A LAGRANGIAN RELAXATION APPROACH
COUPLED WITH HEURISTIC TECHNIQUES FOR
SOLVING THE UNIT COMMITTMENT PROBLEM

SAMER TAKRITI
Department of Industrial and Operations engineering
University of Michigan, Ann Arbor, MI 48109, USA

JOHNR. BIRGE
Department of Industrial and Operations engineering
University of Michigan, Ann Arbor, MI 48109, USA

ERIKLONG
Department of Industrial and Operations engineering
University of Michigan, Ann Arbor, MI 48109, USA

Technical Report 97-18
December 12, 1997



A Lagrangian Relaxation Approach Coupled
with Heuristic Techniques for Solving

the Unit Commitment Problem

Samer Takriti, John R. Birge, and Erik Long
The University of Michigan
Department of Industrial and Operations Engineering
Ann Arbor, Michigan 48109-2117

Abstract— We develop a fast technique for solving the prob-
lem of scheduling the generating units of an electrical power
system. This technique combines the traditional Lagrangian
relaxation method and a heuristic method, such as simulated
annealing or genetic algorithms, to obtain a fast solution for
the unit commitment problem. Numerical results indicate
a significant improvement in the quality of the solution and
in the calculation time when this technique is used instead
of pure Lagrangian relaxation.
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I. INTRODUCTION

NE of the most important problems in electrical power

generation is the unit commitment problem. The pri-
mary concern of electrical power system operators is hav-
ing enough capacity to meet demands during their peak
load periods. The limited amount of hydro-electric energy
stored in the dams and the system reservoirs may not prove
to be sufficient to respond to high demands. Therefore,
costly thermal generating-units are often used to make up
for the supply shortage.
The unit commitment problem refers to the task of finding
an optimal schedule and production level for each generat-
ing unit over a given period of time. The unit commitment
decision indicates which generating units are to be in use
at each point in time over a scheduling horizon [6]. This
problem becomes a multi-stage program with 0/1 variables.
In this paper, we develop a fast method for solving the unit
commitment problem. Our approach is a combination of
Lagrangian relaxation, which is traditionally used to solve
this problem, and a heuristic technique, such as simulated
annealing. The heuristic builds on the solutions provided
by the Lagrangian relaxation technique. The execution
time is reduced since the Lagrangian dual does not have to
be solved to optimality. The resulting solution is superior
to that obtained from optimizing the dual.
To fix the notation throughout this paper, we assume that
there are n generating units and that the duration of the

This work was partially supported by the National Science Foun-
dation under Grant ECS-9216819 and the Electric Power Research
Institute under Grant RP8030-13.

study horizon is T periods. A 24-hour horizon may be
sufficient, but a longer horizon, one week or more, is often
needed if pump or other storage units are considered. The
state of each unit, ¢, at a time period, ¢, is represented by
the 0-1 variable, ui. A unit is on at time ¢ if ui = 1, and off
if u! = 0. The power output level at which unit i operates
during a period, t, is z¢ > 0. The minimum and maximum
operating levels for each unit, 4, are g; and G;, respectively.
The cost function, f;, of operating a unit, 4, at a level,
zi, is assumed to be a non-decreasing convex quadratic
function of zi. This function measures the total fuel and
maintenance cost associated with each output level, zi, in
the feasible operating range [7]. A start-up cost, S;, is
incurred whenever the state of a unit changes from zero
to one. The cost function, f;, of each unit, ¢, is modified
so that it takes into consideration the start-up cost S;.
We will refer to this modified function by f,(z, ui_;,ul).
When a unit is switched on, there is a minimum on-time
requirement. That is, it has to be on for at least L; periods.
A similar constraint applies for the case when a unit is
switched off. It must be off for at least I; periods.

The mathematical formulation of the previous model is
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where d; > 0 represents the total demand for electricity
during period t. We assume that d; is known in advance.
In addition to the previous constraint, each unit must sat-
isfy the minimum on-time, minimum off-time, and mini-
mum and maximum operating level constraints. Usually,
another constraint, .., Giui > dy, is added to the previ-
ous formulation. The value of d; represents the maximum
demand that can occur at time ¢. The constraint repre-
sents the spinning reserve of the system. It states that the
total planned operating capacity must be greater than the
highest anticipated load [6], [8]. Without loss of generality,
we do not include the spinning reserve constraint in our
formulation. It can be treated in a similar fashion to the
demand constraint.

The problem in (1) is a large-scale mixed-integer quadratic
program. Many approaches have been proposed to solve
this problem [2]. They can be classified into branch-and-
bound methods, dynamic programming, priority ordering,
and the Lagrangian relaxation method. The first two tech-
niques are satisfactory from the theoretical point of view,



but they are practically intractable due to the large stor-
age size required to implement them on a computer. The
third approach is a greedy strategy and does not guarantee
an optimal solution in general. The Lagrangian relaxation
technique seems to be the most efficient, because it at-
tempts to solve the problem indirectly by solving the dual
problem.

Muckstadt and Koenig [6] appear to have first addressed
the unit commitment problem with mathematical program-
ming and to suggest a sound technique for solving it. They
use a Lagrangian relaxation technique which decomposes
the given problem into smaller subproblems. Each sub-
problem corresponds to minimizing the cost of operating
a generator in the electrical system over the study hori-
zon. Dealing with individual generators simplifies the task
of representing the constraints that depend on the state
of the generator from period to period, such as the min-
imum on-time and minimum off-time requirements. Dy-
namic programming is then used to solve the subproblems.
A lower bound on the optimal cost of the primal problem
is obtained.

Given this lower bound, Muckstadt and Koenig use branch-
and-bound to enumerate all possible states of the system
efficiently. At each node of the branch-and-bound tree,
the states of some generators at certain time periods are
fixed and the Lagrangian dual of the problem at that node
provides a lower bound that helps in pruning the search
tree. However, to maintain high efficiency, they do not
allow more than a small number of Lagrange multiplier
updates at each node. The update is performed using a
subgradient method that approximates the steepest-ascent
direction since the dual gradient is not unique at some
points. The dual solution at some nodes may provide a fea-
sible solution which further reduces the size of the search
tree. This strategy—that is, Lagrangian relaxation cou-
pled with branch-and-bound—is common in integer pro-
gramming and is guaranteed to find an optimal solution.
The previous technique may fail in practice, as shown by
the authors, due to the large number of nodes that need
to be studied. Bertsekas, Lauer, Sandell, and Posbergh [3]
use a similar Lagrangian relaxation technique, but, rather
than using branch-and-bound, they update the Lagrange
multipliers and resolve the problem. The process is re-
peated until the duality gap is small enough to reach an ac-
ceptable answer. To accelerate calculations, the cost func-
tion of each generator’s sub-problem is approximated by a
differentiable function. The approximate dual problem is
solved using a quadratically convergent constrained version
of Newton’s method, which makes use of the gradient and
the Hessian matrix of the approximate dual function.
Bertsekas et al.’s main contribution is the provision of an
upper bound on the size of the duality gap when the num-
ber of generators is greater than the study horizon. Their
bound is given by Eﬁ%ﬂl where T is the length of the
planning horizon, S* is the maximum start-up cost over all
generators, C* is the maximum cost of operating a gen-
erating unit for one period, and £ is the optimal dual
functional value.

In this paper, we use the Lagrangian dual to provide a set
of schedules for the cycling units of the system. To find
the best combination of the resulting schedules, an integer
program must be solved. We use a heuristic to solve this
integer program approximately. The Lagrangian relaxation
approach is presented in Section II. Section III describes the
approximate mathematical model and Section IV describes
the suggested heuristic techniques for solving this model.
We present numerical results in Section V.

II. A LAGRANGIAN RELAXATION APPROACH FOR
SOLVING THE UNIT COMMITMENT PROBLEM

To make the program in (1) separable, a Lagrange mul-
tiplier, A; > 0, is associated with each of the constraints
Son i > di. This choice of relaxation decomposes the
problem into n single-generator subproblems. Constraints
that depend on the change in the state of a generator from
period to period, such as minimum up-time and minimum
down-time, become easy to implement. The Lagrangian
dual problem has the form
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subject to unit minimum and maximum operating levels,
and minimum on-time and off-time constraints. For a given
A, the value of £()) is computed by solving n mixed-integer
quadratic programs,

T
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and adding the resulting values of F;()) over all genera-

tors. The optimization problem in (2) is called the ith
single-generator sub-problem since it only depends on the
specifications of generator 7. It can be solved efficiently
using dynamic programming [8].

If the primal solution corresponding to a given A is fea-
sible, then the Lagrange function value is a lower bound
on the primal objective function value (weak duality). It
follows that the maximum dual objective function value
is a lower bound on the primal optimal objective function
value. The difference between the optimal value of the
original program and the optimal value of the Lagrangian
dual problem is called the duality gap. It is expected to
be strictly positive since the feasible region of the relaxed
problem is not convex.

One can also show that the Lagrange function is con-
cave, hence continuous, in the parameter A\ and that it
is bounded, which implies that a global optimum can
be reached by using an appropriate convex programming
method. The two previous remarks are the main attrac-
tion in this technique since one can replace a hard primal
problem by that of maximizing a concave function. Note



that the Lagrange function is not differentiable at all points
A, which complicates the process of maximizing the dual
function.

To solve the dual problem, an initial parameter, A, is cho-
sen according to some criterion. Then, the value of the
Lagrange function, £()), is computed by solving n mini-
mization problems. When the resulting primal solution is
feasible, it provides an upper bound and £(\) provides a
lower bound on the optimal value of (1). If the difference
between the upper and lower bounds is relatively small, the
procedure terminates. Otherwise, the Lagrange multiplier
is updated and the process is repeated. A more detailed
description of the steps of this process is provided in [6],
[3]. ‘In the following section, we describe a mathematical
formulation for the unit commitment problem and a solu-
tion technique that can be applied after a few steps of the
Lagrangian relaxation approach. The resulting program is
a mixed-integer quadratic program of moderate size. It can
be solved exactly using integer programming techniques or
approximated using heuristics.

III. AN APPROXIMATE MATHEMATICAL FORMULATION
FOR THE UNIT COMMITMENT PROBLEM

Note that the process of solving the dual problem termi-
nates when we reach an optimal solution or when the dual-
ity gap is relatively small. Numerical experience indicates
that after a few iterations of this method, the resulting
schedules for each generating unit tend to repeat. In other
words, in the first few iterations of the method, a set of
feasible schedules for each generator is produced. After
these few iterations, the new values of A do not produce
new schedules. Instead, they try to find an optimal combi-
nation of the existing feasible schedules. This remark was
also mentioned by [4].

Even though new schedules may be obtained in later iter-
ations, their contribution to the solution is minimal. The
number of iterations needed depends on the problem char-
acteristics. This is the main idea behind our approach.
Rather than aiming for an optimal solution for the dual
by performing a large number of iterations, one can use
the schedules produced after the first few iterations of the
algorithm to produce a sub-optimal solution for the unit
commitment problem. From our experience, the number
of iterations needed can be determined by conditioning on
the size of the duality gap. In our numerical examples, we
use the Lagrangian method for 200 iterations or until a gap
of 1% is reached.

After a few Lagrangian updates, the number of distinct
schedules for a generator, i, is K;. Each schedule, described
by a sequence of 0’s and 1’s, satisfies the minimum on-time
and minimum off-time constraints of that generator. We
denote the kth schedule of generator i by uz’k. The unit
commitment problem is approximated by
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Here, v** is a 0-1 decision variable and 3", £}’ represents
the total load on unit ¢ during period ¢. The constraint
YK vb* = 1 indicates that one and only one schedule
needs to be chosen for generator i. The program in (3) is a
mixed-integer quadratic program of a smaller size than (1).
It can be solved exactly using branch-and-bound.

Since we are interested in a quick solution for the unit
commitment problem, the optimization problem of (3) is
solved using a heuristic technique. _

Given a feasible solution, v** the values of mz’k are deter-
mined by solving a quadratic program at each time period*:

min, Y ., f(:v’)
n )

s.t. =17
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(4)
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The bounds z* and Z* are zero if generator i is off at time
period ¢ in the selected schedule. Otherwise, they are g;
and G; respectively.
The previous quadratic program is solved efficiently by re-
laxing the constraint Y., z* > d and adding the term
-w(Y, = — d) to the objective function. The dual vari-
able w > 0 represents the marginal cost of producing one
Megawatt-Hour of electricity. Since f(.) is a non-decreasing
convex function, the following simple strategy is used to
solve (4):
« Initialization
Select w and @ such that the optimal value of w is in [w, @].
o General Step

L we $(w+)

1To simplify notation, the time index, t, and the schedule index, k,
are dropped.



2. Calculate the total generation, Y ;- ; ¢, corresponding
to w. There is no need to evaluate the objective function
value.

3. If | Yr, 2 — d |< ¢, terminate.

4. Y " 2 <d,w ¢ w. Otherwise, W + w.

5. Gotostep 1. .

In the following section, we give a brief description of three
heuristic techniques to approximate (3): simulated anneal-
ing, genetic algorithm, and iterated hill-climbing.

IV. APPLYING HEURISTICS TO THE APPROXIMATE
MATHEMATICAL FORMULATION

The main difficulty in applying heuristics to constrained
optimization problems is in handling the constraints ef-
ficiently. Given a solution, v**, the demand constraints
are incorporated into the objective function by adding the
term max{0, a(d; — Y i, z*)}. Choosing very high penal-
ties forces feasiblé solutions and ignores the value of the
objective function. On the other hand, small penalties may
result in infeasible solutions. In the power generation case,
the penalty coefficient, a, represents the cost of produc-
ing/buying emergency electricity. For any utility company,
the value of « varies within a small range which simplifies
the task of choosing a.

The optimization problem of (3) takes on the form

min, E?:l 9(us)

s.t. 1<p; < K; and y; is integer,
where g(.) is evaluated using the technique described in
Section III, and p; represents the number of the schedule to
be used for generator i. Note that v™#i =1 and v" #% =
0. To represent the decision variables of the problem, we
use an integer vector of dimension n. Each element, ¢, in
that vector is forced to be within the range 1 to K;. The
operators are designed to preserve this requirement.

A. Simulated Annealing

Starting from the best solution provided by the Lagrangian
relaxation, a new solution is generated by randomly chang-
ing the value of a variable, y;, in the range 1 to K;. If
the new solution has a better objective function value, F*,
than that of the current solution, F', then the new solu-
tion is used. A new solution can also replace the current
solution if

rand[0,1) < eF" /T,

Here, rand is a random number in the range [0,1) and T is
the temperature parameter of the solution technique. After
a few iterations, we assume that a “thermal equilibrium”
(following the annealing analogy) is reached and the tem-
perature is lowered. The process is then repeated until T
is small; that is, the system is frozen. The performance of
the method depends on the parameter T' and the rate at
which it is changed. A more detailed description of this
technique can be found in [1].

B. Genetic Algorithms

The algorithm starts with a population that contains ran-
domly generated “chromosomes” (a description of a solu-
tion using the genetics analogy) as well as the chromo-
somes provided by the Lagrangian iterations. New genera-
tions are then produced using changes called mutation and
single-point crossover. In the case of mutation, a gene, ¢, of
a randomly selected chromosome, u, is altered arbitrarily
in the range 1 to K;. In the single-point crossover, we form
two new offsprings from two randomly selected parents by
swapping corresponding segments of the parents’ chromo-
somes. The crossover point is selected randomly. After
each iteration, the best member in the population survives
to the next generation. The interested reader may refer
to [5] for more details.

C. Iterated Hill-Climbing

This is a greedy strategy. Starting from a feasible solution,
a certain number of solutions are produced by altering the
value of a randomly selected variable, y;, in the appropriate
range. We choose the best among all of these solutions and
then repeat the process for a number of iterations. The
resulting solution is very sensitive to the starting solution.

V. NUMERICAL RESULTS

We implemented the Lagrangian relaxation approach and
the three heuristic techniques using the C language in a
UNIX environment. All the results presented in this section
were produced on a SUN SPARCstation 20 under SunOS 2,
release 4.1.3. The test data was supplied by the Michigan
Electric Power Coordination Center. We used a 168-hour
planning horizon. The execution time for evaluating g(.)
for a given set of schedules, u, depends on the threshold,
€, when the quadratic program of Section III is solved. We
chose € to be less than 0.5 x 103 of the lowest demand per
period. In this case, the CPU time for evaluating g(.) was
0.056 seconds.

Since our goal is to produce a quick solution for the unit
commitment problem, we keep the number of functional
evaluations, g(u), very small in all heuristics. For the sim-
ulated annealing, we start with a temperature parameter
of 20 and reduce it by a factor of 0.85 after reaching the
thermal equilibrium. The temperature is reduced 20 times.
In the case of genetic algorithms, the size of our population
is 20 and the number of generations is 30. The hill-climber
attempts 20 different random directions and repeats the
process 30 times. In all cases, the number of functional
evaluations is close to 600. This approach may seem to
violate the spirit of these techniques of repeating the pro-
cess many times. However, using a small number of func-
tional evaluations is justified if we take a closer look at the
progress of the objective function value when a heuristic is
used.

Table II displays the progress of the best objective function
value, min Y-, g(u;), for four different problems when
simulated annealing is used. In the first column, we have
the number of functional evaluations performed so far.



TABLE II
THE PROGRESS OF THE SIMULATED ANNEALING HEURISTIC FOR
Four TEST PROBLEMS

1 2 3 4

1| 21584668 | 24707732 | 21687471 | 18830124
30 | 21340819 | 24410338 | 21088045 | 18730916
60 | 21163972 | 24265624 | 21088045 | 18376573
90 | 21019058 | 24258771 | 21088045 | 18376573
120 | 21019058 | 24256922 | 21076796 | 18376573
150 | 20969437 | 24252298 | 21076796 | 18154308
180 | 20957253 | 24249676 | 21020033 | 18154308

From Table II, the objective function values corresponding
to different solutions appear relatively close to each other.
Hence, searching in the neighborhood of the current solu-
tion may yield an acceptable sub-optimal solution.

In Table III, we solve the four test problems using simulated
annealing, genetic algorithms, and iterated hill-climbing.
The heuristic techniques begin after 200 Lagrangian iter-
ations or a duality gap of less than 1% is reached. The
number of possible solutions for each problem is given in
the row “State Space”. The “Lagrangian Relaxation” row
provides the best primal solution corresponding to the op-
timum of the Lagrangian dual. Note that the solution pro-
vided by simulated annealing is superior to that of the dual
in most cases. As Table III indicates, the choice of the ini-
tial Lagrange multipliers is significant. It affects the size
of the state space, i.e., the number of schedules produced
for each generator. It also improves the quality of the solu-
tion obtained. Here, we approximate the initial Lagrange
multipliers using the technique described in [8].

VI. CONCLUSIONS

We develop a fast technique for solving the unit commit-
ment problem. It starts by solving the Lagrangian dual
up to a certain point. Then, it builds on the solutions ob-
tained from the Lagrangian iterations to approximate the
original problem. The approximation is a mixed-integer
program that can be solved accurately and efficiently using
heuristic techniques. We use simulated annealing, genetic
algorithms, and iterated hill-climbing as heuristics to solve
the previous program. The execution time as well as the
solution obtained improve when our approach is used.

REFERENCES

[1] D. H. Ackley. An empirical study of bit vector function opti-
mization. In L. Davis, editor, Genetic Algorithms and Simulated
Annealing, pages 170-204, Los Altos, California, 1987. Morgan
Kaufmann Publishers.

[2] K. Aoki, M. Itoh, T. Satoh, K. Nara, and M. Kanezashi. Optimal
long-term unit commitment in large scale systems including fuel
constrained thermal and pumped-storage hydro. /EEE Transac-
tions on Power Systems, 4(3):1065-1073, August 1989.

[3] D. P. Bertsekas, G. S. Lauer, N. R. Sandell, and T. A. Pos-
bergh. Optimal short-term scheduling of large-scale power sys-
tems. IEEE Transactions on Automatic Control, 28(1):1-11, Jan-
uary 1983.

[4] P. O. Lindberg and S. Feltenmark. Solving detailed structured
duals of unit commitment problems. In 15th International Sym-
posium on Mathematical Programming, University of Michigan,
Ann Arbor, August 1994.

Table II1
SOLUTIONS OF THE APPROXIMATE MATHEMATICAL FORMULATION FOR FOUR TEST PROBLEMS

Gap < 1% and approximation of initial A

18140447
18140447
18140447
18140447

18

20863734 | 24113105 | 20828779

20863734 | 24121146 | 20829199

2

18547278 | 20863734 | 24113105 | 20828779

18747809 | 20863734 | 24113105 | 20828779

0 ™M e
o ==
) < |
<% I x
— (]
CALILAS
o L}
7]
- | e s o
< N =1 =]
—_ 00 | [ [B= |
@mv—qcomox
= 0 | [ [
b 0o [ [ |
a oD IS
o A AN A AN |y
el
a
® IS =1
° AN R ==
XL BERES
TRIBEIE X
Vi < (T
o, NN N [N |00
<
O ~ o |—|o ke
0 | b= [ O
g3 3(8/%
¢ (o |00 = | X
DO~ O |
O [t [t [ |y
N (N[N
&0 ol g | @
EIXEIRES
Qlalgl =28
l-A A Nal o Na)
L@ |~ <
o@HExU)
SIS
Q*E'“UE'@
<<ﬂ=‘ﬂfq;5
glo|=
SIE|T|§
219 3
— | a &0
SO =)
g |g
A &b
)
—




(5]
(6]

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolu-
tion Programs. Springer-Verlag, 1994.

J. A. Muckstadt and S. A. Koenig. An application of lagrangian
relaxation to scheduling in power-generation systems. Operations
Research, 25(3):387-403, May-June 1977.

S. Ruzi¢ and N. Rajakovi¢. A new approach for solving extended
unit commitment problem. IEEE Transactions on Power Sys-
tems, 6(1):269-277, February 1991.

S. Takriti, J. R. Birge, and E. Long. Intelligent unified control of
unit commitment and generation allocation. Technical Report 94-
26, Department of Industrial and Operations Engineering, Uni-
versity of Michigan, Ann Arbor, 1994.

Samer Takriti is a Visiting Research Scien-
tist and an Adjunct Assistant Professor in the
Department of Industrial and Operations En-
gineering at the University of Michigan. He
holds a Ph.D. degree and a Master’s degree
in Industrial and Operations Engineering, and
a Master’s degree in Civil and Environmental
Engineering from the University of Michigan.
He is interested in large-scale systems and ap-
plied operations research.

John R. Birge is Professor and Chair of
Industrial and Operations Engineering at the
University of Michigan, where he has been
since 1980. He received Master’s and Ph.D.
degrees from Stanford University in Opera-
tions Research. His undergraduate degree
is in Mathematics from Princeton University.
His research concentrates on optimization of
stochastic systems. Besides power systems, his
application interest includes energy and envi-
ronmental modeling, production scheduling, fi-

nance, transportation, and public policy.

Erik Long is a Master’s Candidate in the De-
partment of Industrial and Operations Engi-
neering at the University of Michigan. He holds
a B.S. degree in Industrial and Operations En-
gineering and a B.A. degree in Economics from
the University of Michigan. His research inter-
ests are in electric power systems and financial
modeling.




