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ew papers have explored the optimal reserve prices in the name-your-own-price (NYOP) channel with bidding options in a

multiple channel environment. In this paper, we investigate a double-bid business model in which the consumers can bid
twice in the NYOP channel, and compare it with the single-bid case. We also study the impact of adding a retailer-own list-price
channel on the optimal reserve prices. This paper focuses on achieving some basic understanding on the potential gain of adding
a second bid option to a single-bid system and on the potential benefits of adding a list-price channel by the NYOP retailer. We
show that a double-bid scenario can outperform a single-bid scenario in both single-channel and dual-channel situations. The
optimal reserve price in the double-bid scenario is no less than that in the single-bid case. Furthermore, the addition of a retailer-
own list-price channel could push up the reserve prices in both single-bid and double-bid scenarios.
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1. Introduction
The name-your-own-price (NYOP) auction has become
popular since the inception of Priceline in 1998, because
consumers can pay less in an NYOP channel than in
list-price channels. In an NYOP auction, a consumer
submits a bid on Priceline, and Priceline informs the
consumer whether he/she wins the bid after a short
period of time. Typical items for sale on Priceline include
hotel rooms, rental cars, airline tickets, and cruises.
Implied by its name and as first claimed by Price-
line, NYOP sounds like a reverse auction in which
sellers compete for the bid. However, “Priceline isn’t
an auction” (Segan 2005). Like other list-price retail-
ers, Priceline has a given (minimum) price for every
item. This price is called reserve price, and a customer
wins the item only if his/her bid is higher than the
reserve price (Terwiesch et al. 2005). Since consumers
do not have complete information of the products/
prices, Priceline’s deals are opaque. For example, the
consumers cannot know the exact hotel when they bid
for hotel rooms in a specified area, nor do they know
whether the bidding prices will be accepted. Opaque
fares are generally lower than most list-prices on the
Internet, because the contracts between Priceline and
its suppliers “give Priceline really low rates” (Segan
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2005). However, consumers might also incur other
costs, such as time, emotion, etc., which is referred to
as frictional or haggling cost (Hann and Terwiesch
2003, Terwiesch et al. 2005). Thus, the consumers have
to trade off their convenience with the low price. In
theory, an NYOP channel could be better than a list-
price channel (Fay 2004, Terwiesch et al. 2005). As
argued by many researchers, the NYOP channel pro-
vides a niche market where consumers are sensitive to
price or psychologically prefer this kind of auction
(Clark 2000, Fay 2004, Segan 2005).

Priceline has made some significant changes over
the years. For example, Priceline used to allow the
consumers to repeatedly bid on the same item within
several days after the first bid; however, this policy is
no longer available from several years ago. Although
consumers can continue to submit a different bid by
modifying at least one bidding option, this alteration
in policy has changed the consumer behavior and
might affect Priceline’s profit. Additionally, Priceline
has launched a list-price channel allowing customers
to buy items directly without bidding. These changes
motivate the following questions: Is a single-bid sce-
nario better than a double-bid scenario? What are the
consumers’ behaviors in single-bid and double-bid
scenarios? What are the optimal reserve prices in the
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above scenarios? What is the impact of dual-channel
on optimal reserve prices?

Existing research on NYOP auctions is recent and
relatively limited. Hann and Terwiesch (2003) study
consumer behavior in NYOP auctions. The bidders
are allowed to submit bids repeatedly; however,
by doing so, substantial frictional costs occur. Hann
and Terwiesch (2003) show that consumers might
have lower frictional costs by learning from previous
bidding experiences. Terwiesch et al. (2005) provide
dynamic programming models to identify the optimal
bidding strategy for consumers who might submit
multiple bids, but incur more haggling costs if they
continue to bid after losing their initial bids. Terwiesch
et al. (2005) obtain an optimal number of bids and the
corresponding values for consumers and further sug-
gest an optimal reserve price. The optimal reserve price
is constant, which is supported by collected data and is
also adopted in our model. Terwiesch et al. (2005) show
that a haggling model may be better than a list-price
model if the consumers are rather heterogeneous.

Fay (2004) studies a partial double-bid scenario in a
slightly different NYOP. In the model, the seller an-
nounces a higher reserve price and then a lower
reserve price to the consumers in sequential selling;
however, the number of items for sale is determined
by nature. The consumers can submit the second bid if
they lose the first sale. Fay (2004) suggests that a
partial double-bid could be better than a single-bid for
the retailer although the result is conditional on some
restriction. In his model, a list-price is better than an
NYOP for the retailer; however, as explained by the
author, an NYOP has its advantages, e.g., the retailer
might collect more information about the consumer
demand and it might appeal to a “segment that
receives a psychological benefit.”

In a model to find the haggling cost for consumers,
Spann et al. (2004) allow repeat bidding in the NYOP
channel. With unlimited inventory capacity, they sug-
gest that repeated bidding can be better than single
bidding for the seller. In an experimental work, Spann
et al. (2005) assume that “consumers are often uncer-
tain about their exact valuations of a particular
product.” Given that only one bid is allowed, con-
sumers can exchange the information of how much
they wish to bid with other bidders in three different
experimental designs: name-your-price, select-your-
price low range, and select-your-price high range.
Consumers then predict the optimal bid based on the
price elicitation. Spann et al. (2005) suggest that
the form of price elicitation has a significant impact
on the seller’s profit. Chernev (2003) also explores the
price elicitation in reserve pricing by showing that
select-your-price might be better than name-your-
price in several experiments because, as he explains
from a psychologic perspective, the name-your-price

approach “is likely to be associated with a greater
degree of uncertainty and cognitive effort.” Based on
the data of NYOP for airline tickets, Spann and Tellis
(2006) classify the consumers’ bidding into different
patterns. In a model that the consumers can revise
their bids based on the winning probability function
provided by the retailer, Wilson and Zhang (2008)
show that there exists an e-optimal solution for the
retailer to design the winning probability function.

While the literature has been focused on a single
NYOP channel, few have studied the coexistence of an
NYOP channel and list-price channels. Ding et al.
(2005) study a Priceline-like reverse auction by as-
suming that consumers might buy from list-price
market, if they fail to win in the NYOP channel. Ding
et al. (2005) suggest that bidders are emotional because
they will feel excited when winning and frustrated
when losing. Thus, a consumer incurs an emotional
utility, in addition to a simplified monetary utility, that
is linear to the difference between the bid and the list-
price. Wang et al. (2005) assume that a bidder’s valu-
ation is discounted due to the opacity of the NYOP
channel, which allows a single-bid. It is the seller’s task
to optimize the opacity in the NYOP channel. Note that
the opacity is identical for every customer once the
seller determines the optimal level. The service pro-
vider in their model is a monopolist, such that all
unsatisfied bidders buy from his/her own direct list-
price market. However, due to their special focuses,
Ding et al. (2005) and Wang et al. (2005) do not explic-
itly consider the double-bid scenario. Other work on
multi-channel supply chains (Cai et al. 2009, Caldentey
and Vulcano 2007, Chen et al. 2007, Chiang et al. 2003,
Etzion et al. 2006, Tsay and Agrawal 2004, van Ryzin
and Vulcano 2004, Zhao 2008) and auctions (Cai and
Wurman 2005, Chen et al. 2008, Rothkopf and
Whinston 2007, Shen and Su 2007) does not consider
NYOP auctions.

In this paper we study the optimal reserve prices in a
variety of situations, including different combinations
of single-channel, dual-channel, single-bid, double-bid,
abundant inventory capacity, and constrained inven-
tory capacity in the NYOP channel. We show that
a double-bid scenario can outperform a single-bid
scenario in both single-channel and dual-channel sit-
uations. The optimal reserve price in the double-bid
scenario is no less than that in the single-bid case. The
addition of a retailer-own list-price channel could push
up the reserve prices in both single-bid and double-bid
scenarios. We obtain the conditions where the double-
bid is a better choice for the retailer than the single-bid.
We further suggest that the double-bid may become
more significant if it can attract more consumers in a
dual-channel environment.

The remainder of this paper is organized as follows.
In Section 2, we present the model. In Section 3, we
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describe the single-bid scenario. We study the double-
bid scenario and compare it with the single-bid
scenario in Section 4. Research conclusions are pre-
sented in Section 5, and all proofs are relegated to the
Appendix.

2. The Model

The following notation is used in the subsequent

analysis:

Qo capacity quote for the NYOP auctions by
either the supplier or the retailer

X a random consumer’s bid, including the
premium charged by the retailer

B list-price from either the retailer or
competitors

0 consumer preference of shopping directly

from the list-price channel

[c,d]l domain of 0

[2,B] domain of a consumer’s belief in winning
an NYOP auction by bidding x

C total cost of a customer when purchasing
an item

R reserve price that the retailer sets for a specific
item in the NYOP channel

w wholesale price to the retailer from a specific
supplier

Cr fixed cost of adding a list-price channel to the
existing NYOP channel

A ratio of customers who fail in NYOP buy from

the NYOP-retailer-own list-price channel

We consider both single-channel and dual-channel
market configurations, as illustrated in Figure 1. In the
first market configuration, the retailer only offers
NYOP auctions to the consumers, who will buy from
other competitors’ list-price channel(s) if they fail to
win in the auctions. In the second market configura-
tion, the retailer provides an NYOP channel along
with a list-price channel. Among these consumers
who do not win from the NYOP channel, we assume

Figure1 Market Configurations of the Retailer’s Single-Channel and Dual-

Channel Scenarios
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that a percentage, 4,0 < 1 <1, of them buy directly
from the NYOP-retailer-own list-price channel while
the remaining 1 — 2 of them buy from other compet-
itors. Both market configurations have been observed
in Priceline.com history. In line with Fay (2004) and
without loss of generality, the total number of con-
sumers, regardless of whether they win in NYOP
auctions or not, is normalized to 1.

Suppose the consumer has a winning probability of
F(x), called belief probability, if the consumer bids x.
The support of F(x) is on the interval [a, B]. This win-
ning probability is similar to the distribution function
for a threshold price in Fay (2004), Hann and Terwi-
esch (2003), Terwiesch et al. (2005), and has been seen
in practice by some NYOP retailers, such as Price-
line.com (Allbusiness.com 1999). Let f(x) be the
corresponding probability density function (PDF).

The retailer and the supplier have agreed on a fixed
wholesale price, as reported by Segan (2005). Let w
denote the wholesale price, and to simplify the dis-
cussion, we assume that w has absorbed other
variable costs to the retailer. We normalize the fixed
cost of the NYOP channel to 0, but let C; denote the
fixed cost to the retailer for adding the list-price chan-
nel to the existing NYOP channel.

Clearly, the consumer has no information about
the reserve price R, which is set by the retailer in ad-
vance (Hann and Terwiesch 2003). In other words, the
consumer’s belief of the winning probability is inde-
pendent of the actual reserve price R. For the retailer,
if x<R, the bid is rejected; otherwise, the bid is
accepted. We assume that R remains the same for a
specific item during the auction. This assumption is
consistent with realistic data, see Hann and Terwiesch
(2003), Spann et al. (2004), and Terwiesch et al. (2005).
To avoid triviality, we assume that max{a,w} <
R <B.

The NYOP auctions have opaque prices. According
to Segan (2005), the retailer treats its customers as
price-sensitive travelers who are willing to give up
some convenience for a lower price. For example,
consumers do not know exactly what hotel or location
for which they are bidding. Different consumers have
heterogeneous preferences toward these opaque fares.
Let © be the preference of an arbitrary consumer
toward the list-price channel, which is a random vari-
able. When ® = 0, then 0 is the disutility incurred by
the consumer for losing the convenience when win-
ning the item from the NYOP. Assume that the
consumer preference ® is uniformly distributed on
an interval [c,d]. Typically ¢ > 0, which means that
consumers prefer the list-price to the NYOP in gen-
eral, if the price is the same in both channels. The list-
price is denoted by B and is assumed to be the same in
both the NYOP-retailer-own list-price channel and
the competitors’ list-price channels, which can be
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observed on Priceline and other list-price competitors,
e.g., Hotels.com.

We investigate two scenarios. The first one is called
single-bid scenario, in which all consumers can bid
only once in the NYOP. The second is called double-bid
scenario, in which all consumers can bid twice in the
NYOP. Current practice on Priceline is widely con-
sidered as a single-bid scenario, while a scenario of
multiple (more than two) bids was abandoned by
Priceline several years ago. However, it remains
arguable whether the retailer should allow one more
bid in the NYOP auction since the consumers could
still bid a second time by using a different user name,
changing the credit card number, and so on. Similar to
Fay (2004), we compare these two scenarios but in a
different context.

In addition to the study of the abundant capacity
case, we consider the impact of an inventory capacity
quote Qp on the NYOP channel. This capacity quote
may be enforced by either the supplier, due to the low
price caused by the opacity, or by the retailer to max-
imize the profit. Note that Q, is the normalized
capacity, not the real capacity, since the number of
customers has been normalized to 1.

3. A Single-Bid Scenario

In line with other work (Caldentey and Vulcano 2007,
Etzion et al. 2006) on multi-channel marketing, we
assume that a particular consumer first bids in the
NYOP auction and then buys directly from the list-
price channel if he/she fails in the NYOP auction.
Since the consumer has only one chance to win in the
NYOP auction, to minimize the total expected cost
(Wilson and Zhang 2008), we have

min, C(0) = F(x)(x + 0) + (1 — F(x))B 1)
s.t. a<x<B.
Substituting F by the uniform distribution and opti-
mizing the above equation without considering the
constraint yields

., B—0+a
e @
Clearly, the optimal bid increases in B and a but
decreases in 0. The existence of x* requires a < x* < B
which is equivalent to a — B < 0 < B —a. The case of
a—B <0 is trivial, since a—B <0 <c. Consider
0 < B —a. If a consumer’s preference to the list-price
is larger than B —a, the consumer does not bid on
NYOP. This assumption can be supported by the fact
that people still buy flight tickets directly from major
airlines, opposed to the NYOP auctions on Priceline,
because they strongly prefer exact flight times and
specific airlines. Excluding such consumers, we can
without loss of generality assume B —a > d. That is to

say, if a bidder is willing to bid a at NYOP, his/her
preference to the list-price channel should not be
larger than d. We utilize this condition throughout this
paper. Thus, Equation (1) holds with the constraint.
The consumer demand to the NYOP channel,
Dnyop can be described by comparing the consumers’
optimal bids with the reserve price as follows:

Dnyop =Pr(x* > R) = P(® < B +a — 2R)

1, ifR e {wVa,La_d);

2
B+a—2R—-c¢c . B+a—d B+a—c
0, ifRe(%va},

where V is a maximization notation exemplified by
w Va=max{w,a}. The demand is constrained by w,
because it is subject to R > w. We first explain the
second case where R € [BH=4 v o BH=C] A consumer
wins an item if his/her bid is higher than the reserve
price, ie, x*= B‘T‘“’” > R, which is equivalent to
0 < B+a—2R. Hence, the portion of all consumers
who eventually win items is given by 24-2R=¢ The
expected number of customers who qualified as the
second case can be expressed as Bti-2R-c_—
Bta—c_ _Z R, which is a linear demand function with
respect to R. In this sense, the maximal market size of
NYOP is given by £+2=¢ and -2 is the decreasing rate
in terms of the reserve price. For the first case where
R € [wVa,B4=9) given that wVa<B2=2 all consu-
mers win in NYOP auctions. In fact, if R* <B+T"‘d, there
will be multiple optimal reserve prices such that any
value in [wVa,B4=9) is an optimal reserve price,
because Dyyop=1. Given that a <=4 conditional
on B—a>d, this case can occur if w<B+THl. If
wVa>B=4 this case is suppressed. For the third
case where R € (4= B], no consumer can win in
NYOP auctions because the reserve price is too high.
Similarly, there are multiple optimal reserve prices
such that any value in (B#=¢Vvw,B] is an optimal
reserve price if R*>5H=v w. This case must occur
if w>84=¢ Thus, the situation of multiple optimal
reserve prices occurs when R is too small or too big,
because the retailer’s profit function becomes inde-
pendent of the reserve price. To be concise, in the
sequel we ignore the multiplicity of the optimal
reserve prices in the first and third cases.

3.1. The Abundant Capacity Case

Abundant capacity is a special case in which the
NYOP channel has sufficient items. This situation
might occur such as in off seasons when the consumer
demand is weak.
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3.1.1. Single-Channel: NYOP Only. The case where
the retailer has a single channel and abundant
inventory capacity can be considered as a benchmark
situation because of its simplicity. We first consider the
case that w<BH=4 If the retailer sets R<24=2, then
every bid is higher than the reserve price, the expected

1
profit from each bid is BH%M, and the retailer’s
expected profit is given by
1
B+a—=(c+4d)
I(R) = + —w.

The above II(R) is independent of R. Otherwise if
R > B2=4, the retailer’s expected profit is given by

B+a—c
B+a—2R—c|[—5 — TR
M(R) = = 2 —w

The above II(R) is concave in R, and the optimal
solution is given by R* = w. Since this result is ob-
tained conditional on w<Z4-4 so any value in
[w, B+2=4) including R* = w can be an optimal reserve
price. If w > 8= since the case of R<BH= s
suppressed, the retailer can set R* = w. Nevertheless,
w is an optimal reserve price for all situations. This
result is intuitive because every qualified bid
generates a positive profit for the retailer due to
abundant capacity.

3.1.2. Dual-Channel: NYOP and List-Price. After
the retailer adds a list-price channel, the optimal
reserve price will change since some consumers who
do not win in the NYOP channel will purchase
directly from the list-price channel. We summarize the
observations in the following proposition.

ProrosiTioN 3.1. In the single-bid dual-channel scenario
with abundant capacity, R* = w, where w = w + A(B — w).

Owing to the existence of a retailer-own list-price
channel, the retailer sets a higher reserve price. The
higher the portion of consumers who would purchase
from the list-price channel, the higher the optimal
reserve price. The value of A(B —w) is the expected
profit from a customer whose bid is rejected from the
NYOP auction. Since the retailer has abundant items,
the retailer will not sell any item at a price below
W =w+ A(B —w) in the NYOP channel. Indeed, we
can regard W as the opportunity cost to the retailer for
selling an item in the NYOP channel in a single-bid
dual-channel scenario.

3.2. The Constrained Capacity Case

3.2.1. Single-Channel: NYOP Only. The number
of total transactions in the constrained capacity case

is min{842R= ()} given that (B+a—d)/2 <R <

(B+a—c)/2. If %<Q0, the situation is

equivalent to the abundant capacity case. However,
Bta—c

if Qo <B2R-¢ we have II(R) :QO( = *R_w)

Hence, the optimal reserve price increases until it
touches the upper boundary. Comparing the con-
strained capacity case with the abundant capacity
case, we obtain the following result.

ProrosiTioN 3.2. In the single-bid single-channel scenario
with constrained capacity, if w < w, then
R* = B0 operpise, R* = w.

To explain Proposition 3.2 more intuitively, we
illustrate the relation between II and R in Figure 2.

The concave quadratic curve is associated with the
abundant capacity case given that (B+a—d)/2 <
R< (B+a—c)/2. The case of w>B+”_C+M_C) is
associated with Line 1 in Figure 2, and the case
of w< w is associated with Line 2. If

>, Lines 1 and 2 meet at R = w. From

w— B+a7C72Q0(d7c
w= w, we obtain

MR = Qo 2w, 0
where

C_SS:B+a—c—2w
0 d—c

The superscript SS represents single-bid single-
channel. We refer to Qf as the critical abundant ca-
pacity value throughout this paper. If the retailer has
more inventory than the critical point (e.g., Line 1 in
Figure 2), the retailer will set R* = w; otherwise (e.g.,
Line 2 in Fifgure 2), the retailer will set
R* — B+a7c72Q0(dfc

Figure2 Relation Between IT and R in a Single-Bid Scenario Single-
Channel Scenario with Constrained Capacity

TI(R) Bta—c p

n@zgei7—~w>

Afor Line 1 and Line 2)
e
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3.2.2. Dual-Channel: NYOP and List-Price. Similar
to the dual-channel scenario with abundant capacity,
unsatisfied customers from the NYOP auctions might
switch to buy directly from the list-price channel. We
have the following result.

ProrositioN 3.3. In the single-bid dual-channel scenario
with constrained capacity, if w < J[B+a —c — Qo(d —c)],
R*—= B+a7c72QO(d7c)

(B—w).

Compare Proposition 3.3 with Proposition 3.2. The
optimal reserve price is higher in the dual-channel
scenario than in the single-channel scenario, if
min{@,w} >1B+a—c— Qy(d —c)] or equivalently
Qo is big. If Qp is small such that max{w,w} <
3B+a—c—Qo(d—c)], the optimal reserve prices
are the same in both single-channel and dual-chan-
nel scenarios. Different from the abundant capacity
case in Proposition 3.1, the optimal reserve price is
determined by not only consumer preference to the
list-price, but also the inventory capacity and ratio of
unsatisfied consumers from the NYOP channel to
buy from the retailer-own list-price channel.

Solving ~ w+ A(B—w)=3B+a—c—Qo(d—0),
we obtain the critical abundant capacity value

- otherwise, R*=w, where w=w+ .

csp _B+a—c—2(w+ A(B—w))
o d—c ’

The superscript SD represents single-bid dual-
channel. We can infer that the higher /, the lower

Bta—c

Q575P. We define 5P = 2 When 1> 5P we
have Q5~°P < 0. At this point, the retailer sets R* =
w + A(B —w) and has no intention to sell products
through the NYOP channel, but rather uses the
NYOP as a mechanism to attract customers to buy
from the retailer-own list-price channel. Whether to
keep the NYOP channel or not will depend on
whether it can attract customers to the retailer’s store.

Comparing the dual-channel scenario with the
single-channel scenario, we find that QB‘SD < QB‘SS,
which suggests that the dual-channel retailer might
want to limit the sale in the NYOP channel so as to
obtain more profit from the list-price channel. In
either scenario, the stronger consumer preference to
the list-price, the smaller Qf. If Qp>Q5 5%, then
the optimal reserve price, i.e,, R* =w+ A(B —w), is
higher in the dual-channel than that, i.e., R* = w, in
the single-channel scenario. With a higher reserve
price, the retailer can drive some consumers with
low bids to buy from the retailer-own list-price
channel. Otherwise if Q0<Q6‘5D, then the optimal
reserve price is the same, i.e., R* = Bra—c—Qold=c)

w

9, for
both the single-channel and dual-channel scenarios.
In both scenarios, the weaker the consumer pre-

ference to list-price, the higher the optimal reserve
price in the NYOP channel.

4. A Double-Bid Scenario

In this section we investigate the benefits of allowing
the second bid. When focusing on a double-bid
scenario similar to Fay (2004) and Spann et al
(2004), we introduce a different double-bid model.
In our model, the consumer chooses an optimal bid x*
for the first bid, and then adds a A dollar value to the
second bid if the first bid fails. This schema is consis-
tent with the recommendation by Segan (2005), who
suggests that the consumer can add US$5 to the previ-
ous bid, in addition to adding a new zone in rebid-
ding a hotel on Priceline. This might also be close to
real situations, in which consumers might determine
how much more to rebid based on the initial bid,
rather than re-compute the optimal bid. In line with
the literature, such as Spann et al. (2004), we assume
that the consumers are rebidding on the same item
and their preferences remain the same during the
bidding. The consumer’s initial belief about the win-
ning probability of bidding x is the same as in the
single-bid scenario; however, the consumer will
update the belief if the consumer fails to win with
the initial bid. We denote the new belief CDF by F,
and the corresponding PDF by f,. Thus,

x+A-x A
~ B—-x B-x’

Fo(x + A)

and

Rl a) =

The consumer aims to minimize the cost, given that
the consumer will switch to buy from the list-price
channel if he/she fails both bids. The objective
function is

r;liAn C(0) =F(x)(x+0) 4+ (1 — F(x))

[Fa(x +A)(x + A+ 0) (4)
+ (1 — Fy(x 4+ A))B],

where the first term is the expected cost of winning
the item at x, and the second term is the expected cost
of not winning the first bid but winning the second
bid, or buying from the list-price channel after failing
both bids. The optimal double-bid strategy is given as
follows.

ProrosiTioN 4.1. In the double-bid scenario, the optimal
initial bid for the consumer is

_B+a-0-A
=

*
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and the optimal second bid is x* + A", where
A*=1(B-a-0).

As compared with the single-bid scenario, a con-
sumer first bids A" /2 lower and then bids A*/2 higher
than the optimal bid in the single-bid scenario. Fur-
thermore, substituting the optimal bids into the
objective function, we can show that a double-bid
scenario is a better choice for the consumer as long as
A* <3(B — a — 0), which is true in Proposition 4.1. Thus,
everything else being equal, a double-bid scenario
could save costs for the consumers. As a result, a
double-bid scenario can be more attractive than the
single-bid scenario to the consumers.

4.1. Single-Channel: NYOP only

The retailer accepts bids higher than the reserve price;
hence, in the consumer’s optimal bidding strategy, the
first bid is accepted if and only if 0 < B+2a —3R. As
for the second bid, x* + A" = Bt=I+A > R 5 equiva-
lent to 0 < B+ 12 —3R. For a glven R, we must have
B+2a—-3R<B+ 2‘1 — %R. Based on the consumer
preference boundary values, we may divide con-
sumers into the following categories. To avoid
overlapping in the following cases, we assume that
B —a<2d —c. This assumption is consistent with the
fact that consumer preference toward Priceline’s
NYOP auction is quite diversified such that d could
be a value close to B and c could be a value close to 0.
This is further supported by the observation that some
customers never shop in the NYOP channel even if
Priceline promises up to 50% off the regular price in
the NYOP channel.

Case 1: d < B+2a—3R, equivalently R < Ry = B+2=4
In this case consumers very weakly prefer the hst—
price channel, and every customer wins an item from
the NYOP channel with the first bid.

Case 2: ¢ < B+2a—3R <d < B+ 1a—3R, equivalently
R3<R <Ry =242 In this case the consumers
weakly prefer the list-price channel, and every custo-
mer wins an item from the NYOP channel with either
the first or second bid.

Case 3: ¢ < B+ 2a — 3R < B+ — 3R < d, equivalently
R4 <R < Rs =B+2=¢ In this case the consumers fairly
prefer the 11st-pr1ce channel, and some customers win
items from the NYOP channel with either the first or
second bid.

Case 4: B+2a—3R<c<B+ %11 — %R, equivalently
Rs<R < Re =2%4=% In this case the consumers
strongly prefer the list-price channel, and thus every

customer’s first bid is rejected while some second bids
are accepted.

Case 5: B+ 2a — 7R<c or R>Rg. In this case the
consumers very strongly prefer the list-price channel,
and no customer wins from the NYOP channel.

The above cases are illustrated in Scenario A of
Figure 3. Note that Scenario A is for the abundant
capacity case, while Scenarios B, C, and D are for the
constrained capacity case. Notation of Q; and Q, is
further described in Equations (6) and (7).

To obtain tractability, we assume that the first bid
has priority over the second bid to be satisfied in this
double-bid scenario. Although it is reasonable for the
retailer to sell items to higher bids, this assumption
can be considered as a tie-breaking rule. This rule has
been adopted in some online auction web sites, e.g.,
uBid.com, to encourage consumers to bid early. Let D,
and D, be the demand to the NYOP channel from the
first and second bids, respectively.

D; =P{x* >R} = p{w > R}

=P{0 < B +2a — 3R},
D; =P{x" + A" > R} — P{x" > R}.

For the above Cases 1-5, we have

1, ifR e w\/cyw);
L 3
B _13R — r _ _
+2a — 3R c’ R e B+ 2a de’ZBJra Zd;
d—c I 3 3
D, = B+2uf3Rfc’ $R e ZB+u72de’B+2u7c :
d—c I 3 3
0, R e B+2a—c\/w723+a—2c :
i 3 3
0, ifRe{w\/w,B}
0, ifRe{wv:z.,BLa_d);
3
17B+2L173Rfc7 R e B+2afd\/w723+a72d :
d—c 3 3
J(R-a)
2\ 2B +a—2d B+2a—c¢
D, = ;
D i_c R€|: 3 Vw, 3 ]
1 3
B+-a—-R-c B
2 2 . +2a—c 2B+a—2c
i ¢ , 1 G{ 3 Vw, 3 ;
0, ifRe{w\/w,B}

Similar to the single-bid scenario, there will be
multiple optimal reserve prices if w>2B+=2 For the
same reason, we skip the discussion on the multiplic-
ity of the optimal reserve prices.
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Figure3 Case Categories in Terms of Reserve Price and Resource Capacity When ﬁ, < ﬂz

—c— _ 2B+a—-2c-2Q (d—-c)
Scenario A = M Rzz—l)
3 3
R3=B+2a—d R4=2B+a—2d R, B+2a-c R, 2B+a-2c
; 3 3 3 3
Case 1 , Case2 . Case 3 . Case 4 , Case 5
| ' ] | =
R, R, R, R
CSeenario B:0,<0,
cenario B: Q< Q, R, R,
R ! q i i >
Ry R, Rs R
Case 1Q Case 2Q Case 3Q
Scenario C: Q_1 <0,<0
R, R,
[ [ >
R i ' ' i >
R, R, R R,
Case 1Q Case 2Q Case 3Q
Scenario D: Q0> Q R R,
[ | >
R i ' ' I >
R, R, Rs Re
Case 1Q Case 2Q Case 3Q
= B—a-c 2d+a-B-c
R,=R.)= =
(R, =Ry) 2d—0) O,(R,=R)= .

For the abundant capacity case, we have the fol-
lowing observation.

ProrosiTioN 4.2. In the double-bid single-channel scenario
with abundant capacity, the optimal reserve price is given by

. 2d+9a+c—3B 2B+a—2d
fo<—————, Rr="T— =
6 3
if2d+9a+c_33§w§B+2a_c, R*:B+2a—c7
6 3 3
ifw>w, R* =w.
3
(5)

Proposition 4.2 is conditional on 28-22=38 > 0 How-
ever, if 20890t¢=38 <, Equation (5) can be rewritten as
R* = max{¥2=¢ w}. Overall, Proposition 4.2 shows
that the optimal reserve price is increasing step-wisely
with respect to the wholesale price. As compared with
Proposition 3.1, Proposition 4.2 shows that the
optimal reserve price in the double-bid scenario is
higher than that in the single-bid scenario if 8:2=¢>w.
This occurs because the retailer wants to avoid some
extremely low bids because of a more lenient policy.

We now consider the constrained capacity case. If

Qo < B+2a 3R ~ je, R<Ry M the limited

capacity can only satisfy partial demand of the first

bids. If Qg < , 1.e., R<Rp MLSZQ"H,
the limited capac1ty can only satisfy partial demand of
the second bids. R; and R, are illustrated in Scenarios
B, C, and D of Figure 3. Comparing R;, R, with R3, Ry,
Rs, Rg, we can infer that R, will be between R3 and Rs,
and R, will be between R; and Rg. However, the rel-
ative positions between R; and R4 and between R; and
Rs are determined by the capacity level Q). Let
R, = Rs5, we obtain

BJr;ﬂ gR c

A B—a-c
Qi = 20 —c) (6)
Similarly letting R, = R, gives us
~ 2d+a-B-c
N ?)

We categorize Qp into different scenarios as illus-
trated in Figure 3 when Q1<Q2 In Scenario B, Qg
satisfies all first bids in Case 3 and all second bids in
Case 4. If Qp increases, R; and R, move up to Case 3 in
Scenario C and then to Case 2 and Case 3, respectively,
in Scenario D. We analyze the above situations in
more detail and obtain the following proposition.
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double-bid

capacity,
,w}; otherwise,

ProrosrioN  4.3. In  the

scenario  with  constrained
R* — max{23+u72c;2Qo(d7c)

single-channel

lf QO<Q1/

9a — 3B +c+2d—2(1—Qo)(d—c)

ifw< G
if9a73B+c+2d22(1fQo)(dfc) cw
. B+2a—c

fw>——7—,

3

Comparing Proposition 4.3 with Proposition 4.2
shows that the optimal reserve price is set to
the wholesale price if the wholesale price is high.
If the wholesale price is low such that
< 2Bt 20 Q)@Y he retailer will use a higher
reserve price than that in the abundant capacity case
as shown in Proposition 4.2. We partially demonstrate
Propositions 4.2 and 4.3 in the following example.

ExamPLE 1. Suppose that the constrained capacity
Qo=0.6. The list-price is B=100. The consumer
preference is on [c,d] =[0,60]. The winning prob-
ability is on [, B] = [35,100]. The wholesale price is
w = 20. Hence, we obtain Q; = 54.17 and Q, =91. .67
and it is belonging to Scenario C, i.e., Q1 <Q0<Q2
Two curves of Cases 1-4 and 1Q-3Q as shown in the
proofs of Propositions 4.2 and 4.3 for a double-bid
situation can be described in Figure 4. The optimal
reserve price is given by Rs =56.67. The correspond-
ing profit is I1},,4,_gis = 25.73. In contrast, for the
single-bid scenario, the optimal reserve price is given
by R*=495 and the optimal profit is
Mg, 0e_pig = 23.1. This empirically shows that the
douﬁle—b1d can outperform the single-bid, i.e., the
retailer’s profit is higher in the double-bid case.

Figure4 Relation BetweAen I ang R in a Double-Bid Single-Channel
Scenario with @;< 0y <0,

IT Ry R,

20 HCa.ses 1-5

Heuses 10-30

20 40 60 80

We now consider the special case that QO<Q1 and
w is small enough such that 22209 jg he
global optimal reserve price. We can prove that

2B +a —2c —2Qy(d —¢)

R* =
3 )
B+2a—c R*_B+207C
3 B S
R* =w.

2B+a—2c—2Qp(d—c) > B+a—c—Qp(d—c)
3 = 2

given that B—a >d.
Thus, the optimal reserve price is more likely to be
higher in the double-bid scenario than in the single-
bid scenario. This occurs especially when Qp is small
and the retailer wants to avoid selling the products to
low bids. In this special case, the optimal profit is
given by

I1(R")

B+la+§(23+a—2c—2Qo(d—c)) .
2 2 3
= Qo —w

Taking the first-order derivative on TT(R*) with
respect to Qp yields the critical abundant capacity
value,

0 2(d —c)

The superscript DS represents double-bid single-
channel. Comparing this profit with the profit of
the single-bid scenario when Qy<Q5™>°, we have

d—c) 2(B
HDouble Bid HSmgle Bid — QO( C)(u QO) >0 glven
that Qy < Q, < ﬂ Thus, we obtain the following
result.

ProrosiTioN 4.4. In the single-channel scenario, if Qp<
min{Q5 05, Q555,Q,}, then the double-bid scenario
outperforms the single-bid scenario, i.e., the retailer receives
higher profit when offering two bidding options.

Proposition 4.4 indicates that if the inventory
capacity is small satisfying the above condition,
the double-bid is a better policy than the single-bid.
The intuition lies in the consumer behavior difference
in the single-bid and double-bid scenarios. Because
the consumers’ second bids in the double-bid scenario
are higher than the bids in the single-bid scenario,
the retailer can design a higher reserve price in the
double-bid scenario to reject the first bids and accept
the second bids instead. This is supported by the
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Figure5 The Optimal Profit Comparison Between Single-Bid and Double-
Bid in Terms of @, with w = 10

" (Qp)
40
30 Double-Bid
20 Single-Bid
10
w=10
: : - : —
02 0.4 0.6 058 ;0

comparison of the optimal reserve prices in those two
scenarios. The following is true:

B—a—c—Qyd-c)

* * o
Rpoupte—Bid — Rsingle—pia = 6 >0

as long as Qp < B;fgc, which holds given that Qp < Ql =
B—a—c
2(d—c)"

It is worth noting that Proposition 4.4 is indepen-
dent of the previous assumption that the first bids
have the priority. As we show in the proof of
Proposition 4.3, Qo< min{Q5 "% Q555 Q,} corre-
sponds to the case that all first bids are rejected and
some second bids are accepted; thus, Proposition 4.4
is robust against the first-bid priority.

The computational complexity of cases that Qy> Q,
prevents us from obtaining meaningful analytic re-
sults. Instead, we numerically compare the optimal
profits in the single-bid and double-bid scenarios as
illustrated in Figures 5 and 6. The market configura-
tion is the same as in Example 1, except that the
wholesale price is changed to w =10 and 40, respec-
tively, in two separate cases. Figures 5 and 6 further
support Proposition 4.4, which states that the double-
bid scenario outperforms the single-bid scenario when
Qo is small regardless of the value of the wholesale
price. However, Figure 5 illustrates that if the whole-
sale price is low, i.e.,, w =10, the single-bid scenario

A<9a—3B+C+2d—2(1—Q0)(d—c)

<<

if w G ,
98— 3B+c+2d—2(1-Qo)(d—¢)
6
..~ B4+2a—c
1fw>f,

outperforms the double-bid scenario when Qy is big,
e.g., Qo> 0.65 approximately in this example. This oc-
curs because when @, is big, the retailer needs

Figure6 The Optimal Profit Comparison Between Single-Bid and Double-
Bid in Terms of @, with w = 40

" (Qp)
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10 : ,
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5
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w=140
- - - - = Q
02 0.4 0.6 0.8 P

to sell more opaque products, and the low wholesale
price provides enough cushion for the retailer to
lower the reserve price in the double-bid scenario
to catch some first bids. But, by doing so, the retailer
loses some profits due to those first bids as compared
with that in the single-bid scenario. If the wholesale
price is higher, ie., w =40, the double-bid scenario
outperforms the single-bid scenario for all values of
Qo. A high wholesale price does not give much flex-
ibility for both single-bid and double-bid scenarios.
As shown in Propositions 3.2 and 4.3, the optimal
reserve price becomes close to the wholesale price
especially when Qg grows big. In this situation, the
double-bid scenario has an advantage over the single-
bid scenario; since more first bids fail due to the high
wholesale price and corresponding high reserve price,
the retailer benefits from more second bids.

4.2. Dual-Channel: NYOP and List-Price

In the dual-channel scenario, a portion of unsatisfied
bidders switch to buy from the retailer-own list-price
channel. Similarly to the single-channel situation, we
have the following result.

ProrosiTioN 4.5. In the double-bid dual-channel scenario

with constrained capacity, if Qo<Q,, then R*=
max{w, W}; otherwise,

~ 2B+4a—2c—2Qo(d —c)

R*
3 )
B+42a—c R*_B-FZLI—C
3 - 3
R* =w,

where W = w + A(B — w).
Conclusion from Proposition 4.5 is similar to Prop-
osition 4.3, except that w = w + A(B — w)>w as long
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as A>0. The retailer will more likely charge a higher
reserve price. The higher the percentage of consumers
that switch to the retailer-own list-price channel, the
higher the optimal reserve price.

Similar to the single-channel scenario when Qp < Ql
and @ is small enough such that 2Bra-2e 20(0=0) §g the
global optimal reserve price, the optimal profit is
given by

B+%a+g(23+a720;2(20(d7c)) .
I(R") =Qo 3 —w

+ /’{(1 — QO)(B - w) — Cf

Taking the first-order derivative on IT(R*) with re-
spect to Qg yields the critical abundant capacity value,

cpp _2B+a—2c—30
0 2d—c)

where the superscript DD represents double-bid dual-
channel. We summarize the critical abundant capacity
values in Table 1. We have Q5 PP < Q5 P°, which
suggests that the dual-channel retailer is more moti-
vated than in the single-channel scenario, to drive

some NYOP customers to buy from the retailer-own
2B+a—2c
list-price channel. We define 1°P = ﬁw. When

J.> PP we have QB‘DD < 0, where similar to that
in the single-bid scenario, the retailer will charge a
reserve price at w+A(B —w) with no intention to sell
products through the NYOP channel. Rather the re-
tailer uses the NYOP as a mechanism to attract
customers to buy from the retailer-own list-price
channel. In addition, we can show that PP — J°P =
Boi=¢> 0, which indicates that the retailer may be more
willing to sell through the NYOP channel in the dou-
ble-bid scenario than in the single-bid scenario when
/ is a high value.

Similar to Proposition 4.4, we have the following
result.

ProrosiTioN  4.6. In thg dual-channel  scenario, if
Qo< min{Q5 PP, Q575P,Q,}, then the double-bid scenar-
io outperforms the single-bid scenario.

Owing to our special focus on finding the optimal
reserve prices, the dual-channel advantage will
largely depend on the cost structure by adding a

Table 1 Critical Abundant Capacity Values @

Single-bid Double-bid
Single-channel W 254;7;7306314/
Dual-channel Brac-2wi(b-w) %W

list-price channel. Here we use the following example
to partially illustrate the above discussion.

ExampLE 2. We continue from Example 1. Suppose that
w =40 and C;=500. Since R5=56.67>40=w, R* =
56.67 in the single-channel scenario. In the dual-
channel situation, we first assume that the portion of
unsatisfied customers from the NYOP auctions to the
retailer-own list-price channel is given by 12 =0.2. We
have @ =w + A(B — w) = 52<56.67 = R5, and hence
the optimal price continues to be R* = Rs and II(R)" =
15.40. However, if 1=03, we have w =58>
56.67 = Rs, and thus, the new optimal reserve price
becomes R* =@ =58 and II(R)" = 18.17. In the sin-
gle-channel scenario, TI(R)" =16.50. So, the single-
channel scenario outperforms the dual-channel
scenario if A = 0.2; however, the dual-channel scenario
outperforms the single-channel scenario if 1=0.3.
This implies that it is important for the retailer to re-
tain the unsatisfied customers from the NYOP
auctions so they will purchase from the retailer-own
list-price channel. On the other hand, given that 1 is
constant, it is a plausible approach to attract more
customers to the retailer-own list-price channel via
NYOP auctions. Thus, the double-bid policy may
become more significant if it can attract more cus-
tomers to the retailer-own list-price channel.

5. Conclusion

This paper evaluates the optimal reserve prices in the
NYOP channel with bidding options in the presence
of list-price channels. We investigate a single-bid
scenario and a double-bid scenario, in which the con-
sumers can bid twice in the NYOP channel, and
provide insights into whether the double-bid scenario
can outperform the single-bid scenario. We also study
the impact of adding a retailer-own list-price channel
on the optimal reserve prices. The analysis of this paper
may facilitate the understanding of determining the
optimal reserve price in a variety of situations and help
retailers further revise their operation mechanism.

In both the single-bid and double-bid scenarios, the
optimal reserve price is higher when the inventory
capacity is limited than when the inventory capacity is
abundant. The optimal reserve price is higher or
at least not lower in the double-bid scenario than that
in the single-bid scenario. After adding an NYOP-
retailer-own list-price channel, the optimal reserve
price remains the same if the inventory capacity
is low, but could increase if the inventory capacity
becomes high.

In both single-channel and dual-channel scenarios,
the lower the consumer preference to the list-price
channel (or the higher the consumer preference to the
NYOP channel), the higher the optimal reserve price
in the NYOP channel. If the portion of customers
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who do not win in the NYOP channel but purchase
in the retailer-own list-price channel is high enough,
the retailer will charge a high reserve price with no
intention to sell the products through the NYOP
channel, but rather use it as a marketing tool to at-
tract customers to buy from the retailer-own list-
price channel.

The double-bid scenario can outperform the single-
bid scenario in both the single-channel and dual-
channel scenarios. If the NYOP inventory capacity is
low, we show that the double-bid scenario outper-
forms the single-bid scenario. However, if the
wholesale price is low, the single-bid scenario can
outperform the double-bid scenario when the inven-
tory capacity grows. In practice, if a double-bid policy
can attract more consumers to the dual-channel re-
tailer, the retailer might want to consider the double-
bid scenario more seriously in order to bring more
customers to the list-price channel.

This paper has its limitations. First, although the
assumption of uniform distribution functions is com-
mon in the literature, it is desirable to relax this
assumption to obtain more insights. For example, in
the double-bid scenario, the symmetric result, where
the average of the two bids in the double-bid scenario
equals the bid in the single-bid scenario, will likely be
altered with an asymmetry distribution function. Sec-
ond, in the double-bid scenario, the assumption that
the first bids have priority is made to achieve tract-
ability but might be too strong. As we argue that the
first-bid priority might encourage the consumers to
bid early, it is reasonable to assume that the retailer
will sell items to higher bids. Some simulation tools
can be utilized to examine the impact of different tie-
breaking rules. Third, due to the special focus of this
paper, the list-channels owned by other sellers are
not game theoretic. Theoretically and practically, the
retailer may dynamically compete with other list-
price channels. As a result, the analysis of adding
a list-price channel will be more complicated than
that of the simplified setting in this paper. Since the
consumer behavior in this paper depends on the in-
teraction between the NYOP channel and those list-
price channels, it becomes computationally intractable
to consider the retail-level multi-channel competition
in addition to the consumer NYOP bidding behavior.
However, it is worth exploring whether we can ana-
lyze the strategic perspective of multi-channel com-
petition by simplifying the consumer behavior in the
NYOP channel. Fourth, the consumer belief function
is relatively static in the model. As shown in Price-
line’s history, how to influence the consumer bidding
behavior has been an intriguing practical issue. Last,
but not the least, extension to considering stochastic
entrance of consumers will be another new avenue for
future work.
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Appendix

Proor oF ProrosimioN 3.1. We analyze this scenario
when w>a. We start from the condition that
w<(B+a—d)/2. We consider three cases separately.

Case 1: If R<(B+a—d)/2, or equivalently
d<B+a—2R, every customer wins an item from the
retailer’s NYOP auction. The retailer’s expected profit
is given by

B+a—%(c+d)

I(R) = :

—w _Cf

The profit is independent of the reserve price.

Case 2: If (B+a—d)/2 <R < (B+a—c)/2, or equiva-
lently d > B+a —2R > ¢, some consumers win from
the NYOP auction, and the retailer’s expected profit is
given by

B+a—c+R
B+a—-2R—¢
M(R) =——— 2 —w
B+a—-2R—c
+2(1———Ei7———)0&—w)—cﬂ

II(R) is concave in R. The first-order derivative is

OTI(R) 2w+ 2A(B—w) — 2R

OR d—c

Thus, the optimal reserve price is R* = = w+
/(B — w). The optimal expected profit is

:B+a72(w+i(B7w))fc

11(R) .
Bra-c wiiB-w)
X 2 5 — w

, B+a—-2w+ A(B—w)) —c
+A<1— R )

x (B—w) —Cy.
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Case 3: If R>(B+a—c)/2, or equivalently B+a —2R <,
no consumer wins from the NYOP auction. Thus, the
retailer’s expected profit is given by

II(R) = A(B —w) — C;.

The profit is independent of the reserve price as
well.

Combining the above three cases, we have

1. f(B+a—d)/2<w<(B+a—c)/2, thenR* =w,
and the optimal profit is given by Equation (A1).

2. If w< (B +a—d)/2, then the optimal reserve price
can be any value in [w, (B+a —d)/2) including .

3. If w>(B+a—c)/2, then the optimal reserve
price can be any value in [(B+a —¢)/2), B —a) in-
cluding @, where R < B —a means that there is a
non-negative possibility that some customers
would buy in the NYOP channel.

Thus, in all above situations, @ is the optimal re-
serve price.

When w grows such that (B+a—d)/2<w<
(B+a—c¢)/2, Case 1 is suppressed. If w>(B+a—c)/2,
Cases 1 and 2 are suppressed. Since a <(B+a —d)/2, the
case of w < a is limited to the first case of the demand
function where Dyyop =1 and can be analyzed simi-
larly. In all situations, the result that @ is the optimal
reserve price holds.

PrOOF OF ProPOSITION 3.2. If Qp>BH.-2R=C  then the
retailer’s  profit is  given by II(R); =

B+a—c
Bra—2R—c| 2 TR
d—c 2

- w), which is a concave quadratic

curve. If Qp < BH-2ZR=¢ then the retailer’s profit be-

B+a c
2 —S—+R

comes II(R), = Qo( —w) (Lines 1 or 2 as
illustrated in Figure 2). The retailer’s profit function
curve is first represented by II(R), and then II(R);.
The interception point of I1(R), and I1(R), is given by
R=2 +“7C*2Q°(dfc). If 8 chsz“(d*C) > w, then ITI(R), and
IT(R); intercept after the point R=w and thus
R* — B+afcszg(d7c)

. The corresponding expected profit
B+a—c— —QO(d?C)
is given by IT(R*) = Qo( : w). Otherwise if
R= M<w I(R), and T1(R), intercept before
the point R w and thus the unique global maximum

point is obtained at R* = w, and we have the optimal

expected profit TI(R*) = Btﬂd;ijw)

Proor oF ProrosiTioN 3.3. The analysis of Proposition
3.3 will be a combination of Propositions 3.1 and 3.2.
We only consider the situation that w<(B+a—d)/

2<R<(B+a—c)/2, and the analysis of other situa-
tions will be similar. The number of customers that

Case 1:

win an item from NYOP is given by min{8+4-2R=¢ (1.
Similarly, we consider two cases as follows.

If BH=2R——(, or equivalently R>1[B+
a—c— Qo(d — c)], then some customers buy the items
from the list-price channel. Thus, the expected profit
is

B — 2R —c (BH=+R
T(R) = +a c( =<+ —w)

d—c 2

—|—2(]—B+a_2R_C

d—c
We have, II(R) is concave in R. Solving the above
equation yields R* =w = w + A(B — w).
The corresponding optimal profit is given by
B+a—-2w+A(B—w)) —c

d—c

B —
%4—1{74—2(3—@

X 5 —w

+2<1_B+u—2(u;tt(3—w)—c)

)(B—w)—Cf.

IT*(R) =

x (B —w) - Cy.

Case 2: If Q < BH=2R=c or equivalently R < 1[B +a—

¢ — Qo(d — c)], then we obtain
Bta—
u + R
NR) =Qy| —25—— —w

+A(1 = Qo)(B —w) — Cf,

which increases in R. So, we can infer that the optimal
reserve price is obtain at the upper boundary value of
Qo < %, which is given by R = %[B +a—c—
Qo(d —c)].

So, if w<i[B+a—c—Qo(d—
Qo(d — ¢)]; otherwise, R* = .

)], R" =3B+a—c—

Proor ofF ProrosiTioN 4.1. In the double-bid scenario,
the consumer’s cost function is

IIX'liAn C(0) =F(x)(x+0) + (1 — F(x))
X [Fa(x +A)(x + A+ 0)
+ (1 = F2(x + A))B.

Substituting F() = flx) =

a’ B a’ FZ(X+A) B X/
and fr(x+A) = B )2 into the above equation, we

obtain
. X—a
min C(H)_B—a(x+9)
A B—x—-A
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The second-order derivatives of C(0) with respect to
x and A are given by

82C(6) 2
ox2  B-— a>0’
82C(9) 2
OA>  B-— P
0*C(0) 1
oA B—a "
Furthermore, Hessian matrix is
82C(9) 82C(0) 2 1
| ox? Ox0A | |B—a B-a
82C(9) 82C(0) 1 2
OxOA N2 B—a B-a
(B—a)

Thus, C(0) is strictly convex in x and A, and thus,
the optimal solution of x and A is unique.

Taking the first derivative of C(0) with respect to x
and A, respectively, yields

oC(0) _2x+9+A—a—B_O
Ox B—a ’
aC(6) :2A+x+9—B:0
OA B—a '

Solving the above two equations results in the
proposition.

Proor oF ProrosITION 4.2. We first start from abundant
capacity cases. Owing to the similarity, we only con-
sider the situation that g <w <8+2=4,

Case 1: Since d < B+2a — 3R and every customer wins
B+2a—c
—w).

with the first bid, IT(R) = (—35

Case 2 ¢<B+21—-3R<d<B+1 a——R ie.,
Ry = B20=d d<R< 2 2 2 — Ry, every Customer wins
with either the first bid or the second bid. The
expected profit is

+R

B+2a—c+R
B+2a—-3R—-¢
M(R) ===  —

+[1-P{0<B+21-3R}] <3R+B_”_dw>

3

B+2a—c
B+2u-3R-c[ 3 R
B d—c 2

d—(B+2a—3R) (3R+B—a—d
+ -w),
d—c 3

where 3RtB=1=d g the expected payoff of x* + A" =
B+n—30onB+20—-3R<0<d<B+a—3R.

Case 3: Ry = = Rs, in which some
customers’ first bids are rejected but their second bids
are accepted. In this scenario, some customers lose
both bids. The expected profit is

2B+a—2d < R < B4+2a—c
3

B+2a—c
MRy~ B2 -3R—c[3 R
B d—c 2
1 3
+{P{QgB+§a—§R}—P{0§B+Za—3R}
B+2a—c
3R—a_ \_B+2a-3R-c[ 3 TR
2 B d—c 2

3
+§(R—”) 3R—a__
d—c 2 ’

where 3= js the expected payoff of x* + A" =2B +
Sa——60n3+2a—3R<9<B+Za—3R<d
Case 4. If B+21—-3R<c<B+in—3R then

Rs = B¢ < R < BBH22¢ — R, this implies that all
customers’ first bids are rejected while some of their
second bids are accepted. We have

2 2
3

1 3
B+-a+-R-c
} S S

I1(R) :P{c§ 0§B+%u —;R

1 3 1 '3
:B—&—ELI—ER—C B+§a+§R_C7w
d—c 3 ’

1. 3r_
where m is the expected payoff of x* + A" =

B+li—2onc<0<B+la-3R

Case 5: If B + %a — R<C then R > 23*3’ 2 — Re. In this
case no customer wins any item from the auction after
bidding twice.

Integrating Cases 1-5 gives us a continuous curve.

In Case 1, II(R) is increasing with respect to R and
the global optimal reserve price is given by the upper
boundary Rs;. Thus, the maximal profit is
TI(R) = 2BHta=c=d _

In Case 2, I1(R) is convex with the global minimum
point R = Bt3-c=4 which is basically smaller than the
lower boundary R; given that B—a>d and c=0
typically. Thus, II(R) increases when R increases
during R; < R < Ry4. A special case is that if R3 =Ry
then Case 2 disappears.

In Case 3, I1(R) is convex with the global minimum
point R* =22 —w
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(1) If 2a —w < R4, we can infer that IT(R) increases
with respect to R during Ry < Rs and R* =B

(2) However, it is possible that Ry <24 —w < Rs,
which is equivalent to #=Bie < qp < 2045028
Consider BX2=¢— (25— w)] — (22 — w) — 2B+4=21) =
3B-9ntbw-2d-c Gince I(R) is symmetric relative
to R* =21 —w, if =5 < qp < 208938 gych
that TII(R) decreases in the domain of
B2 < 9 — g < BEB=C the optimal reserve
price is given by R* = 28+4=24

(3) Otherwise if 2H90te=3B < g < 245028 R+ —
% since overall IT(R) increases in the same
domain.

(4) IfRs < 2a—w, ie, w < 4=5tc R+ = 28402 gjnce
II(R) strictly decreases in the domain.

In Case 4, II(R) is concave with the global
maximum point R* = w. If w < %, II(R) decreases
between Rs < R < Rg and thus R* = 52=¢ If w > R;,
the optimal reserve price is given by R* =w. It is
worth noting that if w > Re, II(R) = 0 since no bid can
win the item from the NYOP auction.

Case 5 is trivial since no transaction occurs. Since
the curve is continuously increasing in Cases 1 and 2,
the optimal reserve price is basically determined in
Cases 3 and 4. In summary:

(1) If w < 4u7;3+c’ R = 23+g72d_

(2) If w <w< 2d+9a2—c—33 R* = 2B+§_2d
- - 7 .
(3) If 24£9a4c=3B < ¢y < 2445028 R+ — Biic

2d+5a—2B B+2a—c x __ B+2a—c

(5) If Bidime < qp < 2B820 R —yp,
6) If w>Bt2= R* =g,

The above conditions can be simplified into
Equation (5). However, if 229¢¢=38 <0, Equation (5)
can be rewritten as R* = max{&2=¢ w}.

Proor of ProrosimioN 4.3. Taking into account the
constrained capacity level Qy in the above discussion
leads to the following cases. Owing to the lengthy
computation, we only show the analysis when Qy, <Q,
given that B —a<d+(d — ¢)/3. The analysis on Q;> Q,
is similar and yields the same result.

Scenario B: Qp< Ql

Case 1Q: In this scenario, Case 1Q overlaps with Cases

1 and 2, and part of Case 3. Since Qp < Ql cannot even
satisfy the demand of the first bids, we have

I(R) = Qo <B+TL12C*R - w)

Case 2Q: Case 2Q) overlaps with parts of Cases 3 and 4.
We consider two subcases here.

(1) 2Q-1: Ry € R < R5 such that all first bids are
satisfied and partial second bids are accepted as
well (overlapping with Case 3). We have

B+2a—3R —c (B2 R
—w
d—c 2

+(0 _B+2a-3R-c¢ 3Rfa_w
0 d—c 2 '
(2) 20Q-2: Rs; < R < R, such that all first bids are
rejected and partial second bids are accepted
(overlapping with Case 4). We have

B+%11+%R—c_w>
— :

I(R) =

M(R) = QO<

Case 3Q: R> R; such that all first bids are rejected and
all second bids are accepted as it is in Case 4.

1 3 1 3
B+§a_§R_C B+§a+§R—C
II(R) = F 3 —w

A continuous curve of Scenario B is formed by
Cases 1Q-3Q. In Case 1Q, I1(R) is strictly increasing in

R. Case 2Q-1 has a convex I1(R) with respect to R. The

.. . « _ B+3a—c—Qo(d—c)
global minimum point is given by R* = ==—~0=,

B+3a—c—Qo(d—c) B+2a—c—Qp(d—c)
TR to 30 , the lower

Compare R* =
bound. Since Qy<Q; = %, we find that R* =

shown as follows:

as

B+21—c—Qod—c) B+3a—c—Qo(d—c)
3 4
:B—u—c—Qo(d—c)>0.
12 -

Thus, Case 2Q-1 is increasing in R. Since II(R) is
increasing in Case 2Q-2, I1(R) increases in Case 2Q.
Case 3Q is part of Case 4 in the abundant capacity
case. Thus, the abundant capacity curve and this
constrained capacity curve intercept at R =R, =
w. From our discussion in the proof of
Proposition 4.2, we can infer that the optimal reserve
price is given by R, if R, >w; otherwise, it is given by
w. Overall, R* = max{R,,w}.

Scenario C: Q; < Qo < Q,

Case 1Q: This
B+u7c+R
H(R)=Q0< 22 —ZU).

is the same as in Scenario B:

Case 2Q: Case 2Q overlaps with part of Case 3 only.
Thus, R; < R < R, such that all first bids are satisfied
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and partial second bids are accepted as well. We have

B+2a—c
_B—|—2u—3R—C 3
o d—c 2

B+2a—3R—-c\ /3R —a
+ [ Qo — i—c > —w ).

Case 3Q: There are two subcases.

(1) 3Q-1: R, < R < Rs5 such that all first bids and sec-
ond bids are accepted as it is in Case 3. We have

+R

I(R)

B+2a—c¢
B+2a—3R—c[— 53 R
I(R) = T 7 w

3
5(R=4a) ;3R _4
+ R ( 5 —w).

(2) 3Q-2: R > Rs such that all first bids are rejected
and all second bids are accepted as Case 4. We

have
B+%af§R—c B+%a+%Rfc
M(R) = d—c 3 —w

Similarly, a curve of Cases 1Q-3Q crosses the curve
of Cases 1-4. But, the interception point is located in
Case 3. If R* =R,, it must have [(2a —w)—R,] —
[R5 — (2a —w)] >0, which is equivalent to

w<9a—3B+c+2dg2(l—Qo)(d—c)<9a—386+c+2d;

otherwise R* = Rs. Overall, the optimal reserve price
can be written as follows:

Ifw<9a—3B+c+2d—2(l —Qo)(d—c¢)

(overlapping with Case 2). We have

B+21—c¢c
B+2a-3R-c|[ 3 TR
B d—c 2

I1(R) —w

B+2a—-3R—-¢
+(QO_T>

<3R+B—a—d >
X\ )

(2) 2Q-2: R4 < R <R, such that all first bids are
satisfied and partial second bids are accepted
(overlapping with Case 3). We have

B+2a—c

B+2a—-3R—-c|" 3

B d—c 2

B+2a—3R—c\ /3R —a
+ Qo — i_c 5 —w ).

+R
T(R)

—w

Case 3Q: There are two subcases.

(1) 3Q-1: R, < R < Rs5 such that all first bids and
some second bids are accepted as Case 3. We have

B—|—2a—c+R
B+2a—3R—c| 3
M(R) ==~ 32 —w
3
7 R=a) ;3R _4
+ i—c ( 2 —w).

(2) 3Q-2: R > Rs such that all first bids are rejected
and all second bids are accepted as it is in

6

(98— 3B+c+2d-2(1-Qo)(d—¢)
6

) B+2a—-c

1fw>#,

Scenario D: Qo> Qz

Case 1Q: Case 1Q overlaps with Case 1 and part of

Case 2. The profit function is the same II(R) = Q
B+H7C+R
( 25 —w) as long as R > R;.

Case 2Q: Case 2Q overlaps with Case 2 and part of

Case 3.

(1) 2Q-1: Ry £ R < R4 such that all first bids are
satisfied and partial second bids are accepted

<w<

_ 2B+a—2c—2Qo(d —c)

R*
3 b
B+2a—c R*_B—kZa—c
3 ’ - 3 ’
R* =w.
Case 4. We have
B+%af%R—c B+%a+%Rfc
II(R) = T 3 —w

In Scenario D, we directly consider subcase
2Q-1. The optimal reserve price in this sub-domain
is given by R = w, which is smaller than R,

due to B —a>d. Therefore, I increases in 2Q-1 with
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respect to R. Other parts of the curves share similar Case 3: R4 < R < Rs5, unsatisfied customers start to
features with Scenario C and the interception point is  purchase from the retailer-own list-price channel. The
located at Case 3 as well. Overall, the optimal reserve  expected profit is

price can be written as follows:

9a —3B+c+2d—2(1 —Qo)(d—c) _ 2B+a—2c—2Qo(d —c)

Ifw< g , R* 3 )
if9a—3B+c—i—2d—2(1—Qo)(d—c)SwSB—i—Za—c7 R*:B+2a—c’
6 3 3
if w>w, R* =w.
3
The difference between Scenarios C and D lies at
that 2382200 i 3 higher value in Scenario B+ 24— 3R B+2a-c +R
D, which means that it is more likely that R, could be M(R) = T ok~ 3 —w
the optimal reserve price. d—c 2
In summary, we can integrate the above scenarios 3
into the following: E(R —a) /3R — 4
+ —w
R d—c 2
(D If Qo<Qy, 3
B+2—3R—c (R4
2B —2c—-2 — A 1— —
R*:max{ +a C3 Qo(d C),w} A1 d—c d—c
(2) Otherwise if Qg > Ql, then (B—w) —Cy.
" w<9u —3B+c+2d ; 2(1 — Qo)(d — c), R — 2B +a — 26; 2Qo(d — c)7
if9a—3B+c—|—2d—2(1 —Qo)(d—c) SwSB+2a_C, R* :B+2a—c’
6 3 3
if w>w, R* =w.
3
ProoF OF ProprosimioNn 4.5. Owing to our special Case 4: Rs < R < Rg. The expected profit is
focus, the analysis of dual-channel scenario is similar
to that of the single-channel scenario. Again, because 1 3 1 3
of the lengthy computation, we only show the anal- B+ - ER —c(B+ > + ER —c
ysis when Q; <Q,. The analysis on Q; > Q, is similar II(R) = d—c 3 -w
and yields the same result.
B ! R
Case 1: R < R;. Since no customer switches to the list- walie + TRk —¢C (B—w)—C
price channel, the expected profit is II(R) = d—c w f

B+2a—c
< 32 +R—w> _Cf

Case 2: Rz < R < Ry4. Since all bidders win with either
the first bid or the second bid, the expected profit is

Case 5: If R > Re, no customer wins any item from the
NYOP auction after bidding twice. However, some
customers buy from the list-price channel. IT(R) =

MB —w) — Cf
B+2—c R Integrating Cases 1-5 gives us a continuous curve.
M(R) = B+22-3R-c 3 —w Cases 1 and 2 behave similarly as in the single-chan-
d—c 2 nel situation as described in the proof of Proposition

4.2. For Case 3, I1(R) is convex with the global min-
imum point R* =24 — w — A(B — w). Compared with
R* = 2a — w in the single-channel case, R* = 22 — (w +

d—(B+21—3R) (3R+B—a—d
+ —w _Cf
d—c 3
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A(B — w)) is a smaller value. In Case 4, I1(R) is concave
with the global maximum point R* = w + A(B — w).
Thus, we define a new variable @ = w + A(B — w).
Similar to Proposition 4.2, the optimal reserve price is
given by

Ifiu<2d+9a6+cf3B’ R*:ZB+272¢17
if2d+9u+c—3BSwSB+2u—c’ R*:B+ZIZ—C7
6 3 3
ifapsDt2=C R = .
3
. 92—-3B+c+2d-2(1- d—c
i< +c+ - (1 — Qo)( )7
9a — 3B 2d —2(1 - d— .
23 et 22120060y
.. B+2a—c

In Cases 1Q-3Q, due to the similarity, we just dem-
onstrate 2Q in Scenario B.

Case 2Q: Case 2Q) overlaps with parts of Cases 3 and 4.
We consider two subcases here.

(1) 2Q-1: Ry < R < R5 such that all first bids are sat-
isfied and partial second bids are accepted
(overlapping with Case 3). We have

B+2a—c

B+2a—-3R-c|[ 3 TR
B d—c 2

B+2a—3R—-c¢\ /3R —a
| Q- d—c 2 -

+2(1 = Qo)(B —w) - C.

I1(R) —w

(2) 2Q-2: R5 < R < R, such that all first bids are re-
jected and partial second bids are accepted
(overlapping with Case 4). We have

1
B+§a+%R—C
N(R) =Qo [ —=—F*—

3 —w

+2(1 = Qo)(B —w) - C.

The analysis on the optimal reserve price in Cases
1Q-3Q of the dual-channel scenario is similar to that
in the single-channel scenario. Thus, we can integrate
the above scenarios as follows:

1) If Qu<Q;,

R* :max{23+a_263_2Q0(d_C),zb}.

(2) Otherwise if Qg > Ql, then

_ 2B+4a—2c—2Qo(d —c)

R*
3 b
B+2a—c R*7B+2afc
3 ’ - 3 ’
R* =w.
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