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SCHOLARLY PUBLISHING OFFICE WHITEPAPER*

Plan for implementing a uniform content ingestion system for SPO 
 

Kevin S. Hawkins 

Summary 
This paper charts a course for development of a uniform content ingestion system for 

SPO, building on plans documented in two previous whitepapers: Proposals for a New Workflow 
for Level-4 Content and Plan for Implementing a Web-Based Unified Bibliographic Database for 
SPO Publications. 

SPO needs to develop a uniform content ingestion system in order to establish a more 
scalable workflow and enforce uniform metadata standards. This system needs to have four 
components: 

• A unified bibliographic database (UBD) for headers of Text Class items and 
possibly for Bib Class records 

• A script for exporting records from the UBD for use by prep scripts. 
• A web interface to the UBD with access controls that allow authorized users to 

edit and submit records for certain collections, plus submit “bodies” for Text 
Class records. 

Motivations 
There are a number of disadvantages to the current system of having separate FileMaker 

databases for each publication: 
• There is no way to enforce standard encoding across collections. 
• The use of field calculations predates XML support in FileMaker, so the output is 

only checked for validity when running a prep script. (A more XML-centric 
workflow would have SPO staff export FileMaker databases as XML and then 
transform them with XSL.) 

• Access to these databases can only be provided by DSS hosting them.  Security issues 
make remote access to both version 6 and 7 databases difficult, so Panagis would 
prefer that we not use FileMaker at all. 

• Inputting non-ASCII characters presents problems: FileMaker won’t store a character 
for which a glyph is not available in the font being used in the FileMaker form. This 
will continue to be a problem as long as there are no fonts with the same name 
available for Windows and Mac OS X that have all non-ASCII glyphs needed. (A 
lack of appropriate fonts available for Windows and Mac OS X would also be a 
problem in any other solution, but at least most programs and web interfaces are 
capable of storing a character even if it can’t display it.) 

Unified Bibliographic Database (UBD) 
The UBD should hold metadata for all items in SPO's Text Class collections. It should 

possibly hold all Bib Class records as well, though the future of SPO’s support for Bib Class 
collections is unclear pending discussions with Library Systems, which plans to hire a new staff 
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member to support bibliographies. A relational model needs to be developed that is sufficiently 
normalized for current needs but reflects a data model abstract that it will be usable in the future; 
in particular, the relations between items, DLPS IDs, collections, DocEncodingType, and DLXS 
Class need to be modeled. 

The UBD structure should be abstracted from DLXS encoding as much as possible, with 
transformation to appropriate tagging (based on the collection type) done by the export script.  
This will ensure maximum portability of the metadata to other delivery systems and, even if 
DLXS continues to be used, allow for the creation of archival records in another format besides 
Text Class and Bib Class. 

IDNOs for records will be calculated based on metadata entered; uniqueness of IDNOs in 
the entire database will be enforced. For other fields, controlled vocabularies will be used when 
applicable. 

In the first phase of implementation, the UBD will replace individual FileMaker header 
databases for serialarticle and serialissue collections. (The metadata ontology of 
these two collection types is practically identical, though they have different export formats.) In 
the second phase, it will replace individual .hdr files stored in the prep directories of 
monograph collections. In the possible third phase, it will replace individual FileMaker header 
databases for Bib Class collections. 

UBD to DLXS export script 
We should have a command-line script which can be called from the collection prepping 

scripts (makepub.sh or makebackfile.sh).  This script should be in CVS at 
bin/s/spocolls/UBD2DLXS.pl.  Given a collid, it will export all records in this 
collection from the UBD and transform using XSL to header or record format for that collection 
type (serialarticle, serialissue, Bib Class, or monograph), outputting 
prep/c/collid/headers/collid_headers.txt for all Text Class collections and 
prep/c/collid/articledivs/collid_articledivs.txt for all serialissue 
collections. The output location of Bib Class records needs to be determined in consultation with 
Jeremy. 

We will need to be able to write custom export scripts, such as one for generating the 
article list in the Diderot project. 

UBD interface 
We need a web interface for both SPO staff and publishing partners to edit and submit 

records, plus submit “bodies” for Text Class records. It should probably be located at 
web/s/spo/ubd/ . 

All users inside the DLPS/SPO IP range should have access to all functionality of the 
web interface. All full-time SPO staff should be able to authenticate from other locations for full 
access privileges. All SPO publishing partners should have full access to records for only their 
collections. This access will likely be managed using the Library auth system, but U-M’s LDAP 
service is another option. 

Users entitled to access records for more than one collid should be prompted to choose 
which collid's records to view, though there should be an option to view records from all 
authorized collections. 
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For authorized collections, users should be able to filter records viewed by any field 
value and create, modify, and delete records one at a time. 

The field for the record's IDNO should not be editable since it is calculated from other 
values. All other fields should be editable, though the user should be prevented from choosing 
values that would cause an IDNO conflict. 

When creating records for a journal, the interface should provide a controlled vocabulary 
of journal titles (corresponding to DLPS IDs) in that collection. For most collections, there will 
be only one title, so all records will have that title by default. For journal collections, in addition 
to being able to create a blank new record, users should also be able to create a new record for an 
article in that issue: this function would duplicate field values in common for all articles in an 
issue, plus automatically increment the article number. 

The interface should give guidance to users entering metadata, with notes explaining 
metadata conventions (similar to text that currently appears in red in FileMaker databases). There 
should be notes used for all collections, notes for specific collection types, and collection-
specific notes, and journal-specific notes when applicable. These might be stored in 
configuration files similar to those used by the DLPS stats system, stored in CVS and modifiable 
by those with accounts on a DLPS/SPO server. These configuration files might also specify 
which fields are required and might specify any required datatype or list of acceptable values. 

Users should be able to upload three types of files for Text Class records (both new and 
existing) through the interface: 

1. the “body” file: This would be stored at prep/c/collid/inbox/, 
automatically named to match the IDNO of the associated record, for further 
processing by SPO staff. One body is required for each item, but there should be 
an option for more than one body per IDNO to be uploaded; subsequent files 
would have a, b, c, etc. appended to the end of the IDNO. 

2. “inline images”: These would be stored at img/c/collid/ and named 
according to standard inline image naming scheme, numbered in the order they 
are uploaded. No inline images are required for an item, but there should be an 
option for more than one per IDNO. 

3. PDF version: Users not uploading a PDF version should be reminded that they 
haven’t done so when creating a new record. If uploaded, this file would be stored 
at prep/c/collid/pdfs/, automatically named to match the IDNO of the 
associated record. 

All files uploaded should have 0664 permissions. 
Finally, the interface should have a report generation option, which displays a short 

report of modified or created since the last time the report was generated, and files added since 
then.  This report can then be emailed to an arbitrary email address.  Content providers will be 
encouraged to use this to send a message to their contact at SPO to notify SPO that new content 
is ready to be processed. This is useful less as a notification tool and more as an inventory of 
newly created or modified content, which is helpful for SPO, especially when tracking inline 
images that need to be inserted into the markup by hand. 

Typical use 
The following is the envisioned workflow for publishing a new issue of a journal: 
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1. The publishing partner creates records for articles in the new issue and uploads 
files for these articles. When finished, the publishing partner generates a report 
and notifies his or her contact at SPO. 

2. The SPO staff member copies the files from prep/c/collid/inbox/ to their 
computer for further prep work, including extracting text, applying spostyles, 
or both. When finished, the SPO staff member uploads the prepped content to the 
appropriate directory or directories in prep/c/collid/. 

3. The SPO staff member runs makepub.sh or makebackfile.sh, which in 
turns runs UBD2DLXS.pl, automatically exporting the collid's records from the 
UBD. 

4. Further prepping continues as in current procedures. After prepping, SPO staff 
moves all the files from prep/c/collid/inbox/ to 
prep/c/collid/inbox/previous/. 

Plan for implementation 
I suggest the following plan for implementation: 
Phase I: serial publications 

1. Seth writes provisional database models for the UBD, keeping serial publications 
in mind, with different levels of normalization and abstraction. 

2. Seth writes a standard XML format for exporting the data. At this point it will 
likely be helpful to consult a list of header labels that have been customized at the 
collection level in DLXS. Jeremy can generate this for Seth. 

3. Seth, Jeremy, and Kevin examine this model for sound design and the XML 
format for compatibility with DLXS. 

4. Kevin creates a new “export” field called UBD2DLXS in existing FileMaker 
header databases to match the standard XML format. If changes to the provisional 
database model are needed, he consults with Seth and Jeremy. 

5. For any collections for which UBD2DLXS does not match the old “export” field, 
Kevin tests exporting, prepping, and reindexing collections using UBD2DLXS, 
comparing filtering of headers and reslist details to ensure continuity with the old 
“export” fields. 

6. Seth sets up the UBD database on the [development/production?] MySQL server. 
7. Seth writes UBD2DLXS.pl. 
8. Data is imported from the UBD2DLXS field in existing collection databases into 

the UBD for testing UBD2DLXS.pl: verify that collid_headers.txt 
generated using UBD2DLXS.pl is identical to collid_headers.txt 
generated using the UBD2DLXS field in FileMaker. 

9. Seth develops the UBD interface. 
10. SPO staff and students test the interface and learn about its envisioned role in the 

prepping process for serials. 
11. One collection at a time, data is imported from existing collection databases into 

the UBD, and the corresponding FileMaker header database is decommissioned. 
Publishing partners are taught to use the UBD to submit content and metadata to 
SPO. 

Phase II: monographs 
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12. Seth examines the database model to see if monograph headers can be fit into it, 
proposing changes needed to accommodate them. 

13. Seth modifies UBD2DLXS.pl as needed to accommodate monograph header 
records. 

14. Data is imported from .hdr files into the UBD for testing UBD2DLXS.pl: 
verify that data exported using UBD2DLXS.pl is identical to .hdr files. 

15. Seth modifies the UBD interface as needed to accommodate monograph records. 
16. One collection at a time, data is imported from the .hdr files into the UBD. 
17. When all collections have been imported, change makepub.sh to require a 

collid_headers.txt file to be present and to delete .hdr files after 
prepping. SPO staff are taught to use the UBD for these collections. 

Phase III: bibliographies (assuming SPO continues to support Bib Class collections) 
18. Seth examines the database model to see how Bib Class items can be fit into it, 

proposing changes needed to accommodate Bib Class records. 
19. Kevin creates a new “export” field called UBD2DLXS in existing FileMaker 

header databases to match the standard XML format. If changes to the database 
model are discovered at this point, he consults with Seth and Jeremy. 

20. For any collections for which UBD2DLXS does not match the old “export” field, 
Kevin and Jeremy test exporting, prepping, and reindexing collections using 
UBD2DLXS, comparing interface display of records search and browsed to ensure 
continuity with the old “export” fields. 

21. Seth modifies UBD2DLXS.pl as needed to accommodate Bib Class records. 
22. Data is imported from existing collection databases into the UBD for testing 

UBD2DLXS.pl: verify that data exported using UBD2DLXS.pl is identical to 
data exported using the UBD2DLXS field in FileMaker. 

23. Seth modifies the UBD interface as needed to accommodate Bib Class records. 
24. One collection at a time, data is imported from existing collection databases into 

the UBD, and the corresponding FileMaker header database is decommissioned. 
Publishing partners are taught to use the UBD to submit content and metadata to 
SPO. 

Future development 
Much of this proposed system reflects the needs of working with DLXS and particulars 

of DLXS's architecture. However, the system could be modified to work with another delivery 
system, and it could integrate additional future components. 

 Divorcing from DLXS 
The ingestion system could work with a delivery system besides DLXS by changing the 

following: 
• The script UBD2DLXS.pl would be replaced by another to export the metadata 

needed by another delivery system or to an archival format besides Text Class or 
Bib Class. 

• Guidance offered to users of the interface would be changed to reflect the realities 
of a different delivery system, which might not force the same metadata decisions 
currently required by SPO's use of DLXS. 
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• “Bodies” submitted might be deposited in another location besides 
prep/c/collid/inbox/, perhaps feeding directly into the delivery system 
rather than waiting for additional prepping. 

Peer-review management system 
If SPO implements a peer-review management system, we should consider whether there 

should be an automated way of transferring data from one system to the other. Avoiding manual 
work is always desirable, except when a manual step gives an opportunity for error-checking. 
Articles under peer review may have their titles, authors, keywords, and even volume and issue 
numbers changed, so there is value in verifying all metadata at the end of the peer-review 
process. For this reason, it may be useful to force users to take all of their content out of the peer-
review management system and put it into the ingestion system by hand rather than allowing 
them to transfer it automatically. Further exploration of peer-review management software will 
clarify the best option. 


