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Summary. In many instances, a subject can experience both a nonterminal and terminal event where the terminal event (e.g.,
death) censors the nonterminal event (e.g., relapse) but not vice versa. Typically, the two events are correlated. This situation
has been termed semicompeting risks (e.g., Fine, Jiang, and Chappell, 2001, Biometrika 88, 907–939; Wang, 2003, Journal
of the Royal Statistical Society, Series B 65, 257–273), and analysis has been based on a joint survival function of two event
times over the positive quadrant but with observation restricted to the upper wedge. Implicitly, this approach entertains the
idea of latent failure times and leads to discussion of a marginal distribution of the nonterminal event that is not grounded in
reality. We argue that, similar to models for competing risks, latent failure times should generally be avoided in modeling such
data. We note that semicompeting risks have more classically been described as an illness–death model and this formulation
avoids any reference to latent times. We consider an illness–death model with shared frailty, which in its most restrictive form
is identical to the semicompeting risks model that has been proposed and analyzed, but that allows for many generalizations
and the simple incorporation of covariates. Nonparametric maximum likelihood estimation is used for inference and resulting
estimates for the correlation parameter are compared with other proposed approaches. Asymptotic properties, simulations
studies, and application to a randomized clinical trial in nasopharyngeal cancer evaluate and illustrate the methods. A simple
and fast algorithm is developed for its numerical implementation.

Key words: Copula; Dependent censoring; Frailty; Illness–death model; Proportional hazards; Semicompeting risks data;
Terminal event.

1. Introduction
In clinical trials comparing therapeutic interventions, a sub-
ject may experience several distinct types of failures. If aside
from censoring, the observation time ends upon the occur-
rence of the first failure, such data are commonly referred to
as competing risks data. If all types of failures can occur in
any order until possible censoring, this gives rise to multivari-
ate failure time data. In this article, we consider the situation
where a subject may experience a nonterminal event, such as
disease recurrence, and/or a terminal event, such as death,
where the terminal event censors the nonterminal event but
not vice versa. This is sometimes referred to as semicompeting
risks data (Fine, Jiang, and Chappell, 2001). A typical exam-
ple is provided by a randomized clinical trial of nasopharyn-
geal cancer, which was recently conducted to compare radi-
ation therapy alone (RT) with a combination chemotherapy
and radiation therapy (CRT) treatment (Wee et al., 2005).
Two endpoints were of interest—time to tumor recurrence
and time to mortality. Large percentages of deaths were ob-
served among the patients with recurrence in both the RT
and CRT groups. In this and in many similar applications, it
is to be expected that the time to the nonterminal event is

strongly correlated with the time to the terminal event. The
specific aims of the study are then to estimate covariate and
treatment effects on the rates of terminal and nonterminal
events, and also to evaluate the dependence or correlation of
these events.

Semicompeting risks data without covariates have previ-
ously been modeled by assuming that the joint survivor func-
tion of the two event times follows a copula with two mar-
gins and with observations available only in the upper wedge,
t1 � t2. For example, Fine et al. (2001) define the Clayton
copula model,

S(T1, T2) = P (T1 > t1, T2 > t2) = {S1(t1)−θ + S2(t2)−θ − 1}−1/θ ,

where T1, T2 are times to nonterminal and terminal events,
S1, S2 are their respective marginal survival functions, and
θ � 0 is a parameter measuring the correlation. They ex-
tended the concordance estimator of Oakes (1982) to estimate
and test hypotheses about the dependency parameter θ. A
pseudo partial likelihood estimator of θ was proposed by Clay-
ton (1978) and considered by Day, Bryant, and Lefkopoulou
(1997) who established its consistency. The asymptotic
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normality of this estimator was shown by Wang (2003), who
also considered an extension to more general copula models.

All of these models and approaches involve similar assump-
tions to those underlying multiple decrement models for latent
failure times in some analyses of competing risks data. In par-
ticular, the interpretation of the marginal distribution of the
nonterminal event is hypothetical as are the marginal mod-
els in the multiple decrement formulation of competing risks.
Another difficulty with these models for semicompeting risks
is that they complicate covariance analysis. Currently there
is limited literature on regression analysis of semicompeting
risks data, except for Peng and Fine (2007) who postulated
separate marginal regression models for the time to nonter-
minal and terminal events.

In this article, we suggest that semicompeting risks data are
better modeled using an illness–death compartment model
(Andersen et al., 1993; Kalbfleisch and Prentice, 2002). In
fact, we essentially argue (as pointed out by an associate edi-
tor) that “semicompeting risks” is nothing but the more than
50-year-old illness–death model (Fix and Neyman, 1951; Sver-
drup, 1965). In the illness–death model, a subject can either
transit directly to the terminal event or first to the nonter-
minal event and then to the terminal event. The model is
completely specified by the transition intensity functions for
the three distinct transitions. In particular, we consider a class
of illness–death models with a shared frailty. In its restricted
form, this model is essentially equivalent to the Clayton model
mentioned above. In the shared frailty models, covariance
analysis can be incorporated either through the conditional
(on the frailty) or marginal (after integrating out the frailty)
transition intensities. We use nonparametric maximum likeli-
hood estimation (NPMLE) for inference and develop a sim-
ple iterative procedure for its numerical implementation. The
maximum likelihood estimators for the regression coefficients
and the dependence parameter are shown to be efficient.

The remainder of this article is organized as follows. In Sec-
tion 2, we describe a general illness–death model with a shared
frailty and consider a special case that is essentially equivalent
to the copula model. We consider further this very special case
in Section 3, where statistical analyses based on maximum
likelihood, pseudo partial likelihood (Day et al., 1997), and
concordance (Fine et al., 2001) are considered and compared.
Section 4 returns to the general shared frailty type model
and discusses covariance analysis, and Section 5 presents re-
sults of simulation studies. The methods are applied to data
from a randomized trial of nasopharyngeal cancer in Sec-
tion 6, and this article concludes with some discussion in
Section 7. All proofs are given in the Web Supplementary
Materials.

2. The Model
Let Ci and Ti2 be the censoring and terminal event times
and Ti1 be the nonterminal event time for the ith subject,
i = 1, . . . , n. If the subject fails before the nonterminal event
occurs, then we define Ti1 = ∞. We suppose that there is a
p-dimensional vector of covariates, xi , measured on the ith
individual. We assume that the censoring time Ci is inde-
pendent of Ti1, Ti2 given xi . We first consider the homoge-
neous case (without covariates) and covariance analysis will
be considered in Section 4. The observations can be sim-

Figure 1. Joint density function of T1 and T2.

ply described as (Yi2 = Ti2 ∧ Ci , δi2 = I(Ti2 � Ci ), Yi1 = Ti1 ∧
Yi2, δi1 = I(Ti1 � Yi2), xi , i = 1, . . . , n). Because 0 � Yi1 � Yi2,
the observations are restricted to the upper wedge. Note, for
example, that if δi1 = 0 and δi2 = 1, then Yi1 = Yi2 = Ti2 and
Ti1 = ∞.

The probability model for (T1, T2) is taken to be abso-
lutely continuous in the upper wedge t2 � t1 with joint density
f (t1, t2), 0 � t1 � t2 as shown in Figure 1. Because∫ ∞

0

∫ ∞

t1

f (t1, t2) dt2 dt1 = P (T1 < ∞) � 1.

The balance of the probability is distributed along the line at
t1 = ∞ with continuous density f∞(t2), t2 > 0. Note that this
specification of the model specifies no probability content in
the lower wedge t2 < t1 < ∞, which is a true reflection of the
physical situation. We suggest that this method of modeling is
generally preferable to assuming a latent distribution of T1, T2

over the region t1 > t2 as is often done in this case (e.g., Fine
et al., 2001). This latter approach is similar to the approach
of latent failure times in competing risks, which should gen-
erally be avoided in modeling. See Prentice et al. (1978) or
Kalbfleisch and Prentice (2002) for additional discussion of
this point.

2.1 The Illness–Death Model
One approach to modeling data of the type considered here
is to utilize a compartment type model with transition func-
tions defining the probabilistic properties. Figure 2 illus-
trates this situation with three compartments labeled on study
for the state occupied at time t = 0, recurrence for the state
entered when the intermediate event occurs, and death for the
absorbing state. The hazard or transition rates are defined as
follows:

λ1(t1) = lim
Δ→0

P [T1 ∈ [t1, t1 + Δ) |T1 � t1, T2 � t1]/Δ, (1)

λ2(t2) = lim
Δ→0

P [T2 ∈ [t2, t2 + Δ) |T1 � t2, T2 � t2]/Δ, (2)
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Figure 2. Compartment for semicompeting risks data. This
figure appears in color in the electronic version of this article.

λ12(t2 | t1) = lim
Δ→0

P [T2 ∈ [t2, t2 + Δ) |T1 = t1, T2 � t2]/Δ, (3)

where 0 < t1 < t2. Note that equations (1) and (2) are the
usual cause specific or crude hazard functions for the com-
peting risks part of the model in which either the termi-
nal or nonterminal event occurs first. The hazard (3) defines
the rate of the terminal event following the occurrence of
the nonterminal event at time T1 = t1. In general, λ12(t2 | t1)
can depend on both t1 and t2. In a Markov model, how-
ever, λ12(t2 | t1) = λ12(t2) depends only on t2. Alternatively,
a semi-Markov process specifies that λ12(t2 | t1) = λ12(t2 − t1),
with the transition rate depending only on the sojourn
time.

With a Markov model, λ12(t) and λ2(t) are of particular
interest because they correspond to the hazard of T2 given,
respectively, that T1 has or has not previously occurred. The
ratio, λ12(t)/λ2(t), is the explanatory hazard ratio, which is
one characterization of the dependence between T1 and T2.
When this explanatory hazard ratio is constant and equal to
1, the occurrence of T1 has no effect on the hazard of T2. As
in Nielsen et al. (1992), one way to incorporate a dependent
structure between T1 and T2 is through the use of a shared
frailty (or random effects) model. Denoting the frailty by a
random variable γ > 0 with E(γ) = 1, we define conditional
transition functions analogous to equations (1)–(3) as follows:

λ1(t1 | γ) = γλ01(t1), t1 > 0, (4)

λ2(t2 | γ) = γλ02(t2), t2 > 0, (5)

λ12(t2 | γ, t1) = γλ03(t2), 0 < t1 < t2. (6)

Conditional on γ, this is a standard Markov illness–death
model and when γ = 1 is a constant, the model reduces to the
usual Markov illness–death model. With λ03 and λ02 left ar-
bitrary, we describe this frailty model as “the general model”
and, in this case, the dependence of T2 on T1 is described
both by the conditional (given γ) explanatory hazard ratio
λ03(t2)/λ02(t2) as well as by the common frailty γ.

The assumption, λ03(t2) = λ02(t2) is of particular interest
because of its relationship to some semicompeting risks mod-
els considered in the literature, and also because, in this “re-
stricted model,” the dependence of T1 and T2 is fully captured

by γ. This simple dependence has often been postulated in bi-
variate survival models with frailties. Therefore, we consider
a restricted model in which equation (6) becomes

λ12(t2 | γ, t1) = γλ02(t2), 0 < t1 < t2. (7)

An alternative condition to equation (7) is given by

λ21(t1 | γ, t2)

= limΔ→0 P [T1 ∈ [t1, t1 + Δ) |T1 � t1, T2 = t2, γ]/Δ

= γλ01(t1), 0 < t1 < t2. (8)

In fact, it is easy to show that assumptions (4), (5), and (7)
are equivalent to assumptions (4), (5), and (8). Both equa-
tions (7) and (8) specify a type of conditional independence
between the two failure types. Equation (8) is unusual be-
cause it specifies the recurrence rate conditional on a future
event and so is not useful as a generative description of the
process. Nonetheless, it provides a simple consequence and
characterization of the model. A similar formulation condi-
tional on future events is used in Section 3 to obtain a simple
partial likelihood type estimator of a parameter in the frailty
distribution for γ.

In this article, we assume that the frailty γ has a
gamma distribution with mean 1, variance θ, and density
θ− 1

θ γ
1
θ
−1 exp(− γ

θ
)/Γ( 1

θ
). The conditional hazards (given γ)

in equations (4), (5), and (7) together with the gamma frailty
distribution can be seen to correspond to a marginal model
with hazards as defined in equations (1)–(3) given by

λ1(t1) = [1 + θw(t1, t1)]−1λ01(t1), t1 > 0, (9)

λ2(t2) = [1 + θw(t2, t2)]−1λ02(t2), t2 > 0, (10)

and

λ12(t2 | t1) = (1 + θ)[1 + θw(t1, t2)]−1λ02(t2), 0 < t1 < t2,

(11)

where Λ01(t) =
∫ t

0

λ01(s)ds, Λ02(t) =
∫ t

0

λ02(s)ds, and

w(t1, t2) = Λ01(t1) + Λ02(t2).

From equations (9)–(11), it is clear that the marginal re-
stricted model is non-Markovian unless γ is constant (θ = 0).

3. Semicompeting Risk Models—The
Restricted Model

Much recent literature has taken a different approach to this
data structure in which a joint survivor function is assumed
to exist for T1, T2 over the positive quadrant, but observation
is restricted to the upper wedge in which T1 < T2. We adopt
a similar, though distinct representation for the joint distri-
bution of T1, T2.

Based on the model in equations (9)–(11), the joint survivor
function of (T1, T2) in the upper wedge is

S(t1, t2) = (1 + θΛ01(t1) + θΛ02(t2))−1/θ , 0 < t1 � t2.

(12)
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This survivor function can be seen to correspond to a density
function of

f (t1, t2) = (θ + 1)λ01(t1)λ02(t2)[1 + θΛ01(t1) + θΛ02(t2)]−1/θ−2,

(13)

in the upper wedge 0 < t1 � t2 and a density along the line
t1 = ∞ given by

f∞(t2) = λ02(t2)(1 + θΛ01(t2) + θΛ02(t2))−1/θ−1, 0 < t2.

(14)

By writing S1(t1) = (1 + θΛ01(t1))−1/θ and S2(t2) = (1 +
θΛ02(t2))−1/θ , we find that S(t1, t2) = [S1(t1)−θ + S2(t2)−θ −
1]−1/θ which is the same form as in Fine et al. (2001). In
fact, Fine et al. (2001) interpret S(t1, t2) as a survivor func-
tion over the whole positive quadrant and consider S1(t1)
as the marginal survivor function of T1. They note, however,
that the joint survivor function in the lower wedge cannot be
estimated on the data available. In fact, there is no probability
content in the region T2 < T1 < ∞, and this interpretation of
S1 as a marginal survivor function of T1 is not justified. Note
that in expression (12), however, Λ01 has a natural interpre-
tation as an integrated hazard in the related frailty model.

We consider three distinct methods for estimation of θ. In
Section 3.1, we describe methods for estimating θ due to Day
et al. (1997) and Fine et al. (2001). In Section 3.2, we describe
a maximum likelihood approach for the joint estimation of
θ, Λ01 and Λ02.

3.1 Methods for Direct Estimation of θ

Day et al.’s method. Let Ni2(t) be the counting process for
the observed terminal event for the ith individual,

Ni2(t) = I(Ti2 � t, δi2 = 1).

Let Zi2(t) = I(Yi2 � t) be the at risk process for the fail-
ure time event. Similarly, let Ni1(t) = I(Ti1 � t, δi1 = 1) and
Zi1(t) be the counting and at risk processes for the nontermi-
nal event.

It can be verified that the model specified by equations
(8)–(10) implies that

λ21(t1 |T2 = t2) = (1 + θ)λ21(t1 |T2 � t2),

where λ21(t1 |A) = limΔ→0 P (T1 ∈ [t1, t1 + Δ) |T1 � t1, A)/Δ.
Consider a time t2, where a terminal event is observed to
occur (i.e., a time t2, where dN.2(t2) = 1 , the subscript . de-
noting summation) and the set R2(t2) = {j : Zj 2(t2) = 1}. We
can construct a partial likelihood for (1 + θ) by considering
R2(t2) as comprising two samples indexed by dNj 2(t2), which
indicates whether or not item j fails at time t2, j ∈ R2(t2). This
gives rise to an estimating equation obtained by taking the
partial likelihood score at t2. Summing these equations over
all t2 gives rise to the estimating equation

n∑
j=1

∫ ∞

0

n∑
i=1

∫ u

0

Zi2(u) [Ni2(u) − eθ (s; u)] dNi1(s)dNj 2(u) = 0,

where

eθ (s; u) =

n∑
�=1

N�2(u)Z�1(s)Z�2(u)(1 + θ)N � 2(u )

n∑
�=1

Z�1(s)Z�2(u)(1 + θ)N � 2(u )

.

This estimating equation was also obtained by Day et al.
(1997) from a different perspective and, by its construction,
it can be seen to be unbiased and convex. In practice, stan-
dard software for the Cox model can be used to obtain the
unique estimator θ̂ of θ. There is currently available no sim-
ple variance estimator for the asymptotic distribution θ̂, but
the variance can be numerically approximated using the jack-
knife method.

Fine et al.’s method. Consider two independent pairs,
(Ti1, Ti2) and (Tj 1, Tj 2), i < j, and define the concordance
indicator

Δij = I{(Ti1 − Tj 1)(Ti2 − Tj 2) > 0}.

Fine et al. (2001) noted that Δij is only observed when T̃ij 1 <
T̃ij 2 < C̃ij , where T̃ij 1 = Ti1 ∧ Tj 1, T̃ij 2 = Ti2 ∧ Tj 2, C̃ij = Ci ∧
Cj . Define S̃ij = min(T̃ij 1, T̃ij 2, C̃ij ), R̃ij = min(T̃ij 2, C̃ij ). Be-
cause the predictive hazard ratio equals (1 + θ) in the upper
wedge and the expectation of Δij conditional on T̃ij 1 < T̃ij 2 is
1+θ
2+θ

. Let Dij = I(T̃ij 1 < T̃ij 2 < C̃ij ), the estimation equation
based on the concordance indicator can be constructed as

U (θ) =
∑
i< j

W (S̃ij , R̃ij )Dij

{
Δij −

1 + θ

2 + θ

}
,

where the weight function W (u, v) is a random function satis-
fying supu ,v |W (u, v) − W̃ (u, v) | → 0 in probability and W̃
is a deterministic and bounded function in the support of
(S̃ij , R̃ij ). A variance estimator can be obtained by applying
the theory of U-statistics.

3.2 Maximum Likelihood Joint Estimation
The likelihood based on the observed data Oi =
(Yi2, δi2, Yi1, δi1) and given γi , denoted by L(Oi , γi ), is

γδi 1+δ i 2
i λ01(Yi1)δ i 1λ02(Yi2)δ i 2 exp{−γi [Λ01(Yi1) + Λ02(Yi2)]}.

Averaging over the distribution of γi and taking a product
over i gives the likelihood function L as

n∏
i=1

λ01(Yi1)δ i 1λ02(Yi2)δ i 2 (1 + θ)δ i 1δ i 2

{1 + θ[Λ01(Yi1) + Λ02(Yi2)]}−1/θ−δ i 1−δ i 2 ,

(15)

as can also be obtained directly using the expressions in (12)–
(14).

Let tr 1, tr 2, . . . , trm be the ordered distinct relapse times
and td1, td2, . . . , tdf be the ordered distinct failure times. We let
λ0R = (λ011, λ012, . . . , λ01m )T and λ0D = (λ021, λ022, . . . , λ02f )T ,
where λ01j = dΛ01(tr j ), j = 1, . . . , m and λ02j = dΛ02(tdj ), j =
1, . . . , f . Let η = (θ, λ0R , λ0D ) be the m + f + 1 dimensional
vector of parameters. The maximum likelihood estimates are
obtained by taking the derivative of the log likelihood with
respect to η and solving the corresponding equations.
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Table 1
Simulation results for estimation of (θ, Λ01, Λ02) in the semicompeting risks model without covariates

Day et al. Fine et al.
θ Par (1997) (2001) NPMLE Par Day et al. Fine et al. NPMLE

n = 200 n = 400
1 θ Bias 0.051 0.049 −0.014 θ Bias 0.018 0.021 −0.010

SD 0.303 0.316 0.281 SD 0.209 0.215 0.203
ESE 0.304 0.318 0.282 ESE 0.210 0.217 0.201
CP 0.964 0.970 0.968 CP 0.960 0.976 0.946

Λ01(1) Bias 0.005 0.004 0.001 Λ01(1) Bias 0.004 0.003 0.001
SD 0.068 0.069 0.050 SD 0.056 0.058 0.038
ESE 0.069 0.070 0.049 ESE 0.057 0.059 0.039
CP 0.960 0.964 0.944 CP 0.958 0.966 0.950

Λ02(1) Bias 0.008 0.006 0.002 Λ02(1) Bias 0.005 0.004 0.002
SD 0.090 0.092 0.070 SD 0.064 0.062 0.039
ESE 0.091 0.093 0.071 ESE 0.063 0.061 0.038
CP 0.954 0.958 0.954 CP 0.948 0.946 0.946

0.5 θ Bias 0.016 0.015 −0.019 θ Bias 0.004 0.003 −0.006
SD 0.209 0.223 0.195 SD 0.135 0.150 0.095
ESE 0.210 0.225 0.196 ESE 0.136 0.152 0.094
CP 0.952 0.970 0.956 CP 0.954 0.978 0.948

Λ01(1) Bias 0.003 0.003 0.001 Λ01(1) Bias 0.002 0.002 0.001
SD 0.034 0.040 0.036 SD 0.028 0.030 0.024
ESE 0.033 0.039 0.037 ESE 0.029 0.031 0.026
CP 0.948 0.946 0.952 CP 0.952 0.954 0.956

Λ02(1) Bias 0.005 0.006 0.003 Λ02(1) Bias 0.003 0.003 0.002
SD 0.046 0.054 0.050 SD 0.036 0.048 0.032
ESE 0.047 0.053 0.051 ESE 0.037 0.049 0.031
CP 0.952 0.946 0.950 CP 0.956 0.958 0.948

2 θ Bias 0.053 0.045 −0.025 θ Bias 0.026 0.021 −0.019
SD 0.513 0.511 0.473 SD 0.355 0.360 0.335
ESE 0.512 0.513 0.475 ESE 0.354 0.362 0.337
CP 0.947 0.976 0.964 CP 0.947 0.970 0.962

Λ01(1) Bias 0.008 0.005 0.002 Λ01(1) Bias 0.006 0.003 0.002
SD 0.056 0.054 0.050 SD 0.036 0.034 0.028
ESE 0.057 0.053 0.049 ESE 0.037 0.035 0.027
CP 0.952 0.946 0.946 CP 0.952 0.954 0.948

Λ02(1) Bias 0.012 0.009 0.005 Λ02(1) Bias 0.007 0.004 0.003
SD 0.118 0.116 0.106 SD 0.065 0.060 0.048
ESE 0.119 0.117 0.107 ESE 0.066 0.061 0.050
CP 0.954 0.952 0.954 CP 0.954 0.956 0.960

A simple algorithm is available to compute the maximum
likelihood estimations of θ, Λ01, and Λ02. Further, these esti-
mators, under relatively mild conditions, are asymptotically
normal with a covariance matrix that is easily estimated.
These results are described in Section 4 in a much more gen-
eral setting.

3.3 Comparison of Estimates of θ

We report on a set of simulations to compare the performance
of three methods described above for the estimation of θ in
the restricted model. We generated n observations from the
models (4), (5), and (7), where γ was simulated from a gamma
distribution with mean 1 and shape parameter 1/θ and both
λ01(t) and λ02(t) were set to be constant 1. The censoring
times were generated from a uniform distribution on (1, 3).
We report results from 500 replications for θ = 0.5, 1.0, 2.0
and for n = 200, 400. Table 1 reports average bias (Bias), the
empirical standard deviation (SD), the average value of the es-

timated standard errors (ESEs), and the coverage probability
(CP) of the nominal 95% confidence intervals for estimates of
θ, Λ01(1), and Λ02(1). In comparison with the other two meth-
ods, the NPMLE performs very favorably both in terms of
bias and mean squared error. Furthermore, the ESEs agree
well with the sample standard deviations and the coverage
probabilities are accurate.

4. More General Models and Covariance Analysis
We now return to the more general model described in equa-
tions (4)–(6) and consider the incorporation of covariates x in
the model.

Various regression models could be considered for the con-
ditional (on γ) or marginal transition intensity functions de-
fined earlier. For example, Cox type models could be specified
for either and maximum likelihood methods extended for joint
estimation of the regression parameters or as θ, Λ01, Λ02, and
Λ03.
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Incorporating covariates x in the conditional hazards, anal-
ogous to equations (4), (5), and (7), we have

λ1(t1 | γ, x) = γλ01(t1) exp{β1x}, t1 > 0, (16)

λ2(t2 | γ, x) = γλ02(t2) exp{β2x}, t2 > 0, (17)

and

λ12(t2 | γ, t1, x) = γλ03(t2) exp{β3x}, 0 < t1 < t2. (18)

Again we have assumed that γ has a gamma distribution and
is distributed independently of x.

An alternative approach to regression analysis would incor-
porate the covariates in the marginal hazards, analogous to
equations (9)–(11). We have

λ1(t1 |x) = [1 + θw(t1, t1)]−1λ01(t1) exp{β1x}, t1 > 0, (19)

λ2(t2 |x) = [1 + θw(t2, t2)]−1λ02(t2) exp{β2x}, t2 > 0, (20)

and

λ12(t2 |x, t1) = (1 + θ)[1 + θw(t1, t2)]−1λ03(t2) exp{β3x},
(21)

where 0 < t1 < t2 and w(s, t) has a more general form than
before given by

w(s, t) = Λ01(s) + Λ02(s) + [Λ03(t) − Λ03(s)], 0 < s � t.

These correspond to two different modeling strategies and it
is important to note that the regression parameters in equa-
tions (16)–(18) and (19)–(21) have different interpretations,
corresponding to regression effects on conditional intensities
and marginal intensities, respectively.

In what follows, we focus on the conditional approach. Un-
der the models (16)–(18), the likelihood based on the data
Oi = (Yi1, δi1, Yi2, δi2, xi ) is

L =
n∏

i=1

λ01(Yi1)δ i 1λ02(Yi2)δ i 2(1−δ i 1)λ03(Yi2)δ i 1δ i 2

× exp
[
δi1β

T
1 xi + δi2(1 − δi1)βT

2 xi + δi1δi2β
T
3 xi

]
×(1 + θ)δ i 1δ i 2

{
1 + θ[Λ01(Yi1)eβ T

1 xi + Λ02(Yi1)eβ T
2 xi

+ Λ03(Y1i , Y2i )eβ T
3 xi ]

}−1/θ−δ i 1−δ i 2
,

where Λ03(s, t) = Λ03(t) − Λ03(s). Let η = (θ, β1, β2, β3, dΛ01,
dΛ02, dΛ03). Further let tr 1, tr 2, . . . , trm be the ordered dis-
tinct relapse times and td1, td2, . . . , tdf be the ordered distinct
failure times without relapse, and tr d1, . . . , tr dg be the
ordered distinct failure times following relapse. We let λ0R =
(λ011, λ012, . . . , λ01m )T , λ0D = (λ021, λ022, . . . , λ02f )T , and
λ0RD = (λ031, λ032, . . . , λ03g )T , where λ01j = dΛ01(tr j ), j =
1, . . . , m, λ02j = dΛ02(tdj ), j = 1, . . . , f , and λ03j = dΛ03(tr dj ),
j = 1, . . . , g. Define dtr j

, dtdj
, and drdj as the number of

relapse times at tr j , the number of relapse free deaths at tdj ,
and the number of deaths with relapse at tr dj , respectively.
The score vector is denoted by U (η) = (U1, U

T
2 , UT

3 , UT
4 ,

UT
5 , UT

6 , UT
7 )T , where the respective components of

U correspond to partial derivatives with respect to
θ, β1, β2, β3, λ0R , λ0D , λ0RD . Define Ai1 = Λ01(Yi1) exp (βT

1 xi ),
Ai2 = Λ02(Yi1) exp (βT

2 xi ), Ai3 = Λ03(Y1i , Y2i )eβ T
3 xi , Ai =

Ai1 + Ai2 + Ai3, Bi = 1/θ + δi1 + δi2. Following an approach
similar to that of Andersen et al. (1997), we have

U1 =
n∑

i=1

{
δi1δi2

1 + θ
+

1
θ2 log(1 + θAi ) −

BiAi

1 + θAi

}

U2 =
n∑

i=1

{
δi1xi − Bi

xiθAi1

1 + θAi

}

U3 =
n∑

i=1

{
(1 − δi1)δi2xi − Bi

xiθAi2

1 + θAi

}

U4 =

{ n∑
i=1

δi1δi2xi − Bi
xiθAi3

1 + θAi

}
.

Finally, the jth elements of U5, U6, and U7 are

U5j = dtr j
/λ01j −

n∑
i=1

I(Yi1 � tr j )Biθ exp
(
βT

1 xi

)
1 + θAi

,

j = 1, . . . , m,

U6j = dtdj
/λ02j −

n∑
i=1

I(Yi1 � tdj )Biθ exp
(
βT

2 xi

)
1 + θAi

,

j = 1, . . . , f.

U7j = dtr dj
/λ03j −

n∑
i=1

I(Yi2 � tr dj > Yi1)Biθ exp
(
βT

3 xi

)
1 + θAi

,

j = 1, . . . , g.

Our numerical approach to solve U (η) = 0 converges
quickly and can be summarized as follows:

(1) Let θ(0), β
(0)
j , Λ(0)

0j (u), j = 1, 2, 3 be initial estimates.

Typically, we can set θ(0) = 1, β
(0)
j = 0, and let Λ(0)

0j (u),
be the Nelson–Aalen type estimate of the respective
cumulative hazard functions.

(2) Given Λ(0)
0j (u), j = 1, 2, 3, update estimates of θ, βj to

θ(1), β
(1)
j , j = 1, 2, 3 from U1, U2, U3, U4.

(3) Given θ(1), β
(1)
j , j = 1, 2, 3, solve the equations U5 =

0, U6 = 0, U7 = 0 for updated estimates Λ(1)
0j (u), j =

1, 2, 3.
(4) Update the initial estimates in (1) and repeat steps

(2)–(4) until the estimates converge.

To establish the asymptotic properties, we specify the fol-
lowing conditions.

(C1) The variance parameter θ0 lies in a known interval
[0, K ], K < ∞. The regression parameter (β01, β02, β03)
belongs to the interior of a compact set. The cumulative
baseline hazards Λ01, Λ02, and Λ03 are strictly increas-
ing and continuously differentiable on [0, τ ] for given
τ < ∞.

(C2) The observations (Yi2, δi2, Yi1, δi1, xi ), i = 1, . . . , n are
identically and independently distributed. Conditional
on x, the right censoring C is independent of T2 and T1.

(C3) The covariate x is bounded with probability one, and
if b is a constant vector such that bT x = 0 with proba-
bility one, then b = 0.
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Table 2
Simulation results for covariance analysis in the general model

n = 250 n = 400

θ Par Bias SD ESE CP Par Bias SD ESE CP

1 β1 −0.043 0.869 0.854 0.942 0.032 0.684 0.690 0.954
β2 0.006 0.852 0.840 0.944 0.005 0.690 0.711 0.962
β3 0.038 0.978 0.956 0.940 0.007 0.837 0.845 0.958
Λ01(1) −0.024 0.258 0.251 0.944 −0.014 0.195 0.187 0.942
Λ02(1) −0.021 0.232 0.220 0.942 −0.013 0.194 0.190 0.946
Λ03(1) −0.049 0.624 0.618 0.942 −0.038 0.508 0.495 0.944
θ 0.019 0.238 0.241 0.952 −0.014 0.197 0.202 0.954

0.5 β1 0.028 0.735 0.739 0.948 0.026 0.614 0.616 0.950
β2 0.083 0.772 0.766 0.946 −0.025 0.582 0.588 0.954
β3 −0.054 0.867 0.870 0.952 −0.007 0.693 0.701 0.956
Λ01(1) −0.019 0.226 0.217 0.946 0.010 −0.160 0.156 0.944
Λ02(1) −0.017 0.226 0.218 0.940 0.014 −0.171 0.176 0.952
Λ03(1) −0.042 0.533 0.521 0.938 0.035 −0.435 0.430 0.946
θ −0.015 0.199 0.204 0.952 0.009 0.149 0.157 0.956

2 β1 0.056 1.065 1.072 0.956 −0.010 0.858 0.863 0.954
β2 0.126 1.059 1.066 0.958 −0.032 0.855 0.869 0.960
β3 0.021 1.310 1.314 0.952 0.010 0.957 0.970 0.962
Λ01(1) −0.022 0.329 0.310 0.938 −0.018 0.268 0.256 0.946
Λ02(1) −0.023 0.312 0.302 0.942 −0.019 0.261 0.254 0.944
Λ03(1) −0.065 0.775 0.767 0.946 −0.050 0.578 0.569 0.942
θ 0.021 0.243 0.238 0.948 0.013 0.173 0.182 0.958

These regularity conditions are similar to those of Mur-
phy (1995) and Parner (1998). As in Murphy (1995), we con-
sider discrete versions of the baseline hazard functions with
jumps only at the distinct relapse times and death times as de-
scribed above. Let A(η) = −n−1∂U (η)/∂ηT . The second par-
tial derivatives are listed in Web Appendix A. Let η̂ be the
estimate of η.

Let αT = (θ, βT
1 , βT

2 , βT
3 ) and let Λ0 = (Λ01, Λ02, Λ03). The

following theorem states our main results.

Theorem 1. Under conditions (C1)–(C3),

(i) The parameters α and Λ0 are identifiable.
(ii) With probability one,

| α̂ − α0 | + sup
t∈[0,τ )

| Λ̂0 − Λ0 | → 0.

That is α̂ and Λ̂0 are strongly consistent.
(iii)

√
n(α̂ − α0, Λ̂0 − Λ0) converges weakly to a zero-mean

Gaussian process in the metric space R3p+1 × {�∞[0, τ ]}3,
where �∞[0, τ ] is the linear space consisting of all bounded
functions in [0, τ ] and is equipped with the supremum
norm. Furthermore, α̂ is asymptotically efficient; equiva-
lently, its asymptotic variance attains the semiparametric
efficiency bound for α.

The proof of Theorem 1 follows in outline that in Murphy
(1995) and is given in Web Appendix B. Let Î be the ob-
served information matrix for η. For moderate sample sizes,
the estimate of the asymptotic variance of (θ̂, β̂1, β̂2, β̂3) can
be estimated using the relevant submatrix of Î−1. Similarly,
the asymptotic covariance function of Λ̂01, Λ̂02, and Λ̂03 is ob-
tained from the submatrices of Î−1 associated with λ01, λ02,
and λ03, respectively. For large sample sizes, a profile like-

lihood approach could provide an alternative approach for
estimating asymptotic variances (e.g., Murphy and van der
Vaart, 2000).

5. Simulation Study
We report here a second set of simulations designed to eval-
uate the proposed method for the covariance analysis in the
general model.

From the model (16)–(18), n observations in which
γ had the same values as before were generated.
Let λ01(t) = λ02(t) = 2 exp(−t)I(0 � t � 3) + 2 exp(−3)I(t >
3) and λ03(t) = 2λ01(t). We report results with one covari-
ate, X, having a uniform distribution between 0 and 0.5.
We consider β1 = 1, β2 = 1, β3 = 0.5, and n = 250 and 400.
The censoring time was simulated from a mixture distri-
bution with probability 0.5 from a uniform distribution on
(1.5,3) and probability 0.5 from a point mass at 3. The results
obtained from 500 replications are summarized in Table 2.
We can see that the NPMLE method performs well for the
regression parameters β1, β2, β3; the baseline cumulative haz-
ards Λ01, Λ02, Λ03; and the frailty parameter θ. The biases are
small, the ESEs agree well with the sample SDs, and the cov-
erage probabilities are close to the nominal level. These and
similar simulations suggest that the NPMLE method provides
an efficient and feasible way of analyzing these illness–death
(or semicompeting risks) models with practical sample sizes.

6. Application to Nasopharyngeal Cancer Data
The data come from a randomized clinical trial on nasopha-
ryngeal cancer conducted between September 1997 and May
2003 by the National Cancer Center, Singapore (Wee et al.,
2005). Among 221 patients eligible for entry into the trial,
110 patients were randomly assigned to receive radiotherapy
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Table 3
Analysis of nasopharyngeal cancer data—the restricted model

Time to relapse Time to death

Covariates Estimate SE P-value Estimate SE P-value

Treatment (x1) −1.064 0.2620 <0.001 −0.980 0.248 <0.001
tsize 4 vs tsize 1 (x2) 1.811 0.352 <0.001 1.592 0.328 <0.001
tsize 3 vs tsize 1 (x3) 0.631 0.354 0.074 −0.027 0.301 0.930
tsize 2 vs tsize 1 (x4) 0.484 0.376 0.198 −0.165 0.345 0.632
nstage 3 vs nstage 0 (x5) 3.220 0.316 <0.001 2.608 0.223 <0.001
nstage 2 vs nstage 0 (x6) 1.341 0.365 <0.001 0.959 0.330 0.004
nstage 1 vs nstage 0 (x7) 0.647 0.470 0.169 −0.296 0.456 0.516
θ 7.037 2.252 0.002

Table 4
Analysis of nasopharyngeal cancer data—the Markov model

Time to relapse Time to death without relapse Time to death after relapse

Covariates Estimate SE P-value Estimate SE P-value Estimate SE P-value

x1 −0.714 0.247 0.004 0.267 0.481 0.579 −0.663 0.302 0.028
x2 1.071 0.585 0.067 2.489 1.089 0.022 −0.463 0.523 0.377
x3 0.465 0.547 0.395 1.475 1.093 0.177 −0.858 0.499 0.086
x4 0.336 0.522 0.520 1.257 1.109 0.257 −0.639 0.486 0.188
x5 1.303 0.639 0.041 1.899 0.814 0.020 −0.425 0.536 0.428
x6 0.706 0.611 0.248 0.821 0.829 0.322 −0.376 0.478 0.432
x7 0.577 0.608 0.343 0.163 0.931 0.861 −0.576 0.540 0.286

(RT) alone, whereas the other 111 received concurrent cis-
platin with RT, followed by adjuvant chemotherapy compris-
ing a combination of cisplatin plus fluorouracil. After treat-
ment, patients may experience a cancer recurrence or death
or a cancer recurrence followed by death. By the end of the
study, 21 patients had cancer recurrence and then died, 15
patients died without cancer recurrence, and 8 patients had
cancer recurrence but did not die in the CRT group; in the
RT group, 47 patients had cancer recurrence and then died,
8 patients died without cancer recurrence, and 3 patients had
cancer recurrence but did not die.

We first fit the restricted model to compare the CRT group
and the RT group. Other covariates considered were tumor
size and nodal status. The results are summarized in Table 3.
After adjusting for the other covariates, the patients in the
CRT group tend to have a lower rate of cancer relapse and
death than those in the RT group. The results confirm the
significant survival benefit of the CRT treatment over the RT
treatment. As expected, it is also found that higher rates of
cancer relapse and death are associated both with increased
tumor size and nodal status. The frailty parameter θ is esti-
mated to be 7.037 with an ESE 2.252(P < 0.002). According
to this estimate, a patient who is known to experience can-
cer relapse at time t is expected to have about eight times
the risk of dying at subsequent times as compared to a pa-
tient who has not experienced a relapse of cancer by time t.
This indicates that relapse is strongly related to death, which
is consistent with the large percentages of deaths among pa-
tients with relapse in both the CRT group and the RT group
(21/29 and 47/50, respectively).

We also fit the marginal Markov model and the general
frailty model. The Markov model is analyzed using par-

tial likelihood methods (Kalbfleisch and Prentice, 2002, p.
270). The general model is fitted by maximum likelihood
as discussed earlier, and standard errors are estimated by
inverting the observed information matrix. The results are
summarized in Tables 4 and 5, respectively. In both the
Markov model and the general frailty model, treatment ef-
fect (x1) is significant on time to relapse and time to death
after relapse, but not time to death without relapse. For
time to death without relapse, the regression coefficient is
positive and in the opposite direction of the other two.
Actually, this is consistent with the fact that more patients
died without cancer recurrence in the CRT (treatment) group
(15) than the RT (control) group (8). Thus, both the Markov
model and the general frailty model provide a more realistic
picture of data. In terms of other covariates, for time to re-
lapse, all three models give similar results except for x6 but
for time to death without relapse and time to death after re-
lapse, the Markov model and the general frailty model give
similar results that are more realistic than those of the restric-
tive model. The general model yields a much smaller estimate
for the variance of the frailty 2.02, indicating that some of
the dependence of T2 on T1 is captured by the unequal base-
line hazards. The likelihood ratio statistic for independence
(θ = 0) is 5.06 for the general model and 9.82 for the restricted
model, indicating fairly strong evidence of a correlation be-
tween T1 and T2 in both cases. To check the assumptions made
in the restricted model (as compared to the general model),
we wish to test for β2 = β3 and λ02 = λ03. For this purpose,
define

ψT =

(
βT

2 − βT
3 ,

∫ τ

0

w(t)[Λ02(t) − Λ03(t)]dt

)
,
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Table 5
Analysis of nasopharyngeal cancer data—the general model

Time to relapse Time to death without relapse Time to death after relapse

Covariates Estimate SE P-value Estimate SE P-value Estimate SE P-value

x1 −0.822 0.337 0.015 0.144 0.531 0.786 −0.736 0.348 0.034
x2 1.567 0.555 0.005 3.142 0.723 <0.001 0.165 0.518 0.750
x3 0.545 0.535 0.308 1.718 0.831 0.039 −0.827 0.583 0.156
x4 0.452 0.550 0.411 1.465 0.871 0.093 −0.559 0.621 0.368
x5 2.217 0.665 0.001 3.011 0.780 <0.001 0.283 0.497 0.570
x6 0.966 0.543 0.075 1.167 0.781 0.135 −0.040 0.530 0.940
x7 0.701 0.644 0.276 0.237 1.014 0.815 −0.659 0.714 0.356
θ 2.021 0.933 0.030

where w(.) is a nonnegative weight function. We chose w ≡ 1.
A consistent estimator of ψ is

ψ̂T =

(
β̂T

2 − β̂T
3 ,

∫ τ

0

w(t)[Λ̂02(t) − Λ̂03(t)]dt

)
,

and an estimate of its covariance matrix, V̂ψ , is obtained by
the delta method. When the restricted model holds, ψ̂T V̂ −1

ψ ψ̂
follows a χ2

p+1 distribution, where p is the number of covari-
ates. In our example, the test statistic is 36.71 and yields a
P-value of <0.001(χ2

8), indicating strong evidence against the
restricted model, at least as measured by the components of
ψ. An alternative approach would consider models that re-
late the two baseline hazards, such as λ03(t) = exp(ξ0)λ02(t)
or λ03(t) = exp(ξ0 + ξ1t)λ02(t) and the equality of two baseline
hazards corresponds to ξ0 = 0 or ξ0 = ξ1 = 0, which can be
tested using the usual likelihood ratio statistic. In fact, mod-
els of this sort, which provide descriptions of the hazard ra-
tios are good compromises between the general and restricted
models.

7. Discussion
The illness–death model with a gamma frailty for semi-
competing risks data concisely describes the data structure
and easily incorporates covariance analysis of semicompeting
risks data, which has rarely been addressed in the literature.
Within the proposed model, the maximum likelihood estima-
tor can be obtained by a simple and fast numerical algorithm,
its asymptotic properties are established, and it admits sim-
ple estimates of asymptotic variances and standard errors.
Simulation studies indicate good small sample performance.

The gamma frailty is used for its mathematical convenience
and the model can also be generalized to allow different effects
of frailty on the two events as in Liu, Wolfe, and Huang (2004).
Note that other distributions could also be used for the frailty
such as the log-normal or positive stable distribution. It would
also be of interest to consider different frailty distributions
and model checking procedures (Glidden, 1997).

In this article, we have adopted a conditional (on the frailty
γ) regression model for covariance analysis. A marginal re-
gression model can be developed and estimated in a similar
way. Our main analysis focused on a situation in which the
conditional intensities satisfy λ02 = λ03 because this assump-
tion leads to a marginal model for semicompeting risks that
has been studied in the literature. As discussed in the general
model and also illustrated in the application, however, the

methods we propose do allow different baseline hazards (i.e.,
λ02 
= λ03).

8. Supplementary Materials
Web Appendices A and B referenced in Section 4 are available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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