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I. INTRODUCTION

This report describes and discusses the results of the launching of NASA
6.11, an Aerobee 300 sounding rocket. The payload was the Thermosphere Probe
(TP), described by Spencer, Brace, Carignan, Taeusch and Niemann (1965). The
TP is an instrumented ejectable package developed by this laboratory in co--
operation with the Goddard Space Flight Center, Laboratory for Atmospheric
and Biological Sciences (GSFC) for the purpose of studying the variability of
the earth's atmospheric parameters in the altitude region between 120 and 350
km. The NASA 6.11 payload included an omegatron mass analyzer (Niemann and
Kennedy, 1966), an electron temperature probe (Spencer, Brace and Carignan,
1962), and a lunar aspect sensor. This complement of instruments permitted
the determination of molecular nitrogen density and temperature, and &lectron
density and temperature in the altitude range of approximately 140 to 280 km.,

General description of the payload kinematics, orientation analysis, and
data reduction techniques are given by Taeusch, Carignan, Niemann, and Nagy
(1965). The orientation analysis and nitrogen data reduction were performed
at this laboratory and the results are included in this report with a discus-
sion of problem areas and probable errors. The electron temperature probe
data were reduced at GSFC and are not discussed in this report.

The payload described in this report was launched 12 hours after a simi-
lar one (NASA 18.01) described in a separate report. The purpose of this
dual launching was to establish the diurnal variation of the parameters mea-
sured to provide extra meaning to their use in studying the effect of the
energy input to the atmosphere.



2. GENERAL FLIGHT INFORMATION

The general flight information for NASA 6.11 is tabulated below. The
geophysical indices, the 10.7 cm solar radio flux, Fip,7; the five monthly
averages of the solar 10.7 cm flux preceding the launch, F10,7; and the geo-
magnetic index, ap, were obtained from the April, 1965, and May, 1965, issues
of "Solar Geophysical Data" published by the U, S. Bureau of Standards. Fo.7
is given for the day preceding the launch and ap is given for six hours pre-
vious to launch for convenient reference to the Harris and Priester (196k4)
model atmoshpere.

The Table of Events gives flight times and altitudes of significant events
occurring during the flight. Some of these were estimated and are so marked.
The others were obtained from the telemetry records and radar trajectory, where
applicable.

Launch Date: March 20, 1965
Launch Time: 0042 EST; 05:42 GMT
Location: Wallops Island, Virginia

Longitude: 75.04°W
Latitude:  37.54°N

Apogee Parameters:

Altitude: 326.9 km
Horizontal Velocity: 578 m/sec
Flight Time: 311.1 sec

Geophysical Indices:

F10.7 = 17.0
FlOn 7 =15.3
ap =0

TP Motion:

Tumble Period
Roll Period

2.630 sec/tumble
1.406 sec/roll



TABLE OF EVENTS

Flight Time  Altitude

Event (sec) (m) Remarks
Lift Off 0 0
Aerobee Burn Out 53.9 3,k (5,172 ft/sec)
Sparrow Ignition 54.6 35.4
Sparrow Burn Out 57.6 b1k (8,484 ft/sec)
TP Ejection 70.2 70.1
Omegatron Breakoff 100.0(est)  130.0(est)
Omegatron Filaments On-to Mass 28 101.6 133, 4
Omegatron to Mass 32 155..00 220.0
Omegatron to Mass 28 195.20 268.1
Peak Altitude 311.1 326.9
L.0.8S. 575.0 30.0(est)




5. LAUNCH VEHICLE

The NASA 6.11 launch vehicle was an Aerobee 300, a three-stage JATO bot-
tle-Aerobee-Sparrow combination. The JATO bottle weighed approximatély 600 1b
unburned, has a thrust of about 18,600 1b and burns for approximately 2.5 se-
conds. The Aerobee is a liquid propellent rocket weighing approximately 1350 1b
unburned, has a thrust. of 4,100 1b and burns for about 52 seconds. The Spar-
row weighed 129 1b unburned and has a thrust of about 5500 1lb for about 3 se-
conds. The total vehicle, including booster and payload, weighed about 2188 1b
at 1lift off. The dimensions of the total vehicle and its components are shown
in Figure 1. Photographs of the JATO bottle, Aerobee-Sparrow, and the Sparrow-
payload combinations are shown in Figures 2,.3, and L.
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4k, NOSE CONE

A schematic of the total payload which includes the nose cone and adapter
section is shown in Figure 5. Section A contains the batteries, timer, and
pyrotechnics for the opening of the nose cone. Section B contains the plunger
and the volume which holds the TP (E). Section C houses the ejection spring,
plunger piston, and the lanyard negator motor. Dimensions and weights of the
system are given on the schematic.

The nose cone is programmed to open at about 70 km altitude and the TP
is ejected and tumbled. The breakoff device is removed at about 110 km and
the omegatron turned on a few seconds later. The timing for this particular
payload was described previously.
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5. THE THERMOSPHERE PROBE (TP)

The TP used for the NASA 6.1l payload was a cylinder 32-7/64 in, long
and 6 in. in diameter weighing 43 1b. The prime instruments for this pay-
load were an omegatron mass analyzer (Niemann and Kennedy, 1966), and an
electron temperature probe, (Brace, et al., 1963). Supporting instrumentation
included a lunar aspect sensor for the determination of the TP aspect. The
diagram shown in Figure 6 shows the instrumentation and supporting electronics
location; and Figure 7 shows the block diagram. Figure 8 is a picture of the
completely assembled TP.

5.1 OMEGATRON

The omegatron used in this payload was of the type described by Niemann
and Kennedy (1966). An expanded view of the system is shown in Figure 9.
Table I lists the operating parameters of the gauge and associated electronics,
The characteristics of the linear electrometer amplifier current detector,
used to monitor the omegatron output current, are also listed.

This omegatron was the second flight model to utilize a ceramic breakoff
device which allowed vacuum sealing of the gauge. The breakoff configuration
is shown in Figure 10. A new omegatron envelope was designed for this break-
off device and is shown in Figure 1ll. The magnet used for this system is
shown in Figure 12.

The calibration of this gauge, and that one used in NASA 18.01, was per-
formed in February, 1965, at GSFC. The system used was an oil diffusion pump
calibration system under the supervision of Mr. Carl Reber of GSFC. Other
gauges used for reference were (1) a double focusing 180° magnetic deflection
spectrometer, (2) a Westinghouse Bayard-Alpert (BA) gauge, (3) two Veeco BA
gauges, calibrated by Ball Brothers, and (4) an AW5966 BA gauge. The two Veeco
gauges were used as the standard for this calibration. They had been calibrated
against a McLeod gauge to a stated absolute certainty of better than + 25%.

As stated Previously, the NASA 18.01 omegatron was calibrated on this system

at the same time; therefore, the relative accuracy between the two omegatrons

is believed better than + 10%. A final relative calibration was performed at
SPRL on February 26, 1965, at which time the NASA 18.01 omegatron was refocused.
The NASA 6.11 calibration was used as the standard after the refocusing and a
new sensitivity was determined for the NASA 18.01 gauge. The final calibration
is shown in Figure 13.

11
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TABLE I

OMEGATRON DATA

+ 28 power current all on
Preflight gauge pressure
Magnetic field strength

*Filament off, zero pressure

NASA 6,11
Omegatron Gauge Parameters
Beam current
Electron collector bias
Filament bias
Cage bias
Top bias
RF amplitude
Mog
M50
Monitor
Filament
OFF
ON
Beam
OFF
ON
Thermistor pressure*
Bias
RF
Mg
Yo
Calibration
Sensitivity
Maximum linear pressure (5%)
Electrometer Amplifier
Range Range Indicator
1 0.0 v
2 ~ 0.7V
3 ~ l.)-l' \'
i ~ 2,1 v
5 ~ 2.8 v
6. ~ 3.5V
Calibrate
Miscellaneous

oL

3.96 pa
+77.0 v
-91.6
-0.202 v
-0.402 v

2.62 v P-P
2.57 v P-P

2,640 v
4,901 v

4,037 v
2. 740 v
1.86 v
4,010 v

3.600 v
1.766 v

3.75 x 1072 amp/torr
~ 6 x 107° torr

Range Resistor

3.16 x 1010
1.0 x 10ll
3,16 x 1011
1.0 x 1lol2
3,16 x 1012
1.0 x 1013
0.855 v

270 ma
~ 10-3 torr
~ 2200 gauss

Al

5.01
5.01
5.01
5.01
5.01
5.01



5.2 ELECTROSTATIC PROBE (ESP)

The ESP, described by Brace (1963), consists of a cylindrical probe, which
is placed in the plasma, and an electronic unit, which measured the collected
current. The electronic unit consists of a power convertor, AV generator, 3
range current detector, relays,and associated logic circuits.

The following are the specifications of the NASA 6.11 ESP system:

(a) Sensitivity:

Range No. 1 10.0 pA full scale (4 v)
Range No. 2 1.0 pA full scale (4 v)
Range No. 3 .1 pA full scale (4 v)

(b) Input Power:
1.5 watts average at 28 v.

(c) AV Slope (dv/dt):
HI - 38 v/sec.
L0 - 13 v/sec.

(d) Output:
Voltage O ~ 6.9 v
Resistance - < 2K

(e) System Bias Level:
lv

(f) System Calibration:
ON - 1.2 sec.
Interval - 60 sec.
Synchronized with AV.

(g) Sequence:
AV - HI-LO alternated
Range - Sequential and HI-LO AV per range.

5.3 SUPPORT MEASUREMENTS AND INSTRUMENTATION

5.3.1 Lunar Aspect Sensor

The NASA 6.11 TP utilized a lunar aspect sensor system for the determina-
tion of the angular momentum vector of the tumbling TP, This system, designed
especially for the TP configuration, consists of a light sensitive element, a
current detector and an aperture system of concentric rings which resembles a
typical target used for firearms., The system viewed a ccne of 60° half angle
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and the apertures were 5° wide and separated by 5°. The system was mounted
such that the axis of the cone of view was along the cylindrical axis of the
TP. The output from this system yielded directly the angle between the plane
of tumble and the earth-moon vector.

The particulars of the data reduction from this system are described by
Taeusch, et al. (1965). The lunar aspect sensor worked as expected during
the flight and the aspect of the TP was determined to an accuracy of approx-
imately + 5°.

5.3.2. Telemetry

The payload data were transmitted in real time by a five-channel PAM/FM/
FM telemetry system at 240.2 m hz with a nominal output of 205 watts. The
telemetry system used five subcarrier channels, assigned as outlined below.
Transmitter: Driver TRPT 251 RBO-1 Serial Number 845

Power Amplifier TRFP-2V Serial Number 150
Mixer Amplifier-Type TA5S8 Serial Number 860

Subcarrier Channels (SCO-type TS54)

IRIG Serial Nominal
Band Number Frequency Freguency Function
Response
11 1681 7.35 K hz 110 hz %0 pps PAM Data
12 1697 10.5 X hz 160 hz Lunar Aspect Data
1L 1712 22 K hz 330 hz Electrostatic Probe
Data
16 1736 40 K hz 600 hz Omegatron Data
18 1085 70 K hz 1050 hz Omegatron Data

Instrumentation power requirements totaled approximately 30 watts, which
was supplied by a Yardney HR-1 Silvercell battery pack of nominal 27.8 volts
output.

5.%.5 Housekeeping Monitors

Outputs from various nomitors throughout the instrumentation provide in-
formation bearing on the operations of the electronics components during flight.
These outputs were fed to a thirty-segment commutator which ran at one rps. The
commutator assignments are as follows:
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18.
19.
20.
21.

22..

23,
2k,
25,
26.
27.
28,
29.
30.

0v
1lv
2V
3 v
b v
5 v
5v

calibrate
calibrate
calibrate
calibrate
calibrate
calibrate
calibrate

ESP AV monitor

ESP AV monitor

amplifier range

amplifier output

filament voltage monitor
Omegatron beam current monitor

Omegatron bias voltage converter monitor
RF voltage and frequency monitor
ESP AV monitor

ESP AV monitor

Omegatron
Omegatron
Omegatron

Omegatron

Thermistor
Thermistor
Thermistor
Thermistor
Thermistor

filament regulator temperature
omegatron gauge temperature
omegatron amplifier temperature
omegatron internal pressure
transmitter temperature

4.5 v calibrate

2.0 v calibrate

Battery voltage monitor (1 v out = 6.1 v battery)
Ground control position monitor

ESP AV monitor

ESP AV monitor

Omegatron amplifier range

Omegatron amplifier output
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6. ENGINEERING RESULTS

The Thermosphere Probe instrumentation operated normally throughout the
flight. The probe was identical to that described in the report on NASA 18.01
(Taeusch and Carignan, 1966) except that a lunar aspect sensor especially de-
veloped for the TP application was used.

The use of the newly developed breakoff device which permits more accur-
ate measurements to higher altitudes also greatly simplifies the field support
requirements, an important factor in permitting more wide spread application
of the technique.

The launch of 6.11 will probably be the last use of the Aerobee 300A
(Spaerobee) for the TP experiment. The new two-stage solid propellant sys-
tems, which have essentially the same performance, reduce the cost and opera-

tional complexity of carrying out the TP experiment. The Aerobee 300A has
been used by the experimenters for a total of thirteen launches of an eject-
able experiment package dating back to November 1958 when the Dumbbell ex-
periment was sucessfully flown from Ft. Churchill on rocket ABM 10.200. None
of the thirteen rockets failed to perform properly although one was mistakenly
cut-down by range safety before third-stage ignition.
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‘f« DATA ANALYSIS

The telemetered data were recorded on magnetic tapes at two stations,
Wallops Island Main Base Telemetry Station and Goddard Space Flight Center
Station "A." One set of real time "paper" records for quick look evaluation
of the results were also obtained. The omegatron, housekeeping and aspect
data were reduced to engineering parameters from paper records, run at 10 in/
sec, using a Gerber GDDRS data reader and scanner. The paper records used
for data reduction were recorded from the magnetic tape masters.

Tracking data for trajectory determination were obtained from FPS-16 and
FPQ-6 radars. Continuous data were obtained from +7 to +264 sec by FPS-16
radar and from +65 to +662 sec by FPQ-6 radar.

7.1 Trajectory

The trajectory and velocity information used to determine the aspect,
density, and temperature data as a function of altitude were obtained by fit-
ting a smooth theoretical trajectory to the measured radar data. The theoret-
ical trajectory is programmed for computer solution similar to that described
by Parker (1962). The output format is shown in Figure 1lk. The trajectory
is shown in Figure 15. The analysis of minimum angle of attack (a) is described
by Taeusch et al. (1965) is also incorporated in the program and the output of
the computer furnishes o and cos ¢ versus time, altitude, etc. A plot of the
NASA 6.11 ¢ versus altitude is given in Figure 16.

7.2 Ambient N2 Density

The neutral molecular nitrogen density was determined from the measured
gauge partial pressure as described by Spencer, et al. (1965), using the basic

relationship:
<j An, U,
i 71
ng =
2 NtV cos a No
where
ng = Ambient Np number density

Any Maximum minus minimum gauge number density during one tumble
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U; = V2kTi/m most probable velocity of particle inside gauge
Ti = Gauge wall temperature

V = Vehicle velocity with respect to the earth

¢ = Minimum angle of attack for one tumble

AIi, the difference between the maximum (peak) omegatron gauge current
and the minimum (background) gauge current is shown versus flight time in Fig-
ure 17. The background current is also shown in the figure. The background
current is the result of the outgassing of the gauge walls and the inside den-
sity due to atmospheric particles which have high enough energy to overtake
the TP and enter the gauge. The outgassing component is assumed constant for
one tumble and effects both the peak reading and the background reading; and,
therefore, does not effect the difference. From calibration data obtained by
standard techniques, the inside number density, An;, is computed for the mea-
sured current. As described by Spencer, Taeusch, and Carignan (1965), the
uncertainty in these data is believed to be + 10.2% rms relative to other mea-
surements using the same calibration system and + 25.1% rms absolute.

U; , the most probable thermal speed of the particles inside the gauge,
is computed using the measured gauge wall temperature shown in Figure 18.
The uncertainty in this measurement is believed to be + 2.2% rms absolute,

V, the vehicle velocity with respect to the earth; is believed known to
better than + l% absolute, It is obtained from the trajectory curve fitting
described previously and is the most accurately known quantity obtained from
the analysis.

Cos « is obtained from the aspect analysis described by Taeusch, et al.
(1965). Since the uncertainty in cos o depends upon @, for any given error
in a, each particular case and altitude range must be considered separately.
As can be seen in Figure 16, the upleg data were obtained for angles of attack
less than 30°, which results in an uncertainty in cos @ approximately + 3%
for an uncertainty in a of approximately + 5°.

The resulting ambient Np number density, obtained from the measured
quantities described above, is shown in Figure 19, The uncertainty in the
ambient density due to the combined uncertainties in the measured quantities
is + 10.9% rms relative and + 25.4% rms absolute.

7.3 Temperature
The ambient N2 temperature profile, shown in Figure 20, was obtained by

integrating the density profile to obtain the pressure and then relating the
known density and pressure to the temperature through the ideal gas law. The
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assumption that the gas is in hydrostatic equilibrium and behaves as an ideal
gas is implicit. Since the temperature depends only upon the shape of the
density profile and not its magnitude, it is believed that the uncertainty
in its magnitude is + 5% absolute.
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FINAL N2 DENSITY AND TEMPERATURE
(after application of 7,
geometry correction factor)
NASA 6.11
March 20, 1965
05:42 2

00:42 LOCAL

Wallops Is., Va.

ALTITUDE DENSITY TEMPERATURE
(Part/cc) (°Kelvin}
155 1.28 x 1010 551
160 9.58 x 107 562
165 7.18 572
170 5.39 583
175 L.oT 594
180 3.0k 604
185 2,28 614
190 1.76 624
195 1.35 633
200 1.04 x 107 6l
205 8,03 x 16° 651
210 6.28 660
215 4,90 668
220 3,85 676
225 3,04 683
230 2. 40 690
235 1.91 696
240 1.52 702
2h5 1.22 x 108 708
250 9.79 x 10" 713
255 7.89 718
260 6.38 722
265 5. 14 725
270 4,13 728
275 3.34 730
279 2.8% x 107 731
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