 and compared with data based on a finite element boundary integral
[33] method. We note that the accuracy of the GIBC formulation tends to decrease
with increasing eccentricity of the ogive. In general, though, the agreement between
the exact and GIBC-based solutions remains good for tip angles (a) greater than
60 degrees. However, the accuracy of the GIBC simulation can be greatly improved
by replacing the sharp tip of the ogive with a rounded one (having radius of about
0.01)) and increasing the sampling around the tip. This is demonstrated in figures
3.9 and 3.10 for tip angles of 36° and 30°, respectively. The agreement between the
FEM and the GIBC solutions tends to deteriorate as the tip angle goes below 30
degrees.

The results presented up to this point correspond to uniform coatings. As noted
earlier, though, the GIBCs can be employed to simulate coatings of varying thickness
and layered material composition. Figure 3.11 presents data for an ogive coated with

a constant thickness coating having non- uniform € and/or u.
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3.3 Summary

Second order generalized impedance boundary conditions (GIBCs) were used
to derive integral equations for scattering by two-dimensional coated structures-of
arbitrary cross-section and implemented using a moment method procedure. Results
based on this numerical implementation were then compared with corresponding data
based on an exact solution or from other validated computer codes. It was found that
the proposed second order boundary conditions provide an improved simulation of the
coating in comparison with the traditional standard impedance boundary condition
and guidelines were given for their region of validity. The primary reason for the
improved simulation is because the second order GIBC includes the effect of the
polarization current components normal to the coating in addition to the tangential
ones. In general, the presence of edges deteriorates the accuracy of the simulation
particularly for thicker coatings. This is due to the inherent non-uniqueness of these
boundary conditions at abrupt terminations, a situation which can only be remedied
by introducing additional field constraints at the terminations [51,52]. The second
order GIBCs were found to be equally effective in simulating non- planar coatings

having laterally non-uniform but smoothly varying material properties or thickness.
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CHAPTER IV

HIGH FREQUENCY SCATTERING BY A
SMOOTH COATED CONVEX CYLINDER
SIMULATED BY APPROXIMATE
BOUNDARY CONDITIONS

This chapter deals with the subject of non-specular scattering mechanisms aris-
ing due to creeping waves and curved surface diffraction. A rigorous UTD solution
is developed here for the diffraction by a coated convex cylinder simulated with
the approximate boundary conditions (SIBCs and GIBCs). In addition, a uniform
asymptotic solution is obtained which remains valid when the observation point is in
the close vicinity of the cylinder. One of the objectives of this exercise is to demon-
strate the use of the approximate boundary conditions, presented in chapter two,
for the development of analytical solutions for curved surfaces. These asymptotic
solutions are then validated using the eigenfunction solution for a coated circular
cylinder and using the numerical data based on the integral equation formulation
developed in chapter three for a general convex cylinder.

The problem of scattering by a smooth convex impedance cylinder has received
much attention. Wang [34,35] presented ray-optical solutions for the impedance and
coated cylinders. His results are valid only in the deep lit and shadow regions and do

not apply to the case where the observation point is in the transition region. Wait
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and Conda [36,37] developed a solution which is valid in the transition region and
for observation points on and off the surface. However, as pointed out by Pathak
[38] it does not uniformly reduce to the ray solution [39,40] exterior to the transition
regions. Also, it is not valid on the portion of the surface in the transition region
and these limitations were the primary motivation in Pathak’s work [38] for the
perfectly conducting convex cylinder. Recently, Kim and Wang [41] presented a
solution applicable to a coated cylinder that remained valid in the transition region.
They employed a heuristic approach to obtain the numerical values of the resulting
transition integral applicable to a coated cylinder. Their solution is uniform but is
not applicable in the close vicinity of the cylinder.

The UTD solution to be presented here parallels that given by Pathak [38] for the
circular perfectly conducting cylinder. However, in the case of the coated cylinder
the resulting UTD expressions are in terms of Fock-type integrals whose efficient
evaluation is of primary interest. In the following, we first present the eigenfunction
solution based on the second order GIBC simulation of a circular coated cylinder.
By employing Watson’s transformation this is written in integral form which is then
cast in a ray representation. The ray solution is subsequently generalized to the case
of a general convex cylinder. Finally, the evaluation of the Fock-type integrals is
discussed and some results are presented which validate the accuracy of the GIBC

ray solutions.
4.1 Eigenfunction and Integral Representation

Before considering the problem of scattering by a convex impedance suface, it is
instructive to first develop a solution for the diffraction by the canonical geometry

of a circular impedance cylinder. Generalizations to any convex surface can then be
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made on the basis of the expressions obtained for the circular cylinder.

Consider the plane wave
u' = u e’ = u,eikreond (41)

incident on the coated circular cylinder shown in figure 4.1a, where u, is the ampli-
tude of the wave and u’ denotes either the E, or H, component of the incident field.
We propose to simulate the circular cylinder with an equivalent one (see figure 4.1b)

satisfying the GIBCs. This implies that (2.11) takes the form

_ (az + a.,) GQZ 62H,

E¢ = o ZH, -— m a¢2 (4.2)
for H,-incidence or
_ (a2 + a,) as 0*E,
Be= = 20~ G, 7o) 0 (43)

in the case of E,-incidence. In the above, a,, and a, were derived in chapter two for
the low and high contrast GIBCs.
An eigenfunction representation of the total field in the presence of the cylinder
can be generally written as
u'= Y " [Jn(kp) + AnHP (kp)] €794 (4.4)
where J,(-) is the Bessel function of order n and H(*)(-) denotes the nth order Hankel
function of the second kind. To find the constants A, we enforce the GIBC given by
(4.2) or (4.3) at p = b. This yields

_ __ Ja(kb) + Q(n)Ju(kD)
H®Y (kb) + Q(n) B (kb)

(4.5)

in which the prime denotes differentiation with respect to the Bessel or Hankel func-



P(p,9)

(®)

Figure 4.1: (a) Coated circular cylinder (b) equivalent coated cylinder simulated with
GIBCs.
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tion argument,

(

—g (2atee _ 2_ﬂ_) -inci
J ( = n’ o for H,-incidence

Q(n) = 4 (4.6)

1 1 1
_ . fa +ao _ p) a ) _. .
| —J (—2—— n FF;?;' for E,-incidence

[
¢

and when a; = a} = 0, Q(n) reduces to

(

=] %'f = —jn for H,-incidence

Q) =Q = (4.7)

. .

' . .
—j=- ]':; for E,-incidence
\ 1

Since (4.4) is a slowly convergent series, especially for large kb, our objective is
to obtain asymptotic representations for u' suitable for practical applications. We,
therefore, seek uniform expressions for the total field in the lit, shadow and transition
regions. Such expressions should also recover the well known geometrical optics field,
where applicable. To obtain a ray representation of (4.4) in conjunction with (4.6) we

must first recast u! in integral form. Employing the usual Watson's transformation

[6] and noting that @Q(n) = Q(—n), we find [38]

ut = uy +up

w=u, [ _ LB+ QUKD iy ] e g, a
1 °/.°° [Ju(kp) Hx(fz)l(kb)+Q(V)H.(,2)(kb)Hv (kp)] d (4.8a)

or

_ H{Y'(kb) + Q(v)HSV (kD) HO
O (kb) + Q(v) HP (kb) ™ *

(kp)] e dy  (4.8b)

and

. = w [ _ L) + QW) (kY) ]em/z
g/ [""("’ 7 (o) + Q@ EP ) )
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e—ju(27r+¢) + e—ju(21r—¢)
dv

1- e—j2u1r

in which

v=ldl-3

(4.10)
and Q(v) is given by (4.6) upon letting n — v. The field component u;, defined
above, includes the geometrical optics and dominant surface diffraction contributions
whereas u; denotes the creeping waves which circulate around the cylinder more than

once. We are interested in an asymptotic evaluation of u; and to do this we must

separately consider each of the space regions illustrated in figure 4.2.
4.2 Field in the Deep Lit and Shadow Regions

In the deep lit region, the geometrical optics incident and reflected rays represent
an accurate first-order high-frequency approximation of the total field. The geomet-
rical optics field can be extracted from u; upon performing an asymptotic evaluation
of (4.8) yielding [42]

-~

u®(Pp) ~ u'(PL) + w'(QR)Ran ﬁ%l;e—f“ (4.11)

in which

a) — a} cos ' + a), cos? '
a! + a} cos 6% + a!, cos? 6

R, ~ (E, - incidence) (4.12a)

a, — a, cos 0" + ay cos? O

Rh ~ - : :
a, + a, cos 6 + a, cos? 6°

(H, - incidence) (4.120)

are the reflection coefficients associated with the coating [5]. The parameter 6' is

illustrated in figure 4.3 and £ is the distance (must be large) from the surface reflection



48

Lit Region L

Reflected
Ray

L1

I
Incident
Rays

Figure 4.2: Different regions associated with the plane wave scattering from a smooth

convex cylinder.

point Qg to the observation point Pr. Finally, 5 is the reflected ray caustic distance

and for a convex cylinder it is given by

~ ps(QR) cos 0
p= 9

py(QRr) is the radius of curvature of the surface at Qg and is equal to b for the circular

cylinder.

For observations in the deep shadow region, a residue series representation of u,

is more appropriate. From (4.8), we obtain

H (kp)e™n(-3)

4 =
U = -—uoic—l; Z

At HO(k0) 2 [HP (kb) + Q(v) D (kb))

(4.13)

(4.14)
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Figure 4.3: Reflected ray path.

where v,, are the zeros of the transcendental equation
H®' (kb) + Q(vm) HP (kb) = 0 (4.15)

Obviously, (4.14) does not provide a ray-picture interpretation of the creeping-wave
diffraction which is desirable for generalizations to non- circular cylinders. To recast
(4.14) in a form compatible with the Keller type GTD format, the Debye approxi-

mation must be employed for the Hankel function for kp > |vy,|. This yields

d i e~k
up(Ps) = u'(Q1)Ton 7 (4.16)
where
Ton= =3 Du(Q@) - €7 - Dp(Q) (417)

m=1
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is the corresponding diffraction coefficient and for the circular cylinder

Dn(@1) = Dn(Q2)

2 4 ¢’
[‘gﬂ HE)(keb) 2 {HP (kD) + Q) B (kb))

with @ as defined in figure 4.4.

(4.18)

s

v=vm

Figure 4.4: Propagation ray paths in the shadow region.

A generalization of (4.16)-(4.18) for convex cylinders is now possible by making

the replacements

b = py(Qr2) (4.19)
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: t'(Q2) yp, (1)
=jvm8 T dt 4.20
¢ - eXP[ ~ /t'(ol) po(t)) ] 20

Consequently, the attachment coeflicient Dy, (@) is no longer equal to the launching

coefficient Dy, (Q2).

4.3 Field in the Transition Region

The geometrical optics and creeping wave solutions presented above are not valid
in the transition region close to the shadow boundaries as illustrated in figure 4.2.
New uniform expressions are, therefore, required to overcome this limitation. These
can be derived following the procedure adopted by Pathak [38] for a perfectly con-

ducting convex cylinder. For the lit region we find

~

ur(Py) ~ v(Py) + w'(Qr)Rop eIkt (4.21)

PR

where R, is now given by

R ,,_-\/:exp{ (‘”')3}[ : \/_{1 F(2k£ cos 0’)}+G(z,q)] (4.22)
F(z) = 2j /7™ / 77 dg (4.23)
= —2m(QR) cos § (4.24)
m(Qr) = {kﬁg—Q—’ﬁ}% (4.25)

and
p= eg(anﬂ . (4.26)

F(z) is the UTD transition function [43] and G(z’,q) is defined by

et o V(r) - g(r)V(r)

G(z',q) =
&9 = | W) et W)

e~ dr (4.27)
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in which
g(r) = mQ(v) (4.28)
whereas V() and W, 4(7) are the Fock-type Airy functions [44]

2jV(r) = Wi(r) = Wy(r) (4.29)

1 3
Wia(r) = 7 P”e"-' Bt (4.30)

The contour I'; runs from coe™ T to 00— je and T'; is the complex conjugate of T';.
We remark that in the case of an SIBC simulation, ¢(7) becomes a constant.
For the shadow region, we have
e-iks

ui(P,) ~ us(Ql)T.,hW (4.31)

where the diffraction coefficient T} 4 is now redefined as

Ton=—y/ (Ql)m(QZ)\/%e—jkt [2::;7—‘, {1 = F(ksd)} + G(z,q) (4.32)

in which
“@ m(t) ,,
z = —=dt 4.33
/t'(ax) py(t') (4.33)
t'(Q2)
t = dt’ 4.34
La (4.34)
and
2
T
a = 4.35
2m(Q1)m(Q2) ( )

As is usually the case, (4.21)-(4.35) were first derived for the circular cylinder

and were subsequently generalized for non-circular convex cylinders.



53

4.4 Field in the Close Vicinity of the Convex Cylinder

In all of the above derivations we have assumed that £ is large. Consequently, the
given expressions are not adequate for field computations very close to the cylinder.
In this case, it is possible to obtain a suitable approximation of the integral (4.8)
by replacing the Hankel and Bessel functions in terms of Airy integrals and then
employing a Taylor series expansions for these integrals.

Following a procedure similar to the one given in [38], the resulting expressions

for an arbitrary smooth convex cylinder are

u(P) ~ u'(Py) [c‘jh" -3 gznl!l(jhz’)" + e:j'%‘y' {A1(2') = A2(Z)}|  (4.36)

n=0

when P is in the lit region, and

(P (@ [ B 0,6) - e (431
when Py is in the shadow region. In (4.36) and (4.37)
2 3 4 5
M(D) = (D) + i rgh(D) ~ 5u(D) = Trgl(D) ~ jazai(D)  (439)
B3 b B
M4(D) = haa(D) + j-34(D) = 255(D) = 5:54(D) (4.39)
1 [ e~Dr
a(D)= 7 [ B e A (4.40)
L (G i
2 D = — T .
#0)= 72 | v - o’ (41
7' = —m(Py) cos ¢ (4.42)
for Py in the lit region and
- t'(Pn) m_(t'_) ,
], o (4.43)



for Py in the shadow region

t(Py)
t = /t’(Ql) dt (4.44)
_ kd(Pyn)
b= (4.45)
d(Py) = p—pe(PN) (4.46)

The points P and Py in the lit and shadow regions are illustrated in figure 4.5. We

remark that when the cylinder’s surface obeys the SIBC, g; (D) simplify to

Ll
~—

(Field Point) (Field Point)
P e, d P < = }

(In Shadow Zone) (In Lit Zone)

Figure 4.5: Projection of the field point P in the direction normal to the surface at
Py.
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g1(D) = g(D) = L / = e dr (4.47)
VT J-co W3(1) — qWa(T)
92(D) = mQg(D) (4.48)

In the case of slowly attenuating creeping and/or surface waves (4.36) is not
adequate and an improved result may be obtained by adding (4.36) and (4.37) with
t > wb (in case of a circular cylinder of radius b). Clearly, the addition of (4.37)
corresponds to the contribution of the creeping wave that has travelled the minimum
distance on the cylinder’s surface to reach Py. The contribution of those creeping
waves that travelled more than once around the cylinder is given by u; and could be
added to u; if greater accuracy is required.

The functions g;(D), g2(D) and G(z, q) are Fock-type integrals that are formally
the Fourier transform of a slowly varying factor consisting of a quotient of terms
containing Airy functions and their derivatives. A computationally efficient scheme
was proposed by Pearson [45] for the evaluation of these integrals. The scheme is an
extension of the Fourier trapezoidal rule devised by Tuck [46] to treat the rotated-ray
exponential behavior occuring in the integrals. The sampling frequency used in the
computation is dictated by the slowly varying Airy-function factor in the integrands.
Sufficiently accurate results have been obtained for both lossy and non-lossy coatings

on a perfectly conducting cylinder using this scheme.

4.5 Numerical Results

The UTD expressions derived in the previous sections provide a complete set of
equations for the computation of the total field in all regions of interest. In this
section, we present some calculated data which validate the accuracy of the derived

expressions by comparison with data based on the moment method and eigenfunction
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solutions.

P(p,9)

Figure 4.6: Elliptical cylinder configuration.

To show the validity of the UTD solution in the case of a convex cylinder, a
special case of an elliptical cylinder (see figure 4.6) is considered in figure 4.7. Data
based on the moment method solution are compared with the one obtained from the
UTD solution in conjunction with the second order low and high contrast boundary
conditions. Figure 4.8 verifies the asymptotic solution, developed for the field point in
the close vicinity of a convex cylinder. We remark, however, that the approximations
used for the Hankel functions in the derivation of (4.36) and (4.37) become less
accurate for some values of €, and g, associated with lossless coatings, and this can

be avoided by using more accurate approximations for the Hankel functions. Finally,
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figure 4.9 demonstrates the use of GIBC in simulating multilayer coatings by simply
redefining the material constants a,, and al, as discussed in [47,48].

A difficulty in implementing the expressions derived in this work was the evalua-
tion of the Fock-type integrals G(z, q), g1(D) and go(D) as well as the determination
of the zeros corresponding to (4.15). The Fock- type integrals were evaluated by em-
ploying the method described in [45] and the zeros of (4.15) were determined using

the routine given in [49].
4.6 Summary

Rigorous ray solutions of the scattered fields were presented for a coated convex
cylinder. These were developed in the context of the uniform geometrical theory
of diffraction and specific expressions were given for the scattered fields in the lit,
shadow and transition regions as well as for observations in the near vicinity of the
cylinder. That is, UTD expressions were derived for all regions exterior to the coated
cylinder. These are suited for engineering computations and are given in terms of the
generalized Pekeris or Fock-type functions whose evaluation was efficiently performed
via the Fourier Trapezoidal rule suggested by Pearson [45].

In comparison to the solution given by Kim and Wang [41], the ray representations
given here are based on a second order generalized impedance boundary conditions
which permits the simulation of thin multilayered coating as demonstrated in the
included examples. Also, in our implementation of the transition fields we employed
a rigorous rather than a heuristic evaluation of the Fock-type integrals. Further, we
have presented accurate field representations for observations on or near the vicinity
of the coated cylinder and these can also be used for computing the radiated fields

by a source or an aperture on the surface of the convex cylinder.
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CHAPTER V

AN APPROXIMATE SOLUTION FOR
SCATTERING BY AN IMPEDANCE WEDGE
AT SKEW INCIDENCE

So far, in the previous chapters we developed and validated diffraction coefficients
for smooth coated convex cylinders simulated with the approximate boundary condi-
tions (SIBCs and GIBCs). These diffraction coefficients can be utilized to study the
non-specular scattering mechanisms caused by creeping waves and surface diffracted
waves. In this chapter we will consider other sources of non-specular electromagnetic
scattering, namely those associated with diffraction from first derivative discontinu-
ities as in the case of edges and wedges coated with lossy material.

A normal incidence solution ‘for a wedge with arbitrary included angle and hav-
ing SIBCs imposed on its faces is already available [11]. However, the diffraction
coefficient obtained from this solution is only applicable to two dimensional struc-
tures and for practical applications it is necessary to derive coefficients applicable to
three dimensional structures. This can be accomplished by solving the impedance
wedge problem with a plane wave excitation at skew angles. Unfortunately, the exact
solution to this problem has only been obtained for a few wedge angles. In particu-
lar, solutions are possible only for wedges having included angles of 0 (half- plane)

(12,13,14,15,19], /2 (with one face perfectly conducting) [14,15,16,20], = and 37 /2
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(with one face perfectly conducting) [14,15,19]. The main difficulty in obtaining the
skew incidence solution for the diffraction by an impedance (SIBC) wedge is the lack
of techniques to solve the resulting four coupled functional difference equations. For
the specific wedges mentioned above the four difference equations can be decoupled
yielding the solution given in the references but their decoupling for other wedge
angles has so far eluded researchers.

In this chapter, an approximate solution is developed for an impedance wedge at
skew incidence using Maliuzhinets’ method [11). This solution exactly recovers the
known ones for an impedance half plane and the normal incidence wedge solution.
A major effort is devoted to the validation of the approximate solution and for this
purpose a moment method code was developed for computing the scattering by an
impedance polygonal cylinder excited at skew incidence. The formulation forming

the basis of this code is deferred until chapter six.

5.1 Modified Form of the SIBCs

Consider an impedance wedge geometry shown in figure 5.1 having an external
angle of 2@ = nx with surface impedances 7,2 and 7-Z at ¢ = +® and ¢ = -9,
respectively. This impedance (SIBC) wedge is illuminated by a plane wave impinging

from the direction
i = —&sin B, cos ¢’ — §sin B,sin ¢’ + 3 cos B, (5.1)

where |¢/| < ® and B, represents the skewness angle and is equal to 7/2 when the

wave is incident normal to the wedge. The z components of the incident field are of

the form

Ei=e,e % ZH! = h,e 7 (5.2)
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ﬁy

0=-0

Figure 5.1: Impedance wedge geometry.

with Z being the intrinsic free space impedance.
We observe that the total field must have the same 2 dependence as the incident
field because the wedge is infinite along the 2 direction and the SIBCs are independent

of z. Therefore, from Maxwell’s equations

p0¢
E, = TksxlnTﬁ{ s g, aﬁ ba—p(zm)} (5.4)
ZH, = J—ks_iﬂ‘i {cos ﬂ,a%(ZH,) - %ZEJ} (5.5)
7= s G+ ot 2| (55)

and these can be used to rewrite the SIBCs in a more convenient form not involving

the z components of the electric and magnetic field. Beginning with the usual forms
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of the SIBCs given in terms of the tangential fields, we have

E,=FnsZH, at¢==0 (5.7)

E,=+n.ZH, at¢==d (5.8)

Differentiating these with respect to z we obtain (tangential differentiation of the

boundary conditions is allowed)

0E, __ 0H,
——az = niZ Oz (59)
0E, . 0H,

Alternatively on multiplying (5.7) with p and then differentiating (5.7) and (5.8)

with respect to p yields

0 0

a—p(PEp) = =F171Z‘5;(PH:) (5.11)
OE, . _0H,
ap = :l:niZa—p (5.12)

and these are of course equivalent to the previous two sets.
Other alternative boundary conditions can be obtained by combining the sets
(5.9)-(5.10) and (5.11)—(5.12). In particular, by dividing (5.11) with p and adding

the resulting equation to (5.10) we get

10E, O0H, OH 1
2 _ 7| =L - - .
o = ( e ) F LA, (5.13)
where we have also used the divergence condition
= 10 10E, OE
V. .E=-—(pE,) + ——— Z = .
S3p B+ S5y 5 =0 (5.14)



65

However, (5.13) can be simplified further upon noting that

(22222

- =1 5.15
2 ap) JKYE, (5.15)

when this is introduced in (5.13) along with (5.7) we obtain the condition

0E,

kpEy+ E, =0 5.16
¥ S & jnekpEy + (5.16)
which is just another form of the SIBC not involving any of the z field components.

Proceeding in a similar manner, we can combine (5.9) and (5.12) to obtain

OH,

—k =0 1
¥ :i:J pHy + H, (5.17)

which is obviously the dual of (5.16). As we shall see in the next section, equation
(5.16) and (5.17) are the most convenient forms of the SIBCs necessary for the

application of Maliuzhinets’ method in the case of skew incidence.

5.2 Derivation of the Functional Difference Equations

To apply Maliuzhinets’ method [11] for the solution of the impedance wedge

diffracted fields we begin by first representing the total fields in the presence of the

wedge as
—szoosﬁo
Ez = eJkpunﬂocosa .
S ! Se(a + ¢)da (5.18)
e—jkzcoﬂﬂo o
- 7kpsin B, cos o
ZH, = ——— J e Su(a + ¢)da (5.19)

These are complete spectral representations where « is the Sommerfeld contour shown
in figure 5.2 and S, are unknown spectral functions.
The goal in the subsequent steps is the explicit determination of S, 4 on the basis

of the governing Maxwell’s equations and the boundary conditions (5.16)-(5.17). On
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Figure 5.2: Sommerfeld contour 4 in the complex a plane.

enforcing the boundary conditions (5.16)- (5.17) at ¢ = £& along with (5.3)-(5.6)

we obtain

/e]kpsmﬁocoaa (sina:t

~

72 sin ﬂo) {cos B, sin aSy(a = D)

+cosaS.(a+®)} =0 (5.20)

jkpsinBocosa | _: N+ .
/ e (sm at o ﬂo) {cos B, sin aS,(a + ®)

S

—cosaSp(ax®)} =0 (5.21)
These are four coupled integral equations and we observe that S, are decoupled
when cos 8, = 0 corresponding to the case of normal incidence. Note that the top
and bottom face impedances 74 appear in the dual factor multiplying the integrands
and this is a consequence of the new SIBCs (5.16)-(5.17). According to Maliuzhinets

(1], the necessary and sufficient condition to satisfy (5.20) and (5.21) is that the
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integrands be even functions of a. A mathematical statement of this is

A%(a) {cos aS.(a £ ®) + cos B,sinaSy(a £ @)} =

cos aS.(—a £ ®) — cos B, sinaSy(—a + ®)

A%(a) {COS ﬂo sin aSc(a + q)) — COoSs aSh(a + @)} =

— cos B, sin aS.(—a £ ®) — cos aSy(—a = @)

where
A% (@) sin & % sin 6%,
a) = — -
eh —sina % sin Bf'h
with
. 1 +
sin 0% = — sin §% = _71_
7+ sin B, sin B,

(5.22)

(5.23)

(5.24)

(5.25)

Equations (5.22) and (5.23) are functional difference equations which are coupled

and cannot in general be solved for S, x(a) in a closed form. In the case of normal

incidence (cos 3, = 0), the difference equations take the form

A%(a)S.(a £ @) = S.(—a+ ®)

AE(a)Sh(a £ 8) = Sp(—a £ @)

(5.26)

(5.27)

and each of these difference equations can then be solved independently via Mali-

uzhinets’ method. Equations (5.22) and (5.23) can also be decoupled for some special

cases by employing certain suitable linear combinations of the spectral functions S,

and Sy [15]. In particular, separation can be achieved for
(a) a half plane (& = )
(

b) a two part plane (® = 7/2)

(c) a right angled wedge with one face perfectly conducting (® = 37 /4 and

® = 7/4).
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5.3 Approximate Solution of the Difference Equations

In this section, we shall consider approximate solutions of (5.22)-(5.23) for ar-
bitrary impedance wedge angles and surface impedances n:. As mentioned earlier,
these are coupled and cannot be separated for an arbitrary wedge angle ® (& < )
and B3, (0 < B, < n/2). However, approximate solutions can be obtained which
will be shown to be of acceptable accuracy over a certain angular sector exterior to
the wedge. In the following, three approximate solutions to the difference equations
(5.22)-(5.23) are presented whose combined validity range encloses the entire region
of interest. Since most wedges of practical interest have /2 < ® < =, we shall

restrict our study to this region.

5.3.1 Separation Method I

For this separation method we shall assume that @ is near 7 (& = 7 being the
half plane case) and at the same time B, is close to /2 (8, = 7/2 being the normal
incidence case). The resulting solution for S. 4 is expected to be most accurate for
wedges having ® ~ 7 and/or B, = 7 /2. We also expect that the approximation will
recover the known half plane solution and that at normal incidence with arbitrary

wedge angle. On our way to obtain such an approximate solution, we first divide

(5.22) and (5.23) by cos a giving
A%(a){cos B, tan aSy(a + &) + S.(a + &)} =
— cos B, tan aSy(—a + @) + S,(~a £ @) (5.28)
and

A¥(a) {cos B, tan aS.(a + &) — Sy(a + B)} =

—cos B, tan aS,(—a + @) — Sp(—a = ) (5.29)



69

We now have two options in proceeding with the decoupling of (5.28) and (5.29). We
may, for example, opt to satisfy the boundary conditions on the upper face (¢ = +®)
exactly and only approximately on the lower face (¢ = —®). Alternatively, we may
instead choose to satisfy the boundary conditions on the lower face of the wedge
exactly and only approximately on the upper face. Proceeding with the first option,

we introduce

ti(a + @) = cos B, tan aSi(a + ®) + S.(a + P) (5.30)
t2(a + ®) = cos B, tanaS.(a + ®) — Sp(a + P) (5.31)
Then
ti(a — ®) = cos f, tan(a — 28)Si(a — ®) + S.(a — B) (5.32)
to(a — @) = cos B, tan(a — 20)S.(a — ®) — Si(a — B) (5.33)

and on noting that
cos B, tan(a — 2@) = cos f, tan a — cos 3, tan 2@ {tan(a — 2®) tana + 1} (5.34)
we can rewrite (5.32) and (5.33) as

ti(a — @) = cos f, tan aSi(a — ®) + Se(a — ®) + b () (5.35)

t2(a — @) = cos B, tan aS,(a — @) — Sy(a — @) + by(a) (5.36)
where

bia(a) = — cos B, tan 2® {tan(a — 2®) tan @ + 1} Sy .(a — &) (5.37)



70

Substituting now (5.30), (5.31), (5.35) and (5.36) into (5.28) and (5.29) yields the

new difference equations
Al (a)tio(a + @) =ty o(—a + B) (5.38)
for the upper face and
AZp(@)tio(a = @) =ty o(—a — @) + p12(a) (5.39)
for the lower face of the wedge with

pi2(a) = A, ()b 2(a) — by o(—) (5.40)

To decouple t; and ¢, on the basis of (5.39) and (5.40) it is necessary that we
set p12(a) = 0 and this approximation affects primarily the boundary conditions
imposed on the lower impedance wedge face. To observe this let us replace a with
a+® in (5.38) and with a—® in (5.39). When the resulting equations are subtracted,

we obtain
Al (a+ @)ty 2(a +20) - enla = ®)t1a2(a —28) = fi2(a) (5.41)

where

2cos f3,sin 2@ Aoy
cos 20 + cos4® cos 2a + sin 4P sin 2o~ Ot

fiz2(a) = —p12(a—9) a-9)

2cos 3,sin 2®

-Shela —28) —
he(a ?) cos 2P + cos 2a

She(—a) (5.42)

For f12(a) = 0, the two difference equations (5.41) become linear first order homoge-
neous functional difference equations and can be solved via Maliuzhinets’ method for
t; and t,. It is interesting to note that fi,2(a) is identically zero when cos 3, sin 2& =

0. Thus on setting f; 2(e) = 0, the resulting solution for t1,2(c) is the exact one for

the cases where
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(a) B, = 7/2 (normal incidence with arbitrary wedge angle)

(b) @ = 7 (half plane with arbitrary S,)

(c) ® = 7/2 (two part plane with arbitrary f,).
Therefore, any solution of (5.41), based on the assumption that cos 3,sin2® ~ 0,
will exactly recover all three cases mentioned above.

Once t; 5(a) are found from a solution of (5.41), the corresponding Sen(a) spectra

are obtained by inverting (5.30) and (5.31). First, we rewrite these as

t1(a) = cos ﬂo:—:-:%-—_-—g—))sh(a) + Se(@) (5.43)
t2(a) = cos ﬂo-(s:—:;((z—:i%&(a) — Si(a@) (5.44)

and from these we readily find that

Se(a) = pm sizgsgfsi;z?{)x ) {cos(a — ®)t;(a) + cos B, sin(a — ®)t2(a)} (5.45)
Si(a) = cos(a — 0) {cos B, sin(a — ®)t,(a) — cos(a — ®)ty(a)} (5.46)

1 — sin? B, sin?(a — )

From Maliuzhinets [11], a solution of (5.41), with f;2(e) =~ 0, which is free of
poles and zeros in the strip |Re(a)] < @ is the auxiliary Maliuzhinets’ function
¥(a,8},,0;,) defined by the product

™

‘I’(a70:}n0e—,h) = \I’Q(a+®+-7-2r-—-0:h)\ll¢(a—¢—2+0;h>

Ty (a+ o -%+0j_,,) e (a-— &+ - o;,,) (5.47)

where Ug(a) is the Maliuzhinets’ function for which simple analytic expressions are
given in [50]. For large |Im(a)|, this function has the property

[Im(e)|

li 1] = ik Sl |
oo 18(2) O{“’p 8® } (5.48)
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where O(-) is the Landau symbol. We may thus express t;5(a) as

¥(a,07F,,07,)

ti2(a) = 01,2(e) TERGA (5.49)
where o 2(@) satisfies the equation
o12(at ®) =o012(—ax®) (5.50)
and from (5.38) and (5.39) its presence is allowable since
AL (@)¥(a+ @) = U(—a+ ®) (5.51)
In accordance with (5.50) the most general solution for oy3(e) is
012(a) = sin™ (%) (5.52)

where m is an integer. However, before proposing any form of y,2(a), we note certain
characteristics that must be satisfied as dictated by the physics of the problem. They
are:

(a) 01,2(e) must have a first order pole singularity in the strip |Re(a)| < @ at

a = ¢' to allow recovery of the incident field

(b) S.x(ea) = O(constant) for large |Im(a)| (since the fields at the edge take

a constant nonzero value)

(c) 01,2() should contain the pole singularities associated with the term

1/cos(a — ®) which lie in the strip |Re(e)| < 7. This is a consequence of

the solution procedure.

In view of these requirements, o 5(a) should be of the form

1 ’
;COS £ Cc,h. D eh

01,2(a)=A1,2. o nﬂ_*_ . o . o . o . o
sin & —sin = (sm o —sin -;'l) (sm S —sin -;f-)

(5.53)

The coefficients A, 2, C.» and D, 4 are constants to be determined and o; = & — 1

a; = ® — 3% represent the zeros of cos(a — @) in the strip |Re(a)| < 7.
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The constants A; ; are obtained by requiring that the final solution recovers the

incident field. For this, it is necessary that

_ cos(¢' — @)
* 7 1 —sin? B, sin®(¢' — @)

{cos(¢’ — ®)A; + cos B, sin(¢' — ®)A,}  (5.54)

€

'—® . ' '
h, = T si:gs[gfsinz(tz' —3) {cos B,sin(¢' — ®)A; — cos(¢' — @) A} (5.55)
giving
A, = cos B, tan(¢' — ®)h, + e, (5.56)
A, = cos 3, tan(¢’' — ®)e, — h, (5.57)

To determine the constants C., and D, , we note that the expressions for S,
given in (5.45) and (5.46) have four undesirable poles, all in the strip |Re(a)| < =.

-1
These are associated with the multiplying factor {1 — sin? B, sin*(a — @)} and are

given by
fi2 = (q> - g) ta, o= (<I> - %’i) ta, (r/2<0<71) (5.58)
with
a,=jln (ta.n %) (5.59)
so that cosa, = csc§, and sina, = —j cot B,. Each one of these poles corresponds

to an inhomogeneous plane wave which grows exponentially with increasing kp in
some region of space and it is thus necessary to remove these poles by choosing the
constants C., and D, such that the numerator of S, goes to zero at these poles.

From (5.45), the conditions, which must be satisfied to eliminate these undesired

poles are

+ity (Q—giao) +ig (@-—%:!:ao) =0 (5.60)
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+jt, (<1> - 3?” + a,,) +ig (<1> - 3?” + ao) =0 (5.61)

which are four equations sufficient for determining the constants C,, and D, ;. A set
of conditions, identical to (5.60)—(5.61), can also be obtained by similar arguments
imposed on (5.46). Thus cancellation of the undesired poles for S.(c) is carried over
to Si(c).

To obtain the z components of the far zone diffracted field, we first deform the
Sommerfeld contour shown in figure 5.2 into a steepest descent path. A non-uniform
evaluation of the integrals via the steepest descent method then yields

—jkpsinBo ,—3%
e’ e 7%
E?

: ¥ " Joxkpem By {Se(¢—7) = Se(d+ )} (5.62)

Q

—jkpsinfo ,~i %
ZH ~ W {Su(é = 7) = Sa($+ )} (5.63)

We note that in the far zone, the above z components of the diffracted field are

proportional to the corresponding 3, and ¢ components via the relations
E}=—sinf,Ej ~ ZH? = —sinB,ES (5.64)
Similarly, for the incident fields
E,=sinB,E;, ZH.=sinp,E} (5.65)

The solution of the difference equations (5.28) and (5.29) as presented above re-
covers the exact solutions for the three special cases, namely those corresponding
to, normal incidence (B8, = 7/2) with arbitrary wedge angle, a half plane (arbitrary
Boy ® = 7) and a two part plane (arbitrary B,, ® = 7/2). An important feature
of this solution, lacked by other available solutions [13,14,15,19], is that a single

computer code can be employed to compute the scattered field for all three special
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cases mentioned above. However, our primary interest is to examine the accuracy
of the solution for other wedge angles. We expect, of course, the solution to deteri-
orate as the wedge angle and/or the skewness angle §, move away from the values
corresponding to the special cases. This is illustrated in figures 5.3-5.6 where far
zone backscatter (¢ = ¢') patterns are given as a function of the observation angle
# and for different wedge angles. Figures 5.3 and 5.4 show the patterns for internal
wedge angles of 0°, 10°, 20° and 30° with S, kept at 30°. In figures 5.5 and 5.6 £, is
varied from 90° to 40° while the internal wedge angle is kept constant at 30°. From
the plots in figures 5.4(b) and 5.6(b) we observe that the pattern deteriorates in the
region beyond the reflection boundary of the upper face or in other words when the
lower face becomes visible. This is concluded from the appearance of a false pole
and a false null in the pattern not corresponding to any physical characteristic. Such
a behavior is not unexpected because as noted earlier our solution emphasized the
upper face boundary condition whereas the boundary condition for the lower face
was only approximately satisfied since we arbitrarily had set f; ;(a) = 0. Next we
introduce new linear combinations t; and ¢; to separate the difference equations so
that the lower face boundary conditions are satisfied exactly whereas the upper face
boundary conditions are only approximately satisfied. The derived solution should

be more accurate for observations near the lower face of the wedge.

5.3.2 Separation Method II

To separate the equations for the lower face (¢ = —®) of the impedance wedge

we introduce the linear combinations

ti(a — @) = cos f, tan aSh(a — @) + S.(a — 3) (5.66)
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Figure 5.3: Far zone backscatter pattern for an impedance wedge having 7 = 1.0-
71.0, 7 = 0.5 = j0.1, B, = 30°, Eg,g1, (a) internal wedge angle = 0°, (b)

internal wedge angle = 10°.
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t2(@ — ®) = cos B, tan aS.(a — @) — Si(a — @) (5.67)
This implies that

ti(a+ @) = cos B, tan(a + 2®)Sx(a + @) + S.(a + @) (5.68)

t2(a + @) = cos f, tan(a + 28)S.(a + @) — Si(a + P) (5.69)

and on following the procedure outlined in the previous section we get the difference

equations
A;':h(a + Q)tl,g(a + 2@) b ;h(a - <I>)t1'2(a - 2@) = fm(a) (570)

where fi () is now given by

2cos 3,sin 2%
cos 2P + cos 4P cos 2a + sin 4P sin 2«

fig(e) =pra(a+@) = Al (a+9)

2cos 3,sin 2P

.S R ) —
he( +20) cos 28 + cos2a

She(—a) (5.71)

Again we note that f) () is identically zero when cos 8,sin2® = 0. This implies
that on setting f; 2(a) = 0 the resulting solution for ¢, 5(a) is the exact one for the
cases where

(a) B, = 7/2 (Normal incidence with arbitrary wedge angle)

(b) ® = « (Half plane with arbitrary 3,)

(c) @ = 7/2 (two part plane with arbitrary 3,).

The new expressions for S.(a) and Si(c) are

S(@) = — siz‘;s;o"s; f(’i Ty (oos(a+ @)t1(e) + cos fosin(er + @)a(a)} (5.72)
Si(a) = cos(a + 9) {cos B, sin(a + ®)t;(a) — cos(a + ®)tx(a)} (5.73)

1 — sin® B, sin?(a + ®)
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and the solutions for ¢; 3(a) are again of the same form as in (5.49). The expressions
for o1 2(a) will also be the same as given in (5.53) except for the replacements a; —

—o; and a3 — —a3. On imposing the requirement for the incident field we get

A, = cos B, tan(¢' + @)k, + e, (5.74)

A = cos B, tan(¢' + ®)e, — h, (5.75)

and the constants C.j; and D, can be found by cancelling the undesired poles of
' -1
Ser. These are now associated with the term {1 — sin? B, sin®(a + <I>)} and for

|Re(a)| < m are given by
T 3r
§12= (5 - ‘I’) ta, &a= (-2— - (I>) + a, (r/2<®<7) (5.76)

where a, is the same as before. From (5.72), the conditions which must be satisfied

to eliminate the undesired poles are

+jt; (%- <I>:i:ao> +1 (g —@iao) =0 (5.77)
.. (37 3
+5t (-—2—- —‘Pﬁ:a,) + 2 (—2-—(I>:I:ao) =0 (5.78)

leading to a 4 x 4 matrix for the solution of the constants Cepn and D.j. A non-
uniform steepest descent path evaluation of (5.18) and (5.19) will, then, yield the
far zone diffracted field as given in (5.62)(5.63) with the new expressions for S ; as
given in (5.72)- (5.73).

Figures 5.7 and 5.8 show the far zone backscatter (¢ = ¢') patterns of an
impedance wedge for internal wedge angles of 0°, 10°, 20° and 30° with 3, kept
at 30°. In figures 5.9 and 5.10, f, is varied from 90° to 40° while the internal wedge

angle is kept constant at 30°. Again, we note that the accuracy of the patterns



82

worsens as we move away from the special cases of a half plane (internal wedge
angle=0°) or away from normal incidence wedge (8, = 7/2). When the internal
wedge angle is not zero, close inspection of figures 5.8(b) and 5.10(b) reveals that
the pattern deteriorates in the region beyond the reflection boundary of the lower
face or in other words when the upper face becomes visible. This is concluded from
the appearance of a false pole and a false null in the pattern not corresponding to
any physical characteristics. Such behavior is not unexpected because our solution
emphasized the lower face boundary condition whereas the boundary condition for
the upper face was only approximately satisfied. The pattern is reasonable as long

as the observation point remains near the lower face.

5.3.3 Separation Method III

We next turn our attention to the case when both faces of the wedge are visible.
In order to obtain a solution of acceptable accuracy in this region, the difference
equations associated with the upper and lower faces of the wedge have to be decoupled
without introducing approximations to the implied boundary conditions. This can
only be done if all trignometric terms in S, () have a period of 2¢. However,
because of the presence of sin @ and cos « this is not possible unless they are replaced
by an expansion having that property. Suitable candidates for functions of this
expansion are

mroa mro T T
: 1AM m
s1n Cos smm —/—, COs' " — 5.79
i} ’ L] ’ ¢ ’ L) ( )

where m is an integer. From equations (5.62) and (5.63), we observe that in the final
evaluation of the far zone diffracted field, o eventually takes on the real values of
¢ £ 7. Also, to determine the constants A, ; we substitute ¢’ (a real valued variable)

in place of a. This suggests that we may treat o as a real variable and represent
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sina and cos a in terms of a Fourier series given by

o0

cosa = a, + Z @y, COS mre (5.80)
m=1 Q
. had . mra
sina = mE=1 bm sin 3 (5.81)
where
1 ? ? mra
a, = — [ cosada, / COS @ €OS da (5.82)
20 E
and
1 ? mra
bm = 3 / sin asin 3 da (5.83)

The above series representations will approach sin « and cos @, inside the real interval
[-®, ®], depending on how many terms in the series are used for the approximation.
Obviously, the expansion will deviate substantially from the actual values of sina
and cos a outside this interval. Since ¢ £ 7 (with —® < ¢ < @) replaces « in the
evaluation of the far zone field, we would like the expansions (5.80)—(5.81) to remain
accurate inside the intervals [-® — 7, ® — 7] and [-® + 7, ® + x]. From the above
we conclude that this is not the case, and consequently the Fourier series expansion
is not a suitable choice.

Another possibility for representing sin @ and cos a by a function of period 29 is
to use a few terms of the expansion with an, b, other than those given by (5.82)
and (5.83). In particular, we may choose the beginning terms of the series, namely
sin 7% and cos ¥ (where we have chosen b; = 1,4, = 0 and a; = 1 for the time
being), to approximate sin & and cos a, respectively. To establish a measure of this
approximation in representing sina and cosa for other ®, we refer to the plots of

sin 7 and cos 22 in figure 5.11. Clearly, for ® = 7 these approximations precisely
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recover sina and cosa. Introducing this approximation to replace sina and cos o

where they appear in S. () and in equations (5.22) and (5.23), we obtain

A¥(a) {cos ES,(oz + ®) + cos 3, sin %Sh(a + <I>)} =

®
“cos %C-Y-S,(—a + @) — cos B, sin %Sh(—a + P) (5.84)
A¥(a) {cos B, sin %S,(a + @) — cos Zr&?-.S';.(cu + <I))} =
— cos 3, sin %Se(—a + @) — cos Z:ITaSh(—a + 9) (5.85)

where A, (a) is the same as defined in (5.24). To separate the above equations, we

introduce the linear combinations

t1(a + @) = cos B, sin %Sh(a + ®) + cos quTaS,(a + @) (5.86)
ta(a + ®) = cos B, sin %“s,(a +®) — cos %‘is,,(a + @) (5.87)

which also imply that

t1(a — ®) = cos B, sin %Sh(a — ®) + cos %?-S,(a -9) (5.88)

t2(a — @) = cos B, sin %S,(a - ®) —cos %Sh(a - 0) (5.89)
Introducing these expressions in (5.84)-(5.85), we obtain

Al (@)t z(a+ B) =ty o(—a + D) (5.90)

A:’h(a)tl,z(a - Q) = tl,g(—a - @) (591)

which can be readily decoupled for a solution of t; 3(«). In particular, on replacing

a with a + @ in (5.90) and with a — ® in (5.91) and then subtracting (5.91) from
(5.90) we get

A;':h(a + <I>)t1,2(a + 2@) - A;,,(a - (I>)t1,2(a -_ 2@) = 0 (592)
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This is a difference equation identical to (5.41) with f; 2(«) = 0 and can be solved via
Maliuzhinets’ method for all wedge angles. We observe from (5.84) and (5.85) that
the solution of (5.92) for an arbitrary wedge angle will recover the exact solutions
for the cases when

(a) B, = 7/2 (Normal incidence with arbitrary wedge angle)
and

(b) ® = « (Half plane with arbitrary S,).

Once t; 5(a) are determined, the spectra S, (a) are found from the relations

-1 T . T
Se(a) = s fon & {cos Tb-tl(a) + cos B, sin -ah(a)} (5.93)
-1 . TQ T
Sh(a) = s’ f s {cos B, sin -(ITtl (@) = cos -Etg(a)} (5.94)
and these were derived by using the expressions
t1(a) = — cos f,sin %Sh(a) — cos %S,(a) (5.95)
t2(a) = —cos B, sin %S,(a) + cos %Sh(a) (5.96)

which follow from (5.86)—(5.89).
Let us now solve (5.92) for t;2(c). Following the procedure outlined before,
t1,2(a) can be written as in (5.49) with o 2(a) changed to

(]
leos &

o12() = A p—2—2— 7 T
sin & —sin £

Cop + Do sin -3- (5.97)
The above expression for o;2(a) is chosen to satisfy the conditions
(a) 01,2() must have a first order pole singularity in the strip |Re(a)| < @ at

a = ¢' to allow recovery of the incident field

(b) Sen(@) = O(constant) for large [Im(a)| (since the fields at the edge take
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a constant nonzero value).
The constants A;; are again computed so that the residue of the pole at o = ¢

yields the incident field. We have

¢’ '

A; = —cos B, sin —(I’--hz ~ cos —=-¢; (5.98)
] /
Az = —cos B, sin %e, + cos %—h, (5.99)

From (5.93) and (5.94), the undesired poles of S, ; in the strip |Re(a)| < 7 are given

by
£1.2 =Q, ijaia 63,4 = —ay :!:jai (5100)
where

(5.101)

) a; =

g— In (ta.n %)

The constants C.j and D, are determined in a similar manner as described earlier

to cancel these poles.

The specification of ¢; 2(a) and S, 4(a) is now complete, and the far zone diffracted
field can be calculated from the non-uniform steepest descent path evaluation of
(5.18) and (5.19). This far zone diffracted field, with ¢ = ¢', is plotted in figures
(5.12) and (5.13) for a half plane (internal wedge angle=0°) and for a wedge (inter-
nal wedge angle=30°). From figure (5.12), it is interesting to see that there is no
deterioration (i.e. no false peaks or nulls) in the pattern for the region between the
two reflection shadow boundaries. However, in figure (5.13), the comparison of the
cross-polarization patterns of the wedge with that of the half plane reveals that in
the case of the wedge there are two false poles appearing at ¢ = 15 F @ (reflection

shadow boundaries). To resolve this problem, we note that for a half plane (=)
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T

sin i 0, ata=-9,0 9 (5.102)
and
Ta T s
— = =—— ——9 5.103
cos = 0, ata 5 + 9, 5 ( )

which ensures that the poles in question do cancel out. However, for an arbitrary
wedge angle ® # =, (5.103) is no longer true. This suggests that we should replace
cos &2 with cos B + cos £ which goes to zero at @ = -5 + @, 7 — @ cancelling
the undesired poles just as it was done in the case of a half plane. We note that
this modification still permits our solution to reduce to the exact ones as discussed
above. In addition to this, the inspection of (5.84) and (5.85), yields that the normal
incidence (8, = §) wedge solution can still be recovered.

Replacing cos % by cos & + cos £ in (5.93)-(5.96), we obtain that

-1
Se(a) = ) )
cos? B, sin’ 24 (cos % +cos f)
Ta T .
. {(cos ry + cos ;z—) t1(a) + cos B, sin %gtg(a)} (5.104)
-1
S;,(a) >~

) 2
cos? B, sin’ 2+ (cos % +cos %)

. {cos B, sin %Itl(a) - (cos % + cos Z—) tg(a)} (5.105)

These expressions imply that

/ /
A, = —cos 3, sin %h, - (cos % + cos ’1:-) e: (5.106)
. ¢ ' T
A; = —cos B, sin Te, + (cos 3 + cos ;) h, (5.107)

and we observe that the incident field is recovered as required.
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The poles of S. 4 to be cancelled are now associated with the multiplying factor

91 -1
{cos2 B,sin? 22 + (cos T + cos %) } and for |Re(a)| < 7, these are

big=a, tjai, Ca=—arEjo; (5.108)
where
a, = = cos™! cos a; = |=In (tan B (5.109)
T2 sinB,|’ Y2 2

provided I%‘%I < 1. When :j—?él > 1, the poles are given by

b2 =%joi, Ga=tja, (5.110)
with
Xy, = ‘gln (m + \/x_g,-_l)l (5.111)
where
Ty =— (,:02% + c'os;ﬁ,, \/cos2 T_ sin® S, (5.112)
sin® B, = sin®f, n

The constants C.  and D, ; can now be determined in a similar fashion as described
earlier to cancel these poles. Figure 5.14 shows the far zone backscatter (¢ = ¢')
patterns of an impedance wedge having an included angle of 30°. It is clear from
figure 5.14 (b) that the replacement of cos % by cos £ + cos = takes care of the false
poles.

So far, we have developed three different solutions of the difference equations
represented by (5.22) and (5.23). The first and the second solutions were obtained
by separating the difference equations associated with the upper (¢ = +®) and the
lower (¢ = —®) faces of the impedance wedge, respectively. The third solution was

constructed by approximating the trignometric functions sin & and cos a terms with
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functions which were periodic in 2®. This led to the separation of the difference
equations associated with both faces of the impedance wedge. We note that all three
solutions recover the half plane (® = =, with arbitrary ,) and the normal incidence
(B, = /2, with arbitrary wedge angle) cases exactly. These three solutions can now
be employed to compute the far zone diffracted field with each solution to be used in
the angular region where it is expected to do better than the others. In particular,
the first solution should be employed when the observation angle ¢ is in the region
starting from the upper face ¢ = +® and ending at the shadow boundary (incident or
reflection) reached first from the upper face. The second solution should be employed
when the observation angle ¢ is in the region starting from the lower face ¢ = —9
and ending at the shadow boundary (incident or reflection) reached first from the
lower face. The third solution should be used in the region where the observation
angle ¢ is between the two shadow boundaries (both reflection shadow boundaries or
one incident and one reflection shadow boundary) of the wedge. Figure 5.15 shows
the regions where the three solutions should be applied. Using this criterion, the far
zone backscatter (¢ = ¢') patterns of an impedance wedge are plotted in figure 5.16
for internal wedge angles of 20° and 30° while f3, is kept constant at 30°. Figure 5.17
shows similar plots for two other values of 3, (namely 50° and 40° ) with the internal

wedge angle kept at 30°.

5.3.4 Test Results

The presented approximate solutions for an impedance wedge are expected to be
accurate when the internal wedge angle of the wedge is close to zero (a half plane)
and/or when the skewness angle f, is near 90° (normal incidence). However, it is

interesting to compare the results obtained on the basis of these approximate wedge
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solutions with the known exact solution for a right-angled wedge (internal wedge
angle = 90°) having one face perfectly conducting. This is the only known solution
not recovered by the given approximate ones. The accuracy of the approximate
solutions is obviously expected to be low in this case because the internal wedge
angle of 90° is quite far from the special cases recovered by the approximate solutions.
Figures 5.18-5.21 show backscatter patterns for both like- and cross- polarizations
with (3, having values of 60° and 30°. We observe that the approximate solution
is more accurate for 8, = 60° than it is for S, = 30°. This is understandable
because B, = 60° is closer to 8, = 90°, in which case the approximate solution
recovers the exact one. We remark that the presented cross-polarization plots were
computed everywhere by the approximate solution of method III since the other two

approximate solutions become highly inaccurate for this wedge angle.

5.3.5 Summary

In this chapter, we considered the skew incidence scattering from an impedance
wedge having arbitrary included angle. Application of the boundary conditions
(SIBCs) on the wedge faces resulted in a set of four coupled functional difference
equations. Three different approximate solutions were presented to solve these dif-
ference equations. The first and the second solutions were obtained by separating
the difference equations associated with the upper (¢ = +®) and the lower (¢ = —®)
faces of the impedance wedge, respectively. These solutions were found to recover
the exact ones for the three special cases, namely those corresponding to, normal
incidence (8, = 90°) with arbitrary wedge angle, a half plane (arbitrary f,, internal
wedge angle = 0°) and a two part plane (arbitrary 3,, internal wedge angle = 180°).

An important feature of these two solutions, lacked by others [13,14,15,19], is that
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a single computer code can be employed to compute the scattered field for all three
special cases mentioned above. The third solution was constructed by approximat-
ing sina and cos a, appearing in the difference equations, with functions having a
period of 2®. This solution reduces to the exact half plane (arbitrary f3,, internal
wedge angle = 0°) solution and the one for normal incidence (8, = 90°). A scheme
was suggested to use all three approximate solutions in their respective regions of
accuracy. Finally, the results from the approximate solutions were compared with

those obtained from the exact solution of a right-angled wedge.
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CHAPTER VI

SKEW INCIDENCE SCATTERING FROM A
COATED CYLINDER SIMULATED BY SIBC

The skew incidence dyadic diffraction coefficient developed in the previous chap-
ter is an approximate one and it is necessary to establish the extent of its accuracy.
This is achieved in this chapter by comparison with numerical data. These are ob-
tained from a moment method solution of a coupled set of integral equations for
skew incidence on an impedance cylinder of arbitrary shape. The surface currents
obtained from the solution of the coupled integral equations are subsequently inte-
grated to yield the scattered field on the diffraction cone. A corresponding first order
high frequency solution for the far zone scattered field is then generated using the

approximate diffraction coefficient and compared with the moment method data.

6.1 Integral Equation Formulation

Consider a closed cylindrical surface of infinite extent along the z-axis and having
a constant cross section in the zy plane. Let C denote the contour enclosing the
cylinder’s cross section in the zy plane and 7 to be the outward normal to C. Also,
we define £ = % x #, so that (f,7, ) form a right handed rectilinear system at each

contour location as shown in figure 6.1.
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<>
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Figure 6.1: Geometry of a cylinder of arbitrary cross section.

Since the impedance cylinder is infinite along the z-direction, the scattered field
will have the same z-dependence as the incident field. We assume the incident field

to be the plane wave

—E'i — 'E:;ejk(zcosé’ sin 8,4y sin ¢' sin B, —z cos B) (61(1)

H=2§xE (6.1b)

where §' denotes the unit vector along the direction of incidence. By invoking the
equivalence principle, the scattered field from the impedance cylinder can then be

given as the radiation of the surface electric (J) and magnetic (M) currents

J(t) =2 x H =tJy(t) + 27,(t) (6.2)
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M(t) = E x 7 = tM,(t) + 5M,(2) (6.3)

in which (E, H) denote the total electric and magnetic fields in C and ¢ is a measure

of the arc length along C. From (6.2) and (6.3), it follows that

Jy = H,, J. = —H, (64)

M,=-E,, M,=F, (6.5)
and when (6.4) and (6.5) are coupled with the SIBCs (see (2.1)~(2.3))
E,=nZH,, E,=-nZH, (6.6)
to be enforced on C, they yield
My=-nZJ,, M,=12J (6.7)

The scattered fields can in general be written in terms of the vector potentials as

— — | -

E=- - —VV. .
VxF = jkZA+ 29V A (6.8)

- | —

H —-VxA—-]kYF+jk—ZVV-F (6.9)

By using (6.7), we have

A= -% / {E2(t") + 2.(t)} HO (kr sin B, )e7¥scorbegy’ (6.10)
(o}

_ VA - ;
F=L2 [{in) - 22)} n(t) HO(kr sin )ebeorteqy (6.11)
C

in which ' denotes the unit tangent to C at the integration point, H{?)() is the

zeroth order Hankel function of the second kind and

r=p-7| (6.12)
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where 7 and 7’ denote the projection of the observation and integration points in
the zy plane, respectively. Expanding (6.8) we find that the z-component of the

scattered electric field is given by

ksin® B,

YE = -—

/ J, (" H® (kr sin B,)dt’
o

ARy [0y, -FVED ks )

c
jksin B, cos B, N (ra ANgs
SLERLIS / T {(- ) #)
+(h - #)(A - )} HO (kr sin B,)dt’ (6.13)

where H'?(-) denotes the first order Hankel function of the second kind,

(7-7)
-7

and the factor containing the z-dependence has been suppressed. A similar expression

|
=

(6.14)

r=

)
=

for the scattered magnetic field is

ksin’ B,
4

Jksin B,
4

+jksinﬂa cos f3, /ﬂ(t’)Jz(t,) {(i‘ t‘/)(t“ 7)
c

H = -

[ 03¢ B or sim )t
c

/ Jo(@)(' - #)HD (kr sin B,)dt’
C

4
+(i - )i - )} HO (kr sin f,)dt! (6.15)

where 7/ = {' x # and we have again suppressed the e=7*#%fo factor.

A solution for J{ and J, can now be obtained by constructing a set of coupled
integral equations to be solved numerically. A usual procedure in obtaining such a
set is to enforce the boundary conditions (6.6) on C. Expressing the total field as a

sum of the incident and scattered fields, in view of (6.4), (6.5) and (6.7) we have

E.+E! =92J, (6.16)
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and
H +H=J, (6.17)

Substitution of (6.1)(without the z dependence),(6.13) and (6.15) into (6.16)- -(6.17)

now yields a suitable set of integral equations, for the solution of J, and J; on C, as

ksin? B,
4

YE = n(t).(t)+ / TtV H® (kr sin ,)dt"
(o]

+

Jksln & / n(t)Ja(t')(@' - #)HP (krsin B,)dt’
C

Jksin 3, cos B, N (/h Bngr a
B / ) {@-)(E-#)

+(h - &) (A7)} HO (krsin B,)dt (6.18)

ksin® B,
4

H = L)+ [ 1) Jo(t) B (or sim )t

(o}
VEEIBL et
(o

Jksin 3, cos B, R T
-2 C/n(t)J,(t){(t-n(t-r)

+(h - &) (A - 7)} HO (kr sin B,)dt’ (6.19)

To discretize the integral equations (6.18) and (6.19) it is, of course, necessary
to discretize and evaluate the line integrals appearing in them. By employing a
pulse basis expansion for J, and J;, a matrix system is generated whose impedance
matrix elements can be evaluated numerically or analytically in terms of the functions
defined in [32]. Upon evaluation of the surface currents J,(t) and J;(t), the far zone
(p — o) fields at (p,§) can be obtained from (6.13) and (6.15) by letting = ~,
n =~ p, + ~ p, and making use of the large argument expansion for the Hankel

functions. It is also to be noted that in the far zone, the above z- components of the

scattered field are proportional to the corresponding 3, and ¢ components via the
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relations

E; =-sinB,E;, ZH;=-sinfB.E} (6.20)

E,=sinB,Ey, ZH,=sinpB,E} (6.21)

6.2 First Order High-Frequency Far Zone Field

To validate the approximate skew incidence diffraction coefficient developed in
chapter five, we need to compute a first order high-frequency (GTD) far zone scat-
tered field from a triangular impedance cylinder shown in figure 6.2. For this geom-

etry, the first order high-frequency far zone field is represented by

Figure 6.2: Geometry of a triangular impedance cylinder.
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3 .
E=) D,-E (6.22)
where
D = BB Dp.ps + Bod Dposr + 3. Dsgy + $¢' Doy (6.23)

is the skew incidence dyadic diffraction coefficient for an impedance wedge, s is the
distance between the diffraction and observation points and the subscript p sim-
ply denotes that the parameters are measured with respect to the pth edge of the

triangular cylinder.

6.3 Test Results

To demonstrate the validity of the diffraction coefficient, we refer to figures 6.3~
6.13 where the echowidth

%2
o= lim2rs = li'
== Ep

(6.24)

is plotted as a function of scattering angle. In figures 6.3-6.7, bistatic scattering
patterns are plotted for 8, = 90°,60° and 30° while the internal wedge angle « is
kept constant at 30°. Clearly, the agreement between the first order GTD solution
and the moment method is quite good. The small disagreement observed at around
0°, 180° and 360° is due to the absence of multiply diffracted fields as confirmed
by the results for the normal incidence case (which is exact) shown in figure 6.3.
Figures 6.8-6.13 show bistatic patterns for the triangular cylinder with the wedge
angle a = 40° and 50°. Again, the approximate GTD solution is found to be accurate
even for §, down to 30°. The normal incidence (8, = 90°) patterns 6.8 and 6.11
are given as a reference to show the regions of disagreement due to the absence of

multiply diffracted field. The above test cases are only a sample from a rather large
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set of validation data. In all cases, we found a remarkable agreement between the
first-order GTD solution and the corresponding moment method data for internal

wedge angles up to 50°.

6.4 Summary

To validate the approximate solution for an impedance wedge, a coupled set of
integral equations for skew incidence on an impedance cylinder of arbitrary shape
were derived and solved via moment method. The surface currents obtained from the
solution of the coupled integral equations were subsequently integrated to yield the
scattered field on the diffraction cone. A corresponding first order high frequency
(GTD) solution for the far zone scattered field was then generated using the ap-
proximate diffraction coefficient and compared with the moment method data for a
variety of different wedge angles. A remarkable agreement was found between the
first order GTD solution and the corresponding moment method data for internal

wedge angles upto 50°.
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CHAPTER VII

PTD FORMULATION FOR SCATTERING BY
IMPEDANCE STRUCTURES

The approximate solution developed in chapter five for an impedance wedge is
essential for studying the scattering from practical three dimensional structures.
In this chapter, equivalent currents are derived, based on the approximate dyadic
diffraction coefficient, for computing the scattering by a finite length impedance
wedge of arbitrary angle. The derived equivalent currents have been implemented in
a standard general purpose PTD code [21] and results are presented demonstrating
the accuracy of the formulation for a number of impedance and (dielectrically) coated
structures. These include typical shapes such as plates, finite length cones and
cylinders which have been partially or fully coated. The PTD type of implementation
requires a dyadic physical optics diffraction coefficient which has been derived in

appendix A.

7.1 Derivation of Equivalent Currents

Consider an impedance wedge of infinite length oriented along the z-axis of a
spherical coordinate system as shown in figure 7.1. The normalized face impedances
on the upper and the lower faces of the wedge are 7, = Z,/Z and n_ = Z_/Z,

respectively, with Z being the free space intrinsic impedance. The incident electric
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field on the wedge geometry is assumed to be a plane wave described by
E(7) = E'e %7 (7.1)

where E' is the constant complex amplitude of the incident field at the origin, §' is
the unit vector in the direction of propagation, 7 is the position vector of a point in
space and €' is a unit vector indicating the polarization of the incident electric field.

The incident field at a point 2z = 2’ on the edge can, therefore be expressed as
E'(2') = Eeike cosbogi (1.2)

and to simulate the source of the field diffracted by the edge, we place a fictitious

electric line current
T'(2') = I°(2')e3%* coshof (7.3)

at the edge of the wedge, in which ¢ denotes the unit vector tangent to the edge.
The magnetic vector potential at the field point due to this current is given by

e-jka"

AF) = / T ——-d (7.4)

-00
where s? is the distance from a current element of incremental length dz’ at z = 2/
to the field point. Assuming that T°(2') is slowly varying and k is large, (7.4) can be

evaluated by the method of stationary phase to give

e\ p—iT —jksd
I(z,)e h —jkzicoaﬁoe

A (F) v —=2r R
7) 2V2rksin B, Vsd

where z; is the stationary point corresponding to the case when 8/ = B,. Using

(7.5)

this result the ﬁo-polarized component of the far-zone radiated field due to the line

current I¢, where (3, = 3¢ x ¢, is then found from

Ep, = jkZsin B,A, (7.6)
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Figure 7.1: Edge-fixed coordinate system.
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This must be equal to the known diffracted field from the wedge given by

e—jkad e-jl:-
—_ 1.7
Vsi V2rk (7.7)

Ep, = — (Ej,Dpugy + EiyDp,er) 7

where Bpog‘!’ and Dp g are the diffraction coefficients of the wedge and will be defined
later, E;',‘,, and E;;. are the complex amplitudes of the ,3",- and ¢’ -polarized components
of the incident field at the phase origin with 3, = § x ¢'. Comparing (7.6) and (7.7),

the electric line current I* is readily identified to be

I°(') = 2= [Ey (') Dposs (2') + Ej(2') Dot (2)] (7.8)

(4

Following a similar procedure one can obtain the expression for the magnetic line

current I™ to be
m(, ) —Jj2 f (JN\D ’ Y, ’
I™(') = == [Ejy(+)Doay(=') + By (+) Do ()] (79)
7.2 Radiation from Equivalent Currents on a Finite Wedge

7.2.1 Straight Wedge

Consider a straight wedge of finite length £ oriented in the direction  as shown
in figure 7.2. For this case, it is convenient to assume a local coordinate system
(z',y',2') for the wedge so that i coincides with the z’-axis. The origin of this local
system is chosen to be at the center of the wedge and is defined by the global position
vector 7.

We again postulate the existence of filamentary electric and magnetic currents I¢
and I™ on the finite edge. The amplitudes of these equivalent currents are assumed
to be the same as those found for the infinite wedge. The field diffracted by the finite

wedge can then be computed by integrating these currents over the finite length of
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Figure 7.2: Finite impedance wedge geometry.
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the wedge. In the far zone, we obtain the diffracted field

¢/2 . 1 e—Ik(r=57)
 ~ ik /_ " [21°(7)3 x (3 x ) + I™(7)(3 x 1) = ——d'

©r

(7.10)

where 7 is the position vector of a current filament on the wedge and the propagation

direction of the radiated field is defined by the unit vector
§=12sinfcos¢+ ysinfsing + Zcosd

Substituting the expression for I*(¥') and I™(¥') in (7.10) and noting that

i (=I\ _ ié’ § (=)
Eﬁ‘(r)_sinﬂoE (™)
and
i (=t _—(fx;)'éi § (=
E¢'(T)- sinﬂo E(T)

the far-zone radiated field is more explicitly given by

A

—e—Jkr ¢/2 .~ . —
F=o— [ [sx(xD{{ &)Das - (x) ¢ Dauw}

E= 27rsin B, J-¢/2
~(3 x D){(F- &)Dygy — (£ x 1) - € Dpg' }| eI’
where the incident field on the edge is assumed to be
E(F) = E'(F)& = e H7¢
and 1 is the propagation direction of the incident field given by
i = —2sin 6 cos ¢ — §sin 6 sin ¢' + 2 cos 6*

If required, one can write the u-polarized component of the above field as

—d e-jkr

u- = -
2nr sin B,

Do (i4. 1) {(¢- &) Dpugy — (f x 1) - € Dpopr}

s (fEx (4.0 P N. A 2 k2! (5-1)-E 71
——u-(tXS){(t-e)D¢pé—(txz)-eD¢¢:}} me’ =y

(1.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)
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where 4 is a unit vector transverse to § (the unit vector in the direction of propaga-

tion). Also in the above we have used the fact that
=7 +2z% (7.18)

Performing the integration defined in (7.17) yields

—d e_ﬂ"

i E = oo 0 (0 ) {(E - &) Dpusy — (Ex 1) €D

—it- (£ x 8) {(- &)Dygy — (£ x 1) - € Dy } | simc { Eg(iz"—’)—t} (7.19)

In this the diffraction coefficients D can be chosen depending upon the type of high

frequency theory to be employed. In particular,

D = DSTD _ pPo (Physical Theory of Diffraction or PTD)  (7.20a)
D = DP° (Physical Optics) (7.200)

D = D§TP (Geometrical Theory of Diffraction) (7.20¢)

where DYTD is the approximate diffraction coefficient derived in chapter five and
DPFO is the physical optics diffraction coefficient for an impedance wedge derived in

appendix A.

7.2.2 Curved Wedge

Consider now the curved impedance wedge shown in figure 7.3. The curve de-
scribing the edge is arbitrary and may vary continuously. If a plane wave is incident

on the edge, the total field diffracted from it can be calculated by first dividing the
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edge into small straight segments and then summing the individual contributions,

Le.,
E® (total) = S E" (segment) (7.21)

Suppose the excitation field at one of these small (incremental length) segments is

given by
F = 7 (éiagi + $ia¢i) (7.22)

and the far-zone field associated with the diffracted field from this differential length

along the edge may be written as

T (655 + $bs) (7.23)

r

From (7.19), the scattering amplitudes by and by of the diffracted field by each

segment are then related to the incident field amplitudes through the matrix

1r

1 r
be fooi  fogs ag

= (7.24)

_J i fd,gi f¢¢i 11l a¢.' J
where

-1k

e’ ik(5=)F. [/~ A A AL g~
fuei = me’ (6=9) °[(u 1) {(t - €)Dg,p, — (t x 2) - e'Dgad,,}

—a - (f x 8) {(t‘- &)Dyg — (E x 1) - é‘5¢¢,}]£ sinc {Fe(—sg—’l—f} (7.25)

where 4 stands for 6 or ¢ whereas é' represents ' or ¢*, and since the discretization

segments are small we may set

sinc {ﬂ(s—;')—t} -1 (7.26)
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Figure 7.3: A curved three dimensional wedge illuminated by an incident plane wave.
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Equations (7.21) in conjunction with (7.23)-(7.25) can be employed to calculate
the total diffracted field from an arbitrary curved edge. The RCS due to the edge

diffraction is then given by
Ouei = 47 | fues|? (7.27)

It should be noted that E° in (7.21) is only the partial field and, therefore, the RCS
in (7.27) is the partial RCS of the scatterer. To compute the total far-zone scattered
field we must add a complementary field to the diffracted field. Since in this work

we will pursue a PTD type of implementation, the complementary field will be a

Physical Optics (PO) field and the total field will be

PO

E=F+E (7.28)

Hence, for the total RCS, the physical optics field must be calculated separately and

then superimposed with the diffracted field to give

¢ 2

ue

= t
Opei = 4T [ fei

(7.29)

where
vie" = fue‘ + ::!O (730)

7.3 Test Results

The derived equivalent currents have been implemented in a standard general
purpose PTD code called McPTD [21] which employs only first order high-frequency
far zone fields. In particular, the codes McWedge (for a general curved PEC wedge
geometry), McLine (for long straight PEC wedges) and McRing (for a PEC wedge
forming a ring) have been modified for the case of an impedance wedge. To test the

accuracy of the equivalent current formulation, we refer to figures 7.4 — 7.8 where



136

the RCS of a number of différent structures is plotted as a function of incident angle
#'. The results obtained from McPTD have been compared with the measured and
moment method data. The numerical data is obtained from a body of revolution
code which does not employ any approximate boundary conditions and is, therefore,
considered to be exact for coated structures. The RCS patterns given in figures 7.4
— 7.6 are for a flat base cone with half cone angle a = 15°. Figures 7.4(a) and 7.4(b)
display patterns due to incident Ei; (HH) polarization for a perfectly conducting
and a coated cone, respectively, with base diameter of 2.0\. A decrease in RCS in
the case of the coated cone is observed because of the lossy coating. In figure 7.5,
patterns for a larger cone having base diameter of 3.0\ have been presented. Figures
7.6(a) and 7.6(b) show RCS patterns of a partially coated cone, having a perfectly
conducting base, due to incident E; (HH) and Ej (VV) polarization, respectively.
RCS patterns for a finite circular cylinder are displayed in figure 7.7 whereas figure

7.8 shows RCS patterns for a plate.

7.4 Summary

To demonstrate the usefulness of the approximate diffraction coefficient, obtained
in chapter five, equivalent currents were presented in the context of PTD for a finite
length impedance wedge of arbitrary internal angle. These were eventually incorpo-
rated in a standard general purpose physical theory of diffraction (PTD) code [21]
and results were presented which demonstrated the accuracy of the formulation for
a number of different impedance structures. These included typical shapes such as

plates, finite length cones and cylinders which were partially or fully coated.
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Figure 7.4: RCS of a flat base cone due to incident E%; (HH) polarization with a =
15°, D = 2), ¢ = 90°, (a) perfectly conducting cone, (b) coated cone:
€,=T7-j1.5, p,=2- j1, coating thickness=0.04).
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CHAPTER VIII

CONCLUSIONS

In this study, asymptotic/high-frequency solutions were developed for analyzing
some non-specular scattering mechanisms associated with coated convex surfaces and
edges where the coating was simulated by approximate boundary conditions. Both
the standard impedance boundary conditions (SIBCs) and the generalized impedance
boundary conditions (GIBCs) were employed for a characterization of edge diffrac-
tion, creeping wave and surface diffracted wave contributions.

Second order generalized impedance boundary conditions (GIBCs) were derived
in chapter two for a single and a three-layer coating and these were employed in chap-
ter three to construct integral equations for scattering by two-dimensional coated
structures of arbitrary cross-section. These integral equations were implemented via
a moment method procedure and the results were compared with reference data
based on analytical or other validated numerical solutions. It was found that the
proposed second order boundary conditions provide an improved simulation of the
coating in comparison with the traditional (first order) impedance boundary condi-
tion and guidelines were given for their region of validity. The primary reason for the
improved simulation is because the second order GIBC accounts for the presence of

polarization current components normal to the coating in addition to the tangential
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ones. In general, the presence of edges or abrupt changes in the material leads to sim-
ulation inaccuracies which become more apparent as the coating thickness increases.
This is due to the inherent non-uniqueness of these boundary conditions at abrupt
terminations, a situation which can only be remedied by introducing additional field
constraints at the terminations [51,52].

The non-specular scattering mechanisms like creeping waves and surface diffracted
waves were considered in chapter four as applied to a coated convex cylinder. Rigor-
ous ray solutions of the scattered fields were presented for a coated convex cylinder
simulated by SIBCs and GIBCs. These were developed in the context of the uniform
geometrical theory of diffraction and specific expressions were given for the scattered
fields in the lit, shadow and transition regions as well as for observations in the near
vicinity of the cylinder. Specifically, UTD expressions were derived for all regions
exterior to the coated cylinder and these were shown to be suited for engineering
computations. As expected, the derived UTD expressions were given in terms of the
generalized Pekeris or Fock-type functions whose evaluation was efficiently performed
via the Fourier Trapezoidal rule suggested by Pearson [45].

In comparison to the solution given by Kim and Wang [41], the ray representations
given here, for the surface diffracted field, are based on a second order generalized
impedance boundary condition which permits the simulation of thin multilayered
coating as demonstrated in the included examples. Also, in our implementation of
the transition fields we employed a rigorous rather than a heuristic evaluation of the
Fock-type integrals. Further, we have presented accurate field representations for
observations on or near the vicinity of the coated cylinder and these can also be used
for computing the radiated fields by a source or an aperture on the surface of the

convex cylinder.
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In chapter five, a most important source of non-specular electromagnetic scat-
tering, that of diffraction by an impedance wedge at skew incidence was considered.
Application of the boundary conditions (SIBCs) on the wedge faces resulted in a set
of four coupled functional difference equations. Three different approximate solutions
were derived on the basis of these difference equations. Two of the approximate solu-
tions were obtained by separating the difference equations associated with the upper
and lower faces of the impedance wedge, respectively. These were found to recover
the known solutions for three different sets of wedge angles and skewness angles,
namely those corresponding to, normal incidence (8, = 90°) with arbitrary wedge
angle, a half plane (arbitrary f,, internal wedge angle = 0°) and a two part plane
(arbitrary f3,, internal wedge angle = 180°). An important feature of our solution,
lacked by the others [13,14,15,19], is that a single computer code can be employed
to compute the scattered field for all three special cases mentioned above. A third
approximate solution was constructed by approximating the trigonometric functions
sina and cos a appearing in the difference equations with functions having a period
of 2®. This solution again was shown to reduce to the exact solutions of the half
plane (arbitrary f3,, internal wedge angle = 0°) and that of the normal incidence
wedge (8, = 90°). For other §, and wedge angles, the three approximate solutions
were found to be of acceptable accuracy in certain regions of space and a scheme was
suggested to combine all three approximate solutions for approximating the diffracted
field in the entire angular section exterior to the wedge. Some comparisons with the
exact solution for the right-angled wedge showed that the accuracy of the approx-
imate solutions was still acceptable even for the internal wedge angle of 90° which
was quite far from that of a half plane.

To validate the approximate solution, developed in chapter five for an impedance
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wedge, a coupled set of integral equations for skew incidence on an impedance polyg-
onal cylinder of arbitrary shape were derived and solved via the moment method.
The surface currents obtained from the solution of the coupled integral equations
were subsequently integrated to yield the scattered field on the diffraction cone. A
corresponding first order high frequency (GTD) solution for the far zone scattered
field was then generated using the approximate diffraction coefficient and compared
with the moment method data for a variety of different wedge angles. A remarkable
agreement was found between the first order GTD solution and the corresponding
moment method data for internal wedge angles up to 50°.

Finally, to test the usefulness of the approximate skew incidence wedge diffrac-
tion coeflicients for practical three dimensional structures, equivalent currents were
presented in the context of PTD for a finite length impedance wedge of arbitrary in-
ternal angle. These were incorporated in a standard general purpose physical theory
of diffraction (PTD) code [21] and results were presented which demonstrated the
accuracy of the formulation for a number of different impedance structures such as
plates, finite length cones and cylinders which were partially or fully coated. The
PTD implementation required a dyadic physical optics (PO) diffraction coefficient
which was derived in appendix A.

For the future work, a characterization of the diffraction effects by impedance
discontinuities in smooth convex cylinders should be pursued. Of interest is the
case where the observer and the source are both at a finite distance away from the
discontinuity. This will accommodate the situation when a creeping wave strikes the
discontinuity and the observation point is also near or on the surface of the impedance
cylinder. To treat this case, at first a parallel analysis should be carried out for an

impedance insert on an impedance plane. The results of this analysis will then be
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extended to the case of a similar impedance discontinuity on the convex cylinder
on the assumption that the cylinder radius is large. Alternatively, a direct analysis
could be pursued. The pertaining analysis will certainly be much more complex and
the resulting diffraction coefficients may not, therefore, be of practical use. Using
the diffraction coefficients based on the forementioned analysis, it will be possible to
characterize the scattering and radiation by apertures and conformal antennas on a
convex impedance cylinder. An analysis of the mutual coupling among such devices
is another application of interest.

The proposed research in the above paragraph is concerned with the two dimen-
sional applications. A natural extension of this work would be an analysis for three
dimensional applications. In this case, the electric and magnetic fields are coupled
on the cylinder surface and thus heuristic extensions of the two dimensional results
to three dimensions, usually done in the case of perfectly conducting structures, are
not applicable. In general, therefore, a separate analysis is required in the case of
skew incidence.

The solutions developed in this work, for scattering by an impedance wedge
at skew incidence, were obtained by solving a first order homogeneous functional
difference equation. However, these solutions are approximate and a next step should
be to improve the accuracy of these approximate solutions by employing, for example,
an iterative procedure. Such a procedure will require a solution of a first order
inhomogeneous functional difference equation and, therefore, will make the analysis
more complicated. Another future task should be to pursue a rigorous solution for

an impedance wedge of arbitrary wedge angle with GIBCs imposed on its faces.
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APPENDIX A

PHYSICAL OPTICS DIFFRACTION
COEFFICIENT FOR AN IMPEDANCE
WEDGE AT SKEW INCIDENCE

The impedance wedge diffraction coefficient presented in chapter five predicts
infinite diffracted field at the incident and reflection shadow boundaries. However,
this difficulty can be overcome by subtracting a physical optics diffraction coefficient
from it resulting in a finite field at the shadow boundaries. The diffracted field
obtained in this manner is only a partial field and is called a fringe field. The total
scattered field for a particular finite structure having edges can be computed by
calculating the physical optics field for the structure, separately, and then adding it
to the fringe field.

In this appendix, a dyadic diffraction coefficient, for an impedance wedge, is
derived using physical optics. In other words, we seek a physical optics approximation
to the diffraction tensor given in chapter five.

Consider a plane wave incident on the upper face of an impedance wedge (see

figure A.1) and is represented by

F = Ee_jkii'F, Zﬁi = he-'iksi'F (A].)
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where
§' = —%sin B, cos ¢’ — §jsin B, sin ¢ + Zcosf, (A2)

with ¢’ measured from the upper face of the wedge. It is convenient to proceed with
just the z-components, e, and h,, of the incident field. The rest of the components

can be expressed in terms of the z- components, using Maxwell’s equations, as

er = — 1 (cos B, cos ¢'e; + sin ¢'h;) (A.3)
sin 3,
1 .y '

_ _ cos d'h, Ad
ey = — 2 (cos B,sin ¢'e, — cos ¢'h;) (A4)
hy = = L (—sin ¢'e, + cos B, cos ¢'h,) (A.5)

sin 3,

_ 1 / Y

hy, = o h, (cos ¢'e; + cos B, sin ¢'h,) (A.6)

The total field is a sum of the incident field and a reflected field. We assume the

z-component of the reflected field to be of the form
E! = Ree,e ™7 zH, = Ryh,e” ¥ (A7)

where R, and R}, are the reflection coefficients for the 2- components of the electric
and magnetic field, respectively, and §" denotes the propagation direction of the

reflected field and is defined as
§" = —Zsin B, cos ¢’ + §jsin B, sin ¢’ + 2 cos B, (A.8)
The upper face of the wedge satisfies the impedance boundary conditions (at y = 0)

E.=nZH, E,=-n.ZH, (A.9)
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and using these, the expressions for R, and R, can be derived to be

Re.e, =« [ {(sin ¢' + 14 sin B,) (sin ¢ — il_:;_@’-) — cos? B, cos? ¢>'} e,
+

— 2cos 3, sin ¢’ cos ¢'th (A.10)
I . . . ., . sinpf,
Rih, =~ [2 cos B3, cos ¢ sind'e, + {(sm @ —n4sinf,) (sm o+ . )
+
— cos? 3, cos? ¢'}h,] (A.11)

with

N+
1 + 74 sin B, sin ¢') (74 + sin B, sin ¢')

=1 (A4.12)

Now the surface electric and magnetic currents induced on the upper face (y = 0) of

the wedge are
T,=axH, M,=-axE (A.13)

where 7 = ¢ for the upper face and H' and E denote the total field which is the
sum of the incident and reflected fields. It is convenient to write these currents in

the form

27’ — ye—jk(zcosﬁo—:csinﬁocosqb') (A14)

M, = e~ 1k(2 cos Bo—z sin B, cos ¢') (A-15)

where j and 7 are determined, using (A.10) - (A.15), to be

7 = 2vsin ¢’ [ {cos B, cos ¢'e, + (sin ¢ + = ’B") hz} &

N+

+ ;}1: {(sin ¢’ + 4 sin B,)e, — cos B, cos ¢'h,} 2] (A.16)
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M= —2ysing [ {(sin ¢’ + 4 sin Bo)e, — cos B, cos ¢'h.} &

-4 {cos B,cosd'e, + (sin ¢ + SI:; 50) hz} 2} (A.17)
+
The far-zone scattered field due to the induced surface currents on the upper face

(y = 0) of the wedge is given by

e—jk'F_?lI

=7

= i‘:’ [ [ (% 5% )+ x T} i (A18)

where the integration is performed over the upper face of the wedge. The § unit

vector is defined as
§ = 2sinB,cos ¢ + §sin B,sin ¢ + 2 cos B, (A.19)

with ¢ measured from the upper face of the wedge. Assuming now that the edge
diffraction is mainly due to the surface currents concentrated on a narrow strip along

the edge, the edge diffracted part of the field E” can be written as

S _ _

Fnl [[7 {sx [sx T, 2)] +3 x T, )
e—ik/E— P+ +(z-2')?

-2+ 4 (- 2)

where the absence of the upper limit, in the above integral, on the ' integration

dz'dz’ (A.20)

denotes that only the asymptotic endpoint contribution at z' = 0 is taken into
account. Employing the method of stationary phase for the 2’ integration, one can
evaluate the integral in equation (A.20) and the expression for the diffracted field is

given by

—_ 2 e-j':"e-jki"F _
E I — a A N A —
V wkpsin f, 4sin B,(cos ¢ + cos ¢') {s X (8x7)+35x m} (A.21)
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with 7 and 7 defined in (A.16) and (A.17) respectively. The edge diffraction tensor
given in (A.21) can now be transformed into the edge-fixed coordinate system [43]
and the resultant diffracted field from the edge is given by

Ej(s) DP(4,88,,m4) DO (4,580 %) | | Ef(Qx)
~ —Ay(s)

| E4(s) | —DI(¢:¢'3Bere) DO (6,850 ) | | B(Qe) |

(A.22)

e

where s is the distance between the diffraction and obervation points and A;(s) is

Ayfs) = T 1 A2
1(s) = V3 Vork (4.23)

The 2 x 2 matrix in (A.22) represents the physical optics dyadic diffraction coefficient

similar to the one presented in chapter five. The components of the diffraction matrix

can be expressed as

DP0(4,4'; Boyns) = As($,8'; .) | E(4, 85 Boyns) + cos B F (‘f’, ¢'s Bos %) ]

(A.24)

DEO(4,8'; Borns) = A, 3 82) | G(8, 85 Borns) + cos L (¢, #: 6. ;1:)]

with

A(9, ¢'; B,) = (1 — sin® B, sin? ¢') (1 — sin® B, sin? ¢) (A.25)

and

- - -

En cos ¢ cos ¢’ —cos f3, sin @ cos ¢’ un
= - (A.26)

G" cos 3, sin ¢ cos ¢’ cos ¢ cos ¢’ |4
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S _ e -
F, cos f3, sin ¢ sin ¢’ cos ¢sin @’ U,

__ (4.27)

H, —cos¢singd’  cosf3,sin @sin ¢’ |4

e

where the notation E(¢,¢; fo,n4) = E", E (¢, é'; Bo, #) = E,, etc., has been em-

ployed for simplicity. The U and the V functions are given by

sin ¢’

n _ 77PO( 4 4. =%
Un=0U (¢,¢,ﬂo,'7+)—cos¢+cos¢,

(1 — n4 sin B, sin ¢)

(cos® B, — sin? B, cos ¢ cos ¢') (T rnismbsnd) (A.28)
1=V = s
(A.29)

For the case when the lower face of the impedance wedge is illuminated the above

expressions will be applicable with the replacement n, — n_, ¢’ = nr — ¢', ¢ —

nt — ¢ and B, = 7 — f3,.
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