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l. INTRODUCTION

The results of the launchings of eight Marshall-University of
Michigan Probes (MUMP), Nike-Tomahawk sounding rocket payloads are
summarized in this report. The MUMP is similar to the Thermosphere
Probe (TP), described by Spencer, Brace, Carignan, Taeusch and Niemann
(1965) , which was developed by the Space Physics Research Laboratory
of The University of Michigan jointly with the Goddard Space Flight
Center, Laboratory for Atmospheric and Biological Science. The MUMPS
were developed by the Space Physics Research' Laboratory for the Marshall
Space Flight Center, Aero-Astrodynamics Laboratory.

The purpose of the payloads was to study the variability of the
earth's atmospheric parameters in the altitude region between 120 and
350 km. The payloads described herein each included an omegatron mass
analyzer (Niemann and Kennedy, 1966), an electron temperature probe
(Spencer, Brace and Carignan, 1962), and an aspect determination system
consisting principally of a lunar or a solar sensor. This complement
of instruments permitted the determination of the molecular nitrogen
density and temperature, the electron density and temperature, and the
ion density in the altitude range of approximately 140 to 320 km over
Cape Kennedy, Florida.

Six of the MUMP payloads described. herein were launched on
January 24, 1967, for the purpose of establishing the diurnal variation
of the thermosphere under relatively quiet solar activity levels. The
additional two payloads were launched on April 25, 1967, as a follow-on
day-night pair to reestablish the maximum-minimum density and temperature
values for this day.

A general description of the payload-kinematics, the orientation
analysis, and the technique for the reduction of the data is given by
Taeusch, Carignan, Niemann and Nagy (1965). The reduction of the data
was performed at the Space Physics Research Laboratory and the results
are included in the present report.



2. BACKGROUND FOR THE EXPERIMENT

2.1 NEUTRAL PARTICLES

It has been established that the atmospheric parameters above
100 kilometers altitude vary temporarily because of the variable
nature of the solar energy input. The primary variations are periodic
following the eleven-year sunspot cycle of our sun, the twenty-four
hour diurnal cycle of our rotating earth, and the yearly seasonal cycle
due to the latitude change of the sub-solar point on earth. Also, two
secondary variations have been observed. A twenty-seven day variation
has been observed by Jacchia (1963) and has been correlated with the
solar decimeter flux and the twenty-seven day rotational period of the
sun. A semi-annual variation, observed by Paetzold and Zschorner (1960)
and by Jacchia (1964), is believed to be due to changes in atmospheric
circulation when the sub-solar point is near the-equator (soltices)
(Johnson, 1964).

In terms of the magnitudes of the periodic variations, the eleven-
year solar cycle dominates the general atmospheric behavior. Jacchia
(1964) reports that the maximum daytime exospheric temperature varies
from about 2100°K to about 800°K during the five-and-one-half year
interval from maximum to minimum solar activity. The effect of this
temperature variation on the atmospheric density is large and variable
with altitude, since the scale heights of the constituents change by
about a factor of 2.6 during this time.

The diurnal variation in temperature depends upon the latitude and
the time of year; however, Jacchia (1964) has stated that the maximum
variation has been observed to be approximately 30 per cent from sub-
solar to anti-solar locations on earth and that this diurnal percentage
variation is relatively constant for all levels of solar activity.

The observed semi-annual temperature-variations are on the order
of 15 to 20 per cent with the July minimum-deeper-than the January
minimum and the October maximum higher than the April maximum because
of a superimposed "annual" effect (Jacchia, 1964). The twenty-seven day
variation is on the order of 10 per cent at low latitudes which makes
it difficult to observe during periods of-variable solar activity.

An attempt to describe the above mentioned variations usually
results in "model" atmosphere, which, for the thermosphere, predicts
the diurnal variation of atmospheric parameters for various solar
activity levels. Most of the models to date are based on satellite drag
data, because of the limited number of measurements by other means.
Therefore, the models reflect variations as deduced from these data
(Jacchia, 1960; Jacchia, 196l1; Harris and Priester, 1964; McElroy, 1964;
CIRA, 1965). The major problem to date is that the data, on which the
models are based, yield total density and temperature as the derived
quantities. Therefore, model composition values are deduced from



assumed diffusion levels and assumed total densities well below the
lowest altitude where drag data are available. The required assumptions
are usually in the form of establishing a constant pressure, temperature,
density, and composition at 120 km for all times of day and all levels

of solar activity. These assumptions cause relatively small predicted
variation in densities, during all variable conditions, up to about

200 km. Undoubtedly these predictions do not give a good physical pic-
ture of the real atmospheric behavior at altitudes between 120 and 200 km,
as is borne out by recent direct measurements utilizing the Thermosphere
Probe (Spencer, et al., 1965a,b). Therefore, it is apparent that the
description of atmospheric behavior in the thermosphere must consider
variability of the parameters at 120 km and lower.

With these facts in mind, more measurements of atmospheric parameters
in the 120 to 300 km region are required, if the wvariability in this
region is to be understood. To date, aeronomy satellites have not been
used to measure parameters in the lower region because of the resulting
shortened lifetime. Also, satellite measurements do not provide good
altitude-density profiles. Instrumented sounding rockets provide the
desired data essentially only for one time of day at one geographical
location. Separating the various effects previously discussed from data
obtained at different times of year, day, latitude, etc., is an almost
impossible task; and, therefore, a problem exists of how best to utilize
a given payload to provide data of maximum usefulness.

Measurements to be made in the next year or so will not be capable
in themselves of yielding information on the eleven-year solar cycle
effect. Therefore, it is reasonable to attempt to make all measurements
when solar activity is at the same level for each; thus, only the diurnal,
the semi-annual, and the seasonal variations remain to be investigated.

Of these, the diurnal variation is the most significant. Measurements
of atmospheric parameters over the time period of one earth rotation
would yield much information bearing on the atmospheric time constant
and response to the energy input which, in turn, bears on currently
assumed rate coefficients for the various physical processes.

Measurements of the density profiles of neutral nitrogen yield
neutral particle temperature with an estimated error of +* 5 per cent
(Spencer, et al., 1965a,b), if one assumes that hydrostatic equilibrium
exists. Since a discrepancy exists between model diurnal variations
of temperature as deduced from satellite drag data, (Jacchia, 1965a,b;
Harris and Priester, 1964), the sounding rocket techniques should be
able to add significantly to the value of the extensive drag results by
yielding better diurnal temperature variation information for input to
future models.

2.2 CHARGED PARTICLES

Studies of the diurnal behavior of the electron densities in the
E and bottomside F-region began with the introduction of the ionosonde



many years ago. The advent of direct probings by rockets and satellites
provided the opportunity of making detailed density measurements in the
D, E, and lower F-region and provided the first opportunity for measure-
ments in the topside ionosphere. Rocket and-satellite-borne Langmuir
probes were also the first to make measurements of the electron and

ion temperatures in the ionosphere (Krassovsky, 1959; Boggess, et al.,
1959; Bourdeau, et al., 1962; Nagy, et al., 1963). It is difficult to
establish a true diurnal pattern by using data from satellite-borne
experiments, because of the intricacies involved in separating latitude,
longitude, altitude, and seasonal effects in the results obtained. It
is also difficult to obtain a complete diurnal pattern by using data
from rockets flown to date, because it is necessary to combine the
results from numerous flights, carried out on different days sometimes
under widely varying conditions. The incoherent backscatter technique
(e.g., Evans, 1965a) is very well suited for diurnal measurements of
electron density and electron and ion temperature. These measurements
are, however, usually restricted to altitudes above about 200 km and
have a height resolution of about 50 km. The usual time taken for the
measurements of one complete profile by this technique is in the order
of one hour, although consecutive measurements have been made during an
eclipse (Evans, 1965b) in 15-minute time intervals.

The purpose of the rocket program, which is described in this
report, was to obtain information on the diurnal variation of the
electron temperature and density as well as neutral particle tempera-
ture and density in an altitude range where good diurnal measurements
are lacking. By the appropriate selection of the launch times, it was
also possible to investigate a number of specific problems, which will
be discussed briefly in Section 9.



3. GENERAL FLIGHT INFORMATION

The general flight information for the MUMP payloads are tabulated
below. The Table of Events for each flight, which follow on the next
pages, gives flight times and altitudes of significant events occurring
during the flight. Some of these have been estimated and are so marked.
The others have been obtained from the telemetry records and radar trajec-
tories, where applicable.

Launch Date: January 24, 1967
Location: Cape Kennedy, Florida
Longitude: 28° 27,5'N

Latitude: 80° 31.5'wW

MUMP Test (EST) G.M. Local Solar
NO. Number Local Time Solar Zenith ¥
Time Time Angle
8 ETR-1474 0400 0900 0326 132.4°
6 ETR-1828 0651 1151 0618 95.6°
3 ETR-1165 1009 1509 0935 60.0°
1 ETR-0381 1434 1934 1400 55.5°
2 ETR-0611 1750 2250 1712 90.0°
7 ETR-0851 2200 0300 2126 143,7°

Launch Date: April 25, 1967

MUMP Test (EST) G.M. Local Solar
NO. Number Local Time Solar Zenith ¥
Time Time Angle

4 ETR-1942 0130 0630 0055 135.3°
5 ETR-4803 1400 1900 1325 27.8°




TABLE I

TABLE OF EVENTS

ETR 0381

Mump 1

Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.587 1.4 (est.)
2nd Stage Ignition 12,137 7.0 (est.)
2nd Stage Burn Out 21.158 20.7 (est.)
Despin 43,083 71.3
TP Ejection 44,878 75.2
Omegatron Breakoff 79.904 144.2
Omegatron Filaments On. M28 80.440 146.7
Peak Altitude 287.74 336.12
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.0.S. 547.0 39.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:
Horizontal Velocity:
Flight Time:

TP Motion:
Tumble Period:
Roll Rate

January 24, 1967
19:33:59.940 GMT

Cape Kennedy, Florida

336.12 km
471.10 m/sec
287.74 sec

1.514 sec
-50 deg/sec




TABLE IT

TABLE OF EVENTS

ETR 0611
MUMP 2

Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn oQut 4.0 (est.) 1.6 (est.)
2nd Stage Ignition 13.0 {est.) 7.2 (est.)
2nd Stage Burn Out 21.5 {est.) 20.5 (est.)
Despin 41.0 lest.) 66. (est.)
TP Ejection 42,862 69.7
Omegatron Breakoff 78.320 139.5
Omegatron Filaments On. M28 78.704 140.2
Peak Altitude 279.96 319.58
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.O.S. 541.0 24.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:
Horizontal Velocity:
Flight Time:

TP Motion:
Tumble Period:
Roll Rate:

January 24, 1967
22:50:00.428 GMT

Cape Kennedy, Florida

319.58 km
457.24 m/sec
279.96 sec

3.32 sec
0 deg/sec




TABLE ITI

TABLE OF EVENTS

ETR 1165
MUMP 3

Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.45 (ecst.) 1.7 (est.)
2nd Stage Ignition 12.002 7.2 (est.)
2nd Stage Burn Out 20.434 20.6 (est.)
Despin 43.352 72.0 (est.)
TP Ejection 44,822 76.0 (est.)
Omegatron Breakoff 77.532 138.8
Omegatron Filaments On. M28 78.335 140.1
Peak Altitude 382.61 324,22
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.O.S. 543.0 30.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:
Horizontal Velocity:
Flight Time:

TP Motion:
Tumble Period:
Roll Rate:

January 24, 1967
15:08:54.448 GMT

Cape Kennedy, Florida

324.22 km
551.69 m/sec
282.61 sec

1.086 sec
-125 deg/sec




TABLE IV

TABLE OF EVENTS
ETR 1942
MUMP 4

Event Flight Time Altitude Remarks

(sec) (km)

Lift Off 0 0

lst Stage Burn Out 3.524 1.4 (est.)

2nd Stage Ignition 12.0 (est.) 7.0 (est.)

2nd Stage Burn Out 21,926 21.0 (est.)

Despin 43.734 71.9

TP Ejection 46.557 78.2

Omegatron Breakoff 78.121 142.0

Omegatron Filaments On. M28 78.719 143.1

Peak Altitude 287.971 337.511

Omegatron to Mass Not Applicable

Omegatron to Mass Not Applicable

Omegatron to Mass Not Applicable

L.O0.S. 546.0 43.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:

Horizontal Velocity:

Flight Time:
TP Motion:

Tumble Period:

Roll Rate:

April 25, 1967
06:30:00.499 GMT

Cape Kennedy, Florida

337.511 km

384,41 m/sec

287.971 sec

1,160 sec
0 deg/sec




TABLE V

TABLE OF EVENTS

ETR 4803
MUMP 5
Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.574 1.4 (est.)
2nd Stage Ignition 12.480 7.0 (est.)
2nd Stage Burn Out 21.398 21.0 (est.)
Despin 44.5 (est.) 74.7 (est.)
TP Ejection 47 .2 {est.) 80.6 (est.)
Omegatron Breakoff 76.704 139.9
Omegatron Filaments On. M28 77.373 141.1
Peak Altitude 286.68 334.73
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.0.S. 548.0 34.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:

Horizontal Velocity:

Flight Time:

TP Motion:
Tumble Period:
Roll Rate:

April 25, 1967
19:00:00.110 GMT
Cape Kennedy, Florida

334.733 km
419.65 m/sec
286.680 sec

1.497 sec
-46 deg/sec

10



TABLE VI

TABLE OF EVENTS

ETR 1828
MUMP 6

Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.830 2.0 (est.)
2nd Stage Ignition 12,160 7.2 (est.)
2nd Stage Burn Out 20.878 20.8 (est.)
Despin 43.292 71.5 (est.)
TP Ejection 45,286 76.0 (est.)
Omegatron Breakoff 75.697 135.0
Omegatron Filaments On. M28 76.435 136.6
Peak Altitude 283.190 324.8
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.O.S. 548.0 24.0

Launch Date:
Launch Time:
Location:

Apogee Parameters:
Altitude:
Horizontal Ve
Flight Time:

TP Motion:
Tumble Period
Roll Rate:

locity:

January 24, 1967
11:51:26.420 GMT

Cape Kennedy, Florida

324.82 km
574.79 m/sec
283.190 sec

1.137 sec
~-50 deg/sec

11



TABLE VII

TABLE OF EVENTS

ETR 0851
MUMP 7
Event Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.4 {eat,) 1.4 (est.)
2nd Stage Ignition 12.000 7.0 (est.)
2nd Stage Burn Out 21.0 {est.) 20.7 (est.)
Despin 43.0 (est.) 70.2
TP Ejection 45,751 76.2
Omegatron Breakoff 66.994 119.3
Omegatron Filaments On. M28 67.681 121.9 (est.)
Peak Altitude 283.97 327.3
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass 28 Not Applicable
L.O.S. 539.0 39.0
Launch Date: January 25, 1967
Launch Time: 3:00:00.059 GMT
Location: Cape Kennedy, Florida
Apogee Parameters:

Altitude: 327.3 km

Horizontal Velocity: 525.75 m/sec

Flight Time: 283.97 sec
TP Motion:

Tumble Period: 1.511 sec

Roll Rate: -200 deg/sec

12



TABLE VIII

TABLE OF EVENTS

ETR 1474
MUMP 8
Event ‘Flight Time Altitude Remarks
(sec) (km)

Lift Off 0 0
lst Stage Burn Out 3.122 1.4 (est.)
2nd Stage Ignition 12.265 7.2 (est.)
2nd Stage Burn Out 21.240 20.8 (est.)
Despin 42,898 71.2 (est.)
TP Ejection 45,301 75.8 (est.)
Omegatron Breakoff 78.271 140.3
Omegatron Filaments On. M28 78.968 141.6
Peak Altitude 282.928 325.36
Omegatron to Mass 16 Not Applicable
Omegatron to Mass 32 Not Applicable
Omegatron to Mass. 28 ' Not Applicable
L.O.S. 539.0 36.0
Launch Date: January 24, 1967
Launch Time: 9:00:00.252 GMT
Location: Cape Kennedy, Florida
Apogee Parameters:

Altitude: 325.36 km

Horizontal Velocity: 506.44 m/sec

Flight Time: 282.928 sec
TP Motion:

Tumble Period: 1.546 sec

Roll Rate: -25 deg/sec

13



4, LAUNCH VEHICLE

The launch vehicles used for each flight were a two-stage Nike-
Tomahawk combination. The first stage, the solid propellant Nike
booster, has an average thrust of 49,000 lb and burns for approximately
3.5 sec. The Nike is 135 in. long, 16.5 in. in diameter, and weighs
1338 1b unburned. The center of gravity (CG) was 75.7 in. from the
nozzle exit plant (NEP). The second stage was Thiokol's Tomahawk solid
propellant motor. The average thrust is approximately 11,000 1lb and
it burns for about 9 sec. The Tomahawk, 142 in. long and 9 in. in
diameter, weighs 530 1lb unburned. The CG was 72.125 in. from the NEP.
The payloads were 78.4 in. long and weighed 132 1lb. The total vehicle
was 355 in. long and weighed 2000 lb. Drawings and photographs of the
vehicle are given in Figures 1, 2, and 3.

The predicted performance for the vehicle was 322 km peak altitude
at 281 sec flight time. The actual performances were discussed in the

previous section.
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5. NOSE CONE

A diagram of a day shot of a typical payload including nose cone,
despin mechanisms, and adapter sections is shown in Figure 4. Figure 5
shows a typical payload of a night shot. The weights, dimensions, and
instrumentation placement are also given on the figures. Figure 6 is
a photograph of the TP in the nose cone. An assembly drawing of the
8" nose cone is given in Figure 7.

The payload is programmed to despin at about 70 km altitude, and
the MUMP is ejected and tumbled at about 75 km. The breakoff device
is removed at about 110 km, and the omegatron filaments are turned on
a few seconds later. The timing for each particular payload has been
described previously.

A determination of the total payload moments of inertia, performed
at The Bendix Systems Division in Ann Arbor, is included in their report
in the appendix. Figures 76 through 78 show the test setup and the
instrument package test setup.
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T.P NO. MUMP - ( DAY SHOT)
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Figure 4. Payload diagram for a day shot.
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Figure 5. Payload diagram for a night shot.
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6. MARSHALL-UNIVERSITY OF MICHIGAN PROBE (MUMP)

The MUMP, a cylinder 30.44 in. long and 7.25 in. in diameter,
weighs 50 lb. The prime instruments for this payload are an omega-
tron mass analyzer and an electron temperature probe unit. Supporting
instrumentation includes a lunar or solar aspect sensor for the
determination of the TP aspect. The diagram in Figure 8 shows the
instrumentation and supporting electronics location, and Figure 9
shows the block diagram. Figure 10 is a picture of the completely
assembled TP.

6.1 OMEGATRON

The omegatron used in these payloads was of the type described by
Niemann and Kennedy (1966). An expanded view of the system is shown
in Figure 1l1. Tables 9 through 16 list the operating parameters of
the gauge and associated electronics. The characteristics of the
linear electrometer amplifier current detector, used to monitor the
omegatron output current, are also listed.

These omegatrons are essentially identical to those flown pre-
viously on NASA's 18.02 and 18.03 (Taeusch and Carignan, 1966a,b).
The breakoff unit, omegatron envelope, and omegatron magnet assembly
are shown in Figqures 12, 13, and 14.

The calibrations of all omegatrons were performed in December and
January preceding the launch. The vacuum system used could accommodate
four of the flight gauges at one time plus reference Bayard-Alpert
ionization gauges used as secondary standards.

A two-stage o0il diffusion pump vacuum system was used as a
pressure calibration system. To obtain extremely low oil backstreaming,
the second stage oil diffusion pump was equipped with a cold cap and
two six-inch Granville-Phillips liquid N, cold traps. A typical
background pressure, afgfﬁ the system ha§ been baked at 360°C for 48
hours, was about 2 x 10 torr. Dry nitrogen was leaked into the
system as a calibration gas. Calibration data were taken from back-
ground pressures to 3 x 10~ torr. Above this pressure the omegatron
becomes highly nonlinear.

Figure 15 is a photograph of an actual calibration set-up. Four
omegatrons were calibrated at a time against four Bayard-Alpert ioniza-
tion gauges (B-A gauges). The B-A gauges were used as secondary
references. Two B-A gauges were previously calibrated by the Ball
Brothers Corporation against a McLeod gauge. In order to provide
continuity, one other gauge was used as reference from previous
calibrations of earlier omegatron experiments. Since only four
omegatrons could be calibrated at one time, to obtain an accurate
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relative calibration of the omegatrons, combinations in pairs were
used where each group was calibrated twice.

Gauge outputs and all critical supply voltages were printed by a
datum system employing a 50 channel time multiplexer, an NLS integrating
digital voltmeter, and a Hewlett-Packard printer. Also, all gauge
outputs were analog-recorded on an eight-channel Sanborn recorder.
After calibration, the omegatrons were prepared for pinch-off in pairs,
and their output currents were compared at two different pressures.
Thus it was determined that no damage had been done to the instrument
during reassembly. Calibration curves of the omegatrons are shown in
Figures 16-23. The omegatron currents were plotted against particle
number densities which were calculated from the reference pressure
values.
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TABLE IX

OMEGATRON DATA

ETR 0381
MUMP 1
Omegatron Gauge Parameters:
Beam Current: 2.02 yamps
Electron Collector Bias: 77.65 volts
Filament Bias: -91.50 volts
Cage Bias: -0.194 volts
Top Bias: -0.609 volts
RF Amplitude:
M28 3.70 vV _
RF Frequency: pP=p
M28 144.93 kHz
Monitor
Filament
OFF: 0.114 Vv
ON: 3.183 V (steady)
Beam
OFF: 0.266 V
ON: 3,114 v
Thermistor Pressure Filament OFF: 4,368V
(zero pressure) Filament ON: 4.013v
Bias: 4,024 Vv
RF':
M28 3.740 Vv
Calibration
Sensitivity: 2.00 x 107° amps/torr
Maximum Linear Pressure (5%): 1.3 X 10-5 torr
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TABLE IX (CONCLUDED)

Electrometer Amplifier

Range
1

2

Miscellaneous

Range Indicator

0.0 v

0.7 v

4.2 v

4,9 v

calibration voltage 0.

+28 power current all on:
Preflight gauge pressure
Magnetic field strength:

(N

2

Range Resistor

8.645 ¥ 10

2.350
6.388
1.832
5.128
1.434
4,047

9.700

300ma

X

X

X

9

1010

10lO

lOll

10ll

1012

lO12

l012

571 v

): 3.45 x 10°°
2700 gauss

26

torr

M28ZPV
5.066
5.066
5.066
5.067
5.068
5.0714
5.0807

5.106



TABLE X

OMEGATRON DATA

ETR 0611
MUMP 2
Omegatron Gauge Parameters
Beam Current: 2.005 yamps
Electron Collector Bias: 77.22 volts
Filament Bias: -92,.87 volts
Cage Bias: -0.209 volts
Top Bias: -0.609 volts
RF Amplitude:
M28 4,00 V__
RF Frequency: PP
M28 143.59 kHz
Monitor
Filament
OFF: 0.106 Vv
ON: 3.091 Vv
Beam
OFF: 0.678 V
ON: 2,916 vV
Thermistor Pressure Filament OFF: 2.140V
(zero pressure) Filament ON: 2.000v
Bias: 4,082 Vv
RF:
M28 3.694 Vv
Calibration
Sensitivity: 1.82 x lO_5 amps/torr

Maximum Linear Pressure (5%): 9 x 10™° torr
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TABLE X

Electrometer Amplifier

Range
1

2

Miscellaneous

Range Indicator

0.0 v
0.7 v
l.4 v
2.1 v

2.8 v

4,2 v

4.9 v

(CONCLUDED)

‘Range Resistor

9.119 x 10

2.479
6.738
1.832
4.979
1.353
4.047

1.00

X

X

X

9

lolO

lolO

lOll

loll

l012

1012

lo13

calibration voltage 0.524 v

+28 power current all on: _
Preflight gauge pressure (Nz): 5.9 x 10 torr
Magnetic field strength:

28

370 ma

2680 gauss

M28ZPV
4.884
4.884
4,884
4,884
4.885
4,887
4.897

4,902



TABLE XI

OMEGATRON DATA

ETR 1165
MUMP 3
Omegatron Gauge Parameters
Beam Current: 1.99 pamps
Electron Collector Bias: 78.24 volts
Filament Bias: -92.10 volts
Cage Bias: -0.204 volts
Top Bias: -0.602 volts
RF Amplitude:
M28 4,00 A
RF Frequency: PP
M28 140.06 kHz
Monitor
Filament
OFF: 0.108 Vv
ON: 3.199 Vv
Beam
OFF: 0.350 V
ON: 3.700 Vv
Thermistor Pressure: Filament OFF: 2.333V
(zero pressure) Filament ON: 2.110v
Bias: 4.129 V
RF:
M28 3.548 V
Calibration
Sensitivity: 1.96 x 19;5 amps/torr
Maximum Linear Pressure (5%): l.2 x 10 torr
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TABLE XI (CONCLUDED)

Electrometer Amplifier

Range Range Indicator
1 0.0 v
2 0.7 v
3 1.4 v
4 2;1 v
5 2.8 v
6 3.5 v
7 4,2 v
8 4.9 v

Range Resistor

8.483
2.306
6.268
1.832
5.049
1.361
3.746

9.538

X

X

X

X

calibration voltage 0.577

Miscellaneous

+28 power current all on:
Preflight gauge pressure
Magnetic field strength:

(N

2)¢

30

375 ma _
5.6 x 10
2620 gauss

102

lO10

10lO

lOll

lOll

1012

l012

l012

volts

torr

M28ZPV
4.980
4,980
4,980
4,981
4,981
4,987
5.000

5.029



TABLE XII

OMEGATRON DATA

ETR 1494
MUMP 4
Omegatron Gauge Parameters
Beam Current: 2.00 pamps
Electron Collector Bias: 77.58 volts
Filament Bias: -89.45 volts
Cage Bias: -.2010 volts
Top Bias: -.599 volts
RF Amplitude:
M28 3.90 vV__
RF Frequency: p7P
M28 136.68 kHz
Monitor
Filament
OFF: .1104 v
ON: 3.165 v
Beam
OFF: 0.270 A
ON: 3.454 v
Thermistor Pressure: Filament OFF: 2.086V
(zero pressure) Filament ON: 1.917v
Bias: 4,093 \Y
RF:
M28 3.698 A
Calibration
Sensitivity: 2.03 x_%on5 amps/torr
Maximum Linear Pressure (5%): 7 x 10 torr
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TABLE XII (CONCLUDED)

Electrometer Amplifier

Range Range Indicator Range Resistor M28ZPV
1 0.0 v 9.119 x 10° 5.003
2 0.7 v 2.479 x 100 5.003
3 1.4 v 6.738 x 10°° 5.003
4 2.1 v 1.832 x 10't 5.0015
5 2.8 v 4.979 x 10%1 4.999
6 3.5 v 1.353 x 1012 4.987
7 4.2 v 3.679 x 1002 4.973
8 4.9 v 1.000 x 10%3 4.918

calibration voltage 0.663 v

Miscellaneous
+29 power current all on: 320 ma _
Preflight gauge pressure (N2): 14 x 10 torr
Magnetic field strength: 2540 gauss
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TABLE XIII

OMEGATRON DATA

ETR 4803
MUMP 5
Omegatron Gauge Parameters
Beam Current: 2.005 wuamps
Electron Collector Bias: 77 .45 volts
Filament Bias: -89.27 volts
Cage Bias: -0.204 volts
Top Bias: -0.604 volts
RF Amplitude:
M28 3.98 V__
RF Frequency: PP
M28 143,43 kHz
Monitor
Filament
OFF: 0.115 V
ON: 3.036 V
Beam
OFF: 0.525 Vv
ON: 3.471 Vv
Thermistor Pressure: Filament OFF: 3.027V
(zero pressure) Filament ON: 2,860V
Bias: 4,115 V
RF:
M28 3.376 'V
Calibration
Sensitivity: 1.90 x 107° amps/torr
Maximum Linear Pressure (5%): 6 x 107° torr
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TABLE XIII (CONCLUDED)

Electrometer Amplifier

calibration voltage 0.586 volts

Range Range Indicator
1 0.0 v
2 0.7 v
3 1.4 v
4 2.1 v
5 2.8 v
6 3.5 v
7 4.2 v
8 4.9 v
Miscellaneous

+28 power current all on:

Preflight gauge pressure

Magnetic

field strength:

(N

Range Resistor

2) ¢

34

9

9.119 x 10

2.479
6.738
1.832
4.979
1.258

3.863

1.130 x 10°

390 ma

X

X

X

10lO

lolO

lOll

10ll

lO12

l012

3

3.33 x 10
2660 gauss

torr

M28ZPY
4.964
4.964
4,964
4,963

4.962

4.950

4.926



TABLE XIV

OMEGATRON DATA

ETR 1828
MUMP 6
Omegatron Gauge Parameters
Beam Current: 2.02 Hamps
Electron Collector Bias: 76.5 volts
Filament Bias: -89.95 volts
Cage Bias: -0.206 volts
Top Bias: -0.613 volts
RF Amplitude:
M28 4.00 A
RF Fredquency: p~P
M28 139.12 kHz
Monitor
Filament
OFF : 0.113 V
ON: 2,900 vV
Beam-
OFF: 0.600 V
ON: 3.880 V
Thermistor Pressure: Filament OFF: 2.283V
(zero pressure) Filament ON: 2,136V
Bias: 3.833 V
RF:
M28 3.797 Vv
Calibration
Sensitivity: 2.23 x 10_5 amps/torr
Maximum Linear Pressure (5%): 8 x 106 torr
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TABLE XIV (CONCLUDED)

Electrometer Amplifier

Range Range Indicator Range Resistor M28ZPV
1 0.0 v 9.119 x 10° 5.028
2 0.7 v 2.479 x 1010 5,028
3 1.4 v 6.738 x 1019 5,028
4 2.1 v 1.832 x 10%t 5.029
5 2.8 v 5.037 x 1011 5.030
6 3.5 v 1.435 x 10%2 5,034
7 4.2 v 4.016 x 10%2 5,046
8 4.9 v 1.077 x 10%3 5.073

calibration voltage 0.648 v

Miscellaneous
+28 power current all on: 320 ma -5
Preflight gauge pressure (N2): 3.45 x 10 torr
Magnetic field strength: 2600 gauss
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TABLE XV

OMEGATRON DATA

ETR 0851
MUMP 7
Omegatron Gauge Parameters
Beam Current: 1.99 yamps
Electron Collector Bias: 78.24 volts
Filament Bias: -92.02 volts
Cage Bias: -0.205 volts
Top Bias: -0.601 volts
RF Amplitude:
M28 4,00 V__
RF Frequency: PP
M28 143.23 kHz
Monitor
Filament
OFF: 0.112 Vv
ON: 3.436 V
Beam:
OFF: 0.642 V
ON: 3.886 V
Thermistor Pressure: Filament OFF: 1.842V
(zero pressure) Filament ON: 1.696V
Bias: 4,099 Vv
RF:
M28 3.392 VvV
Calibration
Sensitivity: 2.03 x 107° amps/torr
Maximum Linear Pressure (5%): 7 x 107° torr
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TABLE XV (CONCLUDED)

Electrometer Amplifier

nggg Range Indicator
1 0.0 v
2 0.7 v
3 l.4 v
4 2.1 v
5 2.8 v
6 3.5 v
7 4,2 v
8 4.9 v

calibration voltage 0.

Miscellaneous

+28 power current all on:
Preflight gauge pressure
Magnetic field strength:

(N

p) ¢

38

Range Resistor

9

9.119 x 10

2.479
6.738
1.832
4.979
1.353
4.075

1.123

X

lolO

lOlO

loll

10ll

lO12

lo12

lo13

622 v

400 ma _
2.5 x 10
2660 gauss

torr

M28ZPV
5.062
5.062
5.062
5.062
5.062
5.061
5.061

5.057



TABLE XVI

OMEGATRON DATA

ETR 1474
MUMP 8
Omegatron Gauge Parameters
Beam Current: 2,00 yamps
Electron Collector Bias: 78,70 volts
Filament Bias: -89.80 volts
Cage Bias: -.197 volts
Top Bias: -.596 volts
RF Amplitude:
M28 4.00 A
RF Frequency: PP
M28 143.42 kHz
Monitor
Filament
OFF: .1025 V
ON: 3.324 \Y4
Beam
OFF: .8460 V
ON: 4.129 v
Thermistor Pressure: Filament OFF: 2.119V
(zero pressure) Filament ON: 1.874v
Bias: 4.188 \Y%
RF:
M28 3.625 v
Calibration
Sensitivity: 2.12 x 107° amps/torr
Maximum Linear Pressure (5%): 9 x 107® torr
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TABLE XVI (CONCLUDED)

Electrometer Amplifier

Range
1

2

Miscellaneous

Range Indicator

0.0 v
0.7 v

l.4 v

Range Resistor

9

9.119 x 10

2.479
6.738
1.832
4.953
1.330
3.374

9.087

X

X

X

l010

lO10

lOll

lOll

lOl2

lO12

l012

calibration voltage 0.459 v

+28 power current all on:
Preflight gauge pressure
Magnetic field strength:

(N

2)?
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338 ma _
3.8 x 10
2680 gauss

torr

M28ZPV
4.978
4.978
4,978
4.9771
4.,9715
4.9712
4.9613

4,954
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6.2 ELECTROSTATIC PROBE (ESP)

The electrostatic probe (ESP) system described consists of a
cylindrical Langmuir probe, shown in Figure 24, which is immersed
in the plasma, and an electronics unit which measures the current
collected by the probe.

The electronics unit consists of a dc-dc converter, a ramp
voltage generator, a three-range current detector, range switching
relays, and associated logic circuitry. The electronics unit has
two output channels, a data channel, and a computer channel. The
data channel output is a voltage proportional to the collected probe
current. The computer channel contains information on detector
ranges, system calibration, and ramp voltage levels which allows
data reduction by computer methods. System timing and the computer
channel format are given in Figure 25.

The following are the specifications of the ESP system for
Mump 1 through 8:

(1) Input Power

1.54 watts at 28 volts

(2) Sensitivity Mumps 1, 2, 3, 5 Mumps 4, 6, 7, 8
Range 1 20 ua Full Scale* 10 ua Full Scale
Range 2 2.0 pa Full Sscale 1.0 pa Full Scale
Range 3 0.2 pa Full Scale 0.1 pa Full Scale

*Full scale output is defined as the +4.0 v from the 0.5 v
output bias level.

(3) Ramp Voltage (AV) Magnitude Slope
High AV -3 v TO +5 v 80 v/sec
Low AV -1 v TO +1.8 v 28 v/sec
(4) Output
Voltage -0.6 v TO +5.6 v
Resistance less than 2 K
Bias Level +0.5 v

(5) Calibration

ON-FOR 600 msec
Interval 28.8 sec
Synchronized with AV

(6) Timing (see Figure 25)

AV-High-Low alternated every 1,8 sec
Range - Sequential, 100 msec each range
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6.3 SUPPORT MEASUREMENT: AND INSTRUMENTATION
6.3.1 Aspect Determination System

The aspect determination systems, utilized for the eight payloads
described herein, were identical to those used on previous Thermosphere
Probe payloads. The launches performed during the sunlit hours utilized
the Adcole Corporation solar sensors with their shift register elec-
tronics package. The launches performed at night utilized the
University of Michigan lunar sensor. Adequate information for the
determination of payload aspect was received in all cases. However,
one of the solar aspect sensors malfunctioned after operating properly
for a short period during the initial part of the flight. Details of
the malfunction are discussed in Section 7.

In all cases the data were analyzed by a technique which used the
velocity vector as a reference (Taeusch, Carignan, Niemann, and Nagy,
1965). It was hoped that the use of Adcole Corporation earth sensors
used for the sunlit flights would yield enough information to allow
aspect solutions independent of the velocity vector technique. Such
information would allow a study of atmospheric winds. However, the
earth sensors did not provide adequately accurate data and will subse-
quently not be used in the future. Other techniques are being
attempted to recover the atmospheric wind data. If the techniques are
successful, the results will be reported in the future.

The minimum angles of attack versus flight time for each flight

are given in Figures 26 through 33. These angles are believed accurate
to better than £5°.
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Figure 26. Minimum angle of attack vs. altitude for MUMP 1.
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Figure 27. Minimum angle of attack vs. altitude for MUMP 2.
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Figure 28, Minimum angle of attack vs. altitude for MUMP 3.
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Figure 29. Minimum angle of attack vs. altitude for MUMP L.
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Figure 20. Minimum angle of attack vs. altitude for MUMP 5.
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Figure 31. Minimum angle of attack vs. altitude for MUMP 6.
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Figure 32. Minimum angle of attack vs. altitude for MUMP 7.
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Figure 33. Minimum angle of attack vs. altitude for MUMP 8.
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6.3.2 Telemetry

The payload data were transmitted in real time by PAM/FM/FM
telemetry systems at 231.4 M Hz. with a nominal output of 2.5 watts.
The system used subcarrier channels assigned as outlined on the
following pages.
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ETR 0381

MUMP 1

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 3113-25 70 kHz 1050 Hz Omegatron
l6 2499-25 40 kHz 600 Hz ESP-Data
14 2497-25 22 kHz 330 Hz ESP-Flag
12 2482-25 10.5 kHz 160 Hz Aspect
11 2480-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: TRPT-250 Serial Number: 2839
Power Amplifier: Type TRFP-2V-1 Serial Number: 521
Mixer Amplifier: Type TAS58A Serial Number: 1063

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a

nominal 27 volt output.
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ETR 0611

MUMP 2

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 2503-25 70 kHz 1050 Hz Omegatron
16 2498-25 40 kHz 600 Hz ESP-Data
14 2495-25 22 kHz 330 Hz ESP-Flag
12 3102-25 10.5 kHz 160 Hz Aspect
11 2478-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: TRPT-250 Serial Number: 2846
Power Amplifier: Type TRFP-2V-1 Serial Number: 522
Mixer Amplifier: Type TA58A Serial Number: 1066

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a

nominal 27 volt output.
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ETR 1165

MUMP 3

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 3111-25 70 kHz 1050 Hz Omegatron
16 2542-25 40 kHz 600 Hz ESP-Data
14 2493-25 22 kHz 330 Hz ESP-Flag
12 2487-25 10.5 kHz 160 Hz Aspect
11 2476-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number: 2845
Power Amplifier: Type TRFP-2V-1 Serial Number: 523
Mixer Amplifier: Type TA58A Serial Number: 1065

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a
nominal 27 volt output.
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ETR 1942

MUMP 4

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 2506-25 70 kHz 1050 Hz Omegatron
16 3108-25 40 kHz 600 Hz ESP-Data
14 3107-25 22 kHz 330 Hz ESP-Flag
12 1985-25 10.5 kHz 160 Hz Aspect
11 3100-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number: 2844

Power Amplifier:

Mixer Amplifier: Type TA58A

Type TRFP-2V-1

Serial Number: 524

Serial Number: 1123

Instrumentation power requirements totaled
which was supplied by a Yardney HR-1 Silvercell
nominal 27 volt output.
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ETR 4803

MUMP 5

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 2504-25 70 kHz 1050 Hz Omegatron
16 2502-25 40 kHz 600 Hz ESP-Data
14 2494-25 22 kHz 330 Hz ESP-Flag
12 2483-25 10.5 kHz 160 Hz Aspect
11 2477-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number: 2848
Power Amplifier: Type TRFP-2V-1 Serial Number: 525
Mixer Amplifier: Type TAS58A Serial Number: 1122

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a
nominal 27 volt output.
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ETR 1828

MUMP 6

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response vFunction
18 3112-25 70 kHz 1050 Hz Omegatron
16 3109-25 40 kHz 600 Hz ESP-Data
14 3106-25 22 kHz 300 Hz ESP-Flag
12 3104-25 10.5 kHz 160 Hz Aspect
11 3101-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number: 2490
Power Amplifier: Type TRFP-2V-1 Serial Number: 428
Mixer Amplifier: Type TAS58A Serial Number: 1124

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a
nominal 27 volt output.
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ETR 0851

MUMP 7

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 2505-25 70 kHz 1050 Hz Omegatron
le6 3110-25 40 kHz 600 Hz ESP-Data
14 3105-25 22 kHz 330 Hz ESP-Flag
12 3103-25 10.5 kHz 160 Hz Aspect
11 3099-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number: 2974
Power Amplifier: Type TRFP-2V-1 Serial Number: 535
Mixer Amplifier: Type TAS58A Serial Number: 1060

Instrumentation power requirements totaled approximately 30 watts,
which was supplied by a Yardney HR-1 Silvercell battery pack of a
nominal 27 volt output.
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ETR 1474

MUMP 8

Subcarrier Channels (SCO-type TS58)

Nominal
IRIG Serial Center Frequency
Band Number Frequency Response Function
18 2560-25 70 kHz 1050 Hz Omegatron
16 2010-25 40 kHz 600 Hz ESP-Data
14 1891-25 22 kHz 330 Hz ESP-Flag
12 1689-25 10.5 kHz 160 Hz Aspect
11 1977-25 7.35 kHz 110 Hz Commutator
Transmitter: Driver: Type TRPT-250 Serial Number 2973

Power Amplifier:

Mixer Amplifier: Type TAS58A

Type TRFP-2V-1

Serial Number 536

Serial Number 1057

Instrumentation power requirements totaled
which was supplied by a Yardney HR-1 Silvercell
nominal 27 volt output.
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6.3.3 Housekeeping Monitors

Outputs from various monitors throughout the instrumentation provide
information bearing on the operations of the electronic components
during flight. These outputs are fed to a thirty+~segment commutator
which runs at one rps. The commutator assignments are as follows:

COMMUTATOR FORMAT FOR MUMP 9-7-66
SEGMENT
SEG. NO. ASSIGNMENT EXPECTED READING ACTUAL READING
1 RANGE 4.9/8 0/1
2 ouT 4.95/0OFF .83/CAL
3 FIL 3.1/0N .l1l1/OFF
4 BEAM 3.2/0ON .46/0FF
5 BIAS 3.95
6 RF 3.1/N2 2.3/09 2.1/0
7 PRESS 1.8/0FF
8 TH-GAGE 3.8/20° 3.5/25° 3.1/30°
9 TH_AMP " " "
l 0 TH"‘ RE G " " u
l l TH_NO " L "
12 TH-XTMR " " "
13 OPEN
14 OPEN
15 28/5 Eqg/E = 1/6.11 OR 4.5/27.5
16 POS 5.0/7 4.2/8 2.7/10 2.0/11
17 CAL V 5.0
18 TH-CM 3.8/20° 3.5/25° 3.1/30°
l 9 n "
2 0 " "
2 l 1] "
2 2 1] ]
2 3 n n
24 0 CAL 0.00
25 1 CAL 1.00
26 2 CAL 2.00
27 3 CAL 3.00
28 4 CAL 4.00
29 & 30 5 CAL 5.00 (FRAME SYNC)
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7. ENGINEERING RESULTS

Because of the nature of program objectives, no engineering
innovations of consequence were introduced into the instrumentation.
Rather, every effort was made to use previously flight-tested designs.
The three night shots were identical to the Thermosphere Probe launched
by NASA 18:22, and the day shots differed only in their use of a solar
aspect sensor and in the sensitivity of the Langmuir probe current
detector. ’

A great deal of laboratory effort was devoted to an attempt to
find a surface treatment for the omegatron gauge and envelope which
would permit a measurement of atomic oxygen abundance. The results
of the laboratory studies, insofar as permitting the atomic oxygen
measurement to be made, were negative, and the measurement was reluc-
tantly abandoned. The circuitry required for the measurement had
already been incorporated into the instrument and was merely disabled.
As a consequence, measurement of complete N2 density profiles on both
up and downleg was permitted.

The recovery of 100% data was realized from all eight shots.
With two known exceptions all eight instruments performed completely
as designed. On flight # 1165, solar sensor outputs were erratic
(spurious readouts plus many normal readouts) until 135 seconds of
flight time. After 135 seconds of flight time, no useful solar data
were obtained. The early normal behavior permitted an orientation
determination, which then permitted a sorting out of the normal from
the spurious outputs. No loss of information resulted from this
failure.

On flight 611, the usual method of aspect determination which
assumes a constant angular momentum vector for the probe and then
tests the assumption, failed to confirm its validity. Further
analysis of the data showed that consistent interpretation of the
aspect data could be obtained only by permitting the angular momentum
vector to move at a rate of approximately 2° per second. It has been
concluded that the most likely explanation for this situation was that
a small leak developed such that a thrust perpendicular to the cylin-
drical axis existed. A second possible explanation offered is that
the cable attached between the negator motor and the probe for
imparting tumble failed to release from the probe, thus resulting in
a complex non-rigid system. Other explanations are possible, but the
leak theory seems best to fit the observations. At any rate, no known
loss or deterioration of data were experienced as a result of this
problem.

Since no new engineering concepts were tested on these flights,
little can be identified as engineering results. The success, however,
of eight of eight shots seems to indicate that the Thermosphere Probe
in the configuration used is a reliable space flight instrument.
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8. ANALYSIS OF DATA

The telemetered data were recorded on magnetic-tape at the
Station 1 (Tel 4) facility. One set of real time paper records, run
at one inch per second, were obtained for "quick look" evaluation of
the performance of each payload. Other paper records were obtained
as required for data reduction as stipulated in the Operations
Directives.

Tracking data for trajectory information were obtained from the
0.18 and 19.18 radar facilities.

8.1 TRAJECTORY AND MINIMUM ANGLE OF ATTACK

The trajectory and the velocity information used for the reduction
of the data and for the interpretation was obtained by fitting a smooth
theoretical trajectory to the radar data. The theoretical trajectory
is programmed for computer solution similar to that described by
Parker (1962). The output format is shown in Figure 34. The analysis
of minimum angle of attack (o) as described by Taeusch, et al. (1965),
is also incorporated in the program and the output of the computer
furnishes o and cos o versus time, altitude, etc. Plots of o versus
altitude for each of the payloads are given in Figures 26 through 33.

8.2 AMBIENT N2 DENSITY AND TEMPERATURE

The neutral molecular nitrogen densities for each of the flights
were determined from the measured gauge partial densities as described
by Spencer, et al. (1965, 1966), by using the basic relationship:

An. u.
i 7i

naNz =\ 277 Vcos o

K(S,a)

Ny

fay, = Ambient N, number density

An, = Maximum minus minimum gauge number density during one tumble
[2KT. . D
u, = i most probable thermal speed of particle inside gauge.
m
Ti = Gauge wall temperature.
V = Vehicle velocity with respect to earth.
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o Minimum angle of attack for one tumble.

K(S,a) Correction factor required because of imperfect gauge geometry.

(See Spencer, Taeusch, Carignan, 1966).

ATI,, the difference between the maximum (peak) omegatron gauge
current~and the minimum (background) gauge current versus flight time
is shown for a typical flight in Figure 35. The background current
is also shown in the figure. The background current is the result of
the outgassing of the gauge walls, and the inside density due to
atmospheric particles which have enough translational energy to over-
take the payload and enter the gauge. In contrast to reports by Moe
and Moe (1967), there is laboratory evidence that the background of
Ny, due to outgassing of the gauge walls, is constant for at least
one tumble period, and effects both the peak reading and the background
reading and therefore does not effect the difference. From calibration
data, obtained as discussed in a previous section, the inside number
density difference, Anj, is computed for the measured current. As
described by Spencer, Taeusch and Carignan (1965), the uncertainty in
these data is believed to be *5% relative to other gauges calibrated
at the same time on the same system. Much could be written concerning
the absolute accuracy which cannot be proved or disproved to anything
better than *25% to date.

By using the thermistor measured gauge wall temperature, uj, the
most probable thermal speed of the particles inside the gauge, is
computed. The uncertainty in this measuring is believed to be about
£2% absolute.

V, the vehicle velocity with respect to the earth, is believed
known to better than +1% absolute. It is obtained from the trajectory
curve fitting described previously and is the most accurately known
quantity obtained from the analysis.

Cos o is obtained from the aspect analysis described by Taeusch,
et al. (1965). Since the uncertainty in cos o depends upon o, for
any given uncertainty in a, each particular case and altitude range
must be considered separately. However, the upleg angle of attack is
typically less than 10°. With an assumed maximum uncertainty in o of
t5°, this results in less than a *2% uncertainty in cos o. The low
angle of attack data were used as control data in all cases.

K(S,0) for each flight was determined from theoretical and empiri-
cal results gathered over a four-year period utilizing data obtained
from about ten payloads similar to the ones described herein. Several
researchers have contributed to this work (Pearl, John, and Vogel, U.,
Space Physics Research Laboratory, The University of Michigan, to be
published; and Ballance, 1967). In general, the maximum correction to
the data is approximately 15%, or K(S,a) = .85. These corrections are
believed known to better than 2%.
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The ambient N2 number densities versus altitude obtained from the
measured quantities described above are given in Figures 36 through 43,
and are tabulated with the derived kinetic temperature in Tables 17
through 24.

The ambient neutral particle temperature profiles shown in Figures
44 through 51 were obtained by integrating the density profiles, which
gives the ambient N, pressure. The densities and the resulting pres-
sures are then related to the temperatures through the ideal gas law.
The assumption that the gas is in hydrostatic equilibrium and behaves
as an ideal gas is implicit. Since the temperatures derived depend
only on the shape of the density profile and not its magnitude, it is
believed that the uncertainty in its magnitude is less than *5% absolute.
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TABLE XVII
ETR 0381, MUMP 1
January 24, 1967
19:34 2
14:34 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 640 3,70 x 1010
145 693 2.61
150 744 1.94
155 792 1.49 Lo
160 838 1.16 x 104
165 877 9.24 x 10
170 913 7.47
175 942 6.08
180 969 5.03
185 991 4.19
190 1010 3.51
195 1026 2.97
200 1041 2.51
205 1054 2.14
210 1065 1.82
215 1074 1.57
220 1081 1.35
225 1086 1.16 o
230 1090 1.01 x 107
235 1093 8.76 x 10
240 1096 7.60
245 1099 6.60
250 1102 5.72
255 1104 4.99
260 1106 4.32
265 1108 3.76
270 1110 3.27
275 1112 2.85
280 1114 2.50
285 1115 2.17
290 1116 1.89
295 1117 1.65
300 1118 1.44
305 1120 1.25 ;
310 1122 1.10 x 105
315 1123 9.58 x 10
320 1124 8.33 x 10
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ALTITUDE
(km)

140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295

TABLE XVIIT
ETR 0611, MUMP 2
January 24, 1967

22:50 2
17:50 Local (EST)

Cape Kennedy, Florida

TEMPERATURE DENSITY
(°K) (part/cc)
657 3,53 x 1020
677 272
696 2.10
715 1.64
735 1.27 Lo
754 1.00 x 10
772 7.99 x 10
791 6.40
809 5.13
828 4.13
846 3.37
864 2.74
881 2.25
898 1.85
914 1.54
928 1.28 o
940 1.07 x 10,
951 9.02 x 10
959 7.60
967 6.41
974 5.43
981 1.61
988 3.92
994 3.34
999 2.85
1004 2.43
1009 2.08
1014 1.78
1018 1.52
1022 1.31 :
1026 1.12 x 105
1030 9.61 x 10
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TABLE XIX
ETR 1165, MUMP 3
January 24, 1967
15:09 2
10:09 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 632 3.52 x 1010
145 662 2.65
150 684 2.02
155 704 1.57 Lo
160 722 1.22 x 10
165 739 9.56 x 10
170 755 7.57
175 769 6.03
180 784 4.85
185 797 3.90
190 810 3.18
195 823 2.59
200 835 2.12
205 846 1.74
210 857 1.43 o
215 869 1.18 x 107
220 880 9.80 x 10
225 890 8.16
230 900 6.77
235 910 5.63
240 919 4.70
245 929 3.95
250 938 3.32
255 946 2.80
260 952 2.36
265 959 2.00
270 965 1.70
275 972 1.44
280 977 1.23 :
285 982 1.04 x 10
290 088 8.97 x 10
295 992 7.64
300 997 6.56
305 1002 5.61
310 1006 1.81
315 1011 4.12 ;
320 1015 3.55 x 10
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TABLE XX
ETR 1942, MUMP 4
April 25, 1967
06:30 Z
01:30 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
145 591 3.70 x 101°
150 628 2.74
155 658 2.04
160 690 1.55 Lo
165 720 1.18 x 105
170 747 9.19 x 10
175 774 7.22
180 796 5.77
185 816 4.61
190 831 3.74
195 846 3.07
200 860 2.51
205 875 2.06
210 887 1.70
215 898 1.41 o
220 906 1.18 x 10
225 915 9.82 x 10
230 922 8.27
235 927 7.00
240 931 5.92

245 935 5.00
250 937 1.23
255 939 3.60
260 940 3.06
265 941 2.60
270 941 2.21
275 942 1.88
280 942 1.60
285 942 1.36 .
290 942 1.17 x 105
295 942 9.90 x 10
300 942 8.45
305 942 7.20
310 942 6.08
315 942 5.19 ;
320 942 4.41 x 10
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TABLE XXI
ETR 4803, MUMP 5
April 25, 1967
19:00 Z
14:00 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 616 4.81 x 1010
145 654 3.56
150 693 2.65
155 736 2.00
160 777 1.54 Lo
165 814 1.20 x 10y
170 848 9.54 x 10
175 880 7.69
180 907 6.24
185 931 5.13
190 951 4.26
195 969 3.55
200 983 2.99
205 997 2.52
210 1010 2.14
215 1021 1.81
220 1030 1.54
225 1037 1.32 o
230 1044 1.13 x 10,
235 1049 9.66 x 10
240 1053 8.34
245 1057 7.20
250 1060 6.21
255 1062 5.38
260 1065 4.63
265 1067 4.01
270 1069 3.47
275 1071 3.01
280 1072 2.61
285 1073 2.27
290 1075 1.97
295 1076 1.70
300 1077 1.48
305 1078 1.29 .
310 1080 1.12 x 10
315 1081 9.60 x 10/
320 1082 8.29 x 10
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TABLE XXII
ETR 1828, MUMP 6
January 24, 1967

11:51 2
06:51 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 576 3.25 x 1010
145 630 2.29
150 672 1.68 Lo
155 703 1.28 x 103
160 727 9.90 x 10
165 745 7.80
170 762 6.20
175 774 5.00
180 786 4.02
185 795 3.27
190 804 2.64
195 812 2.16
200 819 1.76
205 826 1.45 o
210 832 1.19 x 107
215 838 9.85 x 10
220 844 8.13
225 849 6.75
230 853 5.61
235 857 4.67
240 861 3,87
245 866 3.25
250 869 2.71
255 8§72 2.26
260 875 1.88
265 878 1.58
270 881 1.33 q
275 884 1.12 x 105
280 886 9.35 x 10
285 889 7.90
290 890 6.65
295 892 5.65
300 894 4.72
305 896 3.98
310 898 3.35
315 899 2.82 ;
320 901 2.38 x 10
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TABLE XXTIIT
ETR 0851, MUMP 7
January 24, 1967

03:00 2z
22:00 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 597 3.59 x 1010
145 635 2.60
150 666 1.95
155 688 1.50 Lo
160 706 1.16 x 104
165 722 9.18 x 10
170 737 7.27
175 750 5.78
180 762 4.63
185 773 3.73
190 784 3.00
195 794 2.42
200 803 1.97
205 812 1.61
210 821 1.31 o
215 829 1.07 x 10,
220 837 8.79 x 10
225 844 7.20
230 852 5.97
235 859 .96
240 865 4.11
245 870 3.43
250 875 2.85
255 879 2.39
260 883 2.00
265 886 1.68
270 889 1.41
275 892 1.18 :
280 894 1.00 x 103
285 896 8.41 x 10
290 898 7.10
295 900 6.00 ,
300 902 5.07 x 10
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TABLE XXIV

ETR 1474, MUMP 8
January 24, 1967
09:00 Z

04:00 Local (EST)

Cape Kennedy, Florida

ALTITUDE TEMPERATURE DENSITY
(km) (°K) (part/cc)
140 502 3.80 x 1010
145 550 2.57
150 596 1.81 Lo
155 635 1.32 x 104
160 669 9.90 x 10
165 700 7.51
170 726 5.78
175 750 4.51
180 771 3.55
185 790 2.82
190 807 2.28
195 821 1.84
200 834 1.50
205 846 1.22 o
210 855 1.00 x 10
215 864 8.29 x 10
220 871 6.87
225 878 5.73
230 883 1.77
235 889 3,98
240 893 3.32
245 897 2.80
250 901 2.37
255 905 1.99
260 908 1.68
265 911 1.41
270 913 1.19 6
275 916 1.00 x 10
280 918 8.43 x 10
285 920 7.19
290 922 6.08
295 924 5.18
300 925 4.40
305 926 3.74
310 928 3.20
315 929 2.73 ;
320 930 2.35 x 10
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Figure 4L, Neutral particle temperature vs. altitude for MUMP 1.
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Figure 45. Neutral particle temperature vs. altitude for MUMP 2.
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Figure L6, Neutral particle temperature vs. altitude for MUMP 3.
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Figure 47. Neutral particle temperature vs. altitude for MUMP k4.
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Figure 48, Neutral particle temperature vs. altitude for MUMP 5.
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Figure 49, Neutral particle temperature vs. altitude for MUMP 6.
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Figure 50. Neutral particle temperature vs. altitude for MUMP T.
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Figure 51. Neutral particle temperature vs. altitude for MUMP 8.
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8.3 ELECTRON TEMPERATURE AND DENSITY

The cylindrical Langmuir probe technique which was used in this
series of experiments has been described a number of times before
(e.g., Brace, et al., 1963; Nagy, et al., 1963; Spencer, et al., 1965);
therefore only a brief review of the data reduction technique will be
given here. The equations for the current collected by a stationary
cylindrical probe immersed in a plasma were derived by Mott-Smith and
Langmuir (1926). Recently Kanal (1964) extended this work to moving
cylindrical probes. The thermal velocity of the electrons is very
large in comparison with typical rocket velocities; therefore, if

the effect of sheath distortion is neglected, the probe can be con-
sidered stationary for electron current calculatlons. The dimension
of the sheath which surrounded the collector is of the order of the
Debye length, which is inversely proportional to the electron density
and therefore the sheath will be the smallest in the daytime F region.
The Debye length corresponding to typical daytime F region conditions
is of the order of 0.3 cm; since the radius of the collector used in
this experiment is only 0.027 cm,a large a/r ratio (sheath radius to
probe radius) results. The retarded and accelerated electron current
equations under these conditions are, respectively

I =( —— N _gA exp (V) (1)
r 2mm e (o}
e

1. = [ kTe \'/2N_ga
a (T—e'ﬂme ) e

\V4 /2 /
. 2(;%; + exp (Vo) erfc (Vo! 2)] (2)
where

k = Boltzmann's constant.

Te = electron temperature.
me = mass of an electron.

Ne = number density of electrons.

q = electronic charge.

A = collector area.

Vo = /kTo

\Y potential difference between the probe and the ambient
pp
plasma = Vgy + Vp.
Vap is applied vogtage.
Vp is potential of the reference with respect to the plasma.
erfc (x) = complementary error function = 1 - (2/w! 2)fx exp [-B%] aB.
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The method of electron temperature reduction from the retarding
potential current characteristics, used on previous occasions, was
outlined in the report by Taeusch, et al., (1965). 1In this method
the retarded electron current is plotted on a semilog paper, and the
temperature is obtained-from the slope of the resulting straight line;
such a typical plot from flight ETR 1474 is shown in Figure 52.

Since this technique is very cumbersome and time consuming and the
computerized system for reduction of the data was not yet operational,
the following "template method" was used to reduce the bulk of the
data.

The natural logarithm of the ratio of two points on the retarded
electron current characteristics is:

- 4 Avap
1n C % T

e
Ie2
C=5—= ratio of electron currents
el
Avap = vap2 - Vapl
Vap2 = applied voltage corresponding to Ie2
Vapl = applied voltage corresponding to Iel

Since the retarded electron current is exponential (Equation 1),
AVap will be the same for all points having the same ratio C. Given a
C we can therefore determine AV, for different temperatures and draw
a grid as shown in Figure 53.

The current collected by the probe is not the electron but the
total current, so we have to apply the same corrections as used on
previous occasions. The ion saturation current is extrapolated by a
straight line and it is assumed that the difference between the net
current and the straight line is the electron current. This leads to
the con struction of a template as shown in Figure 54. Here instead
of calibrating the grids in terms of AVy, we did it in terms of
temperature allowing direct determination of the electron temperatures.
The templates were made of transparent paper by allowing them to be
used directly on the paper record of the telemetered data. The
majority of the temperature information was obtained in this manner.
Numerous data curves were also reduced by using the conventional semi-
log method for the sake of comparison, but no detectable difference
in the results was observed.

110



The accelerated electron current is two orders of magnitude higher
than the retarded ion current; therefore, the effect of the latter on
the total current is negligible. The two unknown gquantities in the
accelerated electron current, Equation (2), are the electron density,
Ne, and the reference potential, Vy. Any two points from this portion
of the curve are, therefore, sufficient to solve for the unknowns
(Nagy and Faruqui, 1965). Templates based on this method were used to
obtain the electron density results from the series of flights discuss-
ed here.

When Vo>>1 Equation (2) simplifies to

1/2
. N kTe N 2 Vol/z (3)
ea” \ 2mm edf TI72

e

For typical ionospheric conditions (e.g., Tg = 2000° K) V5 is 5.79 V
when Vap is 1 V; therefore, Equation (3) is applicable when Vap>l V.

Let us consider two points on the accelerated electron current charac-
teristics corresponding to (V - V,) equal to 2 V and 1 V respectively.
The ratio of the currents correspon ing to these two voltages is+/2°
according to Equation (3). Two vertical lines, separated by a dis-
tance, corresponding to a difference of 1 V in the applied voltage, as
shown in Figure 55, provides a template which can be used to determine
the electronic density directly from the characteristic curves. The
density is obtained by placing the template on the data curve and
shifting it horizontally until the curve crosses the vertical lines at
the points which correspond to the same electron density (see Figure 56).
This value then corresponds to the solution of Equation (3) for ?e\

The charged particle results obtained from the electrostatic

probe experiments of MUMPS 1, 2, 3, 4, 5, 6, 7, and 8 are shown in
Figures 57 through 64, respectively.

8.4 GEOPHYSICAL INDICES
The 10.7 cm solar flux (Fjg.7) and the geomagnetic activity indices

(a,,) for the appropriate periods during launch day are shown in
Figures 65, 66, and 67.
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Figure 52. Typical log current vs. potential plot
from the electrostatic probe experiment of MUMP 8.
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Figure 66. Three-hour geomagnetic activity index (ap) (January 24, 1967).
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Figure 67. Three-hour geomagnetic activity index (ap) (April 25, 1967).
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9. CONCLUSIONS

The payload design and successful launching of eight Marshall-
University of Michigan probes have been described in the present
report. These probes provided data which permitted the determination
of the neutral molecular nitrogen density and temperature and the
electron density and temperature in the altitude region between approxi-
mately 140 and 320 km. Six of the payloads provided data during one
diurnal cycle on January 24, 1967. Two additional payloads provided
data on the maximum and on the minimum of the diurnal variation on
April 25, 1967. The purpose of the two sets of launches was to obtain
data which would bear on the diurnal variation of the atmospheric
parameters, and consequently be of value in the development of future
model atmospheres. The data have been reported at the July meeting of
COSPAR in London, England, and the paper has been accepted for publi-
cation in Space Research VIII. A summary discussion of the preliminary
findings and significant points of interest are included in the following
subsections.

9.1 NEUTRAL MOLECULAR NITROGEN DENSITY AND TEMPERATURE

The theory of the measurement, of the reduction of raw data, and of
the probable errors for each of the nitrogen, density, and temperature
altitude profiles was discussed in the previous section. Figures 68
and 69 give the congeries of these data. Of more interest here,
however, are the variations with time of day as given in Figures 70
and 71. The figures also show several data points taken from the CIRA
1965 model 4 and also show the variation as is predicted by Jacchia
(1964, 1965a,b) for the appropriate 10.7 cm solar flux and geomagnetic
activity levels. As can be seen, the density values predicted by the
two models are approximately a factor of two greater than the measured
values. This discrepancy between gauge measurements and drag measure-
ments has persisted for many years. However, the temperature predictions
made by Jacchia (1964, 1965a,b) are in excellent agreement with the
temperature values determined from the measured density profiles.

Even though these data are relatively new and much work remains to
be done, some preliminary conclusions are as follows:

1. Densities determined by satellite drag techniques are
typically on the order of a factor of two higher than
those determined by density gauge and mass spectrometer
techniques.

2. CIRA 1965 model nighttime temperatures are in good agree-
ment with those derived by direct measurements, but the
daytime model temperatures are consistently too high at
the level of solar activity used for the comparison.
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The atmospheric temperatures and densities below 200 km
are more variable ‘than current models predict.

The Jacchia empirical formulae, which predict eXospheric
temperatures as a function of geomagnetic activity, solar

flux, and time of day and year, are consistent with the
mass spectrometer results.
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9.2 CHARGED PARTICLE TEMPERATURE-AND DENSITY

The electron temperature and density results obtained from the
Langmuir probe experiments were shown in Figures 57 through 64. The
ion temperatures shown in these figures were calculated by using the
following expression given by Dalgarno, et al., (1967), which is based
on the assumption that only(O%)ions are present:

=7
5x10 (Te—Tn) 2

T =Ty + Tes/z Ng (4)
-7 2 ) i}
X190 Pe 4 nel9x107Mn(0)+6x107 M n(N,) + 6x107  n(me) 1| T .
T
e

All the quantities which appear in this equation were measured simul-
taneously except n(0) and n(He). The values used in the calculations
for the oxygen density were obtained from Jacchia's (1965a,b) model
and the effect of neglecting helium was found to be negligible at
these altitudes. Figure 72 shows the diurnal variation of the elec-
tron temperature Tg at the various altitudes, as measured by the
Langmuir probes on January 24, 1967. The pre-sunrise effect in Te is
clearly shown by these results. The average rate of pre-sunrise
temperature rise at 300 km is about 4°K/min which is of the same order
as the value given by Carlson (1966). A significant rise in the elec-
tron temperature was also present at sunset on this day, as may be
seen from Figure 72. The rate at which energy is transferred from

the electron gas to oxygen ions and which is approximately equal to
the rate of energy input to the electrons, was calculated using
equation (5) and plotted in Figure 73.

5%1077 (To-T4) 1

_ -3
Lei = Ted/l ng eV cm sec . (5)

The calculations clearly indicate that the energy input varies smoothly;
the sunset peak in Te is apparently caused by a rate of decrease in

the electron density which was somewhat larger than usually observed.
The cooling rates calculated by Dalgarno, et al., (1967) for a similar
flight in November, 1963, are also shown in Figure 73 for comparison.

A similar sunset peak was recently observed at Arecibo and reported

by Wand at the University of Illinois Thomson Scatter Conference.

The results of the sunrise flight (ETR 1828) were shown in
Figure 62; the changing solar zenith angles during the flight were
also indicated. It is interesting to note that, although the electron
density changed considerably during the flight, no detectable change
in Te was observed. This behavior can be explained by a rate of
increase in the electron density which is of the right order to off-
set the increase in the heat input, resulting in no significant change
in the electron temperature.
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Thomson scatter measurements of the electron and ion temperatures
were also made on January 24 by the Millstone Hill Radar Facility and
the Jicamarca Radar Observatory. Figure 74 shows both the rocket and
Thomson scatter results. The ion temperature results obtained from
Jicamarca are in good agreement with the results obtained from the
rocket data; the ion temperature results from Millstone are, however,
lower than would be expected. There is only a gross agreement between
the Millstone and Cape Kennedy Te results shown in Figure 74, but this
is reasonable, since electron temperatures exhibit significant spatial
variations.

The comparison between the results of the April daytime flight
and the preliminary backscatter results from Jicamarca, Arecibo, and
Millstone are shown in Figure 75. There is good agreement between the
ion temperatures obtained from the rocket data and those measured by
Jicamarca and Arecibo; however, the results from Millstone are again
low.

The preliminary analysis of the data obtained from these eight
rocket flights has already improved our understanding of the diurnal
behavior of the upper atmosphere; these series of flights have also
provided an excellent opportunity to compare the results of rocket-
borne measurements with those obtained by Thomson scatter technique.
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DETERMINATION OF THE TOTAL PAYLOAD MOMENTS OF INERTIA
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INTRODUCTION

The mass moments of inertia of a Thermosphere Probe MUMP -1,
manufactured by the University of Michigan, were determined ex-
perimentally on the trifilar test stand. The purpose of the tests

was to determine the mass constants about the spin axis as the split
halves were placed at various angles. The mass constants were also
determined for the test item in the lateral axis and the instrument
package alone.

SUMMARY OF RESULTS

The moments of inertia of the test items are shown below.
1b ft sec® = slug ft°

‘Payload about the spin axis 0.2135
Payload halves open 7. 73 in. (spin axis) 0.4732
Payload halves open 18. 67 in (spin axis) 1. 3413
Payload halves open 42. 25 in. (spin axis) 5.8871
Payload halves open 72. 675 in. (spin axis) 13. 7881
Payload halves horizontal 16. 3455
Payload about the lateral axis 7.9402
Instrument package about spin axis 0.07035
Instrument package about lateral axis 1.0018

Payload total weight 120 lbs
Instrument package weight 48.75 1bs

METHODS AND DATA

The test items were mounted on the trifilar pendulum apparatus as

shown in Figuresl through 3 and the platform was allowed to oscillate
through approximately 1 to 2 inches. The period of oscillation of the
combined test item and platform was determined. Atthe conclusion of
testing the period of oscillation of the platform alone was determined.

Itest item = I combined test item - Iplatform alone or
and platform
252 2.2
1= 2Py Yo &R
— -
e e
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Where: Wt Platform plus test item weight

a - 20 inches

'L = Filament length, 108,22 inches
Wp = Platform weight, 22 lbs

Pt = Period in seconds, combined test item and platform
Pp - Platform period in seconds, 1.49925

I = Test item moment of inertia in lb in sec

The tests were witnessed by J. Maurer, L. Degener, and R. Simmons
of the University of Michigan. The test items were returned to the Univer-
sity of Michigan by the University of Michigan personnel.
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