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ABSTRACT 

To assist with SCR catalyst sizing and optimization of LNT-SCR aftertreatment 

systems, a predictive kinetic model is needed.  In this dissertation, an iron based zeolite 

SCR catalyst has been used in a reactor bench to simulate cycling between lean rich 

exhaust conditions across the catalyst.   Steady-state lean SCR kinetic mechanisms were 

studied with special attention given to quantifying the effects of oxygen on the lean SCR 

reactions.  From these studies, a prominent reaction between NH3 and N2O under lean 

conditions has been discovered.  Additionally it was found that kinetic rate forms from 

literature are inadequate due to their inability to capture the strong non-linear relationship 

between NOx conversion and the amount of stored NH3 on the catalyst.  Due to the 

switch from lean to rich exhaust from the regeneration of the LNT, the effects of varying 

H2O and CO2 concentrations have been studied for the purposed lean SCR reactions.  It 

was found that H2O strongly affects the storage capacity of NH3 on the SCR catalyst.  

From these results an additional reaction has been proposed to capture the effect of H2O 

on NH3 storage.  The affects of H2, CO, and C3H6 were studied to understand their roles 

in rich exhaust conditions.  Experimental results have allowed the water gas shift 

reaction, the oxidations of H2 and CO, and reactions between NO and H2, CO, or C3H6 to 

be disregarded.  It was observed that H2, CO, and C3H6 have strong reactions with NO2 

yielding the need to include a reaction for each reductant with NO2 in the kinetic 

mechanism.  It was determined that these reactions with NO2 can inhibit NOx conversion 

on the SCR catalyst by affecting the NO to NOx ratio at the catalyst, which can be 

accounted for using NO2 reactions with CO, H2, and C3H6.   It was also observed that the 

oxidation of C3H6 will strongly increase the oxidation of NH3 which have been accounted 
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for in a global reaction.  CO and H2 storage on the catalyst is negligible while C3H6 has 

been found to store on the catalyst by a non-traditional method to determine the storage 

of C3H6.   
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CHAPTER 1 

INTRODUCTION 

During our lifetimes we have seen the price of oil continue to rise.  This has 

created a high demand for more fuel efficient cars. One popular opinion that exists today 

has been to move from spark ignition (SI) engines to diesel (CI) engines, especially in 

passenger cars [1]. 

Diesel engines operate using compression ignition and have shown great 

advancement in durability and operation during the last decade.  In certain Europe 

countries, 80% of automobiles contain diesel engines.  This is largely due to taxes 

imposed on engine displacement and fuel in Europe [2, 3].  Diesel engines offer an 

increase in torque when compared to an equal displacement spark ignition engine.  This 

allows a smaller displacement diesel engine to take the place of a spark ignition engine.  

With a smaller displacement, engine fuel economy will be increased.  When compared to 

spark-ignition engines, diesel engines also increase fuel economy by utilizing higher fuel 

conversion efficiencies, higher compression ratios, and by operating under lean 

conditions.  Due to these enhancements, diesel engines will use approximately two thirds 

of the fuel of an equivalent SI will use under normal operating conditions [4].   

While there can be significant gains by using diesel engines, emissions have 

proven problematic in these engines.  Diesel engines utilizes high compression ratios and 

lean air-fuel mixtures to increase thermal efficiency; however the combination of these 

will lead to an increase in NOx formation [4].  While operating at higher compressions 
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knock is limited by controlling combustion timing, which is done by directly injecting 

fuel into the cylinder during the compression stroke.  Direct injection of fuel will lead to 

stratification of the air-fuel mixture in the cylinder, which typically increases particulate 

matter (PM) and hydrocarbon (HC) emissions.  Traditional spark-ignition engine are less 

efficient, but are widely used due to the ease with which they control emissions.   SI 

engines utilize combustion strategies to control PM emissions, and operate at a 

stoichiometric fuel air mixture which allows the use of a Three-Way Catalyst (TWC) to 

simultaneous reduce CO, HC, and NOx emissions by using NOx to oxidize CO and HC 

emissions [5, 6].   Due to the lean combustion characteristics of diesel engines, multiple 

catalytic devices are required to reduce all problematic species [4, 7, 8].   

1.1 CO and HC Emissions Control 

Until 2003, emissions standards were met by utilizing in cylinder strategies; 

which include adjusting injection timing and adding EGR.  In 2004 aftertreatment 

devices became the most cost effective way to simultaneously meet CO, HC, NOx, and 

PM emissions standards [2].  Initially TWC catalysts were tried, where it was found that 

TWC catalysts will only effect HC and CO emissions through oxidation with the excess 

oxygen in the exhaust stream.  From the initial work using TWC catalysts on diesel 

engines, new formulations were proposed commonly referred to as Diesel Oxidation 

Catalysts (DOC).   DOCs operate by using oxygen in warm diesel engine exhaust to 

induce reactions in non-oxidized exhaust species (CO and HC); however it should be 

noted that a DOC will not remove any NOx from the exhaust stream but can reduce 

volatiles which can reduce PM emissions [9, 10]. 
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1.2 PM Emissions Control 

Once CO and HC emissions problems were solved with DOCs, efforts started to 

reduce NOx and PM emissions.  Simultaneous NOx and PM reduction with in cylinder 

combustion strategies have proven difficult with limited operating ranges, and complex 

control schemes.  A Diesel Particulate Filter (DPF) has proven effective and is currently 

being used to reduce PM emissions [11-13].  A DPF system works as a filter in the 

exhaust stream capturing and storing PM on the surface while letting the flow of gas 

phase species continue. As the DPF becomes full the back pressure in the exhaust system 

will increase, which will trigger a regeneration cycle where the catalyst temperature is 

increased until all the differential pressure of the DPF decreases to an acceptable level.  

The common method to increase the temperature of the DPF is to inject fuel into the 

exhaust stream.   The major concerns when using a DPF are the increase in back pressure 

in the exhaust system, the fuel economy penalty or the regeneration cycle, and the 

longevity of the DPF due to temperature cycling.  Recently DPFs have been combined 

with DOC catalysts commonly called a catalyzed DPF (cDPF).  This catalyst stores 

oxygen on the surface to help with regenerations as well as oxidizes hydrocarbon and CO 

emissions in the tailpipe [14]. 

1.3 NOx Emissions Control 

1.3.1 Hydrocarbon Selective Catalytic Reduction 

CO, HC, and PM emissions have proven less problematic by utilizing a DOC and 

a DPF (or cDPF), however as emissions regulations tighten NOx emissions have proven 

to be especially problematic.  Three competing technologies have been suggested to 

reduce NOx emissions levels.   Hydrocarbon Selective Catalytic Reduction (HC SCR) 

was the first to be studied due to its ability to simultaneously reduce CO, HC and NOx 

emissions.    The HC SCR systems works by storing and partially oxidizing the HC in the 
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exhaust and reacting the resulting products with NOx produced by the engine to produce 

N2.   If more HC is needed in the exhaust additional fuel is injected, which results in a 

fuel economy penalty.  Most manufacturers are not using HC SCR aftertreatment devices 

due to a very limited temperature range, and an increasing fuel economy penalty as 

emissions standards become lower [15]. 

1.3.2 Lean NOx Trap 

The Lean NOx Trap (LNT) catalyst system has been investigated as an alternative 

to HC SCR technology.  The LNT system works by storing NOx molecules on a catalyst 

during normal lean engine operation, the stored NOx is then reduced by periodically 

switching to rich exhaust reducing conditions.  The rich exhaust reducing conditions have 

large H2, CO, and small HC concentrations along with low oxygen concentrations which 

are generated by fuel reforming or rich engine operation.  The reductants formed during 

rich exhaust conditions are oxidized by the stored NOx on the catalyst to regenerate the 

catalyst by allowing for more storage potential of NOx.  This catalyst technology has 

been used in smaller diesel engines under 2.5L due to their ability to meet emissions 

regulations without carrying additional reductant on board.  However, because the LNT 

catalysts are precious metal based they have proven cost prohibitive on heavy duty diesel 

engines.  Additionally, LNTs are also very susceptible to sulfur poisoning and must use 

low sulfur fuels, and LNT catalysts also pose a fuel economy penalty to meet emissions 

standards.   

1.3.3 Ammonia Selective Catalytic Reduction 

Selective Catalytic reduction with ammonia (NH3 SCR) is the final option for 

catalytic NOx reduction.  Due to the potential toxicity concerns of storing NH3 directly on 

board a vehicle, an aqueous form of NH3 called urea is commonly used as the onboard 
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reductant.  As a standalone system, the reduction of NOx with a NH3 SCR system is a two 

step process.  The first injects urea into the exhaust system upstream of the SCR catalyst 

[16].  While in the exhaust stream the urea will thermally decompose to NH3 and CO2 

[17].   As the NH3 molecules reach the SCR catalyst, reactions with the surface will allow 

NH3 to reduce NOx to N2 and H2O.    One of the main benefits of using a NH3 SCR 

system to lower NOx production is that it allows the engine to be optimized for fuel 

economy by reducing the amount of in-cylinder NOx control needed.  The potential 

savings could allow a payback time for the system in a range of one to two years at 

current (oil, urea, etc.) prices [2, 18].  The drawbacks to using a NH3 SCR include 

creating an infrastructure for refilling urea tanks, the high susceptibility to HC and sulfur 

poisoning, the high freezing temperature of urea (11ºC), the large overall size of the 

catalyst system needed due to the additional space required to store the reductant onboard 

the vehicle, the price of an injection system for urea, for safety concerns urea must be 

used as the onboard reductant which will increase of CO2 emissions by 1 – 2% [2, 3].    

While the actual catalyst is significantly cheaper then LNT or HC SCR catalysts, due to 

the high cost of the urea injection systems and the space requirements of the additional on 

board reductant for the NH3 SCR system; it has been found that NH3 SCR systems are 

ideal for heavy duty diesel engine applications (engines larger than 10L).   

1.3.4 Combination Systems 

When examining medium duty engines between 2.5 L and 10 L, LNT and NH3 

SCR aftertreatment options are debated since both are cost competitive.  It has been 

proposed that a combination of an LNT and an NH3 SCR (LNT-SCR) system might 

allow for the most cost and space effective solution for NOx control.  The LNT-SCR 

system operates by increasing the regeneration time on the LNT catalyst where H2 can 

combine with stored NOx to form NH3 which can then be stored on the SCR catalyst to 
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be used to reduce any NOx that slips by the LNT.   An additional benefit is gained where 

the SCR will reduce the ammonia generated by the LNT which can be a concern for 

emissions regulations.    The LNT-SCR removes the need for a second on board reductant 

since onboard fuel can be used to reduce NOx on the LNT or be converted to NH3 where 

it can be used to convert NOx on the SCR.   The LNT-SCR also provides the ability to 

reduce the size of the LNT which saves money due to the high cost of the catalyst.    

The Eaton Aftertreatment System (EAS) 

An example of a LNT-SCR catalyst system used for this dissertation is the Eaton 

Aftertreatment System (EAS), which has been designed to reduce all regulated emissions 

for a 2007 compliant engine to make it 2010 compliant for a medium duty diesel engine.  

The EAS (Figure 1.1) is a system of four catalysts that uses onboard reductant (fuel) to 

reduce NOx and PM emissions.  During normal operation the fuel reformer (REF) 

catalyst is used to oxidize CO and HC, the LNT is used to store NOx, the DPF is used to 

store PM emissions, and the SCR uses stored NH3 to reduce any NOx that slips by the 

LNT.   Once the LNT catalyst shows significant amount of slip, regeneration of the LNT 

is performed.  For the LNT regeneration the engine is throttled to operate the engine 

under richer conditions to reduce the amount of oxygen in the exhaust stream.  Fuel is 

then injected before the fuel reformer to increase the temperature to 350°C.  Once the fuel 

reformer reaches 350°C, additional fuel is injected which is converted to approximately 

4.5% H2, 1.5% CO, and 1% HC (on a C1 basis).  The H2, CO, and HC are then oxidized 

by stored NOx on the LNT reducing the amount of NOx stored on the LNT.  NH3 is 

generated as a byproduct of the reduction of NOx with H2 on the LNT.  The NH3 will 

then flow to the SCR catalyst where it will store to reduce any NOx that slips by the LNT 

[19, 20].   
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Figure 1.1 − Layout of the Eaton Aftertreatment System [19, 20]. 

Dykes [20] has studied the average integral NOx conversion of the EAS system, 

the LNT, and the SCR, during several NOx regeneration cycles where it can be seen that 

the SCR will contribute an additional 10% to the integral NOx conversion as shown in 

Figure 1.2.  Since catalyst become exponentially bigger as desired NOx conversion 

increases, the 10% contribution to the integral NOx conversion of the SCR has allowed a 

significant size reduction of the LNT. 

 
Figure 1.2 – Contribution of integral NOx conversion of the LNT and SCR catalysts in 

the EAS [20] 
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1.4 Selective Catalytic Reduction of NOx with NH3 

The Ammonia Selective Catalytic Reduction process was developed for 

powerplant applications as a method for the abatement of NOx [21] with the first 

commercial demonstration occurring in the mid 1970s [22].  In this type of application, 

ammonia is injected into the exhaust stack reducing the NOx in a homogeneous manner 

without catalytic material; which is commonly referred to as Selective Non-Catalytic 

Reduction (SNCR) [22-28].  Ammonia is the preferred reducing agent because it 

selectively reacts with NOx in the presence of O2, H2O, CO2 and SO2 [29]. Without 

catalytic help, the reduction of NOx requires temperatures normally in the range of 850 to 

1100°C [24, 26, 27] which is significantly higher than seen in the exhaust of internal 

combustion engines ( with a maximum of 600°C) [30], therefore SNCR is not feasible for 

automotive applications due to its temperature range. 

The first research application into the NH3 SCR process came about in 1957 when 

it was discovered that ammonia reacts with NOx over a platinum catalyst even when 

oxygen is present [21, 29].   This discovery proved that it was possible to reduce NOx 

levels at 150 – 250ºC, which are much lower temperatures than the operation criteria of a 

SNCR system in a lean environment [3, 29].  Since this discovery, there have been 

numerous development activities to adapt SCR technology for mobile diesel engines [31].   

Once it was proven that ammonia could be used to reduce NOx in a lean 

environment, research became geared towards finding a catalyst that would facilitate NOx 

reduction for internal combustion engines [3, 32-40].    Research initially began with 

vanadium based catalysts [15, 17, 39], but has recently moved to zeolite base catalysts, 

while not perfect, have shown due to their increased activity for NOx reduction with NH3, 

and wider temperature windows [18, 41-43].  The two most common types of zeolite 

based catalysts are iron or copper based.  Research has shown that iron based zeolites 
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have a larger temperature operating range [15, 29], while copper based zeolites are less 

sensitive to the NO to NOx ratio in the feed gas into the SCR catalyst [15].   

From vanadium and zeolite base catalysts the same reaction steps (shown in Table 

1.1) for Selective Catalytic Reduction of NOx with NH3 in lean exhaust have been 

proposed [44-48], although the strength of each reaction steps will differ depending on 

the catalyst.  It has been found that all of the proposed SCR catalysts show some ability 

to oxidize NO to NO2 as seen in (R1).   It has also been observed that NH3 has the ability 

to store on the catalyst as shown in (R2). The stored NH3 then has the ability to desorb 

from the catalyst or react with O2, NO, or NO2 as seen in (R3) – (R8).   Since each of the 

catalysts have some ability to oxidize NO to NO2 or reduce NO2 to NO and O2, the NOx 

reduction reactions shown in (R4) – (R8) are considered to happen simultaneously.   

Table 1.1 − Summary of literature global chemical reactions for the Selective Catalytic 

Reduction of NOx with NH3 in lean exhaust conditions. 

 Chemical Reaction 

(R1) 2 2

1

2
NO O NO   

(R2)  3 3Z NH Z NH   

(R3)  3 2 2 24 3 4 2 6Z NH O Z N H O     

(R4)  3 2 24 6 4 5 6Z NH NO Z N H O     

(R5)  3 2 2 24 4 4 4 6Z NH NO O Z N H O      

(R6)  3 2 2 22 2 2 3Z NH NO NO Z N H O      

(R7)  3 2 2 28 6 8 7 12Z NH NO Z N H O     

(R8)  3 2 2 2 22 2 2 3Z NH NO Z N N O H O      
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1.5 Objectives 

While Dykes [20] has shown that the SCR will increase the integral NOx 

conversion of the EAS, it is still unclear how switching from rich and lean exhaust 

conditions will affect the ability of the SCR catalyst to reduce NOx.  The SCR catalyst in 

the EAS faces unique conditions where NH3 is only available to the SCR catalyst during 

the regeneration of the LNT which is done when the engine is throttled to rich exhaust 

conditions, while NOx breakthrough from the LNT to the SCR catalyst occurs during 

normal lean engine operation.  The objective of this work is to propose a global kinetic 

model to assist with control strategy development as well as sizing of the SCR in a LNT-

SCR system. 

Initially a modeling study was performed by calibrating the reaction rates using 

global steady-state lean SCR reactions in literature [45, 49-56] to the experimental 

reactor bench data for the SCR catalyst in the EAS.  Results from the kinetic model were 

then compared to ideal system operation conditions performed on the reactor bench, 

where it was discovered that changes to the kinetic mechanism were needed to accurately 

capture all effects of the LNT-SCR catalyst system.  Therefore four independent 

experimental studies have been performed to study changes to the literature steady-state 

reaction mechanisms.   

The first experimental study was done to test the expected global reactions from 

literature sources for steady-state lean operation of the SCR in the EAS.  It was found 

that not all effects in lean engine exhaust have been completely quantified.  The 

production of N2O (R8) is not always included in reaction mechanisms but is commonly 

thought to occur due to a reaction between NH3 and NO2 [45, 57].  Although this has 

been debated by Kim et al. [47] where it is suggested that reactions with NH3 and NO, 

O2, or NO2 can yield N2O.  Epling et al. [57] has even suggested that the Slow SCR 

reaction shown in (R7) is actually a combination of the production of N2O as a 
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combination of NO2 and NH3, then a reduction of N2O with NH3.  Due to the unclear 

nature of these reaction pathways further experiments have been performed with NH3, 

NO2, and N2O in the feed gas to quantify the appropriate reaction pathways. 

The second experimental study is done to test how steady-state reactions compare 

to the unsteady operation of the SCR in a LNT-SCR catalyst system.  Under steady-state 

conditions in an SCR, reactions with NH3 and NOx occur almost instantaneously, 

therefore very little NH3 is present on the catalyst at all times.  To account for the 

unsteady nature of the LNT-SCR system, cycling experiments have been performed to 

quantify the effect of stored NH3 on NOx conversion.    

The third and forth experimental studies were performed to find what happens to 

the chemistry of the SCR catalyst when exposed to rich engine conditions.  When the 

regeneration of the LNT occurs under rich exhaust conditions, H2O and CO2 

concentrations will increase in the exhaust stream, as well as the possibility for H2, CO, 

and HC breakthrough to the SCR.  Therefore the third experimental study was performed 

to study how H2O and CO2 concentrations will affect the proposed SCR reactions.  The 

forth experimental study was performed to quantify the effects H2, CO, and HC will have 

on the SCR chemistry.   
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CHAPTER 2 

METHODOLOGY 

Since the overall goal is to propose the correct chemical reactions and estimate 

their corresponding kinetic rate forms, a methodology needs to be established.  A flow 

chart for the methodology is shown in Figure 2.1.  For model development AVL BOOST 

is used to solve the conservations equations (mass, species, momentum, energy) with 

custom defined chemical reactions and kinetic rate forms written by the user.  Initially the 

chemical equations and kinetic rates are developed from literature sources.  Experimental 

data are taken using a bench top reactor, where synthetic gas blends can be made to 

isolate proposed reactions and vary catalyst temperature and space velocity.  Initial 

kinetic rate equations are commonly based on Arrhenius rate forms as shown in equation 

(2.1).  

 
1

exp

E K
R T

k

k

K k y

 
 

 



    (2.1) 

Where the pre-exponential  k and the activation energy  E , are allowed to be varied 

using an optimization routine and reapplied to AVL BOOST until the simulations results 

match experimental data taken on the bench top reactor.  

 Once simulation results for the proposed kinetic mechanism are statistically 

significant when compared to experimental results for all reactions, additional 

simulations are performed and compared to validation data.  Validation data can come 
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from the engine operation with EAS, or different bench top reactor experiments that 

simulate the LNT-SCR catalyst system. 

 

 

Figure 2.1 – Shows the flow chart for the methodology of determining chemical reaction 

and kinetic rate equations to be used in a validated kinetic mechanism  
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2.1 Aftertreatment Modeling 

AVL BOOST is used to develop a kinetic mechanism for aftertreatment catalysts.  

Aftertreatment modeling is usually done as two parts; the first part is developing a solver 

for the conservation equations that occur during this process.  Since many aftertreatment 

models have been developed, a commercial aftertreatment model (AVL BOOST) is used 

to solve the conservation equations (mass, momentum, species, and energy).   The second 

part of is the development of the appropriate chemical reactions and kinetic rate forms.  

AVL BOOST was chosen due to the ability to define chemical reactions with custom 

kinetic rate forms. 

The use of a global kinetic mechanism is suggested since rate parameters must be 

determined for each reaction.  The goal of global kinetics is to use the minimum amount 

of reactions to characterize the behavior of the catalysts.  A simple example of a global 

reaction for the oxidation of CO to CO2 is shown in (2.2).  It should be noted that the 

addition of each species exponential increases the amount of detailed reactions required.  

It can be observed that the detailed approach requires two reactions and four rate 

constants, while using a global approach requires only one reaction and two rate 

constants.  Since catalyst formulations are always changing and the activity of each 

catalyst formulation is different, global kinetic models are suggested to reduce the 

amount of rate parameters to be determined. 

 

2

2

2 2

1
    +       2

2

1

2

CO O CO

O O

CO O CO

 



 

  →

  

 

2

2

2
1

2
2

exp

           exp

exp

CO O

O

Global
Global CO O

E
k y y

RT

E
k y

RT

E
k y y

RT

 
 
 

 
    

 

 
    

 

 
(2.2) 
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2.1.1 AVL BOOST Conservation Equations Solver 

Catalytic combustion reactors are considered heterogeneous reactors because they 

contain two phases. (a gas phase (reactants and products) and solid catalyst) Since the 

catalytic reactions occur on the catalyst, the reactants have to be transported to the 

external gas-solid interface. Modeling the overall reaction process therefore requires the 

consideration of both the physical transport and chemical kinetic steps.  Figure 2.2 shows 

the individual steps taking place during a heterogeneous catalytic reaction.  

 
Figure 2.2 − Steps of a Catalytic Reaction where: Cj is concentration of species, P is 

products, R is reactants, Surf is on the catalyst surface, and Bulk is part of the bulk flow  

[58]. 

As discussed by Froment and Bischoff [59] and shown in Figure 2.2, the 

following steps can be distinguished: 

1. Transport of the reactants from the bulk gas phase to the external solid 

surface across the boundary layer. 

2. Diffusion of the reactants into the porous catalyst. Since the main part of 

the catalyst is located inside the porous material (washcoat) the reactants 

must diffuse into it. 

3. Adsorption of the reactants onto the surface. 
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4. Catalytic reaction at the surface. 

5. Desorption of the products of the reaction. 

6. Diffusion of the products to the surface of the catalyst. 

7. Transport of the products into the bulk gas phase. 

Steps 1, 2, 6 and 7 are mass transport steps while steps 3, 4 and 5 are chemical 

kinetic steps. 

To accomplish the above steps the catalyst structure first needs to be determined.   

The catalyst structure is determined based on the following known catalyst properties:  

 Amount of monoliths in the catalyst  

 Length of the catalyst  

 Radius of the catalyst 

 Size of each monolith 

 Monolith Volume 

 Open frontal area of the monolith 

 Hydraulic area 

 Catalyst density 

 Catalyst thermal conductivity 

From these properties the catalyst geometry as well as thermal properties of any 

catalyst brick can be determined for use in the conservation equations. 

AVL BOOST Conservation Equations 

Using the kinetic mechanism created it was assumed that radial transport effects 

of a honeycomb-type catalytic converter are small compared to the heat transport in axial 

direction which means that the entire catalyst can be represented by one single channel.  

The effects taking place in this model are convective, diffusive, and conductive transport 

in the gas phase; mass and energy transfer through the boundary layer; diffusion and 
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catalytic conversion in the wash-coat; and conduction in the solid phase. Neglecting the 

radial effects the continuity equation become equation (2.3). 

g g gv

t z

   


 
 (2.3) 

Using the steady – state Darcy equation the momentum equation (2.4) becomes 

where spatial variation as well as friction from the flow are accounted for. 

2

2

g g g

hyd

P v

z d


 


   


 

(2.4) 

The species conservation equation is given by equation (2.5). 

 , ,

, , ,
I

g k g k g L

g g g eff k g i k k s

i

w w
D MG r c T

t z z
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   
        

   
  

(2.5) 

Viscous flow is neglected because the low velocity of the gas phase therefore the energy 

equation can be written as equation (2.6) [58]. 
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(2.6) 

The energy from the gas phase is released to the solid phase in the catalyst therefore 

energy equation for the solid phase of the catalyst becomes equation (2.7). 
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  
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(2.7) 

Because the gas concentration of a species is different in the bulk flow from the space 

directly above the catalyst equation (2.8) is used. 
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   , , ,
I

L L

trans k m k k g k s

i

a k c c r c T     (2.8) 

The last conservation equation accounts for the species stored on the surface using 

equation (2.9). 

 k
trans ka r

t


 


 (2.9) 

Transfer Coefficients 

Empirical relationships can be used to calculate the heat and mass transfer 

coefficients.  BOOST uses the Sieder/Tate [60] relationship to define the transfer 

coefficients as seen in equations (2.10) and (2.11). 

1
3

1.86 Re Pr g
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hyd

d

l
k

d


 
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   (2.10) 
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,

1.86 Re k g
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hyd

d
Sc D

l
k

d

 
   
   (2.11) 

BOOST Enthalpy and Heat Capacity Calculations 

Table 2.1 describes the where each of the thermal and fluid properties are defined 

from their reference sources. 
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Table 2.1 − Shows where all gas thermal fluid properties are determined 

Property Unit Reference 

Molecular Weight kmol/kg Tabulated from literature 

Specific Heat kJ/kg*K Polynomial fits from Barin [61] 

Enthalpy kJ/kg Polynomial fits from Barin [61] 

Entropy kJ/kg*K Polynomial fits from Barin [61] 

Thermal 

Conductivity 

W/m*K Polynomial fits from VDI et al [62], and Reid et al [63] 

Viscosity Pa*s Polynomial fits from VDI et al [62], and Reid et al [63] 

Diffusion 

Coefficients 

m
2
/s Binnary acc. To Fuller et al. [64], mixture acc. To Perry 

et al. [60](Wilke Method) 

Boundary Conditions 

Using BOOST to solve the above differential equations requires boundary 

conditions need to be applied.  For the continuity and momentum equations to be solved 

an outlet pressure and an inlet mass flux need to be applied. For the energy and species 

equations inlet temperatures and mass fractions need to be applied.  Lastly either heat 

loss boundary conditions need to be applied or the simulation can be run as assuming the 

catalytic converter is adiabatic 

Chemical Reaction Rate Calculations 

Chemical reactions can be written in the following form shown in equation (2.12). 
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1 1

K K

ki k ki k

k k

v v 
 

      (2.12) 

The stoichiometric coefficient for a reaction is defined in equation (2.13). 

ki ki kiv v v    (2.13) 

The rate of production of species k is defined by equation (2.14). 

1
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i ki i
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r v q


   (2.14) 

The reaction rate is defined by the difference between the forward and backward reaction 

rates shown in equation (2.15). 
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The reaction rate coefficients are initially defined by the Arrhenius Rate Law [65]  

(equation (2.16)) but can be changed as shown later in the document.  

expb E
K k T

R T

 
    

 
 (2.16) 

While using equation (2.15) the concentration can come in two forms one form for gas 

phase species (equation (2.17)), the second for stored species on a catalyst (equation 

(2.18)). 
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,k g kc    (2.18) 
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2.2 Experimental Equipment 

A bench top reactor is commonly used for global kinetic model development.  

The bench top reactor allows for synthetic gas blends to be created that allow the user to 

isolate reactions on a catalyst.  The bench top reactor also allows the user to control the 

flow rate and temperature of the gas as it reaches the catalysts.  This allows the user to 

further isolate reactions based on temperature and the space velocity exposed to the 

catalyst.   Additionally the developed aftertreatment models can be compared to engine 

results for validation of the kinetic mechanism.  This section will describe the 

experimental equipment used to generate the data presented in this document. 

2.2.1 Bench Top Reactor 

The flow reactor was designed and built by Stefan Klinkert.  The flow reactor 

consists of the follow major parts as can be seen in the schematic in Figure 2.3 with 

further details given in [66]. 

 Various gas bottle (O2, CO2, CO, H2, NO, NO2, NH3, C3H6; in nitrogen 

balance) and liquid nitrogen supply with pressure regulators 

 21 Mass flow Controllers (Brooks) 

 2 Peristaltic Pumps for H2O delivery(Cole Parmer) 

 2 H2O Vaporizers (in-house design) 

 2 Tube Furnaces (Lidenberg) 

 Heat tapes (Brisk Heat) and solid-state-relay temperature controllers 

(Watlow) 

 Data acquisition (DAQ) hardware and software (NI / Labview) 

 Various K-Type Thermocouples (Omega) 

 2 Pressure Transducers (Omega) 
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Figure 2.3 − The layout of the synthetic exhaust reactor bench used to obtain 

experimental data based on work by Klinkert et al. [66]. 

The reactor is designed to have two synthetic gas mixing sections titled the Lean 

Branch and the Rich Branch where different gas blends are made.  These branches meet 

at a four way valve controlled by a fast acting solenoid.  The four way valve has two 

inlets and two exits.  The inlets are connected to the Lean and Rich Branches.  One exit is 

connected to a vent line, while the other is connected to the tube furnaces where the 

catalyst temperature can be controlled.  The reactor bench has the ability to select 

different gas concentrations from either the Lean Branch or Rich Branch to flow the tube 

furnace where the catalyst temperature is being controlled.  The outlet of the tube 

furnaces is connected to a MKS FTIR for emissions measurements, V&F H-Sense for 

hydrogen measurements, and a Horiba O2 analyzer for oxygen measurements.  The 

reactor bench contains an additional pathway bypass the tube furnaces directly to 

emissions analyzers, to measure inlet conditions to the tube furnaces.   At the outlet of the 

tube furnaces an additional MFC is connected to apply dilution N2 to the reactor flow gas 
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for faster response of the emissions analyzers.  The entire reactor bench is wrapped with 

heat tapes and controlled to 190°C to avoid H2O condensation.  

Mass Flow Controllers 

All MFCs were verified within error using an Omega digital volume flow sensor.  

The MFC listed error is less than 0.2% of full scale flow.  The full scale flow for each 

MFC, the maximum concentration values for each gas at 50,000 h
-1 

SV (6 L/min total 

flow for 1 inch catalyst length), and the expected error for each MFC at a 50,000 h
-1 

SV 

are listed in Table 2.2 for the lean and rich branches [66].  

 

Table 2.2 – Full flow of each MFC and respective concentration of gas cylinder each 

MFC is connected to. 

Gas Lean Branch Rich Branch 

Total Flow Max 

Conc. 

Expected 

Error 

Total Flow / 

Error 

Max 

Conc. 

Expected 

Error 

(mL min
-

1
/%) 

(ppm) (ppm) (mL min
-1

/%) (ppm) (ppm) 

N2 8000/100 Balance Balance 8000/100 Balance Balance 

CO2 1200/100 200,000 400 1200/100 200,000 400 

O2 720/1 120,000 240 2000/10 60,000 120 

CO 1200/1 2,000 4 1200/7.5 30,000 60 

C3H6 600/2 2,000 4 1200/10 20,000 40 

H2 600/1 1,000 2 600/100 40,000 80 

NO 600/2 2,000 4 600/2 2,000 4 

NO2 600/2 2,000 4 600/2 2,000 4 

NH3 600/2 2,000 4 600/2 2,000 4 
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Reactor Bench Emissions Analyzers 

MKS FTIR 

An FTIR analyzer was used to measure the majority of the composition of 

outflow of the Reactor Bench. The specific instrument used was a 2030-HS Multigas 

Analyzer manufactured by MKS Instruments Inc. It has the capability to detect species 

from ppb levels to percent concentration in a gas stream. Identification of specific 

molecules is accomplished by measuring the absorption spectrum emitted by that species 

when exposed to an infrared beam in a gas cell. The spectral frequencies and intensities 

are unique based on the number and strength of chemical bonds among atoms contained 

in a given molecule. Most gases in engine exhaust are infrared detectable with exception 

of diatomic gases like O2, H2 and N2. The concentration of gas is determined by 

comparison of magnitude of the signal compared with pre-loaded calibrations.  During 

the testing, a range of calibrations were loaded into the FT-IR software to look for desired 

species. The accuracy of MKS FTIR and species measured are shown in Table 2.3 [67]. 
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Table 2.3 – Accuracy of species measureable by the MKS FTIR 

Gas Lowest Detectable Limit 

NH3 0.5 ppm 

CO2 0.2 ppm 

CO 1.0 ppm 

H2CO 0.6  ppm 

CH4 1.0 ppm 

C3H6 1.0 ppm 

NO 1.0 ppm 

SO2 1.0 ppm 

C8H10 1.0 ppm 

H2O 100 ppm 

 

V&F H-Sense 

H2 is measured in on Reactor Bench using a sector-field mass spectrometer 

manufactured by V&F Instruments. The sector field mass spectrometer uses a high speed 

turbo pump to separate H2 from the other heavier gases in the exhaust. Then by ionizing 

and collecting molecules according to charge, the instrument measures the quantity of 

hydrogen molecules in the gas stream.  The V&F H-Sense can be used to measure H2 

concentrations on a wet or dry basis from 1 ppm to 100% [67]. 

Horriba O2 Analyzer 

A paramagnetic oxygen analyzer is used to determine the amount of oxygen in the 

exhaust gas sample.  This instrument operates by quantifying the magnetic susceptibility 

of the sample, which is the ability of a molecule to become a temporary magnet when 
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placed in an oscillating magnetic field.  Since oxygen is the only exhaust gas constituent 

that is strongly paramagnetic, its quantity is readily obtained by using this method.  A 

dumbbell-shaped test body mounted on a quartz fiber is suspended in a nonuniform 

magnetic field.  As the partial pressure of oxygen in the gas sample surroundings the test 

body changes, the body will rotate.  An optical system that senses this rotation causes a 

voltage to be applied to the test body to maintain it in a stationary position.  This voltage 

is output signal of the amplifier circuit, and is then correlated to the oxygen concentration 

in the gas sample. The range of 0 – 2% is selected on the O2 analyzer due to a common 

dilution ratio of four to one.  With the dilution ratio the O2 Analyzer can operate on a wet 

basis with up to 2% H2O.  The accuracy of the O2 analyzer is 1% of the full scale range 

which yields a value an error value of 200 ppm. 

Validation 

Validation of the reactor bench was performed by Klinkert et al. [66].  The reactor 

bench was validated by testing the gas preparation, mixing of the feed gas into the 

catalyst, and uniform temperature control.  The gas preparation was validated by 

characterizing the command and output concentrations for each gas along with the 

associated time lag for each species.  Glassware to increase turbulence was added to 

increase mixing of the feed gas, which was validated by commanding concentrations of 

multiple species in the feed gas.  It was found that the addition of the turbulence inducing 

glassware aided in uniform temperature control, which was validated in the second 

furnace by finding the temperature distribution in a blank catalyst with seven 

thermocouples distributed throughout the catalyst.    
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Catalyst Preparation 

The catalyst used in this set of experiments is comprised of 99 channels of a 300 

cpsi, Fe-zeolite catalyst core, cut to 19.05 mm diameter and 25.4 mm length.  The 

catalyst was aged for 20 hours in 10% H2O with a balance of N2 at 550°C.  The wall and 

washcoat thickness of the catalyst were determined using from digital images taken by a 

16-bit Resolution Microscope by the Keyence Corporation (VHX-S50 Serial Num: 

5D010002).  An example of these images are shown in Figure 2.4 

 

 

Figure 2.4 – Multiple measurements were taken to get an average wall thickness and 

washcoat thickness of the SCR catalyst. 

2.2.2 Engine Test Cell 

The Eaton Aftertreatment System (EAS) shown in Figure 1.1, was configured to 

operate connected to a 6.4L International Diesel Engine.   Emissions were measured 

before and after the SCR catalyst simultaneously by two MKS FTIRs.  Additionally at 
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the inlet hydrogen measurements were taken with the V&F H-Sense, and oxygen 

measurements were taken using the AVL CEB II emissions bench.  Details of the test cell 

configuration are as follows in this section. 

Engine 

The engine used with the EAS is a 6.4 L V-8 direct-injection diesel engine 

manufactured by the International Truck and Engine Corporation. Known as the Power 

Stroke, this medium-duty engine is most commonly used in Ford F-series pickup trucks 

and incorporates advanced technologies to reduce exhaust emissions while maintaining 

engine performance. Primary engine specifications are shown in Table 2.4. 

Table 2.4 – Shows the Engine Specifications for the 6.4L International V8 engine 

Engine Type  Diesel, 4 Cycle 

Configuration  4 OHV/1 Cam-in-Crankcase-V* 

Displacement  6.4 L (390in
3
) 

Bore and Stroke  98.2 x 105 mm (3.87 x 4.134 in) 

Compression Ratio  17.5:1 

Aspiration  Series Sequential Turbo/Charge Air Cooler 

Rated Power @ RPM  261 kW (350 hp) @ 3000 RPM 

Rated Torque @ RPM  881 N-m (650 ft-lb) @ 2000 RPM 

Combustion System  High Pressure Common Rail Direct Injection 

Total Engine Weight  499 kg (1130 lb) 

Coolant Flow  473 L/min (125 gpm) @ 3000 RPM 

Air Flow  21.1 m
3
/min (744 cfm) @ 3000 RPM 

Exhaust Flow  55.6 m
3
/min (1962 cfm) @ 3000 rpm 

Oil Flow  59 L/min (13 gpm) @ 3000 rpm 
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The engine is also equipped with an electronically controlled common rail direct 

injection system.  This works by maintaining common lines at high pressures with a 

central pump.  The injectors are then sent an electronic injection signal where fuel is 

injected.  Using this fuel system the engine is capable of multiple injections strategies, 

meaning there is the ability for multiple pilot, main, and a post injections for every 

combustion cycle. 

AVL Emissions Bench 

An AVL Combustion Emissions Bench II (CEB-II) is used to sample condition 

and measure exhaust gas concentrations.  The CEB-II can quantify the amount of CO, 

CO2, O2, total Hydrocarbons (THC), NO and NOx in the exhaust gases and CO2 levels 

from the intake manifold.   

THC Analyzer 

An ABB Advance Optima Milt-Fid 14 EGA is used to measure the total 

hydrocarbon emissions.  The flame ionization detector (FID) determines the mass 

fraction of carbon in the sample which is converted to a hydrocarbon-mass basis by 

assuming a specific carbon to hydrogen ratio recommended for diesel exhaust.  A FID 

uses a burner to combust a stream of hydrogen/helium commonly known as “FID fuel” as 

diffusion flame in air releasing ions during combustion.  The hydrocarbon-containing 

sample gas is premixed with the fuel and is also consumed in the burner which increases 

the concentration of ions within the flame.  This increase in ionization is directly 

proportional to the mass flow rate of carbon atoms into the flame.  A DC voltage between 

the burner tip and a collector electrode, which surrounds the flame, collects the ions 

within the flame causing a current to flow through an electronic circuit which is measured 
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and associated to total hydrocarbon emissions.  The THC Analyzer saves data on a wet 

basis. 

NOx Analyzer 

NO and NOx emissions are quantified with an Eco-Physics CLD 700 

chemiluminescent detector (CLD).  This analyzer can only measure the concentration of 

NO, but incorporates a high-efficiency converter to change any NO2 present to NO to 

determine the total NOx emissions.  Light is emitted from the chemiluminescent reaction 

of NO and ozone (O3) and when excess O3 is present, the amount of light emitted is 

proportional to the concentration of NO.  This light is detected by an optical filter-

photomultiplier combination that produces an output that is linear to the concentration of 

NO in the sample. The NOx Analyzer saves data on a wet basis. 

CO and CO2 Analyzer 

Two ABB Advance Optima URAS 14 EGA non-dispersive infrared analyzers 

(NDIR) are used to determine the amount of CO and CO2 in the samples.  One will 

measures the amount of CO and CO2 in the exhaust stream, and the other is used to 

measure the amount of CO2 in the intake manifold which is related to the amount of EGR 

in the system. 

The NDIR analyzers detect the infrared energy absorption differential between 

two gas-filled columns, one sample column and one reference column.  Infrared radiation 

is passed through the sample and reference columns into a detector that has two cells 

which are filled with gas and physically separated by a flexible metal diaphragm.  The 

infrared radiation collected by each cell heats up its gas and increases the cell pressure.  

When a sample gas passes through the sample column, some of the infrared energy is 

absorbed by the gas and less energy will arrive at the sample cell side of the detector due 
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to the presence of CO and CO2 in the column resulting in a lower temperature in the 

sample column.  From the ideal gas law it is seen that when the temperature decreases the 

pressure will decrease.  The pressure difference causes a deflection in the metal 

diaphragm, which is used as one plate of a variable plate capacitor in an electric circuit.  

The detector output is generated by measuring the amplitude of the oscillating electric 

current caused the diaphragm, which can be correlated to the amount of CO and CO2. 

The CO/CO2 Analyzer saves data on a dry basis. 

O2 Analyzer 

An AB Advance Optima Mangos 16 paramagnetic oxygen analyzer is used to 

determine the amount of oxygen in the exhaust gas sample.  This instrument operates by 

quantifying the magnetic susceptibility of the sample, which is the ability of a molecule 

to become a temporary magnet when place in a magnetic field.  Since oxygen is the only 

exhaust gas constituent that is strongly paramagnetic, its quantity is readily obtained by 

using this method.  A dumbbell-shaped test body mounted on a quartz fiber is suspended 

in a nonuniform magnetic field.  As the partial pressure of oxygen in the gas sample 

surroundings the test body changes, the body will rotate.  An optical system that senses 

this rotation causes a voltage to be applied to the test body to maintain it in a stationary 

position.  This voltage is output signal of the amplifier circuit, and is then correlated to 

the oxygen concentration in the gas sample. The O2 Analyzer saves data on a dry basis. 

Emissions Error Summary 

All analyzers listed above are calibrated with calibration gases.  The analyzers are 

also linearized yearly with a gas divider to make higher order polynomials for the 

analyzers.  Below in Table 2.5 is a list of the associated error for the readings for the 

above analyzers. 
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Table 2.5 − Shows the error associated with the AVL CEB II Emissions bench readings 

based on instrument specifications  

Species Range Error From Analyzers 

THC 10 ppm – 5% ±1 ppm 

CO Low: 50 – 2500 

High: 0.5 – 10% 

±2 ppm 

±100 ppm 

CO2 0.5 – 20% ±100 ppm 

NO / NOx Low: 30 – 5000 ppm 

High: 50 – 10000 ppm 

±1 ppm 

±2 ppm 

Dynamometer 

A dynamometer is a device that absorbs the rotational energy from an engine and 

determines the output power by measuring the engine’s speed and torque. The 

dynamometer used in this experimental effort is an AVL ELIN series 100 APA 

Asynchronous Dynamometer. Table 2.6 shows dynamometer performance specifications  

[68]. 
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Table 2.6 – Shows the specifications for the AVL ELIN series 100 APA Asynchronous 

Dynamometer 

Speed Range ±8000 RPM 

Torque Range -1273 to +1400 N*m 

Power (Absorbing) 330 kW 

Power (Motoring) 300 kW 

Power Consumption 400 Amps @ 400 Volts 

The dynamometer is essentially a highly controllable electric motor/generator.  It 

has a rotor that is connected to the engine via a driveshaft and a stationary stator.  When 

the rotor turns, an electric field is transmitted from the rotor to the stator resulting in a 

torque as mechanical power is transferred into electrical power. This torque is generated 

by the moving of magnetic fields between the rotor and stator.  The torque on the stator is 

equal in magnitude and opposite in direction of the engine torque and is resisted by a 

bending beam mechanism that deflects under load.  The deflection of the bending beam is 

measured with a strain gage and is related to the torque through geometrical and material 

properties of the beam.  Accuracy of dynamometer torque measurements are within 

±0.3% of actual values.  Rotational speed is obtained from an encoder mounted on the 

dynamometer’s shaft.  The encoder measures the frequency of a pulse generated in the 

encoder by the rotation of the shaft. 

Measurements and Calculations 

The following states how measurements were taken for input into the BOOST 

aftertreatment model 
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Air Mass Flow Measurement 

Air coming into the engine first passes through the intake system, where the air is 

filtered, measured, and then directed into the engine.  The flow is measured using a 

laminar flow element (LFE) that works by slowing the flow through multiple small 

channels and measuring the small pressure drop across these channels.  Other readings 

needed for these calculations are intake temperature, relative humidity, and barometric 

pressure.  The mass flow rate through the laminar flow element is calculated using 

equation (2.19). 

   
2

7.55987
fstd std wet

std

f f std dry

PT
m B DP C DP

u T P

 




     
             

     

 
(2.19) 

Table 2.7 shows a list of error for the calculation of air mass flow rate shown in 

equation (2.19) with the mass flow rate percentage calculated based on the root mean 

square method. 

Table 2.7 – Shows the error associated with intake air mass flow rate readings 

Parameter Error 

DP  0.1 in H2O 

fT  0.6°K 

fP  0.05 kPa 

Relative Humidity 2.5% RH 

The error for the mass flow rate was determined by using the root mean square 

(RMS) error analysis and is approximately 3% for the range of the engine. 

Fuel Mass Flow Measurement 

The fuel flow rate is measured by a Micro Motion coriolis flow meter CMF025 

model which provides mass flow rate measurements independent of fluid temperature or 
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composition.  This is accomplished by measuring a volumetric flow rate and using a 

tuning fork to measure the density of the liquid that is traveling through the fuel system.  

The accuracy of this meter is 0.5% of the flow rate.  From the above information the error 

in total mass flow from the engine can then be calculated as approximately 3% of the 

total mass flow rate. 

2.3 Error Analysis 

Error analysis for all modeling and experimental results is performed using the 

Root Mean Squares method.  The error for each measurement is defined as the square 

root of the sum of the square of the resolution error plus the square of two times the 

standard deviation as shown in equation (2.20).   

 
22 2A resolutione e    (2.20) 

For calculations performed equations (2.21) – (2.24) can be used to determine the 

error in the readings 

Addition 

2 2

A BA B e e    (2.21) 

Subtraction 

2 2

A BA B e e    (2.22) 

Multiplication 

2 2 2 2

A BA B e B e A      (2.23) 

Division 

2 2

2 2

A Be eA A

B B A B

   
    

   
 (2.24) 
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CHAPTER 3 

LEAN SCR KINETIC MECHANISM 

This chapter details the process to generate a lean SCR kinetic mechanism.  The 

kinetic mechanism is based on literature sources [45, 47, 48] for proposed reaction and 

kinetic rate forms.  The effect of oxygen concentration is focused on specifically due to 

account for NOx regeneration in a LNT-SCR aftertreatment system.  The results in this 

chapter detail all pertinent reactions from literature resources for steady state conditions 

on an iron based SCR catalyst with varying oxygen concentrations.  The results were then 

applied to validation data from the EAS system on an engine as well as further reactor 

bench experiments.  

3.1 NO Oxidation 

The oxidation of NO to NO2 as shown in equation (3.1) can be found on most 

types of aftertreatment catalysts [45, 69-72].  The oxidation of NO to NO2 was first 

theorized for the SCR process in 1980 by Kiovsky et al. [73].  In the early work involving 

NO decomposition over Zeolite catalysts, it was inferred that the O2 liberated from the 

surface during decomposition reacts with the inlet NO to form NO2 [74]. 

1
2 22

NO O NO   (3.1) 

The oxidation of NO is equilibrium limited and subject to the temperature 

conditions of the monolith.  It was later determined to be an important precursor step to 
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NOx reduction in the ammonia and HC SCR processes over a zeolite material [75-78].  

This was because experiments illustrate that the temperature required for total conversion 

to nitrogen can be lower when NO2 is present.  The equilibrium basis in the NO oxidation 

reaction can be seen in Figure 3.1 where the temperature can be determined where the 

onset of equilibrium kinetics occurs. 
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Figure 3.1 − The oxidation of NO to NO2 is a reversible reaction with the onset of 

equilibrium chemistry to convert NO2 to NO and O2 at higher temperature.  Results are 

shown in temperature ramp experiments with stoichiometric ratios of feed gas with 0% 

H2O and 0% CO2 in the feed gas. 

3.1.1 Experimental Results 

Experimental data for the NO oxidation reaction when using a bench-top style 

reactor is collected using constant inlet concentrations and varying temperature in a 

constant upward or downward ramp rate up to 5°C/min. Experimental results are then 

compiled to show a conversion percentage vs. temperature profile. 
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NO Oxidation Effect of Varying O2 Concentration 

By examining the reaction in equation (3.1), it can be predicted that oxygen 

concentration has a large effect when oxidizing NO to NO2.  NO conversion is defined as 

the disappearance of NO as seen in equation (3.2), similarly NO2 conversion is defined in 

equation (3.3).  

_ _
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100
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NO
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c c
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(3.3) 

Figure 3.2 shows that increasing oxygen concentration will increase the 

conversion of NO to NO2.   
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Figure 3.2 − The oxidation of NO to NO2 is dependent on O2 concentration in the feed 

gas, all experiments were performed as a temperature ramp with 6% H2O, 6% CO2, and 

1000 ppm NO in the feed gas 

From the experimental results shown in Figure 3.2 the dependence on oxygen 

concentration can be determined by the following method.  NO conversion efficiency 
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 NO can be defined as proportional to the oxygen concentration to some power    as 

seen in equation (3.4).   

 2NO O


   (3.4) 

By using the proportionality shown in equation (3.4) the NO conversion 

efficiency for the experiments for 2% O2 concentration and 12.0% O2 concentration can 

be compared as shown in equation (3.5). 
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(3.5) 

The log of each side of the proportionality can then be taken (3.6) to find the 

dependence on O2 concentration as shown in equation (3.7). 
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(3.6) 
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(3.7) 

The results from this approximation are shown in Figure 3.3, where it can be 

determined that the average dependence shows conversion at most temperatures to an 

oxygen dependence of 0.49, which is within error of the proposed kinetic oxygen 

dependence of 0.5. It should also be noted that the comparison of the 12% O2 

concentration experiment and 6% O2 concentration yielded similar results. 
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Figure 3.3 − Experimental data matches a half order oxygen dependence for the oxidation 

of NO to NO2, all experiments were performed as a temperature ramp with 6% H2O, 6% 

CO2, and 1000 ppm NO in the feed gas.   

Figure 3.4 shows the reverse direction of the NO oxidation reaction in equation 

(3.1) will decrease conversion of NO2 to NO as oxygen concentration increases.  The 

effect of oxygen concentration is negligible for the reverse rate which is dominated by the 

equilibrium kinetics shown in Figure 3.1.   
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Figure 3.4 − O2 concentration has negligible effects on NO2 conversion to NO.  All 

experiments were performed as a temperature ramp with 6% H2O, 6% CO2, and 1000 

ppm NO2 in the feed gas. 

NO Oxidation Effect with varying H2O and CO2 concentration  

While it is widely acknowledged that increases in H2O concentration will 

decrease NO oxidation to NO2, the magnitude of this effect will differ among types of 

SCR catalysts [79, 80]. It was found by Petunchi and Hall [78] that water strongly 

inhibits the oxidation of NO to the point of complete suppression, however small 

amounts of NO2 can still be stored in the presence of this water.  It is assumed that CO2 

has very little effect on the NO oxidation process [81].  As a result it was theorized that 

nitrogen dioxide is the principal component of the NOx in contact with the catalyst and 

available for the SCR process [82].  With respect to zeolite catalysts,  copper ion-

exchanged zeolites are more active then iron ion-exchanged zeolite catalysts  for 

oxidation of NO to NO2 [42].  While there was still some questions with respect to this 

being the initial step in the reaction mechanism [83], most authors agree that the copper is 

desired to activate the NO to form NO2 to enhance conversion for lean SCR operation 
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[81, 84].  Eventually, it was determined that this NO oxidation reaction is the rate 

determining step over a H-ZSM-5 catalyst [85-89].  Recent papers have illustrated that 

this result can be generalized to the zeolite materials for the SCR process [90-93].   

  In the experiments shown in Figure 3.5, the oxidation of NO to NO2 is a 

dominant effect when H2O is not present in the feed gas; however in experiments with 

H2O present there are only negligible differences in conversion efficiencies.  The same 

effect is seen in the experiments shown in Figure 3.6 where NO2 conversion to NO is a 

more dominant effect when H2O is not present, but when H2O is present there are only 

negligible differences.  Figure 3.5 and Figure 3.6 show a saturation effect of H2O 

inhibition, where saturation effects commonly occur due to species with concentrations 

above 1% [80].  
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Figure 3.5 − From 0 – 6% water concentration in the feed gas can have large effects on 

the oxidation of NO to NO2, while there is little effect on the oxidation of NO to NO2 

when comparing H2O concentration from 6 – 10%, all experiments were performed with 

6% O2, and 1000 ppm NO. 
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Figure 3.6 − From 0 – 6% water concentration in the feed gas can have large effects in 

the reduction of NO2 to NO, while there is little effect in the reduction of NO2 to NO 

when comparing H2O concentration from 6 – 10%, all experiments were performed with 

6% O2, and 1000 ppm NO. 

3.1.2 NO Oxidation Modeling Results 

To determine the kinetic rate expression for the NO oxidation reaction shown in 

equation (3.1), a survey of the literature is performed to illustrate a number of important 

points regarding the different chemical species and their adsorption properties on the 

surface: 

 Water is weakly adsorbed [80], CO2 is not adsorbed and CO adsorption is 

negligible.   

 Nitrates formed on surface are thermally stable even at conditions in 

which SCR proceeds with a high rate [81]. 

 CO adsorption is greater than NO adsorption [81, 94], however there is 

little to no NO adsorption [95]. 

 Zeolites absorb mainly NO2 and only a small amount of NO [78, 96]. 

 Ammonia hinders oxidation of NO to NO2 [87]. 
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The original kinetic expression for this reaction over a zeolite comes from a paper 

based on work by Marangozis [97] and is based on a Langmuir-type isotherm as 

illustrated in equation (3.8) .  Because of the much weaker adsorption properties of NO 

than O2, Marangozis converted the rate equation into a power-law format as shown in 

equation (3.9).   However, this form of the equation does not account for the equilibrium 

limitation of the reaction as shown in Figure 3.1.  Recent literature work by Brosius et al. 

has formulated a reaction rate expression for this reaction over an iron-zeolite catalyst 

[98].  They generated three different Langmuir-Hinshelwood type of mechanisms as 

described in equations (3.10), (3.11), and (3.12).  In their work, they found that the 

kinetic rate used in equation (3.12) was more accurate than equation (3.11), while 

predictions of kinetic rate in equation (3.10) appeared to be poor.  It is interesting to note 

that the Marangozis mechanism in equation (3.8) and the kinetic rate from Brosius et al. 

in equations (3.10), (3.11), and (3.12) all include the negative half-order dependence on 

oxygen as found for the NO decomposition reaction which can be validated from 

experimental data shown in Figure 3.3. 
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Due to equilibrium effects shown in Figure 3.1, the kinetic rate forms listed in 

equations (3.8) and (3.9) can be eliminated.  When evaluating the kinetic rate forms in 

equations (3.10), (3.11), and (3.12) each contains an equilibrium term for the reverse rate, 

and a half order dependence on oxygen concentration.  Since pressure changes are 

negligible due to the location of the EAS in exhaust stream, the equilibrium constant can 

be determined as a function of temperature by fitting equation (3.13) [99] from 

experimental data published in the JANAF tables [100]. 
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 (3.13) 

Additionally while each kinetic rate form contains an inhibition term for NO, O2 

and NO2 present in the denominator the dependence on this inhibition changes.  Each 

inhibition term represents adsorption on the catalyst and can change the reaction rate for 

the NO oxidation reaction shown in equation (3.1).   

From literature it can be assumed that NO and O2 adsorption is negligible  [95].  

Experimentally by performing a Temperature Programmed Desorption experiment, 

which will be described in greater detail in Section 3.2 (NH3 Storage), with NO2 in the 

feed gas as shown in Figure 3.7.  It can be determined that only a negligible amount of 

NO2 will store on the catalyst, which rapidly thermally decomposes to become NO.  The 

effect of H2O inhibition can be determined from experiments shown in Figure 3.5 and 

Figure 3.6 which are consistent with results by Kijlstra et al. with H2O levels saturating 

the catalyst through the entire expected operational range of 6 – 12% H2O [80], it can be 

assumed that H2O concentration will have negligible effects on NO oxidation.  Due to 

low adsorption of NO, O2 and NO2, and the saturation effect of H2O on the catalyst all 



 46 

 

the inhibition terms can be neglected which became evident from further evaluation of 

kinetics, where all inhibition terms optimized to extremely low values and therefore can 

be neglected.  This yields the kinetic rate form shown in equation (3.14) which is 

consistent with kinetic models for copper based zeolite catalysts from Olsson et al. [45] 

and Kim et al. [47].    
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Figure 3.7 − Negligible amounts of NO2 storage capacity when performing a 

Temperature Programmed Desorption (TPD) experiment (left). NO2 that does adsorb 

rapidly converts to NO and does not store on the catalyst (right). The TPD experiment 

was performed with a background of 8% H2O and 8% CO2. 

One issue with the kinetic model shown in equation (3.14)  is that it does not take 

into account the presence of ammonia hindering the reaction.  Due to the ability of NH3 

to convert NO to N2 this is difficult to determine experimentally, while Wurzenberger et 

al. [48] has proposed the kinetic rate form shown in equation (3.15),  which is similar to 

the kinetic rate shown in equation (3.14) but includes a surface coverage dependence for 

free catalytic sites  Z  that reduce as NH3 stores on the catalyst.   



 47 

 

 1

2

2

NO0.5

1 NO Oexp
E

R Tu m

Z

eq

y
k y y

K


  
   

 
1R  

(3.15) 

 While equation (3.14) and (3.15) will yield the same modeling results for the 

experimental data due to all available sites being free (i.e. 1Z  ), there is no proof that 

the oxidation of NO to NO2 occurs on the same catalytic site as NH3 storage therefore the 

kinetic rate form shown in equation (3.14) is used for the global mechanism.  The results 

are shown in Figure 3.8 where the average error for the model is less than 2.0 ppm for the 

entire experiment, thus the use of the kinetic rate shown in equation (3.14) is 

corroborated.  
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Figure 3.8 − Modeling results show good agreement for oxidation of NO to NO2, 

modeling experiments were calibrated against a temperature ramp experiment with 8% 

H2O, 8% CO2, 6% O2, and 1000 ppm NO. 

3.2 NH3 Storage 

NH3 storage can commonly be written as the difference in NH3 adsorption and 

NH3 desorption which is shown as a reversible reaction in equation (3.16).  NH3 storage 
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is the rate limiting step in SCR NOx conversion and therefore the most important reaction 

when modeling a kinetic mechanism.  While there are three possible ammonia storage 

sites on a zeolite, this section is concerned primarily with the strongly chemisorbed state 

(Brønsted and Lewis acid sites) [46], which literature suggests has a much larger 

influence than the weakly adsorbed or chemisorbed states [45, 101].  Experimentally, 

multiple storage sites would be seen if there are multiple peaks during desorption or 

multiple shoulders during adsorption which correspond to different bonding strengths 

from multiple storage sites.  These were not present in any TPD experiment performed on 

this catalyst.  Because of the literature sources stated above and experimental results, a 

simplification can be made by writing a generalized storage mechanism with only one 

storage site as seen in equation (3.16): 

 
1

1
3 3

f

r

r

r
NH Z Z NH   

(3.16) 

where Z represents a free storage site that is active for stored ammonia on the zeolite.  

This mechanism should perform well during steady-state storage events when there is 

time for ammonia to bond to these strong sites due to the strongly bound chemisorbed 

site being dominant in NH3 storage [45]. 

3.2.1 NH3 Storage Experimental Results 

Commonly, a Temperature Programmed Desorption (TPD) experiment is 

performed when using a bench-top style reactor to study effective storage of a species on 

a catalyst. 

Temperature Programmed Desorption (TPD) 

In the early history of the zeolite catalyst, researchers wanted to know its acidic 

properties because it led to a direct understanding of the heterogeneous catalysis that 
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occurs on the surface [102, 103].  One method often used was a Temperature-

Programmed Desorption (TPD) in order to determine the strength of the adsorbate-

adsorbent interaction and hence its “acidity strength” [104-110].  Ammonia was often 

used during this process because it is small enough to enter all of the zeolite pores and 

react with both Brønsted and Lewis acid sites [108].  During these experiments, up to 

three different sites/types of ammonia storage took place with varying levels of potency.  

The three types of ammonia storage are weakly adsorbed, chemisorbed, or strongly 

chemisorbed states [109].  The strongly chemisorbed state is associated with structural 

Brønsted hydroxyl groups and strong Lewis acidic sites [91, 104, 109].  The primary 

advantage of zeolite-based catalysts for diesel NOx SCR is its ability to utilize these 

Brønsted and Lewis sites [111]. 

To determine the role of the three different types of storage sites on the iron based 

zeolite SCR catalyst in the EAS, multiple TPD experiments were performed to determine 

the storage capacity of NH3.  In Figure 3.9 it can be seen that there is a single desorption 

peak indicating that we are primarily concerned with only the strongly chemisorbed state 

for NH3 storage.  Therefore, the storage capacity is defined as the total amount of NH3 

stored on the entire catalyst in both Brønsted and Lewis sites.  Experiments were 

conducted in a test matrix with different initial storage temperatures (200°C – 475°C) and 

different CO2 and H2O levels (0% – 10%). The space velocity was held constant at 33k 

hr
-1

, which corresponded to a total flow of 4 L/min.  The experimental methodology is as 

follows and is illustrated in Figure 3.9: 

1. The TPD starts with the SCR inlet flow set at a constant NH3 

concentration and temperature and continues until catalyst outlet 

concentration rises to equal the inlet concentration.  For this experiment, 

the inlet NH3 concentration is set at 250 ppm.  
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2. Once the catalyst is filled (i.e. constant outlet NH3 concentration), the 

controls shut off the inlet feed of NH3 and hold a constant temperature 

until the outlet NH3 concentration coming from the catalyst approaches 

zero.   

3. Temperature is ramped at 5°C/min until it reaches peak normal operating 

temperature for the catalyst system.  For this experiment, this value is 

500°C and once this temperature is reached, it is held for 5 minutes.  

4. Lastly, cleaning of the catalyst follows utilizing an O2 and N2 mixture (not 

shown in Figure 3.9).  This allows the model to start with the assumption 

that the surface is completely clear of absorbed species.  At high 

temperatures, oxidation of NH3 becomes a more dominant effect, which is 

the process that cleans the catalyst [45, 79, 112].  This held the O2 and N2 

mixture for 15 minutes above 500°C. Due to repeatability in experiments, 

it can be assumed this cleaning process is sufficient. 

5. This procedure was repeated for different storage temperatures in order to 

obtain a temperature dependence on storage capacity. 
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Figure 3.9 − TPD experiment highlighting the Inlet and Outlet NH3 storage area and an 

experimentally determined single desorption peak.  The TPD experiment was performed 

with an inlet flow of 250 ppm NH3, 0% H2O, 0% CO2 in balance N2. 

  The total NH3 storage capacity of the catalyst can be calculated by taking the 

integral of the difference between the inlet and the outlet molecular flow rates of NH3.  

This calculation can be done at two locations (Inlet NH3 Storage Area and Outlet NH3 

Storage Area) during this experiment which yield equal NH3 storage capacities.  

Examples of both locations are shown in Figure 3.9.  The Inlet NH3 Storage is calculated 

during step 1 listed above (where there is constant inlet flow of NH3 and the adsorption of 

NH3 is calculated), while the Outlet NH3 Storage area is calculated during steps 2 and 3 

(where the desorption of NH3 is calculated). 

3.2.2 NH3 Storage Effects with Temperature 

By integrating the NH3 Inlet Storage area as shown in Figure 3.9 it can be seen in 

Figure 3.10 that NH3 Storage capacity will decrease as temperature increases.  The ideal 

results for using the one site reaction listed in equation (3.16) are also shown in Figure 
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3.10.  Due to experimental results deviating from the single storage site approximation, it 

becomes apparent that there is a possibility of multiple storage sites present on the Fe-

zeolite based SCR catalyst used in the EAS.  Since a non-analysis agreement has been 

made evaluation of the strength of the different catalytic sites is not possible.  However, 

as shown in Figure 3.9 all NH3 is released in a single desorption peak which translates to 

a similar bonding strength for all active sites, which allows for us to use the single site 

approximation (equation (3.16)) in the global SCR kinetic model.  
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Figure 3.10 − Shows the integral NH3 storage capacity for the same brick, calculated by 

integrating the storage capacity of TPD experiments performed at 225°C, 300°C, 350°C, 

and 400°C.  Each experiment had the same inlet gas concentrations of 250 ppm NH3, 0% 

H2O, and 0% CO2. 

3.2.3 NH3 Storage Kinetic Modeling 

Once it has been established that the single storage reaction shown in equation 

(3.16) can be used, common Arrhenius rate forms for surface chemistry can be used to 

define the reaction with the forward rate expression as shown in equation (3.17). 
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 1f

31f 1f NH Zexp
u m

E

R T
r k y    

(3.17) 

where Z is the fraction of the surface that is available to store ammonia (i.e. free sites),   

k is the pre-exponential in the rate form,  E  is the activation energy,  iy  is the mole 

fraction of species i at the reaction layer on the surface of the catalyst,  uR  is the 

universal gas constant, and mT  is the brick temperature.  Commonly, in TPD experiments 

for SCR catalysts, adsorption of ammonia occurs quickly [106], which results in a 

negligible NH3 adsorption activation energy from the gas to surface for a one site storage 

mechanism [108].  The activation energy being small is consistent with vanadium-based 

SCR modeling efforts, which shows little or no activation energy required for this 

forward rate expression due to the gas-to-surface interaction [113]. 

The reverse direction kinetics for equation (3.16) are commonly written as a 

function of the temperature of the monolith and the ammonia storage density on the 

surface.  A review of the literature did not identify any species that were active in 

desorption of ammonia from the surface at standard diesel exhaust conditions.  Only 

increasing the temperature above 573 K triggers the desorption process of the strongly 

chemisorbed ammonia [48, 91, 109, 114-116].  The rate form for the reverse kinetics was 

initially written in standard rate law form, which can be seen in equation (3.18) [45]. 

   
1r

3
1r 1r Z NH

exp
u m

E

R T
r k    

(3.18) 

where 
 3Z NH

  is the surface coverage fraction of stored NH3.  However, the reverse 

direction rate for equation (3.18) has been changed to make the activation energy a 

fractional NH3 surface coverage term based on a Tempkin isotherm [47, 48], which can 

be seen in equation (3.19).   

    
1r

3 3
1r 1r Z NH Z NH

exp
u m

E

R T
r k      

(3.19) 



 54 

 

where   is a constant to multiply with the surface coverage of NH3.  The Tempkin 

isotherm reverse rate form shown in equation (3.19) was used, because the Tempkin 

isotherm rate form increased the accuracy of the model for the TPD experiments when 

compared to the standard reverse rate form (equation (3.18)).  Modeling results showing 

the comparison for these two reverse kinetic rate forms are shown in Figure 3.11. 
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Figure 3.11 − Shows a slight increase in modeling accuracy when using the Tempkin 

Isotherm Kinetics listed in equation (5-8).  The modeling experiment was performed with 

an inlet gas feed of 250 ppm NH3, 8% H2O, and 8% CO2 with an initial storage 

temperature of 200°C 

3.3 Selective Catalytic Oxidation of NH3  

One advantage of zeolite catalysts is that they have a wider operating temperature 

window than vanadium-based catalysts because of larger conversion rates at the higher 

temperatures [15, 92, 116-118].  This conversion relates directly to the selective catalytic 

oxidation (SCO) of ammonia which was found by Amiridis et al. over a Fe-Y zeolite 

when the excess ammonia consumption during the SCR process corresponded to the 

hypothesis that ammonia oxidation was occurring [119]; later corroborated by Stevenson 
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et al. over an H-ZSM-5 catalyst [88].  As a result, the SCO reaction is important to 

model, as it becomes the upper bounds of SCR based activity. 

Literature research into zeolite catalysts illustrates that Fe-ZSM-5 is a good 

catalyst for the SCO process [120].  It can be significant for H-zeolite catalysts [88] 

whereas Cu-ZSM-5 had the lowest instance of SCO in comparison [92].  Centi and 

Perathoner reasoned that this limitation occurs in catalysts like Cu-ZSM-5 because they 

form stronger nitrosyl species which inhibit the dissociative chemisorption of ammonia 

which is the first step in oxidation to N2 [42].  The preparation of the catalyst is also 

important because it can lead to extra framework cations and metal oxide clusters which 

are too active for NH3 oxidation [92]. 

The oxidation of ammonia is commonly the weak point of global SCR kinetic 

models due to a number of theorized ammonia oxidation reactions that can occur [121]. 

Bodenstein et al. [122] suggested a detailed mechanism listed in equations (3.20) - (3.23) 

for the oxidation of NH3 with on a platinum wire. 

3 3NH O NH O   (3.20) 

3 2NH O O HNO H O    (3.21) 

3 2 2NH O HNO N H O    (3.22) 

2 2HNO HNO N O H O    (3.23) 

It was also found that catalysts known to be active for NH3 oxidation (Pt/Pd/Rh-

ZSM-5) producing partial reduction of NH3 yielding NO and N2O as by-products [47, 48, 

123] listed in equations (3.24) and (3.25) as well as complete reduction to N2 and H2O 

[45, 79] as shown in equation (3.26) .  Commonly all ammonia oxidation reactions are 

written as surface reactions due to the strong bond of NH3 to the catalyst surface, 
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although Wurzenberger [48] suggests there is a possibility of NH3 oxidizing to complete 

reduction in the gas phase as shown in equation (3.27).      

 3 2 2 24 4 2 6Z NH O Z N NO H O      (3.24) 

 3 2 2 24 5 2 6Z NH O Z N O H O     (3.25) 

 3 2 2 24 3 4 2 6Z NH O Z N H O     (3.26) 

3 2 2 24 3 2 6NH O N H O    (3.27) 

Over a Cu-ZSM-5 catalyst, it was found by Komatsu et al. [124] that NO and N2O 

yields were less than 1% during ammonia oxidation experiments.  In addition, the full 

conversion of ammonia to N2 occurs at lower temperatures than the conversion to NO 

[125]; which was also found over Cu-FAU catalyst [126].  Over a H-ZSM-5 catalyst [88],  

the majority of the ammonia oxidized appears to be converted directly to N2 and not just 

to NO. These results were further corroborated by Sjövall et al. [46] on Fe based zeolite 

SCR catalysts.  Figure 3.12 below shows concentrations on a temperature basis for an 

ammonia oxidation experiment performed on the Fe based zeolite used in the EAS.  From 

these results it can be seen that only negligible values of NO and N2O are present during 

the entire temperature range which corroborates Sjövall findings for a different iron based 

zeolite SCR catalyst.  Based on the experimental data shown in Figure 3.12 and the above 

references, only the stoichiometric reaction to complete products is needed in a global 

kinetic model. 
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Figure 3.12 − NH3 oxidation temperature ramp experiment with an inlet feed gas of 6% 

O2, 8% H2O, 8% CO2, and 1150 ppm NH3; yielded only negligible values of NO and 

N2O for entire temperature range. 

It is important to mention that the SCO of ammonia is not necessarily a negative 

reaction as it can abate the ammonia slip after the SCR reactors without introducing other 

reactants in the gas mixture and producing further pollutants [125].  This SCO process is 

the basis for ammonia slip catalysts present in  some SCR aftertreatment systems [127]. 

3.3.1 NH3 Oxidation Experimental Results 

Experimental data for the ammonia oxidation reaction when using a bench-top 

style reactor are collected using constant inlet concentrations and varying temperature in 

a constant upward or downward ramp rate up to 5°C/min. Experimental results are then 

compiled to show a conversion percentage vs. temperature profile. 
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NH3 Oxidation Effect of varying O2 concentration 

It is commonly accepted that the SCO reactions are dependent on oxygen 

concentrations.  Kim et al. [47] suggests that for the oxidation of NH3 on a SCR catalyst 

is subject to catalytic saturation of oxygen content.  This means that there will be a law of 

diminishing returns for the conversion of NH3 as O2 concentration increases.  This can be 

seen in Figure 3.13 where the NH3 conversion is shown as a function of temperature and 

O2 concentration.  NH3 conversion is defined in equation (3.28).   

3 3

3

3

_ _

_

100
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NH

NH IN

c c

c


 
  
 
 

 
(3.28) 

From Figure 3.13 it can be seen that NH3 conversion increases the most when O2 

concentration increases from 0.5% to 2.0%.  While there is in increase from 2.0% O2 to 

6.0% O2 in the inlet feed gas, it is not as large as the change from 0.5% to 2.0%. 
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Figure 3.13 − The conversion of NH3 due to oxidation increases as O2 levels in the feed 

gas increase, with saturation effects shown when O2 concentration are greater than 2%. 
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3.3.2 Selective Catalytic Oxidation of NH3 Modeling Results 

The SCO of NH3 was originally proposed by Stevenson et al. over a H-ZSM-5 

[86, 88]  as a Langmuir-Hinshelwood mechanism, where they assumed the rate of 

ammonia oxidation is a function of the ammonia coverage and is zero order in oxygen 

concentration as shown in equation (3.29). 

 
 

3

3

NH

1 NH

ox a

a

k K
R

K



 

(3.29) 

where ammonia inhibition of the process is accounted by using the ammonia adsorption 

constant Ka.   

This rate form was determined from experiments with only 0.5% to 2.0% O2 in 

the feed gas.  This zero order functionality with respect to oxygen is hard to reason 

considering that the stoichiometric reaction is a function of oxygen; it may be the result 

of a relatively small sample of oxygen concentrations.  As a result Olsson et al. [45], 

Sjövall et al. [46], and Wurzenberger [48] all proposed a kinetic rate form as a first order 

function of oxygen as shown in equation.  As a result, the reaction mechanism includes 

first-order dependence in the local coverage fraction of ammonia and oxygen levels: 

 
 

2

23
2 2 OZ NH

exp
E

R Tu mk y


R  (3.30) 

While the kinetic rate form shown in equation (3.31), is commonly used when 

describing the stoichiometric NH3 oxidation reaction shown in equation (3.26), Kim et al. 

[47] suggests using a saturation effect which changes the kinetic rate equation from a first 

order function of oxygen to a kinetic function based on a saturation effect of oxygen as 

shown in equation (3.31). 

 
   

2

23
2 2 OZ NH

exp
E

R Tu mk y





R  (3.31) 
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From the experimental results shown in Figure 3.13 the dependence on oxygen 

concentration can be determined for the kinetic rate shown in equation (3.31)  by the 

following method.  NH3 conversion efficiency  
3NH can be defined as proportional to the 

oxygen concentration to some power    as seen in equation (3.32).   

 
3 2NH O


   (3.32) 

By using the proportionality shown in equation (3.32) the NH3 conversion 

efficiency for the experiments for 0.5% O2 concentration and 6.0% O2 concentration can 

be compared as shown in equation (3.33). 
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(3.33) 

The log of each side of the proportionality can then be taken (3.34) to find the 

dependence on O2 concentration as shown in equation (3.35). 
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(3.34) 
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(3.35) 

The results from this approximation are shown in Figure 3.13; all cases can be 

averaged to find that the predicted oxygen dependence for all cases is 0.33.  However, 

unlike with the oxygen dependence on the NO oxidation reaction the average for each 

comparison of NH3 oxidation varied from 0.2 to 0.4.  Therefore it can be determined that 

there is an oxygen dependence, however the exact value could not be determined for the 

kinetic rate development but a range can be determined to approach for optimization 

purposes.    
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Figure 3.14 – The average dependence of O2 on NH3 oxidation for all cases is 0.33, while 

the average oxygen dependence for each individual case varies from 0.2 – 0.4.  

From these results two kinetic models were developed to compare accuracy in the 

two approaches.  The first kinetic model was developed using the first order oxygen 

kinetics proposed by Olsson et al. [45], Sjövall et al. [46], and Wurzenberger [48] as 

shown in equation (3.30).  The second kinetic model was accomplished by using Kim et 

al. [47] saturation of O2 as shown in equation (3.31).  Each kinetic model was developed 

to compare with data from a temperature ramp experiment with 8% H2O, 8% CO2, 1000 

ppm NH3, and 6% O2.  A downhill simplex optimize was used to find the fit parameters 

for each kinetic rate equation. In Figure 3.15 in can be seen that when only comparing at 

a constant level of O2 either kinetic rate form is acceptable, however it would be 

preferred to use less fit parameters so the first order oxygen kinetic approximation shown 

in equation (3.30) would be used.   
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Figure 3.15 – Shows no discernable difference in modeling results for both kinetic rate 

forms when compared with experimental data from a temperature ramp experiment with 

a feed gas of 8% H2O, 8% CO2, 6% O2, and 1000 ppm NH3.   

Due to the operation of rich and lean conditions in the EAS, different O2 

concentrations need to be evaluated for a more comprehensive kinetic mechanism. To 

evaluate the different rate forms it is important to compare the accuracy when O2 levels 

change in the feed gas.  From Figure 3.16 and Figure 3.17 it can be seen that the 

saturation kinetic rate form shown in equation (3.31) increases the accuracy when O2 

concentration is 2% and 0.5% respectively, therefore it is important to use saturation 

kinetics when O2 concentration will vary by large amounts as seen in the EAS.    
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Figure 3.16 – Shows variation when comparing the kinetic rate forms with the saturation 

kinetic model yielding higher accuracy when compared with experimental data from a 

temperature ramp experiment with a feed gas of 8% H2O, 8% CO2, 2% O2, and 1000 ppm 

NH3.   
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Figure 3.17 – Shows variation when comparing the kinetic rate forms with the saturation 

kinetic model yielding higher accuracy when compared with experimental data from a 

temperature ramp experiment with a feed gas of 8% H2O, 8% CO2, 0.5% O2, and 1000 

ppm NH3.   
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3.4 NOx Reduction with NH3 

NOx reduction is defined as the conversion of NO and NO2 from the feed gas 

through the catalyst into environmentally benign compounds such as N2 as shown in 

(3.36).  NH3 SCR catalysts store NH3 on the surface which reacts with NOx and O2 in the 

feed gas to from N2 and H2O.   

   
 

2 2

2

_ _ _ _

_ _

100
x

NO in NO in NO out NO out

NO

NO in NO in

c c c c

c c


   
  
 
 

 
(3.36) 

3.4.1 Background 

NOx reduction on an SCR catalyst is commonly thought of to occur as the results 

of three simultaneous reactions shown in equations (3.37), (3.38), and (3.39) commonly 

labeled as the Standard SCR reaction, the Fast SCR reaction, and the Slow SCR reaction 

respectively [2, 3, 45-48, 128].   

3 2 2 24 4 4 6NH NO O N H O     (3.37) 

3 2 2 22 2 3NH NO NO N H O     (3.38) 

3 2 2 28 6 7 12NH NO N H O    (3.39) 

The SCR NOx reduction reactions listed in equations (3.37), (3.38), and (3.39) are 

assumed to contribute to NOx reduction simultaneously, as seen from previous results it  

was concluded the SCR catalyst can oxidize NO to NO2 as well as thermally decompose 

NO2 to NO.  Due to the nature of these simultaneous NOx reduction reactions with NH3, 

experimentally it can be determined that NOx reduction is highly dependent on catalyst 

temperature and the NO to NOx ratio (NO:NOx), as illustrated in Figure 3.18.   

 



 65 

 

0

20

40

60

80

100

200 250 300 350 400 450

NO:NO
x
 = 0.00

NO:NO
x
 = 0.25

NO:NO
x
 = 0.50

NO:NO
x
 = 0.75

NO:NO
x
 = 1.00

N
O

x
 C

o
n

v
e

rs
io

n
 (

%
)

Temperature (C)

0

20

40

60

80

100

200 250 300 350 400 450

NO:NO
x
 = 0.00

NO:NO
x
 = 0.25

NO:NO
x
 = 0.50

NO:NO
x
 = 0.75

NO:NO
x
 = 1.00

N
H

3
 C

o
n

v
e

rs
io

n
 (

%
)

Temperature (C)  
Figure 3.18 – NOx conversion is highly dependent on the NO:NOx ratio in the feed gas 

when comparing experiments performed with a feed gas of 6% H2O, 6% CO2, 6% O2, 

400 ppm NH3, 400 ppm NOx. 

Standard SCR Reaction 

Lyon was one of the first to study the reaction between NH3, NO, and O2 on a 

platinum catalyst.  From Lyon’s observations the reaction with NH3 and NO without O2 

present was trivial.  Lyon then proposed a detailed mechanism to model the results from 

NH3, NO, and O2 as seen in equations (3.40) - (3.45) [129].  

2 2NH NO N H OH     (3.40) 

2 2 2NH NO N H O    (3.41) 

2H O OH O    (3.42) 

3 28NH O OH NH    (3.43) 

3 2 2NH OH NH H O    (3.44) 

3 2 2NH H H NH    (3.45) 
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The reactions in equations (3.40) - (3.45) are all two body reactions that 

demonstrate the detailed reduction of NO with NH3 in the presence of O2 as gas phase 

reactions.  Byrne et al. [29] combines these reactions to form one global three body 

reaction as shown in equation (3.37). 

3 2 2 24 4 4 6NH NO O N H O     (3.37) 

Fast SCR Reaction 

The reduction of NO2 with NH3 was initially neglected because engine exhaust 

composition heavily favored NO with at least 95% of the NOx composition [30, 130-

133].  It was later discovered by Kato et al. that NOx reduction with NH3 increases 

dramatically if equal parts of NO and NO2 were present in the feed gas to the catalyst 

[122].   Kato et al. proposed the following detailed reaction mechanism shown in 

equations (3.46) - (3.50) for NOx conversion with NH3 when there is an equal ratio of NO 

to NO2 in the feed gas to the catalyst.    

 3 3Z NH Z NH   (3.46) 

   3 3Z NH NO Z NH NO   (3.47) 

   3 2 2Z NH NO Z H N H O    (3.48) 

  2Z H NO Z HONO    (3.49) 

   2 2Z H HONO Z H ONO Z H O NO      (3.50) 

Due to the high reaction from experimental data, Kato et al. then proposed the global 

reaction shown in equation (3.38) as a global reaction to describe the detailed mechanism 

in equations (3.46) - (3.50). 
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3 2 2 22 2 3NH NO NO N H O   
 (3.38) 

Nova et al. [44] and Grossale et al. [134] investigated the surface nitrate 

formation in the reduction of NO2 and NO with NH3 by performing experiments at low 

temperatures and proposed the following reactions in equations (3.51) – (3.53) for 

vanadium based SCR catalysts and iron based zeolite SCR catalysts respectively. Their 

work elaborates on Kato’s reaction scheme by combining NO2 and NH3 to form 

ammonium nitrate on the surface of the catalyst as a precursor to the Fast SCR reaction.   

3 2 2 4 3 22 2NH NO N NH NO H O     (3.51) 

4 3 2 2 2NH NO NO NO N H O     (3.52) 

4 3 3 2 22 2 3 5NH NO NO NH N H O     (3.53) 

Nova [44] and Grossale [134] state their reaction scheme is important when 

considering low temperature operation of a SCR catalyst due to the inhibition effects of 

NH3 at low temperatures (Temperature < 200°C).  Nova and Grossale also note that the 

combination of the reactions shown in equations (3.51) – (3.53) can be combined to form 

the global Fast SCR reaction shown in equation (3.38).  To simplify the kinetics for the 

development of the model, the SCR temperature will be investigated above 200°C where 

the global Fast SCR reaction (equation (3.38)) can be used.   

Slow SCR Reaction 

Kato et al. [122] suggested that NO2 reduction with NH3 should show a similar 

detailed reaction mechanism as the oxidation of  NH3 as seen in equations (3.20) - (3.23), 

however O2 should be replaced with NO2.  Thus yielding the following reactions listed in 

equations (3.54) – (3.58). 



 68 

 

3 2 3NH NO NH O NO    (3.54) 

2NO O NO   (3.55) 

3 2NH O O HNO H O    (3.56) 

3 2 2NH O HNO N H O    (3.57) 

2 2HNO HNO N O H O    (3.58) 

Due to absence of intermediates in experimental results Kato et al. [122] suggested 

equation (3.39) as the global reaction for NO2 reduction with NH3.  

3 2 2 28 6 7 12NH NO N H O    (3.39) 

Ciardelli et al. [135] studied the NH3-NO2 reaction and published a modification 

to Kato’s detailed reduction pathway as shown in equations (3.59) – (3.66). 

2 2 42NO N O  (3.59) 

2 4 2 3N O H O HONO HNO    (3.60) 

3 4 2HONO NH NH NO   (3.61) 

4 2 2 22NH NO N H O   (3.62) 

3 3 4 3NH HNO NH NO   (3.63) 

4 3 2 22NH NO N O H O   (3.64) 

2NO NO O   (3.65) 
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4 3 3 2 22 2 3 5NH NO NO NH N H O     (3.66) 

Ciardelli points out that the detailed mechanism combines to form the two global 

reactions for NOx reduction and for N2O production as shown in equations (3.39) and 

(3.67) respectively.  A similar reaction for N2O production is also proposed by Kim et al. 

[47] and Olsson et al. [45]. 

3 2 2 28 6 7 12NH NO N H O    (3.39) 

3 2 2 2 22 2 3NH NO N N O H O     (3.67) 

3.4.2 Experimental Results 

Experimental data for the NOx reduction with NH3 while using a bench-top style 

reactor was collected using a variety of experiments.  Steady state data was taken in the 

form of temperature ramp experiments, which consist of constant inlet concentrations and 

varying temperature in a constant upward or downward ramp rate up to 5°C/min.  

Experiments were also performed while switching from lean to rich exhaust to replicate 

conditions behind a LNT catalyst.  During these switching experiments NH3 is present 

while rich feed gas is flowing across the catalyst, and oxygen and NOx are present while 

the lean feed gas is flowing across the catalyst.   

Effect of NH3 to NOx Ratio 

It was already shown in Figure 3.18 that the NO to NOx ratio is important in 

determining the NOx conversion capabilities of the SCR catalyst.  It is also important to 

consider NH3 to NOx ratio when predicting NOx conversion with NH3, due to the highly 

reactive nature of NH3 on a SCR catalyst.  Increasing the NH3 to NOx ratio will increase 

the NOx conversion while lowering NH3 conversion which is confirmed in Figure 3.19.  
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It should be noted that NH3 is also a regulated tailpipe emission, and therefore the 

limiting factor in the max NH3 to NOx ratio that can be used.  Figure 3.19 can be used to 

confirm the stoichiometric ratios of NH3 to NOx for the three global NOx reduction 

reactions listed in equations (3.37), (3.38), and (3.39) by maximizing both NOx 

conversion and NH3 conversion  for a set of NH3 to NOx ratios.  From Figure 3.19 it can 

be confirmed that the stoichiometric NH3 to NOx ratio is 1.0 for the Standard SCR 

reaction (equation (3.37)) and the Fast SCR reaction (equation (3.38)), and an NH3 to 

NOx ratio of 1.3 for the Slow SCR reaction (equation (3.39)). 
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Figure 3.19 – Increasing the NH3 to NOx ratio increases NOx conversion while lowering 

NH3 conversion which increases the amount of NH3 slip.  All experiments are performed 

as a temperature ramp with a feed gas of 6% H2O, 6% CO2, 6% O2, 400 ppm NOx, 

varying NH3 concentration (a) NO:NOx = 1.0, (a) NO:NOx = 0.5, (c) NO:NOx = 0.0.   
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Effect of O2 Concentration 

By observing the reactions listed in equations (3.37), (3.38), and (3.39); it 

becomes apparent that O2 only has an effect on the conversion of NO with NH3, where it 

was first observed by Lyon [129] that NO conversion with NH3 is strongly enhanced in 

the presence of oxygen.  In Figure 3.20 it can be seen there is negligible effect due to O2 

concentration on NOx conversion when the NO to NOx ratio is 0.5 or 0.0, however there 

is a distinct increase in NOx conversion as O2 concentration increases when the NO to 

NOx ratio is 1.0 which is studied further in the next section. 
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Figure 3.20 – NOx conversion is a strong function of O2 concentration only when the 

composition of NOx in the feed gas favors NO. The experiments  were performed with a 

feed gas composition of 8% H2O, 8% CO2, 1000 ppm NH3, 1000 ppm NOx, varying O2 

concentration (a) NO:NOx = 1.0, (b) NO:NOx = 0.5, (c) NO:NOx = 0.0 



 73 

 

O2 Effect on the Standard SCR Reaction 

As discussed earlier it was found by Lyon [129] that NH3 will have a strong 

reaction with NO in the presence of O2 on a platinum based catalyst.  Lyon also found 

there is a reaction with NH3 and NO without O2 but it is much lower than with O2 present 

[129].  Similarly in Figure 3.21 it can be seen that NO reduction with NH3 without O2 

still exists but is small in comparison to when O2 is present.  
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Figure 3.21 – NOx conversion is a strong function of O2 concentration for all experiments 

performed with a feed gas composition of 8% H2O, 8% CO2, 400 ppm NH3, 400 ppm 

NOx, varying O2 concentration 

An additional reaction can be added for conversion of NO with NH3 without O2 as 

seen in equation (3.68) commonly called the Rich Standard SCR reaction.  

3 2 24 6 5 6NH NO N H O    (3.68) 

It should be noted that due to the low conversion of NO with NH3 without O2 the reaction 

listed in equation (3.68) is removed from most literature models since their kinetic 

mechanisms are going to be used for lean exhaust conditions. 
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By confirming NOx conversion for the Standard SCR reaction is dependent on 

oxygen concentration from Figure 3.21, as seen previously equation (3.69) can be formed 

by assuming the NOx conversion efficiency  
xNO is proportional to the oxygen 

concentration to some power   .   

 2xNO O


   (3.69) 

By using the proportionality shown in equation (3.69) the experiments for 2% O2 

concentration and 6.0% O2 concentration can be compared as shown in equation (3.70). 

 

 

 
 

2

2

6.0% 2 2

2.0% 22

6.0% 6.0%

2.0%2.0%

x

x

NO O

NO O

O O

OO













  
      

 
(3.70) 

The log of each side of the proportionality can then be taken (3.71) to find the 

dependence on O2 concentration as shown in equation (3.72). 
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(3.71) 
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(3.72) 

Figure 3.22 shows the O2 dependence as a function of temperature.  A strong 

dependence on O2 concentration would signify a straight line at each temperature. Due to 

minimal conversion of NO with NH3 in experiments without oxygen, it is important to 

include the oxygen concentration term in the kinetic rate for the Standard SCR reaction.  

The dependence on O2 concentration for the NO Oxidation reaction could be determined 

using this method because it is the only reaction occurring on the catalyst; while the 

Standard SCR reaction yields inconclusive results due to the simultaneous reactions of 

NH3 oxidation, NO oxidation, the Standard SCR reaction, the Fast SCR reaction, and the 
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Slow SCR reaction taking place on the catalyst surface at the same time. Due to the 

simultaneous nature of the NOx reduction reactions it can be concluded that O2 

dependence is not constant, but a strong function of temperature through the tested 

temperature range.  
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Figure 3.22 – The dependence on O2 is not constant and therefore is not independent of 

temperature. 

Effect of NH3 Storage on NOx Conversion 

Experiments from this section are performed to study the effect of stored NH3 on 

NOx conversion capabilities for the iron based zeolite SCR catalyst in the EAS.  Under 

steady state conditions NH3 levels react instantly with NOx on the catalyst to form N2 and 

H2O.  In an LNT SCR aftertreatment system, NOx is stored on the LNT during lean 

exhaust operation.  NH3 is produced as a byproduct as of NOx reduction with H2 during a 

rich regeneration of the LNT catalyst.  The SCR in the EAS operates by storing the NH3 

from the rich regeneration to react with any NOx that slips during lean operation. An 
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example of a catalyst bench experiment replicating these conditions is shown in Figure 

3.23. 
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Figure 3.23 – NH3 stores on catalyst during rich pulse, NOx reacts with stored NH3 on 

lean pulse.  The experiment was performed as a lean rich cycling bench experiment for 

50 sec cycle length at constant temperature of 250°C and a feed gas with 8% H2O, and 

8% CO2. 

From Figure 3.23 it can be seen that NH3 will store on the catalyst during the rich 

pulse, and then will either react with NOx or O2 during the lean pulse or it will desorb off 

the catalyst.  Instantaneous NOx conversion for a switching experiment as previously 

defined in equation (3.36), is not a good measurement of catalyst activity.  Instead 

integral NOx conversion is defined in equation (3.73) and provides measurement of 

catalyst activity throughout a rich lean cycle. 

   
 

2 2

2

, , , ,

,

, ,

x

NO in NO in NO out NO out

Int NO

Cycle NO in NO in

y y y y PV
dt

RTy y


      
     
      

  
(3.73) 
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Figure 3.24 summarizes the integral NOx conversion, for switching experiments 

with six consecutive cycles at six different catalyst temperatures.  Error analysis is 

performed as the RMS value of the standard deviation of integral NOx conversion for the 

six consecutive cycles and the measurement error from the bench top reactor used in the 

experiments.  When comparing the switching experiments with steady state experiments 

shown in Figure 3.18, it can be seen that steady experiments approach 90% conversion 

efficiency above 350°C, it can be seen that at temperatures above 375°C the integral NOx 

conversion becomes limited by the amount of NH3 the catalyst can store.  
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Figure 3.24 – Integral NOx conversion decreases as temperature increase above 300°C, 

due to the limited ability to store NH3 at high temperatures in switching experiments.  All 

experiments are performed with a rich pulse of 8% H2O, 8% CO2, 1000 ppm NH3; and a 

lean pulse of 8% H2O, 8% CO2, 150 ppm NOx, with varying NO to NOx ratios.  

From the results shown in Figure 3.24 it can be seen that stored NH3 on the 

catalyst is used to convert NOx in the feed gas, therefore the gas phase NOx reduction 

reactions shown in equations (3.37), (3.38), (3.39), (3.68), and (3.67) can be rewritten as 

the NH3 storage reactions shown in equations (3.74), (3.75), (3.76), (3.77), and (3.78) 
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respectively which confirms results by Kim et al. [47], Olsson et al. [45], and 

Wurzenberger et al. [48]. 

 3 2 2 24 4 4 4 6Z NH NO O Z N H O      (3.74) 

 3 2 2 22 2 2 3Z NH NO NO Z N H O      (3.75) 

 3 2 2 28 6 8 7 12Z NH NO Z N H O     (3.76) 

 3 2 24 6 4 5 6Z NH NO Z N H O     (3.77) 

 3 2 2 2 22 2 2 3Z NH NO Z N N O H O      (3.78) 

Temperature Effects 

Due to the dependence of temperature on the storage of NH3 on the catalyst a 

possibility exists for a hysteresis where NOx will differ depending on the direction of the 

temperature ramp in an experiment [136].  Figure 3.25, Figure 3.26, and Figure 3.27 

show experiments performed with a constant feed gas where temperature was ramped 

upwards at 5°C/min from 200°C to 500°C then temperature was ramped downward at 

5°C/min from 500°C to 200°C.  From these experiments a small hysteresis effects is seen 

where NOx conversion is lower during the downward ramp due to less NH3 being 

available on the catalyst.  Additionally, in Figure 3.25, Figure 3.26, and Figure 3.27  it 

can be seen that at lower temperatures (T ≈ 200°C) the onset of nitrate formation can be 

seen from the experimental data.  Nitrate formation can occur as low as 150°C where 

NO2 formed at the catalyst surface can combine with H2O to inhibit NOx conversion with 

NH3 on the catalyst.  It was found by Despres et al. [137], Nova et al. [44], and Ciardelli 

et al. [135] that nitrates once formed can be removed at low temperature by NO, or by 

increasing temperature on the catalyst.  
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Figure 3.25 – Upward and downward temperature ramps differ with a small hysteresis 

effect between 350–450°C, additionally NOx conversion changes differ at low 

temperatures due to the onset of nitrate formation.  The experiment was performed as an 

upward and then downward temperature ramp with a feed gas of 6% H2O, 6% CO2, 6% 

O2, 1000 ppm NH3, and 1000 ppm NO. 
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Figure 3.26 – Negligible hysteresis effect on NOx conversion for Fast SCR reaction.  The 

experiment was performed as an upward and downward temperature ramp with 6% H2O, 

6% CO2, 0% O2, 1000 ppm NH3, 500 ppm NO, 500 ppm NO2. 
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Figure 3.27 – Large hysteresis effect in NOx conversion for Slow SCR reaction at low 

temperatures due to the nitrate formation on the catalyst.  The experiment was performed 

as an upward and downward temperature ramp with 6% H2O, 6% CO2, 0% O2, 1000 ppm 

NH3, 750 ppm NO2. 

3.4.3 NOx Reduction with NH3 Modeling Approach 

The modeling approach for NOx reduction with NH3 is accomplished by 

simultaneously determining the kinetic rate parameters of the four reactions shown 

(3.74), (3.75), (3.76), and (3.78).  However, the kinetic parameters for the Rich Standard 

SCR reaction where the reaction shows reduction of NO with NH3 when O2 is not present 

in the feed gas (equation (3.77)) can be determined independently of the other NOx 

reduction reactions.  

Rich Standard SCR (O2 = 0%) 

The Rich SCR reaction shown in equation (3.77) shows the reduction pathway of 

NO with NH3 when O2 is not present in the feed gas.  The kinetic rate form shown in 

equation (3.79) is developed from standard surface species reactions shown in Chapter 2.   
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 3 2 24 6 4 5 6Z NH NO Z N H O     (3.77) 

 3
exp

E

R T

NO Z NH
R k y 

 
 

   (3.79) 

Figure 3.28 shows acceptable agreement in concentration values for experimental 

results compared to modeling results using the reaction shown in equation (3.77) with the 

standard kinetic rate form show in equation (3.79).  While Figure 3.29 shows expected 

conversion levels for this reaction when comparing experimental and modeling results.   
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Figure 3.28 – The model for the Rich Standard SCR reaction accurately predicts the NH3 

and NO concentrations for a temperature ramp experiment with feed gas of 8% H2O, 8% 

CO2, 0% O2, 1000 ppm NH3, 1000 ppm NO 
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Figure 3.29 – NO Conversion is low without O2 present in feed gas, standard Arrhenius 

rate kinetics capture this effect well. 

Standard SCR (O2 > 0%) 

The Standard SCR reaction is the reduction of NO with NH3 in the presence of 

O2.  In the early days of SCR modeling, quite often the only reaction used was a gas 

phase standard SCR reaction shown in equation (3.37).  This assumption was made since 

NOx in engine exhaust is approximately greater than 95% NO [4]. 

3 2 2 24NH 4NO O 4N 6H O     (3.37) 

A common thought was that for many catalysts different SCR surfaces the 

kinetics of SCR can be modeled with simple power-law kinetics as shown in equation 

(3.80) [125, 130-133, 138]. 

     3 2NH NO OSCR SCRR k
  

  (3.80) 

While power-law kinetics are feasible, it is generally accepted that the rate of the 

SCR of NO by NH3 obeys a Langmuir-Hinshelwood type mechanism involving reaction 

on copper-containing sites of an adsorbed species derived from NO with a different 

adsorbed species derived from NH3 with a stronger adsorption of NH3 than NO [41].  A 
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Langmuir-Hinshelwood type mechanism would also allow a pathway for results found by 

Stevenson et al. [130] and Eng and Bartholomew [132], where high levels of ammonia 

can inhibit the SCR reaction by replacing the available nitrate sites as shown in equation 

(3.81).  

  
 

2

3

NO O

1 NH

SCR

SCR

a

k
R

K



 

(3.81) 

From current kinetic mechanisms for SCR catalysts where more than one NOx 

reduction pathway exists, it is assumed that NOx will only react with NH3 stored on the 

catalyst surface and the reaction will written according to equation (3.74) [45-48, 128].   

 3 2 2 24 4 4 6Z NH NO O Z N H O      (3.74) 

Sjövall et al. [46], Olsson et al. [45], Narayanaswamy and He [128], and 

Wurzenberger [48],  all suggest that a kinetic rate in equation (3.82) with first order 

dependence on oxygen concentration be used to describe the standard SCR reaction in 

equation (3.74).   

 2 3
exp

E

R T

NO O Z NH
R k y y 

 
 

   (3.82) 

While Kim et al. [47] suggest that the kinetic rate form should have an oxygen 

dependence    for saturation effects of oxygen as shown in equation (3.83). 

   2 3
exp

E

R T

NO O Z NH
R k y y





 
 

   (3.83) 

From earlier results it can be seen that it is important to keep oxygen 

concentration in the kinetic rate but the power dependence on oxygen concentration could 

not be determined (Figure 3.22).  Therefore, the kinetic rates from equations (3.82) and 

(3.83) were both fit to using a downhill simplex optimizer to data from a temperature 

ramp experiment with a feed gas composition of 8% H2O, 8% CO2, 6% O2, 1000 ppm 
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NH3, and 1000 ppm NO.  The results were then compared to a similar experiment with 

2% O2.  Figure 3.30 shows how both kinetic rate forms compare to experimental results.  

Each kinetic rate yields the same result for the 6% O2 experiment.  The standard kinetic 

rate form in equation (3.82) yielded more accurate NH3 concentration results for the 2% 

O2 case, while the oxygen dependent rate form shown in equation (3.83) yielded more 

accurate NO conversion results.  Due acceptable accuracy with each kinetic rate, it can be 

assumed that either rate for could be used, however due to less rate parameters being 

present in the standard rate form shown in equation (3.82) is suggested to be used. 
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Figure 3.30 – The first order kinetic O2 approximation is more accurate for NO 

predictions while the saturation kinetic O2 approximation is more accurate for NH3 

predictions.  Each experiment was performed as a temperature ramp experiment with 

feed gas of 8% H2O, 8% CO2, 1000 ppm NH3, 1000 ppm NO, with O2 concentration as 

listed 

Fast SCR 

The Fast SCR reaction shown in equation (3.75) has commonly been modeled 

with two methods,  the first approach is a more detailed approach where NO2 and NH3 

will form a ammonia nitrate on the catalyst surface which can then be reduced by NO as 

shown in equations (3.46) - (3.50).  While the second approach models the global Fast 

SCR reaction using a standard Arrhenius rate form shown in equation (3.84). 
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 3 2 2 22 2 2 3Z NH NO NO Z N H O      (3.75) 

 2 3
exp

E

R T

NO NO Z NH
R k y y 

 
 

   (3.84) 

 Due to the temperature range expected the global reaction approach is used with 

the results shown in Figure 3.31.  From the modeling results it can be seen that simulation 

predictions are statistically significant when the catalyst temperature is between 200°C – 

450°C, while at temperatures above 450°C the model under predicts NOx conversion. 
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Figure 3.31 – Simulation prediction for NOx conversion and NH3 conversion is within 

error for 200°C – 450°C.  The experiment was performed as a temperature ramp with 8% 

H2O, 8% CO2, 0% O2, 1140 ppm NH3, 540 ppm NO, 268 ppm NO2. 

Slow SCR 

The global Slow SCR reaction shown in equation (3.76) is similar to the global 

fast SCR reaction, in that it can be modeled by two methods, the first approach is a more 

detailed approach where NO2 and NH3 will form a ammonia nitrate on the catalyst 

surface which can then be reduced by thermal decomposition of NO2 to NO or by 

reduction of nitrate formation with HONO as shown in equations (3.59) – (3.66).  The 
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second approach is to use an Arrhenius rate form for the global reaction shown in 

equation (3.85).  

 3 2 2 28 6 8 7 12Z NH NO Z N H O     (3.76) 

 2 3
exp

E

R T

NO Z NH
R k y 

 
 

   (3.85) 

Due to the temperature range expected the global reaction approach is used with 

the results shown in Figure 3.32.  From the modeling results it can be seen that simulation 

predictions are statistically significant for the tested temperature range. 
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Figure 3.32 – Simulation predicts NOx and NH3 conversion within error NO2 conversion 

with NH3.  The experiment was performed as a temperature ramp with 8% H2O, 8% 

CO2, 0% O2, 1110 ppm NH3, 800 ppm NO2. 

3.5 Model Validation 

Validation of a kinetic mechanism is done by comparing simulation results with 

experimental results not used for determining kinetic parameters.  If simulation results 

are within experimental error, that model is validated to the accuracy the validation 

experiment. 
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3.5.1 Summary of Global SCR Mechanism 

From the previous sections the following lean mechanism has been established as 

a starting point for developing a kinetic mechanism for the SCR catalyst in the EAS.  A 

summary of the reactions and rate forms are listed in Table 3.1, while Table 3.2 lists 

corresponding parameters for the listed kinetic rates listed in Table 3.1.  

 

Table 3.1 − Summary of chemical reaction and kinetic rates for lean SCR model 

 Chemical Reaction Kinetics Rate Form 

(R1) 2 2

1

2
NO O NO   

1

2

21 1 exp

E

NORT

NO O

eq

y
R k y y

K

 
 
 

 
  

 
 

 

(R2)  3 3Z NH Z NH    

 

2
2 3

3 3
2 2 2 exp

r
r Z NH

E

RT

f NH Z r Z NH
R k y k

 

 

 
 

    

(R3)  3 2 2 24 3 4 2 6Z NH O Z N H O        

3

3

2 3
3 3 exp

E

RT

O Z NH
R k y





 
 
   

(R4)  3 2 24 6 4 5 6Z NH NO Z N H O     
 

4

3
4 4 exp

E

RT

NO Z NH
R k y 

 
 
   

(R5)  3 2 2 24 4 4 4 6Z NH NO O Z N H O      
 

5

2 3
5 5 exp

E

RT

NO O Z NH
R k y y 

 
 
   

(R6)  3 2 2 22 2 2 3Z NH NO NO Z N H O      
 

6

2 3
6 6 exp

E

RT

NO NO Z NH
R k y y 

 
 
   

(R7)  3 2 2 28 6 8 7 12Z NH NO Z N H O     
 

7

2 3
7 7 exp

E

RT

NO Z NH
R k y 

 
 
   

(R8)  3 2 2 2 22 2 2 3Z NH NO Z N N O H O      
 

8

2 3
8 8 exp

E

RT

NO Z NH
R k y 

 
 
   
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Table 3.2 − Summary of kinetic parameters used in the lean SCR model kinetic model 

Parameter Value Units 

Site density 21.13 10  [kmol m
-2

] 

1k  01.06 10  [kmol m
-3

 s
-1

] 

1E  24.64  [kJ mol
-1

] 

2 fk  27.99 10  [kmol m
-2

 s
-1

 moleNH3
-1

] 

2rk  71.29 10  [kmol m
-2

 s
-1

] 

2rE  98.00  [kJ mol
-1

] 

2r  0.2894  [-] 

3k  11.31 10  [kmol m
-2

 s
-1

 moleO2
-1

] 

3E  66.79  [kJ mol
-1

] 

3  0.2585  [-] 

4k  33.63 10  [kmol m
-2

 s
-1

 moleNO
-1

] 

4E  57.94  [kJ mol
-1

] 

5k  72.6 10  [kmol m
-2

 s
-1

 moleNO
-1 

moleO2
-1

] 

5E  76.29  [kJ mol
-1

] 

6k  95.41 10  [kmol m
-2

 s
-1

 moleNO
-1 

moleNO2
-1

] 

6E  0.46  [kJ mol
-1

] 

7k  91.06 10  [kmol m
-2

 s
-1

 moleNO2
-1

] 

7E  104.45  [kJ mol
-1

] 

8k  27.99 10  [kmol m
-2

 s
-1

 moleNO2
-1

] 

8E  0.00  [kJ mol
-1

] 

Experiments were done to validate the kinetic mechanism using the synthetic gas 

bench and measurements on an International 6.4L engine using the EAS for emissions 

control.  The following sections discuss the experimental and simulation results from the 

two sources.  
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3.5.2 Engine Validation 

In this section the model is first compared to engine data taken with the EAS 

attached to a 6.4 L International diesel engine.  Emissions data were taken simultaneously 

at the inlet and outlet of the SCR catalyst.  At the inlet the AVL CEB II emissions bench 

is used for oxygen measurements, along with the H-Sense for hydrogen measurement, 

and an MKS FTIR measurement for all other species in the exhaust.  For 1-D simulation 

the catalyst temperature is assumed to be constant which is determined by two 

thermocouples mounted in the front and back of the catalyst brick.  The temperature of 

each thermocouple differed by an average of 10°C.  The average temperature is shown in 

Figure 3.33 where the average SCR temperature increases to 420°C during the LNT 

regeneration of the EAS and cools to 370°C during normal operation. 
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Figure 3.33 – The average SCR catalyst temperature varies from 370°C to 420°C during 

regeneration cycling of the EAS.  

The EAS did not produce large amounts of NH3 at the SCR inlet of the original 

design target during engine operation with the calibration of engine and EAS used in 

these experiments.  Therefore, NOx conversion for the SCR is moderate.  Figure 3.34 

shows agreement in inflection points between simulation predictions and experimental 
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results.  However, it was determined that the model commonly over predicted the 

conversion NOx, but all reactions with H2, CO, and HC shown in Figure 3.35 are not 

included in the kinetic mechanism listed in Table 3.1 but will be discussed later in 

chapter 9.  

The simulation error for each species was determined as the average absolute 

difference between experimental results and simulation results for each species.  The 

average error for NO is 31.9 ppm, the average error for NO2 is 18.2, and the average error 

for NH3 is 2.2 ppm. 
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Figure 3.34 – Experimental and Simulation outlet species show acceptable agreement for 

(a) NO, (b) NO2, and (c) NH3. 
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Figure 3.35 – Low levels of H2, THC, and CO were present at the inlet of the SCR when 

engine validation data was measured. 

3.5.3 Synthetic Gas Bench Validation 

Further experiments were performed on the synthetic gas bench to replicate 

conditions for the SCR in the EAS.    The SCR in the EAS ideally operates by storing the 

NH3 from the rich regeneration to react with any NOx that slips during lean operation. 

Using the synthetic gas bench an example of ideal operation of the EAS is shown in 

Figure 3.23, where a rich pulse where the feed gas has 0% O2 and 1000 ppm NH3 for five 

seconds followed by a lean pulse of 6% O2 and 150 ppm NOx for forty-five seconds.    

The average integral NOx conversion is then determine by averaging all six cycles 

at each temperature.  The error for the experimental and simulation data is determined as 

standard deviation of the average integral NOx conversion at each temperature.  The 

simulation and experimental integral NOx conversion results are shown in Figure 3.36, 

where it can be determined that the kinetic model results are statistically significant 

above 350°C, while below 350°C the model will under predict when the NO to NOx ratio 



 93 

 

equals 1.0, or over predict integral NOx conversion when the integral NOx conversion is 

equal to 0.5. 
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Figure 3.36 – Simulation data under predicts integral NOx conversion under 400°C when 

compared to the Experimental data when (a) NO:NOx = 1.0; while simulation data over 

predicts integral NOx conversion under 350°C when compared to the experimental data 

for (b) NO:NOx = 0.5 . 

In Figure 3.36 it has been observed that the simulation predictions for integral 

NOx conversion predictions match inflection points with the experimental data, but do 

not predict the right magnitude for the integral NOx conversion.   Figure 3.37 shows a 

comparison of simulation concentration values with experimental values for NO and 

NO2.  In all of the experiments there is a large amount of NOx reduction after the rich 

pulse, then asymptotes to a minimum NOx conversion during the lean pulse for the 

experimental data.  However, since the NOx reduction reactions (Reactions (4) – (8) in 

Table 3.1) are based linearly on the surface coverage fraction of NH3 in the kinetic 

mechanism   
3Z NH

 , the simulation predicted NOx conversion will continue linearly 

throughout the lean pulse of the cycle until the predicted NH3 on the catalyst is equal to 

zero.   Therefore it can be determined that NOx conversion is highly dependent on the 

amount of NH3 on the surface of the catalyst. 
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Figure 3.37 – The amount of stored NH3 on the catalyst plays are large role in NOx 

reduction capabilities during lean rich cycling experiments for (a) NO:NOx = 1.0, 

Temperature =200°C, (b) NO:NOx = 1.0, Temperature =400°C, (c) NO:NOx = 0.5, 

Temperature =200°C, (d) NO:NOx = 1.0, Temperature =400°C 

3.6 Conclusions 

The following conclusions can be made based on experimental and simulation 

results shown in this chapter. 
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3.6.1 NO Oxidation Conclusions 

From the experimental data shown Figure 3.1 it can be concluded that the 

oxidation of NO to NO2 is a reversible reaction with NO2 experiencing thermal 

decomposition at temperatures above 300°C.   

From experimental data in Figure 3.2 it can be determined that the oxidation of 

NO to NO2 is dependent on O2 concentration by a half order effect as seen in Figure 3.3, 

while from Figure 3.4 it can be determined that O2 concentration has negligible effects on 

NO2 thermal decomposition to NO and O2.   

Further experimental results shown in Figure 3.5 and Figure 3.6 show that a feed 

gas that includes H2O and CO2 will inhibit the oxidation of NO to NO2 as well as the 

thermal decomposition of NO2 to NO and O2.  However, this effect is negligible in the 

expected concentration range. 

From the storage experiment shown in Figure 3.7 it can be determined that NO2 

adsorption is small with any adsorbed NO2 thermally decomposing to NO making NO2 

adsorption negligible for kinetic modeling of the NO oxidation reaction. 

From the experimental results it has been proven that the NO oxidation reaction is 

not inhibited by NO2 and H2O, and assuming NO and O2 storage is negligible the kinetic 

rate in equation (3.14) is determined, which yields an accurate agreement between 

experimental and modeling results as shown in Figure 3.8. 

3.6.2 NH3 Storage Conclusions 

It has been determined that a single site global approximation can be used to 

model the storage of NH3 due to the presence of a single desorption peak in Figure 3.9.  

When NH3 storage capacity for the simulation is compared to experimentally determined 

values it can be seen that multiple catalytic sites are used to store NH3 due to non 

linearity in shape of the experimental data as seen in Figure 3.10.  In Figure 3.11 it can be 
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seen that a slight accuracy increase can be made when using a Tempkin isotherm kinetic 

rate for the ammonia storage reaction.   

3.6.3 NH3 Oxidation Conclusions 

As shown from experimental data in Figure 3.12 only negligible amounts of NO 

and N2O formed when oxidizing NH3 on the SCR catalyst.  It is therefore only important 

to model the stoichiometric reaction for ammonia oxidation to complete combustion 

products as shown in equation (3.26).  It has been determined experimentally that 

increasing O2 concentration will increase ammonia conversion during ammonia 

oxidation, although it is not a linear effect between 0.5% and 6% O2 concentration in the 

feed gas as seen in Figure 3.14.  Lastly, it was found that to account for ammonia 

oxidation in a kinetic model where O2 concentration can drastically vary, such as in the 

EAS, that a saturation kinetic reaction rate needs to be used to increase the accuracy of 

the model. 

3.6.4 NOx Reduction with NH3 Conclusions 

It can be concluded that the NO to NOx ratio is an important determining 

characteristic of the feed gas when predicting NOx conversion with NH3 with max 

conversion of NOx occurring when the feed gas contains equal amounts of NO and NO2 

as seen in Figure 3.18. It can also be determined from Figure 3.18 that NOx reduction 

with NH3 occurs due to three simultaneous global reactions shown in equations (3.37), 

(3.38), and (3.39).   The stoichiometric ratios for the three reactions in equations (3.37), 

(3.38), and (3.39) are confirmed by varying the NH3 to NOx ratio to maximize NOx and 

NH3 conversion for the purposed NO to NOx ratios as seen in Figure 3.19. Experimental 

results with varying oxygen concentration as shown in Figure 3.20 have shown that only 

NO reduction with NH3 is dependent on oxygen concentration. Due the ability for NOx 
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conversion with NH3 during cycling experiments shown in  Figure 3.23; where NH3 is 

present in the rich pulse while NOx is present in the lean pulse, the simultaneous NOx 

conversion with NH3 reactions shown in equations (3.37), (3.38), (3.39), (3.68), and 

(3.67) can be rewritten as reaction that take place with NH3 stored on the surface of the 

catalyst as shown in equations (3.74), (3.75), (3.76), (3.77), and (3.78) respectively. 

It has been determined that the reduction of NO with NH3 when oxygen is not 

present is small but can be accounted for using standard kinetic rate expressions as seen 

in (3.77).  It can be seen that when oxygen is present NO conversion with NH3 is strongly 

dependent on temperature as seen in Figure 3.21.  A method to determine the oxygen 

dependence for this reaction was used which yielded results that show that the oxygen 

dependence is also a function of temperature as seen in Figure 3.22.  It is proposed that 

this is due to the effect of simultaneous nature of the NO Oxidation, NH3 Oxidation, Fast 

SCR, and Slow SCR reactions on the catalyst.   

From the Fast SCR reaction as shown in equation (3.75) it was determined that 

the Fast SCR reaction can be modeled as a global reaction with a standard Arrhenius 

kinetic rate for the 200°C – 450°C temperature range as seen in Figure 3.31.   

The Slow SCR reaction as shown in equation (3.76) was determined to have the 

largest hysteresis effect at low temperatures; primarily due to the formation of 

ammonium nitrate at low temperatures on the catalyst surface.  The global Slow SCR 

reaction with a standard Arrhenius rate simulation was shown to be within error and is 

therefore considered adequate when predicting NH3 and NOx conversion for the entire 

temperature range tested as shown in Figure 3.32. 

3.6.5 Model Validation Conclusions 

It was observed in Figure 3.34 that simulation predictions align within 15% of 

experimental engine data.  However, it should be noted that during validation testing of 



 98 

 

the EAS and engine, the NH3 levels at the SCR inlet were low which correlates to low 

activity of the SCR catalyst.  Therefore further validation experiments were required. 

The synthetic gas bench was then used for further validation of the kinetic 

mechanism.  Cycling experiments were designed as shown in Figure 3.23, where 1000 

ppm of NH3 was stored on the catalyst during a five second rich pulse to reduce NOx 

present in the forty-five second lean pulse.  Simulation predictions were compared to 

varying the NO to NOx ratios in the lean pulse, where it was observed that the kinetic 

model under predicts integral NOx conversion when the NO to NOx ratio favors NO, and 

over predicts integral NOx conversion when the NO to NOx ratio favors an equal mixture 

as seen in Figure 3.36.  It is determined that the NOx conversion is a strong function of 

stored NH3 on the catalyst, which is determined to be the weak point in the current 

kinetic model.  
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CHAPTER 4 

N2O PRODUCTION AND REACTIONS 

With increasing emphasis on greenhouse gases, nitrous oxide (N2O) emissions 

from automobiles are coming under increasing scrutiny [139-142].  N2O is an absorber of 

infrared radiation and contributes around 8% to the “greenhouse effect” in the 

troposphere [143].   N2O is a stable molecule with a lifetime of 170 years, and can diffuse 

into the stratosphere causing ozone layer depletion [144-146].  This chapter will discuss 

the potential for production of N2O on the SCR catalyst used in the EAS, as well a 

suggested modeling approach to account for the reduction of N2O with NH3. 

4.1 Background 

Previous research regarding N2O over zeolite-based catalysts has shown that it 

can be formed when either NO or NO2 is in the inlet mixture [87, 92, 116, 117, 119, 147-

149].  Research has shown that Cu-containing zeolites clearly formed larger amounts of 

N2O than Fe-containing zeolites [92].  Ciardelli et al. [135] has suggested from work on 

vanadium and iron based zeolite catalyst that NH3 and NO2 will form ammonium nitrate 

as the precursor to all reactions with NH3 and NO2 as seen in equation (4.1).  Ciardelli 

then suggests ammonium nitrate can be reduced with NO as seen in equation (4.2), or 

form N2O due to thermal breakdown as seen in equation (4.3). 
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3 2 4 3 2 22NH 2NO NH NO N H O     (4.1) 

4 3 2 2 2NH NO NO NO 2H ON     (4.2) 

4 3 2 2NH NO N O 2H O   (4.3) 

This is corroborated in experimental tests over a H-ZSM-5 catalyst [87, 149] and 

a copper-zeolite catalyst [116] where the selectivity to N2O is highest in the case of 100% 

NO2.   

Kim et al. [47] has summarized three possible reaction pathways for N2O 

production shown in equations (4.4) – (4.6) where N2O can be formed as a product of 

NH3 and O2, NO, or NO2 respectively.  Kim et al. suggests any N2O production reaction 

can be neglected based on experimental data.   

3 2 2 24NH 4O 2N O 6H O    (4.4) 

3 2 2 2 24NH 4 O 3O 4N O 6H ON     (4.5) 

3 2 2 2 24NH 2 O N N O 3H ON     (4.6) 

Epling et al. [57] found that N2O formation only occurs when NO2 concentration 

is higher than NO concentration in the feed gas in experiments performed on a iron based 

zeolite SCR catalyst.  Epling et al. performed spatial analysis experiments for the 

reduction of NO2 with NH3.  When the maximum catalyst length was used in the spatial 

study large amounts of NO2 and NH3 were converted to N2 and H2O. However, the 

spatial analysis yielded large quantities of N2O formation as less catalyst length is used.  

From these results Epling suggested a two reaction mechanism for NO2 reduction with 

NH3, where NO2 and NH3 first react to form N2O as seen in equation (4.6), and then N2O 

will be converted by NH3 as seen in equation (4.7).  N2O reduction with NH3 is consistent 
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with results by Mauvezin et al. [150] on an Fe-exchanged zeolite SCR catalyst.  It should 

be noted that the combination of the reactions shown in equations (4.6) and (4.7) yield 

the global Slow SCR reaction for NO2 reduction with NH3 as seen in equation (4.8).   

3 2 2 22NH 3N O 4N 3H O    (4.7) 

3 2 2 28NH 6NO 7N 12H O    (4.8) 

4.2 Experimental Results 

Experimental data for the N2O production and reduction reactions when using a 

bench-top style reactor are collected using temperature ramp experiments which consist 

of constant inlet concentrations and varying temperature in a constant upward or 

downward ramp rate up to 5°C/min.  The data presented by Epling et al. suggests space 

velocity is important when determining the reduction pathways of NO2 and N2O with 

NH3 all experiments were run at a low space velocity so diffusion effects are minimized 

to determine the proper reduction pathway. 

4.2.1 N2O Production 

Kim et al. [47] has suggested secondary pathways where N2O production can 

exist during the reaction of NH3 and NO or  NO2 on a copper based zeolite SCR catalyst.  

Since it was already experimentally determined in the last chapter that NH3 and O2 do not 

form N2O on this catalyst, the reaction in equation (4.4) can be neglected. The N2O 

generation reactions are shown in equations (4.5) and (4.6). 

3 2 2 24NH 4NO 3O 4N O 6H O     (4.5) 

3 2 2 2 22NH 2NO N N O 3H O     (4.6) 
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Figure 4.1 shows the concentrations of NO, NO2, N2O, NH3 on a temperature 

basis for five different experiments performed with different NO to NOx ratios.   By 

examining the levels of N2O in these experiments it can be seen that N2O formation is 

negligible when the NO to NOx ratio is between 1.0 and 0.5; however when the NO to 

NOx ratio is between 0.5 and 0.0, N2O concentrations are considerable.  When examining 

the NOx N2O pathways it can be seen that the reaction with NH3 and NO to form N2O 

shown in equation (4.5) can be neglected, while the reaction with NO2 and NH3 shown in 

equation (4.6) remains as the only N2O pathway.   
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Figure 4.1 – Significant N2O levels are seen when the NO to NOx ratio favors NO2, All 

experiments are performed as a temperature ramp with feed gas composition of 6% H2O, 

6% CO2, 6% O2, 400 ppm NH3, 400 ppm NOx, with an NO to NOx ratio equal to (a) 1.0, 

(b) 0.75, (c) 0.5 (d) 0.25, and (e) 0.0. 
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4.2.2 Effect of NH3 to NO2 Ratio on N2O Production 

Since it has been determined that N2O production is due to NH3 reaction with 

NO2, the conversion of NO2 to N2O is defined in equation (4.9) based on the 

stoichiometric values from equation (4.6) where two NO2 molecules will combine with 

two NH3 molecules to form one N2O molecule. 

2

2 2

2

_

_ _

_

2
100

N O out

NO to N O

NO in

y

y


 
  
 
 

 
(4.9) 

A series of experiments is then performed test the N2O production for different 

NH3 to NO2 ratios in the feed gas.  From the N2O production reaction with NH3 and NO2 

listed in equation (4.6) it can be seen that the stoichiometric ratio of NH3 to NO2 for N2O 

production is 1.0 due to the highest value of NO2 conversion to N2O over the entire 

temperature range. 
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Figure 4.2 − N2O production is the highest when there is an equal amount of NH3 and 

NO2 in the feed gas.  The experiments were performed as a temperature ramp with 6% 

H2O, 6% CO2, 0% O2, 400 ppm NOx, and varying NH3 concentration in the feed gas.  
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4.2.3 N2O Reaction with NH3 

Due to significant formation of N2O when reducing NO2 with NH3, temperature 

ramp experiments were performed with N2O and NH3 in the feed gas.  In Figure 4.2 it 

was observed that NO2 conversion to N2O reaches a maximum of 80% when varying 

temperature and the NH3 to NO2 ratio.  According to the reaction scheme proposed by 

Epling et al. [57], the reaction of N2O with NH3 is expected in the entire temperature 

range.  Figure 4.3 shows a temperature ramp experiment measuring the N2O conversion 

due to a reaction with NH3.  From these experiments it was found that N2O conversion 

with NH3 is negligible below 350°C but steadily increases at temperatures above 350°C. 
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Figure 4.3 − N2O conversion with NH3 is negligible below 350°C.  The experiment was 

performed as a temperature ramp with 6% H2O, 6% CO2 and listed NH3 and N2O 

concentrations in the feed gas. 

4.2.4 N2O Conversion in Fast SCR Reaction 

Due to the high rate of conversion of NO2 and NH3 to N2O, it is important to test 

if this occurs simultaneously with the Fast SCR reaction.  By combing the Fast SCR 
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reaction in equation (4.10) with the N2O production reaction from NH3 and NO2 shown 

in equation (4.6); the reduction of NO and N2O by NH3 reaction can be defined in 

equation (4.11).  If experimental data proves this is indeed the precursor to these steps the 

reduction of NO and N2O by NH3 reaction (4.11) can be substituted for the Fast SCR 

reaction (4.10). 

3 2 2 22NH NO+NO 2N 3H O    (4.10) 

3 2 2 2 22NH 2NO N N O 3H O     (4.6) 

3 2 2 22NH 2NO N O 3N 3H O     (4.11) 

To measure total conversion of NO, NO2, and N2O with NH3 during these 

experiments, NOy conversion is defined according to equation (4.12). 

   
 

2 2 2 2

2 2

_ _ _ _ _ _

_ _ _

100
y

NO in NO in N O in NO out NO out N O out

NO

NO in NO in N O in

y y y y y y

y y y


     
  
  
 

 
(4.12) 

An experiment is designed by combining NO, N2O, and NH3 in feed gas for a 

temperature ramp.  If N2O is a precursor in the Fast SCR experiment NOy conversion 

would approach 95% conversion.   From Figure 4.4 it can be seen that the conversion of 

NO and N2O by NH3 follows the same trend as the N2O reduction with NH3 as shown in 

Figure 4.4, where conversion is minimal below 350°C, but steadily increases as the 

temperature increases above 350°C.  Therefore, the Fast SCR reaction shown in equation 

(4.10) cannot be substituted for the NO and N2O reduction with NH3 reaction shown in 

equation (4.11). 
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Figure 4.4 − The addition of NO in the feed gas of NH3 and N2O does not increase the 

conversion of NOy.  The experiments were performed as a temperature ramp with 6% 

H2O, 6% CO2, and listed values of NH3, NO, and N2O. 

4.3 N2O Production Effect on NO2 Reduction with NH3 

From Figure 4.1 it was determined that N2O production is significant when the 

NO to NOx favors NO2 with N2O production being the highest when only NO2 and NH3 

are in the feed gas.  Therefore it can be determined that NOx reduction with NH3 is a 

combination of at least the four reactions shown in equations (4.13), (4.14), (4.15), and 

(4.16). 

3 2 2 24NH 4NO O 4N 6H O     (4.13) 

3 2 2 22NH NO NO 2N 3H O     (4.14) 
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3 2 2 26NH 8NO 7N 12H O    (4.15) 

3 2 2 2 22NH 2NO N N O 3H O     (4.16) 

Epling et al. [57] has suggested that since N2O production only occurs as a 

reaction with NH3 and NO2, equation (4.15) can be replaced with equation (4.17) if the 

N2O production reaction is included as seen in equation (4.16). 

3 2 2 22NH 3N O 4N 3H O    (4.17) 

To test this theory by Epling et al. the NOx conversion, the NO2 conversion to 

N2O, N2O conversion with NH3, and the NO2 conversion due to thermal decomposition 

are plotted based on temperature as seen in Figure 4.5. It should be noted that the N2O 

conversion with NH3 and the NO2 conversion due to thermal decomposition are from 

separate experiments shown earlier in Figure 4.3 and Figure 3.6 respectively.  In Figure 

4.5 it can be seen that most of the NOx conversion from the reaction of NO2 and NH3 is 

initially due to NO2 conversion to N2O.  However, as the temperature increases NO2 

conversion to N2O decreases due to possible reactions with N2O and NH3 or by the 

enacting the Fast SCR reaction by thermally decomposition of NO2 to NO.   
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Figure 4.5 – Summary of NOx conversion pathways for reactions with NO2 and NH3.  

The experiment was performed as a temperature ramp with 6% H2O, 6% CO2, 1000 ppm 

NH3, and 750 ppm NO2, in the feed gas. 

From the conversions results shown in Figure 4.5, the conversion of NO2 to N2O 

 
2 2_ _NO to N O and the N2O conversion with NH3  

2N O  are combined to see if their values 

equal the NOx conversion values for the stoichiometric experiment.  This is done to test 

the proposed reaction scheme by Epling et al. [57] as shown in equation (4.18).   

3 2 2 2 2

3 2 2 2

3 2 2 2

   2NH 2NO N N O 3H O

+          2NH 3N O 4N 3H O

   8NH 6NO 7N 12H O

   

  

  

2 2

2

_ _   

+          

   
x

NO to N O

N O

NO








 

(4.18) 

When comparing the method shown in equation (4.18) it can be seen in Figure 4.6 

that a significant amount of NOx conversion is unaccounted for, therefore it is important 

to test Epling et al. approximation by including the Fast SCR reaction from equation 

(4.10).  The Fast SCR reaction is added by adding the NO2 conversion due to thermal 

decomposition is assuming NO formed due to thermal decomposition  
2NO  enacts the 

Fast SCR reaction which is the dominant reaction for NOx reduction with NH3.  Since 

oxygen is not present in these experiments, the Standard SCR reaction as seen in equation 
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(4.13) is ignored.  The combination of the Fast SCR reaction and N2O pathways for NOx 

reduction is shown mathematically in equation (4.19) with maximum predicted NOx 

conversion based on these reactions is set to 100% conversion. 

3 2 2 2 2

3 2 2 2

2 2

3 2 2 2

   2NH 2NO N N O 3H O

+          2NH 3N O 4N 3H O

1
+                            NO NO+ O

2

+    2NH NO+NO 2N 3H O

xNO

   

  


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 

2 2

2

2

_ _   

          

min     100

+                    

   
x

NO to N O

N O

NO

NO
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







  
  
  
  

   
  
  
    

 
(4.19) 

A comparison of NOx conversion from the experiment versus predicted values 

using the reaction pathways suggested by Epling et al. [57] are shown in Figure 4.6.  

From these results it can be seen that neither combination will account for the entire 

conversion of NOx from the experimental data.  It can therefore be concluded that the 

global Slow SCR reaction cannot be neglected in the reaction mechanism, but the 

additional pathway for N2O conversion with NH3 proposed by Epling et al. needs to be 

included.  
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Figure 4.6 − The Slow SCR reaction cannot be neglected due the combination of other 

reactions not equaling the conversion of NOx for NO2 reduction with NH3.  The 

experiment was performed as a temperature ramp with 6% H2O, 6% CO2, 1000 ppm 

NH3, and 750 ppm NO2, in the feed gas. 

4.4 Suggested Modeling Approach 

In the detailed reactions shown in equations (4.1) – (4.3) there is no reaction 

pathway for the reduction of N2O with NH3.  Due to the inability to test N2O reactions 

with ammonium nitrate, a global mechanism is proposed to account for the results shown 

in Figure 4.6.  From the last chapter it was determined that all the NOx reduction with 

NH3 reactions take place with NH3 stored on the surface of the catalyst. Therefore, the 

proposed modeling global reactions for NOx reduction with NH3 are shown in equations 

(4.20) – (4.25). 

 3 2 24Z NH 6NO 4 5N 12H OZ     (4.20) 

  3 2 2 24Z NH 4NO O 4 4N 6H OZ      (4.21) 
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 3 2 2 22Z NH NO NO 2 2N 3H OZ      (4.22) 

 3 2 2 26Z NH 8NO 6 7N 12H OZ     (4.23) 

 3 2 2 2 22Z NH 2NO 2 N N O 3H OZ      (4.24) 

 3 2 2 22Z NH 3N O 2 4N 3H OZ     (4.25) 

While the kinetics for each reaction can be modeled as an Arrhenius rate as shown 

in equation (4.26).  The pre-exponential  k  and the activation energy  E  from the Rich 

Standard SCR reaction (equation (4.20)) and the N2O reduction with NH3 reaction 

(equation (4.25)) can be determined based on separately based on their respective 

individual experiments.  The pre-exponential and activation energy will need to be 

determined simultaneously for the remaining reactions from multiple experiments.   

 3

Inlet Species

exp

E

RT

iZ NH
i

R k y

 
 
 



   
(4.26) 

4.5 Conclusions 

It has been determined that significant amounts of N2O are produced 

simultaneously during the reduction of NOx with NH3 when the NO to NOx ratio favors 

NO2 as seen in Figure 4.1.  It has been determined that up to 80% of NO2 can be 

converted to N2O when reacting with NH3 as seen in Figure 4.2.  From Figure 4.3 it was 

determined that NH3 can be used to in the reduction of N2O, but the reaction does not 

start until the catalyst temperature is above 350°C.  It was determined that N2O is not the 

critical pathway for NO2 for the Fast SCR reaction because NO does not increase the 

conversion of N2O with NH3 below 350°C as seen in Figure 4.4.   Lastly, it was 

determined that combining the NO2 conversion to NO, N2O conversion with NH3, and 



 113 

 

the NO2 conversion due to thermal decomposition, a NOx conversion estimate can be 

formed for the simultaneous NOx reduction reactions.  From these results it was seen that 

the Slow SCR reaction (equation (4.23)) cannot be neglected, as well as the N2O 

production reaction from NO2 and NH3 (equation (4.24)) and the reduction of N2O with 

NH3 reaction (equation (4.25)) need to be included in the kinetic mechanism.   

 



 114 

 

CHAPTER 5 

EFFECT OF NH3 STORAGE ON NOX REDUCTION 

One major weak point of the current kinetic mechanism is NOx conversion 

predictions as NH3 concentration varies.  This is due to instantaneous reactions between 

NO, NO2, and NH3 during steady state operation.  This chapter provides experimental 

studies of NOx conversion dependence on NH3 concentration on the catalyst as well as a 

proposal for modifications to the current kinetic rate form equations. 

5.1 Model Validation Results 

The current proposed global reactions and their corresponding kinetic rate forms 

are shown in Table 5.1.  From Table 5.1 it can be seen that every reaction that includes 

NH3 in its reactants includes surface coverage fraction of NH3   
3Z NH

 .  The surface 

coverage fraction of NH3 is a non-dimensional number from 0 to 1 that represents the 

amount of NH3 stored on the catalyst compared to maximum amount of NH3 able to store 

on the catalyst. When reviewing the kinetic rate equations for all reactions with NH3 in 

the reactants in Table 5.1, it can be seen that each kinetic rate form is based on a linear 

dependence on the surface coverage fraction of NH3. 
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Table 5.1 − Summary of chemical reaction and kinetic rates for lean SCR model from 

literature and experimental sources. 

 Chemical Reaction Kinetics Rate Form 

(R1) 2 2

1

2
NO O NO   

1

2

21 1 exp

E

NORT

NO O

eq

y
R k y y

K

 
 
 

 
  

 
 

 

(R2)  3 3Z NH Z NH    

 

2
2 3

3 3
2 2 2 exp

r
r Z NH

E

RT

f NH Z r Z NH
R k y k

 

 

 
 

    

(R3)  3 2 2 24 3 4 2 6Z NH O Z N H O        

3

3

2 3
3 3 exp

E

RT

O Z NH
R k y





 
 
   

(R4)  3 2 24 6 4 5 6Z NH NO Z N H O     
 

4

3
4 4 exp

E

RT

NO Z NH
R k y 

 
 
   

(R5)  3 2 2 24 4 4 4 6Z NH NO O Z N H O      
 

5

2 3
5 5 exp

E

RT

NO O Z NH
R k y y 

 
 
   

(R6)  3 2 2 22 2 2 3Z NH NO NO Z N H O      
 

6

2 3
6 6 exp

E

RT

NO NO Z NH
R k y y 

 
 
   

(R7)  3 2 2 28 6 8 7 12Z NH NO Z N H O     
 

7

2 3
7 7 exp

E

RT

NO Z NH
R k y 

 
 
   

(R8)  3 2 2 2 22 2 2 3Z NH NO Z N N O H O      
 

8

2 3
8 8 exp

E

RT

NO Z NH
R k y 

 
 
   

(R9)  3 2 2 22 3 2 4 3Z NH N O Z N H O     
 

9

2 3
9 9 exp

E

RT

N O Z NH
R k y 

 
 
   

 

From Table 5.1 the reactions listed in (R1) – (R8) were compared to lean/rich or 

lean-rich cycling experiments to validate the kinetic mechanism as shown in Figure 5.1.  

From these results it was shown that the SCR kinetic mechanism will under predict 

integral NOx conversion below 400°C, while at or above 400°C the model prediction is 

statistically significant for the experimental results for an NO to NOx ratio equal to 1.0 in 

the lean pulse.  The kinetic mechanism will over predict integral NOx conversion for the 

entire temperature range, however at or above 350°C the simulation predictions are 

statistically significant when compared to the experimental results for an NO to NOx ratio 

equal to 0.5 in the lean pulse.    
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Figure 5.1 – Simulation data under predicts integral NOx conversion under 400°C when 

compared to the Experimental data when (a) NO:NOx = 1.0; while simulation data over 

predicts integral NOx conversion under 350°C when compared to the experimental data 

for (b) NO:NOx = 0.5. 

When examining the common Arrhenius kinetic rate form for NH3 based 

reactions shown in (5.1), it can be seen that at constant temperature and inlet composition 

that most of the kinetic rate form can be approximated as constant as seen in (5.2).  The 

kinetic rate form is approximately constant. Due to the reduction of NO, NO2, N2O, or O2 

from the reactions, the mole fraction at the catalyst surface will see slight changes in 

composition.    

 3

reactants

exp

E

R T

i Z NH
i

R k y 

 
 

 



 
  

 
  

(5.1) 

reactants

exp .

E

R T

i

i

k y const

 
 

 



 
 

 
  

(5.2) 

It can therefore be determined that NOx reduction with the current kinetic 

mechanism shown in Table 5.1 is approximately linearly proportional to the surface 

coverage fraction of NH3.  Figure 5.2 shows the simulation and experimental NO 

concentrations from a lean pulse of one cycle where integral NOx conversion values are 

statistically significant at 400°C in Figure 5.1 (a).  In  Figure 5.2 it can be seen that the 
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simulation using the kinetic mechanism predicts NO concentrations corresponding to 

linear reduction of NH3 stored on the catalyst, while the experimental results shows 

definitively that NO concentration is not linearly reduced during the lean pulse.  Upon 

further investigations a similar effect could be derived due to pressure pulsations 

however, since exhaust pressure is held constant on an engine by a variable geometry 

turbocharger aftertreatment catalysts pressure is assumed constant.  Therefore, pressure 

was held constant for the rich and lean pulse in the reactor bench experiments. It can 

therefore be concluded that NOx conversion is a strong function of the amount of NH3 on 

the catalyst.  For these experimental results the FTIR readings were offset based 

experimental data taken that bypassed the catalyst.  It is possible that the time constant of 

the FTIR readings will filter the experimental data in these experiments, however since 

data is recorded at 1 Hz this will not affect the trend seen where approximately 15 

seconds pass before NO breakthrough occurs in  Figure 5.2. 

0

50

100

150

200

340 350 360 370 380 390 400

NO Inlet
Simulation NO Outlet
Experimental NO Outlet

C
o

n
c
e

n
tr

a
ti

o
n

 (
p

p
m

)

Time (s)

Approx. Linear 

Dependence 

on NH
3

in Simulation

Non-Linear 

Dependence 

on NH
3

in Experimental

 
Figure 5.2 – The amount of stored NH3 on the catalyst plays are large role in NOx 

reduction capabilities during lean rich cycling experiments for NO:NOx = 1.0, 

Temperature =400°C.  
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5.2 Experimental Results 

Experiments from this section are performed to study the effect of stored NH3 on 

NOx conversion capabilities for the iron based zeolite SCR catalyst in the EAS.  As stated 

earlier, under steady state conditions NH3 levels react instantly with NOx on the catalyst 

to form complete products (N2 and H2O).  In an LNT-SCR aftertreatment system, NOx is 

stored on the LNT during lean exhaust operation.  NH3 is produced as a byproduct of 

NOx reduction with H2 during a rich regeneration of the LNT catalyst.  The SCR in the 

EAS operates by storing the NH3 from the rich regeneration to react with any NOx that 

slips during lean operation. An example of a catalyst bench experiment replicating these 

conditions is shown in Figure 5.3. 
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Figure 5.3 − NH3 stores on catalyst during rich pulse, NOx reacts with stored NH3 on lean 

pulse.  The experiment was performed as a lean rich cycling bench experiment for 50 sec 

cycle length at constant temperature of 250°C and a feed gas with 8% H2O, and 8% CO2. 
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Since NH3 will store during the rich phase of the cycle, but NOx conversion will 

only happen during the lean phase, it is important to study the effect of NH3 storage on 

NOx conversion across the SCR catalyst.  An experiment is designed where temperature, 

CO2 concentration, and H2O concentration are held constant, for a much longer cycle 

than shown in Figure 5.3.  The long cycle switching experiment is designed in two steps, 

with the first step designed to saturate the catalyst with NH3 in the rich phase by dosing 

the catalyst with 1000 ppm NH3, 0% O2, 6% H2O, and 6% CO2 for 2 minutes.   The 

second step will react NO, NO2, and O2 with NH3 stored on the catalyst during an 8 

minute dose of 400 ppm NOx, 6% O2, 6% H2O, and 6% CO2.   This process was repeated 

for 10 cycles at seven temperatures (175°C, 225°C, 275°C, 325°C, 375°C, 425°C, 475°C) 

and three NO to NOx ratios (0.0, 0.5, 1.0). An example of the long switching experiment 

at constant temperature of 275°C with the NO to NOx ratio equal to 1.0 is shown in 

Figure 5.4 
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Figure 5.4 − Example of a long switching experiment where the catalyst will saturate 

with NH3 during a 2 minute rich pulse, then measure the conversion of NOx from the feed 

gas during the 8 minute lean pulse. 

5.3 Analysis and Results of Long Cycling Experiments 

From the long switching experiments the NOx conversion as a function of the 

surface coverage fraction of NH3 can be determined.  The surface coverage fraction of 

NH3   
3Z NH

 is defined as the fraction of the amount of stored NH3 on the catalyst 

surface over the total amount of NH3 that can be stored on the catalyst surface.  The total 

amount of stored NH3 that can be stored on the catalyst was determined from the TPD 

experiments with NH3 shown in Chapter 3.  The surface coverage fraction of NH3 from 

the long switching experiments can be calculated based on experimental measurements as 

shown in equation (5.3).   Where the amount of NH3 on the catalyst  
3 ,NH caty  in equation 

(5.3), is based on the stoichiometric NH3 values of the NH3 Storage reaction (R1), the 



 121 

 

Standard SCR reaction (R5) the Fast SCR reaction (R6), the Slow SCR reaction (R7), and 

the N2O Production reaction as seen in (5.4).  It should be noted that since the reactor 

bench using N2 as the carrier gas, NH3 loss to oxidation cannot be measured.  However, 

NH3 oxidation effects can be ignored in the calculation of the surface coverage fraction of 

NH3 because it is much smaller then NOx conversion effects with NH3 in the investigated 

temperature range.  

   
33
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(5.5) 

For each experiment the surface coverage fraction of NH3 (equation (5.3)) was 

plotted against the instantaneous NOx conversion (equation (5.5)) for ten consecutive 

cycles.   Since the comparison of surface coverage fraction of NH3 and instantaneous 

NOx conversion are non-dimensionalized terms, all ten cycles at each NO to NOx ratio 

for each temperature were overlapped as seen in Figure 5.5.  When examining the 

trendlines it was observed that all data had collapsed creating a single trend line for each 

temperature and at a given NO to NOx ratio.   
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Figure 5.5 – By non-dimensionalizing NOx conversion vs. the surface coverage fraction 

of NH3, all 10 cycles can be collapsed to form one trendline to characterize the effect of 

stored NH3 on NOx conversion.  Each cycle was performed with a rich pulse of 2 minutes 

with 1000 ppm NH3, 6% H2O, and 6% CO2, and a lean pulse of 8 minutes with 400 ppm 

NO2, 6% O2, 6% H2O, and 6% CO2 in the feed gas at a constant temperature of 325°C. 

The results are shown in Figure 5.6, where it can be seen that instantaneous NOx 

conversion is highly dependent on the surface coverage fraction of NH3.   In Figure 5.6 it 

can be seen that at 275°C and below for the NO to NOx ratio equal to zero (Figure 5.6 

(a)), NOx conversion is linearly dependant on the surface coverage fraction of NH3.  This 

linear dependence of NOx conversion on the surface coverage fraction of NH3 for the all 

NO2 NOx composition is due to existence of two simultaneous reactions competing for 

the reduction of NO2 with NH3 as shown in (R7) and (R8) from Table 5.1. In all other 

cases NOx conversion below the threshold surface coverage fraction for each temperature 

is negligible.  This behavior implies that there are multiple surface sites that can store 

NH3, but not all of the sites will contribute to the reduction of NOx with NH3.  This is 

different than results shown in Chapter 3, where NH3 storage is modeled on a single 
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catalytic sited due to the presence of a single desorption peak the NH3 in the TPD 

experiments. 
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Figure 5.6 − NOx conversion is highly dependent on the surface coverage fraction of 

NH3.  Experiments performed with lean pulse (a) NO:NOx = 0.0, (b) NO:NOx = 0.5, (c) 

NO:NOx = 1.0.   

Due to presence of multiple catalytic sites different approaches can be taken to 

accurately model this process. Sjövall et al. [46] has suggested creating a more detailed 

kinetic model based on three active sites.  Due to the inability to measure catalytic 

activity as the catalyst is assembled, this process can triple the amount of reactions to 

modeled and the amount of rate constants to determine.      
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By examining the results of Figure 5.6 it can be determined that NOx conversion 

is proportional to the surface coverage fraction of NH3 as shown in equation (5.6).   

  
3xNO Z NH

f   
(5.6) 

A modeling study was performed consistent with one cycle of the long switching 

experiments shown in Figure 5.4.  From this study the NOx conversion versus the surface 

coverage fraction of NH3 is compared for the modeling results and the experimental 

results as shown in Figure 5.7.  It can be seen that the current kinetic model will predict 

NOx conversion approximately linearly dependent on the surface coverage fraction of 

NH3 while experimental data has mostly proven to show NOx conversion dependence on 

the surface coverage fraction of NH3 is highly non-linear except in the few instances 

already stated.    
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Figure 5.7 − NOx conversion is based on a linear prediction in the current kinetic 

mechanism.  Modeling predictions are based on a NO:NOx of (a) 1.0, (b) 0.5, (c) 0.0 

5.4 Proposed modifications to the kinetic rate form 

Using these findings in Figure 5.6 and Figure 5.7, it can be assumed that the 

kinetic mechanism shown in Table 5.1 can be improved by changing the dependence of 

the surface coverage fraction of NH3 in the rate forms with NH3 in the reactants.  Lietti et 

al. [95] initially observed NOx conversion is strongly dependent on the surface coverage 
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fraction of NH3 as a reservoir effect where not every site that stores NH3 is active in NOx 

reduction.  Lietti has suggested using a kinetic rate form as shown in equation (5.7), 

where 
 3

*

Z NH
 is the critical NH3 surface concentration value of storage sites that effect NOx 

conversion.  
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 
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(5.7) 

From the experimental data generated in Figure 5.6 it is observed that all sites that 

store NH3 are not active in the NOx removal process.  When evaluating the proposed 

kinetic rate by Lietti in equation (5.7) it can be observed that the critical NH3 surface 

concentration can dominate the kinetic rate at extremely low values.  Therefore a new 

approximation can be made which combines work on adsorption isotherms by Kisliuk 

[151] and work done by Lietti to normalize the reservoir effect to account for the 

probability of NH3 being absorbed on an active catalytic site as shown in equation (5.8). 
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(5.8) 

By making the assumption that the kinetic rate is approximately constant except 

for the surface coverage fraction of NH3 shown in equation (5.2); the potential NOx 

conversion for a constant temperature can be plotted against the surface coverage 

dependence of NH3 for the original kinetic rate form (equation (5.1)).   This 

approximation is compared to the approximation by Lietti et al. (equation (5.7)), and the 

suggested normalized rate form (equation (5.8)).   The comparison for the three suggested 

kinetic rates is shown in Figure 5.8, where the critical NH3 concentration value is varied 

to show potential changes to the rate kinetic rate form.  It can be seen that the potential 
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for improvement of the kinetic mechanism can be seen in Figure 5.8 by using the 

proposed kinetic rate form in equation (5.8) and determining the critical NH3 

concentration through the optimization process.   
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Figure 5.8 − Determination of the dependence on the surface coverage fraction of NH3 

can be determined based on experimental data for (a)NO:NOx = 0.0, (a)NO:NOx = 0.5, 

(c)NO:NOx = 1.0 
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5.5 Conclusions 

By lengthening the ideal rich lean cycling conditions an experiment was designed 

to saturate the catalyst with NH3 and measure the NOx conversion as all NH3 is removed 

from the catalyst. From the long cycling experiments shown in Figure 5.4 the amount of 

NH3 stored on the catalyst can be determined as a non-dimensional term called the NH3 

surface coverage.  NOx conversion for each cycle can be plotted against the NH3 surface 

coverage fraction, which can then be collapsed to find the trendline signifying the 

dependence on stored NH3 for a constant temperature of a given NO to NOx ratio.  The 

trendlines created were then used to formulate a new approximation to be implemented in 

the kinetic rates of the NH3 oxidation reaction (R3) , the Standard SCR reaction (R5), the 

Fast SCR reaction (R6), the Slow SCR reaction (R7), and the N2O Production reaction 

(R8) in the SCR kinetic mechanism shown in Table 5.2.  It is suggested not to change the 

kinetic rate of the Rich Standard SCR reaction (R4) due to the low activity of the 

reaction.  It also suggested to not change the kinetic rate for the N2O Reduction with NH3 

reaction (R9) however, the kinetic rate can be changed once initial modeling results are 

analyzed.   
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Table 5.2 − Summary of chemical reaction and kinetic rates for lean SCR model with 

new dependence of the surface coverage fraction of NH3. 

 Chemical Reaction Kinetics Rate Form 

(R1) 2 2

1

2
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eq
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 
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CHAPTER 6 

EFFECT OF H2O AND CO2 ON SCR REACTIONS 

Due to the unique operation of the LNT-SCR aftertreatment system present in the 

EAS, all of the catalysts will be exposed to rich and lean exhaust conditions where the 

LNT will generate NH3 to be used by the SCR when the exhaust becomes rich.  By 

examining the lean (φ < 1) and rich (φ > 1) complete combustion equations listed in 

equations (6.1) and (6.2) respectively, estimates for gas compositions can be determined 

for engine under different equivalence ratios if the hydrogen to carbon ratio of the fuel is 

known.  For ease of performing estimates of H2O and CO2 estimates, H2 and CO were 

assumed negligible for the calculations. 

2 2 2 2
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For diesel fuel it can be estimated that the hydrogen to carbon ratio is 1.8 [4].  

Results using this hydrogen to carbon ratio and varying the equivalence ratio from 0.5 to 

3.0 are shown in Figure 6.1.  In Figure 6.1 it can be seen that H2O and CO2 levels will 

change from approximately 6% when lean to approximately 15% when rich. Due to the 

EAS working between normal engine operation of an equivalence ratio of approximately 

0.6 and an equivalence ratio of 1.1 when performing a rich regeneration [19, 20], H2O 

and CO2 levels should be varied between 6% and 12%.    From Chapter 3 the effect of 

oxygen concentration on the SCR reactions was characterized.  It should also be noted 

that the SCR catalyst (located downstream of the LNT and cDPF) may be exposed to H2, 

CO, and hydrocarbons when the exhaust stream becomes rich; however the effect of 

these gases will be studied in the next chapter. 
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Figure 6.1 − Shows how H2O and CO2 concentration increase from 6% to 15% as 

equivalence ratio increases.   
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6.1 NO Oxidation 

Due to common kinetic rate forms for the oxidation of NO to NO2 containing a 

water inhibition term, experiments with varying H2O and CO2 values were already 

studied.  In Chapter 3 it was found that water strongly inhibits catalyst activity when 

comparing experiments with 0% H2O / CO2 and a 6% H2O /CO2.  However, increasing to 

10% H2O / CO2 did not further affect conversion in the forward or reverse reaction for 

the oxidation of NO to NO2.   Due to these results the inhibition terms were dropped from 

the proposed kinetic rate forms because there is no change in conversion in the expected 

H2O concentration range of 6 – 10%.  The conversion experiments are shown in Figure 

6.2. 
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Figure 6.2 − From 0 – 6% water concentration in the feed gas can have large effects on 

the oxidation of NO to NO2 and reduction of NO2 to NO and O2, while there is little 

effect on the the forward and reverse reaction when the concentration of H2O is varied 

from 6 – 10%, all experiments were performed with 6% O2, and 1000 ppm NO. 

6.2 NH3 Storage 

Due to the drastic change in H2O and CO2 concentration it is important to study 

the effect of each on the NH3 storage capacity of the catalyst as it is the rate limiting step 

in NOx reduction with NH3.  It has been stated that CO2 has a small effect on storage of 
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NH3 [18], but H2O will have a more significant effect [101].  All TPD experiments to 

determine NH3 storage capacity were performed with a gas space velocity of 30,000 hr
-1

.  

Error analysis for the TPD experiments is calculated as a RMS combination of the 2% 

error in NH3 concentrations from the FTIR and the standard deviation of NH3 storage 

capacities from multiple experiments at each temperature and gas compositions.  The first 

series of experiments were performed with only NH3 in the feed gas, the second series of 

experiments is performed with NH3 and CO2 in the feed gas, and the last series of 

experiments is performed with NH3, CO2, and H2O in the feed gas with equivalent values 

of CO2 and H2O due to the hydrogen to carbon ratio of diesel fuel being close to a value 

of 2.0 [4].  For the synthetic gas bench the minimum value of H2O concentrations is 0 

(off) or 4% while the maximum H2O concentration is 10%.   

Figure 6.3 below shows how NH3 storage capacity is affected by different H2O 

and CO2 concentrations at initial storage temperatures between 175°C–475°C.  From this 

Figure 6.3 it can be determined that CO2 has little effect on the NH3 storage capacity of 

this catalyst except at high temperature when comparing to TPD experiments performed 

with no H2O or CO2 in the feed gas.   The experiments performed with no H2O or CO2 in 

the feed gas represent the maximum NH3 storage capacity for the SCR catalyst.  CO2 

high temperature effects on NH3 storage capacity can be assumed negligible because it 

has been found that H2O concentration will have a stronger inhibition effect on NH3 

storage capacity and in combustion exhaust gas H2O and CO2 are always present. 
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Figure 6.3 − Shows H2O concentration has a larger effect on NH3 storage capacity then 

CO2 concentration 

Figure 6.4 shows the effect of different H2O and CO2 gas concentration in the 

feed gas on NH3 storage capacity in a series of TPD experiments.  The feed gas 

concentrations of CO2 and H2O were held constant for each experiment.   A saturation 

effect is seen as a result from this series of experiments, where NH3 storage capacity of 

the catalyst decreases as H2O concentration increases, however this effect is not linear 

with H2O concentration, and shows only small decreases in NH3 storage capacity as H2O 

concentration in the feed gas increases.  This is commonly referred to as a saturation 

effect on a catalyst and commonly occurs when a gas concentration is higher than 2% in 

the feed gas. 
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Figure 6.4 − Shows a saturation of the catalyst by H2O that will not have major effects on 

NH3 storage capacity.  
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Figure 6.5 – NH3 storage capacity decreases as temperature increases, and as H2O 

concentration increases. 

6.2.1 NH3 Storage Modeling Approach for Varying Water Concentrations 

From the results shown in Figure 6.4 it can be seen that NH3 storage capacity is 

reduced as the concentration of water increases.  It can therefore be proposed that there is 
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a competition on the active catalytic sites between H2O and NH3. It can then be proposed 

that the NH3 storage competition with H2O storage can be defined by the equations in 

(6.3) and (6.4).  

 1f

1r
3 3Z NH Z NH 

R

R
 

(6.3) 

 2f

2r
2 2Z H O Z H O 

R

R  (6.4) 

To use this method the NH3 storage reaction (equation (6.3)) will be calibrated to 

a TPD experiment at an initial storage temperature of 200°C with 0% H2O and 0% CO2 

in the feed gas.  In Chapter 3 it was found that a Tempkin Isotherm kinetic rate yielded 

higher accuracy then a traditional rate form when mathematically describing the NH3 

storage reaction in equation (6.3).  Therefore, the kinetic rate equations shown in (6.5) 

and (6.6) will be used as the forward and reverse kinetic rates for equation (6.3). 

31f 1f NH Zk y R  (6.5) 

  
 

1r
Z NH3

3
1r 1r Z NH

exp
E

R Tu mk



 

R  (6.6) 

It was found that when comparing these results to TPD experiments at different 

initial storage temperatures that the accuracy of the model can increase if an activation 

energy is added to the forward kinetic rate form as shown in (6.7). While this term is 

commonly neglected [108], calibration results found that the activation energy to be 

5.353 kJ mol
-1

, which is small, but not negligible. 

 1f

31f 1f NH Zexp
E

R Tu mk y 


R  (6.7) 

The rate forms for the forward and reverse reactions (equations (6.7) and (6.6)) 

were fit simultaneously for a TPD experiment performed with an inlet feed gas of NH3 in 

N2 without any H2O or CO2 present at a catalyst temperature of 200°C (shown in Figure 
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6.6).  The coefficients for equations (6.6)and (6.7) are given in Table 6.1.  It should be 

noted that this is the same approach as used in Chapter 3 to calibrate the NH3 Storage 

reaction; however calibration was done to match a TPD experiment with 8% H2O and 8% 

CO2. 

Table 6.1 − Parameters developed to model the reaction described by equation (6.3) 

Parameter Value Units 

Site Density 1.67×10
-2

 [kmol m
-2

] 

E1f 5.353 [kJ mol
-1

] 

k1f 2.61×10
0
 [kmol m

-2
 s

-1
 moleNH3

-1
] 

E1r 96.340 [kJ mol
-1

] 

k1r 2.99×10
3
 [kmol m

-2
 s

-1
] 

λ1 0.256 [-] 
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Figure 6.6 − Comparison of experimental and simulation data for a TPD experiment with 

0% H2O and 0% CO2 in the feed gas. 
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After the modeling parameters were determined, results from all four TPD 

experiments with 0% H2O/CO2 were compiled with an average error in NH3 

concentration range from 5.52 – 7.36 ppm.  Figure 6.7 illustrates that there is good 

agreement between the model and experimental values.  However, the model diverges at 

the high and low temperatures.  This occurs because there is more than one site that can 

absorb NH3, as previously found by [91, 104, 109].  As stated before, our global 

mechanism uses only one active site for the strongly chemisorbed ammonia, and assumes 

that weakly bonded ammonia is stored on secondary sites that are not modeled.  This 

effect is also prevalent in the NH3 adsorption behavior during the shoulder at the end of 

the first stage of the TPD experiment where the NH3 approaches the inlet concentration 

values.   
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Figure 6.7 − Model shows acceptable agreement with experimental data for total NH3 

storage capacity under varying storage temperatures for experiments with 0% H2O and 

0% CO2. 

Once the NH3 storage reaction has been calibrated and verified for the TPD 

experiments with 0% H2O and 0% CO2, the H2O competition reaction shown in equation 
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(6.4) can be calibrated from TPD experiments at different initial storage temperatures and 

H2O and CO2 levels.  The test matrix (Table 6.2) includes four initial storage 

temperatures (200°C, 300°C, 350°C, and 400°C), and two different H2O/CO2 levels (6% 

and 8%).  The experimental data for this test matrix is shown in Figure 6.8 

Table 6.2 – Test matrix for a total of 8 experiments to calibrate the H2O competition on 

catalyst surface  

Initial Storage Temperature H2O / CO2 Levels 

200°C 6% H2O / 6% CO2 

300°C 10% H2O / 10% CO2 

350°C  

400°C  
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Figure 6.8 − Storage capacity of NH3 is decreased when CO2 and H2O levels are 

increased at each initial storage temperature. 
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It is proposed to use standard Arrhenius kinetic rates for the H2O competition for 

catalytic sites reaction shown in equation (6.4). Therefore, the corresponding forward and 

reverse rate forms listed in Equations (6.8) and (6.9) respectively. 

 2f

2r
2 2Z H O Z H O 

R

R
 

(6.4) 

 2f

22f 2f H O Zexp
u m

E

R T
k y  R  

(6.8) 

   
2r

2
2r 2r Z H O

exp
u m

E

R T
k  R  

(6.9) 

Table 6.3 provides the parameters for the reaction rate expressions in Equations 

(6.8) and (6.9). When fitting the H2O storage reaction (Equation (6.4)), all cases of 

varying storage temperature and varying H2O/CO2 concentration were included to 

account for how H2O concentration and temperature influence the amount of stored NH3 

on the catalyst.  Once the rate parameters were determined additional simulations were 

done starting with a H2O saturated catalyst to tests its effect on NH3 storage.  The results 

showed negligible differences therefore it can be concluded that H2O will fill an empty 

site temporarily, and then release, creating a free site that can store either NH3 or H2O 

depending on feed gas composition.   

Table 6.3 − Parameters developed to model the reaction expression derived from 

equation (6.4). 

Parameter Value Units 

E2f 47.260 [kJ mol
-1

] 

k2f 2.98×10
1
 [kmol m

-2
 s

-1
 moleH2O

-1
] 

E2r 20.120 [kJ mol
-1

] 

k2r 2.03×10
-3

 [kmol m
-2

 s
-1

] 
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Once calibrated the NH3 H2O Competition kinetics (as shown in equations (6.3) 

and (6.4)) are compared to the original results for the Tempkin Isotherm NH3 storage 

kinetics previously calibrated in Chapter 3.  Figure 6.9 shows a TPD experiment 

performed with 250 ppm NH3 and 6% H2O/CO2 in the inlet feed to the catalyst with an 

initial storage temperature of 300°C to compare both kinetic approaches.    In this figure 

it can be seen that the accuracy of both kinetic approaches is comparable, however by 

adding a water competition reaction the simulation follows the experimental data as the 

catalyst becomes saturated with NH3. 
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Figure 6.9 – Accuracy is comparable for the two kinetic approaches however the NH3 

H2O Competition approach follows catalyst saturation data with more accuracy.  The 

experiment was performed with 6% H2O, 6% CO2, and 250 ppm NH3 in the feed gas with 

an initial storage temperature of 300°C. 
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Figure 6.10 illustrates how each kinetic approach predicts the NH3 storage 

capacity of the catalyst.  It can be seen that original Tempkin Isotherm approach will only 

change the NH3 storage capacity as the initial storage temperature change, while H2O 

levels changes have no effect.  The NH3 H2O Competition kinetics however allows 

corrections for temperature and H2O concentration.  It should be noted that when 

modeling SCR catalysts to be used in only steady-state conditions, H2O storage effects 

will remain relatively low.  Therefore, modeling complete storage effects with the water 

reaction is not necessary and the simulation only requires the NH3 reaction (equation 

(6.3)) as long as calibration is performed with a representative H2O/CO2 level.  However, 

in the case of the LNT-SCR aftertreatment system, the lean/rich switching will cause 

significant shifts in water concentration.  Thus, incorporating H2O storage in the model is 

important to account for the amount of stored NH3 to predict the total NOx conversion of 

the LNT-SCR system.  
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Figure 6.10 – The original Tempkin Isotherm kinetic approach to NH3 storage capacity 

only varies with the initial storage temperature, while the NH3 H2O Competition kinetic 

approach allows for changes in NH3 storage capacity based on temperature and H2O 

concentration. 

6.3 NH3 Oxidation 

Temperature ramp experiments were performed at different H2O and CO2 

concentrations for ammonia oxidation experiments.  When comparing two experiments 

with 6% H2O/CO2 and 10% H2O/CO2 as shown in Figure 6.11, it can be seen that the 

NH3 conversion trendlines vs. temperature are similar however these are slight changes in 

magnitude.  From the previous sections it was concluded that H2O and NH3 will compete 

for catalytic sites.  Since NH3 oxidation occurs when NH3 is on the surface of the 

catalyst, increases in H2O concentration will decrease the amount of NH3 on the catalyst 
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surface and decrease the conversion with NH3. It can therefore be concluded that the 

oxidation of NH3 is a relatively slow reaction where H2O competition for catalytic sites 

affects the NH3 Conversion.  Further corroboration is done by adding the NH3 H2O 

competition reaction shown in (6.4) to the modeling prediction from Chapter 3, where it 

can be seen that a changes in NH3 conversion predictions can be accounted for by adding 

the H2O storage reaction instead of changing the kinetic reaction rate for the NH3 

oxidation reaction.   
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Figure 6.11 − Negligible changes in NH3 conversion in oxidation experiments when H2O 

and CO2 concentrations are varied from 6% – 10% in the feed gas with 1000 ppm NH3, 

and 6% O2.   

6.4 NOx Reduction with NH3  

Figure 6.12 shows the results of experiments performed while testing varying 

H2O and CO2 levels to in the feed gas.  From these results it can be seen that H2O and 

CO2 levels do not have an effect on NOx conversion with NH3 for all NO to NOx ratios. 

Therefore it can be concluded that NO and NO2 will react quickly with stored NH3, 

therefore H2O competition for catalytic sites will not affect NOx conversion. 
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Figure 6.12 − NOx conversion does not change with as H2O and CO2 concentrations 

increase.  Experiments were performed as a temperature ramp with 6% O2, 1000 NH3, 

and 1000 NO varying H2O and CO2 concentration feed gas (a) NO:NOx = 1.0, (b) 

NO:NOx = 0.5, (c) NO:NOx = 0.0 

6.5 Conclusions 

The following conclusion can be made based on experimental and simulations 

results presented in this chapter. 
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6.5.1 NO Oxidation Conclusions 

It has been determined that the oxidation of NO to NO2 is affected by H2O 

concentration but not in the predicted H2O concentration range of the EAS.  Therefore as 

shown in Chapter 3, H2O inhibition term can neglected in the kinetic rate.   

6.5.2 NH3 Storage Conclusions 

The experiments described in this study indicate that as exhaust gas becomes rich 

and H2O and CO2 concentrations increase, the storage capacity of NH3 on an Fe-Zeolite 

catalyst decreases.  This is important for LNT-SCR combination systems where the 

exhaust stream concentrations can vary from 6% H2O/CO2 to 12% H2O/CO2.  The 

decrease in storage capacity of NH3 is larger between 0 – 6% H2O/CO2 than between 6 – 

10% H2O/CO2, which means that if engine conditions were held fairly constant, such as 

during lean engine operation with only an SCR system, the H2O competition effect does 

not need to be included in a global model and only temperature effects need to be 

considered in the model.  In cases where the exhaust stream varies from lean to rich, such 

as an LNT-SCR system, using an H2O competition model increases the accuracy of 

stored NH3 under the constantly varying exhaust conditions.   Since NOx conversion is a 

strong function of the surface coverage fraction of NH3, a method to model the NH3 H2O 

competition for catalytic sites has been proposed to allow NH3 storage to be affected by 

temperature and H2O concentration.    

6.5.3 NH3 Oxidation Conclusions 

It has been determined that the oxidation of NH3 is a relatively slow reaction that 

occurs on the catalyst.  It was observed that varying H2O concentration will decrease the 

conversion of NH3 due to oxidation.  It was also shown that this inhibition from H2O can 
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be accounted for using the NH3 H2O competition approach as shown in the NH3 Storage 

section.   

6.5.4 NOx Reduction with NH3 Conclusions 

It was observed that under steady state conditions that NOx conversion is 

unaffected by changes in H2O/CO2 levels. Therefore there is no inhibition due to H2O or 

CO2 for the NOx conversion reactions. It can therefore be concluded that each NOx 

conversion reaction occurs at a faster rate than the NH3 oxidation reaction, since 

increasing H2O concentration did not decrease the NOx conversion for each NO to NOx 

ratio.   
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CHAPTER 7 

EFFECT OF CO, H2, AND C3H6 ON SCR REACTIONS 

SCR catalysts are usually installed on engine systems that operate in only lean 

exhaust conditions and commonly have a DOC upstream to remove any unburned 

hydrocarbons, hydrogen, and carbon monoxide from the exhaust stream [3].  Due to the 

flexibility in the regeneration strategy of the EAS, there is a strong possibility that H2, 

CO, and hydrocarbons will become part of the feed gas to the SCR catalyst when 

optimizing the EAS for maximum NOx conversion.  NOx conversion with NH3 is highly 

sensitive to the NO to NOx ratio in the feed gas in a SCR.  Additionally, Figure 7.1 shows 

additional reductants of H2 and CO can slightly increase NOx conversion while C3H6 

present will inhibit NOx conversion.  This chapter will study how the additional 

reductants of H2, CO, and C3H6 will react with NO and NO2 on the iron based zeolite 

SCR catalyst in the EAS. 
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Figure 7.1 − Calculated integral NOx conversion for (a) NO:NOx=0.5 and (b) 

NO:NOx=1.0 shows a slight increase in integral NOx conversion when 1% H2 and 1% CO 

are in rich pulse, and a significant hydrocarbon poisoning effect when 1% H2, 1% CO, 

and 1% C3H6 is in rich pulse.  Each experiment is run with a 5 sec rich pulse with 8% 

H2O, 8% CO2, and 1000 ppm NH3, then a 45 sec lean pulse with 8% H2O, 8% CO2, 6% 

O2, and 150 ppm NOx with temperature held constant for 6 cycles.  

A literature survey has shown similar inlet concentrations can occur on Three-

Way-Catalysts (TWC) and Lean NOx Traps (LNT).   Research has shown that CO and H2 

can be used for conversion of NO and NO2 to N2, by using NO and NO2 to oxidize H2 to 

H2O and CO to CO2.   Due to their strong ability to oxidize H2, CO, and hydrocarbons to 

H2O and CO2, the conversion of NOx is commonly seen only with low levels of O2 

present in the exhaust stream [70, 71, 152, 153].   Bohac [154] performed a study of the 

NOx regeneration event at the outlet of the reformer catalyst.  The results shown in Figure 

7.2 indicate that reactions with fuel and the reformer catalyst can yield feed gas 

concentrations of 4% H2, 2% CO, and 1% THC at the inlet of the LNT in the EAS.  A 

hydrocarbon speciation analysis of these results yielded a large amount of partially 

reacted diesel fuel.     It has been suggested by Kuo et al. [155] that hydrocarbons in 

exhaust can approximated as methane (CH4) and propylene (C3H6).  Since methane is not 

very reactive all studies in this chapter will use propylene as a surrogate for hydrocarbons 
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in all experiments.  This is a similar approach taken by Olsson and Anderson [156] on 

automotive catalysts.  It should be noted that the approach listed in the chapter can be 

used with other hydrocarbons.  

 
Figure 7.2 – Results from Bohac [154] indicate that large amounts of H2, CO, and 

hydrocarbons can be present in the feed gas during a NOx regeneration event at the inlet 

of the LNT. 

7.1 Water Gas Shift 

To study the effect of CO and H2 on NO chemistry it is important to first look at 

the potential for a Water Gas Shift (WGS) reaction on the iron based zeolite SCR 

catalyst. The water gas shift reaction, shown in equation (7.1), is an equilibrium based 

reversible reaction shows a potential pathway for conversion between CO and H2O to H2 

and CO2 [157, 158].  This reaction is the most prominent in the rich phase when 

oxidation reactions are minimal.   
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Chen et al. found up to 12% conversion from CO and H2O to H2 and CO2 from 

the WGS shift reaction on an Fe based SCR catalyst [158].  Figure 7.3 shows 

experiments performed as a temperature ramp with both the forward and reverse 

constituents in a balance of nitrogen as the only species in the feed gas.  From the 

experimental data shown in Figure 7.3 it can be seen that the WGS reaction on the Fe 

based zeolite SCR catalyst in the EAS is negligible. 
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Figure 7.3 − Experimental data shows no water gas shift reaction in either direction 

across the Fe based SCR catalyst for entire temperature operation range 

7.2 H2, CO, and C3H6 Oxidation 

After determining there is no effect from WGS it becomes important to 

understand lean reactions with H2 and CO on the SCR catalyst.  Under lean conditions 

the oxidation of H2 and CO is commonly studied in TWC kinetics [152, 153, 157] and 

DOC kinetics [72].   

7.2.1 H2 Oxidation 

Reviewing literature from TWC and DOC kinetics it can be found that the kinetic 

rates are very high for the oxidation of H2 to H2O as seen in the reaction shown in 

equation (7.2) [71, 72, 157]. 
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2 2 2

1

2
H O H O   

(7.2) 

From literature results it was found by Oh et al. [159] and Sampara [72] that the 

oxidation of H2 to H2O occurs at temperature below the oxidation of CO which is 

commonly found to be around 200°C for DOC catalysts.   Experimental results for the 

iron based zeolite SCR catalyst in the EAS testing the oxidation of H2 to H2O are shown 

in Figure 7.4. From these results it can be seen that H2 oxidation increases as temperature 

increases, but overall oxidation of H2 to H2O is small across the Fe-zeolite SCR catalyst.  

Therefore it can be concluded that the H2 oxidation reaction does not need to be included 

in the kinetic model because the majority of the H2 is still present in the feed gas. 
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Figure 7.4 – The oxidation of hydrogen to water is negligible on the Fe-based SCR 

catalyst in the EAS.   Results are shown for a temperature ramp experiment with 8% 

H2O, 8% CO2, 6% O2, and 1% H2 in the feed gas. 

7.2.2 CO Oxidation 

Reviewing literature from TWC and DOC kinetics it can be found that the 

kinetics for the oxidation of CO are high but not as high as H2 oxidation kinetics, 
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however there is still a strong preference for CO to oxidize to CO2 as seen in the reaction 

shown in equation (7.3) [71, 72, 157, 160]. 

2 2

1

2
CO O CO   

(7.3) 

From literature it was found that while the oxidation of CO to CO2 is not quite as 

high as the oxidation of H2 to H2O, complete conversion of CO to CO2 is expected for 

DOC catalysts above 200°C [159, 161].  Experimental results for the oxidation of CO to 

CO2 for the iron based zeolite SCR catalyst in the EAS are shown in Figure 7.5.  From 

these results it can be seen that there is no change in the oxidation of CO to CO2 as 

temperature increases.  Additionally the conversion of CO to CO2 is below 5% for the 

entire temperature range, therefore it can be concluded that the CO oxidation reaction 

does not need to be included in the kinetic model. 
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Figure 7.5 − There is a negligible oxidation effect of CO to CO2 on the Fe-based SCR 

catalyst in the EAS.   Results are shown for a temperature ramp experiment with 8% 

H2O, 8% CO2, 6% O2, and 1% CO in the feed gas. 
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7.2.3 C3H6 Oxidation 

The oxidation of hydrocarbons is commonly included in kinetic mechanisms for 

LNT, TWC, and DOC global kinetic mechanisms [70, 71, 152, 153, 155-157].  It can be 

seen in Figure 7.6 that the conversion of C3H6 due to oxidation is a strong function of 

temperature with a maximum conversion of 40% at 500°C. 
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Figure 7.6 – The oxidation of C3H6 is a strong function of temperature with a maximum 

conversion of C3H6 around 40%.  The experiment was performed as a temperature ramp 

with a 6% H2O, 6% CO2, 6% O2, and 0.6% C3H6 in the feed gas. 

Olsson et al. [156] has suggested two reactions that can occur simultaneously for 

the oxidation of C3H6.  The first reaction shown in equation (7.4) is defined as the 

complete conversion of C3H6 to CO2 and H2O, while the second reaction shown in 

equation (7.5) shows only partial conversion of C3H6 to CO and H2O.     Experimental 

results in Figure 7.7 show that the dominant pathway for the oxidation of C3H6 leads to 

the formation of large amounts of CO as temperature increases; therefore the reaction 

shown in equation (7.5) is the dominant pathway in the oxidation of C3H6.  
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3 6 2 23 3 3C H O CO H O    (7.5) 
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Figure 7.7 – The oxidation of C3H6 is a strong function of temperature that yields a large 

amount of CO as the temperature increases.  The experiment was performed as a 

temperature ramp with a 6% H2O, 6% CO2, 6% O2, and 0.6% C3H6 in the feed gas. 

7.3 NOx Reduction with H2, CO, and C3H6 

From the experiments shown above in Figure 7.3, Figure 7.4, and Figure 7.5 it has 

been determined that CO and H2 reactions with H2O, CO2, or O2 are negligible for a 

kinetic mechanism.  While in Figure 7.6, it can be seen that a significant amount of C3H6 

will be left to react with NOx when oxidation is accounted for.  Therefore, NOx reduction 

possibilities can occur similar to reactions seen TWC and LNT kinetic mechanisms [69, 

70, 162, 163].  NOx is defined as the sum of NO and NO2 in the exhaust stream.  The 

conversion of NO and the conversion of NO2 are defined in equations (7.6) and (7.7) 
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respectively.  The conversion of NOx is the combination of the conversion of NO and the 

conversion of NO2 as defined in equation (7.8).  
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Experiments were performed to investigate the NOx conversion potential for CO, 

H2, and C3H6.  For each reductant two experiments were performed, the first assuming all 

NOx in the feed gas was NO, and the second assumes that all NOx in the feed gas is NO2.   

From these experiments (Figure 7.8) it can be seen that NOx conversion is similar 

whether the NOx concentration in the feed gas is all NO or NO2 except for C3H6 where 

NOx conversion is significantly higher for an all NO2 in the feed gas.  It should be noted 

that since the conversion of NOx is not measured by the generation of N2, it is possible 

for NO2 and C3H6 to form organonitrates (CH3ONO, CH3ONO2, CH3NO2, etc.) at low 

temperatures as seen by Kolli et al. [164] on tungstated zirconia-based catalysts. 
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Figure 7.8 − NOx conversion for each reductant (H2, CO, and C3H6) is similar when the 

feed gas is NO or NO2 as the composition of NOx.   The NO2 reduction experiments were 

performed with 10% H2O, 10% CO2, 0% O2, 1000 ppm NO2, and varying H2, CO, and 

C3H6 concentration; while the NO reduction experiments were performed with 8% H2O, 

8% CO2, 6% O2, and 1000 ppm NO, and varying H2, CO, and C3H6 concentration.  

Conventional engine exhaust NOx mixtures strongly favor NO with average NOx 

mixtures that contain around 95% NO and 5% NO2 [4].   Because engine exhaust 

mixtures favor NO most literature sources on TWC and LNT kinetic models contain only 

NO reduction.  From these literature sources it is commonly seen that NO will reduce to 

N2 when interacting with the reductants such as CO, H2, and C3H6 in the investigated 

temperature range.  Currently with the wide spread use of low temperature combustion 

strategies, the ratio of NO2 is increasing for NOx composition [165]. However, engine out 

NOx composition cannot be approximated because the SCR is located downstream of a 

LNT and DOC catalyst in the EAS.  Estimates for the NO to NOx ratio at the SCR in the 

EAS have been determined experimentally from engine results, which yielded NOx 

mixtures with a NO to NOx ratio of 30% to 70%.  To investigate the reason for similar 
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NOx conversions between the NO only and the NO2 only experiments a new conversion 

can be defined for NO2 conversion to NO  
2 :NO NO  as seen in equation (7.9).   
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(7.9) 

By comparing the NO2 conversion (equation (7.7)) and the NO2 to NO conversion 

(equation (7.9)), it can be seen in  

Figure 7.9 that the majority of NO2 is converted to NO when H2 and CO are 

added to the feed gas.  Therefore it can be assumed when formulating the reaction 

pathway for NO2 when using H2 and CO, that when NO2 is present it first is converted to 

NO by the reductants and due to thermal decomposition. The newly formed NO then 

reacts with CO and H2 which produces N2, H2O, and CO2 and potentially 

organonitrates/nitrites.  When C3H6 is present it can be seen that NOx conversion is much 

higher at low temperatures when reacting only with NO2 then decreases as temperature 

increases, which is the reverse of the reaction with C3H6 and NO where NOx conversion 

increases as temperature increases.   

0

20

40

60

80

100

250 300 350 400 450 500

1% CO, NO
2
 Conversion to NO

1% CO, NO
2
 Conversion

1% H
2
, NO

2
 Conversion to NO

1% H
2
, NO

2
 Conversion

0.6% C
3
H

6
, NO

2
 Conversion to NO

0.6% C
3
H

6
, NO

2
 Conversion

Thermal Decomposition, NO
2
 Conversion to NON

O
2
 C

o
n

v
e
rs

io
n

 (
%

)

Temperature (C)  

Figure 7.9 − All reductants will increase the conversion of NO2 to NO compared to 

thermal decomposition alone.   The experiments were performed with 10% H2O, 10% 

CO2, 0% O2, 1000 ppm NO2, and varying H2, CO, and C3H6 concentrations.   
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7.3.1 CO NOx Reduction 

From Figure 7.8 it can be seen that CO will convert less NOx than H2 or C3H6. 

This is further corroborated by Figure 7.10 where NO2 conversion and NO2 conversion to 

NO is high but NOx conversion is less than 5%. Due to conversion of NOx with CO being 

less than 5% the NO reduction with CO reaction shown in equation (7.10) can be 

neglected in the kinetic mechanism.   

2 22 2 2CO NO CO N  
 (7.10) 
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Figure 7.10 − NO2 conversion with CO is mostly due to NO2 conversion to NO with less 

than 5% of the NO being converted to N2. The experiment was performed with 10% H2O, 

10% CO2, 0% O2, 1000 ppm NO2, and 1% CO. 

From Figure 7.11 it can be seen that CO will increase the conversion of NO2 

compared to thermal decomposition alone.  It can also be seen that NO2 conversion 

increases as CO concentration increases.  Figure 7.10 shows that the majority of 

conversion will be from NO2 to NO and not NOx reduction.   The CO oxidation with NO2 

reaction shown in equation (7.11) therefore can be used to account for any additional 

conversion of NO2 to NO when CO is present.   
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2 2CO NO CO NO  
 (7.11) 
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Figure 7.11 − CO increases NO2 conversion to NO as concentration of CO increases. The 

experiments were performed with 10% H2O, 10% CO2, 0% O2, 1000 ppm NO2, and 

varying CO concentration.   

7.3.2 H2 NOx Reduction 

It can be seen from Figure 7.8 that NOx conversion with H2 is higher than with 

CO. From Figure 7.12 it can be seen that as with CO, NO2 will converted to NO first 

before reduction to N2.   
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Figure 7.12 − NO2 conversion with H2 primarily due to NO2 conversion to NO with up to 

7% of NOx converted to N2. The experiments were performed with 10% H2O, 10% CO2, 

0% O2, 1000 ppm NO2, and 1% H2.   

The conversion of NO2 with H2 can be further seen in Figure 7.13 where 

increasing H2 concentration will increase NO2 conversion.  Due to the increase in 

conversion of NO2 to NO with H2 compared to thermal decomposition the reaction of H2 

being oxidized by NO2 shown in equation (7.12) can be used to describe this behavior.  

2 2 2H NO H O NO    (7.12) 
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Figure 7.13 − H2 increases NO2 conversion as concentration of H2 increases. The 

experiments were performed with 10% H2O, 10% CO2, 0% O2, 1000 ppm NO2, and 

varying H2 concentration.   

From LNT kinetic mechanisms [69, 70, 162, 163] H2 can be used to directly 

reduce NO stored on the catalysts.  Converting this reaction to a gas phase reaction since 

NO does not store on the iron based SCR catalyst in the EAS, the reaction in equation 

(7.13) can be formed. 

2 2 22 2 2H NO H O N    (7.13) 

An additional experiment was performed with H2 and NO varying O2 

concentration from 0% to 6%.  If the reaction in equation (7.13) is the only reaction 

occurring NOx conversion would remain the same.  The reaction with 0% O2 yielded less 

NOx conversion, upon further investigation it was found that at temperatures above 

300°C, NH3 can be produced on the catalyst based on the NH3 Production reaction shown 

in equation (7.14).  The concentration values versus temperature are shown in Figure 

7.14, where the experiment was performed with 8% CO2, 8% H2O, 0% O2, 1% H2, and 

1000 ppm NO in the feed gas, with a temperature ramp from 200°C to 500°C.  The 



163 

production of NH3 on the catalyst would allow for two pathways for NO conversion on 

the SCR catalyst.  The first pathway titled the “Rich Standard SCR” reaction shown in 

equation (7.15) yields little conversion in literature surveys, while the second reaction 

shown in equation (7.16) is titled the “Standard SCR Reaction” where the addition of O2 

creates a preferred pathway to NOx reduction [45, 47, 48, 129] as also seen in Chapter 3.  

The conversion of NO for both the Rich Standard SCR reaction and Standard SCR 

reaction were corroborated for this catalyst in experiments performed in Chapter 3.  

2 3 25 2 2 2H NO NH H O    (7.14) 

3 2 24 6 5 6NH NO N H O    (7.15) 

3 2 2 24 4 4 6NH NO O N H O     (7.16) 
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Figure 7.14 − H2 and NO will combine to form NH3, which can be used in NOx 

conversion.  The experiment was performed with 8% H2O, 8% CO2, 0% O2, 1000 ppm 

NO2, and 1% H2. 

When examining the H2 NO experiment with 6% O2, no NH3 formation was seen, 

therefore it can be assumed that any NH3 formed would then react with NO and O2 to 
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convert the NO to N2.  By comparing the NO conversion to NH3 for the 0% O2 

experiment to the NOx conversion of 6% O2 experiment in Figure 7.15, it can be seen that 

the NH3 produced accounts for the increase not seen in the NOx conversion experiments 

with CO.  Therefore it can be assumed that the preferred pathway is H2 will preferentially 

react with NO2 to form NO and H2O (equation (7.12)).  H2 will then react with NO to 

form small amounts of NH3 on the catalyst (equation (7.14)) which will then react with 

NO and NO2 according to the NOx reduction with NH3 reactions discussed in Chapter 3.    
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Figure 7.15 − Up to 5% of the NO will combine with H2 to form NH3.  The experiment 

was performed with 8% H2O, 8% CO2, 0% O2, 1000 ppm NO2, and 1% H2. 

7.3.3 C3H6 NOx Reduction 

As discussed earlier propylene (C3H6) is used in the feed gas as surrogate for any 

fuel that is not converted to H2 and CO in the fuel reformer based on work by Kuo et al. 

[155].   It has been observed that C3H6 will react with both NO and NO2.  In Figure 7.16 

it can be seen that C3H6 will remove small amounts of NO.  This reaction is a strong 
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function of C3H6 concentration and reaches a maximum conversion of 10% when 0.6% 

C3H6 is in the feed gas.  The proposed reaction for C3H6 and NO is shown in (7.17). 

3 6 2 2 29 3 3 4.5C H NO CO H O N     (7.17) 
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Figure 7.16 – The conversion of NO by C3H6 is low and highly dependent on the amount 

of C3H6 in the feed gas.  The experiments were performed as a temperature ramp with 8% 

H2O, 8% CO2, 6% O2, 1000 ppm NO, and varying C3H6 concentrations. 

From Figure 7.17 it can be seen that propylene strongly converts NO2, and as the 

concentration of propylene increases NO2 is completely converted.   Figure 7.18 shows 

that NOx conversion is the highest at low temperatures and decreases as temperature 

increases.  It can also be seen in Figure 7.18 that NOx conversion increases as C3H6 

concentration increases. 
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Figure 7.17 − C3H6 will be strongly oxidized by NO2 converting significantly more NO2 

to NO then thermal decomposition alone.   The experiments were performed as a 

temperature ramp with a feed gas composition of 10% H2O, 10% CO2, 0% O2, 1000 ppm 

NO2, and varying C3H6 concentration.   
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Figure 7.18 − C3H6 will convert NOx at lower temperatures when larger concentrations of 

C3H6 are present.   The experiments were performed as a temperature ramp with a feed 

gas composition of 10% H2O, 10% CO2, 0% O2, 1000 ppm NO2, and varying C3H6 

concentration.   
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From Figure 7.19 it can be seen that high levels of C3H6 will completely remove 

NO2 across the catalyst.  Also in Figure 7.19 it can be seen that the NO2 conversion to 

NO accounts for most of the NO2 conversion leading to the reaction shown in equation 

(7.18) as the dominant reaction for C3H6 and NO2.   

3 6 2 2 29 3 3 9C H NO CO H O NO     (7.18) 
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Figure 7.19 − C3H6 is the most reactive species with NO2, where most NO2 will be 

converted to NO.   The experiments is performed as a temperature ramp with a feed gas 

composition of 10% H2O, 10% CO2, 0% O2, 1000 ppm NO2, and 0.6% C3H6.  

Figure 7.20 shows the concentration values vs. temperature for two experiments 

performed as temperature ramps with 1000 ppm NO2 and with varying C3H6 

concentrations.  Due to high levels of H2O and CO2 in the feed gas the conversion of 

C3H6 to CO2 and H2O could not be measured, however a noticeable rise in CO 

concentration has been seen as temperature increases for both experiments.  This leads to 

the possible inclusion of the steam reforming reaction shown in equation (7.19).   

3 6 2 23 3 6C H H O CO H    (7.19) 



168 

H2 values were negligible during the experiments shown in Figure 7.20.  It was 

determined previously that H2 reactions with NO and NO2 are small.  Therefore it can be 

determined that the reactions with C3H6 are not likely to occur due to steam reforming 

reaction (equation (7.19)) , but are more likely to occur as a reaction where C3H6  is 

oxidized by NO2 that does not yield complete conversion to CO2 as shown in equation 

(7.20). 

3 6 2 26 3 3 6C H NO CO H O NO     (7.20) 
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Figure 7.20 – C3H6 and NO2 will react to form CO; however the concentration does not 

increase as C3H6 concentration increases.  The experiments were performed as a 

temperature ramp with 6% H2O, 6% CO2, 1000 ppm NO2, and varying C3H6 

concentration in the feed gas. 

Figure 7.21 compares the NOx conversions with C3H6 for a feed gas with a NOx 

composition of all NO (Figure 7.16) and a feed gas with a NOx composition of all NO2 

(Figure 7.18).  At high temperatures C3H6 will react with NO2 to form NO as shown in 
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equation (7.20), therefore NOx conversion at high temperatures is similar for both 

experiments.  At low temperatures however NOx conversion is much higher when the 

NOx composition is all NO2.   From Figure 7.20 it can be seen that CO concentration is 

low in the low temperature range.  It can then be theorized that the direct reduction of 

NO2 with C3H6 reaction shown in equation (7.21) can capture this effect. 

3 6 2 2 2 22 18 6 6 9C H NO CO H O N     (7.21) 
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Figure 7.21 – NOx conversion with C3H6 is higher at low temperatures when the NOx 

composition is all NO2 in the feed gas, but as temperature increases NOx conversion 

converges for a NOx composition of all NO in the feed gas with the experiment with a 

NOx composition of all NO2 in the feed gas.  

7.4 NH3 Storage Effects with H2, CO, and C3H6 

When performing a regeneration of the LNT it is common for a small portion of 

the fuel to remain unconverted into H2 and CO in the fuel reformer.  The reductants can 

in turn slip through the LNT into the feed gas of the SCR.  Because this is when NH3 will 

be generated by the LNT and then stored on the SCR catalyst it is important to test their 
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effect on NH3 storage capacity.  As stated earlier the hydrocarbon in the feed gas will be 

approximated by propylene (C3H6).  

Since it has been seen in Figure 7.1 that C3H6 will store on the catalyst during the 

rich pulse of a cycling experiment where it will lower the integral NOx conversion of the 

entire cycle, it is expected that C3H6 will compete with NH3 for storage on the catalyst 

surface.  Figure 7.22 below shows NH3 storage capacity is not affected by H2, CO, or 

C3H6 concentrations in the feed gas.  It is because of these results that NH3 storage 

capacity can be modeled with a single site global reaction shown in equation (7.22) 

where NH3 storage capacity will only be affected by temperature. It can also be 

concluded that C3H6 will need to be modeled to store on a different catalytic site as 

shown in equation (7.23) which will be discussed in a later section of this chapter. 

 3 3Z NH Z NH   (7.22) 

 3 6 3 6Y C H Z C H   (7.23) 
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Figure 7.22 − NH3 storage capacity isn’t affected by H2, CO or C3H6 in the feed gas.  All 

experiments were performed with 10% H2O and 10% CO2 in the feed gas. 
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7.5 NH3 Oxidation Effects with H2, CO, and C3H6 

To account for any slip of reductant from the LNT in a LNT-SCR aftertreatment 

system, further NH3 oxidation experiments were performed with H2, CO, and C3H6 in the 

feed gas.  From the results shown in Figure 7.23, it can be seen that the addition of H2 

and CO to the feed gas will not affect the conversion of NH3 due to oxidation.  However, 

it can also be seen that when C3H6 is present the conversion of NH3 due to oxidation will 

strongly increase.  It can be theorized this is due to additional hydroxyl formation from 

the oxidation of C3H6. 
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Figure 7.23 – H2 and CO in the feed gas do not influence the conversion of NH3 due to 

oxidation, however the addition of C3H6 strongly increases the conversion of NH3 due to 

oxidation. All experiments were performed with a feed gas concentration of 8% H2O, 8% 

CO2, 6% O2, and 1000 ppm NH3. 

Since adding hydroxyl molecules would increase the number of reactions 

necessary to create a kinetic mechanism for the SCR catalyst, equation (7.24) is proposed 

as global reaction where NH3 is oxidized in the presence of C3H6.  C3H6 will still be 

oxidized as a combination of the reactions shown in equations (7.4) and (7.5). 
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 3 3 6 2 2 3 6 22 6 6Z NH C H O N C H H O      (7.24) 

3 6 2 2 2

9
3 3

2
C H O CO H O    (7.4) 

3 6 2 23 3 3C H O CO H O    (7.5) 

7.6 NOx Reduction with NH3 Effects with H2, CO, and C3H6 

The three main NOx reduction pathways for NOx reduction with NH3 are shown 

in equations (7.25), (7.26), and (7.27).  It was observed that reactions with H2, CO, and 

C3H6 and NO were much smaller than H2, CO, and C3H6 and NO2 reactions.  Therefore, 

it is proposed the H2, CO, and C3H6 will effect NOx conversion with NH3 by affecting the 

NO to NOx ratio at the catalyst which has been demonstrated as an important 

characteristic in NOx reduction with NH3 predictions as seen in Figure 3.18. 

 3 2 2 24 4 4 4 6Z NH NO O Z N H O      (7.25) 

 3 2 2 22 2 2 3Z NH NO NO Z N H O      (7.26) 

 3 2 2 28 6 8 7 12Z NH NO Z N H O     (7.27) 
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Figure 7.24 – NOx conversion is highly dependent on the NO:NOx ratio in the feed gas 

when comparing experiments performed with a feed gas of 6% H2O, 6% CO2, 6% O2, 

400 ppm NH3, 400 ppm NOx. 

In Figure 7.25 it can be seen that NOx conversion is inhibited by H2, CO, and 

C3H6 in the feed gas.  It has been proposed that NOx conversion increases as temperature 

increases for NO only feed gas compositions with oxygen due to the catalyst’s ability to 

oxidize NO to NO2.  It can therefore be assumed that the inhibition effect of CO, H2, and 

C3H6 on the Standard SCR reaction (equation (7.25)) is accomplished by using NO2 

formed due to NO oxidation to oxidize H2, CO, and C3H6 instead of increasing NOx 

conversion by utilizing the Fast SCR reaction in equation (7.26) when possible. 
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Figure 7.25 − NOx conversion is strongly affected at high temperatures when H2, CO, and 

C3H6 are in the feed gas.  All experiments are performed with 6% H2O, 6% CO2, 6% O2, 

1000 ppm NH3, and 1000 ppm NO in the feed gas.  

Similarly it can be seen in Figure 7.26 that H2 and CO will not have an effect on 

the equal molar ratio of NO and NO2 due to the preference for its reaction with NH3. It 

has also been observed that due to the strong reaction with C3H6 and NO2, the NO2 

reduction to NO will drastically decrease the NOx conversion capabilities when present in 

steady state reactions.    
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Figure 7.26 − NOx conversion is strongly affected as temperature increases when H2, CO, 

and C3H6 are in the feed gas.  All experiments are performed with 6% H2O, 6% CO2, 0% 

O2, 1000 ppm NH3, 500 ppm NO, and 500 ppm NO2 in the feed gas.  

It can seen be from the experiments in Figure 7.25 and Figure 7.26 that an all NO2 

feed gas flow could achieve some benefits of having H2, CO, and C3H6 in the feed gas 

due to favorable conversion of NO2 to NO yielding a more ideal equal molar mixture.  In 

Figure 7.27 it can be seen that H2 and CO increase NOx conversion as temperature 

increases due to their ability to convert more NO2 to NO increasing the role of the Fast 

SCR reaction (equation (7.26)) .  It can also be seen that the addition of C3H6 strongly 

increases NOx conversion with NH3 at low temperatures but strongly inhibits NOx 

conversion at higher temperatures due to higher conversion of NO2 to NO while 

decreasing amount of NH3 on the catalyst. 
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Figure 7.27 − NOx conversion is affected by H2, CO, and C3H6 by converting NO2 to NO 

which can increase NOx conversion by favoring the Fast SCR reaction when the NO to 

NOx ratio favors NO2.  All experiments are performed with 6%H2O, 6% CO2, 0% O2, 

1000 ppm NH3, and 1000 ppm NO2 in the feed gas.  

From Figure 7.25, Figure 7.26, and Figure 7.27 it has been observed that C3H6 is 

the dominant inhibition species for a SCR catalyst by converting NO2 to NO on the 

catalyst.  It should be noted that similar results are seen when H2 and CO are in the 

exhaust stream but to a lesser extent.  It has also been determined that H2, CO, and C3H6 

can increase NOx conversion when the NO to NOx ratio favors NO2.   

Since HC poisoning can have a distinct effect during steady state operation, 

cycling experiments were performed for the Standard and Fast SCR reactions as shown in 

Figure 7.28.  In Figure 7.28 it can be seen that H2 and CO in the rich  pulse in a cycling 

experiment have negligible effects on cycling experiments, while C3H6 in the rich pulse 

will strongly inhibit integral NOx conversion.  It can be determined that C3H6 will store 

with NH3 on the catalyst during a rich pulse and then react with NOx during the lean 

pulse as seen in Figure 7.28. 
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Figure 7.28 − Integral NOx conversion is changes are negligible when H2 and CO are in 

the rich pulse, while C3H6 present will decrease the integral NOx conversion when 

present in the rich pulse.  All experiments are performed with a rich pulse of 8% H2O, 

8% CO2, 1000 ppm NH3; and a lean pulse of 8% H2O, 8% CO2, 150 ppm NOx, with (a) 

NO:NOx = 1.0 and (b) NO:NOx = 0.5. 

7.7 C3H6 Poisoning 

When running experiments with high levels of C3H6, coking or carbon deposits 

sticking to the catalyst became obvious as shown in Figure 7.29.  Once coking was 

observed that catalyst was cleaned at 500°C with O2 and NO2 for 10 minutes until the 

original color of the catalyst returned. It was observed through repeated tests that this did 

not change catalyst activity once cleaned.  This effect has been studied by Montreuil and 

Lambert where a formulation is used to reduce the poisoning effects of hydrocarbons on 

SCR catalysts [166].  The ability for C3H6 to store on the SCR catalyst during the rich 

pulse of a cycling experiment, where it will reduce the integral NOx conversion of the 

catalyst throughout the cycle was shown in Figure 7.28.  Due to this poisoning effect and 

the evidence that C3H6 will store on the catalyst this section is dedicated to quantifying 

the storage capabilities of C3H6 on the SCR catalyst. 
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(a)  (b)  

Figure 7.29 – Shows an example of (a) catalyst during normal operation, and (b) a 

catalyst that has been gone through coking after experiments with high levels of C3H6. 

7.7.1 Temperature Programmed Desorption with C3H6 

A Temperature Programmed Desorption (TPD) experiment, similar to the 

experiments performed for NH3 storage in Chapter 3, was performed with C3H6 to test for 

the storage capacity of C3H6 on the SCR catalyst.  From the TPD experiment shown in 

Figure 7.30 a negligible amount of C3H6 is stored on the catalyst.  However, as 

previously as seen in Figure 7.28 the integral NOx conversion decreased when C3H6 was 

present in the rich pulse of the feed gas into the SCR catalyst.  
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Figure 7.30 − C3H6 storage is low when finding storage capacity with a Temperature 

Programmed Desorption (TPD) experiment.  The experiment was performed with a feed 

gas of 10% H2O, 10% CO2, and 350 ppm C3H6. 

7.7.2 C3H6 / NO2 Lean Rich Switching Experiments 

Since storage could not be found using a TPD experiment, a new experiment is 

designed to calculate the storage capacity of C3H6.  These experiments operate by holding 

temperature constant, then flow a feed gas through the catalyst of 1000 ppm NO2 and 8% 

H2O to find the thermal decomposition of NO2 at the catalyst temperature. Three cycles 

are then performed with a rich pulse containing 8% H2O and 0.6% C3H6 for 2 minutes 

followed by an 8 minute pulse of 8% H2O and 1000 ppm NO2.  The results for each 

temperature are seen in Figure 7.31. 
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Figure 7.31 − C3H6 will store on the catalyst then oxidize with NO2 to form NO at all 

temperatures. All experiments are performed while switching from a lean feed gas 6% 

H2O, 6% CO2, and 1000 ppm NO2 for 780 seconds; and a rich feed gas of 6% H2O, 6% 

CO2, and 0.6% C3H6 for 120 seconds at constant temperature of (a) T=225°C, (b) 

T=275°C, (c) T=325°C, (d) T=375°C, (e) T=425°C, and (f) T=475°C. 

When examining the experiment for each temperature in Figure 7.31 it can be 

seen that C3H6 will store on the catalyst and convert more NO2 than by thermal 

decomposition alone.  The amount of stored of C3H6 at each temperature can be found by 

integrating the NOx and NO2 conversion over each cycle of the three cycles, where the 
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C3H6 storage capacity can be related to the average total moles of NOx converted 

assuming that NO and NO2 storage on the catalyst is negligible as shown in Chapter 3.  

To calculate the amount of stored C3H6 on the catalyst, it must be assumed that 

total stored mass is small in proportion to the total flow.  Once this assumption is made 

the total molar flow rate ( N ) across the catalyst for each time step as shown in equation 

(7.28) must be calculated first.  The molar flow rate of each species ( iN ) can then be 

calculated by multiplying the total molar flow rate by the mole fraction of species ( iy ) as 

seen in equation (7.29).  By integrating (7.29) for a given species over an entire rich lean 

cycle in the feed gas total moles of species through the entire cycle ( iN ) can be 

calculated as seen in equation (7.30).  The integral NOx conversion for each cycle is 

calculated using equation (7.31). 

P V
N

R T





 (7.28) 
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(7.31) 

When performing the switching experiments for C3H6 storage, it was found that 

the average integral NOx conversion for all three cycles at each temperature is less than 

5% as seen in Figure 7.32.  Error is calculated as the standard deviation of the integral 

NOx conversion for the three cycles. 

 

 



182 

0

5

10

15

20

250 300 350 400 450 500

In
te

g
ra

l 
N

O
x
 C

o
n

v
e
rs

io
n

 (
%

)

Temperature (C)
 

Figure 7.32 − Stored C3H6 has negligible conversion of NO on the catalyst.  

Since integral NOx conversion is small the integral NO2 conversion is calculated 

using equation (7.32) for the thermal decomposition of NO2 at the beginning of each 

temperature, and for the three rich lean cycles where additional NO2 is converted due to 

stored C3H6.  In Figure 7.33 a significant increase can be seen in NO2 conversion for the 

rich lean cycling with C3H6.  Due to the integral NOx conversion being low, the results 

shown in Figure 7.33 further verify the results shown earlier that the preferential pathway 

for C3H6 is to react with NO2 and form NO as shown in the reaction in equation (7.20). 
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Figure 7.33 − Summarizes the increase over thermal decomposition of NO2 to NO, when 

compared to the conversion of NO2 to NO when C3H6 is stored on the catalyst. 

To calculate the total storage capacity of C3H6 from the switching experiments in 

Figure 7.31, the integral moles of NO2 converted by the C3H6 can be calculated for the 

thermal decomposition cycle and the three rich lean cycles using equation (7.33).  The 

integral moles of NOx converted can be calculated using equation (7.34).  By combining 

equations (7.33) and (7.34) with the stoichiometric coefficients from the C3H6 NOx 

conversion reactions listed in equations (7.20) and (7.21), equation (7.35) is formed to 

calculate the amount of stored moles of C3H6 on the catalyst which can then be combined 

with the molecular weight of C3H6 and the catalyst volume to calculate the mass of stored 

C3H6 per cubic meter of catalyst as seen in equation (7.36). 

 
2 2 2_ _ _NO Converted NO IN NO OUTN N N   (7.33) 

 
2 2_ _ _ _ _xNO Converted NO IN NO IN NO OUT NO OUTN N N N N     (7.34) 

 
3 6 2 2_ _ , _ , _ ,6 9

xC H Stored NO Converted Cycle NO Converted Thermal NO Converted CycleN N N N      (7.35) 
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The results for equation (7.36) are shown in Figure 7.34 where it can be seen that 

the storage capacity of C3H6 reduces with temperature.  The error in storage capacity is 

calculated as the standard deviation of the three rich lean cycles from the experiments 

shown in Figure 7.31.  It should be noted that Amin et al. [167] found that NOx reduction 

with C3H6 on a HC-SCR catalyst is low above 350°C is due to minimal storage of C3H6, 

therefore it is possible that storage of C3H6 on the catalyst is in the form of 

organonitrates, however the effect of strongly reducing NO2 to NO on the catalyst is still 

the dominant effect in inhibiting the SCR NOx reduction process with NH3.  
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Figure 7.34 − Shows calculated values of C3H6 storage on the catalyst, calculated from 

the experiments shown in Figure 7.31. 

7.8 Modeling Approach 

Table 7.1 shows the current proposed kinetic mechanism as defined from the 

previous chapters. 
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Table 7.1 − Summary of chemical reaction and kinetic rates for lean SCR model with 

new dependence of the surface coverage fraction of NH3 and H2O competition with NH3 

for storage.  

 Chemical Reaction Kinetics Rate Form 
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From experimental results in this chapter, the following reactions are proposed in 

Table 7.2 to account for the more dominant reactions.  It should be noted that reactions 

with CO, H2, or C3H6 and NO are ignored due to the low conversion of for each reaction.  

The oxidation of CO and H2 are also ignored for the same reasons.   

Table 7.2 − Summary of chemical reaction and kinetic rates for reactions determined 

from effects on NO, NO2, O2, and NH3 from H2, CO, and C3H6. 

 Chemical Reaction Kinetics Rate Form 

(R11)  3 6 3 6Y C H Y C H   
 

11 11

3 6 3 6
11 11 11exp exp

f r
E E

RT RT

f C H Y r Y C H
R k y k 

   
    
      

(R12)  3 6 2 26 3 3 9Y C H NO Y CO H O NO      
 

12

2 3 6
12 12 exp

E

RT

NO Y C H
R k y 

 
 
   

(R13)  3 6 2 2 29 3 3 9Y C H NO Y CO H O NO      
 

13

2 3 6
13 13 exp

E

RT

NO Y C H
R k y 

 
 
   

(R14) 
   

 
3 3 6 2

3 6 2 2

4 3

                   2 6

Z NH Y C H O

Z Y C H N H O

  

  
      

14

14

2 3 6 3
14 14 exp

E

RT

O Y C H Z NH
R k y



 

 
 
   

(R15)  3 6 2 22 6 2 6 6Y C H O Y CO H O        

15

15

2 3 6
15 15 exp

E

RT

O Y C H
R k y





 
 
   

(R16)  3 6 2 2 22 9 2 6 6Y C H O Y CO H O        

16

16

2 3 6
16 16 exp

E

RT

O Y C H
R k y





 
 
   

(R17) 2 2 2H NO H O NO      
17

2 217 17 exp

E

RT

H NOR k y y

 
 
   

(R18) 2 2CO NO CO NO      
18

218 18 exp

E

RT

CO NOR k y y

 
 
   

Table 7.3 is a compilation of Table 7.1 and Table 7.2 to highlight the entire 

proposed kinetic mechanism.  It should be noted that the dependence on the surface 

coverage fraction of NH3 is defined in equation (7.37). 
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Table 7.3 − Summary of chemical reaction and kinetic rates for lean SCR model with 

new dependence of the surface coverage fraction of NH3, H2O competition with NH3 for 

storage, and reactions determined from effects on NO, NO2, O2, and NH3 from H2, CO, 

and C3H6. 

 Chemical Reaction Kinetics Rate Form 

(R1) 2 2

1

2
NO O NO   

1

2

21 1 exp

E

NORT

NO O

eq

y
R k y y

K

 
 
 

 
  

 
 

 

(R2)  3 3Z NH Z NH    

 

2
2 3

3 3
2 2 2 exp

r
r Z NH

E

RT

f NH Z r Z NH
R k y k

 

 

 
 

    

(R3)  3 2 2 24 3 4 2 6Z NH O Z N H O         
3

3

2 3
3 3 exp

E

RT

O Z NH
R k y f





 
 
   

(R4)  3 2 24 6 4 5 6Z NH NO Z N H O     
 

4

3
4 4 exp

E

RT

NO Z NH
R k y 

 
 
   

(R5)  3 2 2 24 4 4 4 6Z NH NO O Z N H O      
  

5

2 3
5 5 exp

E

RT

NO O Z NH
R k y y f 

 
 
   

(R6)  3 2 2 22 2 2 3Z NH NO NO Z N H O      
  

6

2 3
6 6 exp

E

RT

NO NO Z NH
R k y y f 

 
 
   

(R7)  3 2 2 28 6 8 7 12Z NH NO Z N H O     
  

7

2 3
7 7 exp

E

RT

NO Z NH
R k y f 

 
 
   

(R8)  3 2 2 2 22 2 2 3Z NH NO Z N N O H O      
  

8

2 3
8 8 exp

E

RT

NO Z NH
R k y f 

 
 
   

(R9)  3 2 2 22 3 2 4 3Z NH N O Z N H O     
 

9

2 3
9 9 exp

E

RT

N O Z NH
R k y 

 
 
   

(R10)  2 2Z H O Z H O   
 

10 10

2 2
10 10 10exp exp

f r
E E

RT RT

f H O Z r Z H O
R k y k 

   
    
      

(R11)  3 6 3 6Y C H Y C H   
 

11 11

3 6 3 6
11 11 11exp exp

f r
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f C H Y r Y C H
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    
      

(R12)  3 6 2 26 3 3 9Y C H NO Y CO H O NO      
 

12

2 3 6
12 12 exp

E

RT

NO Y C H
R k y 

 
 
   

(R13)  3 6 2 2 29 3 3 9Y C H NO Y CO H O NO      
 

13

2 3 6
13 13 exp

E

RT

NO Y C H
R k y 

 
 
   

(R14) 
   

 
3 3 6 2

3 6 2 2

4 3

                   2 6

Z NH Y C H O

Z Y C H N H O

  

  
      

14

14

2 3 6 3
14 14 exp

E
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O Y C H Z NH
R k y



 

 
 
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(R15)  3 6 2 22 6 2 6 6Y C H O Y CO H O        

15

15

2 3 6
15 15 exp

E

RT

O Y C H
R k y





 
 
   

(R16)  3 6 2 2 22 9 2 6 6Y C H O Y CO H O        

16

16

2 3 6
16 16 exp

E

RT

O Y C H
R k y





 
 
   
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(R17) 2 2 2H NO H O NO      
17

2 217 17 exp

E

RT

H NOR k y y

 
 
   

(R18) 2 2CO NO CO NO      
18

218 18 exp

E

RT

CO NOR k y y

 
 
   

7.9 Conclusions 

It has been found from experimental results that the oxidation of H2 and CO are 

negligible for the purpose of kinetic modeling.   It is observed that there is no change in 

CO, H2, CO2, and H2O concentrations due to water gas shift.  It was observed that the 

conversion of NO with H2 follows a pathway where NH3 is formed which then reduces 

NO.   It was observed that the conversion of NO with C3H6 reaches a maximum of 8%, 

which is higher than the conversion of NO with CO or H2.  However, due to the low 

overall conversion values the reactions between NO and C3H6, H2, or CO can be 

considered negligible for the purpose of kinetic modeling.  It was also observed that CO, 

H2, and C3H6 will increase the conversion of NO2 to NO over thermal decomposition.  It 

was observed that C3H6 is the most reactive with NO2, followed by H2, then CO.  It was 

observed that C3H6 will store on the catalyst during cycling experiments while H2 and CO 

do not.  It was observed that C3H6 does not compete with NH3 for catalytic sites, since 

storage of C3H6 could not be determined from a TPD, a method to calculate the storage of 

C3H6 has been proposed.  It was observed that C3H6 will increase the conversion of NH3 

due to oxidation, which is theorized as due to the increase in hydroxyl radicals created by 

the oxidation of C3H6.   It was found that CO, H2, and C3H6 effect NOx conversions with 

NH3 by changing the NO to NOx ratio at the catalyst by utilizing their strong reactions 

with NO2.  This has proven beneficial when the NOx composition is all NO2, but CO, H2, 

and C3H6 will inhibit NOx conversion when NOx composition favors NO.  It was 

observed that only C3H6 will inhibit NOx conversion in an equal molar NOx composition 

due to the reactivity of the Fast SCR reaction.  Lastly, proposed changes to the kinetic 

mechanism are made and shown to capture all of the effects from this chapter.   



189 

 

CHAPTER 8 

CONCLUSIONS 

When performing steady-state experiments it was determined that modifications 

to the literature SCR kinetic mechanisms are needed to account for oxygen dependence 

from saturation.  A modification to the kinetic reaction rates involving oxygen has been 

proposed to account for the effect of oxygen saturation along with an experimental 

method to determine the oxygen saturation dependence for each oxygen dependant 

reaction.  The oxygen saturation dependence on the standard SCR reaction (NO reduction 

with NH3 in the presence of O2) has been determined have a strong dependence on 

oxygen and temperature; therefore the proposed oxygen saturation kinetic rate form did 

not increase the accuracy of the model.   

Additional steady-state experiments have yielded modifications to the NO2 

reduction with NH3 reaction pathways.  It has been determined that the current two 

reactions (Slow SCR reaction and N2O Production reaction) are important along with a 

prominent third reaction of N2O reduction with NH3 needs to be added to the kinetic 

mechanism.   

From validation data it was determined that the proposed steady-state lean SCR 

kinetic mechanisms from literature did not accurately predict catalyst behavior under rich 

lean cycling conditions.  It has been determined that the kinetic rate forms from literature 

are inadequate due to their linear dependence on the surface coverage fraction of NH3 
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which will not capture the non-linear relationship between NOx conversion and the 

amount of stored NH3 on the catalyst.  A modification to the kinetic rate forms for the 

prominent reactions involving stored NH3 has been proposed to account for the reservoir 

effect of stored NH3 on the SCR catalyst.  

Due to the switch from lean to rich exhaust from the regeneration of the LNT, the 

effects of varying H2O and CO2 concentrations have been studied for the proposed lean 

SCR reactions.  It was found that H2O strongly affects the storage capacity of NH3 on the 

SCR catalyst.  The oxidation of NH3 was also determined to be effected by H2O 

concentration; however it has been concluded that this is due to the reduction in the 

amount of stored NH3 on the catalyst.   It was found that H2O concentration does not 

affect the other proposed reactions due to their high reaction rates.   From these results an 

additional reaction has been proposed to capture the effect of H2O on NH3 storage.   

The affects of H2, CO, and C3H6 were studied to understand their roles in rich 

exhaust conditions.  Experimental results have allowed the water gas shift reaction, the 

oxidations of H2 and CO, and reactions between NO and H2, CO, or C3H6 to be 

disregarded.  It was also determined that H2, CO, and C3H6 have no effect on NH3 storage 

capacity of the catalyst.  However, it was observed that H2, CO, and C3H6 have strong 

reactions with NO2 yielding NO.  It has been proposed to include a reaction for each 

reductant with NO2 in the kinetic mechanism.  It was determined that H2, CO, and C3H6 

reactions with NO2 can inhibit NOx conversion on the SCR catalyst by affecting the NO 

to NOx ratio at the catalyst.  Since NOx reduction with NH3 favors an equal molar ratio of 

NO and NO2, it was observed in a feed gas with an all NO2 NOx composition that H2, 

CO, and C3H6 will increase NOx conversion due their reactions with NO2 to form NO.  It 

is proposed that all of the effects of CO, H2, and C3H6 on NOx reduction with NH3 can be 

accounted for by adding NO2 reactions with CO, H2, and C3H6.   It was also observed that 

the oxidation of C3H6 will strongly increase the oxidation of NH3.  Since reaction 

intermediates could not be determined, a global reaction is proposed to account for the 
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increase in NH3 oxidation in the presence of C3H6.  From cycling experiments it was 

found that CO and H2 storage on the catalyst is negligible while C3H6 has been found to 

store on the catalyst.  Since C3H6 could not be determined with a TPD experiment a non-

traditional method to determine the storage of C3H6 has been used.  From these results it 

was found that C3H6 stores on the catalyst but not on the same catalytic sites as NH3, 

therefore a new catalytic storage site is used to account for all reaction involving C3H6.   

The above conclusions are made based on experimental and simulation results 

shown in this document.  The pertinent chemical reactions and suggested kinetic rates 

from this document are shown in Table 8.1.  It should be noted that the reactions shown 

in (R1) – (R8) are commonly used in kinetic mechanisms for NH3 SCR catalysts for 

steady-state operation, while reaction (R9) – (R18) are added to account for observed 

experimental effects.  Additionally the kinetic rate forms for reaction dependant on stored 

NH3 as shown in (R3), (R5), (R6), (R7), and (R8) have been changed to account for the 

determined non-linear effects of stored NH3 on NOx conversion 

Table 8.1 − Summary of chemical reaction and kinetic rates for lean SCR model with 

new dependence of the surface coverage fraction of NH3, H2O competition with NH3 for 

storage, and reactions determined from effects on NO, NO2, O2, and NH3 from H2, CO, 

and C3H6. 

 Chemical Reaction Kinetics Rate Form 
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  

 
 

8.1 NO Oxidation Summary 

It has been determined that the oxidation of NO to NO2 is a reversible reaction 

with NO2 experiencing thermal decomposition due to equilibrium at temperatures above 

300°C.  It was also determined that the oxidation of NO to NO2 is dependent on O2 
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concentration by a half order effect. Additionally, it was determined that O2 concentration 

has negligible effects on NO2 thermal decomposition to NO and O2.  It was observed that 

a feed gas that includes H2O and CO2 will inhibit the oxidation of NO to NO2 as well as 

the thermal decomposition of NO2 to NO and O2.  However, this effect is negligible in 

the expected concentration range of the EAS.  It was confirmed that NO2 adsorption is 

small with any adsorbed NO2 thermally decomposing to NO making NO2 adsorption 

negligible for kinetic modeling of the NO oxidation reaction.  Since it was found that 

H2O, NO, NO2 and O2 do not inhibit the oxidation of NO to NO2 in the forward or 

reverse directions the kinetic rate shown for (R1) was determined to be sufficient.  

8.2 Oxidation of H2, CO, and C3H6, and WGS 

It has been found from experimental results that the oxidation of H2 and CO are 

negligible for the purpose of kinetic modeling.  It was determined that up to 40% of C3H6 

can be converted due to oxidation.  It was observed during these experiments that the 

oxidation of C3H6 occurs through two pathways.  The first is the formation of complete 

combustion products CO2 and H2O (R16), while the second leads to the formation of CO 

and H2O (R15).  It was determined that since at low concentrations large amounts of CO 

are still formed therefore the CO pathway (R15) is the more dominant pathway.  It was 

also observed that there is no change in CO, H2, CO2, and H2O concentrations due to 

water gas shift.   

8.3 Effect of H2, CO and C3H6 on NO and NO2  

It was observed that the conversion of NO with H2 follows a pathway where NH3 

is formed which then reduces NO.   However, it was observed that the conversion of NO 

with C3H6 reaches a maximum of 8%, which is higher than the conversion of NO with 

CO or H2.  Due to the low overall conversion values the reactions between NO and C3H6, 
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H2, or CO can be considered negligible for the purpose of kinetic modeling.  It was also 

observed that CO, H2, and C3H6 will increase the conversion of NO2 to NO over thermal 

decomposition.  It was observed that C3H6 is the most reactive with NO2, followed by H2, 

then CO which are added to kinetic mechanism as shown in  (R12), (R13), (R17), and 

(R18).  It was also observed that C3H6 will store on the catalyst during cycling 

experiments while H2 and CO do not. An experimental method to determine the storage 

capacity of C3H6 has been determined.   

8.4 NH3 Storage Summary 

It has been determined that a single site global approximation can be used to 

model the storage of NH3 (R2) due to the presence of a single desorption peak in TPD 

experiments with NH3.  It was also determined that using a kinetic rate based on a 

Tempkin isotherm increased accuracy for the ammonia storage reaction.  It was 

determined experimentally that as exhaust gas becomes rich and H2O and CO2 

concentrations increase, the storage capacity of NH3 on the SCR catalyst decreases.  This 

is important for LNT-SCR combination systems where the exhaust stream concentrations 

can vary from 6% H2O/CO2 to 12% H2O/CO2.  The decrease in storage capacity of NH3 

is larger between 0 – 6% H2O/CO2 than between 6 – 10% H2O/CO2, which means that if 

engine conditions were held fairly constant, such as during lean engine operation with 

only an SCR system, the H2O competition (R10) effect does not need to be included in a 

global model and only temperature effects need to be considered in the model.  In cases 

where the exhaust stream varies from lean to rich, such as an LNT-SCR system, using an 

H2O competition (R10) model increases the accuracy of stored NH3 under the constantly 

varying exhaust conditions.   It was also determined that H2, CO, and C3H6 do not affect 

the NH3 storage capacity of the catalyst.  Therefore, it can be concluded that C3H6 will 

store on a different catalytic site then NH3 (R11). 
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8.5 NH3 Oxidation Summary 

It was determined experimentally that only negligible amounts of NO and N2O 

formed when oxidizing NH3 on the SCR catalyst.  It is therefore only important to model 

the stoichiometric reaction for ammonia oxidation to complete combustion products as 

shown in (R3).  Experimentally it can be seen that increasing O2 concentration will 

increase ammonia conversion during ammonia oxidation, although it is not a linear effect 

between 0.5% and 6% O2.  It was found that to account for ammonia oxidation in a 

kinetic model where O2 concentration can drastically vary, such as in the EAS, that a 

saturation kinetic reaction rate need to be used to increase the accuracy of the model as 

shown in (R3).  It was observed that varying H2O concentration will decrease the 

conversion of NH3 due to oxidation.  It was observed that this inhibition from H2O can be 

accounted for using the NH3 H2O competition reaction (R10).   It was observed that C3H6 

will increase the conversion of NH3 due to oxidation, which is theorized as due to the 

increase in hydroxyl radicals created by the oxidation of C3H6, which is accounted for as 

a global reaction shown in (R14).  It was also observed that H2 and CO had negligible 

effects on the oxidation of NH3. 

8.6 NOx Reduction with NH3 Summary 

It can be concluded that the NO to NOx ratio is an important determining 

characteristic of the feed gas when predicting NOx conversion with NH3 with max 

conversion of NOx occurring when the feed gas contains equal amounts of NO and NO2. 

It can also be determined that NOx reduction with NH3 occurs due to five simultaneous 

global reactions shown in (R4), (R5), (R6), (R7), and (R8).  Due the ability for NOx 

conversion with NH3 during cycling experiments; where NH3 is present in the rich pulse 

while NOx is present in the lean pulse, the simultaneous NOx conversion with NH3 
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reactions are written as reactions that take place with NH3 stored on the surface of the 

catalyst as shown in (R4) – (R8).   

Experimental results with varying oxygen concentration have shown that only NO 

reduction with NH3 is dependent on oxygen concentration.  It has been determined that 

the reduction of NO with NH3 when oxygen is not present is small but can be accounted 

for using standard kinetic rate expressions as seen in (R4).  It can be seen that when 

oxygen is present NO conversion with NH3 is strongly dependent on temperature.  A 

method to determine the oxygen dependence for this reaction was used which yielded 

results that show that the oxygen dependence is also a function of temperature.  It is 

proposed that this is due to the effect of simultaneous nature of the NO Oxidation (R1), 

NH3 Oxidation (R3), Fast SCR (R6), and Slow SCR reactions (R7) on the catalyst.   

The Fast SCR reaction as shown in (R6) can be modeled as a global reaction with 

a standard Arrhenius kinetic rate for the 200°C – 450°C temperature range.  The Slow 

SCR reaction as shown in (R7) was determined to be to have the largest hysteresis effect 

at low temperatures; primarily due to the formation of ammonium nitrate at low 

temperatures on the catalyst surface.  The global Slow SCR reaction with a standard 

Arrhenius rate simulation was shown to be statistically significant and is therefore 

considered adequate when predicting NH3 and NOx conversion for the entire temperature 

range tested. 

It has been determined that significant amounts of N2O are produced 

simultaneously during the reduction of NOx with NH3 when the NO to NOx ratio favors 

NO2.  It has been determined that up to 80% of NO2 can be converted to N2O when 

reacting with NH3 (R8).  It was determined that NH3 can be used to in the reduction of 

N2O, but the reaction does not start until the catalyst temperature is above 350°C (R9).  It 

was determined that NO2 formation to N2O is not the critical pathway the Fast SCR 

reaction (R6) because NO does not increase the conversion of N2O with NH3 below 

350°C.   It was determined that the Slow SCR reaction (R7) is important by combining 
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the NO2 conversion to NO, N2O conversion with NH3, and the NO2 conversion due to 

thermal decomposition, a to formulate a NOx conversion estimate.   

It was determined from validation experiments that the NOx conversion is highly 

dependent on the amount of NH3 stored on the catalyst.  This is confirmed by an 

experiment where the ideal rich lean cycling conditions are lengthened to saturate the 

catalyst with NH3 and measure the NOx conversion as all NH3 is removed from the 

catalyst.  From the long cycling experiments the amount of NH3 stored on the catalyst can 

be determined as a non-dimensional term called the NH3 surface coverage fraction.  

Instantaneous NOx conversion for each cycle can be plotted against the NH3 surface 

coverage fraction, which can then be collapsed to find the trendline signifying the 

dependence on stored NH3 for a constant temperature of a given NO to NOx ratio.  The 

trendlines created were then used to formulate a new approximation to be implemented in 

the kinetic rates of the NH3 oxidation reaction (R3) , the Standard SCR reaction (R5), the 

Fast SCR reaction (R6), the Slow SCR reaction (R7), and the N2O Production reaction 

(R8) in the SCR kinetic mechanism shown in Table 8.1.  It is suggested not to change the 

kinetic rate of the Rich Standard SCR reaction (R4) due to the low activity of the 

reaction.  It also suggested to use the standard Arrhenius kinetic rate for the N2O 

Reduction with NH3 reaction (R9) until initial modeling results are analyzed.   

It was observed that under steady state conditions that NOx conversion is 

unaffected by changes in H2O and CO2 levels. Therefore there is no inhibition due to H2O 

or CO2 for the NOx conversion reactions. It can therefore be concluded that each NOx 

conversion reaction occurs much quicker than the NH3 oxidation reaction, since 

increasing H2O concentration did not decrease the NOx conversion for all NO to NOx 

ratios.   

  It was found that CO, H2, and C3H6 effect NOx conversions with NH3 by 

changing the NO to NOx ratio at the catalyst by utilizing their strong reactions with NO2 

(R12), (R13), (R17), (R18).  This is corroborated when experimental results have shown 
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increases NOx reduction when the NOx composition is all NO2, by converting the NO2 to 

equal amounts of NO and NO2 at the catalyst where NH3 is present.  This is further 

shown when CO, H2, and C3H6 will inhibit NOx conversion when an equal molar NOx 

composition is present and an all NO NOx composition is present by inhibiting the Fast 

SCR reaction (R6) from taking place.    
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