
Computer-Aided Civil and Infrastructure Engineering 25 (2010) 3–19

Scalable Algorithm for Resolving Incorrect Occlusion
in Dynamic Augmented Reality Engineering

Environments

Amir H. Behzadan

Department of Construction Management and Civil Engineering Technology, The City University of New York,
New York City College of Technology, Brooklyn, NY, USA

&

Vineet R. Kamat∗

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract: Augmented reality (AR) offers significant
potential in construction, manufacturing, and other en-
gineering disciplines that employ graphical visualization
to plan and design their operations. As a result of intro-
ducing real-world objects into the visualization, less vir-
tual models have to be deployed to create a realistic visual
output that directly translates into less time and effort re-
quired to create, render, manipulate, manage, and update
three-dimensional (3D) virtual contents (CAD model en-
gineering) of the animated scene. At the same time, us-
ing the existing layout of land or plant as the background
of visualization significantly alleviates the need to collect
data about the surrounding environment prior to creat-
ing the final visualization while providing visually con-
vincing representations of the processes being studied.
In an AR animation, virtual and real objects must be
simultaneously managed and accurately displayed to a
user to create a visually convincing illusion of their co-
existence and interaction. A critical challenge impeding
this objective is the problem of incorrect occlusion that
manifests itself when real objects in an AR scene par-
tially or wholly block the view of virtual objects. In the

∗To whom correspondence should be addressed. E-mail: vkamat@
umich.edu.

presented research, a new AR occlusion handling sys-
tem based on depth-sensing algorithms and frame buffer
manipulation techniques was designed and implemented.
This algorithm is capable of resolving incorrect occlusion
occurring in dynamic AR environments in real time us-
ing depth-sensing equipment such as laser detection and
ranging (LADAR) devices, and can be integrated into
any mobile AR platform that allows a user to navigate
freely and observe a dynamic AR scene from any van-
tage position.

1 INTRODUCTION

Three-dimensional (3D) visualization of engineering
operations has gained widespread applicability over the
past few years. Several researchers have investigated
the application of virtual reality (VR) to animate simu-
lated construction operations to verify and validate the
results of underlying simulation models (Op den Bosch,
1994; Barnes, 1997; Bishop and Balci, 1990; Rohrer,
2000; Rohrer and McGregor, 2002; Kamat, 2003). To
create realistic VR displays of a simulated process, de-
tailed data about the process as well as the environment

C© 2009 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/j.1467-8667.2009.00601.x



4 Behzadan & Kamat

in which it takes place have to be obtained. Such data
must be able to describe the simulation, 3D Computer-
Aided Design (CAD) models and their interactions, fa-
cility under construction, and terrain topography. As
the size and complexity of the operation increases, data
collection also becomes time and resource consuming.
This directly translates into loss of project financial and
human resources that could otherwise be saved and
used more productively.

Augmented reality (AR), on the other hand, is a fast-
emerging technology with a great potential in visualiz-
ing and communicating results of engineering and sci-
entific simulation models at operations level of detail
(Webster et al., 1996; Thomas et al., 2000; Gleue and
Dähne, 2001; Livingston et al., 2002; Roberts et al.,
2002). The application of AR can significantly reduce
the time and effort required for CAD model engineer-
ing (Brooks, 1999), and at the same time can increase
credibility through visually convincing graphical repre-
sentations of the operations being studied. As a trade-
off, however, an AR animation must be capable of man-
aging the visual interaction between two distinct groups
of objects: virtual and real. This is critical in AR as the
observer of an animation expects to see a mixed scene
of seamlessly merged real and virtual objects in which
both groups appear to coexist in a realistic manner. This
introduces a number of challenges unique to creating
AR animations. One of these challenges is the interac-
tion between real and virtual objects. In a dynamic AR
environment, interaction can be grouped into two main
categories: visual and spatial (Breen et al., 1995). Vi-
sual interaction between real and virtual objects is the
result of reflection, absorption, and redirection of light
emitted from and incident on the objects. Such effects
include shadows, reflections, refraction, color bleeding,
and occlusion (Shreiner et al., 2004). Spatial interaction
between real and virtual objects include kinematic con-
straints, collision, and response to external forces (e.g.,
deflection and bending) (Hegror et al., 1989). Kinematic
interaction involves constraints or effects created by the

Fig. 1. Example of occlusion in an AR scene.

motion of one object (real or virtual) on the position
and orientation of another object. In collision detection,
a number of calculations are performed to determine
when and where an object strikes another, thus prevent-
ing them from occupying the same physical space. The
most complex type of spatial interaction, however, oc-
curs when there is an exchange of force and momen-
tum between real and virtual objects. The studied inter-
action in this category has typically been one way (i.e.,
real objects can affect virtual objects, but virtual objects
cannot affect real ones) (Noma et al., 1996; Dubois and
Nigay, 2000).

The authors have successfully designed and imple-
mented an AR-based mobile visualization system called
ARVISCOPE (Behzadan, 2008) that enables creating
dynamic animations of simulated operations in real time
by combining views of real facilities on the jobsite and
virtual CAD objects under construction. ARVISCOPE
takes advantage of global positioning system (GPS) po-
sitional and head orientation tracking data to place vir-
tual objects relative to the observer in the scene and
constantly update their position and orientation (Be-
hzadan and Kamat, 2007). A major part of this research,
which is the primary focus of this article, has been to
address the problem of visual occlusion between real
and virtual objects in an augmented scene. Incorrect
visual occlusion can occur when a real object partially
or wholly blocks the observer’s view of a virtual ob-
ject. In a dynamic scene such as a construction oper-
ation, incorrect occlusion can manifest very frequently
and unexpectedly because the real and virtual resources
and personnel can move arbitrarily with no constraints.
Figure 1 shows a snapshot of an AR animation in which
a virtual CAD model of an excavator is superimposed
on the real scenes of the jobsite. In this figure, two real
objects (i.e., light pole and the real excavator) are closer
to the viewpoint and hence must partially block the vir-
tual excavator at two locations (i.e., stick and bucket).
However, the observer of the scene views the snapshot
in Figure 1a as opposed to the visually correct view



Scalable algorithm for resolving incorrect occlusion 5

Table 1
Mechanisms for handling occlusion in different display

systems

Virtual Real
Display system occluding real occluding virtual

Screen based or back
projection (CAVE)

Impossible Inherent

Semi-transparent HMD Inherent Semi-visible
Software
solvable

Video see-through
HMD

Inherent Software solvable

shown in Figure 1b. This occurs because visual occlusion
cannot be automatically handled and corrected unless
appropriate methods are designed and integrated into
the AR application that is generating the animation be-
ing viewed.

In fact, in all traditional AR applications, the real
world is captured and displayed in the background al-
though all virtual CAD objects displayed on the fore-
ground cause the final display to be unable to depict
the correct occlusion effect because the two groups of
objects are completely separated (Breen et al., 1995;
Wloka and Anderson, 1995). As a result, automated
real-time occlusion handling becomes a critical step
in animating dynamic simulation models in AR. The
properties of the AR display system influence the ap-
proach to correctly handling occlusion (Taylor et al.,
2007; Fuhrmann et al., 1999). As shown in Table 1,
in screen-based or projection-based environments such
as the Cave Automatic Virtual Environment (CAVE)
(which represent a purely virtual immersive environ-
ment), handling occlusion of virtual objects by real ob-
jects is relatively simple and straightforward because
real objects are always between the display surface and
the observer’s eyes and therefore always occlude virtual
objects. However, virtual objects cannot occlude real
objects because virtual graphics are always shown on
the background screens although all real objects are lo-
cated between the observer and the virtual background.
When using a head-mounted display (HMD) to observe
the augmented scene (e.g., in this research), the dis-
play surface is always between the observer’s eyes and
real objects, and the virtual objects occlude real objects
by default. As a result, additional steps are required
to handle cases in which real objects must occlude vir-
tual CAD objects. In the presented research, depth and
frame buffer manipulation techniques were used to de-
velop a new automated algorithm for handling occlu-
sion correctly. The presented approach is unique be-
cause it can be easily integrated into any mobile AR
platform (such as UM-AR-GPS-ROVER introduced in
Behzadan et al., 2008) that allows the observer of the

AR animation to navigate freely in a scene and observe
the animated graphics from different positions. The pre-
sented method is capable of automatically resolving oc-
clusion effects in real time to produce visually convinc-
ing representations of the operations being animated.

2 PRIOR WORK IN OCCLUSION HANDLING

Several researchers have demonstrated algorithms and
methods to correctly handle occlusion effects in AR.
For example, Breen et al. (1995) presented techniques
for interactively performing occlusion and collision de-
tection between static real objects and dynamic virtual
objects in AR. They used computer vision algorithms to
acquire data that model aspects of the real world in the
form of geometric models and depth maps. Wloka and
Anderson (1995) presented a video see-through AR
system capable of resolving occlusion between real and
computer-generated objects. The heart of their system
was an algorithm that assigns depth values to each pixel
in a pair of stereo-video images in near real time. How-
ever, the use of stereo cameras caused their method to
have difficulties in computing the depth for featureless
(evenly lit, nontextured, and horizontal) rectangular im-
age areas.

Lepetit and Berger (2000) introduced a semi-
automatic approach to resolve occlusion in AR systems.
Using their approach, once the occluding objects have
been segmented by hand in selected views called “key
frames,” the occluding boundary is computed automat-
ically in the intermediate views. To do that, the 3D re-
construction of the occluding boundary is achieved from
the outlined silhouettes. Fischer et al. (2003) presented
an algorithm based on a graphical model of static back-
grounds in the natural surroundings, which has to be ac-
quired beforehand. This algorithm is unable to deliver
actual depth information for the scene. As a result, the
main assumption was that whenever a real occluder is
detected in front of the background, it is in front of all
virtual objects. Hence, their method is primarily suit-
able for interaction with the AR scenes using hands or
pointing devices, which can mostly be assumed to be
closer to the user than virtual objects.

More recently, Feng et al. (2006) designed an optical-
based algorithm to realize multilayer occlusion in in-
door areas with objects only a few meters away from
the viewer. The result of their work, however, caused
unstable scenes as the process of object extraction was
very sensitive to the change of ambient light illumina-
tion of the environment. Fortin and Hebert (2006) in-
vestigated model-based and depth-based approaches.
Although the former is only suited for a static viewpoint
and relies on a tracked bounding volume model within
which the object’s silhouette is carved, the latter makes



6 Behzadan & Kamat

it possible to change the viewpoint by exploiting a
handheld stereo camera. There are some limitations to
the depth-based approach mainly due to the perfor-
mances of local stereo algorithms. If the texture of the
object is too uniform, the dense stereo correspondence
may not be possible or at least is unreliable. In doubt-
ful cases, such correspondences will be trimmed by fil-
tering, leaving holes in the disparity map, which can re-
sult in missing 3D information for some areas of the real
objects.

3 MAIN CONTRIBUTIONS

Most work conducted in occlusion handling thus far
does not take into account the dynamics of the real
world in which an AR animation takes place. Al-
though some of them (Wloka and Anderson, 1995; Feng
et al., 2006) use techniques that are most suitable for
indoor controlled environments, several others (Breen
et al., 1995; Lepetit and Berger, 2000; Fischer et al.,
2003; Fortin and Hebert, 2006) use simplifying assump-
tions about the shape and position of real objects and
the viewpoint from which the scene is observed that
does not support the dynamic nature of objects in real
world and the fact that their actual shape, position, and
orientation can vary over time. For example, although
the application of stereo cameras is an attractive op-
tion for real-world depth acquisition, the result is largely
dependent on the nature of real objects, their physical
characteristics and appearance, and distances they are
located from the observer of the scene.

Producing correct occlusion effects in real time in an
outdoor unprepared environment such as a construc-
tion site was the overall primary goal in developing an
automated occlusion handling method in this research.
The attained results had to be convincing enough to the
observer of the scene. At the same time, no additional
constraints over the user’s maneuvering ability as well
as position and orientation of both groups of real and
virtual groups of objects could be created in the AR
application. In addition, the required hardware compo-
nents must be such that they do not limit the mobility
of the AR platform due to factors such as heavy weight,
dependence on ground power source, special care and
maintenance, and user ergonomics.

Considering all these criteria, this research investi-
gated approaches to develop an automated occlusion
handling algorithm that would use real-world depth
map input obtained through a remote-sensing device
such as a laser detection and ranging (LADAR) cam-
era (Langer et al., 2000; Wijesoma et al., 2004; Park
et al., 2007). This device is connected alongside the
video camera mounted on the observer of an AR scene.

As discussed ahead in this article, the main advantages
of flash LADAR devices are their light weight, high
data resolution, and ability to extract depth data in al-
most any environment including outdoor construction
sites. The limitations are constant noise in the incom-
ing data, and limited operational range (on average less
than 10 m). However, the occlusion handling method
developed in the presented research has been designed
to be generic and scalable so that future hardware with
higher levels of accuracy and wider operational range
can be easily plugged and used in an AR platform with-
out any modifications or changes necessary to the core
algorithms. Thus, the main contribution of the research
presented in this article is a general-purpose occlusion
handling algorithm integrated into a core AR platform
capable of detecting and correctly resolving occlusion
effects in real time. This method imposes no constraints
over the position of real and virtual objects in an aug-
mented scene, and the user can navigate freely within
the augmented space in real time.

4 LEVEL OF DETAIL IN DEPTH ACQUISITION

Obtaining depth values for real and virtual objects is
the most important step in correctly handling occlusion
effects in AR. An intuitive approach to calculate the
depth of a virtual CAD object in the scene is to extract
its position in the Z direction (positive direction point-
ing straight at the user) because the graphical engine
of the AR application (e.g., implemented in OpenGL;
SGI, Sunnyvale, California) automatically keeps track
of the depth of CAD objects relative to the viewpoint
(user’s eyes). The depth values for real objects, how-
ever, have to be acquired and recorded using more com-
plex methods (described in Section 5) as they are not
interpretably modeled in the computer. Because the in-
coming video stream of the real world is captured by
and displayed in a monoscopic visual system in this re-
search, the computer’s knowledge of a real scene is lim-
ited to the plain video captured by the video camera
without any depth information.

The level of detail according to which the depth of
real and virtual objects is determined depends on the
nature and characteristics of the objects (e.g., shape,
surface material, and motion) in the scene. For a scene
consisting of only a few simple static geometrical prim-
itives, measuring the depth values at the object level
seems to provide satisfactory results. Based on this ap-
proach, the depth of an object is represented by the dis-
tance between the user’s eyes and a single point (or a
few points) on that object. Selecting the most appropri-
ate point on each object so that the depth is calculated
as accurately as possible is a major challenge in this



Scalable algorithm for resolving incorrect occlusion 7

Fig. 2. Example of an object level of detailed depth
calculation.

approach. Under some conditions, such as that shown
in Figure 2, however, finding such a point becomes im-
possible and as a result, more than one point has to be
picked for depth calculations. In this figure, a steel erec-
tion operation using a virtual tower crane to construct
a virtual service building (i.e., building B) in front of a
real residential building (i.e., building A) is shown. Fol-
lowing the object level of detailed approach described
above and based on the location from which the user
is observing the scene, there are two possible positions
to pick depth representative points on building A (i.e.,
points x and y). In addition, point z can be selected to
determine the depth of the virtual building.

Due to the way the scene is set up, choosing only one
point on the real building (either point x or point y) is
not enough for correct depth calculations. Having se-
lected point x as the depth representative point for the
real building A, because this point is closer to the user
compared to point z (depth representative point for the
virtual building), building A has to completely block
building B in the user’s view of the augmented scene.
If point y is selected to represent the depth of the real
building, the virtual building will completely block the
user’s view of the real building as point z is closer to the
user’s eyes compared to point y. As shown in Figures
3a and b, none of these two cases are visually correct
and convincing enough to the user of the augmented
scene. For the specific case of Figure 2, simultaneous
selection of point x and point y on the real building A
will correctly resolve the occlusion effect. In fact, the
geometry of building A has to be divided into two sepa-
rate parts and the depth of each part has to be indepen-
dently compared with the depth of building B to create

Fig. 3. Incorrect occlusion effects using object level of detail.

a correct occlusion effect as shown in Figure 4. In this
figure, parts of the real building (represented by point y
in Figure 2) are blocked by the virtual building although
the remaining part (represented by point x in Figure 2)
is not occluded in the augmented view of the scene.
Table 2 shows how the selection of different depth rep-
resentative points will affect the final augmented view
in terms of convincing occlusion effects. This example



8 Behzadan & Kamat

Fig. 4. Correct occlusion effect using multiple depth
representative points.

Table 2
Effect of depth representative point selection on occlusion

Real building A Virtual building B Occlusion effect

x y z
N/A

• • Incorrect
• • Incorrect

• • • Correct

shows that objects operating in a dynamic environment
such as a construction site can form a variety of scene
setups. As a result, the process of point selection on
all such objects becomes a significantly time-consuming
task. Even if all such points are selected before the an-
imation starts, there is no guarantee that the selected
points can best represent the real scene and avoid fur-
ther confusion in the depth calculation stage in cases
such as that shown in Figure 3.

Another intuitive approach in resolving occlusion is
to acquire and manipulate depth values at the polygon
level of detail. Based on this approach, objects (real and
virtual) are separated into smaller polygons. Rasteriza-
tion algorithms are then applied to each pair of poly-
gons to decide which has a lesser depth value and hence
has to block the other. However, there are several cases
in which it is impossible to make an accurate deter-
mination on which polygon is closer to the viewpoint.
Figure 5 shows a scenario in which three polygons are
to be placed in an animated scene. As shown in this
figure, polygon A is closer to the viewpoint compared

to polygon B, and polygon B is closer than polygon C.
Based on these two observations, a default conclusion
is that polygon A has to be closer to the viewpoint than
both polygons B and C, which is clearly not the case
in Figure 5.

To take into account all such uncertainties in the
way the real world is set up, provide a sufficient level
of detail capable of creating convincing resolved oc-
clusion displays at an arbitrary viewing distance, and
avoid unexpected depth miscalculation and paradox, a
pixel level of detail was finally selected in this research.
Working with pixels on an augmented screen ascertains
a high degree of data resolution, which eliminates most
of visual discrepancies that would have been created by
a less accurate level of detail (i.e., object or polygon
level of details). The depth acquisition and color ma-
nipulation algorithm designed in this research is shown
in Figure 6. As shown in this figure, after the depth val-
ues for all real and virtual objects are obtained, the last
step is to make a comparison at the pixel level to decide
which object is closer to the user’s eyes and hence has to
be painted last. Following this approach, for a specific
pixel on the screen, if the value of the real-world depth
is less than that of the virtual world, a real object is oc-
cluding a virtual object. Further steps have to be then
taken to update the color scheme of that pixel so that
it is not painted in the color of the virtual object. These
steps will be discussed in detail in Sections 5 and 6 of this
article. Figures 7a and b show the graphical representa-
tion of the developed depth acquisition method for real
and virtual objects, respectively. The specific pixel on
the screen as shown in Figure 7 represents portions of a
real tree and a virtual CAD model of an excavator. The
depth of this pixel in the real world is captured using
methods that will be described in Section 5. The depth
value for the same pixel in the virtual world can be ob-
tained using the transformation matrices and geometric
properties of the CAD model represented by that pixel.
Figure 8 illustrates the result of depth comparison per-
formed at pixel level to determine whether or not the
CAD object is occluded in the augmented view. The
depth acquisition and color manipulation process de-
picted in Figures 6–8 has to be executed continuously by
capturing the latest real and virtual depth values for all
the pixels on the screen. Depth values of the real world
can change if the viewpoint is moved (i.e., user changes
position and/or head orientation) or there is a change in
the contents of the real scene. Depth values of the vir-
tual world can also change if CAD objects move in the
scene. By constantly comparing these two sets of val-
ues, the depth effect can be included and represented
in the augmented world to correctly resolve occlusion
effects.



Scalable algorithm for resolving incorrect occlusion 9

Fig. 5. Impossible occlusion handling case using polygon level of detail.

Fig. 6. Designed depth acquisition and color manipulation
algorithm.

5 DEPTH SENSING AND CONVERSION
TECHNIQUES

Producing correct occlusion effects in real time in an
outdoor unprepared environment such as a construction
site was a primary concern in developing the automated

occlusion handling method in this research. The authors
have successfully designed and implemented a mobile
computing apparatus equipped with components neces-
sary to perform a walk-through AR animation in real
time (Behzadan et al., 2008). As shown in Figure 9, the
apparatus takes advantage of real-time positioning data
coming through a GPS receiver as well as 3D head ori-
entation data supplied by a head orientation tracker de-
vice (inside the hard hat) to position the user inside
the AR animation. In the mobile computing appara-
tus shown in Figure 9, the main computing task is per-
formed by a laptop computer secured inside the back-
pack. Although the real scene is captured by a video
camera in front of the user’s eyes, the rendered graphi-
cal scene is displayed to the user through the HMD in-
stalled in front of the hard hat. At the same time, the
user can interact with the system using a miniature key-
board and a touchpad. Although the resulting AR ani-
mation has to be convincing enough to the observer of
the scene, no additional constraint over the user’s ma-
neuvering ability as well as position and orientation of
both groups of real and virtual objects has to be imposed
by the AR application. In addition, the required depth-
sensing hardware components to perform the task of
occlusion handling have to be selected in a way that
they do not limit the mobility of the AR platform due
to factors such as heavy weight, dependence on ground
power source, special care and maintenance, and user
ergonomics.

As noted earlier, depth acquisition at pixel level of
detail has the advantage that the scene can be arbitrarily
complex, although the processing time remains a con-
stant time function of image resolution. Additionally,
no geometric model of the real environment is needed



10 Behzadan & Kamat

Fig. 7. Capturing the depth of real and virtual objects.

during the animation. However, the depth map is de-
pendent on the user’s position and head orientation, as
well as the location of real objects in the scene. Once
the user or the real objects change their position and/or
orientation, the depth map becomes invalid (Breen
et al., 1995). To take into account all such variations, the
process of depth acquisition and comparison has to be
done in real time. The hardware components required
to perform depth acquisition have to be selected in a
way that they can be easily integrated into any existing
mobile AR platform. Hence, being lightweight and self-
powered, having a convenient interface, and supporting
an acceptable pixel resolution are among the important
factors in selecting the hardware components. There is
certainly a tradeoff between equipment mobility and
data resolution. The heavier a camera is, for example,

the more data sample points it can collect and the re-
sulting image is more accurate. This directly translates
into more processing time that is not desirable for the
purpose of this research as all calculations have to be
performed in real time. Lighter cameras, although pro-
viding lower resolution depth images, can operate at a
faster processing speed and hence are better fits for the
AR platform used in this research.

Several options were studied including high-
resolution cameras such as 3DLS (7–8 kg) (Fraunhofer
IAIS, Sankt Augustin, Germany), Konica Vivid 9i
(15 kg) (Konica Minolta Business Solutions U.S.A. Inc.,
Ramsey, New Jersey), I-Site 4400 LR (14 kg) (Maptek
USA, Lakewood, Colorado), FARO LS 420 (14.5 kg)
(FARO, Coventry, United Kingdom), and Leica HDS
3000 (17 kg) (Leica Geosystems AG, St. Gallen,



Scalable algorithm for resolving incorrect occlusion 11

Fig. 8. Final AR screen with correct occlusion effect.

Switzerland). Although all these cameras provide full
range data (wide horizontal and vertical scanning
angles), they cannot be mounted on mobile platforms
mainly due to their weight and dependence on external
power sources. In addition, according to most manu-
facturers, fixed tripods have to be used as mounting
bases to achieve best performance. Another category
of imaging cameras is lightweight cameras such as flash
LADAR devices that are typically suitable for low-

range applications. This category of cameras is more
suitable for this research to perform real-world depth
acquisition as it uses a promising technology providing
robust and accurate access to depth data of the real ob-
jects, and has already proved to provide satisfactory re-
sults in geometric modeling of construction sites for au-
tomation and robotics applications (Teizer et al., 2005a,
b, 2007). Table 3 shows some details of three such cam-
eras that are most used in relevant research projects.



12 Behzadan & Kamat

Fig. 9. Profile of a user equipped with mobile AR computing
apparatus.

A flash LADAR system typically consists of a device
constantly casting laser beams in the 3D real space and
receiving the resulting reflected beams. Based on the
travel time for each beam and knowing the speed of
the laser beam, the distance between the flash LADAR
system and each real object in the scene is calculated.
Once installed in front of the user’s eyes, these depth
values reflect the distance between the viewpoint and

Table 3
Manufacturer’s properties of different flash LADAR devices

Dimension (cm) Pixel resolution Field of view (◦)

Model x y z H V H V Frame rate Range (m)

CSEM SR30001 5.00 6.70 4.23 176 144 39.6 47.5 50 7.5
CSEM SwissRanger22 14.60 3.10 3.30 160 124 42.0 46.0 30 7.5
PMD 19K3 20.80 17.40 4.40 160 120 40.0 30.0 15 5.0 ∼ 30.0

1Mesa Imaging AG, Zurich, Switzerland.
2CSEM SA, Zurich, Switzerland.
3PMD Technologies GmbH, Siegen, Germany.

the real objects. Flash LADAR data represents a scene
as a matrix. Each element in this matrix contains the
depth value of the corresponding pixel on the screen. As
a result, the concept of screen matrix was introduced and
used in this research to provide a means to store and re-
trieve depth values more efficiently inside the AR plat-
form. By definition, a screen matrix is a 2D matrix with
dimensions equal to the pixel resolution of the screen.
Each element in this matrix can hold data [e.g., Red-
Green-Blue (RGB), color and depth value] about the
corresponding pixel on the screen.

Figure 10 shows a sample screen matrix for a 640-by-
480 screen. As noted earlier, the elements in this ma-
trix can store depth values as well as color codes for
their corresponding pixels on the screen. If the resolu-
tion of the depth data obtained from a flash LADAR
device is less than the resolution of the actual screen,
adjacent elements of the screen matrix can be clustered
together and a single depth value (obtained from the
flash LADAR device) can be assigned to all the ele-
ments inside a cluster. For example, if the incoming flash
LADAR depth data have a resolution of 160 × 120 al-
though the actual screen resolution is 640 × 480, four
adjacent pixels (in both horizontal and vertical direc-
tions) can be grouped as one cluster and the same depth
value can be assigned to all of them. Depth values for
the pixels on the virtual screen are also retrieved from
the OpenGL z-buffer. The z-buffer is a memory buffer
in the OpenGL graphics accelerator that holds the latest
depth of each pixel along the Z-axis. As the virtual con-
tents of the scene change over time, the values stored in
the z-buffer are also updated to reflect the latest depth
of the CAD objects relative to the viewpoint (i.e., user’s
eyes).

The fundamental difference between depth values
obtained from a flash LADAR camera for real objects
and those obtained from z-buffer for virtual objects is
that although real-world depth values are retrieved and
reported as real distances (in terms of meters or feet) to
the user, depth values for the virtual CAD objects fall



Scalable algorithm for resolving incorrect occlusion 13

Fig. 10. Sample screen matrix for a 640-by-480 screen.

Fig. 11. Relation between z-buffer and metric virtual depth values.

between a [0, 1] interval. A pixel located on the near
plane of the perspective viewing frustum will be given a
depth value equal to zero, and a pixel located on the far
plane of the perspective viewing frustum will be given
a depth value equal to one. All intermediate pixels will
have depth values between zero and one. However, the
relationship between the depth values obtained from
the z-buffer and corresponding metric depth values is
not linear. A pixel with a virtual depth value of 0.5 is
not located halfway between the near and far planes. In
fact, this relationship, as shown in Figure 11, follows a
hyperbolic equation (Fortin and Hebert, 2006). In this

figure, Znear and Zfar correspond to the metric distance
between the user’s eyes and the near and far planes of
the perspective viewing frustum, respectively. Zbuffer is
the depth value of a specific pixel on the screen ob-
tained from the z-buffer and Zreal is the metric equiv-
alent of this depth value for the same pixel. As shown in
Figure 11, z-buffer has higher resolution for pixels
closer to the user’s eyes. For the specific case shown in
Figure 11, more than 90% of all possible z-buffer values
represent the depth of objects located within 10% of the
distance between the near and far planes. This is mainly
because the human eyes are more sensitive to closer



14 Behzadan & Kamat

Fig. 12. Constructing four distinct color and depth matrices.

objects and can identify any short-range visual discrep-
ancies more rapidly, whereas discrepancies in objects
that are farther away cannot be recognized as clearly
as in closer objects. Depth values for the virtual objects
are also stored in a separate screen matrix for later com-
parison with corresponding values of the real world.

6 FRAME BUFFER MANIPULATION

After all depth values are obtained and stored appropri-
ately in separate screen matrices, they have to be com-
pared so that for each pixel a determination is made
on which group of objects (real or virtual) is closer
and hence has to be displayed. Once this is computed,
the color of the pixel will be changed to the color of
the closer object to the viewpoint to create the impres-
sion that the pixel really represents the correct object.
This requires an intermediate step, that is, obtaining
the color values (in terms of RGB) for each individual
pixel on the screen. This can be done by directly reading
the OpenGL color buffer that stores pixel color values
in real time. Two distinct readings are done to obtain
pixel colors of the scene with and without virtual ob-

jects. Once depth and color readings are complete, four
different matrices are provided to the AR application:

• A = Screen matrix of real-world color values (cap-
tured texture from the video camera as stored in
OpenGL color buffer before superimposition of
CAD models)

• B = Screen matrix of real-world depth values (rep-
resenting the depth of the raw video input coming
through the video camera)

• C = Screen matrix of CAD models’ color values
(OpenGL color buffer after superimposition of CAD
models)

• D = Screen matrix of CAD models’ depth val-
ues (OpenGL depth buffer after superimposition of
CAD models)

Figure 12 shows how these four matrices are con-
structed using the contents of depth and color buffers as
well as the incoming data through depth-sensing hard-
ware (e.g., flash LADAR device). As shown in this fig-
ure, starting from the top left-hand corner, after the
OpenGL frame buffer is refreshed, the content of the
video frame is updated using the raw video image com-
ing through the video camera. At this time, matrix A
is constructed using pixel color values of the raw video
image and matrix B is constructed using the captured
depth data of the real world. Once the OpenGL frame is
updated, the virtual contents of the scene are displayed
on top of the real background. At this point, matrix C
is constructed using the contents of the OpenGL color
buffer and matrix D is constructed using the OpenGL
z-buffer values. All these operations occur at each an-
imation frame to handle occlusion continuously as the
animation is running.

Figure 13 shows the frame buffer manipulation algo-
rithm designed in the presented research, which uses
these four matrices to construct a final screen matrix
(i.e., matrix E in this figure). Screen matrix E contains
correct pixel colors after resolving all incorrect occlu-
sion cases. In this figure, for every pixel on the screen,
the corresponding color and depth value is read from
the four matrices described above (shown as a, b, c,
and d in Figure 13). The real and virtual depth val-
ues are then compared. If the depth of the pixel in the
real world is less than its depth in the virtual world, its
color is changed to the color read from the matrix rep-
resenting real-world colors (i.e., matrix A). This repre-
sents the case in which a real object is occluding a vir-
tual object. The other situation occurs when the depth
of the pixel in the virtual world is less than its depth in
the real world. This represents the case in which a vir-
tual object is occluding a real object and hence the pixel
color is changed to the color read from the matrix repre-
senting virtual world colors (i.e., matrix C). The correct



Scalable algorithm for resolving incorrect occlusion 15

Fig. 13. Designed frame buffer manipulation algorithm.

pixel color (shown as e in Figure 13) is then stored in
the screen matrix E, which will be later used when the
OpenGL frame buffer is updated to show the correct
occlusion effect.

7 VALIDATION

Several proof-of-concept experiments were conducted
to validate the functionality of the frame buffer manip-
ulation algorithm developed in this research. The objec-
tive of the experiments was to validate that the designed
occlusion handling algorithm is capable of detecting and
resolving visual occlusion cases in a real-time AR an-
imation and produce visually convincing output repre-
senting the modeling operation. Animation script files
of small-scale construction operations were created us-
ing the ARVISCOPE language (Behzadan, 2008; Be-
hzadan and Kamat, 2009a). Miniature models of actual

construction equipment and materials were used to cre-
ate the real background of the augmented animation.
Small-scale CAD models were then superimposed on
the real background to create the final augmented view
of the operations. In each experiment, the distance be-
tween the virtual CAD objects and the user was set to
be greater than that of the real construction objects to
verify that the developed algorithm was capable of de-
tecting and handling incorrect occlusion cases. As dis-
cussed earlier, the opposite case in which the distance
between a virtual object and the viewpoint is less than
that of a real object is trivial and is automatically taken
into account by almost any AR-based visualization
application.

Following the range data of typical LADAR de-
vices shown in Table 3, and in order not to be con-
fined in a limited operational range when conducting
the experiments, depth data of real objects used in the
validation were obtained from physical measurements
taken around the layout of the real objects. This, in
fact, provided a wider experiment range, which enabled
the viewpoint to be set up at a farther location in-
side the augmented environment. As described later in
the next section, using physical measurements to ob-
tain real-world depth data does not contradict with the
fact that the designed occlusion handling algorithm is
able to compare depth values in real time to effectively
detect and correct visual occlusion cases at the pixel
level of detail. In contrast, it supports the idea that
the developed occlusion handling algorithm is generic
enough that it can handle depth data from a variety of
sources (e.g., manual measurements, LADAR devices,
and 3D laser scanners) to perform the basic task of oc-
clusion handling. This is a significant feature that makes
the presented technique independent of limitations in
resolution and range introduced by available market
products.

Figures 14–16 show results of three validation exper-
iments conducted in this research. In each experiment,
CAD models of construction equipment and machinery
were superimposed on top of miniature construction en-
vironments consisting of real scaled construction mod-
els. Virtual models were placed in the augmented scene
in a way that they were completely or partially occluded
by real objects. Figure 14 shows a virtual excavator oc-
cluded by a real structure. In Figure 15, a virtual dozer
is partially occluded by a real tower crane. The virtual
forklift in Figure 16 is occluded by a real container. As
observed in these figures, the occlusion was accurately
detected and resolved in all cases using the designed oc-
clusion handling algorithm.

Validating the results of this research in larger
scale industrial applications requires more powerful
and accurate depth-sensing devices to be invented and



16 Behzadan & Kamat

Fig. 14. Correcting occlusion between a virtual excavator and a real structure.

Fig. 15. Correcting occlusion between a virtual dozer and a real tower crane.

introduced by the market. Such devices must be able
to operate under harsh conditions that a typical con-
struction project is subject to. Factors such as the in-
tensity of ambient light and laser beam reflection on
metallic surfaces are major drawbacks for the applica-
tion of existing LADAR devices in the field of construc-
tion where the majority of work is performed in outdoor
environments. Meanwhile, the authors are continuously
working to prepare the required infrastructure for fu-
ture implementations. For example, the authors are cur-
rently working on an ongoing research project, which is

extensively focused on the application of AR and oc-
clusion handling in excavation projects and prevention
of physical damage to underground utilities (Behzadan
and Kamat, 2009b). In another research project, the
authors are exploring methods of equipping heavy
construction machinery with motion sensors and laser
scanners to track their motion in real time and pro-
duce augmented views of the surrounding construc-
tion environment in context to the equipment oper-
ators and site engineers for control and inspection
purposes.



Scalable algorithm for resolving incorrect occlusion 17

Fig. 16. Correcting occlusion between a virtual forklift and a real container.

8 SUMMARY AND CONCLUSIONS

In this article, a depth-based occlusion handling method
was introduced that enables AR visualization tools to
sense depth data of virtual and real objects and detect
and correct occlusion cases between virtual and real ob-
jects in real time. Although AR has been recently used
to address visualization needs for indoor small-scale
applications under controlled environments, lack of
adequate and robust solutions to problems such as
incorrect occlusion that arise from the dynamic nature
of objects in an outdoor unprepared environment have
been a major challenge in developing and implementing
functional AR-based animations for outdoor larger
scale tasks (e.g., construction operations). In fact,
unless appropriate object depth detection methods with
sufficient level of detail are deployed, AR animations
are unable to correct visual occlusion cases that happen
when a real object is closer to the observer but is visually
blocked by a virtual CAD object that is intended to be
farther away. The level of detail in occlusion handling is
heavily a function of the degree of complexity and un-
certainties involved in the visualized augmented scene.
For example, a dynamic environment such as a con-
struction jobsite consists of a large number of real ob-
jects (personnel, equipment, and material) continuously
changing shape, position, and orientation. Once a sim-
ulated operation is superimposed over the existing real
display, the scene dynamics change as real objects not
only interact with each other but also have to maintain
a close logical and spatial relation with virtual objects.

The occlusion handling method and AR visualization
tool described in this article are capable of detecting,
resolving, and displaying correct occlusion effects, us-
ing depth and frame buffer manipulation techniques at
the pixel level of detail in dynamic augmented environ-
ments. The developed approach is unique because it
can be easily integrated into any mobile AR platform,
which allows the observer of an AR animation to nav-
igate freely and observe the ongoing operations from
different perspectives. Several proof-of-concept exper-
iments were conducted to validate the functionality of
the developed occlusion handling method. In particu-
lar, scaled models of actual construction equipment and
materials were used to create the real background of
the augmented animation, and small-scale CAD mod-
els were superimposed on the real background to cre-
ate the final augmented view of the operations al-
though the occlusion cases were correctly resolved in
real time. The authors fully acknowledge the fact that
further improvement in this field is heavily dependent
on available market products that provide more data
resolution and higher operational range. This has been
reflected in their work by designing an occlusion han-
dling method that is generic in both concept and de-
sign. Although the implementation stage presented in
this article mainly illustrated the results of a series
of proof-of-concept experiments, the developed depth
sensing and frame buffer manipulation techniques do
not impose any limitations on the actual depth-sensing
device that may eventually become available in the
market.



18 Behzadan & Kamat

ACKNOWLEDGMENTS

The presented work has been supported by the Na-
tional Science Foundation (NSF) through grant CMS-
0448762. The authors gratefully acknowledge NSF’s
support. The authors thank Professor Klaus-Peter Beier
at the University of Michigan for his invaluable in-
sight and advice, as well as Ph.D. student Ms. Sara Jab-
barizadeh for her assistance in conducting the described
experiments. Any opinions, findings, conclusions, and
recommendations expressed in this article are those of
the authors and do not necessarily reflect the views of
the NSF or the individuals mentioned above.

REFERENCES

Barnes, M. R. (1997), An Introduction to QUEST, in Pro-
ceedings of Winter Simulation Conference (WSC), IEEE,
Atlanta, GA, 619–23.

Behzadan, A. H. (2008), ARVISCOPE: Georeferenced
visualization of dynamic construction processes in
three-dimensional outdoor augmented reality, PhD
Dissertation, University of Michigan, Ann Arbor, MI.

Behzadan, A. H. & Kamat, V. R. (2007), Georeferenced reg-
istration of construction graphics in mobile outdoor aug-
mented reality, Journal of Computing in Civil Engineering,
21(4), 247–58.

Behzadan, A. H. & Kamat, V. R. (2009a), Automated genera-
tion of operations level construction animations in outdoor
augmented reality, Journal of Computing in Civil Engineer-
ing, Special Issue on Graphical 3D Visualization in AEC,
American Society of Civil Engineers (ASCE), Reston, VA,
in press.

Behzadan, A. H. & Kamat, V. R. (2009b), Interactive aug-
mented reality visualization for improved damage preven-
tion and maintenance of underground infrastructure, in
Proceedings of the 2009 Construction Research Congress,
Seattle, WA.

Behzadan, A. H., Timm, B. W. & Kamat, V. R. (2008), Gen-
eral purpose modular hardware and software framework
for mobile outdoor augmented reality applications in en-
gineering, Journal of Advanced Engineering Informatics,
22(1), 90–105.

Bishop, J. L. & Balci, O. (1990), General purpose visual simu-
lation system: a functional description, in Proceedings of the
Winter Simulation Conference (WSC), IEEE, New Orleans,
LA, 504–12.

Breen, D. E., Rose, E. & Whitaker, R. T. (1995), Interactive
Occlusion and Collision of Real and Virtual Objects in Aug-
mented Reality, Technical Report ECRC-95-02, European
Computer-Industry Research Center, Munich, Germany.

Brooks, Jr., F. P. (1999), What’s real about virtual reality?
Journal of Computer Graphics and Applications, 16(6), 16–
27.

Dubois, E. & Nigay, L. (2000), Augmented reality: Which aug-
mentation for which reality?, in Proceedings of DARE 2000
on Designing Augmented Reality Environments, ACM,
Elsinore, Denmark, 165–66.

Feng, Y., Du, W., Guan, X., Gao, F. & Chen, Y. (2006), Re-
alization of multilayer occlusion between real and virtual

scenes in augmented reality, in Proceedings of the 10th In-
ternational Conference on Computer Supported Coopera-
tive Work in Design, Nanjing, China, 1–5.

Fischer, J., Regenbrecht, H. & Baratoff, G. (2003), Detecting
dynamic occlusion in front of static backgrounds for AR
scenes, in Proceedings of the Workshop on Virtual Environ-
ments, Zurich, Switzerland, 153–61.

Fortin, P. A. & Hebert, P. (2006), Handling occlusions in real-
time augmented reality: dealing with movable real and vir-
tual objects, in Proceedings of the 3rd Canadian Conference
on Computer and Robot Vision (CRV’06), Quebec City,
QB, Canada, 54.

Fuhrmann, A., Hesina, G., Faure, F. & Gervautz, M. (1999),
Occlusion in collaborative augmented environments, Jour-
nal of Computers and Graphics, 23(6), 809–19.

Gleue, T. & Dähne, P. (2001), Design and implementation
of a mobile device for outdoor augmented reality in the
archeoguide project, in Proceedings of the 2001 Conference
on Virtual Reality, Archeology, and Cultural Heritage, ACM
Press, Glyfada, Greece, 161–68.

Hegror, G., Palamidese, P. & Thalmann, D. (1989), Motion
control in animation, simulation, and visualization, Com-
puter Graphics Forum, 8(4), 347–52.

Kamat, V. R. (2003), VITASCOPE: extensible and scalable
3d visualization of simulated construction operations, PhD
Dissertation, Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, VA.

Langer, D., Mettenleiter, M., Hartl, F. & Frohlich, C. (2000),
Imaging ladar for 3-D surveying and CAD modeling of real-
world environments, Robotics Research, 19(11), 1075–88.

Lepetit, V. & Berger, M. O. (2000), A semi-automatic method
for resolving occlusion in augmented reality, in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, Hilton Head Island, SC, 2225–30.

Livingston, M., Rosenblum, L., Julier, S., Brown, D. &
Baillot, Y. (2002), An augmented reality system for military
operations in urban terrain, in Proceedings of the Interser-
vice/Industry Training, Simulation, and Education Confer-
ence (I/ITSEC ‘02), National Training and Simulation As-
sociation (NTSA), Orlando, FL, 1–8.

Noma, H., Miyasato, T. & Kishino, F. (1996), A palmtop dis-
play for dexterous manipulation with haptic sensation, in
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems: Common Ground, ACM, Vancou-
ver, BC, Canada, 126–33.

Op den Bosch, A. (1994), Design/construction process sim-
ulation in real-time object-oriented environments, PhD
Dissertation, Georgia Institute of Technology, Atlanta,
GA.

Park, H. S., Lee, H. M., Adeli, H. & Lee, I. (2007), A new ap-
proach for health monitoring of structures: terrestrial laser
scanning, Computer-Aided Civil and Infrastructure Engi-
neering, 22(1), 19–30.

Roberts, G. W., Evans, A., Dodson, A., Denby, B., Cooper,
S. & Hollands, R. (2002), The Use of Augmented Reality,
GPS, and INS for Subsurface Data Visualization, FIG XXII
International Congress, Washington DC.

Rohrer, M. W. (2000), Seeing is believing: the importance of
visualization in manufacturing simulation, in Proceedings of
the Winter Simulation Conference (WSC), IEEE, Orlando,
FL, 1211–16.

Rohrer, M. W. & McGregor, I. W. (2002), Simulating reality
using AUTOMOD, in Proceedings of the Winter Simulation
Conference (WSC), IEEE, San Diego, CA, 173–81.



Scalable algorithm for resolving incorrect occlusion 19

Shreiner, D., Woo, M., Neider, J. & Davis, T. (2004),
OpenGL Programming Guide, Addison Wesley, Reading,
MA.

Taylor, N. R., Panchev, C., Hartley, M., Kasderidis, S. & Tay-
lor, J. G. (2007), Occlusion, attention and object representa-
tions, Integrated Computer-Aided Engineering, 14(4), 283–
306.

Teizer, J., Caldas, C. H. & Haas, C. (2007), Real-time three-
dimensional occupancy grid modeling for the detection and
tracking of construction resources, Journal of Construction
Engineering and Management, 133(11), 880–88.

Teizer, J., Kim, C., Bosche, F., Caldas, C. H. & Haas,
C. T. (2005a), Real-time 3D modeling for accelerated
and safer construction using emerging technology, in Pro-
ceedings of the 1st International Conference on Construc-
tion Engineering and Management, Seoul, Korea, 539–
43.

Teizer, J., Liapi, K., Caldas, C. & Haas, C. (2005b),
Experiments in real-time spatial data acquisition for
obstacle detection, in Proceedings of the Construc-

tion Research Congress (CRC), San Diego, CA, 107–
16.

Thomas, B., Close, B., Donoghue, J., Squires, J., Bondi, P.,
Morris, M. & Piekarski, W. (2000), ARQuake: An out-
door/indoor first person augmented reality application,
in Proceedings of the 4th International Symposium on
Wearable Computers (ISWC2000), IEEE, Atlanta, GA,
139–46.

Webster, A., Feiner, S., MacIntyre, B., Massie, W. & Krueger,
T. (1996), Augmented reality in architectural construction,
inspection and renovation, in Proceedings of the 3rd
Congress on Computing in Civil Engineering, ASCE, Re-
ston, VA, 913–19.

Wijesoma, W. S., Kodagoda, K. R. S. & Balasuriya, A. P.
(2004), Load-boundary detection and tracking using ladar
sensing, Transactions on Robotics and Automation, 20(3),
456–64.

Wloka, M. M. & Anderson, B. G. (1995), Resolving occlusion
in augmented reality, in Proceedings of the Symposium on
Interactive 3D Graphics, Monterey, CA, 5–12.


