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Abstract 

Gene transcript levels can bridge genotypes and more complex phenotypes, including 

common human diseases and traits. Understanding the processes that regulate the 

expression of disease associated transcripts and, in parallel, understanding the impact of 

disease associated genetic variants on gene expression, could enhance our understanding 

of the biology of these complex traits. Advances in high-throughput gene expression 

profiling and genotyping technologies have made it possible to search for these 

connections on a genomic scale. My dissertation focuses on statistical methods for 

genome-wide studies that aim to identify genetic variants associated with gene expression 

levels. Such variants are called expression quantitative trait loci (eQTLs). 

  

In Chapter 1, I use two case studies to discuss how genome-wide association studies of 

gene expression have the potential to address some of the new challenges raised by 

current genetic studies. In Chapter 2, I describe a practical method to identify genetic 

variants that are associated with the levels of many transcripts. In Chapter 3, I propose a 

novel method for estimating the eQTL overlap between two tissues. In Chapter 4, I 

extend the method proposed in the previous chapter by removing the constraint on the 

sample-splitting strategy and use simulation studies to assess the performance of the 

method. In Chapter 5, I perform eQTL mapping in skin tissues from psoriatic patients and 

normal controls, and build a large catalog of genetic variants influencing transcript levels 

in both normal and psoriatic skin. My work has the potential to lead to a better 



 x 

understanding of the mechanisms of gene regulation and a better dissection of the effects 

of genetic variants on complex phenotypes, such as many common diseases. 



 1 

Chapter 1 

 

Introduction 

 

1.1 The genetics of global gene expression 

 

Gene transcript levels can serve as an intermediate phenotype that bridges genotypes and 

more complex organismal phenotypes, such as human diseases. Transcriptional 

regulation of gene expression is essential for almost every process in a cell and abnormal 

transcriptional regulation is likely to be involved in the etiology of many diseases. 

Advances in high-throughput gene expression profiling and genotyping technologies 

have recently enabled researchers to study the genetic variants that regulate gene 

expression at a genomic scale [Rockman and Kruglyak 2006]. Such genome-wide 

association studies of gene expression have identified thousands of genetic loci impacting 

the expression of specific transcripts. Each of these loci is called an expression 

quantitative trait locus (eQTL). The identification of eQTLs will enhance our 

understanding of global transcriptional regulation and regulatory variation. Furthermore, 

as genome-wide association (GWA) studies of diseases (see 1.2 for a detailed example) 

are likely to identify many susceptibility variants with no known functional effects 

[McCarthy, et al. 2008], eQTL studies provide potentially useful functional information 
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for some of those variants, and hence facilitate efforts to understand the functional impact 

of newly identified susceptibility variants [Cookson, et al. 2009]. 

 

Genetic studies of global gene expression (i.e. eQTL analyses) were initially performed 

in model organisms (ranging from yeast [Brem, et al. 2002; Yvert, et al. 2003] to flies 

[Wayne and McIntyre 2002] to mice [Chesler, et al. 2005]), but more recent studies have 

directly examined human cells [Dixon, et al. 2007; Goring, et al. 2007; Morley, et al. 

2004; Stranger, et al. 2007]. In these human studies, the vast majority of validated eQTLs 

map to within a few hundred kilobase pairs of the transcription unit they putatively 

regulate. Loosely, these loci are termed cis-eQTLs. In contrast to cis-eQTLs, loci located 

far from the transcripts they regulate have been much harder to identify in humans and 

are, loosely, termed trans-eQTLs. One example of the utility of eQTL analysis is the 

genome-wide association study for asthma reported by Moffatt and colleagues [Moffatt, 

et al. 2007]. The study showed that a set of non-coding genetic variants that is strongly 

associated with childhood asthma also regulates expression levels of ORMDL3, focusing 

attention on ORMDL3 as a target for further functional studies. Most human studies have 

measured transcript abundance in blood cells (peripheral blood lymphocytes and 

immortalized lymphoblastoid cell lines, LCLs); only a small number of studies have 

examined it in other tissues (e.g. liver tissue [Schadt, et al. 2008]). 

 

In the next section, I present two case studies from my collaborative research to show that 

studying the genetics of global gene expression (i.e. eQTL analysis) can be used to 

address new questions and challenges raised in the current genetic research. The first case 
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study is a GWA study of psoriasis; the second case study is a differential gene expression 

study of psoriasis. 

 

1.2 Two case studies from collaborative research 

   

One of the major goals for genetic research is to identify genetic variants that predispose 

to human diseases, and hence to better understand the mechanism for diseases and to 

suggest new targets for therapeutic interventions. Recently, researchers have been 

performing genome-wide association (GWA) studies to study the genetic basis of many 

complex traits, including common human diseases. Many disease susceptibility loci have 

been successfully identified in this way for diseases including type 1 [Hakonarson, et al. 

2007; Todd, et al. 2007] and type 2 diabetes [Saxena, et al. 2007; Scott, et al. 2007; 

Zeggini, et al. 2008; Zeggini, et al. 2007], inflammatory bowel disease [Duerr, et al. 2006; 

Parkes, et al. 2007; Rioux, et al. 2007], psoriasis [de Cid, et al. 2009; Nair, et al. 2009; 

Zhang, et al. 2009], and others. In our GWA study [Nair, et al. 2009] that aimed to 

identify genetic susceptibility factors for psoriasis, we genotyped 438,670 single 

nucleotide polymorphisms (SNPs) in 1,409 psoriasis cases and 1,436 controls of 

European ancestry, and then followed up 21 promising SNPs in an additional 5,048 

psoriasis cases and 5,041 controls. Our results provide strong support for the association 

of at least seven genetic loci and psoriasis (each with combined p-value < 5×10
-8

): HLA-

C, three genes involved in IL-23 signaling, two genes that act downstream of TNF-α and 

regulate NF-κB signaling, and one gene involved in the modulation of Th2 immune 

responses. Figure 1.1 presents genome-wide Manhattan plots displaying association scan 
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results and a quantile-quantile (Q-Q) plot summarizing the distribution of the observed 

test statistics. In the Q-Q plot, even after excluding all SNPs in regions of replicated 

association (blue line), we still observe more loci with small p-values than we expect 

under the hypothesis of no association, indicating that if we follow up more SNPs, it is 

likely that we can identify more psoriasis susceptibility loci. This observation leads to an 

open question: how do we prioritize markers for follow-up studies after the initial GWA 

study? One way is to prioritize in a follow-up study SNPs that define an eQTL (eQTL 

SNPs), if we can show that eQTL SNPs are more likely to be associated with diseases 

than non-eQTL SNPs. The other new challenge raised by GWA studies is that most of the 

identified disease susceptibility loci have no known biological function. In this regard, 

eQTL studies can provide potentially useful functional information for some of those 

variants by indicating that they may function via regulating the expression level of a 

certain gene.  

 

The second case study is a differential gene expression study of psoriasis, where we 

characterized differences in gene expression among three types of skin tissues: normal 

skin from healthy controls (normal skin), non-diseased (uninvolved skin) and diseased 

skin (lesional skin) from psoriatic patients. Our analysis reveals that many genes are 

differentially expressed between involved and uninvolved/normal skin, many of which 

involve in immune response, defense response, and keratinocyte differentiation 

[Gudjonsson, et al. 2010; Gudjonsson, et al. 2009]. Figure 1.2 presents the first two 

principal components from the principal component analysis (PCA), where expression 

profiles for lesional skin are markedly different from those of normal and uninvolved 
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skin. We achieved near-perfect separation of lesional skin from normal and uninvolved 

skin, while the latter two skin types were intermixed. The new open question is: 

regarding the variants associated with gene expression, do different physiological 

conditions affect the existence of those eQTLs?     

 

1.3 The scope of the dissertation 

 

All new open questions raised in the last session can be addressed to some extent by 

genome-wide association studies of gene expression. My dissertation focuses on the 

statistical methods for genome-wide association studies of gene expression and their 

applications to the genetic study of psoriasis. 

 

In Chapter 2, I develop a new statistical method to identify DNA variants that are 

associated with expression levels of multiple genes, so-called “master regulatory” single 

nucleotide polymorphisms (SNPs). Although many examples of DNA variants that 

regulate the expression of a single gene have now been identified using high throughput 

technologies, identifying master regulators of expression in humans has proved more 

challenging. While conventional methods assess significance of association for individual 

SNP-gene pairs by p-values and then highlight SNPs that are associated with large 

numbers of gene transcript levels, our method proposes a new statistic to summarize 

evidence for association between each SNP and all measured transcripts. This statistic 

summarizes not just the number of signals that exceed a particular threshold, but also the 

strength of these signals. In a genome-wide scan, we rank SNPs based on this summary 
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statistic and determine significance by permutation. Simulation studies show that the new 

summary statistic is more powerful than conventional methods for detecting master 

regulatory SNPs. As an example, we applied our method to gene expression and 

genotype data on 200 lymphoblastoid cell lines. We identified potential master regulators 

of gene expression; they still need to be verified in later studies. Our approach has the 

potential to shed light on the global regulation of gene expression by genetic variants. 

 

In Chapter 3, I propose a novel method for estimating the eQTL overlap between two 

tissues, which allows researchers to quantify the benefits of studying eQTLs in different 

tissues. A simple measure of the sharing of eQTLs can be obtained by examining the 

overlap of significant eQTL lists from two different tissues. Unfortunately, this naive 

approach likely underestimates the true proportion of overlapping signals, as current 

studies are underpowered, particularly for eQTLs of modest effect. We have developed a 

more accurate method. Our multi-step procedure starts by splitting the study/tissue with 

the larger sample size (Study 1) into two parts. One part identifies eQTLs in Study 1, and 

the second part provides unbiased estimators for the eQTL effect sizes. The power of the 

second study/tissue (Study 2) to detect overlapping eQTLs is then estimated, and is used 

to adjust the observed overlap percentage to derive the power-adjusted overlap 

percentage. When applied to compare cis-eQTLs detected in analyses of 57 skin biopsies 

and of 340 lymphoblastoid cell lines, our method shows that ~70% of eQTLs are shared 

between the two tissues, a much larger proportion than the naive estimate of 30-50%. Our 

results provide guidance to researchers contrasting eQTL results across tissues and a 
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specific means to estimate accurately the proportion of overlapping eQTLs between 

tissues. 

 

In Chapter 4, I use simulation studies to extend the method proposed in Chapter 3. More 

specifically, in Chapter 3, I apply a simplified version of our method, where I require that 

the second part of the split samples from Study 1 has the same sample size and same data 

structure as Study 2. Here, I extend this simplified version to the full version of the 

method by removing the constraint and use simulation to see if there exists an optimal 

sample splitting strategy. I also use simulation to test the performance of our method (in 

terms of the accuracy of the overlap estimation) when assumptions we make in Chapter 3 

hold and when those assumptions are violated.     

 

In Chapter 5, I perform the mapping of eQTLs in skin tissue from psoriatic patients and 

normal controls. Psoriasis, an immune-mediated, inflammatory disease of the skin and 

joints, provides an ideal system for eQTL mapping analysis, because it has a strong 

genetic basis and diseased tissue is readily accessible. To understand better the role of 

genetic variants regulating cutaneous gene expression in the pathogenesis of psoriasis, we 

identified 841 cis-acting eQTLs using RNA extracted from skin biopsies of 53 psoriatic 

individuals and 57 normal controls. We found substantial overlap between cis-eQTLs of 

normal control, uninvolved psoriatic, and lesional psoriatic skin. Consistent with recent 

studies and with the idea that control of gene expression can mediate relationships 

between genetic variants and downstream impact on disease risk, we found that eQTL 

SNPs are more likely to be associated with psoriasis than randomly selected SNPs. Our 
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results provide a catalog of cis-eQTLs in skin that can facilitate efforts to understand the 

functional impact of identified susceptibility variants of psoriasis and other skin traits. 
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1.4 Figures and Tables  

Figure 1.1 Bird’s eye view of psoriasis genome-wide association scan results. 

The top panel summarizes the distribution of test statistics (i.e. p-values) at genotyped SNPs across the genome. We used a simple chi-

squared test to compare SNP allele frequencies in cases and controls and plotted the resulting -log p-values across the genome. Several 

p-values < 10
-20

 in the MHC region were truncated. Loci where we obtained confirmatory evidence of association in follow-up 

samples are highlighted in green. 

The middle panel summarizes the distribution of test statistics across the genome, after genotype imputation. We used a simple t-test 

to compare imputed allele counts in cases and controls and plotted the resulting –log p-values across the genome. 

The bottom panel displays a Q-Q plot for our test statistics. Results are plotted including all SNPs (in red), after excluding SNPs in the 

MHC (in orange) and after excluding all SNPs in regions of replicated association (in blue). The shaded region represents a 90% 

confidence interval for the test statistics. 
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Figure 1.2 Principal component analysis of all skin samples based on the gene expression data 
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Chapter 2 

 

A statistical method for identifying genetic variants associated with 

 the expression of many genes 

 

2.1 Introduction 

 

eQTL mapping has been conducted in several studies [Dixon, et al. 2007; Goring, et al. 

2007; Morley, et al. 2004; Stranger, et al. 2007] using human cells (e.g. LCLs). Although 

many examples of cis-regulators of expression have now been mapped, identifying trans-

regulators of expression has proved more challenging. This is probably because cis-

regulators act very close to the gene they regulate and hence have large effect sizes while 

trans-regulators have smaller effect sizes. Within the framework of genome-wide 

association studies of gene expression, we focus on identifying genetic variants, or more 

specifically, single nucleotide polymorphisms (SNPs), that are associated with mRNA 

expression levels of multiple genes (master regulatory SNPs). Identification of master 

regulators of gene expression will pinpoint the key players (i.e. hub genes) in the 

transcriptional network, which in turn will lead to a better understanding of global 

regulation of gene expression. In addition, identification of master regulators of disease-

related genes may pinpoint the causal variants of diseases, as those master regulators are 

likely to play a key role in the pathways leading to the diseases.  



 

 13 

 

We envision that a master regulatory SNP could function via different mechanisms 

(Figure 2.1). It could act as a master regulator through a regulator chain (Figure 2.1A) or 

by affecting a single regulator, which in turn regulates the expression of multiple genes 

(Figure 2.1B). In both of these mechanisms, we expect that the expression levels are 

highly correlated for the group of genes that are regulated by the SNP. Meanwhile, a 

master regulatory SNP could hypothetically regulate two groups of genes via different 

mechanisms, as shown in Figure 2.1C. We expect that the two groups of genes are not 

correlated in their expressions. We have some evidence for the existence of master 

regulators of gene expression. For example, previous studies have shown that there are 

transcription factors that regulate the expression of multiple genes. In yeast, a study 

showed that the number of different promoter regions bound by a given transcription 

factor ranged from 0 to 181, with an average of 38 promoter regions per regulator [Lee, et 

al. 2002]. This observation indicates that there should be "master" genes (e.g. “master” 

transcription factors) that regulate mRNA expression levels of multiple genes. 

 

Currently there is little research in the literature that aims to identify systematically the 

master regulatory SNPs of gene expression. A natural and relatively simple method to 

identify them is to first assess significance of association for individual SNP-gene pairs 

by p-values and then highlight SNPs that are significantly associated with large numbers 

of gene expression levels. However, this type of counting method ignores the significance 

of associations once the p-values pass the threshold at the first step. This will likely lead 

to the diminished statistical power to identify master regulatory SNPs. We propose a new 
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summary statistic that simultaneously takes into account both significance levels and the 

number of association signals. In a genome-wide scan, we rank SNPs based on this 

summary statistic and determine significance by a permutation test. We expect that our 

approach may increase our ability to identify genetic variants that have a modest impact 

on the expression of many genes. Since we expect that trans eQTLs might influence the 

transcription levels of many genes, we hope our method will facilitate efforts to identify 

trans eQTLs in humans. 

 

2.2 Methods 

 

Preamble 

Consider a dataset that includes genotype data at M genetic markers as well as expression 

levels for N transcripts. Let pij be a p-value that summarizes the evidence for association 

between a particular genetic marker i = 1,…,M and a particular transcript j = 1,…,N. 

This p-value might be calculated by using regression based approaches to investigate the 

association between each marker and each transcript, but any valid p-value could be used.  

 

A simple way to identify genetic variants that are associated with expression levels of 

particular transcripts would be to define an appropriate threshold T and declare that 

marker-transcript pairings for which pij < T are significant. An appropriate choice of T 

could be defined using the Bonferroni rule, using False-Discovery Rate [Benjamini and 

Hochberg 1995], or using a permutation based approach. Although each of these choices 

would likely identify a set of markers that are strongly associated with the expression of 
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one or more transcripts, they would not be particularly effective at identifying variants 

that are weakly associated with the expression of many transcripts. These variants might, 

for example, regulate the activity or expression of particular transcription factor that then 

influences the expression of many transcripts. 

 

The Area Under the Log Curve (AULC) Statistic 

To identify genetic variants that are modestly associated with the levels of many 

transcripts, potentially with none of the signals exceeding a stringent significance 

threshold, it is necessary to combine evidence for association across transcripts. One 

simple strategy would be to calculate a statistic such as: 

1

1 N

i ij

j

AUC p
N =

= ∑  

We call it AUC (Area Under the Curve) because if we plot the ordered p-value vector pi,(1) 

≤ pi,(2) ≤ ... ≤ pi,(N) against j/N, j=1,…,N, AUCi is actually proportional to the area under 

that curve (see Figure 2.2 for this geometric interpretation). However, because we expect 

N will be much larger (typically, 5,000 – 50,000) than the number of transcripts 

potentially associated with a single genetic marker, we expect that this statistic would be 

dominated by noise. A simple improvement might be to focus summation on a set of 

smallest p-values for each marker [Wille, et al. 2003], but the choice of the appropriate 

number of p-values to sum is not obvious. Instead, to increase the contribution of truly 

associated markers to the statistic while avoiding an arbitrary thresholding procedure, we 

propose to (i) sum log-pvalues, instead of raw p-values, so that transcripts showing 

tentative evidence for association make larger contributions to the overall statistic and, in 
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addition, (ii) use a weighting scheme that focuses attention on the smallest observed p-

values for each marker.  

 

Our proposed statistic, which we term Area Under the Log-Curve (AULC) is defined thus: 

1

1
{ [ log( )]}

N

i ij ij

j

AULC w p
C =

= × −∑  

Here wij is the weight for –log(pij). In our case we want wij to be a decreasing function of 

the rank of pij (i.e. the smallest observed p-value has rank 1, the second smallest p-value 

has rank 2, and so on) relative to all other p-values for marker i such that smaller 

observed p-values have larger weights. C is a normalizing constant defined as 
1

N

ij

j

C w
=

=∑ . 

In practice, the choice of C does not matter as we use permutation to assess significance. 

The AULC statistic is thus a weighted sum of -log(p-values). To determine wij’s, we 

borrow strength from the following log-log plot of ordered p-value vector: for pi,(1) ≤ pi,(2) 

≤ ... ≤ pi,(N), we plot -log(pi,(j)) against -log(j/N), j=1,…,N. Weights wij’s are determined 

such that AULC statistic is proportional to the area under this log curve. This geometric 

interpretation of the statistic is given in Figure 2.2 and the exact formula for the AULC 

statistic is provided in Appendix A. Markers with larger AULC statistics are, in principle, 

more likely to be associated with expression levels of one or more transcripts. 

 

Assessing Significance Levels 

Given the number of transcripts N examined for each marker, the distribution of the 

AULC statistic under the null hypothesis can be derived analytically if we assume the 

expression levels of N transcripts are uncorrelated. However, the exact distribution of the 
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statistic is harder to derive because it depends on the potentially complex correlation 

structure describing the relationships between different transcript levels and between 

different genetic markers. We thus use permutations to assess the significance of the 

AULC statistic (and also to assess the significance of alternative statistics presented in 

this manuscript).  

 

To maintain the correlation structure of the gene expression and genotype data, we keep 

the gene expression data for each individual unchanged and shuffle the observed 

genotype data between individuals. Genotypes are shuffled in blocks so that all genotypes 

originally observed in any individual are re-assigned to a new individual, selected at 

random. After each permutation we calculate a new set of p-values pij and AULCi 

statistics. We then record the maximum observed AULCi statistic for each permuted 

dataset; comparing the original observed statistics to this distribution of maximum 

statistics allows us to control for the family-wise error (FWE) rate and calculate accurate 

p-values for the AULC statistic [Nichols and Hayasaka 2003].  

 

Simulations 

We first used simulations to assess the statistical power of the AULC method and 

compare its performance to methods that rely on a threshold T to identify significantly 

associated SNP transcript pairs and that then count the number of p-values exceeding 

these thresholds for each marker to identify potential master regulators of gene 

expression. We considered the definition of T based on the Bonferroni rule, and called it 

the Bonferroni counting method. 
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To mimic the correlation structures observed in actual gene expression datasets, our 

simulation procedure starts with an actual gene expression dataset to which a synthetic 

signal is then added. We used the Dixon et al. [2007] lymphoblastoid expression data as a 

starting point. Measurements of transcript levels were first transformed to approximate 

normality by applying an inverse normal transformation to each transcript in turn. We 

then simulated genetic variants that impact the expression of many transcripts by: (i) 

simulating genotypes for a di-allelic marker for each individual, under the assumption of 

Hardy-Weinberg equilibrium and with minor allele frequencies ranging of either 0.1 or 

0.5; (ii) selecting a set of transcripts (typically, including 5 – 500 transcripts) whose 

expression levels are influenced by the marker; and (iii) adding a small marker effect 

onto each of the observed transcript levels (as described in Appendix C). Finally, we use 

simulated expression data and genotype data to calculate both a set of AULC statistics 

and, using permutations, the distribution of the maximum AULC statistic under the null.  

 

In our simulations, we control the average impact of each marker on the expression 

levels of associated genes. Specifically, we define a quantity Ri
2
 corresponding to the 

average variance explained by marker i for each of the associated transcripts. We let, for 

each associated transcript, the impact of the marker be larger or smaller than this average. 

In particular, we let Rij
2
 follow a truncated (from 0 to 1) exponential distribution with 

mean Ri
2
= λ. This implies that each marker has a slightly larger impact on expression 

levels of a few transcripts, and a more modest impact on the levels of most other 

transcripts.  
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We simulated datasets including transcript levels for either 200 or 1000 individuals, with 

200 being a sample size representative of contemporaneous studies and 1,000 being a 

possible sample size for studies in the near future. We let mean Ri
2
= λ take values 

of .01, .02, .05 and 0.10. To compare the statistical power of different methods to detect 

true master regulators, we always control the type I error rate at 10
-5

 (i.e. we expect one 

false positive among 100,000 SNPs).    

 

Lymphoblastoid Expression and Genotype Data Analysis 

To evaluate the performance of our method in a real dataset, we re-analysed the data of 

Dixon et al. [2007]. We focus on 200 unrelated subjects from that study. The dataset 

includes Affymetrix U133 Plus 2.0 Array gene expression measurements for 54,675 

probe sets, which we used to calculate mean transcript levels for each of 20,596 genes. In 

addition, the dataset includes genotype data of 408,289 SNP markers obtained using 

Illumina Beadchips. Prior to analysis, we adjusted for sex effects by regressing out the 

impact of sex on each transcript. 

 

For each SNP-expression pair, we fitted a linear model to test the association between a 

SNP and a gene expression. We treated gene expression measurements as the outcome 

variable and the observed number of minor alleles as the predictor variable. In addition to 

analyzing the original data, we analyzed 100 permuted datasets to derive empirical 

significance levels. We obtained a nominal p-value for each marker by comparing the 

observed AULC statistic with the null distribution of all AULC statistics from all 
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permutations and the FWE-corrected p-value by comparing the observed AULC statistic 

with the null distribution of maximum AULC statistics from each permutation. 

 

2.3 Results 

 

Simulations 

As described in the methods, we used a set of actual gene expression data as a starting 

point for our simulations. We then simulated genotypes for each individual and generated 

a small genetic effect which was summed to the observed expression levels. This strategy 

ensures that our simulated data closely mimic the complex correlation patterns observed 

in actual gene expression datasets. Since we used permutations to derive empirical 

significance levels, all methods have adequate type I error rates and here we focus on 

comparing power. We contrast the ability of our proposed AULC statistic to strategies 

that use a Bonferroni correction approach to identify genetic markers significantly 

associated with the expression levels for one or more transcripts. 

 

We first examined simulated samples of 200 individuals and simulated SNPs with a 

minor allele frequency of 0.50 (Table 2.1 and Figure 2.3). At this sample size, it was not 

possible to detect SNPs associated with the expression of 5 – 500 transcripts explaining 

(on average) either 1% or 2% of the variation in transcript levels for each of these. For 

SNPs that explained (on average) 5% of the variance in transcript levels in 200 or more 

transcripts, the AULC method had at least 50% power; this rises to >80% power for 

SNPs associated with 275 or more transcripts. In contrast, even with 500 associated 
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transcripts the Bonferroni approach had <30% power. Again, for SNPs that explained (on 

average) 10% of the variance in transcript levels for 50 or more transcripts, the AULC 

method had >80% power.  The Bonferroni approach required >250 associated transcripts 

to achieve similar power.  

 

Although these results show the performance of our method is promising, it is not clear 

that the simulated effect sizes are realistic. Thus, we repeated our experiment with a 

larger simulated dataset, including 1,000 individuals. We observe a substantial power 

gain (Table 2.2 and Figure 2.4). Now, even when the marker accounts on average for 

only 1% of the variance in each associated transcript, the AULC method can achieve 

80% power when n≥300. When average variance explained rises to 2%, greater than 80% 

power is achievable with >50 associated genes (versus 325 for the Bonferroni method).  

  

Repeating our simulations with different minor allele frequencies produced similar results 

(see Supplementary Tables 2.1 and 2.2 for power results when minor allele frequency is 

0.1). This result is what we expect to observe because the allele frequency has been taken 

into account in the effect size parameter Ri
2 

(see Appendix C for details). 

 

Analysis of Dixon et al. [2007] Dataset 

We next applied our method to the Dixon et al. [2007] lymphoblastoid gene expression 

genome-wide association study. In total, the dataset analyzed includes gene expression 

levels for 20,596 genes; genotype data for 408,289 SNPs; and 200 unrelated subjects. We 
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first calculated the AULC statistic for each SNP and used permutations to assess 

significance for the resulting statistics.  

 

The top ranked SNP (rs6787837) has a nominal p-value of 4.5×10
-7

; after adjustment for 

multiple testing the family-wise error rate (FWE) for this SNP is 0.16; not reaching 

genome-wide significance. The same SNP was also the top ranked SNP using the 

Bonferroni counting method with a nominal p-value at 4.6×10
-7

 and an FWE-corrected p-

value at 0.15. Thus, with the current sample of size of 200 individuals, neither method 

identified a signal exceeding genome-wide significance thresholds.  

 

Even though the top ranked SNP does not quite reach genome-wide significance levels, 

we note that it maps near TMF1 (TATA element modulatory factor 1). The TMF1 protein 

inhibits transcriptional activation by the TATA-binding protein (TBP). Since TBP is 

essential for the transcription of most genes, it seems plausible that variants in the TMF1 

locus could impact the expression of many genes. A gene ontology enrichment analysis 

of transcripts showing strong association (p-value < 2.4×10
-6

, which is the Bonferroni-

corrected p-value threshold after adjusting for testing 20,596 gene transcripts for the 

marker) with rs6787837 suggested several categories of genes were over-represented in 

this set: genes involved in regulation of transcription (49 genes, p-value at 2.0×10
-6

), 

regulation of metabolism (54 genes, p-value at 5.7×10
-7

), and zinc ion binding (60 genes, 

p-value at 4.0×10
-10

).  

 

2.4 Discussion 
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We describe a method for identifying genetic markers associated with transcript levels of 

multiple genes. The method provides a strategy for systematically identifying master 

regulators of gene expression and may facilitate the identification of trans eQTLs. The 

method uses a summary statistic (the AULC) that summarizes both the number of 

association signals and the strength of each individual signal. The statistic has a 

geometric interpretation, corresponding to the area under the curve in a familiar log-

quantile plot of log-pvalues. These plots are often used for data quality control in 

genome-wide association scans [McCarthy, et al. 2008]. In our simulations, the AULC 

method outperformed the Bonferroni counting method, which focuses on markers that are 

strongly associated with the expression of multiple genes using a threshold procedure.  

 

While the AULC method is more powerful than conventional methods that group signals 

into likely true positives and likely false positives using a Bonferroni or FDR threshold, 

our simulations also show that our method, as well as conventional methods, can benefit 

greatly from increased sample sizes. With a sample size of 200 individuals, even when 

the average variation in expression explained by the associated marker equals 5%, a study 

can achieve 80% power only when more than 275 genes are associated with the same 

marker. With a sample size of 1000 individuals, it should be possible to identify markers 

that on average account for 2% of the variance in 50 transcripts or more. Overall, we 

expect that large gene expression studies now planned or ongoing will lead to the 

identification of master regulators of gene expression. 
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Our re-analysis of the data of Dixon et al. [2007] identified a potentially interesting signal 

near the TMF1 (TATA element modulatory factor 1) locus. This signal did not reach 

genome-wide significance (after adjusting for testing many markers) and did not replicate 

in the genetic study of gene expression on HapMap samples [Stranger, et al. 2007], where 

our method was applied to the data for 60 unrelated subjects from 30 Caucasian trios of 

northern and western European origin (CEU). The lack of replication could simply reflect 

a lack of power or it could suggest our original signal is a false-positive. In either case, 

future analysis of larger samples should clarify the situation. 

 

We hope the AULC statistic will prove useful in a variety of settings where high-

dimensional data can first be summarized in a series of p-values. A natural refinement of 

the analysis described here, where we sought markers associated with transcript levels of 

many genes, is to search for markers that are associated with transcripts that show 

evidence of differential expression between diseased and normal individuals. In this case, 

one could simply imagine stratifying the original analysis to focus on differentially 

expressed transcripts, or changing the weighting scheme so these transcripts have greater 

weights. But we expect that even more interesting extensions may be possible. For 

example, the method may aid in evaluating the impact of gene markers on brain activity 

by enabling searches for genetic variants that are associated with brain activity levels 

measured at many points in a functional MRI (functional magnetic resonance imaging) 

experiment. Brain activity at each point is typically summarized in an image voxel 

(whose intensity summarizes the degree of activation of that area of the brain) and could 

naturally serve as an outcome in a regression analysis. Because a typical brain image 
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easily includes 100,000s of voxels, the ability of the AULC statistic to summarize 

evidence for association seems extremely attractive. 



 

 

2
6

2.5 Figures and tables 

Figure 2.1 Different potential mechanisms by which a master regulatory SNP regulates expression of multiple genes. (A) A master 

regulatory SNP acts through a regulator chain. (B) A master regulatory SNP affects a single regulator, which in turn regulates the 

expression of multiple genes. In (A) and (B), the SNP could be in the regulatory region of the corresponding gene, resulting in altered 

expression of the gene, or it could be in the coding region of the gene, resulting in altered function of the protein product of the gene. 

(C) A master regulatory SNP is in the vicinity region of gene 1 and 2. The allele A of the SNP affects gene 1, which regulates a group 

of genes’ expression via mechanisms (A) or (B). Meanwhile, the allele a of the SNP affects gene 2, which regulates another group of 

genes’ expression via mechanisms (A) or (B). In the diagrams, squares represent genes and circles represent proteins. Broken lines 

indicate protein production from a gene while solid arrows represent regulatory interactions. (A) and (B) are modified from Wittkopp 

(2007) [Wittkopp 2007]. 
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SNP 

Mechanism A or B Mechanism A or B 

allele A allele a 

A    Regulator chain 

B    Single regulator / multiple regulatees 

C    Multiple regulatory mechanisms 

… … 

SNP 

SNP 
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Figure 2.2 Geometric interpretations for the AUC and AULC statistics. The area under 

the curve in the upper panel is proportional to the AUC statistic. The area under the curve 

in the lower panel is proportional to the AULC statistic. A vector of 200 p-values are 

plotted in this example (i.e. N = 200). 
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Figure 2.3 The statistical power from simulation studies for the AULC method and the 

Bonferroni counting method with the sample size at 200 and the minor allele frequency 

of the master regulatory SNP at 0.5. The results are shown when the effect size (mean R
2
) 

equals to 0.05 or 0.1. 
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Figure 2.4 The statistical power from simulation studies for the AULC method and the 

Bonferroni counting method with the sample size at 1000 and the minor allele frequency 

of the master regulatory SNP at 0.5. a) The effect size (mean R
2
) equals to 0.01 or 0.02; b) 

The effect size (mean R
2
) equals to 0.05 or 0.1. 

 

Figure 2.4a. 
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Figure 2.4b 
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Table 2.1 The statistical power from simulation studies for the AULC method and the Bonferroni counting method with the sample 

size at 200 and the minor allele frequency of the master regulatory SNP at 0.5   

 Statistical Power 

 mean R
2
 = 0.01  mean R

2
 = 0.02  mean R

2
 = 0.05  mean R

2
 = 0.1 

#associations AULC Bonferroni  AULC Bonferroni  AULC Bonferroni  AULC Bonferroni 

0 0 0  0 0  0 0  0 0 

5 0 0  0 0  0 0  0.007 0 

10 0 0  0 0  0 0  0.021 0 

25 0 0  0 0  0.001 0  0.269 0 

50 0 0  0 0  0.006 0  0.795 0 

75 0 0  0 0  0.018 0  0.978 0 

100 0 0  0 0  0.067 0  0.999 0 

125 0 0  0 0  0.136 0  1 0 

150 0 0  0 0  0.229 0  1 0 

175 0 0  0 0  0.376 0  1 0.010 

200 0 0  0 0  0.515 0  1 0.109 

225 0 0  0 0  0.599 0  1 0.428 

250 0 0  0 0  0.700 0  1 0.752 

275 0 0  0.001 0  0.805 0  1 0.925 

300 0 0  0.002 0  0.852 0.001  1 0.981 

325 0 0  0.002 0  0.908 0.001  1 1 

350 0 0  0 0  0.937 0.005  1 1 

375 0 0  0.003 0  0.967 0.012  1 1 

400 0 0  0 0  0.985 0.027  1 1 

425 0 0  0.002 0  0.993 0.059  1 1 

450 0 0  0.002 0  0.980 0.105  1 1 

475 0 0  0.004 0  0.994 0.179  1 1 

500 0 0  0.001 0  0.997 0.250  1 1 
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Table 2.2 The statistical power from simulation studies for the AULC method and the Bonferroni counting method with the sample 

size at 1000 and the minor allele frequency of the master regulatory SNP at 0.5   

 Statistical Power 

 mean R
2
 = 0.01  mean R

2
 = 0.02  mean R

2
 = 0.05  mean R

2
 = 0.1 

#associations AULC Bonferroni  AULC Bonferroni  AULC Bonferroni  AULC Bonferroni 

0 0 0  0 0  0 0  0 0 

5 0 0  0.001 0  0.185 0  0.714 0 

10 0 0  0.006 0  0.636 0  0.983 0 

25 0.001 0  0.149 0  0.995 0  1 0 

50 0.008 0  0.655 0  1 0  1 0 

75 0.012 0  0.937 0  1 0  1 0 

100 0.047 0  0.996 0  1 0  1 0 

125 0.098 0  1 0  1 0  1 0 

150 0.207 0  1 0  1 0.003  1 0.885 

175 0.312 0  1 0  1 0.573  1 1 

200 0.427 0  1 0  1 0.989  1 1 

225 0.535 0.001  1 0.001  1 1  1 1 

250 0.638 0  1 0.021  1 1  1 1 

275 0.728 0.001  1 0.161  1 1  1 1 

300 0.806 0  1 0.443  1 1  1 1 

325 0.872 0  1 0.766  1 1  1 1 

350 0.92 0  1 0.938  1 1  1 1 

375 0.96 0.001  1 0.994  1 1  1 1 

400 0.974 0.001  1 1  1 1  1 1 

425 0.983 0.002  1 1  1 1  1 1 

450 0.988 0.009  1 1  1 1  1 1 

475 0.994 0.011  1 1  1 1  1 1 

500 0.997 0.016  1 1  1 1  1 1 
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Supplementary Table 2.1 The statistical power from simulation studies for the AULC method and the Bonferroni counting method 

with the sample size at 200 and the minor allele frequency of the master regulatory SNP at 0.1   

 Statistical Power 

 mean R
2
 = 0.01  mean R

2
 = 0.02  mean R

2
 = 0.05  mean R

2
 = 0.1 

#associations AULC Bonferroni  AULC Bonferroni  AULC Bonferroni  AULC Bonferroni 

0 0 0  0 0  0 0  0 0 

5 0 0  0 0  0 0  0.003 0 

10 0 0  0 0  0 0  0.023 0 

25 0 0  0 0  0 0  0.249 0 

50 0 0  0 0  0.008 0  0.737 0 

75 0 0  0 0  0.023 0  0.954 0 

100 0 0  0 0  0.084 0  0.987 0 

125 0 0  0 0  0.163 0  0.999 0 

150 0 0  0 0  0.263 0  1 0 

175 0 0  0 0  0.353 0  1 0.023 

200 0 0  0 0  0.472 0  1 0.132 

225 0 0  0 0  0.551 0  1 0.398 

250 0 0  0 0  0.625 0  1 0.631 

275 0 0  0 0  0.701 0  1 0.814 

300 0 0  0.004 0  0.755 0.006  1 0.915 

325 0 0  0.001 0  0.801 0.013  1 0.964 

350 0 0  0 0  0.835 0.017  1 0.983 

375 0 0  0 0  0.882 0.033  1 0.996 

400 0 0  0.001 0  0.904 0.069  1 0.999 

425 0 0  0.001 0  0.939 0.125  1 0.998 

450 0 0  0.001 0  0.931 0.155  1 1 

475 0 0  0 0  0.951 0.217  1 1 

500 0 0  0.003 0  0.957 0.309  1 1 

 



 

 

3
5

Supplementary Table 2.2 The statistical power from simulation studies for the AULC method and the Bonferroni counting method 

with the sample size at 1000 and the minor allele frequency of the master regulatory SNP at 0.1   

 Statistical Power 

 mean R
2
 = 0.01  mean R

2
 = 0.02  mean R

2
 = 0.05  mean R

2
 = 0.1 

#associations AULC Bonferroni  AULC Bonferroni  AULC Bonferroni  AULC Bonferroni 

0 0 0  0 0  0 0  0 0 

5 0 0  0 0  0.184 0  0.716 0 

10 0 0  0.009 0  0.624 0  0.982 0 

25 0 0  0.151 0  0.997 0  1 0 

50 0.007 0  0.660 0  1 0  1 0 

75 0.017 0  0.932 0  1 0  1 0 

100 0.043 0  0.993 0  1 0  1 0 

125 0.121 0  0.998 0  1 0  1 0 

150 0.204 0  1 0  1 0  1 0.622 

175 0.317 0  1 0  1 0.324  1 1 

200 0.426 0  1 0  1 0.960  1 1 

225 0.514 0  1 0  1 1  1 1 

250 0.635 0  1 0.016  1 1  1 1 

275 0.731 0  1 0.117  1 1  1 1 

300 0.800 0  1 0.322  1 1  1 1 

325 0.842 0  1 0.606  1 1  1 1 

350 0.911 0  1 0.853  1 1  1 1 

375 0.939 0  1 0.951  1 1  1 1 

400 0.944 0  1 0.989  1 1  1 1 

425 0.974 0  1 0.997  1 1  1 1 

450 0.978 0.005  1 1  1 1  1 1 

475 0.990 0.017  1 1  1 1  1 1 

500 0.987 0.017  1 1  1 1  1 1 
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2.6 Appendices 

 

Appendix A. Calculation of the AULC statistic  

As described in the method session, for SNP i, we order the p-value vector pij’s such that 

pi,(1) ≤ pi,(2) ≤ ... ≤ pi,(N), and then plot -log10(pi,(j)) against -log10(j/N), j = 1,2,...,N. We 

connect the points in the plot to get a curve and the area under the curve is proportional to 

the AULC statistic, which will be calculated by summing up the areas of all trapezoids in 

the plot (Figure 2.2). Here we present the formula for calculating the area under the curve; 

for simplicity, log10 will be represented by log.  
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Appendix B. Properties of the AULC statistic 

As shown in Appendix A., AULC is a weighted sum of log10(p-values). AULC is within 

the framework of combining functions of p-values. If we assume the proposed statistic 

has the following form: 

 1 2 3( , , ,..., )
N

S p p p pψ=  

where ψ  is the combining function. We can prove that the combining function ψ  for the 

AULC statistic satisfies following properties: 
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(P.1) ψ  is non-increasing in each argument: (..., ,...) (..., ,...)
i i

p pψ ψ ′≥  if 

, {1,..., }
i i

p p i N′< ∈ (i.e. the statistic will increase if one of the p-values gets smaller). 

(P.2)ψ  attains its supremum value ψ , possibly not finite, even when only one argument 

attains zero: (..., ,...)
i

pψ ψ→  if 0, {1,..., }
i

p i N→ ∈  (i.e. if one of the p-values reaches 0, 

the statistic attains its supremum value).  

(P.3) 0α∀ > , the critical value of every ψ  is assumed to be finite and strictly smaller 

than the supremum value: Sα ψ< . 

(P.4) ψ  is a symmetric function, which is invariant with respect to permutation of 

arguments: for instance, if 1( ,..., )
N

u u  is any permutation of (1,..., )N , then 

1 1( ,..., ) ( ,..., )
Nu u N

p p p pψ ψ= . 

(P.5) When N=2, the AULC statistic is equivalent to the Fisher combining function, 

which is based on the statistic: 

 2 log( )
F j

j

S p= − ×∑  

(P.6) The AULC statistics are equivalent to each other if we use different bases with 

respect to which logarithms are computed (currently base 10). We can prove that the 

weights in the summation do not change relatively to each other even though the absolute 

values of the weights will change.  

 

Property (P.1) is related to the unbiasedness of combined tests; (P.2) and (P.3) are related 

to consistency. All combining functions ψ  are generally required to satisfy at least these 

three properties [Pesarin 2001]. 
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Appendix C. The procedure for simulating a master regulatory SNP 

Prior to the simulation, we do an inverse normal transformation on the expression data 

such that each gene's expression follows a standard Gaussian distribution. We then 

simulate a master regulatory SNP by adding the SNP effect onto the expression of those 

genes that are picked to be associated with the SNP. Specifically, we do the following:  

1) The SNP genotype data are simulated by using different allele frequencies p (p=0.5 or 

p=0.1). The SNP genotypes are coded as 0, 1, and 2 (i.e. the dosage of the minor allele). 

2) We randomly pick n (n takes values from 0 to 500) genes whose expression will be 

associated with the master regulatory SNP.  

3) For each of those n genes, we decide the association effect size, which is the 

proportion of gene expression variation explained by the SNP (R
2
). R

2
 follows a truncated 

(from 0 to 1) exponential distribution with mean λ  ( λ  takes values of 0.01, 0.02, 0.05, 

and 0.1).   

4) We add the SNP effect onto the original expression to get the new expression for each 

of those n genes (assume a linear additive model with the genotype of the master 

regulator coded as 0, 1 and 2): 

 _ _new expression genotype original expressionβ= × +  

where the SNP effect β  is determined by the association effect size R
2
: 

 
2

2(1 )(2 (1 ))

R

R p p
β =

− −
 

This is because: 

 
2

( _ ) ( ) ( _ )

(2 (1 )) 1

Var new expression Var genotype Var original expression

p p

β

β

= × +

= × − +
 

Therefore,  
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2

2

2

(2 (1 ))

(2 (1 )) 1

variance explained by genotype
R

total variance

p p

p p

β

β

=

× −
=

× − +

 

This leads to the formula above to calculate β  based on R
2
. Note 

( _ )Var original expression  is 1 because we have done an inverse normal transformation 

on the data such that each gene's expression follows a standard Gaussian distribution. 

Also, the formula above for calculating R
2
 based on β  shows that the allele frequency 

has been taken into account when calculating R
2
.  
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Chapter 3 

 

A method for estimating the overlap of eQTLs between two tissues 

 

3.1 Introduction 

 

Most human eQTL studies have measured transcript abundance in blood cells (peripheral 

blood lymphocytes and immortalized lymphoblastoid cell lines, LCLs) [Dixon, et al. 

2007; Goring, et al. 2007; Morley, et al. 2004; Stranger, et al. 2007]; only a small number 

of studies have examined it in other tissues (e.g. liver tissue [Schadt, et al. 2008]). 

Because of this, researchers interested in whether a particular variant is associated with 

gene expression levels have typically examined this association in LCLs. There is a 

controversy on whether associations observed in LCLs will translate to other tissues, and 

recent results reported in a study by Dimas and colleagues [Dimas, et al. 2009] suggest 

that overlap between eQTL signals among tissues will typically be relatively small. They 

compared three lists of significant eQTLs identified in three cell types (LCLs, fibroblasts, 

and T-cells) of 75 individuals and claimed that 69 to 80% of cis-eQTLs operate in a cell 

type-specific manner. However, our analyses provide evidence that current studies with 

fewer than 100 subjects are typically underpowered and that as a result directly 

comparing lists of significant eQTLs likely leads to underestimation of the overlap 
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percentage. Indeed, our results show that overlap in eQTLs across tissues can be 

substantial even when the raw overlap percentage is low. 

 

An accurate estimate of overlap in eQTLs across tissues can allow researchers to quantify 

the benefits of studying eQTLs in different tissues. Here, we describe a new procedure 

that takes statistical power into account to provide a more accurate estimate of the 

percentage of overlapping eQTLs between two tissues. We use this method to compare 

our eQTL catalog in skin with a previously described catalog for LCLs [Dixon, et al. 

2007]. This method has the potential to be applied to a wide range of biological studies. 

 

3.2 Methods 

 

Statistical methods  

The simplest approach to compare eQTL lists between two experimental settings is to 

evaluate the overlap of lists of significant eQTLs compiled separately for each setting. 

Unfortunately, this method will underestimate the overlap percentage whenever either of 

the two studies is underpowered (in that case, many true eQTLs might be detected in one 

study but missing from the list of eQTLs detected in the second study). Here, we propose 

a new method that takes into account the statistical power of the studies. Very briefly, our 

procedure starts by splitting the study/tissue with the larger sample size into two parts. 

One part identifies eQTLs in the tissue, and the second part provides unbiased estimators 

for the power to replicate eQTL signals. This estimated power is then used to adjust the 
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observed raw overlap percentage and hence to obtain a power-adjusted estimate of the 

overlap in eQTL signals.  

 

Estimating the overlap percentage. In our method, we assume that eQTL analyses are 

performed in two studies: in Study 1 (here, the study using lymphoblastoid cell lines), we 

use a nominal p-value cut-off of α1 to generate a list of significant eQTLs, which 

corresponds to a false discovery rate (FDR) of FDR1, while in Study 2 (here, the study 

using skin tissue), we use a nominal p-value cut-off of α2, corresponding to an FDR of 

FDR2. Let π be the proportion of true eQTLs in Study 1 that are also true eQTLs in Study 

2; let πraw be the observed percentage of significant eQTLs in Study 1 that are also 

significant in Study 2. Since both eQTL lists are necessarily incomplete, πraw will result 

in an underestimate of π. Our aim is, thus, to arrive at a better estimator of the true 

overlap percentage π. To do this, we attempt to estimate a power-adjusted expected 

overlap in significant eQTLs, πadjusted.  

 

To arrive at this power-adjusted expected overlap, we start with the list of significant 

eQTLs in Study 1 and consider (see Figure 3.1 for a detailed decision diagram) a series of 

possibilities that might lead these eQTLs to replicate in Study 2 (i.e. to be overlapping 

eQTLs): (a) a fraction (π) of true positive eQTLs in Study 1 are also true eQTLs in Study 

2 and are expected to replicate in Study 2 with a particular power; (b) a fraction (1- π) of 

true positive eQTLs in Study1 will not be true eQTLs in Study 2 but might "replicate" by 

chance, with the probability determined by the significance threshold α2, which is simply 

the false positive rate; (c) false positive eQTLs in Study 1 might also replicate by chance 
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with  probability also determined by  significance threshold α2. We note that it is possible 

a small fraction of false positive eQTLs in Study 1 will represent true eQTLs in Study 2, 

but for simplicity, we assume that, since the vast majority of expression level - SNP 

pairings are not expected to be associated, this event will be extremely rare (see 

Supplementary Methods for the complete decision diagram with all possibilities and the 

full description of the method that leads to the simplified version presented here). 

Therefore: 

1 2 1 2 1 2(1 ) (1 ) (1 )
raw

FDR power FDR FDRπ π π α α= − × × + − × − × + ×                                 (1) 

where power2 is the statistical power of Study 2 to detect eQTLs that are both true 

positives in Study 1 and Study 2 (overlapping eQTLs). Algebraic manipulation of 

equation (1) above gives: 

2

1 2 2(1 )( )

raw

FDR power

π α
π

α

−
=

− −
 

Thus, we can estimate π as: 

2

1 2 2

ˆ
ˆ

(1 )( )

raw
adjusted

FDR power

π α
π

α

−
=

− −
                                                                                     (2) 

In (2), ˆ
raw

π  is an observed quantity. α2 is the p-value threshold in Study 2 that is set by 

researchers. Given α1, FDR1 can be estimated using the Benjamini and Hochberg [1995] 

procedure. Therefore, to estimate π, the major work is to estimate power2. 

 

In theory, power2 is determined by the effect sizes of overlapping eQTLs in Study 2, the 

sample size of Study 2, and the type I error rate of Study 2 (α2). Because we are not able 

to observe all overlapping eQTLs, in our method we make two key assumptions (see 

below) and use the unbiased estimates of effect sizes of all identified true Study1 eQTLs 
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to approximate the effect sizes of overlapping eQTLs in Study 2. Equivalently, we 

estimate power2  by power2raw, which we define as the statistical power of a study on 

Tissue 1 with the same sample size as Study 2 to detect observed significant Study 1 

eQTLs when type I error rate is controlled at the same α2 level. Because observed 

significant Study 1 eQTLs include both identified true Study 1 eQTLs and false positives, 

we use the following formula to adjust for false positives when estimating power2 (the 

formula is obtained using a decision tree idea similar to the one in Figure 3.1, see 

Supplementary Methods for the derivation): 

2 1 2
2

1

ˆ
ˆ

1
raw

power FDR
power

FDR

α− ×
=

−
                                                                                        (3) 

 

A simple estimate of power2raw based on the observed effect sizes of each eQTL in Study 

1 would be biased because of the winner’s curse. To avoid the bias, we estimate 

power2raw using a sample splitting strategy: we split Study1 into mutually exclusive and 

independent sets Study1A and Study1B. Study 1A is used to identify significant eQTLs 

in Study 1, while Study 1B is used to provide unbiased estimates for effect sizes of these 

eQTLs. Given the sample size of Study 2, we can then estimate power2raw based on the 

effect size estimates. The sample splitting strategy can be further simplified if splitting is 

done such that Study 1B has the same number of subjects and the same data structure (e.g. 

the same case-control design) as Study 2. In this setting, the percentage of signals 

identified in Study 1A that are also significant in Study 1B equals to power2raw. The 

results presented in this chapter use this simplified sample splitting strategy.    
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Our approach requires two key assumptions. First, it assumes that the distribution of 

overlapping eQTL effect sizes in Study 1 is well approximated by the distribution of 

effect sizes for all identified true eQTLs in Study 1. Second, it assumes that the 

distribution of overlapping eQTL effect sizes is similar between the two studies. 

Violation of these assumptions could lead to an underestimate of power2 (for example, if 

overlapping eQTLs typically have larger effect sizes than the non-overlapping ones), or 

to an overestimate of power2 (for example, if overlapping eQTLs typically have smaller 

effect sizes in Study 2 than in Study 1, where they were originally detected). Given these 

assumptions, we can use this estimated power2 and plug it into equation (2) to obtain an 

adjusted estimate of the overlap in eQTLs between two tissues. 

 

As an example, consider a setting where 1000 eQTLs are detected with 1% FDR in Study 

1. If 80% of the true eQTLs in Study 1 are also true eQTLs in Study 2, and if we set α2 = 

0.05 and assume the power of Study 2 is 50%, then we expect to see 406 significant 

eQTLs in Study 2 (using formula (1)). So ˆ
raw

π = 40.6%, which is approximately half of 

the true overlap percentage 80%. However, if we apply equation (2) with power2 = 0.5, α2 

= 0.05 and FDR = 0.01, we get ˆ
adjusted

π = 80.0%. 

 

Estimating the variance of the overlap percentage. We use the jackknife resampling 

technique to estimate the variance of ˆ
adjusted

π . We randomly remove one subject from 

Study 1B and one subject from Study 2 to obtain new estimators for ˆ
raw

π  and power2, 
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and hence a new estimator for ˆ
adjusted

π . We repeat this procedure and obtain multiple 

estimators for ˆ
adjusted

π  and then estimate the variance of ˆ
adjusted

π  as: 

� ( )
2

,

1

1
ˆ ˆ ˆvar( )

1

n

adjusted adjusted i adjusted

in
π π π

=

= −
−
∑  

 

Data for skin. Genotype and expression data for skin will be described in detail in 

Chapter 5. Very briefly, we collected gene expression data using Affymetrix U133 Plus 

2.0 arrays from three types of skin tissues: normal skin from 57 healthy controls (normal 

skin), non-diseased (uninvolved skin) and diseased skin (lesional skin) from 53 psoriatic 

patients. All 110 subjects were genotyped by Perlegen Sciences using four proprietary, 

high-density oligonucleotide arrays in partnership with the Genetic Association 

Information Network (GAIN). We then used MACH [Li, et al. 2010; Li, et al. 2009] to 

impute all HapMap SNPs, with phased HapMap CEU sample haplotypes as templates. 

We analyzed only SNPs that were genotyped or could be imputed with relatively high 

confidence (estimated r
2
 between imputed SNP and true genotypes >0.3, so that patterns 

of haplotype sharing between sampled individuals and HapMap samples consistently 

indicated a specific allele; we use this r
2
 based threshold, rather than one based on the 

posterior probability of each imputed genotype, because it naturally accommodates SNPs 

with different allele frequencies and because it is the same threshold used in many recent 

genomewide association studies, including for psoriasis [Nair, et al. 2009]). 

 

Data for lymphoblastoid cell lines (LCLs). Genotype and expression data for LCLs were 

originally published in Dixon et al. [2007] for a set of 183 families (340 subjects total). 
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Affymetrix U133 Plus 2.0 arrays were used for gene expression profiling, and Sentrix 

HumanHap300 Genotyping BeadChips (Illumina, San Diego, CA) were used for SNP 

genotyping. As above, we then used MACH to impute all HapMap SNPs, and analyzed 

only SNPs that were genotyped or could be imputed with relatively high confidence. We 

split the 183 families randomly into two sets, where Set 1A contained 126 families and 

Set 1B contained one randomly selected individuals from each of the remaining 57 

families (so that the sample size equals to that of the study on normal skin).  

 

Applying the method to estimating the overlap of cis-eQTL signals in LCLs and in skin. 

We first performed eQTL analysis in Study 1A. We tested only associations between 

each transcript and those SNPs that are in the cis-candidate region (within 1Mb) of the 

transcript. We used a range of nominal p-value thresholds, which corresponded to an 

FDR (FDR1) of 0.001, 0.0005 and 0.0001 for testing cis-eQTLs. To avoid multiple 

counting of the same cis-eQTL signal, for each transcript that had at least one significant 

cis-eQTL association we picked the most significant SNP to form the SNP-transcript pair 

which would be evaluated in Study 1B and Study 2. For the study in skin (Study 2), we 

focused our analysis on the data from the 57 normal controls (the data from 53 patients 

were also analyzed). We also used a range of α2 values (p-value thresholds) in Study1B 

and Study2: 0.05, 0.001, and 0.0005. 

 

3.3 Results 
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Using our new method, we estimated the percentage of true eQTLs in LCLs that are also 

true eQTLs in normal skin. As our method requires an approximation in the formula, we 

controlled the false discovery rate in Study 1 relatively tightly (i.e. controlling FDR1 at 

0.001, 0.0005 and 0.0001). We allowed α2 to take a range of different values (0.05, 0.001 

and 0.0005), and then estimated the overlap percentage for all combinations of FDR1 and 

α2. As summarized in Table 3.1, the different FDR1 and α2 thresholds give relatively 

consistent estimates for the percentage of overlapping eQTLs between tissues: around 

70% of the true cis-eQTLs in LCLs are estimated to be present in normal skin. The naïve 

estimator ˆ
raw

π  suggests overlap percentages ranging from 30% to 50% depending on the 

statistical thresholds used in the analysis. As an example, if we set FDR1 = 0.0005 and α2 

= 0.001, the observed overlap percentage ( ˆ
raw

π ) was 0.316 and power was estimated at 

power2 = 0.462. Using formula (2), we estimated the true overlap percentage to be 68.3% 

(95% confidence interval from the jackknife resampling 66.4% to 70.2%). We also 

estimated the overlap of cis-eQTLs between LCLs and uninvolved skin, as well as 

between LCLs and lesional skin. These additional comparisons produced similar 

estimates that ~70% cis-eQTLs in LCLs are also present in uninvolved and lesional skin 

(Table 3.1). These results suggest that a majority of cis-eQTLs are shared between skin 

and LCLs. 

 

We also compared the LCL cis-eQTLs in our analysis with cis-eQTLs identified in 

fibroblasts and T cells generated by Dimas et al. [2009]. Even though the raw overlap 

percentages were rather low, after we adjusted for the power of the study (because 

sample sizes of LCLs, fibroblasts, and T-cells are the same in Dimas et al. [2009], the 
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power of the study can be estimated by using the results from LCLs in that same study), 

we estimated that 65-70% of significant LCL cis-eQTLs were also present in fibroblasts 

and T-cells (Table 3.2 and Supplementary Methods). This finding is very consistent with 

the results from comparing LCLs and skin. 

 

3.4 Discussion 

 

We have developed a new method for estimating eQTL overlap between two tissues. Our 

method can provide a more accurate estimator for the overlap percentage whenever either 

of the two studies is underpowered and hence is likely to fail to detect all the significant 

signals, leading to undetected overlapping signals. Our procedure starts by splitting the 

study/tissue with the larger sample size into two parts. One part identifies eQTLs in the 

tissue, and the second part provides unbiased estimators for the eQTL effect sizes. The 

power of the second study/tissue to detect overlapping eQTLs is then estimated, and is 

used to adjust the observed overlap percentage to derive the power-adjusted overlap 

percentage. Our method can be useful in a variety of settings where estimation of the 

overlap of two signal lists is needed. For example, in theory the method can be applied to 

estimate the overlap of areas of the brain activated in two settings (e.g. two different 

stimuli) in an fMRI (functional magnetic resonance imaging) experiment. 

 

Using our method, we have estimated that around 70% of the significant cis-eQTLs in 

LCLs are also observed in skin, a value that greatly exceeds the raw overlap percentage 

of 30-50% obtained using a naïve estimator. It may be argued, however, that because the 
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overlapping cis-eQTLs may have different effect sizes in the two tissues, they may still 

be regarded as tissue specific. 
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3.5 Figures and tables 

Figure 3.1 Simplified diagram for categorization of significant eQTLs from Study1 into groups for the estimation of the overlap 

percentage (a full version of decision diagram can be seen in the Supplementary Methods) 
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Table 3.1 Estimating the overlap of cis-eQTLs between LCLs and the three types of skin using different significance thresholds. 

 
Different 

thresholds 
57 normal skin 53 uninvolved skin 53 lesional skin 

FDR1 α2 ˆ
raw

π  power2 ˆ
adjusted

π (95% CI) ˆ
raw

π  power2 ˆ
adjusted

π (95% CI) ˆ
raw

π  power2 ˆ
adjusted

π (95% CI) 

0.001 0.05 0.520 0.771 0.652 (0.642, 0.662) 0.495 0.764 0.623 (0.612, 0.634) 0.499 0.764 0.629 (0.618, 0.640) 

0.001 0.001 0.296 0.429 0.689 (0.669, 0.709) 0.278 0.402 0.691 (0.671, 0.711) 0.266 0.402 0.661 (0.641, 0.681) 

0.001 0.0005 0.264 0.367 0.719 (0.692, 0.746) 0.252 0.345 0.730 (0.703, 0.757) 0.239 0.345 0.692 (0.667, 0.717) 

0.0005 0.05 0.538 0.805 0.646 (0.636, 0.656) 0.514 0.798 0.620 (0.609, 0.631) 0.519 0.798 0.627 (0.616, 0.638) 

0.0005 0.001 0.316 0.462 0.683 (0.664, 0.702) 0.297 0.434 0.684 (0.665, 0.703) 0.285 0.434 0.656 (0.636, 0.676) 

0.0005 0.0005 0.284 0.398 0.713 (0.686, 0.740) 0.271 0.374 0.724 (0.698, 0.750) 0.256 0.374 0.684 (0.660, 0.708) 

0.0001 0.05 0.587 0.856 0.666 (0.656, 0.676) 0.564 0.849 0.643 (0.632, 0.654) 0.552 0.849 0.628 (0.617, 0.639) 

0.0001 0.001 0.364 0.534 0.681 (0.663, 0.699) 0.342 0.506 0.675 (0.657, 0.693) 0.332 0.506 0.655 (0.637, 0.673) 

0.0001 0.0005 0.330 0.471 0.700 (0.675, 0.725) 0.315 0.442 0.712 (0.688, 0.736) 0.301 0.442 0.681 (0.659, 0.703) 
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Table 3.2 eQTL Overlap between LCLs from Dixon et al. and LCLs, fibroblasts, and T-cells from Dimas et al. 

 Overlap with LCLs (Dixon et al.) 

Dimas et al. α2 = 0.01 α2 = 0.005 α2 = 0.001 

 ˆ
raw

π  ˆ
adjusted

π  ˆ
raw

π  ˆ
adjusted

π  ˆ
raw

π  ˆ
adjusted

π  

FDR1 = 0.001             

LCLs 0.368 1.000
*
 0.312 1.000

*
 0.241 1.000

*
 

Fibroblasts 0.237 0.633 0.202 0.643 0.151 0.624 

T-cells 0.257 0.690 0.230 0.732 0.167 0.691 

FDR1 = 0.005             

LCLs 0.326 1.000
*
 0.272 1.000

*
 0.208 1.000

*
 

Fibroblasts 0.210 0.632 0.177 0.644 0.131 0.630 

T-cells 0.235 0.712 0.204 0.744 0.143 0.687 

 
*
Assumed 

 



 

 54 

3.6 Supplementary materials 

 

Supplementary Methods  

A. The detailed method for estimating the overlap percentage (i.e. deriving formula (2) in 

the main text) 

 

In our method, we assume that eQTL analyses are performed in two studies: in Study 1 

(here, the study using lymphoblastoid cell lines), we use a nominal p-value cut-off of α1 

to generate a list of significant eQTLs, which corresponds to a false discovery rate (FDR) 

of FDR1, while in Study 2 (here, the study using skin tissues), we use a nominal p-value 

cut-off of α2, corresponding to an FDR of FDR2. Let π be the percentage of eQTLs in 

Study 1 that are also eQTLsin Study 2; let πraw  be the observed percentage of significant 

eQTLs in Study 1 that are also significant in Study 2. Since both eQTL lists are 

necessarily incomplete, πraw will result in an underestimate of π. Our aim is, thus, to 

arrive at a better estimator of the true overlap percentage π. To do this, we attempt to 

estimate a power-adjusted expected overlap in significant eQTLs, πadjusted. 

 

Our method starts with a list of significant eQTLs in Study 1 and dissects those 

significant eQTLs in three steps into 8 mutually exclusive groups, depending on whether 

they are true/false positives in Study 1, true/false positives in Study 2, and designated 

significant/non-significant eQTLs in Study 2 (The detailed dissection diagram is shown 

in Supplementary Fig 1A).  Besides the abovementioned parameters, ρ is the percentage 

of false positive eQTLs in Study 1 that are true positives in Study 2; power2 is the 
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statistical power of Study 2 to detect eQTLs that are both true positives in Study 1 and 

Study 2 (overlapped eQTLs); power2’ is the statistical power of Study 2 to detect eQTLs 

that are true positives in Study 2 but false positives in Study 1. Among the 8 groups of 

eQTLs that are identified as significant in Study1, 4 groups will be identified as 

significant in Study 2 (observed overlaps). Therefore: 

( ) ( ) ( )1 2 2 1 2 21  1    ' 1
raw

FDR power FDR powerπ π π α ρ ρ α   = − × × + − × + × × + − ×        (0) 

If we can control the false discovery rate of Study 1 (FDR1) well, we can expect FDR1 to 

be much less than 1- FDR1. Therefore, the contribution of the second term in (0) is much 

less than that of the first term and hence the simplification of the second term below 

should have little impact on formula (0). It is reasonable to assume that ρ « 1- ρ, and then 

we can assume (1- ρ) ×α2 + ρ × power2’ ≈ (1-0) × α2 + 0 × power2’ = α2. Hence, formula 

(0) can be simplified as formula (1) in the main text: 

1 2 1 2 1 2(1 ) (1 ) (1 )
raw

FDR power FDR FDRπ π π α α= − × × + − × − × + ×                                 (1) 

This simplification essentially assumes that the probability that Study 2 will identify the 

false positives in Study 1 as significant signals is α2 (the probability of being identified by 

chance; see Fig 1 for the corresponding simplified diagram). 

Based on (1), we can estimate π as: 

2

1 2 2

ˆ
ˆ

(1 )( )

raw
adjusted

FDR power

π α
π

α

−
=

− −
                                                                                     (2) 

 

B. The detailed method for estimating power2 using power2raw (i.e. deriving formula (3) 

in the main text) 
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With the two assumptions made in the main text, power2 equals to power2appro, which is 

defined as the statistical power of a study on Tissue 1 with the same sample size as Study 

2 to detect all identified true Study 1 eQTLs when controlling type I error rate at α2. 

Meanwhile, power2raw is defined as the statistical power of a study on Tissue 1 with the 

same sample size as Study 2 to detect all identified Study 1 eQTLs. The difference 

between the two lies in the fact that the list of “all identified Study 1 eQTLs” includes 

false positives while the list of “all identified true Study 1 eQTLs” does not. In the main 

text, Study 1A can be regarded as the original Study1, and Study 1B can be regarded as 

the study with the same sample size as Study2. Using a similar decision tree idea, we can 

categorize the list of significant eQTLs identified in Study 1A into 4 mutually exclusive 

groups (Supplementary Fig 1B), among which 2 groups will be identified as replicated in 

Study 1B (the proportion replicated in Study 1B equals to  power2raw). Therefore: 

2 1 2 1 2(1 )
raw appro

power FDR power FDR α= − × + ×  

Algebraic manipulation of the above equation gives: 

2 1 2
2

1

ˆ
ˆ

1
raw

appro

power FDR
power

FDR

α− ×
=

−
 

Therefore: 

2 1 2
2

1

ˆ
ˆ

1
raw

power FDR
power

FDR

α− ×
=

−
                                                                                        (3) 

 

C. Estimating cis-eQTL overlap between LCLs from Dixon et al. [2007] and fibroblasts 

and T-cells from Dimas et al. [2009] 
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Antigone Dimas and Emmanouil Dermitzakis kindly provided us with lists of all 

significant SNP-gene expression pairs in LCLs, fibroblasts, and T-cells that have nominal 

p-values <= 0.01 from Dimas et al. [2009]. We use these lists of significant signals, 

together with the list of eQTLs identified in LCLs from Dixon et al. [2007], to estimate 

the eQTL overlap between LCLs from Dixon et al. [2007] and fibroblasts and T-cells 

from Dimas et al. [2009], respectively. For example, to estimate the eQTL overlap 

between LCLs from Dixon et al. [2007] and fibroblasts from Dimas et al. [2009], we treat 

the study on LCLs from Dixon et al. [2007] as Study 1A and the study on fibroblasts 

from Dimas et al. [2009] as Study 2. We first compare the two lists and get the raw 

observed overlap percentage ( ˆ
raw

π ). Because the sample sizes for LCLs, fibroblasts, and 

T-cells are the same in Dimas et al. [2009], the study on LCLs in Dimas et al. [2009] can 

be regarded as the Study1B in our method, and therefore, the raw overlap percentage 

between LCLs from Dixon et al. [2007] (Study 1A) and LCLs from Dimas et al. [2009] 

(Study 1B) is exactly 2
ˆ

raw
power , as defined. Then we use the formulas above to estimate 

the power-adjusted overlap percentage. More specifically, because the study of Dimas et 

al. [2009] used Illumina 550K SNP array, we also consider only SNPs on the Illumina 

550K SNP array in the study of LCLs from Dixon et al. [2007] to make the lists of SNP 

considered comparable. Meanwhile, because the two studies used different platforms of 

gene expression arrays, we map the gene expression probe IDs to Entrez gene IDs to 

make expression traits comparable. We then compile a list of significant SNP-gene 

expression pairs (for expression traits associated with >1 cis-SNP, the most significant 

cis-SNP-expression pair will be counted as one independent signal) for LCLs from Dixon 
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et al. [2007] This list of cis-eQTL signals are compared with eQTL lists from Dimas et al. 

[2009] to estimate the raw observed overlap percentages.  
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Supplementary Fig 1A Categorization of significant eQTLs from Study 1 into groups for the estimation of overlap percentage 
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Supplementary Fig 1B Categorization of significant eQTLs from Study 1A into groups for the estimation of power2appro using 

power2raw  
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Chapter 4 

 

Simulation studies on the method for estimating the eQTL overlap 

 

4.1 Introduction 

 

To quantify the benefits of studying eQTLs in different tissues, we propose a novel 

method for accurately estimating the overlap of eQTLs between two tissues in Chapter 3. 

Briefly, our procedure starts by splitting the study/tissue with the larger sample size 

(Study 1) into two parts (Studies 1A and 1B). One part (Study 1A) identifies eQTLs in 

the tissue, and the second part (Study 1B) provides unbiased estimators for the eQTL 

effect sizes. The power of the second study/tissue (Study 2) to detect overlapping eQTLs 

is then estimated, and is used to adjust the observed overlap percentage to derive the 

power-adjusted overlap percentage. 

 

In theory, there are multiple ways to split samples in Study 1 into Studies 1A and 1B. The 

simplified version of the sample splitting strategy employed in Chapter 3 requires that 

splitting is done such that Study 1B has the same number of subjects and the same data 

structure (i.e. the same pattern of related and unrelated individuals) as Study 2. In this 

scenario, the power of the second study (more specifically, power2raw) can be simply 

estimated as the proportion of signals identified in Study 1A that are also significant in 
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Study 1B. However, one of the limitations for this simplified version of the method is the 

lack of flexibility. In some situations, the splitting strategy will not even work. For 

example, when the sample sizes of Study 1 and Study 2 are the same, no splitting can be 

done that satisfies the requirement of the simplified method.  

 

The full version of the splitting strategy can overcome the limitation of fixed sample size 

for Study 1B. Study 1B with an arbitrary sample size is used to provide unbiased 

estimates for effect sizes of the eQTLs; the power of Study 2 is then estimated based on 

the effect size estimates and the sample size of Study 2. Out of all plausible ways of 

splitting samples in Study 1, it is not clear which way is the best with regard to the 

estimation accuracy. Apparently, there are two competing interests here. With a fixed 

number of samples in Study 1, if we put more samples in Study 1A, Study 1A will have 

larger statistical power to detect significant eQTLs in Study1, which means a better 

estimation for the observed overlap percentage. On the other hand, if we put more 

samples in Study 1B, we can get better estimates for the eQTL effect sizes, which means 

a better estimation for the power to detect overlapping eQTLs. A good sample splitting 

strategy should be able to balance these two competing interests. In a broad sense, this is 

similar to the problem encountered by many researchers in genetic studies where reliably 

detecting signals and accurately estimating effect sizes of those signals are both research 

goals [Sun and Bull 2005]. People have proposed the sample splitting strategy [Goring, et 

al. 2001] to achieve the two goals at the same time. But typically, it is not clear how to 

identify the best way to split the samples such that both goals can be approached in an 

acceptable manner. We plan to address this question here under the framework of 
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estimating eQTL overlap using simulation studies. We propose to use the parameter 

estimation accuracy as the criterion to compare the performance of different sample 

splitting strategies. 

 

In this chapter, we plan to achieve two goals using the same simulation framework. First, 

for the simplified version of the method, we want to assess its performance in the perfect 

scenario where both assumptions for effect sizes hold or in scenarios where at least one 

of the two assumptions is violated. The two assumptions for effect sizes are: Assumption 

1) the distribution of overlapping eQTL effect sizes in Study 1 is well approximated by 

the distribution of effect sizes for all identified true eQTLs in Study 1; Assumption 2) the 

distribution of overlapping eQTL effect sizes is the same between two studies. We want 

to assess how good the overlap percentage estimation is when both assumptions hold and 

how much the overlap percentage estimation is affected when the two assumptions are 

violated to different extents.  

 

Second, for the full version of the method, we want to use the simulation framework to 

determine the ideal way to split samples in Study 1 that can achieve highest estimation 

accuracy.   

 

4.2 Methods 

Simulation framework 

In our simulation, we test cis-associations between gene transcripts and their cis-SNPs in 

the genome. We assume each gene transcript has either zero or one associated cis-SNP. 
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We use a simple linear model to describe the true association between the cis-SNP 

genotype (coded as 0, 1, 2) and the corresponding gene’s expression level. The effect size 

of each cis-association is determined by a quantity R
2
 (the coefficient of determination), 

which corresponds to the proportion of transcript expression variation explained by the 

genotype. For all the true cis-associations, we let R
2
 follow a truncated (from 0 to 1) 

exponential distribution with mean λ . As the effect size parameter, λ  corresponds to a 

specific statistical power of a study with a certain sample size to detect cis-eQTLs when 

controlling a certain Type I error rate. We set λ  to different values in our simulation that 

correspond to a range of study power.   

   

We assume that 20,000 gene transcripts are tested on the whole genome. In both Study 1 

and Study 2, 3,000 gene transcripts have true cis-associations with eQTL SNPs. Among 

the two lists of 3,000 cis-eQTLs, a proportion of them are shared in the two studies, 

which is determined by the overlap percentage parameter π . We let π  take three values 

in our simulation. One value is 
2

3
 (i.e. 2,000 eQTLs are shared in the two studies), which 

reflects the overlap percentage estimated from empirical data (see Chapter 3). We also let 

π  take the values 0.05 (i.e. 150 shared eQTLs) and 0.95 (i.e. 2,850 shared eQTLs) so that 

we can test the performance of the method when π  is at the limits of the parameter space.   

 

Assess the performance of the simplified method under different scenarios 

We consider three scenarios in the simulation: 1) “perfect scenario”: two effect size 

assumptions hold and the overlapping eQTLs have same effect sizes in the two 

studies/tissues; 2) “violation in Assumption 1”: Assumption 1 is violated (at different 
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levels) such that overlapping eQTLs have larger mean effect size than non-overlapping 

eQTLs in Study 1; 3) “violation in Assumption 2”: Assumption 2 is violated (at different 

levels) such that all overlapping eQTLs have larger effect sizes in Study 1 than in Study 2. 

 

We perform the simulation using the following different parameter settings:  

a) sample size n: 2n unrelated subjects in Study 1 and n unrelated subjects in 

Study 2 such that Study 1A, 1B, and 2 all have n samples. n takes the values 60 

(i.e. 120 for Study 1 and 60 for Study 2, a sample size similar to currently 

published studies), or 120. 

b) cis-eQTL mean effect size ( λ ) takes the values 0.10, 0.16, or 0.32, which 

correspond to the average statistical power to detect signals at ~10%, ~25%, and 

~40%, respectively, for a study with a sample size of n = 60 at the false discovery 

rate (FDR) of 0.001, or at ~30%, ~40%, and ~65%, respectively, for a study with 

a sample size of n = 120 at FDR of 0.001.  

c) true overlap percentage (π ) takes the values 
2

3
, 0.05, or 0.95. 

d) “violation in Assumption 1”: in Study 1, overlapping eQTLs’ mean effect size 

( λ ) is 10%, 20%, or 30% larger than the non-overlapping eQTLs’ mean effect 

size. 

e) “violation in Assumption 2”: each overlapping eQTL has its effect size ( λ ) 

10%, 20%, or 30% larger in Study 1 than in Study 2.  

 

We simulate 100 data sets for each simulation scenario. When applying our method to the 

simulated data set, we use 16 different threshold combinations: the false discovery rate 
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controlled in Study 1A (FDR1) is set at 0.01, 0.008, 0.005, or 0.001; the Type I error rate 

controlled in Study 2 ( 2α ) is set at 0.05, 0.01, 0.001, or 0.0005. We then assess the 

performance of the method under different scenarios by looking at the bias, the standard 

error (SE), and the square root of the mean squared error ( MSE ) of ˆ
adjusted

π . For each 

simulation scenario, the three summary statistics are estimated as the mean among the 16 

different threshold combinations. 

 

Identify the ideal sample-splitting strategy for the full-version method 

We split samples in Study 1 into Study 1A and Study 1B with different splitting 

proportions. We use the mean squared error (MSE) for the overlap estimator as the 

criterion to assess the performance of different ways of splitting samples.  

 

Similarly as above, we perform the simulation using the following different parameter 

settings: 

a) sample size (n) takes the values 60, 120, or 240. 

b) cis-eQTL mean effect size ( λ ) takes the values 0.10, 0.16, or 0.32. 

c) true overlap percentage (π ) takes the value 
2

3
. 

d) Study 1 sample splitting proportion (the proportion of Study 1 samples used in 

Study 1A) takes values from 5% to 95% in increments of 5%. 

 

We use samples in Study 1B to estimate the effect size of each significant eQTL ( 2

i
R , i = 

1 , …, M, M is the number of significant eQTLs) identified in Study 1A. For each eQTL, 
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under the alternative hypothesis (i.e. the eQTL is a true eQTL), the test statistic (F 

statistic) follows a non-central F distribution with 1 and n-2 (n is the sample size in Study 

2) degrees of freedom and a noncentrality parameter 
2

2(1 )
i

i

R n

R

×

−
. When controlling Type I 

error rate at 2α , we can then estimate the power of Study 2 to detect each individual 

eQTL based on the above F distribution. The average power of Study 2 to detect 

significant eQTLs identified in Study 1A is the mean of all individual power estimates.       

 

We then estimate the mean MSE among MSEs from 16 different threshold combinations 

(4 FDR1 thresholds and 4 2α  thresholds) for each simulation scenario. 

 

4.3 Results 

Assess the performance of the simplified method under different scenarios 

The first simulation scenario that we consider is a “perfect scenario”, where two effect 

size assumptions both hold. When the sample size n = 60 and the true overlap percentage 

π  = 
2

3
, the mean ˆ

adjusted
π  is 0.6658, 0.6661, and 0.6663 when the mean effect size 

parameter λ  takes the values 0.10, 0.16, and 0.32, respectively (Table 4.1). Therefore, 

the bias is -0.0009, -0.0005, and -0.0003, respectively. Furthermore, the mean SE is 0.032, 

0.020, and 0.010; the mean MSE  is 0.032, 0.020, and 0.010. Given the same sample 

size, when the mean effect size ( λ ) increases (i.e. the power of the study increases) the 

bias and MSE  both decrease. We observe this same trend when sample size n increases 

to 120 (Table 4.1). We also obtain similar estimation accuracy when the true overlap 
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percentage π  takes the more extreme values 0.05 and 0.95 (Tables 4.2 and 4.3). For 

example, when the sample size n = 60 and the true overlap percentage π  = 0.05, the 

mean ˆ
adjusted

π  is 0.0520, 0.0513, and 0.0506 when the mean effect size parameter λ  takes 

the values 0.10, 0.16, and 0.32, respectively (Table 4.2). All these simulations show that 

under “perfect scenario” our method performs very well in estimating the overlap 

percentage. 

 

We then check the performance of our method when the two effect size assumptions are 

violated. In the scenario of “violation in Assumption 1”, overlapping eQTLs’ mean effect 

size ( λ ) is larger than the non-overlapping eQTLs’ mean effect size in Study 1. As 

expected, this leads to the over-estimation of the overlap percentage (as a result of the 

under-estimation of the power). Table 4.4 shows the estimation results for n = 60 and λ  

= 0.32. For π  = 
2

3
, the bias is 0.015 (2.2%), 0.030 (4.5%), and 0.044 (6.6%) when the 

overlapping eQTLs’ mean effect size is 10%, 20%, and 30% larger than that of the non-

overlapping eQTLs in Study 1, respectively. Meanwhile, the mean SE is 0.011, 0.011, 

and 0.011; the mean MSE  is 0.018, 0.032, and 0.045. The mean SEs are very similar 

with each other at the three different violation levels, and they are also similar with the 

mean SE estimated when the assumption is not violated at all (see Table 4.1). This 

indicates that the increase in the mean MSE  is majorly due to the increase of 

estimation bias when the Assumption 1 is violated. We have similar observations when 

π  = 0.05 or 0.95 (Table 4.4): even when the overlapping eQTLs’ mean effect size is 30% 
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larger than that of the non-overlapping eQTLs in Study 1, the difference between the 

estimator and the true value is considerably smaller.  

 

We then do simulations under the scenario of “violation in Assumption 2”: all 

overlapping eQTLs have larger effect sizes in Study 1 than in Study 2, which will lead to 

the under-estimation of the overlap percentage (as a result of the over-estimation of the 

power). Table 4.5 shows the estimation results for n = 60 and λ  = 0.32. For π  = 
2

3
, the 

bias is -0.015 (-2.3%), -0.031 (-4.6%), and -0.047 (-7.1%) when each overlapping eQTL 

has larger effect size in Study 1 than in Study 2 by 10%, 20%, and 30%, respectively. 

Meanwhile, the mean SE is 0.010, 0.010, and 0.011; the mean MSE  is 0.019, 0.033, 

and 0.049. Again, the increase in mean MSE  is majorly due to the increase of the 

estimation bias when the Assumption 2 is violated. When π  takes the extreme values 

0.05 or 0.95, we have similar observation that the bias of the estimator is considerably 

smaller comparing with the level of violation in the assumption. 

 

All above simulations show that our method performs reasonably well in estimating the 

overlap percentage when the two assumptions both hold or when assumptions are 

moderately violated. 

 

Identify the ideal sample-splitting strategy for the full-version method 

In our simulation, we split samples in Study 1 into Study 1A and Study 1B with different 

splitting proportions: Study 1A takes a proportion of Study 1 samples ranging from 5% to 

95% while Study 1B takes the remaining samples. We then use the full version of our 
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method to estimate the overlap percentage. MSE is used to assess the performance of the 

method and the sample splitting proportion that provides minimum MSE is regarded as 

the ideal sample splitting strategy.  

 

Figure 4.1 shows the MSE statistic across different sample splitting proportions in three 

mean effect size settings for sample size n = 60. Specifically, when E(R
2
) = 0.10, 0.16, 

and 0.32, our method achieve minimum MSE when Study 1A takes 55%, 45%, and 35% 

of the samples in Study 1, respectively. As expected, when the mean effect size increases 

(i.e. the power of a study to identify eQTLs increases), the ideal sample proportion for 

Study 1A decreases, as less samples are needed to identify signals in Study 1A. Figure 

4.2 and Figure 4.3 show the same plots for sample size n = 120 and n = 240, respectively; 

Table 4.6 summarizes the ideal splitting proportion for each of the nine settings 

considered here. Even though the exact ideal splitting proportion for achieving minimum 

MSE is different in different simulation settings, the curves always have a plateau at the 

bottom, indicating that there is a window for picking the splitting proportion where the 

MSE can be kept relatively low (e.g. less than 1.5 times the minimum MSE). For example, 

in Figure 4.1 middle panel, the estimation will have MSEs that are less than 1.5 times the 

minimum MSE as long as the splitting proportion is from 25% to 65%. In almost all the 

current simulation settings, the estimation can achieve relatively low MSE if the splitting 

proportion ranges from 25% to 40% (Table 4.6). We discuss the probable ideal splitting 

proportion under other settings in the “Discussion” section. 

 

4.4 Discussion 
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Our first goal is to use simulation to assess the performance of our method under 

different scenarios. If the two assumptions of our method hold, our method provides 

accurate overlap percentage estimation. It is reassuring to observe that even when the two 

assumptions are moderately violated, the estimation is still reasonably good. For example, 

in one simulation setting where the true overlap percentage is 
2

3
, when the mean effect 

size of the overlapping-eQTLs in Study 1 is 30% larger than that of the non-overlapping 

eQTLs, the mean of the estimator from our method is 0.711 (a difference of 0.044 from 

the true value), and the MSE  is 0.045. When the true overlap percentage is 0.05 and 

0.95, the bias is even smaller. Likewise, when the effect size of each overlapping eQTLs 

is 30% larger in Study 1 than in Study 2, the mean of the estimator from our method is 

0.620 (a difference of -0.047) when the true overlap percentage is 
2

3
. Clearly, moderate 

violations of the two assumptions do not lead to severe over-estimation or under-

estimation of the overlap percentage. 

 

Our second goal is to identify the ideal sample-splitting strategy for the full-version 

method. Apparently, the ideal sample-splitting proportion (with smallest mean squared 

error) depends on many different parameters, including the sample size of each study, the 

effect sizes of the eQTLs, and the true overlap percentage. Different parameter settings 

can lead to completely different ideal splitting proportion. Consider two extreme cases: in 

Case 1, the true overlap percentage is very small (i.e. close to 0) and the effect sizes of 

the eQTLs are also very small such that Study 1A has to have a large number of samples 

to be able to detect a reasonable number of overlapping eQTLs, or equivalently, to 
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estimate the observed overlap percentage reasonably well. In this case, the proportion of 

samples for Study 1A should be large. Case 2 is just the opposite, where the true overlap 

percentage is very large (i.e. close to 1) and the effect sizes of the eQTLs are also very 

large such that Study 1A with only a small number of samples will be able to estimate the 

observed overlap percentage reasonably well. Therefore, a large proportion of samples 

from Study 1 can be used in Study 1B to obtain a good estimation for the power of the 

study. In this case, the proportion of samples for Study 1A should be small. Our 

simulation results support this reasoning: when the study sample size increases or when 

the eQTL effect sizes increase, the ideal sample proportion for Study 1A will generally 

decrease. Meanwhile, we observe from simulations that there is usually a set of 

continuous values for the splitting proportion that gives similarly good estimation of the 

overlap percentage with regard to the mean squared error (i.e. MSE ≤ 1.5 × minimum 

MSE). In fact, when the true overlap percentage is chosen to be close to the empirical 

value observed from at least two studies (i.e. 
2

3
π = ), our simulation shows that for a 

range of  study sample sizes and a range of eQTL effect sizes, the estimation can always 

be reasonably good if the splitting proportion of samples for Study 1A is 40%. In eight of 

the nine settings, the estimation can be reasonably good if the splitting proportion is from 

25% to 40%. This can be used as guidance when samples in Study 1 are split for 

identifying eQTLs and estimating eQTL effect sizes.      
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4.5 Figures and Tables 
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Figure 4.1 MSEs for the overlap percentage estimator across different sample splitting 

proportions for sample size 60 
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Figure 4.2 MSEs for the overlap percentage estimator across different sample splitting 

proportions for sample size 120 
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Figure 4.3 MSEs for the overlap percentage estimator across different sample splitting 

proportions for sample size 240 
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Table 4.1 Estimation results from simulations where the two effect size assumptions both hold and 
2

3
π =  

Parameter Settings Estimation 

n E(R2) Power* True π  ˆ
adjusted

π  ˆ
adjusted

π π−  SE  × 102 MSE  × 102 
60 0.10 ~10% 0.667 0.6658 -0.00088 3.146 3.151 

60 0.16 ~25% 0.667 0.6661 -0.00053 1.981 1.983 

60 0.32 ~40% 0.667 0.6663 -0.00032 1.022 1.023 

120 0.10 ~30% 0.667 0.6647 -0.00194 1.589 1.602 

120 0.16 ~40% 0.667 0.6657 -0.00095 1.095 1.099 

120 0.32 ~65% 0.667 0.6663 -0.00035 0.678 0.679 

 

*Average statistical power of a study with the sample size of Study 2 to detect signals at FDR of 0.001 
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Table 4.2 Estimation results from simulations where the two effect size assumptions both hold and 0.05π =  

Parameter Settings Estimation 

n E(R2) Power* True π  ˆ
adjusted

π  ˆ
adjusted

π π−  SE  × 102 MSE  × 102 
60 0.10 ~10% 0.05 0.0520 0.00197 1.297 1.313 

60 0.16 ~25% 0.05 0.0513 0.00132 0.796 0.809 

60 0.32 ~40% 0.05 0.0506 0.00063 0.542 0.547 

120 0.10 ~30% 0.05 0.0506 0.00064 0.688 0.692 

120 0.16 ~40% 0.05 0.0506 0.00059 0.495 0.500 

120 0.32 ~65% 0.05 0.0505 0.00046 0.391 0.397 

 

*Average statistical power of a study with the sample size of Study 2 to detect signals at FDR of 0.001 
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Table 4.3 Estimation results from simulations where the two effect size assumptions both hold and 0.95π =  

Parameter Settings Estimation 

n E(R2) Power* True π  ˆ
adjusted

π  ˆ
adjusted

π π−  SE  × 102 MSE  × 102 
60 0.10 ~10% 0.95 0.9494 -0.00057 2.682 2.687 

60 0.16 ~25% 0.95 0.9491 -0.00090 1.585 1.593 

60 0.32 ~40% 0.95 0.9506 0.00056 0.850 0.855 

120 0.10 ~30% 0.95 0.9492 -0.00078 1.299 1.304 

120 0.16 ~40% 0.95 0.9502 0.00019 0.895 0.897 

120 0.32 ~65% 0.95 0.9501 0.00013 0.623 0.626 

 

*Average statistical power of a study with the sample size of Study 2 to detect signals at FDR of 0.001 
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Table 4.4 Estimation results from simulations where overlapping eQTLs have larger mean effect size than non-overlapping eQTLs in 

Study 1 

Parameter Settings Estimation 

n E(R2) True π  
Violation 

Level* 
ˆ

adjusted
π  ˆ

adjusted
π π−  SE  × 102 MSE  × 102 

60 0.32 0.667 10% 0.682 0.0149 1.05 1.83 

60 0.32 0.667 20% 0.696 0.0297 1.07 3.16 

60 0.32 0.667 30% 0.711 0.0441 1.10 4.54 

60 0.32 0.05 10% 0.054 0.0040 0.58 0.71 

60 0.32 0.05 20% 0.058 0.0076 0.61 0.98 

60 0.32 0.05 30% 0.062 0.0115 0.64 1.32 

60 0.32 0.95 10% 0.954 0.0038 0.87 0.95 

60 0.32 0.95 20% 0.957 0.0068 0.88 1.11 

60 0.32 0.95 30% 0.960 0.0096 0.88 1.31 

 

* The amount by which the mean effect size of overlapping eQTLs is larger than that of non-overlapping eQTLs 
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Table 4.5 Estimation results from simulations where overlapping eQTLs have larger effect sizes in Study 1 than in Study 2 

Parameter Settings Estimation 

n E(R2) True π  
Violation 

Level* 
ˆ

adjusted
π  ˆ

adjusted
π π−  SE  × 102 MSE  × 102 

60 0.32 0.667 10% 0.652 -0.0150 1.03 1.86 

60 0.32 0.667 20% 0.636 -0.0307 1.03 3.27 

60 0.32 0.667 30% 0.620 -0.0472 1.06 4.86 

60 0.32 0.05 10% 0.050 -0.0005 0.55 0.56 

60 0.32 0.05 20% 0.048 -0.0017 0.55 0.59 

60 0.32 0.05 30% 0.047 -0.0030 0.54 0.66 

60 0.32 0.95 10% 0.930 -0.0205 0.88 2.26 

60 0.32 0.95 20% 0.907 -0.0430 0.90 4.41 

60 0.32 0.95 30% 0.884 -0.0662 0.95 6.70 

 

* The amount by which overlapping eQTLs’ effect sizes in Study 1 are larger than those in Study 2 
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Table 4.6 Ideal splitting proportions in different parameter settings  

 
Parameter Settings Estimation 

n E(R
2
) True π  minimum MSE×10

4
 

Ideal Splitting 
Proportion

*
 

Splitting Proportion 
Window

**
 

60 0.10 0.667 12.3 0.55 0.40 - 0.70 

60 0.16 0.667 6.1 0.45 0.25 - 0.65 

60 0.32 0.667 1.9 0.35 0.25 - 0.55 

120 0.10 0.667 5.4 0.40 0.25 - 0.60 

120 0.16 0.667 2.6 0.30 0.20 - 0.50 

120 0.32 0.667 0.8 0.25 0.20 - 0.40 

240 0.10 0.667 2.2 0.30 0.15 - 0.45 

240 0.16 0.667 1.0 0.25 0.15 - 0.40 

240 0.32 0.667 0.4 0.30 0.15 - 0.45 

 

* The splitting proportion that gives the minimum MSE 
** A set of values for the splitting proportion that gives MSE ≤ 1.5×minimum(MSE) 
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Chapter 5 

 

eQTL mapping in skin 

 

5.1 Introduction 

 

In this chapter we report the mapping of eQTLs in skin tissue from psoriatic patients and 

normal controls. Psoriasis is an immune-mediated, inflammatory and hyperproliferative 

disease of the skin and joints. It provides an ideal system for eQTL mapping analysis, 

because psoriasis has a strong genetic basis and diseased tissue is readily accessible. 

 

We describe a large catalog of genetic variants influencing transcript levels in both 

normal and psoriatic skin. This catalog is based on gene expression and genotype data 

that we have collected from normal skin from healthy controls (normal skin), normal-

appearing skin from psoriatic patients (uninvolved skin), and diseased skin from psoriatic 

patients (lesional skin). This catalog represents a genetic map of gene regulation in skin 

and provides a useful tool for examining the functional impact of genetic variants 

associated with psoriasis and other skin diseases. 

 

As mentioned in Chapter 1, we have previously performed differential gene expression 

study of psoriasis using the same gene expression data. We find that gene expression 
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profiles for lesional skin are markedly different from those of normal and uninvolved 

skin. Here, we focus on identifying eQTLs in the different skin types and investigating 

whether different physiological conditions of skin types will affect the existence of these 

eQTLs. 

 

5.2 Methods 

 

Mapping eQTLs in skin 

Subjects. We enrolled 58 psoriatic patients and 64 normal healthy controls in the study. 

Patients had to have at least one well demarcated erythematous scaly psoriatic plaque that 

was not limited to the scalp. In those instances where there was only a single psoriatic 

plaque, the case was only considered if the plaque occupied more than 1% of total body 

surface area. Study subjects did not use any (a) systemic anti-psoriatic treatments for 2 

weeks prior to biopsy or (b) topical anti-psoriatic treatments for 1 week prior to biopsy. 

Informed consent was obtained from all subjects, under protocols approved by the 

Institutional Review Board of the University of Michigan Medical School and was 

conducted according to the Declaration of Helsinki Principles. Subjects with failed gene 

expression profiling or failed genotyping were excluded from the analysis. The final 

analysis included 53 psoriatic patients and 57 normal controls. 

 

Genotype Data. Subjects (as a subset of 1,409 cases and 1,436 controls) were genotyped 

by Perlegen Sciences using four proprietary, high-density oligonucleotide arrays in 

partnership with the Genetic Association Information Network (GAIN). Quality control 
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filters, which are described in detail in Nair et al. [2009], were applied. Briefly, we 

excluded markers with <95% genotype call rates, with minor allele frequency <1%, with 

HWE P value <10
-6

, with >2 mismatches among 48 pairs of individuals that were 

genotyped twice or with >2 mendelian inconsistencies among 27 trios; we also excluded 

samples with call rates <95% and with outlier heterozygosities. In total, 438,670 

autosomal SNPs were genotyped successfully for 53 psoriatic patients and 57 controls. 

As previously described [Li, et al. 2010; Li, et al. 2009], we used information on patterns 

of haplotype variation in the HapMap CEU samples (release 21) to infer missing 

genotypes ‘in silico’. We analyzed only SNPs that were genotyped or could be imputed 

with relatively high confidence (estimated r
2
 between imputed SNP and true genotypes 

>0.3, so that patterns of haplotype sharing between sampled individuals and HapMap 

samples consistently indicated a specific allele; we use this r
2
 based threshold, rather than 

one based on the posterior probability of each imputed genotype, because it naturally 

accommodates SNPs with different allele frequencies and because it is the same threshold 

used in many recent genomewide association studies, including for psoriasis [Nair, et al. 

2009]). 

 

Gene Expression Data. Two biopsies (one lesional skin, one uninvolved skin; 6 mm each) 

were taken under local anesthesia from each psoriatic subject while one 6 mm punch 

biopsy (normal skin) was taken from normal controls. Lesional skin biopsies were taken 

from psoriasis plaques, and uninvolved skin biopsies were taken from the buttocks, at 

least 10 cM away from the nearest plaque. The normal skin biopsies were also taken from 

the buttocks. RNA from each biopsy was isolated using the RNeasy kit (Qiagen, Valencia, 
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CA). Samples were run on Affymetrix U133 Plus 2.0 arrays to evaluate expression of 

~54,000 probes in accordance with the manufacturer’s protocol. The raw data from 180 

microarrays was processed using the Robust Multichip Average (RMA) method. Prior to 

analysis, we adjusted RMA expression values to account for batch and gender effects. 

Procedures for extracting RNA, controlling RNA quality and pre-processing of gene 

expression data are described in detail elsewhere [Gudjonsson, et al. 2009]. 

 

eQTL mapping. We tested SNP-gene expression associations separately in normal skin (n 

= 57), in uninvolved skin (n = 53), and in lesional skin (n = 53). Given the small sample 

size in each analysis (<60) and hence the relatively low statistical power, we tested only 

cis-associations between each transcript (i.e. probe) and those SNPs in its cis-candidate 

region (from 1Mb upstream of the transcription start site to 1Mb downstream of the 

transcription end site). Specifically, we used the score test in Merlin (fastassoc option) to 

test the association [Chen and Abecasis 2007]. For genotyped SNPs, the number of 

copies of one allele was modeled. For imputed SNPs, the dosage (i.e. the expected 

number of copies) of one allele was modeled. We used a p-value threshold of 9×10
-7

 as 

the significance threshold to originally identify cis-eQTLs, which corresponds to a false 

discovery rate (FDR) of approximately 0.01 in each of the three skin types. For gene 

expression traits that were significantly associated with more than one cis-SNP, we 

reported only the most significant cis-SNP and counted this SNP-gene pair as one 

independent cis-association. 
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Measuring cis-eQTL overlap among three skin types. To test if cis-associations identified 

in one skin type can be replicated in the other two skin types, we started with the 

significant SNP-gene pairs identified in one skin type and then tested their significance in 

other two skin types using a nominal p-value threshold of 0.05. We did not use the 

genome-wide p-value significance threshold of 9×10
-7

 because here we only tested a 

small number of SNP-gene pairs for replication. Ideally we should use the novel method 

we developed in Chapter 3 to better measure the cis-eQTL overlap among three skin 

types, but the small sample sizes of the three skin types prevented us from using the 

sample splitting strategy if we wanted to maintain adequate statistical power for the study. 

 

Studying other features of skin cis-eQTLs 

Relationship of skin eQTL SNPs to association signals in psoriasis genome-wide 

association studies (GWAS). We compiled a list of 9,462 eQTL SNPs that had at least 

one cis-association in normal, uninvolved or lesional skin that passed the significance 

threshold of 9×10
-7

 (corresponding to FDR at 0.01). From this list we selected all 389 

skin eQTL SNPs that were nearly independent of each other (linkage disequilibrium r
2
 < 

0.2), favoring those SNPs with stronger cis-association p-values. Using a quantile-

quantile (Q-Q) plot, we compared the distribution of psoriasis association p-values for 

these 389 eQTL SNPs against the null expectation. Disease association p-values were 

derived from a meta-analysis of two psoriasis GWAS: GAIN psoriasis GWAS [Nair, et al. 

2009] and the Kiel psoriasis study [Ellinghaus, et al. 2010], where 472 psoriatic cases and 

1,146 normal controls were genotyped by Illumina HumanHap 550 v1 (550k) SNP arrays, 

and then all HapMap SNPs were imputed in the same way as mentioned above. To 
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further compare this distribution with the GWAS p-value distribution of non-eQTL SNPs, 

we first removed all skin eQTL SNPs from the GWAS SNP set, and then randomly 

picked 389 of the remaining SNPs 5,000 times to derive confidence intervals for the p-

value distribution of non-eQTL SNPs. Because we were interested in testing if eQTL 

SNPs could reveal new psoriasis susceptibility loci, we removed from both skin eQTL 

and non-eQTL SNP lists those SNPs that were in the seven replicated loci from our 

recently published GWAS study (i.e. HLA-C, IL12B, TNIP1, IL13, TNFAIP3, 

IL23A/STAT2, and IL23R; the excluded region is 1Mb on both sides of the most 

significant SNP in GWAS). 

 

Gene Ontology (GO) enrichment analysis of genes associated with cis-eQTLs. We 

searched for GO terms that were significantly enriched in each list of genes associated 

with eQTLs in the three skin types. This GO category enrichment analysis was performed 

using the publicly available software DAVID (Database for Annotation, Visualization 

and Integrated Discovery, http://david.abcc.ncifcrf.gov/, Bethesda, MD). 

 

5.3 Results 

 

Mapping cis-eQTLs in skin 

As described previously [Gudjonsson, et al. 2009], we found that expression profiles for 

lesional skin were markedly different from those of normal and uninvolved skin. Using 

principal component analysis (PCA, Figure 1.2), we achieved near-perfect separation of 

lesional skin from normal and uninvolved skin, while the latter two skin types were 
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intermixed. Here, we do not focus on a comparison of expression levels between the 

tissues (as in Gudjonsson et al. [2009]), but instead report on the cis-eQTLs in the 

different skin types. 

Using a nominal p-value threshold of 9×10
-7

 (corresponding to an FDR for cis-

association at approximately 0.01 for each of the three skin types), we identified 331, 275, 

and 235 independent cis-associations in normal, uninvolved, and lesional skin, 

respectively. We have created a publicly available database containing the catalogs of 

cis-eQTLs for each of the three skin types, which will allow researchers to interrogate 

their specific SNPs or genes of interest. Figure 5.1 gives two examples of cis-association 

between gene transcripts and their nearby SNPs: ERAP2 has the most significant cis-

association in normal skin peaking at rs2910686 and cis-associations at similar 

significant levels are observed in both uninvolved and lesional skin; RPS26 has one of the 

most significant cis-associations in uninvolved and lesional skin peaking at rs11171739. 

Although the signal is less significant in normal skin, the same overall pattern of 

association is observed. 

We then measured the overlap of cis-eQTLs among the three skin types by testing how 

many significant cis-eQTLs in one skin type were replicated in other two skin types at 

nominal p-value threshold of 0.05. The results are shown in Figure 5.2: 95.1%, 96.7%, 

and 98.7% of the significant cis-eQTLs in normal, uninvolved, and lesional skin, 

respectively, are also shared by the other two skin types. Furthermore, we observed only 

two cis-eQTLs in each set that were only observed in that skin type and this number is 

consistent with the false discovery rate of 0.01 (i.e. in a set of 200 signals, we expect to 

see two false positives). These results, consistent with the similar cis-association patterns 
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observed in the three skin types (Figure 5.1), indicate that nearly all cis-eQTLs currently 

identified are shared by normal, uninvolved, and lesional skin. Therefore, the dramatic 

physiological changes that are apparent in psoriatic skin appear to have little impact on 

the identity of cis-eQTLs in skin. 

 

Studying other features of skin cis-eQTLs 

Relationship of skin eQTL SNPs to association signals in psoriasis GWAS 

Out of a total of 9,462 SNPs that passed the eQTL significance threshold of 9×10
-7

 in 

normal, uninvolved, or lesional skin (FDR=0.01), we identified 389 independent skin 

eQTLs (r
2
 < 0.2), and examined their potential importance in the context of psoriasis and 

other complex genetic disorders that have been subjected to GWAS. First, using the 

meta-analysis results for two psoriasis GWAS, we compared the distribution of disease 

association p-values for SNPs that define eQTLs and those that do not. For this 

comparison, we exclude SNPs within 1 Mb of regions known to be associated with 

psoriasis, so as to more directly evaluate the ability of eQTLs to suggest new loci. Figure 

5.3 shows the quantile-quantile plot for the 389 independent eQTL SNPs in skin, with 

confidence intervals (CIs) estimated by sampling the same number of non-eQTL SNPs. 

The Q-Q plot clearly shows a trend for eQTL SNPs to be more strongly associated with 

psoriasis than non-eQTL SNPs; further, the majority of eQTL SNPs exceed the 75% 

confidence interval obtained by sampling non-eQTL SNPs and 6 of the top 8 ranked 

eQTL SNPs exceed the 95% CI determined by sampling non-eQTL SNPs. Table 5.1 lists 

the top 8 eQTL SNPs from the Q-Q plot, along with their cis-association and psoriasis 

GWAS results. While the overlap between eQTL signals and psoriasis associations is 
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intriguing, we recognize that further follow-up genotyping will be required to confirm 

these signals. Still, examination of the genes in this list (FUT2, RPS26, ARTS-1, and 

LRAP) suggests several plausible biological connections, which are detailed in the 

discussion.  

We also studied this list of skin eQTL SNPs in the context of other complex genetic 

diseases that have been subjected to GWAS. Among 1,482 significant (p<10
-5

) SNP 

associations from 321 published GWAS curated by the National Human Genome 

Research Institute (http://www.genome.gov/gwastudies/), we found 14 skin eQTL SNPs 

(Supplementary Table 5.1), which are associated with 19 disease traits, while by chance 

we only expected to see five overlapping SNPs.  

 

Enrichment of eQTLs for genes involved in MHC Class I antigen presentation 

Using DAVID [Dennis, et al. 2003; Huang da, et al. 2009], we carried out a gene 

ontology analysis of biological processes enriched in eQTL transcripts from lesional, 

uninvolved, and normal skin, as well as LCLs. This analysis revealed significant 

enrichment for eQTLs regulating genes involved in the processing and presentation of 

endogenous peptide antigens via MHC class I in lesional skin (Supplementary Table 5.2).  

We also observed a similar but non-significant trend in uninvolved skin, normal skin, and 

LCLs.  The skin eQTL associated genes observed to be enriched in this GO category 

included ARTS-1 (also known as Endoplasmic Reticulum Aminopeptidase 1; ERAP1), 

TAP2 (Transporter, ATP-Binding Cassette, Major Histocompatibility Complex, 2), LRAP 

(Endoplasmic Reticulum Aminopeptidase 2; ERAP2), and TAPBPL (TAP binding 

protein-like).  These genes are intimately involved in the transport (TAP2, TAPBLPL) and 
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processing (ARTS-1, LRAP) of peptides within the endoplasmic reticulum for subsequent 

presentation on the surface of cells within the antigen binding groove of MHC I class 

molecules [Peaper and Cresswell 2008]. These results provide further evidence for the 

genetic control of genes involved in MHC Class I antigen presentation in the skin.  

 

Localization of cis-eQTLs with respect to the transcription start site of the transcripts 

they putatively regulate 

We studied the localization of the most significant eQTL for each cis-association in 

normal, uninvolved, and lesional skin with respect to the transcription start site of the 

gene it putatively regulates. The most significant cis-eQTLs localize closely (most of 

them within 100kb) and roughly symmetrically around the transcription start site 

(Supplementary Figure 5.1). This localization pattern in the skin confirms previous 

observations in LCLs [Dixon, et al. 2007; Stranger, et al. 2007; Veyrieras, et al. 2008]. 

 

5.4 Discussion 

 

We are the first to perform an eQTL mapping analysis in human skin and to identify 

eQTLs in normal skin, uninvolved skin from psoriatic individuals, and lesional psoriatic 

skin. Our results thus provide a useful resource for studying regulation of gene expression 

in skin. Furthermore, these results are useful in interpreting genetic susceptibility loci 

identified by GWAS of multiple complex traits, including skin diseases.  
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We examined whether eQTL SNPs were more likely to be associated with psoriasis. This 

is analogous to other analyses that might focus on SNPs that are likely to be functional 

because, for example, they encode non-synonymous SNPs. This focused analysis of 

eQTL SNPs identified the FUT2 (rs492602, most significant cis-association p-value = 

1×10
-9

 in lesional skin), RPS26 (rs11171739, most significant p-value = 7×10
-11

 in 

uninvolved skin), ARTS-1 (rs7063, most significant p-value = 6×10
-10

 in normal skin), 

and LRAP (rs2910686,  most significant p-value = 6×10
-11

 in normal skin) loci as regions 

where eQTL SNPs are attractive for further analysis in psoriasis and other autoimmune 

diseases. The FUT2 region has been associated with serum levels of vitamins functioning 

in the folate pathway [Tanaka, et al. 2009]. FUT2 encodes a fucosyltransferase involved 

in the synthesis of blood group antigens [Kelly, et al. 1995], which are also involved in 

the fucosylation of cell-surface proteins on epithelia [Boren, et al. 1993]. SNP rs492602 

is the most significant eQTL SNP associated with FUT2 expression. Interestingly enough, 

it is among a set of SNPs in perfect linkage disequilibrium (r
2
 = 1) that yielded the most 

significant p-values in the psoriasis meta-analysis for the FUT2 region. RPS26 encodes a 

ribosomal protein subunit and was bio-informatically linked to antigen processing and 

presentation and T-cell mediated immunity. eQTL SNPs near RPS26 (e.g. rs2292239) 

have been associated with Type I diabetes [Schadt, et al. 2008], although their relevance 

as a direct disease determinant has been questioned recently [Plagnol, et al. 2009]. In our 

data, the same SNPs show suggestive association with psoriasis (p-value = 0.01) and with 

RPS26 transcript levels in both uninvolved and lesional skin (p-value < 10
-9

 in both 

tissues). We also observed highly significant eQTL associations for ARTS-1 (also known 

as ERAP1) and LRAP (also known as ERAP2). These eQTLs have also been noted in 
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previous eQTL studies of LCLs [Morley, et al. 2004]. The products of these genes are 

associated in heterodimeric complexes within the endoplasmic reticulum and have been 

shown to be intimately involved in the process of trimming peptides in preparation for 

loading into MHC Class I molecules [Saveanu, et al. 2005]. Previously, variants residing 

in the gene ARTS-1 have been significantly associated with ankylosing spondylitis 

[Burton, et al. 2007]. This is particularly interesting given the role of ARTS-1 in MHC 

Class I antigen processing and presentation and the fact that psoriasis, psoriatic arthritis, 

and ankylosing spondylitis are the only major autoimmune diseases that are primarily 

associated with MHC Class I. Inspection of Q-Q plots suggests that eQTL SNPs in skin 

are enriched for psoriasis association signals, which provides support for using eQTLs as 

a potential filter for choosing candidate loci for replication. Although these eQTL SNPs 

do not currently attain genome-wide significance for association with psoriasis (Table 

5.1), their cis-association with a gene transcript indicates that they tag 

functional/regulatory variants in skin tissue and hence may play a role in the disease.       

 

Because of the limited sample size in each of the skin tissue types, our study is powered 

to identify only strong cis signals (i.e. signals with relatively large effect sizes). Our 

analysis has shown that the vast majority of strong cis-eQTLs are shared in the three skin 

tissue types, which indicates that the physiology of the disease does not change the 

identity of those strong cis-eQTLs. This finding does not preclude a role for cis-eQTLs in 

psoriasis or other skin diseases. First, although it appears that the same set of transcripts 

are cis-regulated in all three skin types, differences in genotype frequencies for the 

regulatory SNP between cases and controls can result in differences in expression levels 
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for transcripts they regulate between psoriatic and normal skin. Second, it is possible that 

the same cis-eQTLs can have different effects on genes in normal and diseased skin 

tissues. 

 

In summary, our work sheds light on transcriptional regulation by genetic variants in skin 

and provides an insight into the genetics of gene expression in different skin tissue types. 
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5.5 Figures and tables 

 

Figure 5.1 Regional plots for evidence of cis-association between SNPs and gene ERAP2 (left panel) or gene RPS26 (right panel). P-

values at the most significant SNP (the most significant SNP associated with ERAP2 in normal skin on the left panel; the most 

significant SNP associated with RPS26 in uninvolved skin on the right panel) are highlighted with a square. P-values for other SNPs 

are drawn as circles and color coded according to the degree of linkage disequilibrium with the most significant SNP. 
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Figure 5.2 The sharing of cis-eQTLs in normal, uninvolved, and lesional skin with the other two types of skin (the p-value threshold 

for discovery is 9×10
-7

 and the p-value threshold for replication is 0.05). 
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Figure 5.3 Quantile-quantile plot of psoriasis GWAS p-values for 389 independent eQTL SNPs in skin, with confidence intervals 

defined by non-eQTL SNPs. 
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Table 5.1 cis-association and psoriasis association meta-analysis results for the 8 independent skin eQTL SNPs with most significant 

psoriasis association 

 
cis-association Psoriasis GWAS 

cis-association p-value Marker cis-associated 
gene Normal Uninvolved Lesional 

Alleles 
risk/nonrisk 

Risk allele 
frequency 

OR Meta p-value
a
 

rs492602 FUT2 0.00015 1.9E-06 1.0E-09 G/A 0.482 1.169 0.00027 

rs12039309 TMEM77 3.2E-07 5.3E-06 2.7E-05 G/T 0.271 1.212 0.00085 

rs11171739 RPS26 1.3E-05 6.8E-11 2.1E-10 C/T 0.418 1.174 0.00087 

rs13008446 LOC348751 1.9E-06 0.00017 1.3E-07 A/G 0.655 1.191 0.0014 

rs8082268 C17orf45 1.0E-07 6.7E-07 4.4E-05 C/T 0.651 1.188 0.0024 

rs2910686 ERAP2 5.6E-11 8.5E-11 6.1E-11 C/T 0.427 1.144 0.0027 

rs139910 TNRC6B 2.6E-07 0.0005 0.033 C/G 0.744 1.117 0.0041 

rs503612 ENDOD1 2.9E-09 9.6E-09 6.9E-09 C/A 0.564 1.148 0.0048 

 
a
The p-value from the psoriasis GWAS meta analysis (GAIN study + Kiel study). For all 8 SNPs, the effect directions are consistent in 

the two studies of the meta analysis. 
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Supplementary Fig 5.1 Localization of the most significant eQTL for each cis-association in control, uninvolved, and lesional skin 

with respect to the transcription start site of the genes they putatively regulate. 
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Supplementary Table 5.1 Fourteen skin eQTL SNPs are associated with 19 diseases/traits in a catalog of published genome-wide 

association studies curated by NHGRI. 

Disease Trait Reported Genes SNPs Strongest SNP Risk Allele 
Risk Allele 
Frequency 

GWAS p-value 

Height TMED10 rs910316 rs910316-?
a
 0.15 1.00E-07 

Height HLA-B rs13437082 rs13437082-? 0.13 5.00E-08 

Folate pathway 
vitamins 

FUT2 rs602662 rs602662-A 0.53 3.00E-20 

Body mass index NEGR1 rs2568958 rs2568958-A 0.58 1.00E-11 

Weight NEGR1 rs2568958 rs2568958-A 0.58 2.00E-08 

Body mass index NEGR1 rs2815752 rs2815752-A 0.62 6.00E-08 

Cholesterol, total DOCK7 rs10889353 rs10889353-C 0.32 4.00E-12 

LDL cholesterol DOCK7 rs10889353 rs10889353-C 0.32 0.000008 

Triglycerides DOCK7 rs1167998 rs1167998-C 0.32 2.00E-12 

Triglycerides ANGPTL3 rs10889353 rs10889353-C 0.33 3.00E-07 

Type 1 diabetes ERBB3 rs2292239 rs2292239-A NR
b
 3.00E-16 

Type 1 diabetes HLA rs9272346 rs9272346-G NR 6.00E-129 

Plasma level of 
vitamin B12 

FUT2 rs492602 rs492602-G 0.49 5.00E-17 

Height ANAPC13,CEP63 rs10935120 rs10935120-A 0.33 7.00E-08 

Type 1 diabetes 
RAB5B, SUOX, 

IKZF4, ERBB3, CDK2 
rs1701704 rs1701704-C 0.35 9.00E-10 

Triglycerides ANGPTL3 rs1748195 rs1748195-C 0.7 2.00E-10 

Type 1 diabetes ERBB3 rs11171739 rs11171739-C 0.42 1.00E-11 

Type 1 diabetes MHC rs9272346 rs9272346-G 0.61 0 

Type 1 diabetes ERBB3 rs2292239 rs2292239-A 0.34 2.00E-20 
a
 ?: A risk allele not reported 

b
 NR: not reported 
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Supplementary Table 5.2 Enrichment of GO term “antigen processing and presentation of endogenous peptide antigen via MHC 

class I” (GO:0019885) for genes that are associated with cis-eQTLs in lesional skin. Results are also shown for control and 

uninvolved skin, as well as for LCLs. 

Tissue  

Type 

List  

Hits 

List  

Total 

Population  

Hits 

Population 

Total 

Fold 

Enrichment 

p-value Benjamini 

FDR 

Lesional 4 123 6 12954 70.2 1.6E-5 0.04 

Control 3 163 6 12954 39.7 0.0022 0.99 

Uninvolved 2 137 6 12954 31.5 0.061373 1.00 

LCLs 4 960 6 12954 9.0 0.0068 0.78 
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Chapter 6 

 

Conclusions and Discussion 

 

Transcriptional regulation of gene expression is essential for almost every process in a 

cell and abnormal transcriptional regulation is likely to be involved in the etiology of 

many diseases. Therefore, it is important to understand the mechanisms of gene 

regulation and to dissect the effects of the genetic variants on quantitative levels of gene 

expression. My dissertation focuses on developing statistical methods for genome-wide 

association studies of global gene expression (i.e. eQTL analysis).  

 

In Chapter 2, we develop a new statistical method to identify DNA variants that are 

associated with expression levels of multiple genes, so-called “master regulatory” single 

nucleotide polymorphisms (SNPs). Our method proposes a new statistic to summarize 

evidence for association between each SNP and all measured transcripts. This statistic 

summarizes not just the number of signals that exceed a particular threshold, but also the 

strength of these signals. In a genome-wide scan, we rank SNPs based on this summary 

statistic and determine significance by permutation. Simulation studies show that the new 

summary statistic is more powerful than conventional methods for detecting master 

regulatory SNPs. As an example, we apply our method to the gene expression and 
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genotype data on 200 lymphoblastoid cell lines. We identify potential master regulators 

of gene expression, but are not able to replicate them in an independent new data set.  

 

Our new summary statistic is essentially a weighted average of individual association 

strength (i.e. p-values on a logarithmic scale), with more significant individual 

associations having larger weights. By pooling the strength of individual associations 

together, we increase the statistical power of the study. As expected, simulation studies 

show that our new summary statistic is more powerful than the conventional counting 

methods in identifying master regulators. However, we note that our weighting scheme is 

not likely to be the optimal one that generates the most powerful statistic. The optimal 

weighting scheme for identifying a master regulator will depend on the alternative 

hypothesis (i.e. how a master regulator is regulating the expression of its associated 

genes). We will need to perform studies with larger sample sizes so that we are able to 

identify master regulators and then dissect the mechanisms through which the master 

regulators influence gene expression.  

     

Estimating accurately the eQTL overlap between two tissues allows researchers to 

quantify the benefits of studying eQTLs in different tissues. In Chapter 3, we propose a 

novel method for estimating the eQTL overlap between two tissues. Our multi-step 

procedure generates a list of potential eQTLs and then uses unbiased estimates for eQTL 

effect sizes to estimate the expected number of replicating eQTLs for a specific sample 

size. We can then estimate the proportion of overlapping eQTLs in this context. When 

applied to compare cis-eQTLs detected in analyses of 57 skin biopsies and of 340 
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lymphoblastoid cell lines, our method shows that ~70% of eQTLs are shared between the 

two tissues, a much larger proportion than the naive estimate of 30-50%. We also apply 

the method to another independent data set of Dimas et al. [2009] and get consistent 

results on the two-tissue overlap percentage. The same method we describe here to 

compare eQTL sets between tissues could be used to compare eQTL sets between many 

different groups, including comparisons of eQTL lists between populations, sexes, and 

cases and controls. 

 

In our effort to obtain unbiased estimates for eQTL effect sizes, we make two 

assumptions on the distribution of eQTL effect sizes. In Chapter 4, we use simulation 

studies to show that our method works well when the two assumptions both hold. We 

further show that even if the two assumptions are moderately violated, the overlap 

percentage estimation is still reasonably good. 

 

We adopt a sample-splitting strategy for simultaneously identifying significant eQTLs 

and estimating their effect sizes. In theory, the full version of our method allows the 

samples to be split arbitrarily into two parts in terms of the sample proportions. From our 

simulation in Chapter 4, we show that there is usually a set of values for the splitting 

proportion that gives similarly good estimation of the overlap percentage with regard to 

the mean squared error.     

 

I intend to pursue in my future work several extensions of the method for estimating 

overlap between two tissues. I will describe each of these extensions below.  
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One very natural extension of our method is to adapt it so that we can estimate the eQTL 

overlap among three tissues. Consistent with the definition of π in estimating the two-

tissue eQTL overlap, in the case of three tissues, we define π as the proportion of true 

eQTLs in Study 1 that are also true eQTLs in Studies 2 and 3. Likewise, we attempt to 

estimate a power-adjusted expected overlap in significant eQTLs, πadjusted. It turns out that 

directly applying in three tissues the same decision-tree idea from Chapter 3 will not 

work. This is because it will categorize eQTLs into too many groups based on their status 

in Study 1, Study 2, and Study 3. Instead, we can achieve our goal by doing a 

“sequential” estimation as follows. By definition,  

2|1 3|1,2π π π= ×  

where 2|1π  is defined as the proportion of true eQTLs in Study 1 that are also true eQTLs 

in Study 2, and 3|1,2π  is defined as the proportion of true overlapping eQTLs in Study 1 

and Study 2 that are also true eQTLs in Study 3. Similar to the procedure in Chapter 3, 

we are able to obtain power-adjusted 2|1π̂ , and 3|1,2π̂ . Therefore we can get: 

2|1 3|1,2
ˆ ˆ ˆ

adjusted
π π π= ×  

Our procedure will work as follows. We split samples in Study 1 into two halves (Study 

1A and Study 1B). We use Study 1A to identify significant eQTLs in Study 1. Then we 

use Study 2 to get the observed raw overlap percentage between Studies 1 and 2; we use 

Study 1B to get unbiased effect size estimates for significant eQTLs identified in Study 

1A. Based on the above parameter estimates, we can get 2|1π̂  using the formula (2) from 

Chapter 3. We perform a similar procedure again to get 3|1,2π̂ . From above, we get a list 
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of observed significant overlapping eQTLs in Studies 1 and 2. Then we test how many of 

them can be replicated in Study 3 and obtain the observed raw overlap percentage among 

Studies 1, 2, and 3. Likewise, we use Study 1B to get unbiased effect size estimates for 

the significant overlapping eQTLs identified in Studies 1 and 2, and hence the power 

estimator. Again, the same formula from Chapter 3 can be applied to get 3|1,2π̂ . When 

estimating the effect sizes for overlapping eQTLs among three tissues, we make two 

similar assumptions as we do in the case of two tissues: Assumption 1) In one 

study/tissue, the three-tissue overlapping, two-tissue overlapping, and tissue-specific 

(non-overlapping) eQTLs have the same effect size distribution; Assumption 2) For 

tissue overlapping eQTLs, their effect size distributions are the same across tissues. 

 

This framework of estimating eQTL overlap among three tissues can be easily adapted to 

estimating the eQTL overlap among multiple tissues. For example, for four tissues, we 

can get power-adjusted overlap percentage as 

2|1 3|1,2 4|1,2,3
ˆ ˆ ˆ ˆ

adjusted
π π π π= × ×   

where each individual component is defined similar as above and can be estimated using 

procedures similar to the one described in the case of three tissues. 

 

Another potential improvement to our method is to avoid the sample-splitting strategy in 

the procedure. The sample-splitting strategy applied to Study 1 provides unbiased eQTL 

effect size estimates, but it leads to the loss of power in identifying significant eQTLs in 

Study 1 because of the reduction of sample sizes. Instead, we can use all the samples in 

Study 1 to identify significant eQTLs, and then use resampling techniques (e.g. cross-
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validation or the bootstrap) to get better estimation for the eQTL effect sizes. A similar 

idea was proposed by Sun and Bull [2005] in the context of reducing selection bias in 

genome-wide studies. Another probable solution is to jointly identify significant eQTLs 

and estimate their effect sizes using the same samples as in the "winner's curse" work 

[Xiao and Boehnke 2009; Zollner and Pritchard 2007]. Both Zollner and Prichard [2007] 

and Xiao and Boehnke [2009] have proposed similar ascertainment-corrected maximum 

likelihood methods to reduce the bias of effect size estimators in the context of genetic 

association studies. How these ideas can be applied for our purpose remains to be 

investigated.  

 

Finally, in Chapter 5, we report the first eQTL map of human skin and identify eQTLs in 

normal skin, uninvolved skin from psoriatic individuals, and lesional psoriatic skin. Our 

analysis shows that the vast majority of strong cis-eQTLs are shared in the three skin 

tissue types, which suggests that the physiology of the disease does not change the 

identity of those strong cis-eQTLs. Consistent with recent studies and with the idea that 

control of gene expression can mediate relationships between genetic variants and disease 

risk, we found that eQTL SNPs are more likely to be associated with psoriasis than 

randomly selected SNPs. Our results provide a useful resource for studying regulation of 

gene expression in skin. 

 

Our study is limited by the sample size (~60) such that only eQTLs with large effect sizes, 

the majority of which would be cis-eQTLs, can be identified. In the future, larger eQTL 

studies will enable us to study both cis- and trans- eQTLs and hence provide a more 
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comprehensive profile for the genetics of gene expression in skin. In collaboration with 

our colleagues, we have started collecting gene expression data from skin tissues using 

RNA sequencing technology. This new technology is expected not only to provide us 

with higher quality data, but also to enable us to study the regulation of different isoforms 

of the same transcript and to obtain a more sophisticated picture of genetic regulation of 

transcription. It is also of interest to examine how eQTL results from RNA sequencing 

compare with the results presented here based on the microarray technology.  

 

In summary, in this dissertation, I have addressed several methodological issues in the 

genome-wide association studies of gene expression, including identifying genetic 

variants associated with the expression of many genes, estimating the eQTL overlap 

between two tissues (and potentially extending to multiple tissues). These methods 

provide practical solutions to the problems rising from the studies on the genetics of gene 

expression. They can also be adapted to the analysis of other types of high-throughput 

data. I have also presented results from applying my methods and other available 

methods to real genetic studies, including the first eQTL map of human skin, which is a 

useful catalog for examining the functional impact of genetic variants associated with 

psoriasis. My dissertation work has the potential to provide scientists with useful 

statistical methods and tools to dissect efficiently the genetics of psoriasis and other 

complex diseases.     
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