Abstract

Equivalent currents and incremental length diffraction
coefficients are derived for an impedance half plane. These apply to
a half plane with unequal face impedances and reduce to the
corresponding incremental length diffraction coefficients and
equivalent currents derived by Mitzner and Michaeli for the perfectly
conducting edge.
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INCREMENTAL LENGTH DIFFRACTION COEFFICIENTS
FOR AN IMPEDANCE HALF PLANE

1 Introduction

In the context of GTD, the scattering by a complex body is represented as a
sum of contributions from reflection and diffraction mechanisms [1,2]. The
last are attributed to any abrupt surface derivatire discontinuity or possibly
any abrupt changes in the material composition of the body. To permit the
characterization of a specific discontinuity in surface curvature or material
composition, it is necessary that an analytical treatment of an associated
cononical geometry be found. Unfortunately, this has only been rigorously
accomplished for a handful of geometries which primarily include metallic
edges and wedges at normal and skew incidences [3-5], second order surface
discontinuity [6,7], impedance wedges at normal incidence [8], thin dielec-
tric and resistive edges at normal and skew incidences[9,10], impedance or
material discontinuities in a plane [11,12] and the right- angled wedge at
skew incidence with one of its faces perfectly conducting[13]. Solutions may
be also found in the literature for creeping wave characterizations and for
some non-generic configurations.

All of the aforementioned cononical solutions are applicable to straight
edges formed by planar surfaces, whereas in practice the edges are curved
and generally formed by non- planar surfaces. This prompted the develop-
ment of uniform theories [2, 14] which allowed the treatment of practical
edge configurations and removed the non-physical field discontinuities at
the geometrical optics boundaries. Two different uniform theories were for-
malized in the seventies almost concurrently but among these the uniform
theory of diffraction (UTD) introduced by Kouyoumjian and Pathak [2]
has been most popular.

Aside from its geometrical complexity, the uniform GTD permits the
treatment of practical geometries in a systematic manner. Nevertheless,
the GTD and UTD are still at caustics and cannot handle finite length
edges in a rigorous manner due to a lack of appropriate corner diffraction
coefficients [15, 16]. The method of equivalent currents (MEC) was devel-
oped to overcome these difficiencies by replacing the diffraction effects with



fictitious equivalent currents which are then integrated over the length of
the (curved) edge to obtain the diffracted field. Original versions [17, 18]
of such equivalent currents were not as accurate for computations away
from the Keller cone. This was corrected by Michaeli [19,20] whose equiva-
lent currents (EC) turned out to be identical to Mitzner’s [21] incremental
length diffraction coefficients (ILDCs) once the physical optics contribu-
tions to the diffracted field was removed from Michaeli’s equivalent currents
as noted by Knott [22]. Since Mitzner’s ILDCs were derived in the context
of the Physical Theory of Diffraction (PTD) developed by Ufimtsev [23],
this comparison provided a rigorous connection between GTD (actually the
MEC) and PTD. In practice when treating arbitrary surfaces, it is more
convenient to compute the physical optics field (rather than the geometrical
optics field) and supplement these with any edge diffracted field. Conse-
quently, the ILDCs are more suited for practical implementation and can
be readily derived from the ECs as noted above. The equivalent currents
derived by Michaeli [17] and their similar versions proposed by other [24,
25] are applicable only to perfectly conducting edges. Nowadays, though,
man-made vehicles are composed of non-metallic material and a need there-
fore exists to derive corresponding equivalent currents to characterize the
diffraction by material edges and discontinuities. The simplest non-metallic
edge for which a skew incidence solution has been derived is that formed by
an impedance half plane [9, 10]. It is therefore instructive to first derive the
ECs for this geometry and such is the subject of the paper. The procedure
employed for this derivation parallels that adopted by Michaeli [19] for the
perfectly conducting case and in the process we employ Sommerfeld’s in-
version theorem [26] as suggested by Pelosi etc [27]. Use of this inversion
theorem is essential in obtaining a closed form expression for the equivalent
edge currents.

In contrast to the ECs derived for the conducting wedge, those derived
for the impedance edge are more involved because of the presence of electric
and magnetic currents on the surface of the faces forming the edge. They
are, nevertheless, given here in explicit form which is suited for computer
implementation. As expected they involve the tangential spectral com-
ponents (with reference to the Sommerfeld integral) of the surface fields.
These are the components which must be obtained from a function theoretic
solution of the cononical problem for the impedance half plane with equal
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face impedances they have been derived by Senior [9] (see also corrections
given in [28]). For the half plane with unequal face impedances the spectral
field components have been derived by Bucci and Franceschetti [10]. Un-
fortunately, the expressions given in [10] and are cumbersome to use and
are recast here (Section III) in a convenient form suitable for computer
implementation. In Section IV we present the ILDCs for the impedance
half plane and discuss how these expressions can be used for edges formed
by the surfaces of an impedance wedge.

2 Equivalent Current Expressions

Let us consider the impedance half plane, shown in figure 1, which is illu-
minated by the plane wave.

E:’ = (:i'ex + gey + 262) e—ik(x sin 3o cos ¢o+Y sin Bo sin ¢o+2z cos Bo)

(1)

Hi — },o(ihz + ﬁhy + fhz) e-—ik(zsinﬁocos¢o+ysinﬁosin¢o+zcosﬁo)

in which k = 27/} is the wave number and Y, = 1/Z, is the free space
intrinsic admittance. The half plane satisfies the boundary condition.

yXgxE=-n2Z,gxH (2(1)
on its upper face and the condition
IxgxE=9,7Z,jxH (2b)

on its lower face. Thus 7,, are the normalized surface impedances on the
¢ = 0 and the ¢ = nm = 27 faces of the half plane, respectively.

In accordance with the method of equivalent currents (MEC), the en-
tire scattering by the half plane can be thought as generated by filamentary
electric and magnetic currents placed at the edge of the half plane. Refer-
ring to figure 3, and denoting these edge equivalent currents as I(£) and
M(£), respectively, the Fresnel and far zone fields can be expressed as

E* ~ —ik /C [2.1(€)3 x (3 x ) + M(¢)3 x 1] G(r,x')de (3)



where (= 2) is the unit vector tangent to the edge, d¢ is the increment
along the edge described by C,

eiklr—r’ |

Cr) = e —r]

(4)
with r and r’ denoting the observation and integration points, respectively,
and

r-r

|r—r|

~ Zcos¢sinf + §sindsin B + 2 cos B (5)

n S
§=-=
S

To find expressions for I(¢') and M(¢') we revert back to the original problem
and note that the scattered field from the half plane can be written as

E° = —ik { / /S 205 X 3 X o(r') + § X mo(r')] G(r, ')ds’
+f /g (2,8 X § X ju(r') + § x ma(r')] G(r, r’)ds’} (6)

where jo(r’) and m,,(r') denote the electric and magnetic currents over
the upper (oth) or lower (nth) surface of the half plane. It is required that
(3) and (6) must be equal and by following a procedure similar to that in
[19], we deduce that

ME) = ¥ M0 = six112 5 % [e-seosp) Kp+2-GxKp)] (0
ZI0) = T Z4(0)= sinl2 2 % [5G XK+ (- scosh) K] (©

where K7 and K are given by the integrals

K =sinfg, / ” m,e =k g (9a)
K; = Z,sin g, /oo jpe kg (9b)



in which
cosy = 6 - § = sin B sin f, cos ¢ + cos S cos 3, (10)

implying that & is a unit vector in the zz plane making an angle of £, with
respect to the z-axis.

Concentrating on the currents associated with the upper surface of the
half plane we note that

m,=E x ¢, Jo=9xH (11)
and from the impedance boundary conditions (2a) we deduce that
1Kz =9 x K7 (12)

These relations imply that we can write M,(¢) and I,(£) in terms of K¢ or
K7'. Alternatively, we may choose to express I,(£) and M,({) in terms of
the z components of K¢ and K. Doing so, gives

(—1— - M) — cot B cos ¢

— Mo sin 8

[&L]
M, | " | cotBcosé (’70"%)

It remains to evaluate K™ in terms of known quantities found from a
solution of the canonical problem. Combining (9) and (11), yields

_Km
]

ox —

K: =sinf, /ooo Z,H,e ¥ o (14a)

K™ = —sing, / " Bt dg (14b)
0

and by following the procedure employed in [19], we may now introduce the
exact integral representations for the surface fields. From the impedance
half plane solution we have [10]

Ez B eikz cos Bo Sz(a + 7 — ¢) —tkp sin B, cos
[ Z,H, ] T om /p [ ZH(a+7—¢) | € da  (15)

where I' is the Sommerfeld contour shown in Fig. 2 and we remark that
¢ = 0 and p = z for observations on the upper surface of the half plane. For
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the moment we will postpone the definition of the spectral quantities &,(a)
and H,(a). These are explicitly given in [10] and will be expressed later in a
convenient form for computational purposes. However, before we substitute
(15) into (14), it is necessary to introduce an alternative representation
to (15) which will permit use of the Sommerfeld inversion theorem (see
Appendix) [26] for a closed form evaluation of K*™. This amounts to
replacing &,(«) and H.(a) by some odd functions without affecting the
outcome of the integration. Such a replacement is possible by exploiting
the properties of I'. As seen from figure 2, I' is comprised of two contours
symmetrically located with respect to the imaginary axis. Thus, &.(a + 7)
and H.(a + 7) may be replaced by their odd parts

Fe(a) = % (Ex(a + 1) — E(—a + 7)] (16a)

Fu(@) = 2 (- 7) ~ Hul-a + )] (165)

without affecting the value of the integral in (15). It is convenient to re-
express these only in terms of the spectra &,(a + ) and H,(a + 7) by
invoking an alternative form of the boundary conditions (2). From [12] we
find that (2) can be rewritten as

0 ., ., O0E, _

(@ + tkn, sin ﬂo) Z,H, + cos ﬂo—a;- =0 (17a)
0 ik ., OH, _

(5; + -1-7:sm ﬂo) E, - Z,cos ﬂo—é-x— =0 (17b)

auu wuen wose conditions are applied to the integrals in (15), the resulting
integrand must be even with respect to a. It then follows that

sina + ﬁ%ogi’- cos a cos f3, E(+a+m) | _
—cosacosf, 7.sinf, +sina ZH(+a+7) |

[ —sina + Snfe cos a cos 3, } [ E(-a+m) ]

No
—cosacosfl, Mosinf, —sina Z,H,(—a+ )

(18)



permitting us to rewrite (16) as

Fg(a) = _;;?a [(n,sin B, — sina)&,(a + =)
—cos B,cosaZ,H,(a + )] (19a)
F(a) = — sina [cos B, cos a&,(a + )
+ (SiI; P _ sin a) ZoH.(a+ 7r)] (190)
where D, is the determinant
D, =1+sin’B,sin‘a — (770 + —%) sina sin 5, (20)

In accordance with the above analysis we may now express the surface
fields as

Ez eikz cosBo FE(a) —1kpsin B, cos o
[ZOHZ]_ omi ]r[FH(a) ’ e 2!

and when these are substituted into (14), upon setting p = osinf,, 2z =
o cos 3, we may invoke the Sommerfeld inversion theorem given in the Ap-
pendix to find

2

Ko = 1K sin o, Fia() (22a)
- =2
Aoz = FE(aa) (22b)
tksina,

where

k = ksin B, (23)
and
[ cosy—cos?B,
0o = AR I S 4

a, = cos { S B, } (24)



Explicit expressions for the equivalent edge currents I, and M, can now be.
readily obtained in terms of £,(a + 7) and H,(a + 7). By substituting (22)
into (13) and making use of (19) we have

Z,I, = 2 [{ (Sin¢ - —1—) (n,sin B, — sina,)

- kD, sinf 1,

+ cot B cos B, cos ¢ cos ao}gz(ao + )

+ { (..1_ - s.1n¢) cos 3, cos a,
7, sinf,

sin 3,

[

+ cot B cos ¢ ( — sin ao) }Zon(ao + 77)] (25)

M, = -

2 (-~ cotfeosnsing. —sinec)

sin ¢

+ { cot 3 cos 3, cos ¢ cos a,

o) (i o

in which D, is given by (20) with & = a, . We remark that from (25) and
(26) it is seen that I, and M, are dual quantities, as expected.

The equivalent edge currents I, and M, which are associated with the
bottom face of the half plane can be obtained directly from I, and M, by

letting ﬂo - W-,Boa ﬂ - W_ﬂ’ ¢o "’2"'—¢o, ¢ - 27T—¢3 gz(ao+7r) —
&:(an — m) and H,(a, + 7) = H.(a, — m) with

cosay = COS@,, Sina,=141/1—cos?a, =sina, 27
b

Doing so, we obtain

2i sing 1 ) .
ZI, = R_Dn[{ (sin,B + W_n) (Mnsin B, — sina,)
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— cot B cos B, cos ¢ cos ao}Sz -7+ { (:izg ) cos f3, cos a,

+ cot Bcos @ (Si;lﬂ —sin ao) }Z(,’H,,(Ozﬂ - ) (28a)
M, = - 2 cot 3 cos ¢(n, sin f — sina,)

+ cos 3, cos a, (-2—%11—2 + r}n) }Sz(an —7)+ { cot B cos 3, cos ¢ cos a,

- (222 + r)n) (SI;Inﬂ — sin ao) }Zo'Hz(an - 71')] (28b)

where

1)\ . .
— | sina, sin 3,

D, =1+ sin?B,sin’a, — (nn +
For the perfectly conducting half plane I, and M, reduce to
_ 2 sin ¢
~ ksin B, sina/, sin 8

Z,H.(2r — a)) (29q)

2
I, = P ﬂ08(27r al)

2

Fsin B, sina’ (= cot B, cos a, + cot B cos ¢) Z,H,(2r — a’)) (29b)

in which &/, = 7 — @, and from [3, p.255]

1 2sin e
EQ2r—al)==> —2 30
( %) 4cos—ﬂ"'2a —cos% (30a)
1 2sin (2
H.(2m —d)) = —= (55%) (300)

4cos—2¢—cos%



It is then readily concluded that these expressions are in agreement with
those in [19] provided the definition for p = cos o/, given in [20, equ.(22)] is
used. In the next section we present an explicit computationally efficient
form for the Sommerfeld spectra associated with the impedance half plane.

3 The Sommerfeld Spectra for the Impedance
Half Plane

From [10] we find that

sin 3,
(1 — sin® B, sin’ @)

Elatm)=
- [sinacos foy(a + 7) + cosaZ,Hy(a + 7)]  (3la)

sin 3,
2 2
— sin® 3, sin® «

ZH,(a+7)=— 1

- [sina cos B,Z,Hy(a + 7) — cosa&,(a + 7)] (31b)

where the spectra £,(a + 7) and H,(a + 7) are associated with the y com-
ponent of the corresponding fields. They can be conveniently expressed
as

1
& =
o+ ) (1.— sin® B, sin® 4,)
11 1 1
Ua(a + U ¢a; :Bo’ ) ;_)ey - K(a + , ¢0; ﬂo’ 7’_) —)hy 320)
1
ZH(a+7) =

(1 — sin? B, sin’ ¢,)

. [U,(a + , ¢o; ﬂo, Noy nn)hy + Vs(a + 7, ¢o; ﬂoa Mo Tln)ey](32b)
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where

cos% — cos £

2 . 2 %sinﬁ‘;—"
Us(a +, ¢o;ﬂ037’o,77n) = [COS ﬂo + sin” B, cos b0 cosa] _—_E

Y(a + 7,07 ™),
+ sin f3, cos 3, sm— [Mz + M, cos 2]} D(T — o, B0, Gm ) ~(33)

V,(a + Ty 003 Bos Mo, nn) =

9"70 eﬂn
_smﬂocosﬂosm¢ [M1+M3cos—]¢ a+ 7, )

2 (7 — @, O70,87n) (34)
In these,

4 0
M, = X (a;F cos% - ag)

(35)
M, = % [a;L {al' cos%+a2'} —a7 {al" + az cos%}] (36)
M; = —% (ag' cos% - af) (37)
M, = —g—. [ag' {a1 cosz +a; } at {al' + a3 cos%}] (38)
=(af)? - afa} (39)
af = f_(aa) £ f-(a}) (40)
af = fi(ap)sin Q?A t fi(aj)sin 022 (41)
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ot = f+(aA) + f+(01'é) (42)

° sin %4 sin ‘—’;A

P(m — G0y 6n,s On,) ¢(a,0no,9nn) + ¢(_a,9no,9nn)

fala) = (T = ¢o, 60, 6™) [ P(a, by, bn.) ~ Y(—a,0y,,6,,) (43)
ap = 7/2 + iln(tan f,/2) (44)
and
. Mo . onom _ 1
sinf,,, = Sn B, sin §%" = Y (45)
Also,
9@, 0°,67) = b (a4 5~ 6") e (= T 467).
™ ™ -
-¢,(a+§+9+)¢,(a-§—9) (46)

in which ¥.(a) is the Maliuzhinets (8] function and simple algebraic ex-
pressions for this have been given in [29)].

We remark that the edge diffracted fields can be conveniently written
as

ei(np—‘n/4)

v~ s
- [U (¢,¢o;ﬂo, ni —1—) eV (¢,¢o;ﬂo, ;71— l) hy] (47a)

n n

(1 — sin? B, sin? ¢o) -

p ei(np—w/«i) - .y -1
ZH!I ~ \/mﬁ (1 — sl ﬂo sin ¢0) [U (¢7 ¢o; ﬁoa Moy nn) hy
+V (¢a bo; Bos Mo nn) ey] (47b)
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where

V(¢, ¢o; ﬂo, Ury nn) = Us(_¢, ¢o; ﬁo, Mo, nn)

- Us(27r - ¢’ ¢o; ﬂov Moy ﬂn) (480)

U(¢> Bo; Boy Mo, nn) = Va("‘ﬁa Bo; Bos Mo nn)

— V(27 = &, bo; Bos Mo 1n) (48b)

and these are in a form compatible to that given by Senior [9] for the
case of a half plane having equal face impedances (7, = 7,). The solution
procedure followed by Senior [9] is completely independent of that employed
by Bucci and Franceschetti [10]. It is therefore of interest to compare (47)
with the diffracted fields given in [9] when 7, = 1, = 5. This should provide
some validation of (47), particularly since these expressions differ (only in
the sign at two locations) from those given in [10, equ.(82)].

To compare the U and V functions given above to those derived in [9,
28] for the half plane of equal face impedances we proceed as follows. First
the U and V functions for the half plane with equal face impedances given
in [9] are rewritten as

. _ [cos? B, — sin’ B, cos ¢ cos ¢,
U(¢,¢ovﬁ0an) - [ (COS¢+ cOos ¢o) (

1 — 2nsin f, cos g cos %‘i)

he(an,atn) o (an.an.
+ sin B3, cos 3, - {i——Eé—ejAl) — i2nsin 3, cosécos $op- (24,23, a? 17)]
hy (OIA,OIAJI) 2 2 pt (GA,O'A,'I])

) I(+ (—KCOS ¢;ﬂo’n) -K+ (—K'COS ¢o;ﬂo,n) (49(1)

Vv (¢1 ¢o; :30’ 77) =-V (¢oa ¢; ,Boa ‘11;) =

4cos 2cos £
sin 3, cos B, [n sin f3, ; k) - 0% ]

1 1
+(anan3)  pe(onr0ni)

- K4 (—kcos ¢; Bsyn) K4 (—/c €os ¢o; Bo, ;1]-) (49b)
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in which

*

. a - . a
P+ (@a,a},7) = g (@a,n)sin - g (ai, 7)sin (50)
- oy 9(@an) | gleh,n)
h:!:(aA,aAan)_ sin-°-’2‘>~ + sm—,f (51)

1 1/’(“,677’077)

gloon) = T (52)

4
»\3 cos
K (=K cosa; foyn) = i’jn_(nl}[; e g (53)
where sin 6" = —- ﬁ and ap was defined in (44). These were obtained from
those in [9, 28] by replacing the parameter v employed in [9, 28] with its
explicit form in terms of the split functions.
We must now show that (49) reduce to those given by (33)-(45) when
Mo = Nn = 1. To do so we note that ¥(a,6,6) = ¢(—a,6,6) and for
Mo = 7n = 7 the function fi(«) simplifies to

( — $0,0y,6,) ¢ (a,6,67)

f+(a) = d) (7= 60,0000 (a,0,.6,) (54)
f-(a)=0
where sin 6, = n/sinf,. Consequently,
Y (7 — ¢o,0",6) 1

M, =2

1 771/)(7['— ¢0’97)707)) h+ (CVA,OZ'A, _’l;) (55)
¢a p- (ClA, aAa 77)

Mg = —1C0Ss — D) m (56)
M3 — 217 oS ¢o¢ (7r - ¢0,0ﬂ,0ﬂ) 1 (57)

2 ¢(7f ¢o,6m0n)p+ (OlA’a'Aa%)
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'h— (aA,aZ,U)
M, = —io= S 2 58
T (an,anm) (5)

In addition, from [30] we find that

(/2 8
pr—eFminim =g ({7r¢—(¢,/03°}, o)

[Bl +Bg {sin (7{':2*:(}5) q:s1n§} + sin ((}3:2*:_77) sin g] (59)
B, = cos (7r —420%) cos <7r _429%) — cos® (g) (60)

1 T — 20" T — 26"
B, = Zein T {cos ( 1 ) — cos ( 1 )} (61)

and when 7, = 7, = n,¥(7 — ¢ F 7,6"%,6™) simplifies to
8
Y (3 1 : 7\ .
Y(r—@dF 76,67 = ” ({7r _((;)01 ") [27’ o + sin (£—2—I> sin g](62)

Using (55)-(58) and (62) in (33) and (34), it is then readily shown that the
U and V functions given in (48) reduce to those in (49) when n, = 5, = 1.

where

4 Fringe Equivalent Currents

In PTD implementations the total scattered field is obtained as the sum of
the physical optics fields and fringe wave contribution. The last is computed
by integrating the fringe wave equivalent currents along the edge or surface
discontinuity given by

ZI, = Z,),n-ZI?
(63)
M = M,,-MF°
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In these I,,n and M,, are the edge equivalent current expressions (26).
whereas ITO and M?? are the corresponding edge equivalent currents which
result when the current on the faces forming the edge is set to its physical
optics value. They can thus be obtained from (13) in conjunction with (9)
upon setting

m,, — mf,;o‘ =+ [Et + Er] X 17 jon _’jfno = ig X (I—Il + HT) (64)

where (E",H") denote the reflected fields from the corresponding face. As
can be expected, j¥° and MFO are set to zero when the upper face is
not illuminated and the same holds for j, and M, when the lower is not
illuminated.

On applying the boundary condition (2a) we can readily obtain (E", H")
from which we find that

m?° = —2T'sin @, {Z [(sin ¢, + 7, 5in B, ) €, — cos B, cos oh.]

—2n, [cos B, cos e, + (sin oo + 1 sin B,,) h,] } ¢~ klzsin B cos bo=z cos Bl (g5

(o]

where

_ Mo
L= (1 + 7, sin B, sin ¢, )(7, + sin B, sin ¢,) (66)

When (65) is substituted into 9(a), upon setting z = osin B,,2z = o cos 3,
and integrating we obtain (lower limit only)
Ko = —moK;, =

2" sin @,
ik sin 3, [cos !, + cos ¢,

[(sin ¢, + 7, 5in B,) e, — cos Bocos,h.)(67a)
Ko =—KJ =
Mo

2T sin @,
ik sin B, [cos &/, + cos ¢,

[cos B, cos poe, + (sin oo + Ui sin ,Bo) hz] (67b)

(o]
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where again o) = 7 — a, with a, as given in (24). The corresponding
physical optics equivalent currents I7° and MF° are now obtained from
(13), we have

Z,IP0 = — (l - sfn¢) K™ — cot Bcos gk, (68)
Mo sinf
MPO = _ cot Beos K™ + (7, — SR8 ge (69)
o oxr Sinﬂ or

and these can be shown to reduce to the known expressions for the perfectly
conducting case. The physical optics equivalent current for the lower face
can be obtained from (68) and (69) upon letting fo — 7 — By, ¢ — 27 —
¢0,8 — 7 —f and ¢ — 27 — ¢.

5 Appendix: Sommerfeld’s Inversion Theo-
rem [26]

Let
1
_ KT COS &
fla) = 5 /F €425 F(o)dax (A1)
where | arg(u) |< 7/2 and f(z) satisfies the inequality
| f(z) [<| A |71+ el

for A, a and b positive real numbers. Also, 0 <| z |< oo and f(z) is analytic
in this region. Then, there exists one and only odd function F(a) which is
regular on I' and within I' (except possibly at infinities), and which satisfies
the inequality | F(a) |< A;e(t=)Hm()l This function is represented by the
integral

F(a) = _us;na /ooo f(z)e~#e®dy (A2)

and for this function a; = a, whereas A; is positive real.
Substituting (A1) into (A2) yields

Sin Qo [ S Ot —COS
Flao) = -2 / /F F(a)ete(cosa=cosae) do 4o
and for the particular case of interest y = —ik
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Figure. 1. Edge Geometry and angle definitions

Figure 2. The integration contour T in the Complex plane






