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ABSTRACT 

 

This dissertation investigates the utility of layer-by-layer (LBL) assembled carbon 

nanotube (CNT) composites as a neural interfacing material. The theoretical framework 

behind this research is based on the unique properties of CNTs and the ability of the LBL 

technique to impart multifunctionality into nanostructured thin films. The combination of 

CNTs and LBL assembly provides an opportunity to create materials with precisely 

controlled mechanical, electrochemical, and biological properties suitable for neural 

interfacing. In this dissertation, LBL assembled CNT-polyelectrolyte films were 

demonstrated to be biocompatible with neural cells using high-content screening 

methods. Moreover, these CNT composite films also supported the differentiation and 

electrical stimulation of neural stem cells, which hold promising therapeutic potentials. 

The electrochemical properties of LBL assembled CNT composites were established and 

found to outperform those of existing and emerging electrode materials. The 

incorporation of appropriate biological molecules into the CNT LBL films enabled the 

demonstration of enhanced neural stem cell differentiation and gene delivery that 

programmed multipotent cells into neurons. Finally, we purposed an in vitro 3D neural 

tissue model that can be used to facilitate the testing of electrode coatings designed to 

mitigate electrode-induced gliosis. The goal of this dissertation is to contribute to the 

development of next-generation neural electrode technologies, as well as to the 

fundamental understanding of both cellular response to nanomaterials and manipulation 

of cell behavior through nanostructured materials. 
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CHAPTER 1 

Introduction 

 

The development of nanotechnology has penetrated biology and medicine at a 

remarkable scale.1 Nanotechnology has provided tools to measure and understand 

biosystems,2-4 brought insights to challenges in biotechnology and biomedicine,5-7 and 

offered building components for advanced biomaterials.8-10 However, despite these 

advancements in biology and medicine, nanotechnology’s applications to neuroscience 

are far behind applications to other disciplines of biomedicine.11 The reason is multifold. 

The central nervous system (CNS) is highly complex in its anatomy, functional 

structuring, and information processing. Moreover, the CNS is difficult to access and 

consists of an extremely heterogeneous cellular and molecular environment. But recently 

we are beginning to see emerging progress in the application of nanotechnology in 

neuroscience.12, 13 Armed with one of the most fascinating nanomaterials and an 

exceptionally versatile nanostructuring technique, we believe this research can make 

significant contributions to bridge the distance between nanotechnology and 

neuroscience, as well as provide novel solutions for better neural prosthetic devices. 
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1.1 Motivation 

Diagnostic, therapeutic and treatment strategies for various neurological, sensory, 

and psychiatric conditions are increasingly relying on neural prosthetic devices. Deep 

brain stimulation and pace-makers are the two examples of this rapidly growing field of 

medical practice.14-17 The employment of neural prosthetic devices has significantly 

improved the quality of life for those suffering from neurological disorders and injuries. 

The cochlear implant, as the most successful neural prosthetic device, has been in 

common clinical use for over two decades for restoration of hearing.18 Chronic deep-

brain stimulation with spike electrodes has proven to dramatically alleviate symptoms in 

patients of Alzheimer’s and Parkinson’s diseases.19-23 Other devices have also allowed 

patients of ayomyotrophic lateral sclerosis and paralysis to regain their motor control and 

function.24 Cuff electrodes around peripheral nerves are used for treatment of numerous 

disorders from pain and to incontinence, diabetes, depression, and arrhythmia.25-35 All of 

these neural prosthetic devices are essential for restoring neurological functions, mobility 

of limbs and other parts of the body in case of injury or paralysis.36 

Despite general success and proven medical importance, there are still multiple 

practical and fundamental challenges related to the utilization of neural electrodes. While 

most chronically implanted electrodes appear to be well tolerated initially, long-term 

viability of these electrodes remains a significant problem that is rooted in the lack of 

knowledge about neural interfacing and new materials. Some of the existing challenges 

include stability and charge injection safety of the electrode after prolonged use. Another 
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major issue is inflammatory responses brought about by a combination of factors, such as 

electrode size, mechanical mismatch between tissue and electrode, and poor integration 

of the electrode with surrounding tissue, leading to the formation of an insulating sheath 

encapsulating the electrode. Significant strides toward better and safer electrodes hinge 

on improvements of cellular interface, charge transport, mechanical compliance with the 

tissues, and chemical stability of the electrode materials.14, 15, 17, 36-39 

Nanomaterials present an essential and largely untapped resource for the design of 

neural electrodes. The intrinsic properties of nanomaterials enable the engineering of 

cellular interface and nano/micro organization of the electrode which are essential to the 

physical, chemical and biological properties of the device.40-46 For example, carbon 

nanotubes exhibit unique mechanical,47, electrical,48 and optical 49 properties that can be 

exceptionally useful for this application. Nanocomposites have been predominantly 

designed for a variety of high-end electronic and optical applications,50-53 and the very 

same functions can be taken advantage of in designing neural electrodes.  

This dissertation aims to develop a neural interfacing material based on layer-by-

layer (LBL) assembled carbon nanotube (CNT) composite films that offers a more 

compliant and biocompatible interface, better charge transfer capability, and the ability to 

direct neuronal growth and deliver biological agents. The outcome of this research has 

both practical and scientific values. On the practical side, this research contributes to the 

development of a new generation of neural electrodes for electrical stimulation and 

recording of excitable cells. Scientifically, this research allows us to gain fundamental 
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understanding of both cellular response to nanomaterials and manipulation of cell 

behavior through nanostructured materials. 

This dissertation is the convergence of several fields of study, including 

nanotechnology, materials engineering, biomedical engineering, tissue engineering, 

neuroscience, and stem cell biology. Therefore, this introductory chapter provides a 

review on a wide range of topics that are fundamental to this dissertation. We begin our 

review with the neural interface, which includes discussions on electrode materials, the 

issue of inflammatory reaction, and approaches to mitigate inflammatory reactions. This 

is followed by a discussion of the properties of carbon nanotubes (CNTs) and their 

applications in biomedicine and neural interfacing. Presented next is a review on the 

nanostructuring technique of layer-by-layer (LBL) assembly, with an emphasis on 

biomedical applications and LBL composites fabricated with CNTs. We then look at 

neural stem cells (NSCs), examining the significance of using these cells in this research 

and strategies that can be used to manipulate their behaviors. Lastly, we review the 

inverted colloidal crystal (ICC) scaffold design, which enables us to develop 3D neural 

tissue models to investigate electrode induced cellular reactions.  
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1.2 Neural Interface 

 Despite the variety of neural prosthetic devices and methods of their use, they all 

share a common purpose, which is to exchange information with the nervous system.54 

Neural interfaces are the connections that allow this exchange of information to take 

place, and thus neural interfaces are critically important to the efficacy of neural 

prosthetic devices. To initiate a response in the nervous system, information can be 

delivered by application of electrical signals to induce action potentials. On the other 

hand, information about the state of the nervous system can be extracted by recording the 

action potentials as electrical signals. The ability of a neural electrode to carry out its 

stimulation or recording function chronically is dependent on an array of factors, such as 

implantation techniques, geometry, mechanical properties, biocompatibility, and 

electrochemical properties. Among these, biocompatibility and electrochemical 

properties are perhaps the most important and of interest to this dissertation.  

 To maintain the exchange of information between a neural prosthetic device and 

the nervous system, the ideal neural interface must be able to integrate intimately with the 

surround neural tissue to ensure effective delivery or recording of electrical signals. 

Therefore, the material selection for the electrode is a critical determinant for this 

process. The ideal neural interfacing material must be biocompatible enough or 

encompass biofunctionalities to prevent or resolve inflammatory reactions and maintain 

stable connections with neurons. Inflammatory reactions caused by electrode 

implantation are often detrimental, resulting in loss of neuronal population and formation 
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of an insulating sheath that destroy the neural interface and render the electrode useless. 

In addition, the ideal neural interfacing material must also possess appropriate 

electrochemical properties necessary to carry out the intended functions. To achieve 

successful stimulation, the material must be able to deliver sufficient electrical charges to 

the interface with neurons without inducing chemical reactions that can damage the 

surrounding tissues. For recording purposes, the material must be able to record electrical 

signals at a high signal-to-noise ratio so that the signals can be successfully processed and 

interpreted. In this section, we will now review some of the conventionally used and 

emerging electrode materials, discuss the process of inflammatory reactions, and present 

strategies that have been used to control inflammatory reactions. 

1.2.1 Neural Electrode Materials 

The major types of neural electrode materials can be categorized as capacitive or 

faradaic, depending on the mechanism in which the electron flow in the electrode is 

transitioned into ion flow in the tissue.55 Capacitive reactions are characterized by 

charging and discharging of the electrode-electrolyte double layer. Two of the mostly 

commonly used capacitive charge-injection materials are titanium nitride and 

tantalum/tantalum oxide.56 In general such electrodes are highly desired as no chemical 

species are created or consumed during the process. Typically, for capacitive charge-

injection materials, high charge-injection capacity is achieved through the employment of 

high dielectric constant coatings or the creation of a highly porous geometry that can 

provide large surface area accessible to ions.  
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 Faradaic reactions result from the reduction and oxidation of surface-confined 

species at the electrode-electrolyte interface. Although faradaic reactions can provide 

large amount of charges for stimulation, these reactions often produce unwanted effects 

such as dissolution of the electrode and oxidization and reduction of water, all of which 

can be harmful to the surrounding tissues. Some of the most prevalent and established 

materials in this category are noble metals, such as Pt and PtIr alloys, and various forms 

of iridium oxide.57, 58 Among these materials, iridium oxide is the material with the 

highest performance. Iridium oxide can be formed by electrochemical activation, or 

repeated oxidation and reduction, of iridium on a metal surface. Alternatively, iridium 

oxide can also e produced by reactive sputtering from iridium in an oxidizing plasma.55 

Although iridium oxide has been widely used in stimulation studies in the central nervous 

system and in clinical settings for acute and short-term studies,59, 60 this material poses its 

own set of problems. Delamination and cracking of the iridium oxide coating have been 

reported under high charge density that resulted in the deposition of foreign materials in 

the surrounding tissues.61, 62 Most importantly, this causes significant reduction of the 

charge injection capabilities over time because a layer of electrolytes sips between the 

conductive coating and the backing, causing multiple problems for effective electrical 

stimulation of the cells.63  

Besides the ability to deliver sufficient charges without complications, the 

greatest hurdle for all conventionally used electrode materials is their capability to 

interface with neural tissues chronically. Mechanically, metal coatings are brittle and can 

only withstand limited number of flexural motions. Most importantly, these materials do 
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not encompass the ability to be surfaced modified for enhanced biocompatibility and 

biofunctionality that would enable long-term implantation in the body. 

Poly(ethylenedioxythiophene) (PEDOT) is a conducting polymer that has recently 

emerged as a promising material for this challenge. The biocompatibility of PEDOT has 

been successfully demonstrated in both cell culture and animal studies.64-66 Remarkably, 

PEDOT has been shown to improve various aspects of the neural interface, including 

electrical properties, mechanical stability, neural attachment, and neurite outgrowth.67 

Most significantly, there is a wide array of ways in which biofunctionalities can be added. 

For example, nerve growth factor can be immobilized in PEDOT coatings and drugs can 

be loaded in PEDOT to allow controlled drug release.68, 69 Despite the versatility and 

outstanding biocompatibility, PEDOT also suffers from cracking and delamination after 

repeated charge injections.70  

Carbon nanotubes (CNTs) are another class of material that has emerged as an 

alternative to conventional electrode materials. They are a logical choice of material due 

to their exceptional mechanical and electrical properties, which are later discussed in this 

chapter. The goal of this dissertation is to establish layer-by-layer (LBL) assembled CNT 

composites as a suitable electrode material for neural interfacing. The combination of 

CNTs with LBL assembly is a promising and exciting platform, unmatched by any 

conventional materials, for creating a neural interface because of level of control in 

material properties that can be achieved, as well as the boundless possibilities of new 

functionalities that can be incorporated.  
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1.2.2 Inflammatory Reactions 

 The primary concern in the development of neural interfacing materials is the 

degradation of electrode performance over time due to inflammatory reactions. While the 

goal of every electrode implantation is to achieve a stable interface, characterized by 

minimal cellular changes in the surrounding tissue and sustained functioning of the 

implanted device, the placement and presence of the implanted electrode represents the 

greatest perturbation to the host tissue.  

 Generally, the implantation of an electrode induces a cascade of biological 

responses that are highly complex due to the dynamic environment in the neural tissue. 

The immediate injury caused by the implantation is the disruption of the blood brain 

barrier and neurovasculature, causing hypoxia and death of glial and neuronal cells at the 

implantation site.71 The extent of trauma can be greatly exacerbated by the technique 

used to insert the electrode, the geometry of the electrode, and large mechanical 

mismatch between the electrode and the neural tissue.72, 73 As a counter measure, the 

body initiates inflammatory and wound healing responses to remove the dead cells and 

repair the damaged tissue. An important part of this process is the activation of microglia, 

astrocytes, and infiltrated peripheral macrophages because these cells release both 

beneficial and harmful factors, including cytokines, chemokines, neurotransmitters, and 

reactive oxygen species, that can affect the severity and length of the inflammatory 

reactions.71 Typically, acute inflammatory reactions lead to the displacement of neuronal 



 10 

bodies due to swelling in the implantation site, resulting in an increase in the impedance 

values.65  

 Chronic inflammatory reactions are destructive and the main reason why 

advanced electrode designs are needed. Chronic inflammatory responses at the 

implantation site are characterized by the activation of astrocytes and the attachment and 

invasion of activated microglia on the neural interface. Activated microglia cells secrete 

lytic enzymes and reactive oxygen species in attempts to degrade and remove the foreign 

object and release cytokines that result in astrocyte activation.74, 75 Once activated, 

astrocytes produce inhibitory molecules that lead to the formation of a dense insulting 

sheath around the implant known as glial scarring.76 The encapsulating sheath not only 

pushes neuronal bodies away from the surface of the electrode but also causes neurons to 

degenerate over time. The consequence can be severe, as more charges must be delivered 

to produce a stimulatory response, if any is still inducible. In addition, the increase in 

impedance can potentially render the recorded signals and noises to be indistinguishable 

from each other, and thus bring about the loss of recording capabilities. 

1.2.3 Approaches to Reducing Inflammatory Reactions  

 Various strategies have been explored to mitigate inflammatory reactions induced 

by the implantation of neural electrodes and to maintain a stable neural interface. 

Generally, these strategies can be categorized into four main approaches. They include 

engineering of the mechanical properties of the interface, tailoring the geometry of the 

electrode, controlling of inflammatory response, and maintaining a healthy neuronal 
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population at the electrode interface.  We have to point out that while acute inflammatory 

responses are primarily the result of mechanical injuries than inadequate 

biocompatibility, they can often develop into chronic problems if the inflammation 

persists.  

Mechanical properties of electrodes are an important parameter since mechanical 

stress can activate reactive astrocytes.73, 77-79 The large mismatch between the hardness of 

neural tissue and conventional electrodes is considered to be the main contributor of 

mechanical stress and micromotions.72, 73 Therefore, fabrication of soft conductive 

materials, such as poly(pyrrole) or PEDOT, that could match the stiffness of the neural 

tissuesmay be a promising solution to attaining a more compliant interface.72, 80-87 The 

geometry or physical dimension of neural electrodes is also an important parameter for 

reducing tissue encapsulation.88 Studies have shown that subcellular-sized features can 

reduce adhesion of macrophages and decrease capsular thickness.89, 90 In addition, 

physical dimensions of surface features were found to affect mechanotrunsduction, 

adhesion, and apoptosis.91-93  

 Another approach to reduce tissue reactions is to manage the inflammatory 

responses. One solution is to deliver anti-inflammatory drugs by local or systemic 

routes.94-97 However, with advancement in surface modification technologies, a simpler 

and more elegant solution is to incorporate special anti-inflammatory coatings to the 

electrode surface.98-102 With this method, it is possible to fabricate an inherently anti-

inflammatory surface by immobilization of biomolecules that can modulate the 
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expression of inflammatory cytokines.98 The last approach to maintaining a stable neural 

interface is to ensure an effective neuronal population is available for delivery or 

recording of electrical signals. This can be achieved by attracting neurons to migrate 

toward the implantation site and encourage the development of neural processes. Many 

studies have successfully demonstrated this concept by incorporation of various 

biomolecules, such as proteins and growth factors.85, 95, 103-107 As adult neurons in the 

central nervous system are fragile and do not proliferate, an alternative solution is to 

generate neurons from neural stem cells or other multipotent cells that are already present 

in the nervous system or introduced externally. This is indeed the approach that we will 

explore in this dissertation. Specifically, we will investigate the feasibility to enhance 

neuronal differentiation of neural stem cells and program multipotent cells into neurons 

by tailoring the biological properties of layer-by-layer (LBL) assembled carbon nanotube 

(CNT) composites. 

 

1.3 Carbon Nanotubes 

Carbon nanotubes (CNT) are a special class of nanomaterials. CNTs are tubular in 

structure with nanometer range diameters and micrometer range lengths. Discovered by 

Iijima in 1991,108 multi-walled carbon nanotubes (MWNTs) were the earliest observed 

CNT structures and can be described as sheets of graphite arranged in concentric 

cylinders. Quickly after the discovery of MWNTs, single-walled carbon nanotubes 

(SWNTs) were synthesized in 1993 using arc-discharge methods with transition metal 
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catalysts.109, 110 The structure of SWNTs sets them apart from any other materials and is 

the source of their amazing features and properties, which have attracted scientists and 

engineers from all disciplines. 

1.3.1 Electrical Properties and Applications 

The structure of a single SWNT can be described as a single, one-atom-thick, 

layer of graphite, known as a graphene sheet (Figure 1.1 a), rolled up into a seamless 

cylinder with a diameter close to 1 nm and length that can be thousand of times larger 

(Figure 1.1 e). The way the graphene sheet is wrapped specifies the lattice of a SWNT to 

be armchair, zigzag, or chiral (Figure 1.1 b, c, d) and give rise to different electronic 

structures and properties.111 The unique electrical properties of SWNTs are contributed 

by the peculiar electronic structure of graphene and the one dimensional structure of 

SWNTs. The symmetry and unique electronic structure of graphene allow electrons move 

freely as in metals in some configurations while behave like semiconductors in others112. 

As a consequence, all SWNTs are semiconducting except those with the armchair 

configuration which are metallic. The one-dimensional (1D) structure of SWNTs 

confines electrons to motion along the tube axis, reducing the phase space for the 

scattering processes that are responsible for the electrical resistance of the metallic 

SWNTs.112, 113 For this reason, metallic CNTs are highly conductive and can carry 

enormous current densities up to 109 A/cm2, which are 2 to 3 orders of magnitude higher 

than the threshold in metals such as aluminum and copper.112, 114 Because of their 1D, 

high aspect ratio nanoscale structure and unique electrical properties, SWNTs have been 
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heavily explore for applications in nanoelectronic devices,115-117 sensors,118-120 field-

emission electron sources,121, 122 displays and lighting elements,123 and scanning probe 

tips.124 For this research, we would like to exploit SWNTs’ excellent electrical 

conductivity for the fabrication of a biocompatible and multifunctional neural interface 

that is capable of delivering electrical stimulation and recording signals from neural 

activities. 

 

 

Figure 1.1 (a) Schematic honeycomb structure of a graphene sheet. SWNTs can be 
formed by folding the sheet along lattice vectors. Folding of different vectors lead to 
armchair (b), zigzag (c), and chiral (d) carbon nanotubes.125 (e) A scanning electron 
microscopy image of single-walled carbon nanotubes (SWNTs).126 

 

1.3.2 Mechanical Properties and Applications 

Like the electrical properties, the mechanical properties of SWNTs have their 

origin in the structure of SWNTs. Their remarkable strength is a product of the extremely 

strong covalent sp2 bonds between individual carbon atoms in the graphene sheet. 

Experiments127-129 and calculations130-133 have shown that the Young’s modulus of 
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isolated SWNTs has a value of approximately 1 TPa, while the tensile strength has been 

measured to be between 13 and 50 GPa.129, 134 In addition, SWNTs also demonstrate high 

flexibility, toughness, and capacity for reversible deformation as atomic force microscopy 

(AFM) measurements have indicated that SWNTs can bend into loops without 

breaking.135 It has been proposed that SWNTs accommodate large strains by diatomic 

rotation to unlock the pristine nanotube wall through the formation of a dislocations 

dipole with the pentagon-heptagon cores.136 

The exceptional mechanical properties of SWNTs have led to a new generation of 

CNT-based composite materials with extraordinary strength and lightweight. Most of 

them are fabricated by microscale blending of CNTs with polymers, metals, or ceramics 

through processes such as melt mixing, film casting, spin coating, polymerization, and 

fiber spinning.137-140 For biomedical devices, qualities such as durability, material 

stability, and flexibility are critical to the biocompatibility and longevity of the devices. 

In this research, the design and fabrication of novel neural interfacing materials are based 

on the layer-by-layer (LBL) assembly of CNTs. The method of LBL assembly is an 

emerging and versatile nanostructuring technique for fabricating CNT-based composites 

that are mechanically strong and flexible.141 We believe we can create advanced and 

multifunctional neural interfaces by taking advantage of the excellent mechanical 

properties, as well as many other exciting properties, afforded by LBL assembly of 

CNTs. 
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1.3.3 Functionalization and Biomedical Applications 

In order to exploit the amazing properties of SWNTs for biomedical applications, 

functionalization of SWNTs is essential and requires the understanding and mastery of 

CNT chemistry.142 Since chemistry normally occurs in solution, dissolution of SWNTs is 

crucial126 and allows further functionalization of SWNTs to be achieved. SWNTs without 

any functionalization are chemically inert. They are also extremely resistant to wetting143 

and typically exist as ropes or bundles 10 to 25 nm in diameter and a few micrometers 

long.126 Functionalizations are made possible through covalent and non-covalent means. 

Covalent chemistry of SWNTs is possible at both the end caps and sidewall of 

SWNTs.126, 144-146 The end caps of SWNTs are more reactive then the sidewall because of 

the strain induced from the curvature of the hemispherical caps. Oxidization147-149 of the 

end caps to carboxylic acid and other weakly acidic functionalities by treatment with 

nitric acid147, 150 allows dissolution of SWNTs in amide-type organic solvents and 

introduces chemical functionalities for subsequent elaborations. The less reactive 

sidewall is also susceptible to reaction because of the strain from π-orbital misalignment. 

It’s important to note that covalent functionalizations at the end caps and sidewall 

typically disrupt the aromatic ring system of SWNTs and result in reduction of tube 

length and loss of electrical and mechanical properties.125, 126 Non-covalent methods 

allow the preservation of SWNTs’ important properties. SWNTs can be dispersed and 

functionalized effectively by polymer wrapping151-154  and adsorption of amines and 

molecules with large π-systems.155, 156 
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Functionalization of SWNTs has lead to an explosion of biomedical applications. 

Utilizing the scheme of π-stacking, Chen et al. have immobilized a wide range of 

biomolecules, such as ferritin, streptavidin, and biotin-PEO-amine, on the sidewalls of 

SWNTs with high efficiency.155 Gheith et al. have created biocompatible CNT-based 

composites using polymer-wrapped SWNTs together with LBL assembly.157 Other 

researchers have also functionalized SWNTs with bioactive groups such as peptides,158, 

159 proteins,160 and DNA161 and utilized them as sensing materials for DNA162, 

glucose,163, 164 peptides,165 and proteins.166-168 The development of a smart SWNT-based 

biomaterial for neural interfacing will rely in part on non-covalent functionalization of 

SWNTs. The other part will rely on appropriate selection of components for LBL 

assembly, which will be discussed below. 

1.3.4 Neural Prosthetic Applications 

Biocompatibility is essential to the development of biomedical applications. It is 

always the first and essential step in establishing the applicability of a new material for 

medical applications. So far, cellular behavior with and on CNTs have been tested with 

various types of cells.169-176 In the case of neural cells, biocompatibility of CNT-based 

materials has been demonstrated by several research groups using adult primary neural 

cells.177, 178 In addition, carbon nanofiber reinforced composites were shown to increase 

neuronal cell functions while providing a mechanically strong and electrically conductive 

substrate.179 Patterned CNTs were utilized to guide neural cell growth, and preferential 
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cell attachment on CNTs was demonstrated.180, 181 Neural signal transmission efficacy 

was reported to increase on CNT-coated substrates.182  

These recent studies show that long-term CNT-based implants are a realistic 

target. However, none of the materials employed in these studies can be practically used 

for such a purpose. CNT-based thin films and coatings produced by drying,179, 183 

spraying and evaporation,177, 178, 182, 184 and chemical vapor deposition on silicon 

substrates180, 181 are either not stable or durable enough for chronic implantation in 

physiological conditions or limited to fabrication on silicon substrates. In addition, films 

and coatings fabricated in such ways cannot be controlled or modified at the molecular 

level. This limitation significantly diminishes the excellent electrical and mechanical 

properties that could be brought about by the nanoscale building blocks through 

nanostructuring techniques such as LBL assembly.  

Up to this date, very few stem cell cultures have been investigated in conjunction 

with nanomaterials. As demonstrated in this research, we see strong possibilities, 

fundamental importance, and practical need to use neural stem cells (NSCs)185, 186 rather 

than adult cells in the studies of SWNT-based materials for neural tissue engineering. 

Adult cells have limited capacities for extracellular matrix remodeling, axonal extension, 

and interfacing with implants.187-189 Successful implantation and long-term performance 

of a neural implant and prosthetic device may require a durable interface as well as potent 

stem cells to revitalize the targeted tissue. 
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1.4 Layer-by-Layer Assembly 

The usefulness of nanomaterials is heavily dependent on the ability to assemble 

them into bulk materials by manipulating them at the molecular level. This is especially 

the case for creating and designing biomaterials. For a long time, Langmuir-Blodgett 

deposition, invented by Langmuir190 and Blodgett,191 and self-assembled monolayers 

(SAMs), developed by Nuzzo,192 Allara,192 and Whiteside,193 remained the primary 

methods for fabricating sold thin films from molecular components. As pointed out by 

Tang et al,194 although numerous applications have been developed for tissue engineering 

and drug delivery using these techniques, Langmuir-Blodgett deposition and SAMs 

suffer from significant drawbacks. Langmuir-Blodgett films are unstable, time 

consuming to produce, limited to components with amphiphilic property, and require 

expensive instrumentations. SAMs are low in loading of biological components due to 

their monolayer nature. They are also limited to a few substrate types because of the 

chemistry involved and are relatively unstable under ambient and physiological 

conditions. 

The layer-by-layer (LBL) assembly technique, introduced by Decher195 in 1992, is 

free of the problems associated with Langmuir-Blodgett deposition and SAMs. The LBL 

assembly technique is based on alternating adsorption of monolayers of individual 

molecular components, such as polyelectrolytes, attracted to each other by a combination 

of interactions: electrostatic,196, 197 hydrophobic,198 hydrogen bonding,199 charge-

transfer,200 biological recognition,201 and others (Figure 1.2). The adsorption process is 
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cyclically repeated on substrates until desirable structures, thicknesses, and loadings of 

interested species are obtained. Since thin films are assembled one monolayer at a time, 

LBL assembly affords nanometer level control of the film thickness and composition.196 

It must be emphasized that the individual layers in the thin film are not discrete and 

segregated. In contract, as shown in Figure 2.1, the structure of the assembled material 

consists of interpenetrating layers that result in high homogeneity of the individual 

components which is important for achieving outstanding material properties. Thin films 

produced in this manner are also considerably stable in physiological conditions due to 

the cooperative effects of multiple interactions among the film components. 

 

 

Figure 1.2 Schematics of layer-by-layer (LBL) assembly. LBL assembly is characterized 
by the sequential deposition of complementary species onto a substrate. Here, the LBL 
assembly of carbon nanotube (CNT) with polymer is depicted. The assembled composite 
material consists of interpenetrating layers of polymer and CNTs.  
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The simple and efficient technique of LBL assembly can be preformed on a 

variety of novel and unique geometries to create multilayer thin films and coatings using 

templating and patterning techniques.202, 203 This capability is a powerful advantage for 

medical devices such as implantable chips, probes, and scaffolds that have small 

dimensions, irregular shapes, lithographically patterned elements, and surface engineered 

components. Furthermore, LBL assembly can be performed with to a wide range of 

inorganic and biologically active materials including as nanoparticles,204 nanotubes,141 

nanoplates,205 organic dyes,206 dendrimers,207 polypeptides,208 DNA,209 and proteins.210, 

211 

1.4.1 Biomedical Applications 

As discussed above, LBL assembly has demonstrated itself as a simple, fast, and 

versatile technique for fabricating solid thin films. LBL films are physiologically stable 

and can be fabricated on essentially any type and shape of substrates. Its ability to 

incorporate a vast variety of biologically interesting species at high loading has led to 

numerous biomedical applications. 

LBL assembled thin films have been developed into biosensors and drug delivery 

agents. By incorporation of inorganic particles, enzymes, antigens, antibodies, proteins, 

nucleic acids, and DNA, a variety of biosensors have been created to detect oxygen, 

glucose, DNA binding, toxic chemicals, insulin, pH changes, and many other chemicals. 

Detection can be achieved by measuring the electrochemical, gravitational, optical, and 

mechanical properties of the films.194 In the case of drug delivery, LBL assembled films 
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offer the ability to control the dosage and kinetics by varying the thickness and 

composition of assembled multilayers. The release of a component typically depends on 

its permeability and the breakdown of the polymer multilayer matrix, which can be 

stimulated by changes in the pH, temperature, or ionic strength of the solution, 

application of an external electrical field, exposure to UV light, or by the incorporation of 

a hydrolytically-, enzymatically-, or self-degradable macromolecular matrix.194 

LBL films have also been engineered to mediate cellular functions by 

incorporating various growth factors and polymers. Poly(ethyleneimine) (PEI), 

poly(allylamine hydrochloride) (PAH), poly(styrene sulfonate) (PSS), poly(D-lysine) 

(PDL), and poly(L-lysine) (PLL) have been utilized to manipulate cell adhesion, 

proliferation, and differentiation. Higher endothelial cell viability was demonstrated on 

PDL and PAH multilayers.194 Enhanced turmor cell adhesion and secretion of 

chemokines were shown on PAH and PLL ending polyelectrolyte films.212 The 

integration of fibroblast growth factor into multilayer PEI films increased fibroblast 

proliferation and secretion of type 1 collagen and interleukin-6.213 For this research, we 

are interested in species that can enhance the adhesion, proliferation, and differentiation 

of neural cells and neural stem cells.  

Lastly, LBL assembled films have been fabricated to yield anti-biofouling 

properties. Resistance against blood coagulation is critical to implantable materials and 

has been demonstrated by the incorporation of serum albumin, heparin, dextran, and 

chitosan into LBL assembled thin films.194 Anti-inflammatory response is especially 
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important to neural prosthetic devices and has been demonstrated on LBL coatings 

containing anti-inflammatory agents and polypeptides.214, 215 Anti-bacterial properties 

have also been realized by the incorporation of antimicrobial peptides216 and silver 

nanoparticles.217  

1.4.2 Layer-by-Layer Assembled Carbon Nanotube Composites 

LBL assembled SWNT-polyelectrolyte multilayers are a class of novel composite 

materials with extraordinary properties. The versatile architectures of SWNT-

polyelectrolyte thin films can be engineered at the nanoscale level to attain desirable 

mechanical, structural, and electrical properties. The immobilization of macromolecular 

species and strong interdigitation of the nanometer-thick film result in close-to-perfect 

molecular blending of the components (Figure 1.2, Figure 1.3 a, b), giving rise an 

impressive tensile strength of 220±40 MPa,141 which is more than sufficient for any 

biomedical implants. SWNT-polyelectrolyte thin films are also mechanically flexible due 

to the homogeneous distribution of polymer chains in the nanostructured material. This 

property is very important for neural prosthetic applications since neural electrodes 

should be mechanically compliant and conformal to reduce mechanical injuries and 

micromotions. SWNT composites also have electrical conductivity of at least 4.15×104 

S/cm,218 which exceeds the requirements of successful excitation of neurons. We believe 

the combination of strength, flexibility, stability, fast charge transport, and a variety of 

necessary geometries and patterns,202, 203, 219 including free-standing films (Figure 1.3 c), 
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available for LBL films demonstrates LBL assembled SWNT composites as the choice of 

material for neural tissue engineering applications. 

Besides the bulk properties, LBL assembled SWNT films also have very 

interesting topological features. The manifold of forces involved in the formation of the 

films make them especially appropriate for the interactions with the cellular membranes. 

The topology of the LBL SWNT composite (Figure 1.3 a, b) resembles very closely the 

nanoscale features of collagen fibers in the extracellular matrix,169, 175, 220, 221 which serves 

as growth and differentiation environment for neurons. The cytoskeleton of neural cells 

consists of microtubules, neurofilaments, and actin microfilaments that range from 7 to 

25 nm in diameter.222 We believe these filamentous structures, which are responsible for 

important functions such as the remodeling of processes and the motility of growth cones, 

can associate with SWNTs to form a biologically cohesive interface for promoting stem 

cell proliferation and differentiation.  

 

 

Figure 1.3 (a) An atomic force microscopy (AFM) image of (PVA/SWNT-PSS)1 on 
silicon substrate. (b) A scanning electron microscopy (SEM) image of (PVA/SWNT-
PSS)3 on silicon substrate. (c) Demonstration of the flexibility of a piece of 
(PVA/SWNT-PSS)200 free-standing LBL composite film.218 
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In a previously reported study, using a murine neuroblastoma × glioma hybrid cell 

line, we demonstrated for the first time neuronal cell attachment and differentiation on 

LBL assembled SWNT-polyelectrolyte coatings and freestanding thin films.157 Although 

this very preliminary study indicates that LBL prepared SWNT composites, which 

encompass the versatility of LBL assembly and novelty of SWNTs, may be well qualified 

for neural interfacing applications, there is tremendous work to be carried out to 

transform this concept into a platform technology. The purpose of this research is exactly 

to accomplish this, by demonstrating SWNT LBL film’s utilities, in terms of 

biocompatibility and electrochemical properties, and developing new functionalities that 

will enhance integration of the artificial interface with neural tissues.   

 

1.5 Neural Stem Cells 

One key focus of this dissertation is the interaction of nanostructured carbon 

nanotube (CNT) materials with neural stem cells (NSCs). This is an area that has not yet 

been explored by researchers and therefore deserves to be investigated in this research. 

NSCs are cells that can generate neural tissues or are cells derived from the nervous 

system with some capacity for self-renewal and ability to give rise to cells other than 

themselves through asymmetric cell divisions223 (Figure 1.4). Ever since their 

discovery,185, 186 NSCs have been extensively studied to understand their niche in the 

CNS224 and demonstrate their potential therapeutic values in replacing damaged and lost 

cells in the CNS.225, 226  Neural progenitor or precursor cells (NPCs) are a subset of NSCs 
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but with a more limited self-renewal potential and are sometimes used interchangeably 

with NSCs in the literature.  

 

 

 

Figure 1.4 Schematic of neural cell lineages. A self-renewing population of 
undifferentiated stem cells ultimately give rise to all of the diverse cell types that are 
present within the adult CNS.227 

 

NSCs for in vitro studies are isolated by dissecting out a region of the fetal or 

adult brain that has been demonstrated to contain dividing cells.223 The tissue is then 

dissociated and exposed to a high concentration of mitogen such as fibroblast growth 
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factor-2 (FGF-2)228 or epidermal growth factor (EGF)229 for proliferation. NSCs are 

typically expanded as floating aggregates called neurospheres and differentiated as 

dissociated single cells or whole neurospheres on coated substrates to provide 

adhesion.230 Differentiation of the cells is induced by either withdrawing the mitogens or 

by exposing the cells to factors that induce differentiation into specific lineages. NSCs 

are capable of generating the three principal cell types of the central nervous system – 

neurons, astrocytes, and oligodendrocytes (Figure 1.4). The differentiated cellular 

phenotypes are most commonly analyzed by immunohistochemical and 

immunocytochemical techniques.223 Cell functionality is demonstrated by staining of 

functional synaptic connections231 or by employing electrophysiological techniques to 

obtain current- and voltage-clamp recordings.232 

Recently, a number of researchers have begun to explore the behavior of NSCs on 

engineered materials. Young and his colleagues have done extensive work in this area, 

especially with polymeric and biomimetic substrates.233-235 Silva and Stupp have studied 

the differentiation of NPCs in peptide nanofiber matrices.236 However, very little is 

known regarding the behavior of NSCs on CNT-based materials. Because of NSC’s 

potential in reducing inflammation, providing trophic support, replacing dead neurons, 

and reforming neural circuitry,237 we find it important to establish their biocompatibility 

with LBL assembled SWNT composites in this research. To fully utilize NSC’s 

therapeutic values, equally important is the ability to manipulate their cellular behaviors, 

such as differentiation, neurite outgrowth, and excitation, which are also demonstrated in 

this research. 
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1.5.1 Manipulation of Neural Stem Cells  

The cellular behavior of neural stem cells (NSCs) is mediated by a wide range of 

biomolecules. Jacques et al. found that ECM molecules fibronectin and laminin produced 

a 2-fold increase in mouse neurospheres cell proliferation compared to a non-specific 

adhesive poly-D-lysine substratum, while the soluble peptide P3 

(VSWFSRHRYSPFAVS) stimulated chain migration by over 300%238. Their study also 

demonstrated that cell proliferation and migration are regulated by distinct integrins. 

Consistently, Flanagan and coworkers confirmed the role for integrins in laminin-

dependent migrations239. They found laminin to enhance human NSC migration, 

expansion, differentiation into neurons and astrocytes, and elongation of neurites from 

neurons. Axon guidance molecules have also been identified by genetic and biochemical 

studies. Guidance cues, such as netrins, slits, semaphorins, and epherins, guide axons by 

repelling or attracting the highly motile and sensitive structure of growth cone240. 

The fate of NSCs is in part regulated by environmental signals. In their study of 

NSCs, Takahashi et al. discovered retinoic acid (RA)’s role in promoting acquisition of a 

neuronal fate and neurotrophins (NTs)’ role in enhancing maturation of neuronal 

phenotypes241. The combination of RA and NTs effectively stimulated NSCs to 

differentiate into neurons of a various phenotypes. NSCs can also adopt a glial fate if 

exposed to ciliary neurotrophic factor (CNTF), leukocyte inhibitory factor (LIF), and 

morphogentic protein 4 (BMP4)242. Recently, Davies et al found that transplantation of 

astrocytes pre-differentiated from embryonic NPCs not only promoted growth of axons 
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and induced realignment of injured tissue in rats but also suppressed scarring243. 

Surprisingly, transplantation of undifferentiated NPCs failed to provide any beneficial 

effects. Potentially layer-by-layer (LBL) assembled carbon nanotube (CNT) composites 

can be engineered to allow controlled pre-differentiation of NSCs and potentially create a 

novel strategy for repairing neural injuries.  

Besides actively participating in the repair process, NSCs can also provide 

therapeutic effects by producing essential enzymes and neural transmitters.227 By 

exposing NPCs to basic fibroblast growth factor 2 (FGF2) and glial cell conditioned 

media, Daadi and Weiss were able to derive neurons that produce tyrosine hydroxylase, 

an important rate-limiting enzyme in the synthesis of dopamine which patients of 

Parkinson’s disease lack244. The enzyme tyrosine hydroxylase is found in the cytosol of 

all cells containing the neural transmitter catacholamine. The possibility of differentiating 

neural progenitor cells toward a catecholamine phenotype was demonstrated by treatment 

with FGF2 and neural growth factors227. Some work has also been done to convert NPCs 

into a cholinergic phenotype by treatment with LIF as a way to replenish the level of the 

vital neurotransmitter acetylcholine in the damaged sites227. Acetylcholine is 

hypothesized to be deficient in patients suffering from Alzheimer’s disease.   
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1.6 Inverted Colloidal Crystal Hydrogel Scaffolds 

Considerable effort has been made to develop biocompatible scaffolds for tissue 

engineering as they are needed to guide cells to grow, synthesize extracellular matrix, and 

form functional tissues.245, 246 As biology’s demand for quantitative analysis increases, 

scientists are also looking for a three-dimensional (3D) culture system that can 

authentically represent a cell’s environment in a living organism.247, 248 A properly 

designed 3D scaffold can satisfy the needs in tissue engineering and biomedicine to 

provide better solutions for tissue repair and regeneration and to facilitate the study of 

biological systems. 

The first design criterion for a scaffold is biocompatibility. Cells must be able to 

attach and survive on the scaffold in order to form a functional structure. Secondly, the 

scaffold should have high porosity and proper pore size. This will ensure an adequate 

geometry for cell penetration, a high surface area for cell attachment, and interconnected 

space for intercellular interactions. Thirdly, the scaffold should be mechanically strong 

enough to support the tissue structure. Lastly and very importantly, the scaffold should 

positively interact with cells to enhance adhesion, proliferation, migration, 

differentiation, and functionality.246 249 

Scaffolds prepared from colloidal crystal templates can meet all of the listed 

criteria.250-252 To fabricate these scaffolds, colloidal particles are assembled into 3D 

crystals with hexagonally packed structure (Figure 1.4 a-c) and subsequently infiltrated 

with sol-gel or hydrogel solutions. After solidification or polymerization, the colloidal 
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crystal templates are dissolved to yield scaffolds with high porosity and inverted colloidal 

crystal (ICC) geometry (Figure 1.4 d-f). The ICC geometry can be described as highly 

organized spherical pores with interconnecting channels. This arrangement gives a 

maximum theoretic porosity of 74%, providing large void volume for cell growth while 

preserving structural integrity of the scaffolds. Desirable pore size and channel size can 

be tightly controlled by adjusting the size of colloidal particles used to fabricate the 

templates and by changing the assembly conditions. For this reason, the geometry of ICC 

scaffolds is well-ordered, easily characterized, and highly reproducible. This translates 

into good control over tissue structure, making ICC scaffolds an excellent system for 

tissue engineering and research in cell biology.  

The biocompatibility of ICC Na2SiO3 gel251, 252 and poly(acryalamide) hydrogel250 

ICC scaffolds have been demonstrated for liver cell,253 bone cell,254 thymic stromal 

cell,255 and hematopoietic stem cell cultures.256 Diffusion257 and cell distribution258 in 

ICC scaffolds have also been studied experimentally and computationally. Combined 

with LBL assembly, ICC scaffolds are well suited for investigations of cell-cell and cell-

matrix interactions, cell migration and differentiation, and tissue formation. We have 

shown that LBL modification of scaffolds with collagen, fibronectin, and clay can 

significantly increases biocompatibility.255, 256, 259 
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Figure 1.4 SEM images of colloidal crystals (a-c) and their inverted replicas (d-f) 
fabricated from 10-µm (a, d), 75-µm (b, e), and 160-µm (c, f) spheres.252 

 

We devote part of this research to the development of an in vitro 3D neural tissue 

model to study neural electrode induced cellular responses. It has been reported recently 

that a 3D spheroid liver tissue spheroid model can be created from ICC hydrogel 

scaffolds for in vitro assay applications.260 The study, which explored the toxicity of 

nanoparticles, showed dramatic differences between 2D and 3D spheroid cultures that 

resulted from morphologic and phenotypic changes. Similarly, by developing a 3D neural 

tissue model, we aim to improve the predictive power of in vitro assays for neural 

inflammatory responses.  
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1.7 Overview 

The theoretical framework of this dissertation lies in the unique properties of 

CNTs and versatility of the nanostructuring technique of LBL assembly. The 

combination of excellent mechanical stability and high conductivity required for the ideal 

neural electrode design makes CNTs the perfect candidate for interfacing with the neural 

system. As discussed above, CNTs have an exceptional current carrying capacity, tensile 

strength, and Young’s modulus, as well as a wealth of available chemical modification 

techniques to impart them specific functionalities. The technique of LBL assembly, 

which enables complementary molecular species, such as polyelectrolytes, nanoparticles, 

and biomolecules, to be constructed into a composite film one monolayer at a time, 

allows precise control over the film structure and composition, and therefore fine-tuning 

of the film properties. By combining CNTs with LBL assembly, we envision the ability 

to fabricate neural interfaces of specifically designed mechanical, electrochemical, and 

biological properties that can evolve into a platform technology for next-generation 

neural electrodes and help us gain better understanding of the nano-bio interface.  

 This dissertation is a collection of work that aims to realize this vision and can be 

divided into four parts. The first part consists of studies designed to establish the 

biocompatibility of LBL assembled CNT films. Chapter 2 examines the cytotoxicity of 

CNT LBL films, dispersed CNTs, and other nanoparticles using the technology of high-

content screening. Chapter 3 demonstrates the biocompatibility of CNT LBL films with 

neural stem cells (NSCs). The incorporation of NSCs represents a very important venue 
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for establishing an effective tissue-electrode interface as they can potentially reduce 

inflammatory response and develop into mature functional neurons. The second part of 

this dissertation is contained in Chapter 4, which aims to establish the electrochemical 

properties of electrodes made from LBL assembled CNT composites. Measurements such 

as impedance, charge storage capacity, voltage excursion, and electrochemical stability 

are reported here, and a side-by-side comparison with well-established and emerging 

electrode materials is presented. The third part of this dissertation consists of two studies 

exploring methods for controlling cell differentiation on LBL assembled CNT films. 

Chapter 5 demonstrates that LBL films fabricated from the assembly of CNTs with 

laminin can enhance the differentiation of NSCs and can be used to electrically stimulate 

differentiated NSCs. In Chapter 6, we describe the delivery of genes through CNT LBL 

composite films and demonstrate that multipotent cells can be programmed into neuronal 

cells. The last part of the dissertation, which is encompassed in Chapter 7, describes the 

development of an in vitro three-dimensional neural tissue model for the purpose of 

investigating cellular response induced by electrodes. Such a system can be utilized for 

rapid and inexpensive screening of the numerous electrode interfaces that can be 

designed and produced using the platform of LBL assembled CNTs.  
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CHAPTER 2 

Cytotoxicity Profiling of Nanomaterials Using High Content Screening Assays 

 

2.1 Abstract 

Recent advances and progress in nanobiotechnology have demonstrated many 

nanomaterials as potential and novel drug delivery vehicles, therapeutic agents, and 

contrast agents and luminescent biological labels for bioimaging. The emergence of new 

biomedical applications based on nanomaterials signifies the need to understand, 

compare, and manage their cytotoxicity. In this study, we demonstrated the use of high 

content screening assay (HCA) as a universal tool to probe the cytotoxicity of NPs and 

specifically cadmium telluride quantum dots (CdTe QDs) and gold NPs (Au NPs) in 

NG108-15 murine neuroblastoma cells and HepG2 human hepatocellular carcinoma 

cells. In addition, we also compared the cytotoxic effects of carbon nanotube (CNT) 

dispersions and thin films in the NG108-15 neural cells. Neural cells represent special 

interest for NP and CNT induced cytotoxicity because of the optical and electrical 

functionalities of materials necessary for neural imaging and interfacing are matched well 

with the properties of these nanomaterials. Moreover, the cellular morphology of neurons 
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is particularly suitable for automated high content screening. HepG2 cells represent a 

good model for high content screening studies since they are commonly used as a 

surrogate for human hepatocytes in pharmaceutical studies. We found the CdTe QDs to 

induce primarily apoptotic response in a time- and dosage-dependent manner and 

produce different toxicological profiles and responses in undifferentiated and 

differentiated neural cells. Au NPs were found to inhibit the proliferation and 

intracellular calcium release of HepG2 cells. Layer-by-layer (LBL) assembled single-

walled carbon nanotube (SWNT) thin films displayed minimal cytotoxicity while the 

cytotoxic effect of dispersed SWNTs increased with concentration. 

 

2.2 Introduction 

Research on nanomaterials has generated numerous biological applications in the 

past decade. With continuing progress of nanoscale synthesis and biological applications 

of nanomaterials, such as nanoparticles (NPs) and carbon nanotubes (CNTs), one needs 

to develop a quick and fairly standard assessment tool to evaluate their cytotoxicity. 

Since many structural and physical properties of nanomaterials have clear similarities 

with those of proteins,1-3 it is not surprising that nanomaterials may exhibit cytotoxicity 

or, in more general terms, biological activity that is specific to NPs and CNTs and affects 

cell signaling mechanism differently from that observed for ionic, polymeric systems and 

small molecules. The detrimental effects of such biological activity can be captured by 
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the term nanotoxicity,4-6 which is probably the most critical from a health safety 

perspective.7  

The purpose of this study is to make the first step toward the development both 

fast and fairly comprehensive method of screening of biological activity and cytotoxicity 

of NPs and CNTs.  We see two important factors that necessitate the development of such 

protocol(s). (1) Since the synthesis of NPs and CNTs is much simpler than the synthesis 

of proteins and other drugs, minor changes in the synthetic protocol are likely to affect 

their interactions with cells.  So, one can expect to see a tremendous surge of potential 

candidates for toxicity/biological activity screening. Taking II-VI semiconductor 

quantum dots (QDs) as an example, beside the release of heavy metal elements from the 

core which can lead to cell poisoning,8 studies have shown that the cytotoxicity of these 

QDs is highly dependent on their processing parameters,9 surface modifications,8-10 as 

well as a number of physicochemical and environmental factors, such as size, charge, 

concentration, and stability.11 Such amounts will be difficult to analyze using 

conventional approaches. (2)  Considering the diversity of NPs and CNTs being 

synthesized, one needs a unified approach for screening nanomaterials. Such a systematic 

approach is not only fundamental to the construction of a unified database for biological 

and cytotoxic effects of nanomaterials but will also enable scientists to synthesize safer 

and more efficacious nanostructures at an ever-more efficient rate. We can expect the 

engineering of biologically functional nanostructures to follow the path of synthetic 

pharmaceuticals in drug discovery.  In the near future, panels of nanomaterials with 
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slightly varying properties and structures will be synthesized and evaluated for 

cytotoxicity before qualified candidates are designated subsequent developments.  

In this study, we are motivated to explore the possibility of building a high-content, high-

throughput cytotoxicity assay platform based on high-content screening (HCS) 

technology to meet future’s demand for nanotoxicity studies. HCS is a recent advance in 

the integration and automation of quantitative fluorescence microscopy and image 

analysis, and it has already started to generate impact in pharmaceutical and 

biotechnology industries.12, 13 Zhang et al. were the first to employ high-content image 

analysis, in conjunction with high-throughput analysis, to study the cytotoxicity of QDs.14 

They investigated the cellular and molecular effect of high doses of poly(ethylene glycol) 

silanized QDs (PEG-silane-QDs) on human lung and skin epithelial cells, and reported 

PEG-silane-QDs to induce minimal cytotoxicity even at high dosages. While the use of 

HCS analysis in their study is confined to cell counting, quantification of apoptotic and 

necrotic cell population, and generation of cell cycle profiles, our current study extends 

the application of HCS technology to the evaluation of cell function, specifically neurite 

outgrowth, and the development of a multiplexed cytotoxicity assay that may serve as the 

basis of a standardized nanotoxicity assay and facilitate the formation of a unified 

nanotoxicology database.  

Semiconductor QDs are most well known for their potential applications in 

biosensing, ex vivo live cell imaging and in vivo animal targeting,15-18 while Au NPs 

have demonstrated promising capabilities as novel drug delivery vehicles,19 near-infrared 
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agents for thermal therapy,20 and contrast agents for biomedical imaging.21-23  More 

recently in search of new neurotherapeutic, neuroprosthetic, and neuroimaging strategies, 

many researchers have explored the use of NPs to manipulate and create active cellular 

interfaces with nerve cells.24, 25 Vu et al. utilized peptide conjugated QDs to initiate 

neuronal differentiation26 while Dahan et al. used antibody functionalized QDs to track 

the diffusion of glycine receptors in neurons.27 Jackson and colleagues demonstrated that 

QDs can improve identification and visualization of brain tumors.28 At the neural 

interface, Winter et al. investigated the possibility to build a bioelectronic interface by 

both culturing nerve cells on tethered QD thin films29 and attaching QDs directly to nerve 

cells via biological recognition molecules.30 Most recently, Kotov and colleagues 

demonstrated, for the first time, the excitation of neural cells through a sequence of 

photochemical and charge-transfer reactions on layer-by-layer assembled NP-

polyelectrolyte composite films.31 In the case of CNTs, due to their unique physical and 

electrical properties, many studies have investigated their potential as therapeutic agents 

and neural interfacing materials.32 CNTs have been shown to promote neuron 

differentiation from embryonic stem cells.33 Substrates fabricated from CNTs have also 

been demonstrated to support neural differentiation34 and promote neural electrical 

activity.35  

Our study began with a comprehensive investigation of cadmium telluride (CdTe) 

QD induced cytotoxicity in NG108-15 murine neuroblastoma cells using various HCS 

assays. We then extended the application of our multiplexed cytotoxicity assay to study 

the cytotoxic effect of gold NPs (Au NPs) on the HepG2 human hepatocellular carcinoma 
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cells. Finally, using the same multiplexed cytotoxicity assay, a comparison of 

cytotoxicity induced by dispersed CNTs and CNT thin films were made using NG108-15 

neuralblastoma cells. 

 

2.3 Methods 

2.3.1 Synthesis of CdTe Quantum Dots 

Millipore water (120 mL) was degassed by bubbling argon for approximately 1 h. 

Cd(ClO4)2·6H2O (3.22 g, 7.68 mmol), TGA stabilizer (1.24 g, 13.46 mmol, 1.75 molar 

equivalents) were added and the pH was adjusted to 11.2–11.3 by the addition of NaOH 

solution (2M). For gelatin-containing samples, gelatin (0.3 g) was dissolved in water (10 

mL) by heating gently and added to the reaction mixture. Gaseous H2Te, generated from 

Al2Te3 (0.56 g, 0.128 mmol) by dropwise addition of H2SO4 solution (0.5m) was bubbled 

through the cadmium/thiol/gelatin solution under a slow argon flow for approximately 10 

min. The resultant nonluminescent solution was then heated to reflux. Fractions were 

precipitated by the addition of isopropanol and were stored at 4°C. 

2.3.2 Synthesis of Gold Nanoparticles 

Gold chloride solution (0.01g HAuCl4 in 100ml water) was first brought to boil, 

followed by addition of 2ml 1% sodium citrate solution (0.02g trisodium citrate in 2ml 

water). The gold nanoparticle solution was stirred for 10min and allowed to cool to room 
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temperature. Stabilizer was introduced by adding 102µL of cysteine solution (0.01g l-

cysteine in 1ml water) to the gold nanoparticle solution with stirring. The final gold 

nanoparticle solution was filtered through a 0.22µm filter for sterility and stored at room 

temperature. 

 

 

2.3.3 Preparation of Carbon Nanotube Dispersion and Thin Films 

Single-walled carbon nanotubes (SWNTs) were dispersed at 0.5 mg/ml in 0.1 

wt% poly(sodium 4-styrene-sulfonate) (PSS; MW 1000k) solution by ultra-sonication. 

Thin films of SWNTs were prepared in 96-well tissue culture plates using the technique 

of layer-by-layer (LBL) assembly. Specifically, SWNT thin films were formed by 

alternating deposition of 1 wt% poly(vinyl alcohol) (PVA; MW 70k, pH 2, 6 or 10) with 

the SWNT dispersion. For each deposition, the bottom of each well was covered with the 

corresponding solution for 5 min, followed by rinsing with deionized water and drying 

with an air jet. The resulting thin film of coating was designated as (PVA/SWNT)n where 

n is the number of bilayers. 

2.3.4 Cell Culture 

NG108-15 murine neuroblastoma×glioma hybrid cells and HepG2 Human 

hepatocyte carcinoma cells were obtained from the European Collection of Cell Cultures. 
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NG108-15 cells were grown in high-glucose Dulbecco's modified Eagle's medium, 

supplemented with 10% (v/v) of fetal calf serum, 0.1 mM hypoxanthine, 1 µM 

aminopterin, and 16 µM thymidine. To induce differentiation, the amount of serum was 

lowered to 1% (v/v). HepG2 cells were cultured in Eagel minimum essential medium 

supplemented with 10% (v/v) fetal bovine serum.  

2.3.5 Apoptosis/Necrosis Assay 

Cells were seeded in 96-well tissue culture plate (Nunc) and allowed to adhere 

overnight. At the indicated time point (1.5h, 6h, 24h) following treatment with TGA-QDs 

or Gelatin-QDs, cells were stained with propidium iodide (1 µg/ml) and Hoechst 33342 

(2 µg/ml) for 10 min at room temperature and imaged using the IN Cell Analyzer 1000 

HCS system (GE Healthcare). The HCS system scans through the bottom the plate, 

focuses on individual fields of cells, and acquires images at each selected fluorescence 

channel. Hoechst was visualized in the blue channel and propidium iodide in the red 

channel. The experiment was conducted in 3 independent runs. For each run, 5 

independent fields from each well were imaged using a 20X objective. Cells were 

classified as either healthy, apopotic, or necrotic using the supervised classification 

function of the IN Cell Investigator image analysis software (GE Healthcare).  

2.3.6 Neurite Outgrowth Assay 

Cells were seeded in 96-well tissue culture plate and allowed to adhere overnight. 

After treatment with TGA-QDs or Gelatin-QDs for 6h, cells were gently washed with 
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fresh medium and cultured with reduced serum supplementation to induce neuronal 

differentiation. No supplementary growth factor was added. After 4 days of 

differentiation, cells were fixed in 2% paraformaldehyde, permeabilized in 0.1% Triton 

X-100 in 1% BSA, and stained using mouse anti-β-tubulin III (1:800 in 1% BSA; 

overnight at 4 ºC) followed by Alexa Fluor 488 conjugated goat anti-mouse IgG (1:200; 

1h at 37 ºC). The experiment was carried out in triplicates. For each well, 4 independent 

fields were imaged using a 10X objective and analyzed using the Neurite Outgrowth 

Analysis Module of the IN Cell Investigator software. The analysis module reports 

population-averaged measurements for a range of cell parameters, including neurite 

length and neurite count. 

2.3.7 Multiplexed Cytotoxicity Assay 

Cells were seeded in 96-well plate and allowed to adhere overnight. Following 

treatment with either CdTe QDs, Au NPs, or CNTs, cells were very gently washed with 

pre-warmed fresh medium and simultaneously loaded with 1 µM Hoechst 33342, 20 nM 

TMRM (tetramethyl rhodamine methyl ester perchlorate), and 1 µM Fluo-4 (fluo-4 

acetoxymethyl ester). Cells were loaded in the corresponding culture media for 30min at 

37 °C and then imaged using the IN Cell Analyzer 1000 HCS system. Hoechst was 

visualized in the blue channel while TMRM and Fluo-4 were visualized in the red and 

green channels, respectively. The following data were collected and analyzed using the 

Dual Area Object Analysis Module of the IN Cell Investigator software. The module 

allows simultaneous quantification of sub-cellular inclusions that are marked by different 
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fluorescent probes and measures fluorescence intensity associated with predefined 

nuclear and cytoplasmic compartments. The following data were collected. Cell count 

was generated from the number of Hoechst 33342 stained nuclei. Nuclear size was 

defined as the mean object area of Hoechst 33342. Cellular mitochondrial membrane 

potential was measured by the TMRM fluorescence intensity in punctuate cytosolic 

regions (cellular inclusions) around the nucleus. Intracellular free calcium concentration 

was measured by the fluorescence intensity of Fluo-4 in an intracellular circular region 

(cellular compartment) centered at the nucleus. 

 

2.4 Results and Discussion 

2.4.1 CdTe Quantum Dots 

One question we would like to answer in our exploration of HCS technology and 

assays is how undifferentiated and differentiated cells respond to treatment with NPs. 

This is an important question because target cells at various stages of differentiation and 

maturation respond to therapeutic interventions in different ways. To answer this, we 

investigated the cellular response of the NG108-15 murine neuroblastoma cells to two 

types of CdTe QDs. The first is a thioglycolic acid (TGA)-capped CdTe QD (TGA-QD), 

and the other is a TGA-capped CdTe QD produced in the presence of gelatin (Gelatin-

QD). Both of these QDs have a diameter of 3nm and emits in the green-yellow region of 

the spectrum (~560nm). Some of us recently published the synthesis and characterization 
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of this Gelatin-NP nanocomposite along with a preliminary cytotoxicity study that 

demonstrated reduced cytotoxicity of Gelatin-QDs in THP-1 human monocytic cells.36 It 

has been suggested that gelatin enables the QDs to grow more discretely (blue shifted) 

and serve as a co-capping agent for stabilization of QDs and encapsulation of the toxic 

heavy metal core. While poly(ethylene glycol) (PEG) remains the most promising coating 

material for reducing cytotoxicity to this date, we believe naturally occurring 

biopolymers, such as gelatin, may provide additional biological functionalities in addition 

to their protective property. We chose to work with the NG108-15 murine neuroblastoma 

cells because they possess neuron-like properties and can be differentiated relatively 

easily and quickly.  

The first HCS assay we employed was an apoptosis/necrosis assay for the 

quantification of healthy, apoptotic, and necrotic cells. At the indicated time point (1.5h, 

6h, 24h) following treatment with TGA-QDs or Gelatin-QDs, cells were stained with 

propidium iodide (1 µg/ml) and Hoechst 33342 (2 µg/ml) for 10 min at room temperature 

and imaged using the IN Cell Analyzer 1000 HCS system (GE Healthcare). Cells in each 

category were classified using the supervised classification function of the IN Cell 

Investigator image analysis software (GE Healthcare), which analyzed the fluorescence 

quantitatively on a cell-by-cell basis. Figure 2.1 illustrates representative images of 

healthy, apoptotic, and necrotic cells. The plasma membranes of necrotic cells are 

permeable to propidium iodide, so necrotic cells were identified by their intense red 

fluorescence. Apoptotic cells were identified as being impermeable to propidium iodide 

but showing condensed and fragmented nuclei from the Hoechst 33342 stain. Healthy 
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cells were stained by Hoechst 33342 only and displayed intact and homogeneously 

stained nuclei. The experiment was carried out in triplicates in 96-well plates, which 

helps to increase throughput and reduce consumption of cell culture and assay reagents 

and ensures reproducibility at the large cell population scale.  

 

 

Figure 2.1 Representative fluorescence and bright field images of a healthy (green 
outline), an apoptotic (red outline), and a necrotic (yellow outline) cell. Outline and 
classification of cells were generated by the IN Cell Investigator image analysis software 
using the supervised classification capability.  

 

Figure 2.2 shows the average result from 3 independent runs. For each run, 5 

independent fields from each well were imaged using a 20X objective. The entire 

experiment, including all concentrations and time points, is an assessment of as many as 
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25,000 individually analyzed cells and demonstrates the robustness of HCS assays. For 

both undifferentiated and differentiated cells, treatment with QDs induced predominantly 

an increase in apoptotic cell population, as the number of necrotic cells remained 

relatively constant regardless of QD dosage or treatment time. This finding is 

corroborated by published results from Chan et al., who demonstrated that CdSe-core 

QDs induce apoptotic biochemical changes in human neuroblastoma cells via 

mitochondrial-dependent pathways and inhibition of survival signals.37 In addition, our 

study also found undifferentiated and differentiated cells to respond differently to 

treatment with QDs. This is an important finding because the human is composed of cells 

and tissue at different levels of maturity and differentiation. For undifferentiated NG108-

15 cells, the number of apoptotic cells remained constant between 1.5h and 6h of 

incubation with QDs and increased sharply after 24h. We suspect the delayed cytotoxic 

response is a buffering effect owing to the proliferating potential of undifferentiated cells. 

For differentiated cells, an incremental increase in apoptotic population was observed 

between the three time points, indicating differentiated cells to be more sensitive and 

vulnerable to QD treatment.  
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Figure 2.2 Effect of QD treatment on NG108-15 cells. Undifferentiated and 
differentiated NG108-15 cells were incubated with various concentrations of TGA-QDs 
and Gelatin-QDs for 1.5 h (blue), 6 h (green), and 24 h (orange). Percentages of apoptosis 
and necrosis were determined by staining the cells with propidium iodide and Hoechst 
33342, followed by image acquisition and analysis using a HCS system.  

 

It should be emphasized that although TGA-QDs and Gelatin-QDs produced 

similar cellular response in NG108-15 cells, in HCS assays even a 5-15% difference 

represents a consistent and significant response at the cell population level and is likely to 

include moderate and below average response typical of the in vivo physiological 

situations. The most obvious difference between the two QDs is seen in the apoptotic 

population of the undifferentiated cells. While the apoptotic population of TGA-QD 

treated cells increased with QD concentration at 1.5h and 6h, the apoptotic population of 

Gelatin-QD treated cells remained unchanged.  In addition, TGA-QD treated cells also 
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displayed a more drastic increase in apoptotic population after 24h compared to Gelatin-

QD treated cells, indicating somewhat lower cytotoxicity in the Gelatin-QDs.  

Generalizing the results, it is important to make three points here.  (1) HCS  allows one to 

reliably identify these differences in cellular response to NPs and use it for comparison of 

their (bio)medical prospects, which provides a substantial advantage over less systematic 

techniques used now. (2)  We used here a version of analysis with fairly wide 

concentration step and finer profiles could be obtained to highlight even smaller effects 

for more advanced fingerprinting.  (3) Greater number of labels in the panel will further 

improve differentiation of the effect of one NPs versus the other or one cell type versus 

the other, which will be demonstrated below. 

To further investigate the difference between TGA-QDs and Gelatin-QDs, we 

conducted a neurite outgrowth assay to investigate the effect of QD treatment on 

neuronal differentiation. One day following cell seeding, NG108-15 cells were incubated 

with either type of QDs for 6 hours, after which the cells were washed with fresh medium 

and cultured in medium with reduced amount of serum to induce differentiation. No 

supplementary growth factor was added in order to avoid interference or counteracting 

effect. After 4 days of differentiation, cells were stained and imaged using the IN Cell 

Analyzer 1000 HCS system. Cells were first fixed in 2% paraformaldehyde and 

permeabilized in 0.1% Triton X-100 in 1% BSA. Neurites were stained using mouse anti-

β-tubulin III (1:800 in 1% BSA; overnight at 4 ºC) followed by Alexa Fluor 488 

conjugated goat anti-mouse IgG (1:200; 1h at 37 ºC). The experiment was carried out in 
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triplicates. For each well, 4 independent fields were imaged using a 10X objective and 

analyzed using the IN Cell Investigator software.  

Figure 2.3 shows representative images acquired by the robotic imaging system at 

different treatment conditions. The measurement of neurite outgrowth is traditionally a 

time-consuming and tedious job, but the work is greatly simplified with the aid of a HCS 

system. An analysis of the total neurite length with respect to the untreated control is 

presented in Figure 2.4. A 6h treatment with 25nM of TGA-QDs prior to neuronal 

differentiation reduced the total neurite length by approximately 50%, primarily due to a 

decrease in cell number as illustrated in Figure 2.3. However, treatment with 25nM of 

Gelatin-QDs led to a slight increase in total neurite length. We suspect this contradicting 

effect at low dose could be a hormetic response as hormesis is frequently observed as a 

result of low dose stimulation in toxicological studies.38, 39 The mechanisms involved in 

countering the cytotoxic effect of a short, non-lethal low dose treatment might have 

stimulated the formation of neurites. The difference between the two QDs is most evident 

at the 50nM concentration, where all TGA-QD treated cells were killed while Gelatin-

QD treated cells still exhibited some viability and a moderate level of neurite outgrowth. 

A 100nM treatment with either type of QDs appeared to be too toxic for any cells to 

survive.  
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Figure 2.3 Effect of QD treatment on neurite outgrowth of NG108-15 cells. Cell were 
incubated with TGA-QDs and Gelatin-QDs at various concentrations for 6 h and induced 
to differentiate for 4 additional days in low-serum medium. Cells were stained for β-
tubulin III (green) and nuclei (blue) and imaged using a HCS system.  

 

 

 

Figure 2.4 Neurite outgrowth was assessed in terms of total neurite length per field. The 
result is the average of 3 independent experiments (4 independent fields each) and is 
expressed as percentage relative to the total neurite length per field of the untreated 
control (a). A false-colored composite fluorescent image of neurite outgrowth is shown 
here (b). During image analysis, the software’s image processing algorithm allows 
system to identify of neurites (green outlines) and make quantitative measurements (c). 
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The apoptosis/necrosis assay and neurite outgrowth assay prompted us to further 

investigate the cellular response of neural cells to QD treatments. The apoptosis/necrosis 

assay measures only late-stage toxicity and cellular events associated with a lethal 

apoptotic or necrotic effect. This assay is important but needs to be augmented with other 

assays for detailed toxicology fingerprinting, because it provides little mechanistic 

understanding of toxicological effects. The neurite outgrowth assay clearly revealed the 

toxicological difference between the two QDs and demonstrated the importance of a 

functionality assay in cytotoxicity studies. Since our motivation is to explore the use of 

HCS assays for the study of nanotoxicity, we subsequently employed another kind of 

assay, this time an assay that would detect sublethal cytotoxicity in a multiparameter 

format to give us more information and sensitivity regarding the cytotoxicity of a given 

nanocolloid.  

Although the success and advantages of a sublethal, multiplexed cytotoxicty assay 

has been demonstrated by O’Brien and his colleagues in the study of hepatotoxicity,39, 40 

it has never been utilized in the context of nanotoxicity. Such an assay evaluates specific 

toxicological mechanisms in cells prior to the onset of the late stages of non-specific 

degeneration and apoptotic or necrotic death, providing greater predictive power and 

extrapolatability across models and species.40 The multiparametric nature of the assay 

originates from the multiple fluorescent probes that simultaneously and coherently 

monitor different cellular functions in vitro and is made possible by recent advances in 

fluorescent probe technology.41   
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In this study, undifferentiated and differentiated NG108-15 cells were treated with 

QDs at various concentrations for 24h, after which the medium was removed and the 

cells were incubated with a cocktail of fluorescent probes for 30 min before they were 

imaged using the IN Cell Analyzer 1000 HCS system. The cocktail of fluorescent probes 

was prepared in fresh medium and consisted of 1µM Hoechst 33342, 20nM TMRM, and 

1µM Fluo-4. These fluorescent probes were selected for specific reasons. First of all, 

these fluorescent probes can be used concurrently and are readily internalized by live 

cells without posing substantial harm. Hoechst 33342 allows identification of individual 

cell nuclei, which permits the measurement of cell count and nuclear area and allows 

subsequent analysis on the complementary stains to be conducted. A decrease in cell 

number indicates cell death and/or decreased cell proliferation, while nuclear shrinkage is 

typically a consequence of chromatin condensation and a sign of apoptotic cell death. 

TMRM and Fluo-4 allow the assessment of mitochondrial membrane potential and 

intracellular free calcium concentration, respectively. The mitochondrion is central to the 

functioning and survival of nerve cells.42 It is responsible for ATP generation, Ca2+ 

uptake and storage, and the generation of detoxification of reactive oxygen species.43 A 

drop in the electrochemical gradient across the mitochondrial membrane therefore signals 

weakened cellular respiratory capacity and energetics. Intracellular Ca2+ is a chief 

regulator of a variety of biological processes.44 For this reason, pharmaceutical 

companies have long adopted the measurement of intracellular Ca2+ for high-throughput 

screening.45 Intracellular Ca2+ is especially important in neural cells since it regulates 

neurite outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell 
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survival.46, 47 A dramatic increase in intracellular Ca2+ is an early event in the 

development of cell injury due to cytotoxicity.48 

The concentration response of cells was measured using the IN Cell Investigator 

software and evaluated in terms of cell number, nuclear area, mitochondrial function, and 

intracellular calcium homeostatsis. Cell count was generated from the number of Hoechst 

33342 stained nuclei. Nuclear size was defined as the area of Hoechst 33342 fluorescence 

(Figure 2.5, inner blue circle). Cellular mitochondrial membrane potential was defined as 

the TMRM fluorescence intensity in punctuate cytosolic regions around the nucleus 

(Figure 2.5, yellow inclusions), while intracellular free calcium concentration was 

measured by the fluorescence intensity of Fluo-4 in a large intracellular circular region 

centered at the nucleus (Figure 2.5, outer green circle). Since the HCS platform is based 

on the acquisition, processing, and analysis of fluorescence images, we made sure the 

NG108-15 cells do not uptake significant amount of QDs to interfere with our 

multiplexed cytotoxicity assay (data not included). The level of fluorescence signal from 

QDs was constant regardless of concentration and was well below the basal fluorescence 

level of TMRM and Fluo-4. This was not a problem in the apoptosis/necrosis and neurite 

outgrowth assays because the emission spectrum of the QDs does not coincide with 

Hoechst 33342 and propidium iodide and immunological staining is much more specific 

and intense than nonspecific uptake and adsorption of the QDs.  
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Figure 2.5 Representative fluorescence images of a healthy (first row), an impaired 
(middle row), and a dying (last row) cells acquired and processed by the IN Cell HCS 
system. The nucleus, stained by Hoechst 3342, is outlined by a blue circle. The cell body 
or the intracellular region is enclosed by a green circle, within which the intensity of 
Fluo-4 fluorescence is measured. The punctuate, TMRM-bound mitochondrial organelles 
in the cytosol are identified by the yellow inclusions. In the merged images, Hoechst 
3342, Fluo-4, and TMRM stains are shown in blue, green, and red, respectively. As the 
health condition of cells deteriorates, the nucleus shrinks and becomes fragmented, the 
Fluo-4 stain intensifies and signal a sharp increase in intracellular free calcium 
concentration, and the TMRM stain diminishes as a result of reduction in mitochondrial 
membrane potential.   

 

Figure 2.6 shows the average result of our multiplexed cytotoxicity fingerprinting. 

Overall, cell count appears to be the most sensitive indicator of cytotoxicity, as 

significant changes in cell count tend to occur at a much lower QD concentration than the 

other parameters. In addition, the largest difference between the toxicity profiles of TGA-

QDs and Gelatin-QDs treated cells is observed in this fluorescence parameter. For 

Gelatin-QD and TGA-QD treated cells, the cell count falls below 70% at 12.5nM and 

1.56nM respectively in undifferentiated cells and at 1.56nM and 0.39nM respectively in 
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differentiated cells. Similar findings are observed in the other parameters, where the onset 

of change in fluorescence parameters (except nuclear area) consistently occurs at a lower 

QD concentration in TGA-QD treated cells and in differentiated cells. These differences 

are summarized in Table 2.1 and have two implications. (1) It is confirmed that the 

Gelatin-QDs are less cytotoxic and more biocompatible than the TGA-QDs. The gelatin-

CdTe nanocomposite reduced the sublethal concentration (>30% cell death) of CdTe 

QDs by at least 4 times in both undifferentiated and differentiated cells (Table 2.1). This 

outcome validates our rationale behind the incorporation of biological molecules in the 

synthesis of NPs as a mean to achieve better stability and biocompatibility. We have to 

keep in mind that the toxic effect of CdTe made in a general synthetic rout described here 

can never be eliminated but modified or reduced and we use these NPs here as a model 

system. We also have to reiterate that although some of the observed differences between 

the two QDs could potentially be interpreted as marginal, the fact is that in systems 

implementing HCS principles a 5-15% difference represents a consistent and significant 

response because of the large cell population being analyzed. The close resemblance 

between the toxicity profiles of TGA-QDs and Gelatin-QDs also indicates that their 

toxicity share a common source, which most likely comes from the leakage of cadmium 

from the core of the NPs. (2) As already indicated by the apoptosis/necrosis assay, is that 

differentiated cells are more sensitive and vulnerable to QD-induced cytotoxicity, which 

is somewhat surprising because they are generally regarded as more sensitive to the 

environment. The large number of fragmented nuclei (Figure 2.5, last row) observed at 

high QD concentrations again confirms apoptosis as the primary cellular response to the 
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QD-induced cytotoxicity. Beside the larger scale of decrease in cell count and 

mitochondrial membrane potential observed in differentiated cells, the hormetic response 

in the nuclear area observed in undifferentiated cells is absent in differentiated cells and 

is replaced by marginal reduction. While the mitochondrial membrane potential of 

undifferentiated cells follows an inverse decay, the same parameter appears to decay 

exponentially in differentiated cells and could possibly explain their vulnerability to QD-

induced apoptosis. We suspect these differences in cellular response arise from changes 

in biological machinery as cells differentiate.49 Changes involving mitochondria, 

membrane structures, and protein modifications may account for the higher sensitivity of 

differentiated neurons to cytotoxic substances.50  
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Figure 2.6 Cytotoxic effects of TGA-QDs (white bars) and Gelatin-QDs (gray bars) in 
NG108-15 cells. Undifferentiated (left half) and differentiated (right half) cells were 
treated with QDs for 24 h and assayed for cell number (Hoechst 33342; top), nuclear area 
(Hoechst 33342; second from top), mitochondrial membrane potential (TMRM; third 
from top), and intracellular ionized Ca (Fluo-4; bottom). At each concentration, 5 
independent fields were imaged and analyzed. Data is expressed as average of 3 
independent runs. 
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Table 2.1 A summary of the onset of change in each of the 4 fluorescence parameters.  

 

2.4.2 Gold Nanoparticles 

As an extension to the CdTe QD study, we employed the multiplexed cytotoxicity 

assay to study the effect of gold NPs (Au NPs) on HepG2 human hepatocellular 

carcinoma cells. We have recently demonstrated the use of gold NPs for early detection 

of cancerous tumors and inflammatory responses by photoacoustic imaging.22, 51 

Considering the numerous functionalization strategies available for Au NPs, the ability to 

characterize toxicity using a HCS platform will be immensely valuable for the 

development of biomedical applications. We chose the HepG2 cells because they are one 

of the most commonly used cell types for HCS studies and have implications for metal 

poisoning associated with hepatic toxicities. 

Our study with Au NPs differs from those with CdTe QDs in a couple ways. In 

addition to the use of a different cell line, the Au NP study aims to determine the effect of 

exposure duration to the NPs, as well as post-exposure changes in cell physiology, while 
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the previous studies focus on the concentration-dependent effect of NPs.  To investigate 

these effects, we treated HepG2 cells with Au NPs for various lengths of time (0, 1, 2, 4, 

and 6 h). Following the Au NP treatment, cells were washed with PBS and allowed to 

grow in fresh medium for an additional period of time (1, 2, and 4 days). Similar to the 

previous studies on NG108-15 cells, HepG2 cells were analyzed for nuclei count, nuclear 

area, mitochondrial membrane potential, and intracellular free calcium concentration by 

incubating with a cocktail of dye solutions and imaging with the IN Cell Analyzer 1000 

HCS system to achieve complete fingerprinting of cellular response.  

Our data suggests that Au NPs inhibited the proliferation of HepG2 cells. Figure 7 

shows that although cell number appears to be relatively constant across different 

treatment times on day 1 and day 2 following Au NP treatment, it becomes inversely 

proportional to treatment time on day 4. Stronger inhibitory effect was observed with 

increasing exposure time to Au NPs. The inhibition of proliferation by Au NPs has been 

reported in other cells including endothelial cells and multiple myeloma cells.52-54 Au 

NPs have been found to bind to and block the function of proteins that are essential for 

cell proliferation. In addition, Au NPs can also block and disrupt certain cellular 

signaling pathways that required for growth and survival. In our study, this inhibitory 

effect was also accompanied by enlargement in the nuclear area. Cells having the longest 

exposure to Au NPs had an average nuclear area that was 13% larger than the untreated 

cells on day 4 after treatment. The concentration and exposure times of Au NPs 

employed in this study were shown to be only mildly cytotoxic to the HepG2 cells. 

Changes in the cellular mitochondrial membrane potential and intracellular free calcium 
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concentration never deviated more than 10% from the untreated control. Treatment with 

Au NP reduced the mitochondrial membrane potential, which is a typical cellular 

response to cytotoxic material. The reduction was only apparent after 4 days following 

treatment and increased slightly with increasing exposure time. While cytotoxic 

stimulation typically leads to an increase in intracellular free calcium concentration, we 

unexpectedly observed a decrease in intracellular free calcium concentration 1 day 

following the Au NP treatment. The decrease appeared to be proportional to the exposure 

time, reaching approximately 10% for the longest exposed cells (6h). Interestingly, the 

drop in intracellular free calcium concentration recovered by itself to the normal level as 

the culture time increased. The rate of recovery was inversely proportional to the 

exposure time, with the cells having the shortest exposure to Au NPs (1h) making the 

quickest recovery. These findings indicate that the Au NPs inhibited intracellular calcium 

release in the HepG2 cells. Similar findings have also been reported for endothelial 

cells.54 In our study, we also found this inhibitory effect by Au NPs to be reversible once 

the Au NPs are removed and the cells are allowed to recuperate in fresh medium.  
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Figure 2.7 Cytotoxic effects of gold NPs in HepG2 cells. HepG2 cells were treated with 
gold NPs for 0, 1, 2, 4, and 6h and assayed for cell number (Hoechst 33342; top), nuclear 
area (Hoechst 33342; second from top), mitochondrial membrane potential (TMRM; 
third from top), and intracellular ionized Ca (Fluo-4; bottom) 1, 2, and 4 days after 
treatment. Data is expressed as average of 4 independent runs. 
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2.4.3 Dispersed Carbon Nanotubes and Carbon Nanotube Thin Films 

As a final demonstration, we again employed the multiplexed cytotoxicity assay 

to study the effect of carbon nanotubes (CNTs) on NG108-15 murine neuroblastoma 

cells. We are interested in the cytotoxicity of CNTs in two different modes: free CNTs in 

the dispersed form and immobilized CNTs as thin films. Although there have been 

intensive research efforts exploring biological applications of CNTs,55, 56 studies 

investigating the cytotoxicity of CNTs have generated conflicting results. While 

researchers have found dispersed CNTs to exert a wide range of effects, ranging from 

indirect and minimal to severely cytotoxic,57, 58 studies have found immobilized CNT 

matrixes and substrates to produce little to no cytotoxicity and in some cases even 

enhanced cellular functions.59, 60 As these studies were motivated by vastly different goals 

and employed different experimental methods, the development of a universal assay for 

evaluating the cytotoxic effects of dispersed and immobilized CNTs can provide a more 

objective viewpoint on the cytotoxicity of CNT-based nanostructures and create a model 

platform for future studies of functionalized CNTs and CNT-based substrates.  

In this study, NG108-15 cells were treated with culture medium containing 

various concentrations of single-walled carbon nanotubes (SWNTs) dispersed with 

poly(sodium 4-styrene-sulfonate) (PSS). To eliminate any differences caused by the 

presence of dispersing reagent,61 all treatments, including the control, were prepared with 

the same concentration of PSS. In addition, cells were also cultured on polystyrene 

culture plate coated with SWNT thin films fabricated from the layer-by-layer (LBL) 
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assembly of poly(vinyl alcohol) (PVA) with PSS-dispersed SWNTs (SWNT-PSS). Thin 

films of SWNTs were assembled with PVA solutions at a pH value of 2, 6 or 10 and 

fabricated to a total of 2 or 6 bilayers of PVA/SWNT-PSS. Following 48 hours of 

treatment, cells were washed with PBS, incubated with a cocktail of dye solutions, and 

imaged with the IN Cell Analyzer 1000 HCS system to analyze for nuclei count, nuclear 

area, mitochondrial membrane potential, and intercellular free calcium.  

Our data shows that all of the SWNT LBL films we tested displayed minimal 

degree of cytotoxicity regardless of the number of bilayers and the pH of the PVA 

solution used to assemble the films. As illustrated by Figure 2.8, for cells cultured on the 

SWNT thin films, the four parameters examined by the assay remained relatively 

constant and close to the level exhibited by the untreated control group, indicating that 

the SWNT LBL films are inert and behave like the polystyrene cell culture plate. Figure 

2.8 shows a small drop in the nuclear area for cells cultured on SWNT LBL films with a 

thickness of 6 bilayers. However, this effect is absent for cells on the 2-bilayer films. We 

suspect this is an artifact from the automated HCS imaging system caused by the 

opaqueness of SWNTs in the thicker 6-bilayer films. The slight loss of transparency was 

an issue for measurements relying on the area and intensity of the fluorescence staining, 

but not so much for the measurement of cell count, which tallies the total number of 

stained cell nuclei. We were able to correct the fluorescence intensity measurements of 

TMRM and Fluo-4 using a reference culture plate to reflect the true values. However, 

without a simple and reliable fix, the nuclear area measurements were not adjusted, and 

therefore the data presented here does not account for the reduction in software-
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determined nuclear area as a result of decreased transparency of the culture substrates. 

Nevertheless, with the reduced nuclear area measurements at above 80%, and along with 

the data from the other parameters, the outcome still indicates a very healthy cell culture 

on the SWNT LBL films, demonstrating their potential as a biocompatible material for 

neural cells.  

For cells treated with dispersed SWNTs, cytotoxicity was observed to increase 

with SWNT concentration. Mitochondrial membrane potential, which was probed with 

TMRM, was the most sensitive indicator of cytotoxicity. While, a SWNT concentration 

of just 0.8 µg/ml caused the fluorescence intensity of TMRM to fall below 80%, all other 

parameters were unchanged. Another noticeable difference in the cytotoxicity profiles is 

the change in intracellular free calcium concentration with respect to SWNT 

concentration. While the profiles for cell count, nuclear area, and mitochondrial 

membrane potential followed similar pattern as those obtained in the CdTe QD study, 

here the intracellular free calcium concentration did not increase with raising SWNT 

concentration but instead remained largely unchanged. This could be an indication that a 

different mechanism might be at play in generating cytotoxicity in response to the SWNT 

treatment. In this study, we found that a relatively high concentration of SWNTs (>25 

µg/ml) was required to inhibit cell proliferation or cause significant cell death. At the 

same time, low concentrations of SWNTs were sufficient to disrupt the mitochondrial 

membrane potential considerably, which has been reported previously.62 Judging from 

this result, it’s likely that prolong exposure with SWNTs could elicit more enhanced level 

of cytotoxicity at lower concentrations.  
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Figure 2.8 Cytotoxic effects of dispersed SWNTs and SWNT LBL films in NG108-15 
cells. NG108-15 neuroblastoma cells were seeded on SWNT LBL films or treated with 
dispersed SWNTs for 48h and assayed for cell number (Hoechst 33342; top), nuclear area 
(Hoechst 33342; second from top), mitochondrial membrane potential (TMRM; third 
from top), and intracellular ionized Ca (Fluo-4; bottom). At each treatment, five 
independent fields were imaged and analyzed. Data is expressed as average of 3 
independent runs. 
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2.5 Conclusions 

In summary, we have demonstrated the use of various HCS assays to study the 

cytotoxicity of CdTe QDs, Au NPs, CNTs, and LBL films of CNTs in NG108-15 

neuroblastoma cells and HepG2 human hepatocellular carcinoma cells. We found the 

neurite outgrowth assay, which assesses the functionality of differentiated neural cells, to 

be particularly important and the multiplexed cytotoxicity assay as a sensitive and 

informative assessment of toxicological mechanisms. The versatility of the multiplexed 

cytotoxicity assay was demonstrated across the different nanomaterials tested in this 

study. The assays were capable of distinguishing the subtle differences in the cytotoxicity 

generated by TGA-QDs and Gelatin-QDs. The Gelatin-NPs, which were synthesized in 

the presence of gelatin, provided insight for surface modification and bio-

functionalization of NPs. Most importantly, we demonstrated that undifferentiated and 

differentiated NG108-15 neuroblastoma cells respond differently to CdTe QD-induced 

cytotoxicity. Specifically, the differentiated cells are more sensitive and vulnerable to QD 

treatment, which can be understood as the demonstration of adaptability of cells in 

undifferentiated state. This difference should be taken into account in the establishment 

of treatment dosage for any NP-based biological studies or therapies. Using the 

multiplexed cytotoxicity assay, we were able to uncover the inhibitory effect of Au NPs 

on cell growth and release of intracellular free calcium in HepG2 cells. In addition, we 

were also able to examine the cytotoxic effects of dispersed CNTs and CNT LBL films, 

demonstrating that free CNTs induced a drop in mitochondrial membrane potential while 

the CNT LBL films appeared to be biocompatible.     



 90 

The cytotoxicity profiles generated from the multiplexed cytotoxicity assay can be 

regarded as the “fingerprints” of the corresponding nanomaterials. The multiparametric 

nature of these profiles will allow cytotoxicity analyses to be conducted at much higher 

throughput and accuracy in the future. Importantly, we demonstrate here that the 

application of HCS technology in the study of nanomaterials is not limited to the 

cytotoxicity of colloidal NPs, but is also suitable for the assessment of biocompatibility 

of multilayer thin films produced from LBL assembly. We believe HCS technology can 

also be extremely useful for the study of the transport and localization of engineered NPs 

and CNTs in living cells. Such an endeavor could shed light on the development of new 

drugs and drug delivery strategies based on nanomaterials. 

We also consider it essential to mention here that the presented modality of the 

technique also has a significant limitation that needs to be addressed. It is related to the 

two-dimensional nature of cell cultures currently used in HCA most often. Cellular 

response in 2D cell cultures was shown to be different than cells in the natural tissue 

environment. More adequate 3D cell cultures techniques need to be developed. HCA 

does afford analysis of 3D images in a similar way as we presented here; however, the 

3D approach will indeed require development of appropriate 3D matrixes (scaffolds), cell 

culture techniques, and refinement of software algorithms for image analysis. A suitable 

matrix must be transparent, mechanically robust, very biocompatible, and exceptionally 

standardized. Hydrogel matrixes made with geometry of inverted colloidal crystals63, 64 

and potentially some other sharing the properties65, 66 mentioned above can be 

successfully used for this task.  



 91 

2.6 References  

1. Zhang, Z. L.; Tang, Z. Y.; Kotov, N. A.; Glotzer, S. C., Simulations and Analysis 
of Self-Assembly of CdTe Nanoparticles into Wires and Sheets. Nano Lett. 2007, 7 (6), 
1670-1675. 

2. Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F., Molecular 
biomimetics: nanotechnology through biology. Nat Mater 2003, 2 (9), 577-585. 

3. Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-Assembly of 
CdTe Nanocrystals into Free-Floating Sheets. Science 2006, 314 (5797), 274-278. 

4. Oberdorster, G.; Oberdorster, E.; Oberdorster, J., Nanotoxicology: An emerging 
discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 
2005, 113 (7), 823-839. 

5. Stone, V.; Donaldson, K., Nanotoxicology - Signs of stress. Nature 
Nanotechnology 2006, 1 (1), 23-24. 

6. Donaldson, K.; Stone, V.; Tran, C. L.; Kreyling, W.; Borm, P. J. A., 
Nanotoxicology. Occup Environ Med 2004, 61 (9), 727-728. 

7. Klostranec, J. M.; Chan, W. C. W., Quantum dots in biological and biomedical 
research: Recent progress and present challenges. Advanced Materials 2006, 18 (15), 
1953-1964. 

8. Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Javier, A. M.; Gaub, H. E.; 
Stolzle, S.; Fertig, N.; Parak, W. J., Cytotoxicity of colloidal CdSe and CdSe/ZnS 
nanoparticles. Nano Letters 2005, 5 (2), 331-338. 

9. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the cytotoxicity of 
semiconductor quantum dots. Nano Letters 2004, 4 (1), 11-18. 

10. Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, 
M.; Suzuki, K.; Yamamoto, K., Physicochemical properties and cellular toxicity of 
nanocrystal quantum dots depend on their surface modification. Nano Letters 2004, 4 
(11), 2163-2169. 

11. Hardman, R., A toxicologic review of quantum dots: Toxicity depends on 
physicochemical and environmental factors. Environmental Health Perspectives 2006, 
114 (2), 165-172. 



 92 

12. Giuliano, K. A.; Haskins, J. R.; Taylor, D. L., Advances in High Content 
Screening for Drug Discovery. ASSAY and Drug Development Technologies 2003, 1 (4), 
565-577. 

13. Comley, J., High Content Screening - Emerging Importance of Novel 
Reagents/Probes and Pathway Analysis. Drug Disc. World Summer 2005, 31-53. 

14. Zhang, T. T.; Stilwell, J. L.; Gerion, D.; Ding, L. H.; Elboudwarej, O.; Cooke, P. 
A.; Gray, J. W.; Alivisatos, A. P.; Chen, F. F., Cellular effect of high doses of silica-
coated quantum dot profiled with high throughput gene expression analysis and high 
content cellomics measurements. Nano Letters 2006, 6 (4), 800-808. 

15. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; 
Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in 
vivo imaging, and diagnostics. Science 2005, 307 (5709), 538-544. 

16. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M., Long-term multiple 
color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 2003, 
21 (1), 47-51. 

17. Parak, W. J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S. 
C.; Boudreau, R.; Le Gros, M. A.; Larabell, C. A.; Alivisatos, A. P., Biological 
applications of colloidal nanocrystals. Nanotechnology 2003, 14 (7), R15-R27. 

18. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot 
bioconjugates for imaging, labelling and sensing. Nature Materials 2005, 4 (6), 435-446. 

19. Thomas, M.; Klibanov, A. M., Conjugation to gold nanoparticles enhances 
polyethylenimine's transfer of plasmid DNA into mammalian cells. Proceedings of the 
National Academy of Sciences 2003, 100 (16), 9138-9143. 

20. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. 
E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal 
therapy of tumors under magnetic resonance guidance. Proceedings of the National 
Academy of Sciences 2003, 100 (23), 13549-13554. 

21. Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; 
Li, X.; Xia, Y., Gold Nanocages: Engineering Their Structure for Biomedical 
Applications. Advanced Materials 2005, 17 (18), 2255-2261. 

22. Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; 
Motamedi, M., High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser 
Optoacoustic Imaging System. Nano Lett. 2007, 7 (7), 1914-1918. 



 93 

23. Copland, J. A.; Eghtedari, M.; Popov, V. L.; Kotov, N.; Mamedova, N.; 
Motamedi, M.; Oraevsky, A. A., Bioconjugated gold nanoparticles as a molecular based 
contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. 
Molecular Imaging and Biology 2004, 6 (5), 341-349. 

24. Gomez, N.; Winter, J. O.; Shieh, F.; Saunders, A. E.; Korgel, B. A.; Schmidt, C. 
E., Challenges in quantum dot-neuron active interfacing. Talanta 2005, 67 (3), 462-471. 

25. Pathak, S.; Cao, E.; Davidson, M. C.; Jin, S. H.; Silva, G. A., Quantum dot 
applications to neuroscience: New tools for probing neurons and glia. Journal of 
Neuroscience 2006, 26 (7), 1893-1895. 

26. Vu, T. Q.; Maddipati, R.; Blute, T. A.; Nehilla, B. J.; Nusblat, L.; Desai, T. A., 
Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream 
signaling of neurite growth. Nano Letters 2005, 5 (4), 603-607. 

27. Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A., 
Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. 
Science 2003, 302 (5644), 442-445. 

28. Jackson, H.; Muhammad, O.; Daneshvar, H.; Nelms, J.; Popescu, A.; Vogelbaum, 
M. A.; Bruchez, M.; Toms, S. A., Quantum dots are phagocytized by macrophages and 
colocalize with experimental gliomas. Neurosurgery 2007, 60 (3), 524-529. 

29. Winter, J. O.; Gomez, N.; Korgel, B. A.; Schmidt, C. E. In Quantum dots for 
electrical stimulation of neural cells, Nanobiophotonics and Biomedical Applications II, 
San Jose, CA, USA, SPIE: San Jose, CA, USA, 2005; pp 235-246. 

30. Winter, J. O.; Liu, T. Y.; Korgel, B. A.; Schmidt, C. E., Recognition molecule 
directed interfacing between semiconductor quantum dots and nerve cells. Advanced 
Materials 2001, 13 (22), 1673-1677. 

31. Pappas, T. C.; Wickramanyake, W. M. S.; Jan, E.; Motamedi, M.; Brodwick, M.; 
Kotov, N. A., Nanoscale engineering of a cellular interface with semiconductor 
nanoparticle films for photoelectric stimulation of neurons. Nano Letters 2007, 7 (2), 
513-519. 

32. Tran, P. A.; Zhang, L. J.; Webster, T. J., Carbon nanofibers and carbon nanotubes 
in regenerative medicine. Advanced Drug Delivery Reviews 2009, 61 (12), 1097-1114. 

33. Chao, T. I.; Xiang, S. H.; Chen, C. S.; Chin, W. C.; Nelson, A. J.; Wang, C. C.; 
Lu, J., Carbon nanotubes promote neuron differentiation from human embryonic stem 
cells. Biochemical and Biophysical Research Communications 2009, 384 (4), 426-430. 



 94 

34. Jan, E.; Kotov, N. A., Successful differentiation of mouse neural stem cells on 
layer-by-layer assembled single-walled carbon nanotube composite. Nano Letters 2007, 7 
(5), 1123-1128. 

35. Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; 
Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D.; Gelain, F.; Casalis, L.; Prato, M.; 
Giugliano, M.; Ballerini, L., Carbon nanotubes might improve neuronal performance by 
favouring electrical shortcuts. Nature Nanotechnology 2009, 4 (2), 126-133. 

36. Stephen J. Byrne; Williams, Y.; Davies, A.; Corr, Serena A.; Rakovich, A.; 
Gun'ko, Yurii K.; Rakovich, Yury P.; Donegan, John F.; Volkov, Y., "Jelly Dots": 
Synthesis and Cytotoxicity Studies of CdTe Quantum Dot-Gelatin Nanocomposites. 
Small 2007, 3 (7), 1152-1156. 

37. Chan, W. H.; Shiao, N. H.; Lu, P. Z., CdSe quantum dots induce apoptosis in 
human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of 
survival signals. Toxicology Letters 2006, 167 (3), 191-200. 

38. Calabrese, E. J.; Baldwin, L. A., Applications of hormesis in toxicology, risk 
assessment and chemotherapeutics. Trends in Pharmacological Sciences 2002, 23, 331-
337. 

39. O'Brien, P. J.; Irwin, W.; Diaz, D.; Howard-Cofield, E.; Krejsa, C. M.; Slaughter, 
M. R.; Gao, B.; Kaludercic, N.; Angeline, A.; Bernardi, P.; Brain, P.; Hougham, C., High 
concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in 
a novel cell-based model using high content screening. Archives of Toxicology 2006, 80 
(9), 580-604. 

40. Xu, J. J.; Diaz, D.; O'Brien, P. J., Applications of cytotoxicity assays and pre-
lethal mechanistic assays for assessment of human hepatotoxicity potential. Chemico-
Biological Interactions 2004, 150 (1), 115-128. 

41. Plymale, D. R.; Haskins, J. R.; Iglesia, F. A. d. l., Monitoring simultaneous 
subcellular events in vitro by means of coherent multiprobe fluorescence. Nat Med 1999, 
5 (3), 351-355. 

42. Kann, O.; Kovacs, R., Mitochondria and neuronal activity. Am J Physiol Cell 
Physiol 2007, 292 (2), C641-657. 

43. Nicholls, D. G., Mitochondrial membrane potential and aging. Aging Cell 2004, 3, 
35-40. 

44. Orrenius, S.; Nicotera, P., The Calcium-Ion and Cell-Death. Journal of Neural 
Transmission-Supplement 1994,  (43), 1-11. 



 95 

45. Monteith, G. R.; Bird, G. S. J., Techniques: High-throughput measurement of 
intracellular Ca2+ - back to basics. Trends in Pharmacological Sciences 2005, 26 (4), 
218-223. 

46. Mattson, M. P., Calcium and neurodegeneration. Aging Cell 2007, 6, 337-350. 

47. Chin, T.-Y.; Hwang, H.-M.; Chueh, S.-H., Distinct Effects of Different Calcium-
Mobilizing Agents on Cell Death in NG108-15 Neuroblastoma X Glioma Cells. Mol 
Pharmacol 2002, 61 (3), 486-494. 

48. Orrenius, S.; McCabe, M. J.; Nicotera, P., Ca2+-dependent mechanisms of 
cytotoxicity and programmed cell death. Toxicology Letters 1992, 64-65, 357-364. 

49. Zornetzer, M. S.; Stein, G. S., Gene Expression in Mouse Neuroblastoma Cells: 
Properties of the Genome. PNAS 1975, 72 (8), 3119-3123. 

50. Clarkson, E. D.; Edwards-Prasad, J.; Freed, C. R.; Prasad, K. N., Immortalized 
Dopamine Neurons: A Model to Study Neurotoxicity and Neuroprotection. Proc Soc Exp 
Biol Med 1999, 222 (2), 157-163. 

51. Kim, K.; Huang, S. W.; Ashkenazi, S.; O'Donnell, M.; Agarwal, A.; Kotov, N. A.; 
Denny, M. F.; Kaplan, M. J., Photoacoustic imaging of early inflammatory response 
using gold nanorods. Applied Physics Letters 2007, 90 (22). 

52. Bhattacharya, R.; Mukherjee, P.; Xiong, Z.; Atala, A.; Soker, S.; Mukhopadhyay, 
D., Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano 
Letters 2004, 4 (12), 2479-2481. 

53. Bhattacharya, R.; Patra, C. R.; Verma, R.; Kumar, S.; Greipp, P. R.; Mukherjee, 
P., Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Advanced 
Materials 2007, 19 (5), 711-716. 

54. Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J. A.; 
Atala, A.; Mukhopadhyay, D.; Soker, S., Antiangiogenic properties of gold nanoparticles. 
Clinical Cancer Research 2005, 11 (9), 3530-3534. 

55. Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M., Biomedical applications of 
functionalised carbon nanotubes. Chemical Communications 2005,  (5), 571-577. 

56. Harrison, B. S.; Atala, A., Carbon nanotube applications for tissue engineering. 
Biomaterials 2007, 28 (2), 344-353. 

57. Tian, F. R.; Cui, D. X.; Schwarz, H.; Estrada, G. G.; Kobayashi, H., Cytotoxicity 
of single-wall carbon nanotubes on human fibroblasts. Toxicology in Vitro 2006, 20 (7), 
1202-1212. 



 96 

58. Cui, D. X.; Tian, F. R.; Ozkan, C. S.; Wang, M.; Gao, H. J., Effect of single wall 
carbon nanotubes on human HEK293 cells. Toxicology Letters 2005, 155 (1), 73-85. 

59. Hu, H.; Ni, Y. C.; Montana, V.; Haddon, R. C.; Parpura, V., Chemically 
functionalized carbon nanotubes as substrates for neuronal growth. Nano Letters 2004, 4 
(3), 507-511. 

60. Zanello, L. P.; Zhao, B.; Hu, H.; Haddon, R. C., Bone cell proliferation on carbon 
nanotubes. Nano Letters 2006, 6 (3), 562-567. 

61. Lifeng, D.; et al., Cytotoxicity of single-walled carbon nanotubes suspended in 
various surfactants Nanotechnology 2008, 19 (25), 255702. 

62. Haifei, X.; et al., Multi-walled carbon nanotubes suppress potassium channel 
activities in PC12 cells. Nanotechnology 2009, 20 (28), 285102. 

63. Kotov, N. A., Inverted colloidal crystals as three-dimensional cell scaffolds. 
Langmuir 2004, 20 (19), 7887-7892. 

64. Lee, J.; Lee, J., Inverted colloidal crystals as three-dimensional 
microenvironments for cellular co-cultures. Journal of materials chemistry 2006, 16 (35), 
3558-3564. 

65. Yokoi, H.; Kinoshita, T.; Zhang, S., Dynamic reassembly of peptide RADA16 
nanofiber scaffold. Proceedings of the National Academy of Sciences 2005, 102 (24), 
8414-8419. 

66. Stachowiak, A. N.; Bershteyn, A.; Tzatzalos, E.; Irvine, D. J., Bioactive 
Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity 
and Robust Mechanical Properties. Advanced Materials 2005, 17 (4), 399-403. 
 

 



 97 

 

 

CHAPTER 3 

Biocompatibility of Layer-by-Layer Assembled Single-Walled Carbon Nanotube 

Composites with Neural Stem Cells 

 

3.1 Abstract 

The same properties that made carbon nanotube (CNT) composites interesting for 

electronics, sensing and ultrastrong structural materials also make them an asset for 

biomedical engineering.  The combination of electron conductivity, corrosion resistance 

and strength are essential for neuroprosthetic devices.  All the studies in this area 

demonstrating cellular adhesion and signal transduction activity on CNT matrixes were 

conducted, so far, with terminally differentiated primary cells and cancerous cell lines.  

Neural stem cells are very plastic neural precursors capable of adapting to environmental 

conditions and recreating signal transduction pathways.  Their intrinsic biological 

functionality not only makes the transition to stem cell cultures a difficult-to-avoid step 

but also implies several fundamentally important challenges.  Here we demonstrate that 

mouse embryonic neural stem cells (NSCs) from the cortex can be successfully 

differentiated to neurons, astrocytes, and oligodendrocytes with clear formation of 
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neurites on layer-by-layer (LBL) assembled single-walled carbon nanotube (SWNT)-

polyelectrolyte multilayer thin films.  Biocompatibility, neurite outgrowth, and 

expression of neural markers were similar to those differentiated on poly-L-ornithine 

(PLO), one of the most widely used growth substratums for neural stem cells. 

 

3.2 Introduction 

The development of nanotechnology is penetrating biology and medicine at a 

remarkable speed.1  Nanotechnology is poised to provide new tools to measure and 

understand biosystems,2, 3 bring insights to challenges in biotechnology and 

biomedicine,4, 5 and offer building components for advanced biomaterials.6, 7  One area 

that will significantly benefit from the development of nanoscale engineering is the 

technology for neural medicine in its many manifestations.8   The reasons are multifold:  

(1) Nanomaterials were originally developed and still have the most widespread 

applicability for electronics and information processing which makes their 

functionalities quite similar to those of neural system.   

(2) The neural tissue is highly complex in its anatomy, functional structuring, and 

information processing, which frustrates the applications of current technologies 

and requires the change of technological paradigm.   
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(3) The central nervous system is difficult to access and has a heterogeneous 

cellular and molecular environment, which, in turn, means that size reduction of 

any devices to interact with neurons is required to create the least possible 

interference with and disruption to the central nervous system’s functionality.   

Indeed, recently we are beginning to see emerging applications of nanotechnology 

in neuroscience using primarily organic and polymeric materials as scaffolds.  In this 

study, we focus on the development of a new platform biomaterial based on single-walled 

carbon nanotubes (SWNTs) that can find applications in the treatment of neurological 

disorders and injuries.  Why carbon nanotubes?  The unique physical, chemical, 

mechanical, and electronic properties of carbon nanotubes9-14 can be, in part, transferred 

into SWNT composites to combine high electrical conductivity, chemical stability, and 

physical strength with structural flexibility.15-19  Such a unique combination of 

characteristics and the possibility for surface functionalization20, 21 make these SWNT 

composites promising candidates for making neural prosthetic devices with capabilities 

for electrical field recording, sensing of neurotransmitters, and electrical stimulation.  For 

example, several neurological disorders and injuries, such as Parkinson’s disease, 

epilepsy, and stroke require an implantable device to generate electrical activity in the 

damaged or diseased tissue.  One common problem of all chronically implanted 

electrodes lies in the tissue-electrode interface.22  Tissue reactions typically lead to 

encapsulation around the electrode, reducing its performance and lifetime.  Current 

neural prosthetic technology is in active search of a biocompatible material that allows 

chronic implantation of miniaturized electrodes.23, 24  SWNT composites can exactly 
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satisfy these demands by providing a durable, electrically conductive, highly modifiable, 

and biocompatible interface for permanent long-term implantations.  Various strategies 

can be similarly applied to SWNT composites to attract growing neurites25, 26 and reduce 

inflammatory response.27  The first results on neuronal excitation through SWNT films 

made by the layer-by-layer (LBL) assembly had already been demonstrated.28 

All the latest studies of interactions of neural cells with carbon nanotubes were 

carried out with terminally differentiated primary cells or cell lines.  The primary focus 

was on establishing biocompatibility of the proposed materials.29, 30  In addition, carbon 

nanofiber reinforced composites were shown to increase neuronal cell functions while 

providing a mechanically strong and electrically conductive substrate.31  Patterned carbon 

nanotubes were utilized to guide neural cell growth and demonstrate preferential cell 

attachment on carbon nanotubes.32, 33  Neural signal transmission efficacy was also 

reported to increase on carbon nanotube-coated substrates.34  We see strong possibilities, 

fundamental importance, and practical need to use neural stem cells (NSCs)35 in the 

studies of SWNT materials for neural medicine.  Terminally differentiated cells have 

limited capacities for extracellular matrix remodeling, axonal extension, and interfacing 

with implants.36, 37  Successful implantation and long-term performance of a neural 

prosthetic device may and most likely will require an interface that can recruit NSCs.  On 

the other hand, in many cases NSCs are necessary to regenerate the neural tissue,38, 39 

while the implantable device will be needed to establish and train a particular signal 

transmission path.  Despite the obvious importance of NSCs, the overall body of 

knowledge of their behavior on engineered materials remains very limited.  Young and 
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his colleagues have done work in this area with polymeric and biomimetic substrates.40-42 

Silva and Stupp have demonstrated the differentiation of NSCs in peptide fibrous 

matrices.43 Interactions of quantum dots and nanoparticles have been investigated with 

neurons44-46 and bone marrow stem cells47, 48 but not with NSCs.  Likewise, no 

information is available about the interaction of any possible carbon nanotube materials 

and NSCs.  Considering the potential importance of these composites for neural 

medicine, one has to ask the two fundamental questions that are necessary for further 

development of the field and acquisition of knowledge regarding the interaction of 

nanoscale materials and transformable cells.  First, are SWNT composites biocompatible 

enough to support the differentiation of stem cells, which are well known for their 

sensitivity to the environment?  Second, if this is the case, do SWNT materials affect in 

any way the differentiation of NSCs?  In this study, we demonstrate, for the first time, 

differentiation of mouse cortical NSCs on a SWNT-based composite.  Our results provide 

us definite answers to the questions above regarding LBL assembled SWNT-

polyelectrolyte composite films.  The choice of the particular SWNT composite was 

made on the basis of previous success with culturing NG108-15 murine neuroblastoma × 

glioma hybrid cells on SWNT LBL films49  and their neural excitation through the LBL 

films.28 
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3.3 Methods 

3.3.1 Preparation of Substrates 

Poly-L-ornithine (PLO, Sigma-Aldrich), a commonly used substratum for NSC 

studies, was used to produce a monolayer of PLO on 12mm #1 round German glass 

coverslips (Bellco Glass Inc.) as the control substrates.  PLO coated coverslips were 

prepared 24 h before seeding by incubating the coverslips in 15 µg/ml PLO solution for 3 

hours followed by 3 washes with PBS.  Prior to coating, the glass coverslips were cleaned 

and sterilized by sonication in 70% ethanol and irradiation with UV light.  The 

experimental substrates were fabricated by coating glass coverslips with layer-by-layer 

(LBL) assembled single-walled carbon nanotube (SWNT) composite multilayers.  A 

stable dispersion of SWNTs was obtained by first dispersing purchased SWNTs (Carbon 

Nanotechnologies Inc.) in 1-wt% poly(sodium 4-styrene-sulfonate) (PSS, MW 1,000,000, 

Sigma-Aldrich) solution50 with 2 h of mild sonication in a ultrasonic cleaner followed by 

centrifuging the mixture at 5000 rpm and collecting the supernatant.  To assemble 

multilayers of SWNTs, round glass coverslips cleaned by sonication in 70% ethanol were 

immersed in a 0.5 wt-% Poly(ethyleneimine) (PEI, MW 750,000, Sigma-Aldrich) solution 

for 20 min followed by wash with high purity water and drying under a gentle air jet to 

form a stable monolayer of PEI molecules. Each subsequent layer was formed by 

immersing the coverslips in the dispersion of SWNTs or PEI for 20 min followed by the 

same washing and drying steps.  The alternating layering process was repeated until 5 or 

6 number of layers, designated as (PEI/SWNT)5 or (PEI/SWNT)6, were obtained. The 
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coated glass coverslips were sterilized with 70% ethanol and UV irradiation prior to cell 

seeding. 

3.3.2 Culture of Mouse Cortex Embryonic 14-day Neurospheres 

Mouse cortex embryonic 14-day neurospheres, basal medium, and all 

supplements for neural stem cell (NSC) culture were purchased from StemCell 

Technologies.  Proliferation and differentiation media were prepared according to the 

manufacturer’s technical manual.  The proliferation medium contains 20 ng/ml of human 

epidermal growth factor (hEFG).  Neurospheres were cultured in the proliferation 

medium for at least two passages (7 to 9 days each) before being used for differentiation 

experiments.  Between passages, neurospheres at moderate densities were harvested, 

mechanically dissociated into single cells, and seeded at a density of 2 × 106 cells per 40 

mL of medium.  For the differentiation of neurospheres, neurospheres were harvested and 

seeded as whole spheres on coated glass coverslips in 24-well plates at a density of 200 

neurospheres per well and cultured in differentiation medium.  For the differentiation of 

single cells, neurospheres were dissociated into single cells using a chemical dissociation 

kit (StemCell Technologies) and seeded at a density of 2 × 105 cells per well.  Cultures 

were observed for morphological changes at the indicated time point using a Nikon 

Eclipse TS100 inverted microscope equipped with a QImaging MicroPublisher 3.3 digital 

CCD color cameras.  Images were captured using QImaging’s QCapture software. 
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3.3.3 Quantification of Process Growth 

The lengths of neural processes were determined from digital photomicrographs 

taken at the indicated experimental points.  Quantification of process growth was 

evaluated from the end-to-end distances of neural processes in 10 independent fields.  

The lengths of 5 longest processes per field were measured from the edge of the 

neuropshere to the tip of the processes in a linear fashion using the NIH Image J 

software.   

2.3.4 Assessment of Cell Viability 

Viability of differentiated neurospheres was determined using the MTT assay.  

The MTT salt (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, 

Sigma-Aldrich) is reduced to insoluble purple formazan by active mitochondrial 

reductase enzymes in the cell.  At the indicated time points, 50 µL of MTT solution (5 

mg MTT/ml PBS, sterile filtered) was added to each well and incubated for 4 h at 37°C.  

After incubation, the MTT formazan solution was collected, precipitated by 

centrifugation, and dissolved in 500 µL of DMSO.  The optical density of the formazan 

solution was measured at 570 nm (reference at 650 nm) using a Maxline microplate 

reader (Molecular Devices).  Viability of differentiated single cells was determined using 

the WST-8 assay.  Unlike the MTT salt, the WST-8 salt (2-(2-methoxy-4-nitrophenyl)-3-

(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium) produces a water-

soluble formazan dye upon reduction.  At the indicated time point, 50 µL of WST-8 

solution (Dojindo Molecular Technologies Inc.) was added to each well and incubated for 
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5 h at 37°C.  The absorbance of the solution was measured at 450 nm (reference at 650 

nm).  

3.3.5 Scanning Electron Microscopy 

For SEM analysis, samples were first washed briefly with PBS, fixed with 2.5% 

glutaraldehyde for 1 h, and then washed again with PBS three times for 5 min each.  The 

samples were then dehydrated through a gradient series of ethanol (25%, 50%, 70%, 

85%, 95%, and three times 100%) for 5 min each time and left overnight in the final 

100% ethanol solution.  Completely dried samples were mounted on aluminum stubs and 

coated sputter-coated with gold.  Imaging was carried out using a Philips XL30FEG 

scanning electron microscope. 

3.3.6 Immunocytochemistry 

For immunocytochemical characterization, cultured cells were fixed in 4% 

paraformaldyde in PBS for 30 min and permeabilized in 0.3% Triton X-100 in PBS for 5 

min.  Cells were first incubated with primary antibody diluted in PBS containing 10% 

goat serum for 2 h at 37°C and then with secondary antibody diluted in PBS containing 

2% goat serum for 30 min at 37°C.  All primary and secondary antibodies were 

purchased from Chemicon. Primary antibodies and their dilutions are as follow: mouse 

anti-nestin (1:200), mouse anti-MAP2 (1:200), mouse anti-GFAP (1:200), chicken anti-

GFAP (1:200), and mouse anti-O4 (1:200). Secondary antibodies and their dilutions are 

as follow: goat anti-mouse IgG-rhodamine conjugated (1:100), donkey anti-chicken Igy - 
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FITC conjugated (1:100). Samples were counter-stained for nuclei and mounted with 

Prolong Gold Anti-Fading Reagent with DAPI (Invitrogen). Immunostained samples 

were visualized using an Olympus FluoView FV500 confocal laser scanning microscope.  

The imaged were acquired using the Olympus Fluoview software version TIEMPO 4.3.  

Quantitative cell phenotype analysis was carried out using the NIH ImageJ software by 

counting immunopositive cells against DAPI-stained cells. 

 

3.4 Results and Discussion 

To investigate the behavior of NSCs on LBL assembled SWNT composite films, 

mouse embryonic 14-day neurospheres (ie. spherical clonal structures of NSCs) from the 

cortex were seeded and induced to differentiate on round glass coverslips (12 mm 

diameter) coated with 6 bilayers of SWNT-polyelectrolyte.  SWNTs were dispersed in a 

1-wt% poly(sodium 4-styrene-sulfonate) (PSS) solution and LBL assembled with the 

polyelectrolyte poly(ethyleneimine) (PEI). The resulted thin film of coating was 

designated as (PEI/SWNT)6. As a control, neurospheres were also seeded and 

differentiated on coverslips coated with poly-L-ornithine (PLO), a standard substratum 

commonly used for NSC cultures and studies.  

NSCs were first expanded in proliferation medium containing epidermal growth 

factor (EGF).  To induce cell attachment and differentiation, they were seeded at a low 

density of 200 neurospheres per coated coverslip in 24-well plates and cultured with EGF 
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depleted differentiation medium.  As suggested by Young et al.,41 a high neurosphere 

seeding density encourages cell migration from neurospheres while a low seeding density 

does not support cell survival away from neurospheres and forces cells to extend long 

processes in search for other neurospheres.  Therefore, a low neurospheres seeding 

density truly tests the interaction between cells and their substrate.  In our study, 

neurospheres attached to both types of substrates and developed neural processes away 

from the edge of the neurospheres as early as 1 day in culture (Figure 3.1a).  The lengths 

of processes from differentiated NSCs increased steadily over the 7-day culture period 

(Figure 3.1b).  Throughout the culture period, neural processes developed on PLO coated 

substrates remained longer than those developed on (PEI/SWNT)6 coated substrates; 

however, the differences were not very significant.  By 5 days in culture, NSCs on both 

types of substrates had extended long and complex processes into the area surrounding 

the neurospheres.  It is highly likely that, if the neurospheres were seeded at higher 

densities, the extending processes from individual neurospheres could reach and form 

networks with their neighboring neurospheres.  

Viability of neurospheres was evaluated using the MTT assay (Figure 3.1c).  

There was no noticeable difference between the viability of neurospheres on 

(PEI/SWNT)6 and PLO coated substrates.  Cell viability was maintained at a steady level 

after day 3.  The initial decline in cell activity between day 1 and day 3 is likely to be a 

consequence of cell damage during the EGF depletion process (repeated centrifugation 

and dispersion) and lost of weakly attached neurospheres during medium change.  In any 

case, our viability assessment indicates that (PEI/SWNT)6 coated substrates are as 
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biocompatible as PLO coated substrates in supporting neurosphere differentiation.  The 

differentiated morphology of neurospheres was confirmed by scanning electron 

microscopy (SEM) (Figure 3.1d first row).  Differentiated neurospheres developed 

abundant and highly branched neural processes on both types of substrates.  SEM also 

revealed migration of individual cells away from the original neurospheres (Figure 3.1d 

second row).  In addition, we observed more pronounced spreading of extracellular 

matrix (ECM) on PLO coated substrates which we believe is a consequence of PLO’s 

adhesive nature.  The SEM images are a straightforward indication, together with Figure 

3.1a-b, that LBL assembled SWNT films can support the differentiation of neurospheres 

and their neurite outgrowth.  
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Figure 3.1 Mouse embryonic 14-day cortical neurospheres differentiated on and 
(PEI/SWNT)6 and PLO coated coverslips in 24-well plate at a low seeding density of 200 
neurospheres per well. (a) Light microscopy images of differentiated neurospheres. (b) 
Evaluation of the lengths of processes extending from the differentiated neurospheres for 
the 7-day culture period. (c) MTT reduction activity of differentiated neurospheres. (d) 
Color enhanced SEM images highlighting neurite outgrowth of differentiated 
neurospheres on day 7 (first row). SEM images at higher magnification showing 
migrating NSCs around neurospheres (second row). 
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It has been known since the discovery of NSCs that NSCs differentiate into a 

heterogeneous population of cells consisted primarily of neurons, astrocytes, and 

oligodendrocytes.35  To analyze the differentiated phenotypes, neurospheres cultured for 

7 days were immunostained with anti-nestin, anti-microtubule associated protein 2 (anti-

MAP2), anti-glial fibrillary acidic protein (anti-GFAP), and anti-oligodendrocyte marker 

O4 (anti-O4) and countered stained with DAPI nuclei stain (Figure 3.2a).  Nestin 

expression has been adopted as a marker for neural stem and precursor cells.51  MAP2 is 

a cytoskeletal protein component in mature neurons and dendrites52 while GFAP and O4 

are established markers for intermediate filament proteins in astrocytes53, 54 and surface 

antigens of developing oligodendrocytes55, 56 respectively. 

 Immunostaining results on PLO and (PEI/SWNT)6 coated substrates are 

qualitatively comparable (Figure 3.2a).  Both types of substrates supported differentiation 

of neurospheres into the three primary neural cell types – neurons, astrocytes, and 

oligodendrocytes.  In general, nestin expression is intense and abundant near the center of 

neurospheres.  MAP2-positive cells are faintly stained and located near the center, while 

O4-positive cells are sparsely distributed throughout the neurospheres. GFAP is heavily 

expressed at the periphery of neurospheres, indicating that most migrating cells might be 

astrocytes.  Quantitative assessment of cell phenotypes shows that there were slightly 

more neurons and oligodendrocytes on (PEI/SWNT)6 coated substrates and more 

astrocytes on PLO coated substrates (Figure 3.2b).  In general, the cell phenotype 

analysis is consistent with our observations from Figure 3.1 and 3.2a.  Longer neural 

process formation (Figure 3.1a,b) and increased spreading of ECM (Figure 3.1d second 



 111 

row) on PLO coated substrate seem to correlate with increased astrocyte population 

(Figure 3.2).  Fibrous astrocyes are known to have long and slender processes, and ECM 

formation is characteristic for astrocytes.  Similar results have also been obtained by 

Young and his colleagues41 in which, under serum-free condition, a substrate that 

promotes longer processes generated primarily fibrous astrocytes and fewer neurons.  

  

Figure 3.2 (a) Confocal microscopy images differentiated neurospheres on day 7. 
Neurospheres were stained for markers of NSCs (nestin), neurons (MAP2), astrocytes 
(GFAP), and oligodendrocytes (O4). Neural markers are shown in red, while the cell 
nuclei, counterstained with DAPI, are shown in blue. Images represent scans near the 
center of the neurospheres. Scale bars: 20 µm. (b) Average percentages of differentiated 
cell phenotypes after 7 days in culture. 

 

Having successfully demonstrated the differentiation of mouse neurospheres on 

LBL assembled SWNT composite films, we sought to elucidate the differences between 

the different substrates by increasing cell-substrate contact.  To accomplish this, we 

chemically dissociated neurospheres into single cells and differentiated them on 
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(PEI/SWNT)5, PLO, and (PEI/SWNT)5(PLO) coated glass coverslips.  We added 

(PEI/SWNT)5(PLO) coated substrates to help us determine whether the combination of 

PLO’s adhesiveness and SWNT’s nano-topology (Figure 3.3) would produce any 

additive cell behavior.  However, we observed very little variations across NSCs cultured 

on the three different substrates (Figure 3.4a).  As time progressed, NSCs transformed 

from a spherical morphology to a more elongated and spread-out morphology 

representative of differentiated neural cells.  Differentiated NSCs also developed neural 

processes that intertwine with one another.  The change in cell morphology was 

confirmed by scanning electron microscopy (SEM) images acquired on day 1 and day 5 

after seeding (Figure 3.4b).   

 

 
 

Figure 3.3 SEM images of (PEI/SWNT)5, PLO, and (PEI/SWNT)5(PLO) coated glass 
coverslips. Individual and bundles of carbon nanotubes are visible on (PEI/SWNT)5 and 
(PEI/SWNT)5(PLO) coated substrates, while PLO coated substrate is completely smooth 
under SEM. 
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Figure 3.4 Mouse embryonic 14-day cortical neurospheres differentiated as dissociated 
single cells and small clusters on and (PEI/SWNT)6, PLO, and  (PEI/SWNT)6(PLO) 
coated coverslips in 24-well plate. (a) Light microscopy images of differentiated NSCs. 
(b) SEM images of differentiated NSCs. (c) WST-8 reduction activity of differentiated 
NSCs. 

 

Viability of differentiated single cells was assessed using the WST-8 assay.  We 

switched to using WST-8 because a previous study reported MTT’s tendency to associate 

with carbon nanotubes to give false and cytotoxic results and recommended the use of 

water-soluble tetrazolium salts.57  WST-8 is a tetrazolium salt that produces a highly 
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water soluble formazan upon cellular reduction and has been recently adopted as an 

indicator for use in viability assays.58  Overall, NSCs on the three different substrates 

demonstrated similar viability throughout the 7-day culture period (Figure 3.4c).  Cell 

activity appeared to be constant between day 1 and day 4 but increased significantly day 

4 and day 7.  We suspect this increase in cell activity to be the result of increased 

metabolic activity of the extensively differentiated cell populations.  

The progression of NSC differentiation was monitored by immunostaining for 

nestin, MAP2, and GFAP expressions (Figure 3.5).  Identical trends were observed on all 

three types of substrates, and differentiation was not affected by the SWNT-based 

substrates.  While about 10% of differentiated neurospheres expressed MAP2, we 

observed insignificant amount of MAP2 expression in differentiated single cells 

throughout the culture period.  This is not a surprising result considering no additional 

agent was added to the standard differentiation medium supplied by the manufacturer, 

which may be insufficient for inducing or maintaining neuronal differentiation.  Our 

finding also indicates that the three dimensional structure of neurospheres and the 

junctions betweens individual cells in neurospheres may provide an environment similar 

to the neural stem cell niche, and therefore may be essential for neuronal differentiation.  

Despite the lack of MAP2 expression, NSC differentiation was nevertheless confirmed 

through changes in nestin and GFAP expressions.  The entire cell population was nestin-

positive and GFAP-negative on day 1, indicating an undifferentiated state.  As time 

progressed, NSCs began to lose their nestin-expression and acquire GFAP-expression.  

By day 7, none of the cells stained positive for nestin and approximately 80 to 90% of all 
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cells were GFAP-positive.  This transition is well documented.59  As NSCs proliferate 

and differentiate into neurons and glia, nestin is down-regulated and distinct intermediate 

markers are expressed.   

 

 

Figure 3.5 Confocal microscopy images of differentiated NSCs. Cells were stained for 
markers of NSCs (nestin, shown in red), astrocytes (GFAP, shown in green), and neurons 
(MAP2, not shown due to low level of expression). Cell nuclei were counterstained with 
DAPI and shown in blue. 
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3.5 Conclusions 

We have demonstrated for the first time that the differentiation of environment-

sensitive NSCs, both as neurospheres and single cells, on a CNT-based material.  Our 

study has the critical importance for further development of nanomaterials for neural 

interfaces.  The nanostructure of the LBL assembled SWNT-polyelectrolyte composite, 

which gives rise to the composite’s structural flexibility, chemical stability, and physical 

properties, showed no adverse affect on the differentiation of NSCs.  NSCs behaved 

similarly as those cultured on the standard and widely-used PLO substratum in terms of 

cell viability, the development of neural processes, and the appearance and progression of 

neural markers.  We also see indications that SWNT substrates might induce preferential 

differentiation into the neuronal lineage; however, this aspect of the study as well as the 

potential mechanism(s) of the influence requires further investigation. 
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CHAPTER 4 

Electrochemical Properties of Layer-by-Layer Assembled Carbon Nanotube 

Composites 

 

4.1 Abstract 

The safety, function, and longevity of implantable neuroprosthetic and 

cardiostimulating electrodes depend heavily on the electrical properties of the electrode-

tissue interface, which in many cases requires substantial improvement.  While different 

variations of carbon nanotube materials have been shown to be suitable for neural 

excitation, it is critical to evaluate them vs. other materials used for bioelectrical  

interfacing.  In this study, we found that composite multi-walled carbon nanotube-

polyelectrolyte (MWNT-PE) multilayers electrodes substantially outperform state-of-the-

art neural interface material available today, namely activated electrochemically 

deposited iridium oxide (IrOx). The MWNT-PE coated electrodes also share similar 

reductions in electrical impedance and augmentations in cathodic charge storage capacity 

(CSC) seen with promising conducting polymer coatings. Our findings suggest that 

MWNT-PE multilayers are excellent interfacing material for neural prosthetic 
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applications and can potentially be used to build a new generation of implantable 

electrodes.  

 

4.2 Introduction 

Neural and cardiac electrodes are currently utilized in an increasing number of 

diagnostic, therapeutic, and treatment strategies for various neurological, cardiac, 

sensory, and psychiatric conditions. Deep brain stimulators, artificial pacemakers, and 

cochlear implants are some of the most established and widely deployed electro-active 

prosthetic devices. They have been used to reduce symptoms of Parkinson’s disease,1 

maintain regular heart rhythm,2 and restore auditory function.3, 4 Other neural prosthetic 

devices have been used to treat epilepsy,5 depression6 and chronic pain,7 and to regulate 

breathing8 and bladder and bowel control.9 Regardless of their specific medical 

applications, all neural and cardiac electrodes operate by sensing or delivering electrical 

pulses to nearby tissues. Therefore, the safety, function, and longevity of these devices 

are ultimately dependent on the stability of the tissue-electrode interface, which dictates 

the electrode’s sensitivity to small signals and the ability to transfer electro-ionic charges 

to the tissue. Currently used electrodes are made primarily from biocompatible noble 

metals, such as gold, platinum, and iridium, and other non-reactive materials, such as 

titanium, stainless steel, and silicon. These metallic electrodes often suffer from poor 

contact with tissue and suboptimal long-term stimulation and recording performance due 

in large part to scar formation. 
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To improve the performance of electrodes and to resolve these problems, 

researchers have turned to various surface modification strategies to render the electrodes 

more sensitive to electrical signals and more efficient in charge transfer. Most of these 

approaches focus on the reduction of electrical impedance (Z) and augmentation of 

charge storage capacity (CSC) by applying a thin layer of coating on the electrode to 

increase the effective surface area and improve charge transfer at the electrode-tissue 

interface. Further improvements in long-term device performance could be achieved with 

coatings that also provide enhanced biocompatibility and structural integrity. Iridium 

oxide (IrOx) has been extensively characterized as a coating material for electrodes10-13 

and is currently adopted for several commercially available medical devices. Compared 

to metal electrodes, IrOx permits significantly higher levels of charge injection without 

electrode dissolution or electrolysis of water11 and has been used to coat a variety of 

electrodes including deep brain,14, 15 nerve cuff,16 pacing, and defibrillation electrodes.17 

Conducting polymers, including polyacetylene, polyaniline, polypyrrole, poly(3,4-

ethylenedioxythiophene) (PEDOT), and their derivatives, are another class of material 

that has recently received significant attention as an interfacing material for implantable 

electrodes.18, 19 PEDOT has been shown to be the most promising interfacing material 

among them since its ordered and well defined chemical structure gives rise to improved 

conductivity and thermal stability.20 Recently, researchers have demonstrated the ability 

to dramatically improve the electrical properties of neural21-23 and cochlear24 electrodes 

by surface modification with PEDOT. In additions, various strategies have been explored 
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to improve biocompatibility of and incorporate drug release capabilities into the PEDOT 

coatings.25-27   

Despite IrOx’s initial success and PEDOT’s promising outlook, there is still a 

strong demand for new interfacing materials with better combination of properties. IrOx 

is well known for its poor adhesion to underlying substrate, and low structural and 

chemical stability which worsens as increasingly thick oxide layers form during normal 

electrode activity.28, 29 Unlike IrOx, PEDOT coatings do not grow thicker or degrade 

during normal device function. However, recent studies have revealed structural 

problems, such as cracking and delamination.22  

Given that chemical and mechanical stability are fundamental to medical 

electrodes, a logical choice of material for interfacing electrodes with tissues is carbon 

nanotubes (CNTs), which are known for their extraordinary strength, toughness, chemical 

stability, electrical conductivity, high surface area30 and supercapacitor properties31, 32. 

Indeed, many groups have investigated CNT materials and demonstrated promising 

results in biocompatibility with neuronal cells.33-38 They have been shown to increase 

neuronal cell functions,39 boost neural signal transmission efficacy,40 stimulate and record 

brain circuit activity,41, 42 and improve neural recordings.43 Recently, successful growth 

and differentiation of neuroblastoma cells44 and neural stem cells45 on these films, as well 

as stimulation of cultured neurons were demonstrated.46  

Thus far a substantial amount of data on CNTs interfaced with neural cells has 

been obtained.  Yet, these data do not allow realistically compare CNTs with most 
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commonly used and probably the other state of the art materials used for similar 

purposes.  To elucidate the potential of CNT-polyelectrolyte thin films for interfacing 

with electroactive cells, we investigated their ability to reduce interfacial impedance, 

increase charge storage capacity, deliver charge, and withstand continuous charge 

injection cycles by performing a multi-parameter side-by-side comparison with IrOx and 

PEDOT coatings.  This knowledge is critical for the understanding of CNT’s potential as 

an emerging technology. The obtained data also indicate that such comparison and 

materials evaluation is fundamental for future development of the technology of 

implantable electrodes. 

 

4.3 Methods 

4.3.1 Materials 

CVD-produced multi-walled carbon nanotubes (MWNTs) were purchased from 

NanoLab, Inc. (Newton, MA), respectively. Poly(vinyl alcohol) (PVA; MW 70k) and 

poly(sodium 4-styrene-sulfonate) (PSS; MW 70k and MW 1000k) were obtained from 

Sigma-Aldrich. 3,4-Ethylenedioxythionphene (EDOT, BAYTRON® M; MW 142.17) 

was received from H.C. Stark Inc. (Newton, MA). Iridium tetrachloride was purchased 

from Alfa Aesar. All other chemicals were obtained from Sigma-Aldrich.  
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4.3.2 Electrodes  

400 µm diameter ball electrodes were fabricated from 75 µm diameter Teflon® 

insulated platinum-iridium (90%-10%) wires obtained from A-M Systems, Inc. 

(Carlsborg, WA). The ball electrodes were made by melting the tip of the wire with a 

micro flame oxygen-methane torch. 6 mm diameter Au electrodes were fabricated in 

house by gold sputter coating a barbell-shaped pattern on polystyrene substrates using a 

mask. 

4.3.3 Surface Modification of Electrodes 

Surface modification of electrodes with MWNTs was carried out using the 

technique of layer-by-layer (LBL) assembly. MWNTs were dispersed at 0.5mg/ml in 0.1 

wt% PSS (MW 1000k) solution by ultrasonication and alternately adsorbed with 1 wt% 

PVA solution. For each deposition, the electrode was immersed in the corresponding 

solution for 1 minute, following by rinsing with deionized water and drying with an air 

jet. The resulting thin film of coating was designated as (PVA/MWNT)n where n is the 

number of bilayers.  

Surface modification with PEDOT was conducted by electrochemical deposition 

of the EDOT monomer. The monomer solution was prepared by dissolving EDOT in 0.2 

wt% PSS (MW 70k). The electrochemical process was performed on each electrode by 

an Autolab PGSTAT 12 (EcoChemie, Utrecht, Netherlands) in glavanostatic mode with a 

conventional four-electrode configuration at room temperature. The reference and 
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counter electrodes were connected to a platinum wire within the monomer solution, and 

the working and sensing electrodes were connected to the electrode site. The thickness of 

the deposited material was controlled by the deposition time. For the ball electrodes, the 

deposition current was 1 µA, corresponding to a current density of 0.2 mA/cm2.  

Surface modification with iridium oxide film was performed as described by 

Marzouk et al.47 Briefly, the deposition solution was prepared by dissolving 75 mg 

iridium tetrachloride in 50 mL water, followed by addition of 0.5 mL aqueous 30% 

hydrogen peroxide and 250 mg oxalic acid dihydrate. The pH of the solution was 

adjusted to 10.5 by addition of anhydrous potassium carbonate, and the resulting solution 

was allowed to stabilize at room temperature for 2 days. Electrochemical deposition of 

iridium oxide was carried out using the same setup as EDOT but with a deposition 

current of 8 µA, corresponding to a current density of 1.6 mA/cm2. 

For measurement of coating thicknesses, coatings were deposited on 6 mm 

diameter Au electrodes using the same LBL and electrochemical deposition processes 

described above above. 

4.3.4 Electrochemical Impedance Spectroscopy (EIS) 

An Autolab PGSTAT 12 and Frequency Response Analyzer software 

(EcoChemie, Utrecht, Netherlands) were used to record impedance spectra of the 

electrodes. A solution of 1 M phosphate buffered saline (PBS, pH = 7) was used as an 

electrolyte in a four-electrode configuration. The working and sensing electrodes were 
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connected to the electrode site. The counter electrode was connected to a platinum foil 

immersed in PBS, and an Ag/AgCl reference electrode was immersed in PBS. An AC 

sinusoidal signal of 5 mV in amplitude was used to record the impedance over a 

frequency range of 1-105 Hz.  

4.3.5 Cyclic Voltammetry (CV) and Biphasic Stimulation 

CV and biphasic stimulation were performed using an Autolab PGSTAT 12 

instrument and General Purpose Electrochemical System software (EcoChemie, Utrecht, 

Netherlands) in a four-electrode configuration as described for EIS. For CV, a scan rate 

of 0.1 V/s was used and the potential on the working electrode was swept between -0.9 V 

and 0.5 V. Three cycles were swept to insure that the film had reached a stable state. For 

biphasic stimulation a 2 mC/cm2 (10 mA, 0.5 ms) biphasic, cathodic first current pulse 

was sourced.  

4.3.6 Scanning Electron Microscopy (SEM)  

SEM was conducted using a Philips XL30 FEG SEM and a FEI Nova Nanolab 

SEM. Samples were sputter coated with gold prior to imaging.   
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4.4 Results and Discussion 

The functional properties of the neural interface depend not only on the properties 

of individual CNT but also on the technique of their deposition on the electrode surface.  

Typical CNT films are produced by solvent evaporation,33, 34, 37, 40, 42 electrochemical 

deposition,43 and chemical vapor deposition.35, 36, 38, 41 While displaying excellent 

electrical properties, they are quite fragile.  Implantable biomedical devices must 

withstand chronic low-level long-term stresses and harsh physical conditions and as such, 

require exceptional mechanical properties.18 For this reason multilayered composites of 

CNTs with polyelectrolytes fabricated by the so called layer-by-layer (LBL) assembly 

capable of delivering such properties48 appeared to us as an attractive technique for 

building a robust neural interface.  Additionally, their ability to support both electronic 

and ionic current, store anti-inflammatory drugs,49 and produce complex 3D surfaces also 

seem to be essential for a successful neuroprosthetic device.   

The CNT LBL coated electrodes were prepared by assembling multi-walled 

carbon nanotubes (MWNTs) dispersed in a solution of poly(styrene sulfonate) (PSS)50 

with a solution of poly(vinyl alcohol) (PVA) on the ball-shaped tips of platinum-iridium 

(PtIr) model electrodes (Figure 4.1a). These model electrodes were made from 

commercially available Teflon-insulated 75 um diameter PtIr wires, which are widely 

used in the assembly of neural microelectrode arrays and have been adopted as model 

monopolar cochlear electrodes for in vitro and in vivo studies.24 PEDOT and IrOx 

coatings were galvanostatically deposited on the model electrodes using methods that 
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have been described previously.23, 47 For PEDOT deposition, PSS was also used as the 

dopant counter ion. The coating thickness of the MWNT coatings was controlled by the 

number of layers assembled on the surface. For PEDOT and IrOx deposition, thickness 

was varied by altering the deposition charge density. The presence of coatings can be 

easily recognized as the modified electrode changes color (Figure 4.1b-d). The surface 

morphology of the MWNT LBL coating (Figure 4.1e) consisted of intertwined MWNT 

bundles whose nanoscale, high aspect ratio features are essential to increasing surface 

area and improving charge transfer efficiency. Features of nanoscale roughness were also 

observed on the PEDOT coating (Figure 4.1f) while the IrOx coating (Figure 4.1g) 

appeared to have less visible surface roughness at the nanometer level. 

 

 
Figure 4.1 Surface modification of electrodes. Ball-tipped IrOx electrodes (a) made from 
Teflon® insulated 75 µm PtIr wires were surface modified with either LBL assembled 
MWNTs (b) or electrochemically deposited PEDOT (c) or IrOx (d). SEM images 
illustrate the differences in their surface morphology. The MWNT coating (e) consists of 
a nanofibrous network of MWNT bundles. The PEDOT coating (f) shows a moderate 
degree of roughness while the IrOx (g) coating is relatively featureless at the nanoscale 
level. Scale bars for the SEM images are 500 nm. 
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Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) 

were used to characterize the electrochemical properties of the surface modified PtIr 

electrodes. All measurements were conducted in 1 M PBS. For EIS, an AC sinusoidal 

signal of 5 mV in amplitude was used to record the impedance over a frequency range of 

1 to 105 Hz. For CV, a scan rate of 0.1 V/s was used and the potential on the working 

electrode was swept between -0.9 V and 0.5 V.  The measurements showed that all three 

coatings progressively decreased the impedance (Figure 4.2a-c) and phase angle (Figure 

4.2d-f) with increasing coating thickness, rendering the electrodes less capacitive at 

higher frequencies.  Also as expected, the CV data (Figure 4.2g-i) indicated increasing 

charge storage capacity (CSC) with increasing coating thickness, which is proportional to 

the mass of material available for storing charges. As one may notice, the disparity in the 

magnitude of CSC across the three types of coatings is in fact due to differences in the 

coating thickness. To provide an accurate comparison on the electrochemical properties, 

we measured the thickness of the coatings (Figure 4.3) and translated our measurements 

to a per unit film thickness basis (Figure 4.4). The thickness of MWNT LBL film was 

found to depend linearly on the number of bilayers, averaging approximately 7 nm per 

bilayer. For PEDOT and IrOx, coatings thickness appeared to have a logarithmic-like 

dependence on the deposition charge density.  
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Figure 4.2 Characterization of MWNT, PEDOT, and IrOx coated electrodes. 
Electrochemical impedance spectroscopy revealed decreasing impedance (a-c) and phase 
angle (d-f) with increasing thickness of MWNT, PEDOT, and IrOx coatings on PtIr 
electrodes. The charge storage capacity of the surface modified electrodes also increased 
with increasing film thickness as illustrated by cyclic voltammetry (g-i). 

 



 134 

 

 
Figure 4.3 Coating thickness as a function of deposition parameters. MWNT (a), 
PEDOT (b), and IrOx (c) were coated with various numbers of bilayers or deposition 
charge densities on 6 mm diameter gold sputter coated electrodes, and the cross-sectional 
thickness of the coatings were measured under SEM. The insets illustrate the cross-
sections of an 80-bilayer MWNT coating (a), and a PEDOT (b) and IrOx (c) coating 
deposited from a charge density of 90 mC/cm2 and 800 mC/cm2, respectively. Scale bars 
are 2 µm. 
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The thickness, deposition methods, and chemical composition of electrode 

coatings significantly affects the electrical and mechanical properties of the films.  We 

chose to compare coatings at a given thickness that would be appropriate for use on 

clinical devices.  By analyzing the measurements on a per unit film thickness basis, we 

find the MWNT LBL coating to be the most effective material for reducing the interfacial 

impedance value (Figure 4.4a). With only 10 bilayers of coating corresponding to a 

thickness of well below 100 nm, the MWNT LBL coating reduced the impedance of the 

PtIr electrode by two orders of magnitude, from over 17,400 Ω to 277 Ω at the 

physiologically relevant frequency of 1,000 Hz. At a thickness of 700 nm, the impedance 

of the MWNT coated electrodes at 1,000 Hz is approximately 30% and 60% lower those 

coated with PEDOT and IrOx, respectively. These findings suggest that MWNT LBL 

films can provide the greatest reduction in impedance with minimal impact on the 

electrode’s physical profile, which has important consequence on the extent of tissue 

damage during the insertion of the electrode.51  

Total CSC (Figure 4.4b) for the MWNT coated electrodes is higher than those 

coated with PEDOT and IrOx for the coatings of the same thickness. The total CSC of 

11.4 mC/cm2 reported here for a 600 nm thick PEDOT coating produced from a 

deposition charge density of 100 mC/cm2 coincides well with previously published value 

of 11.3 mC/cm2 obtained using the same dopant ion, deposition charge density, and CV 

scanning rate.52 Note that coating thickness, method of measurements (CV sweep 

between -0.9 V and 0.5 V), and method of deposition (galvanostatic) were used as 

normalizing factors to make possible proper comparison of the three different materials. 
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The highest CSC for a sputtered IrOx film was reported to be 157 mC/cm2.53 These data 

were obtained for 3 µm thick films scanned under exclusively anodic bias and with a 

slow scanning rate of 0.05 V/s.  All these factors obviously increase the apparent values 

of CSC of electrodes, while not necessarily being the working parameters of actual 

electrodes implanted in the tissue. The trend displayed in Figure 4.4b gives a systematic 

comparison of the three materials, which is the primary objective of this study.   

 

 
 

Figure 4.4 Comparison of electrochemical properties on a per unit film thickness basis. 
Measurements obtained from electrochemical impedance spectroscopy and cyclic 
voltammetry were normalized by the coating thickness. Impedance at 1 kHz (a), total 
CSC (b), anodic CSC (c), cathodic CSC (d), and % cathodic CSC (e) with increasing 
coating thickness are compared. 
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The distribution of anodic and cathodic CSCs for the MWNT coating is 

significantly different from the other two coatings for the potential range investigated. 

While the anodic CSCs (Figure 4.4c) of the MWNT coated electrodes are the lowest of 

all, their cathodic CSCs, i.e. the one determining the efficiency of implanted electrodes 

(Figure 4.4d), are nearly 70% higher than those of the PEDOT and IrOx coated electrodes 

at the same coating thicknesses. In addition, while the ratio of cathodic CSC to total CSC 

for the PEDOT and IrOx coatings dropped from 90% to less than 60% with increasing 

thickness, the MWNT coated electrodes appeared to maintain the ratio above 90% 

(Figure 4.4e). These are significant distinctions since cathodic stimuli, which initiate 

cellular action more efficiently, are typically used to stimulate neural tissues,54 therefore 

making the cathodic CSC the physiologically relevant parameter in comparing interfacing 

materials. 

To better understand the effect of surface modification, we examined the voltage 

response of coated electrodes to a 2 mC/cm2 biphasic, cathodic-first current pulse (Figure 

4.5). Such current pulses are commonly employed in the stimulation of nervous tissues.55 

The biphasic stimulation consisted of a 0.5 ms 10 mA cathodic current followed by an 

anodic current of the same length and magnitude after a 0.2 ms pause, corresponding to a 

frequency of approximately 1,000 Hz. For better comparison, the electrodes were coated 

to obtain a thickness of all the materials of ca. 700 nm. The total voltage excursions for 

the bare, MWNT, PEDOT, and IrOx coated PtIr electrodes were 5.8 V, 3.5 V, 3.8 V, and 

4.1 V, respectively (Figure 4.5). As expected, this results correlates with the impedance 

values of the respective electrodes at 1,000 Hz, with lower impedance producing lower 
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voltage excursion. The MWNT coated electrodes produced the greatest reduction in 

voltage excursion, cutting the voltage differential by more than 40%, compared to 34% 

and 21% for the PEDOT and IrOx coated electrodes, respectively. The results indicate 

that the MWNT coated electrodes can deliver higher charge densities without producing 

the high voltages that are known to be extremely harmful to surrounding tissues. 

 

 
 

Figure 4.5 Biphasic charge injection. A 2 mC/cm2 current waveform (a) was sourced 
through bare and coated electrodes and the resulting voltage responses were recorded (b). 
The bare, MWNT, PEDOT, and IrOx coated PtIr electrodes produced a total voltage 
excursion of 5.8 V, 3.5 V, 3.8 V, and 4.1 V, respectively. The MWNT coated electrode 
was most efficient in delivering charges, reducing the voltage differential by 40%. 

 



 139 

The electrochemical stability of the MWNT LBL electrodes was also tested by 

subjecting the electrodes to 300 CV scanning cycles at a scan rate of 0.1 V/s. As Figure 

4.6a illustrates, the total CSCs of MWNT and PEDOT coated electrodes decreased with 

increasing number of CV scanning cycles during the initial 100 cycles then gradually 

stabilized to relatively constant values. We found the MWNT electrode to be a stable 

interfacial material, losing just 5% of the original CSC, compared to 15% for the PEDOT 

electrodes. This level of decrease for the PEDOT coated electrodes is supported by 

previously published results for PSS-doped52 and surfactant-templated56 PEDOT 

coatings. The IrOx-coated electrode showed an initial decline of 8% but regained 3% 

before maintaining a stabilized percentage comparable to the MWNT coated electrode. 

Setting aside the possibility of artifacts generated from the sample preparation process, 

the SEM images suggest extensive cracking on the IrOx coated electrode (Figure 4.6d) 

that was not observed on the surface of MWNT- and PEDOT-coated electrodes (Figure 

4.6b-c). This led to us to suspect that the increase in CSC was due to the formation of 

new IrOx surface as the layer cracked and exposed additional contact areas in the cracks. 

In an in vivo situation, the cracked brittle IrOx coating can probably easily delaminate, 

debilitating the electrode functionality and posing a threat to the surrounding tissues.     
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Figure 4.6 Electrochemical stability of MWNT, PEDOT, and IrOx coated PtIr electrodes 
under repeated cyclic voltammetry scanning cycles. The total charge storage capacities 
(CSC) of the coated electrodes were recorded while being subjected to 300 cyclic 
voltammetry scanning cycles (a). The data shows a 5% drop in total CSC for the MWNT 
and IrOx coated electrodes and a 15% decline for PEDOT. SEM images reveal a nearly 
intact surface on the MWNT coated electrode (b) and a slightly and extensively cracked 
surface for the PEDOT (c) and IrOx (d) coated electrodes, respectively. Scale bars are 5 
µm. 

 

The superior structural stability of LBL assembled CNT multilayer film can be 

related to its nanoscale morphology. Its stability in physiological conditions has been 

demonstrated in our previous cell culture studies.44, 45 The multilayer design can be seen 

in many biomaterials evolved to exist at the interfaces of different tissues or tissue and 

environment. Some of the most intriguing biological systems found in nature, such as the 

sponge spicule57 and nacre,58, 59 have a layered architecture that gives rise to their 
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mechanical strength and unique material properties. Such design can help make use of 

CNT’s electrical60 and mechanical48, 60 properties. The inter-digitated nanometer-thick 

multilayer structure yields flexible thin films48 of remarkable stability and mechanical 

strength and creates intimate adhesion to the underlying substrate through molecular 

species acting at the nanometer length scale. 

 

4.5 Conclusions 

In summary, this study carried out a systematic multiparameter comparison of 

CNT LBL assembled composites in respect to PEDOT, and IrOx films as the most 

commonly used commercially available materials for biomedical electrodes.  

Unexpectedly, we found that CNT-PE electrodes substantially outperform most state-of-

the art-electrodes in the ability to reduce impedance, increase cathodic charge capacity, 

and facilitate charge transfer. They successfully compete with promising conducting 

polymer coatings in respect to electrical impedance and cathodic CSC. The reasons for 

such performance of these materials are possibly related to CNT electrodes to function as 

supercapacitors31, 32 as well as to structural characteristics of the prepared composites 

with dual electrical and ionic conductivities. The coatings made by LBL assembly are 

uniform and can carry both ionic and electronic currents and can be characterized as 

highly stable under electrochemical conditions retaining almost the entire CSC and 

showing no sign of failure after 300 CV scanning cycles. The morphology of CNT 

coatings with fibers oriented in parallel to the substrate closely mimics that of 
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extracellular matrix.61  However it should be noted that for each of the three materials 

compared in this study, specifically CNT-PE, PEDOT, and IrOx thin film electrode 

coatings, the method of deposition, chemical composition, thickness, and 

micro/nanoscale morphology and topography has a significant effect on electrical, 

mechanical, and biological interfacing properties.  

Despite these promising results, the MWNT-PE composites still have tremendous 

room for improvement in their electrochemical properties, durability, and 

biocompatibility. They have passed initial tests in biocompatiblity44, 45 and the in-depth 

evaluation is expected to follow. The ultra-strong yet highly flexible characteristic of 

free-standing LBL films can be quite useful to minimizing mechanical stress exerted on 

surrounding tissues. Synergistic effects of combining CNT coatings with 

electrochemically deposited PEDOT and IrOx thin films, in which the functional 

properties of the resulting electrode surpass the sum of the individual coatings, should 

also be expected for the adhesion of the electrodeposited films as well as their mechanical 

and electrical properties. 



 143 

4.6 References 

1. Pena, C.; Bowsher, K.; Samuels-Reid, J., FDA-approved neurologic devices 
intended for use in infants, children, and adolescents. Neurology 2004, 63 (7), 1163-1167. 

2. Pollak, W. M.; Simmons, J. D.; Jr, A. I.; Castellanos, A.; Myerburg, R. J.; 
Mitrani, R. D., Pacemaker Diagnostics. Pacing and Clinical Electrophysiology 2003, 26 
(1p1), 76-98. 

3. Middlebrooks, J. C.; Bierer, J. A.; Snyder, R. L., Cochlear implants: the view 
from the brain. Current Opinion in Neurobiology 2005, 15 (4), 488-493. 

4. Fallon, J. B.; Irvine, D. R. F.; Shepherd, R. K., Cochlear implants and brain 
plasticity. Hearing Research 2008, 238 (1-2), 110-117. 

5. Theodore, W. H.; Fisher, R. S., Brain stimulation for epilepsy. The Lancet 
Neurology 2004, 3 (2), 111-118. 

6. Mayberg, H. S.; Lozano, A. M.; Voon, V.; McNeely, H. E.; Seminowicz, D.; 
Hamani, C.; Schwalb, J. M.; Kennedy, S. H., Deep Brain Stimulation for Treatment-
Resistant Depression. Neuron 2005, 45 (5), 651-660. 

7. Falowski, S.; Celii, A.; Sharan, A., Spinal Cord Stimulation: An Update. 
Neurotherapeutics 2008, 5 (1), 86-99. 

8. Exner, G.; Baer, G. A., Functional Electrical Stimulation in Paralyzed Respiratory 
Muscles: International Workshop in Hamburg, Germany. Neuromodulation 2000, 3, 211-
217. 

9. Peckham, P. H.; Knutson, J. S., Functional Electrical Stimulation for 
Neuromuscular Applications. Annual Review of Biomedical Engineering 2005, 7 (1), 
327-360. 

10. Cogan, S. F.; Troyk, P. R.; Ehrlich, J.; Plante, T. D., In vitro comparison of the 
charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium 
microelectrodes. IEEE Trans. Biomed. Eng. 2005, 52 (9), 1612-1614. 

11. Troyk, P. R.; Detlefsen, D. E.; Cogan, S. F.; Ehrlich, J.; Bak, M.; McCreery, D. 
B.; Bullara, L.; Schmidt, E. In "Safe" charge-injection waveforms for iridium oxide 
(AIROF) microelectrodes, Engineering in Medicine and Biology Society, 2004. IEMBS 
'04. 26th Annual International Conference of the IEEE, 2004; pp 4141-4144 Vol.6. 

12. Stuart, F. C.; Philip, R. T.; Julia, E.; Christina, M. G.; Timothy, D. P., The 
influence of electrolyte composition on the in vitro charge-injection limits of activated 



 144 

iridium oxide (AIROF) stimulation electrodes. Journal of Neural Engineering 2007,  (2), 
79. 

13. Weiland, J. D.; Anderson, D. J.; Humayun, M. S., In vitro electrical properties for 
iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 
2002, 49 (12), 1574-1579. 

14. Meyer, R. D.; Cogan, S. E.; Nguyen, T. H.; Rauh, R. D., Electrodeposited iridium 
oxide for neural stimulation and recording electrodes. Ieee Transactions on Neural 
Systems and Rehabilitation Engineering 2001, 9 (1), 2-11. 

15. Weiland, J. D.; Anderson, D. J., Chronic neural stimulation with thin-film, 
iridium oxide electrodes. Ieee Transactions on Biomedical Engineering 2000, 47 (7), 
911-918. 

16. Mailley, S.; Hyland, M.; Mailley, P.; McLaughlin, J. A.; McAdams, E. T., Thin 
film platinum cuff electrodes for neurostimulation: in vitro approach of safe 
neurostimulation parameters. Bioelectrochemistry 2004, 63 (1-2), 359-364. 

17. Niebauer, M. J.; Wilkoff, B.; Yamanouchi, Y.; Mazgalev, T.; Mowrey, K.; Tchou, 
P., Iridium Oxide–Coated Defibrillation Electrode : Reduced Shock Polarization and 
Improved Defibrillation Efficacy. Circulation 1997, 96 (10), 3732-3736. 

18. Green, R. A.; Lovell, N. H.; Wallace, G. G.; Poole-Warren, L. A., Conducting 
polymers for neural interfaces: Challenges in developing an effective long-term implant. 
Biomaterials 2008, 29 (24-25), 3393-3399. 

19. Guimard, N. K.; Gomez, N.; Schmidt, C. E., Conducting polymers in biomedical 
engineering. Progress in Polymer Science 2007, 32 (8-9), 876-921. 

20. Xiao, Y.; Cui, X.; Hancock, J. M.; Bouguettaya, M.; Reynolds, J. R.; Martin, D. 
C., Electrochemical polymerization of poly(hydroxymethylated-3,4-
ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sensors and 
Actuators B: Chemical 2004, 99 (2-3), 437-443. 

21. Yang, J. Y.; Lipkin, K.; Martin, D. C., Electrochemical fabrication of conducting 
polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated 
neural prosthetic devices. Journal of Biomaterials Science-Polymer Edition 2007, 18 (8), 
1075-1089. 

22. Cui, X. T.; Zhou, D. D., Poly (3,4-Ethylenedioxythiophene) for Chronic Neural 
Stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 
2007, 15 (4), 502-508. 



 145 

23. Cui, X. Y.; Martin, D. C., Electrochemical deposition and characterization of 
poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and 
Actuators B-Chemical 2003, 89 (1-2), 92-102. 

24. Hendricks, J. L.; Chikar, J. A.; Crumling, M. A.; Raphael, Y.; Martin, D. C., 
Localized cell and drug delivery for auditory prostheses. Hearing Research 2008, 242 (1-
2), 117-131. 

25. Kim, D. H.; Richardson-Burns, S. M.; Hendricks, J. L.; Sequera, C.; Martin, D. 
C., Effect of immobilized nerve growth factor on conductive polymers: Electrical 
properties and cellular response. Advanced Functional Materials 2007, 17 (1), 79-86. 

26. Abidian, M. R.; Martin, D. C., Experimental and theoretical characterization of 
implantable neural microelectrodes modified with conducting polymer nanotubes. 
Biomaterials 2008, 29 (9), 1273-1283. 

27. Abidian, M. R.; Kim, D. H.; Martin, D. C., Conducting-polymer nanotubes for 
controlled drug release. Advanced Materials 2006, 18 (4), 405-+. 

28. Mailley, S. C.; Hyland, M.; Mailley, P.; McLaughlin, J. M.; McAdams, E. T., 
Electrochemical and structural characterizations of electrodeposited iridium oxide thin-
film electrodes applied to neurostimulating electrical signal. Materials Science and 
Engineering: C 2002, 21 (1-2), 167-175. 

29. Cogan, S. F.; Guzelian, A. A.; Agnew, W. F.; Yuen, T. G. H.; McCreery, D. B., 
Over-pulsing degrades activated iridium oxide films used for intracortical neural 
stimulation. Journal of Neuroscience Methods 2004, 137 (2), 141-150. 

30. Chunsheng, D.; Ning, P., High power density supercapacitor electrodes of carbon 
nanotube films by electrophoretic deposition. Nanotechnology 2006,  (21), 5314. 

31. An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, 
D. J.; Lim, S. C.; Lee, Y. H., Supercapacitors Using Single-Walled Carbon Nanotube 
Electrodes. Advanced Materials 2001, 13 (7), 497-500. 

32. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; 
Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S., Shape-engineerable and highly densely 
packed single-walled carbon nanotubes and their application as super-capacitor 
electrodes. Nat Mater 2006, 5 (12), 987-994. 

33. Hu, H.; Ni, Y.; Montana, V.; Haddon, R. C.; Parpura, V., Chemically 
Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett. 2004, 4 
(3), 507-511. 



 146 

34. Mattson, M. P.; Haddon, R. C.; Rao, A. M., Molecular functionalization of carbon 
nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 2000, 14 (3), 175-
182. 

35. Gabay, T.; Jakobs, E.; Ben-Jacob, E.; Hanein, Y., Engineered self-organization of 
neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and its 
Applications 2005, 350 (2-4), 611-621. 

36. Zhang, X.; Prasad, S.; Niyogi, S.; Morgan, A.; Ozkan, M.; Ozkan, C. S., Guided 
neurite growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 2005, 
106 (2), 843-850. 

37. Hu, H.; Ni, Y.; Mandal, S. K.; Montana, V.; Zhao, B.; Haddon, R. C.; Parpura, V., 
Polyethyleneimine Functionalized Single-Walled Carbon Nanotubes as a Substrate for 
Neuronal Growth. J. Phys. Chem. B 2005, 109 (10), 4285-4289. 

38. Nguyen-Vu, T. D. B.; Hua, C.; Cassell, A. M.; Andrews, R. J.; Meyyappan, M.; 
Jun, L., Vertically Aligned Carbon Nanofiber Architecture as a Multifunctional 3-D 
Neural Electrical Interface. Biomedical Engineering, IEEE Transactions on 2007, 54 (6), 
1121-1128. 

39. Thomas, J. W.; Michael, C. W.; Janice, L. M.; Rachel, L. P.; Jeremiah, U. E., 
Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. 
Nanotechnology 2004,  (1), 48. 

40. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; 
Spalluto, G.; Prato, M.; Ballerini, L., Carbon Nanotube Substrates Boost Neuronal 
Electrical Signaling. Nano Lett. 2005, 5 (6), 1107-1110. 

41. Yu, Z.; McKnight, T. E.; Ericson, M. N.; Melechko, A. V.; Simpson, M. L.; 
Morrison, B., Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological 
Signals from Hippocampal Slices. Nano Lett. 2007, 7 (8), 2188-2195. 

42. Mazzatenta, A.; Giugliano, M.; Campidelli, S.; Gambazzi, L.; Businaro, L.; 
Markram, H.; Prato, M.; Ballerini, L., Interfacing Neurons with Carbon Nanotubes: 
Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. J. 
Neurosci. 2007, 27 (26), 6931-6936. 

43. Keefer, E. W.; Botterman, B. R.; Romero, M. I.; Rossi, A. F.; Gross, G. W., 
Carbon nanotube coating improves neuronal recordings. Nat Nano 2008, 3 (7), 434-439. 

44. Gheith, M. K.; Sinani, V. A.; Wicksted, J. P.; Matts, R. L.; Kotov, N. A., Single-
walled carbon nanotube polyelectrolyte multilayers and freestanding films as a 
biocompatible platformfor neuroprosthetic implants. Advanced Materials 2005, 17 (22), 
2663-+. 



 147 

45. Jan, E.; Kotov, N. A., Successful differentiation of mouse neural stem cells on 
layer-by-layer assembled single-walled carbon nanotube composite. Nano Letters 2007, 7 
(5), 1123-1128. 

46. Gheith, M. K.; Pappas, T. C.; Liopo, A. V.; Sinani, V. A.; Shim, B. S.; Motamedi, 
M.; Wicksted, J. R.; Kotov, N. A., Stimulation of neural cells by lateral layer-by-layer 
films of single-walled currents in conductive carbon nanotubes. Advanced Materials 
2006, 18 (22), 2975-+. 

47. Marzouk, S. A. M.; Ufer, S.; Buck, R. P.; Johnson, T. A.; Dunlap, L. A.; Cascio, 
W. E., Electrodeposited Iridium Oxide pH Electrode for Measurement of Extracellular 
Myocardial Acidosis during Acute Ischemia. Anal. Chem. 1998, 70 (23), 5054-5061. 

48. Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, 
A., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer 
composites. Nature Materials 2002, 1 (3), 190-194. 

49. He, W.; Bellamkonda, R. V., Nanoscale neuro-integrative coatings for neural 
implants. Biomaterials 2005, 26 (16), 2983-2990. 

50. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; 
Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E., Reversible water-solubilization of 
single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters 2001, 
342, 265-271. 

51. Griffith, R. W.; Humphrey, D. R., Long-term gliosis around chronically 
implanted platinum electrodes in the Rhesus macaque motor cortex. Neuroscience Letters 
2006, 406 (1-2), 81-86. 

52. Yamato, H.; Ohwa, M.; Wernet, W., Stability of polypyrrole and poly(3,4-
ethylenedioxythiophene) for biosensor application. Journal of Electroanalytical 
Chemistry 1995, 397 (1-2), 163-170. 

53. Wessling, B.; Mokwa, W.; Schnakenberg, U., Sputtered Ir Films Evaluated for 
Electrochemical Performance I. Experimental Results. Journal of The Electrochemical 
Society 2008, 155 (5), F61-F65. 

54. Stieglitz, T.; Meyer, J.-U., Neural Implants in Clinical Practice. In BioMEMS, 
2006; pp 41-70. 

55. Merrill, D. R.; Bikson, M.; Jefferys, J. G. R., Electrical stimulation of excitable 
tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods 2005, 
141 (2), 171-198. 



 148 

56. Yang, J. Y.; Kim, D. H.; Hendricks, J. L.; Leach, M.; Northey, R.; Martin, D. C., 
Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting 
polymer on microfabricated neural probes. Acta Biomaterialia 2005, 1 (1), 125-136. 

57. Aizenberg, J.; Sundar, V. C.; Yablon, A. D.; Weaver, J. C.; Chen, G., Biological 
glass fibers: Correlation between optical and structural properties. Proceedings of the 
National Academy of Sciences of the United States of America 2004, 101 (10), 3358-
3363. 

58. Tang, Z.; Kotov, N. A.; Magonov, S.; Ozturk, B., Nanostructured artificial nacre. 
Nat Mater 2003, 2 (6), 413-418. 

59. Jackson, A. P.; Vincent, J. F. V.; Turner, R. M., The Mechanical Design of Nacre. 
Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1988, 234 (1277), 415-&. 

60. Shim, B. S.; Tang, Z. Y.; Morabito, M. P.; Agarwal, A.; Hong, H. P.; Kotov, N. 
A., Integration of conductivity transparency, and mechanical strength into highly 
homogeneous layer-by-layer composites of single-walled carbon nanotubes for 
optoelectronics. Chemistry of Materials 2007, 19 (23), 5467-5474. 

61. Mwenifumbo, S.; Shaffer, M. S.; Stevens, M. M., Exploring cellular behaviour 
with multi-walled carbon nanotube constructs. Journal of Materials Chemistry 2007, 17 
(19), 1894-1902. 
 

 

 



 149 

 

 

CHAPTER 5 

Enhanced Differentiation and Electrical Stimulation of Neural Stem Cells Mediated 

by Carbon Nanotube Composites Containing Extracellular Matrix Protein 

 

5.1 Abstract 

One of the key challenges to engineering neural interfaces is to minimize their 

immune response toward foreign materials.  One potential approach is to manufacture 

materials that bear greater structural resemblance to living tissues and by incorporating 

neural stem cells within the materials.  The unique electrical and mechanical properties of 

carbon nanotubes make them an excellent candidate for neural interfaces, but their 

adoption hinges on finding approaches for “humanizing” nanotube-based materials.  In 

this study, we demonstrated the fabrication of layer-by-layer assembled composites from 

single-walled carbon nanotubes (SWNTs) and laminin, which is an essential part of 

human extracellular matrix, and investigated the ability of the films to mediate the 

differentiation and electrical stimulation of neural stem cells (NSCs). Laminin-SWNT 

thin films were found to be conducive to NSC differentiation and suitable for their 

successful excitation.  We observed extensive outgrowth from neurospheres and 

formation of functional neural network as indicated by the presence of synaptic 
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connections. Calcium imaging of the NSCs revealed generation of action potentials upon 

the application of a lateral current through the SWNT substrate, confirming the 

functionality of the differentiated NSCs and the utility of the conductive substrate. These 

results indicate that the protein-SWNT composite can serve as materials foundation of 

neural electrodes with chemical structure better adapted with long-term integration with 

the neural tissue. 

 

5.2 Introduction 

In recent years, carbon nanotubes have been widely explored for adoption in the 

biological realm in the form of biosensors and as agents of cellular transport and 

delivery.1-4 Single-walled (SWNTs) and multi-walled carbon nanotubes (MWNTs) are 

also attractive candidates for developing interfaces with biological systems due to the 

promise of superior physical, electrical, mechanical and optical properties in comparison 

with traditional materials.5 This research direction is of particular relevance to the field of 

neural prosthetics field as strategies for the diagnosis, therapy and treatment of neural 

disorders are increasingly relying on electrical stimulation techniques. However, these 

current techniques have several inherent problems that are associated with the traditional 

materials used for manufacturing of neural electrodes (NEs).6, 7  

The interactions between various cell lines and carbon nanotubes1, 3, 4, 8, 9 have 

been previously reported, including the adhesion, growth and differentiation of neuronal 
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cells on carbon nanotubes-based substrates.  Most recently, the ability of such substrates 

to electrically stimulate neuronal cells was reported.9-12 The strong interest in interfacing 

neuronal cells and carbon nanotubes is not accidental; the unique set of properties of 

carbon nanotubes make them an excellent candidate to address the acute need for better 

neural electrodes (NEs).  The current problems facing neuroprosthetic devices include the 

following: (1) long-term inflammatory response of the neural tissues, which results in the 

neuron depletion around the electrodes and their replacement with reactive astrocytes 

preventing signal transduction, (2) delamination6 and degradation6, 7 of thin metal 

electrodes off the plastic substrates that drastically decrease the stimulation abilities, (3) 

the need for significant miniaturization of the electrodes which is currently limited not by 

manufacturing abilities but by electrical properties of the cell-electrode interface, and (4) 

the need to achieve mechanical compliance with the neural tissues to attain adequate 

long-term performance, which cannot be addressed by semiconductor devices that can 

partially resolve some of the above-mentioned issues.13-15 

In this work we want to propose three current approaches to resolve these issues:  

(1) Exploitation of on the mechanical and electrical properties of nanostructured 

materials to develop new electrodes.  Such materials, including carbon nanotubes 

composites would be able to trigger a drastic decrease of delamination, while 

meeting the necessary mechanical and miniaturization requirements for NEs.  

(2) Incorporation of neural stem cells (NSCs) with the NE due to their ability to 

differentiate into functional neurons, in damaged areas of the central nervous 



 152 

system.16, 17  This could result in significant reduction of inflammation of the 

neural tissue.  

(3) Achieving better integration of tissues and NEs by “humanizing” the material, 

i.e. making it structurally and chemically more similar to tissues surrounding 

neurons.   

Detailed evaluation of all of these approaches will probably require several years 

and, certainly, cannot be done in one paper.  Nevertheless, what we intend to do here is to 

demonstrate the technical feasibility of manufacturing electrodes that satisfy the 

requirements of these hypotheses so that their evaluation can be carried out. In particular, 

the focus will be placed on feasibility of developing CNT-based electrodes that 

incorporate extracellular matrix proteins, one of the key components of tissues 

surrounding neurons and stem cell compatible materials.  

 

5.3 Methods 

5.3.1 Thin Film Fabrication 

CNT thin films were fabricated by a layer-by-layer (LBL) method, with 

alternating layers of single-walled carbon nanotubes (SWNT) and the protein laminin.  

SWNT made by the Hipco process were obtained from Carbon Nanotechnologies Inc. 

and dispersed by bath sonication in a 1% aqueous solution of polystyrene-4-sulfonate 
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(PSS, MW 1,000, 000).  The laminin was obtained from Sigma-Aldrich and used as a 100 

µg/mL solution in PBS.  Thin films were fabricated on a #1 glass coverslide by dipping 

the substrate in the SWNT suspension and protein solution alternatively, with thorough 

rinsing in DI water at each step.  The dipping time for each step of laminin and SWNT 

adsorption was 30 min.  

5.3.2 Cell Lines 

Neural stem cells (NSC) were purchased from Stemcell Technologies and were 

grown and differentiated according to the company’s protocols. 

5.3.3 Cell Interfacing with Thin Films 

To enable cell seeding onto the SWNT substrates, cloning rings are mounted on 

the substrate with high-vacuum grease serving as the adhesive.  The attached cloning 

rings provide a chamber (with volume capacity of ~400 µL) for holding culture media 

required for cell growth.  After the sterilization process, the SWNT samples are 

passivated with the appropriate cell media for at least 12 hr at 37ºC and in a humidified, 

5% CO2 environment. NSC cell suspensions are then seeded within the designed cell 

chambers in the appropriate differentiation medium.  The cells are allowed to incubate for 

at least 12 hours prior to subsequent studies. 
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5.4 Results and Discussion 

The development of these CNT-based electrodes for NEs hinges on the ability to 

process SWNTs or MWNTs in thin coatings or bulk composites. It is particularly 

important for the case of NSCs because some components of the composites and/or the 

nano-scale morphology of the interface can alter the differentiation pathway of the stem 

cells.18, 19 While, there is a number of methods that can be used to yield carbon nanotubes 

film processing in substrates for neural growth, including simple solvent evaporation, 

chemical vapor deposition, and electrochemical deposition,20-29 not all of them may be 

suitable for NE purposes. In particular, many of these methods do not yield coatings that 

possess the mechanical stability and actual conductivity that are key for NE as discussed 

above.  On the other hand, the technique of layer-by-layer assembly (LBL) provides a 

high level of control and tailoring with respect to the film composition, including the 

polymeric components used.30 It also makes the coating exceptionally mechanically 

robust.31 The ability of carbon nanotubes thin films made by LBL to support growth, 

proliferation and differentiation and to electrically stimulate adult cancer cells of 

neuroblastoma NG108-159, 10 and their ability to support the growth of NSCs in culture32 

was reported recently.  The LBL fabrication for the previous neuronal cell studies has 

however relied on the use of a synthetic non-biological polymer,9, 10 which is one of the 

potential problems with this method.  Along with other points addressing the hypotheses 

1 and 2, we demonstrate in this study that LBL films consisting of SWNTs and natural 

polymers such as laminin, serve as a biocompatible substrate for promoting adhesion and 

differentiation as well as for mediating electrical stimulation of neuronal cell lines.  
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Overall, the interfacing of the biocompatible, electrically conductive and mechanically 

strong SWNT thin films with NSCs is likely to be of particular relevance for developing 

implantable prostheses.   

The favorable biological properties of carbon nanotubesthat have been previously 

reported 12, 23, 24 provide an excellent foundation for exploitation of these properties in 

implantable medical devices.  However, the critical issue of making tissue-friendly 

material still needs to be addressed for carbon nanotube-based NEs.  One of the most 

logical ways to achieve this is to include molecules most familiar to the cells in the 

interfacial environment; such molecules are from extracellular matrix (ECM). While the 

incorporation of ECM proteins in carbon nanotubes composites made by many 

processing methods mentioned before, such as simple blending and solvent evaporation, 

might be faced with fast elution of the protein, the LBL technique can curtail this 

shortcoming. This technique, which is based on alternating the layers of nanotubes (or 

other nanoscale building blocks) and polymers, is versatile and can be easily adapted for 

the incorporation of biological components such as the ECM proteins. In this study, we 

explore and evaluate the performance of CNT-based NEs made by LBL method and that 

incorporate ECM proteins.  The LBL films consisted from SWNTs (HIPCO, 

Tubes@Rice.com) wrapped with poly(styrene-4-sulfonate) (PSS, MW = 1,000,000, 1% 

in water, Sigma-Aldrich) and the glycoprotein laminin (MW ~ 900 kD, 100 µg/mL in 

PBS at pH 7.4).  The latter is an important protein in the basement membrane that is 

widely used for coating substrate to promote cell adhesion and neurite outgrowth.33 
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Dipping time of 30 min per single step of laminin and SWNT adsorption was used 

throughout the project. 

 

 

Figure 5.1 Fabrication of LBL films of SWNTs and laminin. Atomic force microscopy 
image of (a) one monolayer of laminin on piranha-treated SiO2 substrate and (b) 6 
bilayers of SWNT/laminin on the same substrate.  (c) Successful accumulation of 
laminin-SWNT layers on glass substrate monitored by UV-vis absorption.    

 

Despite its large size, laminin (isoelectric point is pH 7) appeared to interact 

strongly with the negatively charged, piranha-treated substrate upon deposition of the 

first layer.  Atomic force microscopy (AFM) image of a single layer of laminin on a 

silicon oxide substrate indicated a uniform coating of the protein (Figure 5.1a).  AFM 

was also utilized to assess the subsequent interactions between the deposited laminin and 

the SWNT dispersions and confirmed deposition of SWNT onto the laminin layer (Figure 

5.1b).  This observation is consistent with reports of strong electrostatic and nonspecific 

adsorption of proteins to carbon nanotubes.34, 35 The film progress of multilayer 

depositions was monitored by UV-VIS absorption, which indicated linear increase in 
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SWNT concentration on the thin films with increasing number of bilayers (Figure 5.1c) 

as expected for the traditional mode of LBL growth observed before.   

As the first step in examination of suitability of SWNT-laminin composites 

suitability for the use as NEs, LBL films of up to 30 bilayers were made and the ability of 

cells to adhere on the SWNT/laminin substrate was assessed (Table 4.1).  The 

architectures of the LBL films tested, that is number of deposition cycles, their sequence 

and the composition of the final layer, were chosen based on several factors: the fact that 

cells typically adhere better to positively charged surfaces and that heat treatment 

enhances cross-linking among the layers within SWNT LBL films and causes an increase 

in electrical conductivity.36, 37  In particular the influence of the structure of the polymeric 

component(s) of the LBL film and the annealing step were investigated.  We found that 

cell adhesion markedly depended on the composition of the final layer.   The initial 

ability of cells to adhere to the substrate was assessed 24 h following seeding and at 

various time points leading to 7 days post-seeding (Table 4.1). The substrate that was 

most conducive to cell adhesion and attachment was the LBL film that contained SWNT 

as the topmost layer and that was heat treated. Control experiments with laminin coated 

slides (no SWNT) that were either used as made or following heat treatment were also 

carried out in parallel.  Interestingly enough, not all “humanized” protein composites 

revealed sufficient adhesion of the cells. As-made films did not reveal any cell adhesion 

after 7 days (Table 4.1).  This is likely to be related with gel-like behavior of laminin.  

Swelling of its composites in water apparently reduced stiffness of the substrates and 

prevented cell adhesion.  On the contrary, SWNT-laminin films obtained after annealing, 
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i.e. after cross-linking, exhibited sufficient stiffness38 and served as excellent adhesion 

support for cells (Table 4.1).  Note that SWNTs and other inorganic materials 

substantially increase thermal stability of proteins and other macromolecules and 

drastically reduce the decomposition of these materials at high temperature.39, 40 So, while 

altering the structure of the proteins, thermal annealing for a fairly short time used here 

does not certainly destroy laminin structure completely as one might expect from pure 

laminin coatings.    

 

LBL film configuration 
(15 bilayers) 

Cell adhesion 
(day 1) 

Cell adhesion 
(day 7) 

Laminin as final layer Yes No 

PSS-wrapped SWNT as final layer Yes No 

Laminin as final layer, annealed at 300 °C (10 min) No No 

PSS-wrapped SWNT as final layer, annealed at 300 °C 
(10 min) 

Yes Yes 

 

Table 5.1 Summary of various LBL configurations investigated in cell seeding and cell 
adhesion experiments. 

 

The interfacing between neuronal cells and the heat-treated SWNT/laminin LBL 

film was monitored more closely by measuring neuronal outgrowth from the cells.  When 

compared to neuronal behavior on laminin-coated glass slides, longer outgrowths were 

noted at every time point (24 h -120 h) on the heat treated SWNT/laminin substrate.  The 
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biocompatibility of the annealed SWNT/laminin substrate was also verified via a 

commercial cell viability assay that confirmed previous reports on the biocompatibility of 

SWNT substrates (Figure 5.2e).  They indicated that 98% of cells on the surface of 

SWNT-laminin composite were viable.  

 

 

 
Figure 5.2 Micrograph assessing NSC cell adhesion and differentiation 72 h after initial 
seeding on (a) laminin-coated glass slides and on 10 bilayers SWNT/laminin thin films 
that were (b) used as is or (c) heated at 300 °C for 10 min. (d) Distance of outgrowth 
from neurospheres after 24h (yellow), 48h (red), 72h (blue) and 120h (green) on laminin-
coated slides and heat-treated SWNT/laminin film on slide. (e) Live-dead viability assay 
on seeded cells where live cells are stained green and dead cells are red. (scale bar = 200 
µm) 
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The observation of neuronal outgrowths from the adhered cells is a promising 

indication of successful cell differentiation.  However, in the context of this study more 

concrete evidence is required to indicate that neural stem cells are capable of 

transforming into neuronal cells following adhesion to the SWNT substrate.  Neural stem 

cells have been shown to transform into functioning neurons as well as glial cells such as 

astrocytes and oligodendrocytes.17, 41  Following cell seeding on the SWNT substrates, 

the NSCs were immunostained with neuronal markers and observed by confocal 

fluorescence microscopy.  The protein markers studied included MAP-2 (for neurons), 

glial fibrillary acidic protein, GFAP (for astrocytes), and nestin (for NSCs).  The results 

indicate that even though neural stem cells precursors still exist 7 days post-seeding on 

the heat-treated SWNT/laminin substrate, differentiated neurons and glial cells are also 

present in large amounts due to spontaneous differentiation caused probably by the 

physical properties of the SWNT-laminin composites.  Interestingly, most of the adhered 

cells showed some signs of differentiation, which can be advantageous from NE 

perspective. The strong presence of neurons (MAP-2, Figure 5.3a, green staining) 

provides indication that successful neuronal communication could possibly be established 

between cells grown on the CNT substrate and the surrounding tissue.  
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Figure 5.3 Immunostaining of spontaneously differentiated NSCs on heat-treated 
SWNT/laminin thin films.  The blue color in all images indicates DAPI staining of cell 
nuclei.  In (a) GFAP staining is red and MAP-2 staining is green. In (b) GFAP staining is 
red and nestin staining is green.  In (c) cell were stained red for the presence of synapsin. 

 

It is interesting to verify the presence of synaptic connection between 

differentiated cells, which would also show the possibility of connectivity between the 

cells grown on the SWNT-composite and fairly efficient signal transmission.  Synapses 

or synaptic nodes are crucial elements in the propagation of electrochemical signals from 

cells to cells that ensure communication within a neuronal population.42 The cells seeded 

on the CNT surface were thus immunostained for the presence of synapsin protein with 

the appropriate markers.  Synapsin is present between the differentiated cells, thus further 

confirming that neuronal cell growth and differentiation on the SWNT/laminin thin films 

result in functional neuronal networks (Figure 5.3c). 

Once the biocompatibility and cellular composition on the laminin-SWNT 

substrates is established, it is necessary to demonstrate the possibility to excite the 

neuronal cells residing on the nanotubes-protein films. The conductivity of a 10-bilayer 
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SWNT/laminin thin film was estimated to be 430 and 2,140 S/m before and after heat 

treatment, respectively.  Drastic increase of conductivity after heat treatment is not 

surprising, and is also related to reduced swelling behavior. It is certainly beneficial for 

the design of NEs based on these composites. An electrical signal was applied to the cells 

via application of a lateral current through the nanotube substrate.  The electrical stimulus 

was applied in a similar fashion as in the previous study,10 via electrical leads that induce 

a lateral electric field within the entire SWNT/laminin substrate. The device set up used 

is shown in Figure 5.4a: two cloning rings were mounted on the LBL film to serve as 

chambers for the cell and aqueous media.  The electrical leads were attached directly the 

dry area of the SWNT film by using silver paste and copper tape.  The input stimulation 

was applied with the aid of a function generator (Instek Instruments) that gave flexibility 

in the stimulus signal to be applied.  Constant DC signals as well as pulsed signals were 

utilized in this study and were typically verified by the use of an oscilloscope prior to cell 

stimulation/recording.   
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Figure 5.4 (a) Experimental set-up for electrical stimulation studies indicating the cell 
chambers and electrical leads.  (b) Change in fluorescence intensity of Fluo-4-AM dye 
(∆F/F) in one cell during electrical stimulation by CNT substrate.  Change in 
fluorescence once stimulation is turned off at time t = 300s is shown in inset.  (c) 
Confocal image of a cell cluster before start of stimulation and (d) confocal image of 
same cluster during stimulation.  Data shown in (b) is from the circled cell in (c) and (d). 

 

Cell response to chemical and electrical stimuli typically results in a change in the 

membrane voltage of the cells, commonly referred to as an action potential.  Detection of 

action potentials can be achieved via the invasive patch clamp method43 used before or 

via non-invasive optical detection techniques.  Transparency of SWNT LBL films 
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previously reported by our group44 affords the utilization of optical methods for 

monitoring that can be a great advantage for fundamental studies. The fluorescence 

detection method was chosen for our studies due to its convenience, clarity, and high 

information content. Ion-sensitive dyes undergo a change in fluorescence intensity as a 

result of change in ion concentrations upon application of an action potential.  A Ca2+ 

dependent dye (Fluo-4-AM, Molecular Probes) was used for our study that is membrane-

permeable, thus allowing facile imaging of a large population of live cells.45  The 

versatile nature of the LBL fabrication allowed for simultaneous detection of 

fluorescence changes in cells pre-incubated with Fluo-4-AM during electrical 

stimulation.  The experimental setup for the cells thus underwent minor adjustments to 

ensure that (1) the cells were kept in their physiological media during experiment, (2) 

electrical leads were  kept isolated from any aqueous media and (3) that a #1 cover-glass 

slide was used as the substrate for the LBL film to allow cell recording with an inverted 

confocal fluorescence microscope.   

The cell response appeared to be independent of the type of stimulus applied.  The 

results reported here were obtained from cells that were excited with a pulsed signal.  The 

latter was generally the preferred stimulus in order to minimize any heating effect in the 

SWNT thin films and to ensure that SWNT electrodes as well as cells are not constantly 

under stress during stimulation.  The typical stimulation signal employed consisted of a 

series (~10-15) of 1 ms pulses spaced in 1-10 s intervals.  The pulses were applied at 

these intervals rather than continuously in order to allow both the electrodes and the cells 
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to discharge.  Cellular stimulations were carried out over areas of the films of about 4 

cm2, and output currents from the film range from the order of 1-10 µA/cm2.   

The cells were seeded on the pre-heated SWNT/laminin substrate for at least 72 h, 

incubated with Fluo-4-AM dye and washed prior to electrical stimulation studies.  The 

cells were observed by confocal microscopy during the application of the stimulus.  A 

representative confocal microscope image of a cell cluster is shown after Fluo-4-AM 

incubation/washing step but prior to stimulation is given in Figure 5.4c.  The 

fluorescence level was adjusted such that minimal background fluorescence from the 

cells was present.  A clear increase in fluorescence was observed in the cell cluster 

following electrical stimulation (Figure 5.4d).  In order to obtain a quantitative 

measurement of the fluorescence fluctuation in the cells, the image processing software 

ImageJ was used to measure the fluorescence intensity in the cells during stimulation.  

The change in fluorescence over stimulation time is plotted as ∆F/F (Figure 5.4b) and is 

shown for one cell from the cluster (circled in Figure 5.4c, d).  In addition to the increase 

in fluorescence observed, the presence of two peaks on the fluorescence curve suggests 

that an individual cell can be stimulated more than once upon application of the pulsed 

stimulus in the form of the sequence of two pulses, which what expected from NEs.  The 

fluorescence level is also monitored after the electrical stimulation is stopped at time ~ 

300s.  Upon turning off of the electrical pulses, a leveling off is noticed in the cell 

fluorescence (Figure 5.4b).  This indicates that the observed cell signal is indeed due to 

the stimulation through the electrode and not due to spontaneous firing.  Recording of the 

cell excitation after the excitation process also indicated that generation of action 
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potential in individual cell is dependent on the status of the surrounding cells.  Once one 

cell is excited, the train of the excitation is spreading from one cell to another in a nearly 

sequential manner, which can be identified by video recording of excitation.  Although 

the main source of stimulation comes from the electrode underneath the cells, excited 

state of the neighboring cells causes the next cell to fire with lower threshold. This is 

another fact that confirms communication between the differentiated NSCs probably as 

early neurons.  

 

5.5 Conclusions 

In conclusion, this study establishes the ability of composite SWNT/laminin thin 

films to mediate the differentiation and electrical stimulation of NSCs.  The protein-

SWNT composite can serve as a foundation of a new type of NEs which (1) incorporate 

SWNTs as superior conductor and strengthening agent; (2) are conducive to NSCs 

growth and proliferation; (3) and are suitable for excitation of NSCs and the products of 

their differentiation.  Additional studies to further understand the effect of electrical 

stimulus on NSC during the differentiation cycle and in a longer time frame are still 

needed. 
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CHAPTER 6 

Neuronal Programming of Multipotent Cells via Gene Delivery on Functionalized 

Carbon Nanotube Nanocomposites 

 

6.1 Abstract 

Inflammatory reactions, encapsulation of implanted electrodes with scar tissues 

and gradual withdrawal of neurons from them are the key problems for the neural tissue 

interfacing.  These issues must be resolved for treatments of several well-known 

debilitating conditions to be effective. If an implanted electrode acquires ability to control 

cell response via in-situ gene transfection, all these problems can be successfully 

mitigated. Taking advantage of layer-by-layer assembled carbon nanotubes composites, 

purposeful engineering of the electrostimulating implants with these functionalities 

becomes realistic. They are conductive and can incorporate plasmid DNA capable of 

altering the response/functionality of surrounding cells. Successful expression of Lyn-

citrine plasmid DNA was achieved in attached neurons. The transfection efficiency was 

found to be remarkably higher than conventional solution-mediated techniques. Most 

importantly, by using plasmid expression vectors for neural basic helix-loop-helix 

proteins, neurons were generated from multipotent P19 embryonal carcinoma cells 
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adhering to SWNT multilayers.  This illustrates the possibility of recruiting resident stem 

cells in brain by the electrostimulating implant, programming of surrounding cells, and 

substantially improved level of tissue-device integration. 

 

6.2 Introduction 

The acute and long-term inflammatory tissue responses around implanted 

electrodes represent the long-standing problems for neural stimulation necessary for the 

treatment of many diseases. Scarring of the tissue around implants is difficult to avoid 

due to the fundamental limitations on electrical properties of the materials used, 

discrepancy in mechanical properties of hard implants and soft tissues, and physical 

dimensions of the electrodes.1 However, encapsulation with resident immune cells and 

related loss of electrostimulation performance can potentially be avoided by in-situ gene 

therapy. It can be particularly suitable for the activation of resident neural stem cells or 

genetic re-programming of scar-forming astroglial cells into neurons.2  Enhanced neural 

population in the vicinity of electrode will improve signal transduction, decrease 

pathological symptoms, and reduce inflammatory reactions at the implantation site.3, 4  

The same approach can be applied to correction of defective genes at the 

implantation site responsible for various neurological and cardiac diseases. For example, 

gene delivery was demonstrated in animal models to prevent the development of neuritic 

plaques in Alzheimer’s disease,5 reverse motor dysfunction in Parkinson’s disease,6 and 
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decrease seizure activity7 in epilepsy. By delivering appropriate genes, researchers were 

also able to prevent degeneration8 and induce generation9 of cochlear hair cells. For 

cardiac conditions such as a heart block, gene delivery effectively generated ventricular 

biological pacemakers.10 Furthermore, by exploiting the highly migratory stem cells as 

delivery vehicles, gene therapy can be combined with stem cell therapy as a new 

treatment strategy for neurodegenerative diseases.11 

Unfortunately, traditional and state-of-the-art inorganic electrode materials, such 

as gold, iridium oxide, doped silicon, and etc., do not have mechanical compliance with 

soft tissues, which results in the activation of astroglial cells. Also, they present multiple 

problems for realization of gene delivery.12 Although conducting polymers have received 

tremendous attention as a promising class of materials for producing functional neural 

interfaces, most developments have so far focused on biocompatibility and incorporation 

of small-molecule drugs.13, 14  

Conductive organic-inorganic composites fabricated from carbon nanotubes 

(CNTs) represent a promising class of materials for neuroprosthetic electrodes. 

According to the data from many groups, these CNT-based materials are not only 

biocompatible15, 16 but can also boost the efficacy of neural signal transmission,17 

stimulate and record neural circuit activities,18, 19 and improve neural recordings.20 As 

electrical/mechanical properties and accessibility of genes are highly dependent on nano- 

and micro-scale morphology of the electrode material, the choice of processing technique 

for preparing CNT composites is extremely essential. Layer-by-layer (LBL) assembly has 
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several advantages significant in this respect. (1) It allows for simple integration of 

biological species into the resulting material.21 The incorporation of deliverable genes in 

the matrix of implants avoids many tough problems of more traditional methods of gene 

therapy, such as systemic administration and solution-based gene delivery.22, 23 (2) The 

composites made by LBL display remarkable mechanical properties,24, 25 which come 

into play during implantation and long-term performance of the implants. (3) High 

loading of CNTs and control over nanotube-nanotube contacts produce high electrical 

conductivity.25 (4) LBL composites can be used as coatings and free-standing materials 

for electrode manufacturing, providing necessary flexibility for device engineering.26-28  

(5) Importantly, they do not interfere with the differentiation pattern of stem cells.29, 30 

Such a complementary set of properties motivated us to test whether single-

walled carbon nanotube (SWNT) LBL composites can be used for in-situ gene delivery. 

As background for this idea, electroporation has been used in conjunction with 

conductive materials to deliver genes,31, 32 but such methods require a counter electrode 

to initiate the delivery which is unlikely to be implemented with implantable electrodes 

and can cause additional damage to the neural tissue. Electrical potential was 

demonstrated to successfully release genetic material from LBL films built on conductive 

surfaces, but unassisted genetic expression in cells was not demonstrated because manual 

incorporation of a transfection agent was subsequently required to enable delivery into 

cells.33, 34 Functionalized individual SWNTs have been shown to condense and deliver 

DNA into cells in solution similar to little spears.35, 36 However, it is unclear how this 
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function may be utilized in conjunction with conductive materials for neuroprosthetic 

applications.  

 

6.3 Methods 

6.3.1 SWNT Multilayer Composite Preparation 

Purified single-walled carbon nanotubes (SWNTs) were purchased from Carbon 

Solutions, Inc. (Riverside, CA). Poly(vinyl alcohol) (PVA; MW 70k), poly(sodium 4-

styrene-sulfonate) (PSS; MW 1000k) were obtained from Sigma-Aldrich (St. Louis, 

MO). SWNT-PVA multilayers were prepared on round glass coverslips (Bellco Glass, 

Vineland, NJ) using the technique of layer-by-layer (LBL) assembly. SWNTs were 

dispersed at 0.5 mg/ml in 0.1 wt% PSS solution by sonication, and the SWNT-PSS 

dispersion was alternately adsorbed onto glass coverslips with 0.2 wt% PVA solution. 

For each deposition, the coverslips were immersed in the corresponding solution for 5 

minutes, followed by rinsing with deionized water and drying with an air jet. The process 

was repeated to obtain 3 bilayers of PVA/SWNT-PSS on the surface which we 

designated as (PVA/SWNT-PSS)3.  

6.3.2 PEI-pDNA Complex Preparation 

Plasmid DNA (pDNA), pLyn-citrine, was provided by Professor Ronald W. Holz 

(Department of Pharmacology, University of Michigan, Ann Arbor, MI). This plasmid 



 176 

vector encodes a citrine fluorescent protein, a YFP variant, fused to a sequence from Lyn, 

a member of the Src-family kinases, for plasma membrane localization. The pUS2MT-

MASH1, pUS2MT-ngn2, and pUS2MT plasmids were provided by Professor David L. 

Turner (Neuroscience Program, University of Michigan, Ann Arbor, MI). The pUS2MT-

MASH1 and pUS2MT-ngn2 plasmids are vectors for the neural bHLH proteins MASH1 

and ngn2, respectively.37 The plasmids were amplified in Escherichia coli DH5-alpha 

strain, which was provided to us by Professor Xiaoxia Lin (Department of Chemical 

Engineering, University of Michigan, Ann Arbor, MI), and purified using Promega’s 

PureYield Plasmid Midiprep System (San Luis Obispo, CA) according to the 

manufacturer’s instructions. The concentration of pDNA was estimated 

spectrophotometrically using a quartz cuvette. To prepare PEI-pDNA complexes for 

transfection studies, linear polyethylenimine (PEI; MW 25k; Polysciences, Inc., 

Warrington, PA) and pDNA were diluted separately in 150 mM NaCl. Appropriate 

amount and concentration of PEI solutions were added to pDNA solutions to create 

mixtures of desired nitrogen-to-phosphorous (N/P) ratios. For cotransfection of P19 cells, 

the ratio of neural bHLH vector to pLyn-citrine in the mixture was 3 to 1. The mixtures 

were vortexed, incubated at room temperature for 15 min, and used immediately 

following preparation. 

6.3.3 Cell Cultures  

NG108-15 (murine neuroblastoma/glioma) cells, P19 cells, and hypoxanthine, 

aminopterin, and thymidine (H.A.T.) were obtained from American Type Culture 
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Collection (ATCC, Manassas, VA). NG108-15 cells were maintained in Dulbecco’s 

Modified Eagle’s Medium (DMEM) without sodium pyruvate (Invitrogen, Carlsbad, CA) 

supplemented with 0.1 mM hypoxanthine, 400 nM aminopterin, 0.016 mM thymidine, 

100 IU penicillin and 100 µg/ml streptomycin, and 10% fetal bovine serum (FBS). 

NG108-15 neural cells were seeded and cultured in serum-depleted culture media to 

induce neuronal differentiation. P19 cells were cultured in MEMα medium (Invitrogen, 

Carlsbad, CA) supplemented with 10% FBS. All cells were maintained at 37 °C in a 

humidified 5% CO2 atmosphere. 

6.3.4 Cell Transfection  

NG108-15 transfection studies were performed by two different methods in 

triplets – multilayer mediated delivery and solution mediated delivery. For multilayer 

mediated delivery, an additional layer of PEI-pDNA was deposited on top of the 

PVA/SWNT-PSS multilayers. The (PVA/SWNT)3 coated glass coverslips were 

immersed in PEI-pDNA solutions to produce a film structure of (PVA/SWNT)3(PEI-

pDNA). Prior to cell seeding, the glass substrates were washed with cell culture medium 

twice to remove weakly attached PEI-pDNA complexes. Cells were seeded on the 

substrates in 24-well plates at a concentration of 20,000 cells per well in DMEM with 1% 

FBS to induce neuronal differentiation. For solution mediated delivery,38, 39 cells were 

seeded similarly on (PVA/SWNT-PSS)3 coated coverslips. In 2 h, following cell seeding 

and cell attachment, 30 µl of PEI-pDNA solution containing 1 µg of pDNA was added to 

each well. As an additional control to the untreated group, cells were also seeded on 
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(PVA/SWNT-PSS)3(PEI) multilayers or treated with just PEI alone. Cells were cultured 

for 2 days before being assayed for transfection efficiency and metabolic activity.  

P19 cotransfection was performed using the multilayer mediated delivery method. 

P19 cells were seeded and cultured on top of (PVA/SWNT-PSS)3(PEI-pDNA) 

multilayers, where the PEI-pDNA complexes were prepared from a mixture of linear PEI, 

Lyn-citrine plasmid, and a neural bHLH vector (MASH1 or ngn2) at an N/P ratio of 20. 

This N/P ratio was selected to achieve high transfection efficiency while avoiding the 

cytotoxic effects, as the P19 cells may be more vulnerable than the NG108-15 cells. As a 

control, cells were also co-transfected such that the bHLH vector was replaced with an 

empty vector. Cells were seeded in MEMα with 10% FBS. After 2 days in culture, the 

serum content was lowered to 1% and the media was replaced every 2 days.  

6.3.5 Gene Expression  

Gene expression was examined using confocal microscopy. In brief, at indicated 

time points following cell seeding and treatment, NG108-15 cells were fixed with 4% 

paraformaldehyde, stained with DAPI, mounted on coverslides, and observed using an 

Olympus FluoView 500 laser scanning confocal microscope. For each sample, random 

fields were selected under 20X magnification. For each field, total number of all cells 

(DAPI stained nuclei) and transfected cells (YFP expressed cells) were counted. The 

transfection efficiency for each treatment was calculated as the number of transfected 

cells divided by the number of total cells. For P19 cotransfection, the cells were also 

stained with primary antibodies for β-tubulin III (anti-TuJ1, 1:500 diluation, Sigma-
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Aldrich, St. Louis, MO)  and visualized with Alexa Fluor-conjugated secondary 

antibodies (Invitrogen, Calrsbad, CA). 

6.3.6 Cell Metabolic Activity Assay 

Cell metabolic activity was determined by MTT assay (thiazolyl blue tetrazolium 

bromide, Sigma-Aldrich, St. Louis, MO). In brief, 2 days after cell seeding and treatment, 

cells were added with 1.2 mM of MTT solution. After incubation at 37 °C for 2 h, 

isopropanol containing 10% Triton X-100 and 0.1 N HCl was added to dissolve the 

purple formazan crystals formed by dehydrogenase reduction of MTT. The absorbance of 

the resulting solution was measure at a test wavelength of 570 nm and a reference 

wavelength of 690 nm. Absorbance readings were converted to percentage cell viability 

by referencing the untreated cells as 100%.  

 

6.4 Results and Discussion 

SWNT multilayers were fabricated from poly(vinyl alcohol) (PVA) and 

poly(sodium 4-styrene-sulfonate) (PSS) dispersed SWNTs (SWNT-PSS).  The 

conductivity of such composites was as high as 4.15×104  S/m determined as described in 

27, 30. It is sufficient or exceeds the requirements for different modes of neuronal 

excitation. As the first step, the delivery of the Lyn-citrine plasmid DNA (pDNA) to 

NG108-15 neuroblastoma cells was attempted. The NG108-15 cell line was chosen 

because these neural cells can be easily differentiated into neurons with distinctive 
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neuronal morphology, and they are routinely used as a model system for studying 

neuronal tissue. Lyn-citrine encodes a protein with strong luminescence similar to that of 

yellow fluorescent protein and gives strong membrane labeling that makes possible easy 

detection of successful transfection. To impart the SWNT films with gene delivery 

functionality, the pDNA was complexed with polyethylenimine (PEI) and deposited on 

the SWNT films in LBL fashion. The PEI protects pDNA against degradation, 

prolonging pDNA retention in the cell and the nucleus. Because the SWNT-PSS layer has 

a negative charge, the positively charged PEI-pDNA complexes were able to form a 

stable nanoscale layer with the LBL multilayers of SWNTs after thorough rinsing.21 To 

optimize the transfection efficiency, PEI-pDNA complexes of various nitrogen-to-

phosphorous (N/P) ratios were tested. To evaluate the comparative efficiency of gene 

transfer in the SWNT-pDNA multilayer composites, we also conducted in parallel PEI-

mediated gene delivery using the conventional solution method. 

In general, the transfection efficiency was higher in multilayer-mediated gene 

transfer across all N/P ratios tested (Figure 1a, d, e). The maximum transfection 

efficiency achieved in this study was ca. 50% and 30% for the multilayer and solution 

mediated delivery modes, respectively. The data for solution mediated delivery correlates 

very well with previous studies, which have demonstrated efficiencies ranging from less 

than 10% to 50% with increasing N/P ratio, as well as being highly variable depending on 

the cell line used.40, 41 While both transfected and untransfected NG108-15 cells 

differentiated into mature neurons with long neural processes, many which extended over 

100 µm in length, only those transfected with the Lyn-citrine pDNA developed 
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elaborated neural networks that were fluorescently labeled (Figure 1f). This is a clear 

indication that the delivery of functional genes through LBL films does not interfere with 

cellular developments, such as differentiation and neurite outgrowth unless such action is 

purposefully designed in the transferred gene.   

There are several factors contributing to the higher transfection efficiency 

observed in multilayer mediated gene delivery. LBL deposition distributed the PEI-

pDNA complexes evenly across the coated surface and elevated the concentration of the 

complexes on the surface of cells, increasing the number of cells exposed to the vectors 

and the likelihood of the vectors being transported across the cell membrane. 

Furthermore, immobilization of the PEI-pDNA complexes provided additional 

stabilization to the vectors, preventing unwanted degradation and prolonging their 

bioactivity.  

The efficiency monotonously increased with increasing N/P ratio for the 

multilayer composites, while it dropped solution mediated delivery after N/P = 40 and 

was significantly diminished at an N/P = 80 (Figure 1a) because for these ratios PEI-

plasmid complexes become less stable without immobilization onto a solid substrate.  For 

both delivery modes, the increase in N/P ratio also adversely effects cell viability (Figure 

1b) and cell metabolic activity (Figure 1c) due to the cytotoxicity of PEI.  Importantly, in 

all cases the cytotoxicity was more severe in solution mediated delivery. 
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Figure 6.1 Transfection of NG108-15 neural cells. Comparison of transfection efficiency 
(a), cell viability (b), and metabolic activity (c) in NG108-15 neural cells transfected with 
pLyn-citrine by multilayer mediated (black bars) and solution mediated (grey bars) gene 
delivery. Untreated cells (white bars) were cultured on SWNT multilayers without any 
additional coating or treatments. Comparison of citrine fluorescent protein expression 
using multilayer mediated (d) and solution mediated (e) gene delivery. Expression of the 
plasmid gave a very strong plasma membrane labeling. Expression of the plasmid not 
only had no noticeable adverse effect on neuronal differentiation, but also improved the 
definition of the neural processes (f). Scale bars are 100 µm. 
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The possibility to generate neurons from resident stem and astroglial cells by 

delivering appropriate genes from the SWNT films would lead to the opportunity to 

control cellular processes around the neuroprosthetic implants. To demonstrate this, we 

decided to deliver both genes encoding a fluorescent protein and the neural basic helix-

loop-helix (bHLH) proteins to the multipotent P19 embryonal carcinoma cells. The P19 

cells are derived from mouse embryo and have been used extensively as a model system 

for studying in vitro differentiation of neural cells, and skeletal and cardiac muscle 

cells.42, 43 Studies have shown that they appear to differentiate by the same mechanisms 

as normal embryonic stem cells.44-46 Forced expression of bHLH proteins, such as 

NeuroD2, MASH1, and neurogenins (ngn1, ngn2, ngn3), which are essential during 

mammalian neuronal determination and differentiation,47 have led to formation of 

neurons.48, 49 Note the exactly the same set of genes is necessary to re-program astroglial 

cells into neurons.2 Genetic control of neural population never been carried out using a 

surface mediated delivery system, which is the most logical approach for electroactive 

implantable devices. 

Indeed, P19 cells cultured on multilayer composites functionalized with 

fluorescent protein and neural bHLH expression vectors gradually adopted a neuronal 

morphology (Figure 2) while reducing proliferation rate. By 4 days in culture, these cells 

expressed both the fluorescent protein and the neuronal specific β-tubulin III protein 

stained with the antibody TuJ1 (Figure 3). The staining of β-tubulin III protein outlines 

the formation of neural processes, which became much more elaborated and intricate by 

day 6 in culture. In general, the outcomes of either MASH1 or ngn2 expression were very 
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similar. In contrast, P19 cells co-transfected with pLyn-citrine and the empty vector 

remained in their undifferentiated morphology and continued to proliferate, generating 

large islands of cells (Figure 2). As expected, some of these cells expressed the 

fluorescent protein but none of them showed expression for β-tubulin III (Figure 3).  

 
 
Figure 6.2 Morphology of transfected P19 embryonal carcinoma cells.  Light microscope 
(a, b, d, e, g, h) and scanning electron microscope (c, f, i) images of P19 embryonal 
carcinoma cells cultured on functionalized SWNT multilayers on day 2 (a, d, g) and day 
4 (b, c, e, f, h, i) after seeding. The SWNT multilayers were functionalized with PEI-
pDNA complexes containing pLyn-citrine and either a neural bHLH protein expression 
vector (a-f) or an empty vector (g-i). Cells transfected with the MASH1 (a-c) and ngn2 
(d-f) vectors adopted a neuronal morphology while those transfected with the empty 
vector continued to proliferated and remained in their undifferentiated morphology (g-i). 
Scale bars are 100 µm. 
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Figure 6.3 Neuronal differentiation of transfected P19 embryonal carcinoma cells. 
Confocal microscope images of P19 embryonal carcinoma cells cultured on 
functionalized SWNT multilayers on day 4 (a-c, e-g, i-k) and day 6 (d, h, l) after seeding. 
Cells were transfected with PEI-pDNA complexes containing pLyn-citrine, in addition to 
a vector for either MASH1 (a-d), ngn2 (e-h), or an empty vector (i-l). The cells were 
labeled for their nuclei with DAPI and expression for the neuronal specific β-tubulin III 
protein with the antibody TuJ1. While all cells showed citrine fluorescence (b, f, j), only 
those transfected with the neural bHLH protein expression vectors stained positive for β-
tubulin III (c, d, g, h), which indicates successful neuronal differentiation.  
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6.5 Conclusions 

In conclusion, it is clear that successful delivery of bHLH vectors was sufficient 

to program into the material the generation of neuron from the surrounding cells.  Also 

essential, the direct delivery of genes using SWNT LBL multilayers incorporating pDNA 

was demonstrated to be more efficient and safer than the conventional solution mediated 

delivery.  The use of SWNT composites makes possible integration of essential 

biological properties and signaling functions into the conductive materials, for which the 

reliable delivery of the genes on the implant during the surgical procedure was either 

difficult or impossible.  This ability is critical to the development of new generation of 

neuroprosthetic devices potentially eliminating inflammatory reactions50 that often lead 

to the demise of implanted electrodes.  It can also be used for stimulation of cell 

regeneration51 promoting much better integration of the electrode in the tissue. 
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CHAPTER 7 

Development of an In Vitro 3D Neural Tissue Model for Testing of Electrode- 

Induced Cellular Reactions 

 

7.1 Abstract 

 The emergence of new neural interfacing materials, such as layer-by-layer 

assembled composites of carbon nanotubes, offer novel opportunities for addressing the 

problem of inflammatory reactions that current neural electrode designs suffer from. 

While a wide variation of features can be designed into these new neural interfacing 

materials, validation of their efficacy will require a new biological testing platform that is 

accurate, affordable, and high-throughput. In this study, we report the development of an 

in vitro 3D neural tissue model based on high-density culture of cell lines in hydrogel 

scaffolds with inverted colloidal crystal structure. We showed that P19 embryonal 

carcinoma multipotent cells have the potential to differentiate into a mixture of neural 

cell types that are essential for modeling the neural inflammatory process. We also 

demonstrated that co-culture of Neuro-2A neuronal cells, C8-D1A astrocytic cells, and 

HAPI microglial cells represents a promising neural tissue model as the cells were 

dynamic and responsive to their environment.  
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7.2 Introduction 

Implantable neural electrodes are important and valuable tools in both research 

and clinical medicine. Neuromotor prosthetic devices have allowed researchers to 

investigate the biological basis of planning and control of movement by recording brain 

activity from animals.1, 2 New knowledge and technological advances acquired from 

these studies are now being translated into clinical settings. For example, it was recently 

demonstrated that neuronal activity recorded through a microelectrode array enabled a 

tetraplegic human to control a prosthetic hand, opening up the possibilities for such 

patients to communicate and interact with the outside world.3 

Despite the promise offered by advances in neurotechnologies, implantable neural 

electrodes often fail to function reliably in chronic settings, suffering from inflammatory 

tissue responses that prevent a stable, long-term interface to be maintained for acquisition 

of neural signals.4 The inflammatory tissue responses occur in acute and chronic stages. 

The acute responses consist of activated microglia and astrocytes that are recruited to the 

implant site due to mechanical injuries inflicted by the implantation process.5, 6 The 

persistent presence of the electrode induces chronic responses characterized by the 

formation of a dense, encapsulating tissue sheath consisted of microglia and astorcytes.5, 7 

This process, also known as glial scarring, displaces neuronal bodies at the implant site, 

and ultimately leads to loss of electrode connections.   

The need for better neural interfaces has called for the development of new 

materials that are not only biocompatible but possess properties that can mitigate 
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inflammatory responses. Conducting polymers8, 9 and carbon nanotubes (CNTs)10, 11 are 

emerging neural interfacing materials with potentials unmatched by conventional metallic 

electrodes. For example, layer-by-layer (LBL) assembled CNT composites have 

demonstrated excellent biocompatibility12, 13 and electrochemical properties,14, 15 as well 

as endless possibilities for biofunctionalization afforded by LBL assembly.16, 17  

The realization of new neural interfacing materials, especially those made from 

nanomaterials,18 will necessitate extensive biological testing, which has always involved 

in vivo animal models that are time-consuming and labor-intensive.19-21 In order to test 

the wide range of functionalities promised by new neural interfacing materials in an 

affordable, high-throughput, and accurate fashion, in vitro models that can closely mimic 

the neural tissue must be developed.  

 The goal of this study is to develop an in vitro 3D neural tissue model that can be 

used to investigate cellular responses inflicted by neural electrodes. While several 2D22-25 

and 3D26-28 in vitro models have been reported in the literature, they all employ primary 

cells, which require animals to be sacrificed. In this study, we report on the progress we 

have made in the development of an in vitro 3D neural tissue model based on culturing of 

cell lines in hydrogel scaffolds with inverted colloidal crystal (ICC) geometry.29-31 The 

ICC hydrogel scaffold design is characterized by its highly porous and uniform 

architecture consisted of interconnecting spherical cavities. This highly controlled and 

regular structure is the key to reproducible experimental results. Successful development 
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of such an in vitro 3D neural tissue model will enable faster screening of neural electrode 

designs and will make the study of glial scarring easier to advance.  

 

7.3 Methods 

7.3.1 Fabrication of Inverted Colloidal Crystal (ICC) Hydrogel Scaffolds  

Colloidal crystals were first constructed from glass beads with diameters between 

212 and 230 µm. The glass beads were dispersed in ethylene glycol (EG) and slowly 

added to glass vials through long glass Pasteur pipets. The vials were gently shaken using 

an ultrasonic cleaner to allow self-assembly of the glass mircospheres into a colloidal 

crystal with a hexagonally packed geometry. After evaporation of excess EG at 160°C, 

the colloidal crystal arrays were heated at 700°C for 3 h to anneal the glass particles. To 

obtain hydrogel scaffolds with ICC geometry, the glass colloidal crystal arrays were first 

infiltrated with a monomer solution containing 30 wt.-% acrylamide (AAm), a 

crosslinking agent, and an accelerating agent. The solution was then initiated to 

polymerize with a 1 wt.-% potassium peroxide solution. Following removal of excess 

polyacrylamide (PAAm) hydrogel from the exterior of the colloidal crystal arrays, the 

hydrogel infiltrated crystals were immersed in 5% HF solution to remove the glass 

colloids. The resulting 3D hydrogel scaffolds were washed extensively with deionized 

water and phosphate buffered saline (PBS) and then sterilized with 70% ethanol and UV 

irradiation.  
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7.3.2 Cell Culture 

P19 embryonal carcinoma multipotent cells, Neuro-2a neuroblastoma cell, and 

C8-D1A type I astrocytic cells were purchased from American Type Culture Collection. 

HAPI microglia cells were a generous gift from Professor Marina Mata of the 

Department of Neurology at the University of Michigan. Neuro-2a, C8-D1A, and HAPI 

cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS). The serum concentration was lowered as needed to 

reduce proliferation and induce differentiation of the cells. P19 cells were cultured in 

alpha Minimum Essential Medium (αMEM) supplemented with 10% FBS. To induce 

differentiation into neural lineages, P19 cells were cultured in αMEM containing 5% FBS 

and 2.5 µM retinoic acid for 4 days, during which cells formed aggregates. Subsequently, 

the aggregates were dissociated into single cells and cultured in a differentiation medium 

consisted of neural basal medium supplemented with B27 and L-glutamine. 

For culture in 3D ICC hydrogel scaffolds, sterilized scaffolds were immersed in 

100% ethanol and allowed to completely dehydrate with evaporation of the ethanol. Cells 

were then seeded into scaffolds by carefully dispensing 20 µl of concentrated cell 

solution containing 50% Matrigel into each scaffold. A cell seeding density of 2 × 106 

cells per scaffold was used. The addition of cell solution caused the scaffolds to gradually 

expand, rehydrate and uptake the dispersed cells. Once in the scaffolds, the cell solution 

was allowed to gel for 30 min before the scaffolds were transferred into 6-well culture 
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plates containing culture medium. For regular 2D culture, cells were seeded in 24-well 

culture plates.  

To inflict damage on the 3D cell culture model, a piece of copper wire (254 µm in 

diamater) was inserted into each scaffold. Alternatively, two to three holes were punched 

in each cell seeded scaffold, resulting in three-dimensional wounds. For 2D culture, cells 

were inflicted with mechanical injury or foreign body response by creating scrape 

wounds on the cell layer or placing 50 µm diamater stainless steel wires on the cutlure.  

7.3.3 Characterization 

At the end of each time point, the 3D scaffolds were fixed with 4% 

paraformaldehyde, dehydrated, paraffinized, and sectioned into circular slices at the 

Histology Core at the University of Michigan. To prepare samples for 

immunocytochemical characterization, the scaffold sections mounted on glass slides were 

deparaffinized and rehydrated. Fixed samples from 2D and 3D cultures were 

permeabilized and blocked in PBS containing 0.3% Triton X-100 and 10% goat serum. 

The samples were first incubated with primary antibody diluted in PBS containing 10% 

goat serum for 24h at 4°C and then with secondary antibody diluted in PBS containing 

2% goat serum for 3h at room temperature. Primary antibodies were purchased from 

Chemicon, Millipore, and Sigma. Primary antibodies and their dilutions are as follow: 

mouse anti-NeuN (1:100), mouse anti-MAP2 (1:200), mouse anti-GFAP (1:200), mouse 

anti-OX-42. rabbit anti-GFAP (1:200), and rabbit anti-MAP2 (1:100), rabbit anti-β-

tubulin III (anti-Tuj1) (1:100), and rat anti-MAC-1 (1:100). Secondary Alexa Fluor 
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antibodies were purchased from Invitrogen and a 1:100 dilution was used. Samples were 

counter-stained for nuclei and mounted with Prolong Gold Anti-Fading Reagent with 

DAPI (Invitrogen). Immunostained samples were visualized using an Olympus FluoView 

FV500 confocal laser scanning microscope. The imaged were acquired using the 

Olympus Fluoview software version TIEMPO 4.3.  

Histological characterization consisted of H&E staining. Samples were visualized 

using a Nikon Eclipse TS100 inverted microscope equipped with a QImaging 

MicroPublisher 3.3 digital CCD color cameras.  Images were captured using QImaging’s 

QCapture software. For SEM analysis, fixed samples were dehydrated through a gradient 

series of ethanol (25%, 50%, 70%, 85%, 95%, and three times 100%) for 5 min each time 

and left overnight in the final 100% ethanol solution.  Completely dried samples were 

mounted on aluminum stubs and sputter-coated with gold.  Imaging was carried out using 

a Philips XL30FEG scanning electron microscope. 

 

7.4 Results and Discussion 

7.4.1 3D Culture of P19 Embryonal Carcinoma Multipotent Cells   

In order to mimick the cellular reactions inflicted by electrode materials in neural 

tissues, the in vitro model must contain the three major cell types that are involved in the 

inflammatory process - neurons, astrocytes, and microglia. Therefore, our approach was 

to generate a dense 3D structure of cells consisted of these three cell types. The P19 
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embryonal carcinoma multipotent cells appeared to be a logical choice of cell line for 

obtaining a mixed population of neural cells as they have been known to differentiate into 

various neural cell types when treated with retinoic acid.32, 33  

In this study, P19 cells were treated with retinoic acid for 4 days before the cell 

aggregates were dissociated into single cells and seeded into polyacrylamide hydrogel 

ICC scaffolds at a cell density of 2 × 106 cells per scaffold. The cells were allowed to 

differentiate and adjust to the scaffold environment for 5 days, after which a piece of 

copper wire with a diameter of 254 µm was inserted into each scaffold to inflict 

mechanical injury and present a foreign material to the cells in the scaffold. The 

treatment day was denoted as Day 0, and the 3D culture was harvested, sectioned, and 

examined 1, 5, and 10 days after the treatment. 

Hematoxylin and eosin (H&E) staining of the sectioned 3D scaffolds was used to 

examine the overall health and distribution of cells within the scaffolds following the 

insertion of testing electrodes. Figure 7.1 shows H&E staining of sectioned scaffolds at 

the different time points. The images indicate that the overall health of cells declined in 

the scaffolds as time progressed. The number of cell nuclei, which are darkly stained in 

H&E staining, dropped significantly between the time points. By Day 10, there were very 

cells remaining in the scaffolds as illustrated by the few dark spots present in the H&E 

stained section. The loss in cell population is mostly likely the result of a combination of 

factors, including a highly dense and crowded population of cells, insufficient diffusion 
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of nutrients through the scaffolds, and inability of the culture medium in keeping the 

differentiated P19 culture healthy for extended period of time. 

The distribution of cells appeared to be even throughout the scaffolds. The 

locations of the inserted testing electrodes can be easily identified by the circular void 

space in the scaffold sections. The testing electrodes did not seem to impact the 

surrounding cells as cell nuclei were present around the electrode site on Day 1 and Day 

5 (Figure 7.1). We also did not observe clustering of cells around the electrode site that 

would indicate possible migration of glial cells and formation of glial scars. It must be 

pointed out that the distribution and motility of the cells are highly dependent on the 

density and health of the cell population, both of which were observed to deteriorate with 

time in this study. 

 

 

Figure 7.1 H&E staining of sectioned 3D scaffolds on Day 0, Day 1, Day 5, and Day 10 
after insertion of copper wire electrodes. Retinoic acid treated P19 cells were cultured in 
the ICC hydrogel scaffolds for 5 days prior to the placement of the testing electrodes. 
Void space created by the inserted electrodes can be easily identified in the images. 
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 To identify the phenotypes of differentiated P19 cells cultured in the scaffolds, the 

scaffold sections were stained and observed under a confocal microscope for various 

neural markers, including NeuN for mature neuronal nuclei, β-tubulin III for neuronal 

microtubule, GFAP for astrocytes, and MAC-1 for microglia. Figure 7.2 shows that the 

retinoic acid treated P19 cells were capable of differentiating into mature neurons and 

astrocytes when cultured in the 3D hydrogel scaffolds. However, no presence of 

microglial cells was observed. The morphology of differentiated neuronal cells are easily 

distinguished under scanning electron microcopy (SEM) as the cells developed elongated 

cell bodies with extensive network of neurites (Figure 7.3). The retinoic acid treated P19 

cells formed cell aggregates that occupied the interconnected spherical cavities of the 

scaffolds. As cell differentiation progressed, cellular contacts were formed between 

adjacent cavities and many cells developed neurites with long extensions that passed 

through multiple cavities. 

 The two biggest drawbacks of this experiment are the decline in the health of the 

3D culture and the absence of microglial cells. These two factors could limit the 3D 

model’s ability in producing a noticeable cellular response to mechanical injuries and 

foreign materials. The ability to generate and maintain a mixed population of neurons, 

astrocytes, and microglia would be a challenging task for the adoption of the P19 

multipotent cell line. Although many studies have reported the generation of neurons, 

astrocytes, oligodendrocytes from P19 cells,33-35 very few studies have demonstrated the 

differentiation of P19 cells into microglial cells. Researchers were able to generate 

microglia-like cells from P19 cells only at late stages of neural differentiation, requiring a 
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culture period of 18 or more days.36 According to the same study, the initial appearance 

of microglia coincided with the disappearance of neurons.36 Therefore, the ability to 

maintain differentiated P19 cells in culture using 3D scaffolds for extended period of 

time will be essential. This is also important as it takes time for cells to migrate and 

reorganize after the culture is challenged with a testing electrode. Optimization of the 

culture condition and media formulation will be required to keep mature neurons alive in 

the culture. Alternatively, neurons from a second delayed culture could be introduced into 

the first culture once microglial cells have emerged.  
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Figure 7.2 Confocal microscopy images of sectioned scaffolds on Day 0, Day 1, Day 5, 
and Day 10 after insertion of copper wire electrodes. Differentiated P19 cells were 
stained for markers of matured neuronal neuclei (NeuN, shown in green) and neuronal 
microtubule (β-tubulin III, shown in red) (a-d). Cells were also stained for markers of 
astrocytes (GFAP, shown in green) and microglia (MAC-1, shown in red) (e-h). Cell 
nuclei were counterstained with DAPI and are shown in blue. Scale: 100 µm. 
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Figure 7.3 SEM images of vertical cross-section (a, b) and outer surface (c, d) of a 
scaffold 5 days after cell seeding (a, b). Cells aggregates formed by the seeded P19 cells 
not only occupied the spherical pores, but were also interconnected with those in adjacent 
pores (b).  Highly differentiated neurons formed neurites with long extensions that passed 
through multiple pores and interfaced with multiple cells (c, d). Scale bars: 200 µm (a), 
100 µm (b, c), 50 µm (d). 
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7.4.2 3D Co-culture of Neuronal, Astrocytic, and Microglial Cell Lines 

 Another approach to obtain neurons, astrocytes, and microglia in the same culture 

is through co-culture of three cell lines, each representing a different neural cell type. To 

achieve this, we decided to culture Neuro-2A neuronal cells, C8-D1A astrocytic cells, 

and HAPI microglial cells together. These three cell lines were selected because they can 

be conveniently cultured together using the same culture medium.  

 One convenient feature of using a co-culture approach is that the percentage of 

each cell type can be easily controlled during cell seeding. However, the growth rates of 

the cell lines must be taken into consideration as they are different across different cell 

lines, and therefore the distribution of cell population can change substantially after 

seeding. The distribution of neural cell types can be varied accordingly to model different 

regions of the brain. For example, the ratio of neuronal to non-neuronal cells is 

approximately 1 for the whole brain, 4 for the cerebral cortex, 0.2 for the cerebellum, and 

11.4 for the rest of the brain.37 In mice, the proportion of microglia ranges from 5% in the 

cortex to 12% in the substantia nigra,38 and microglia can comprise up to 20% of the total 

non-neuronal population.39 In general, the ratio of all non-neuronal cell to neurons across 

different primate species is roughly constant and not much larger than 1.40 With these 

numbers in mind, we decided to use a ratio of 50% neurons, 30% astrocytes, and 20% 

microglia for our culture system.  

 We began this study by looking at the cellular behavior of the co-culture system 

of Neuro-2A, C8-D1A, and HAPI cells in regular 2D culture, as such a combination of 
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cells has never been reported in the literature. The cells were seeded and allowed to 

stabilize for three days under reduced serum condition to limit the extent of cell 

proliferation, after which the culture was challenged two treatments. In one scenario, 

stainless steel wires with a diameter of 50 µm were place on top of the cells, whereas in 

another case, scrapes were made to the cell layer.  

 Figure 7.4 illustrates the response of the co-culture system during the 6 days 

following the two treatments. For the wire placement scenario, we observed a very slight 

compacting and clustering of cells around the wire. However, the effect was not very 

significant, and we did not observe considerable attachment of cells to the wires as 

occurred in experiments using primary cells.23 In the scrape test, we found that the co-

culture to be highly migratory. By day 3 after treatment, many cells had already migrated 

into the area once cleared of cells on the treatment day. Overall, we demonstrated a co-

culture system where three different cell lines were able to co-exist with each other at 

high density. Although we did not observe an overwhelming cellular response, perhaps 

due to the lack of effecting inducing conditions, the culture seemed to be dynamic as cell 

were able to migrate and rearrange around foreign objects. 
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Figure 7.4 Time course of cellular events in response to the wire placement (a-d) or the 
scrape wound (e-k) in 2D co-culture of Neuro-2A neuronal cells, C8-D1A astrocytic 
cells, and HAPI microglial cells. The area scraped free of cells is on the right of the 
dotted line (e-h) or between the dotted lines (i-k). Scale bars: 100 µm (a-h), 200 µm (i-l). 
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 The co-culture of Neuro-2A, C8-D1A, and HAPI cell lines was also demonstrated 

in 3D culture with ICC hydrogel scaffolds. Cells were seeded at a concentration of 2 × 

106 cells per scaffold and allowed to stabilize for 3 days under low serum condition. On 

the day of treatment, two to three holes (Figure 7.5) were punched in the scaffolds to 

inflict injury on the cell culture. On day 0, 1, 3, and 5 following treatment, the scaffolds 

were harvested, sectioned, and analyzed. Figure 7.5 shows the H&E staining of sections 

collected from the various time points. Overall, we did not observe reorganization of the 

cells around the punched holes at any of the time points. Although the number of cell 

nuclei within the scaffolds declined as time progressed, interestingly cell population 

actually increased around the periphery of the scaffolds. The layer of cells on the 

periphery had small cell nuclei that are characterisc of microglial cells. In addition, this 

cell layer appeared to thicken with time, resembling that of a glial scarring and 

encapsulation reaction. A couple of factors could have contributed to this reorganization 

of cells. The poor transport of nutrients near the center of the scaffolds might have caused 

cells to migrate toward the edges for more nutrients. Also the exterior of the scaffolds 

consist of open spherical pore structure that are rough in texture. This microscale 

roughness could have attracted microglia and astrocytes to encasuplate the structure. 
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Figure 7.5 H&E staining of sectioned scaffolds on Day 0, Day 1, Day 5, and Day 10 
after insertion of copper wire electrodes. Neuro-2A neuronal cells, C8-D1A astrocytic 
cells, and HAPI microglial cells were seeded at a ratio of 5:3:2, respectively, and cultured 
in the ICC hydrogel scaffolds for 3 days prior to infliction of wound on the 3D culture. 
On the day of treatment, two to three holes were punched in each scaffold, creating void 
spaces that can be easily identified in the stained sections (outlined with red circles). 

 

There are a few adjustments that could improve the performance of the 3D culture 

system. First, coating of the culture plates and 3D scaffolds with biomolecules such as 

polylysine might be necessary to improve cell adhesion as detachment of small patches of 

cells were observed toward the end of the experiment. Secondly, the transport of nutrients 

in the scaffolds must be improved. A healthy culture is critical to inducing a significant 

cellular response.  Vibration could be introduced using a shaker to facilitate the exchange 

of medium around the scaffolds. Alternatively, a rotary vessel could be used for the 3D 

culture. Lastly, the cells should be allowed to differentiate and mature for a longer period 

of time under low serum or no serum condition prior to treatment. However, serum 

should be introduced into the culture system with the treatment as serum has been found 

to be an effective stimulant for more pronounced level of scarring.22  
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7.5 Conclusions 

 In this study we made very important progress toward the development of an in 

vitro 3D neural tissue model that is free of primary cells. Our overall approach was to 

obtain a 3D cell structure consisted of neurons, astrocytes, and microglia, the three 

essential cell types in neural inflammatory process, by culturing cell lines in 3D hydrogel 

scaffolds. Through this study, we obtained valuable knowledge and established important 

protocols for 3D co-culture of neural cells. Our study shows that generation of the three 

target cell types from P19 multipotent cells would be possible if the right culture 

conditions could be provided. However, control over the proportion of the differentiated 

cell types would be difficult. To resolve this, we developed a co-culture system consisted 

of three different cell lines, each representing a different cell type (Neuro-2A neurons, 

C8-D1A astrocytes, HAPI microglia). We demonstrated that this combination of cell 

lines is promising and concluded that the culture conditions should be further optimized 

to achieve a more robust and responsive neural tissue model. 
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CHAPTER 8 

Conclusions and Future Directions 

 

8.1 Conclusions 

In this dissertation, we demonstrated key properties of layer-by-layer (LBL) 

assembled carbon nanotube (CNT) composites that are essential for neural interfacing.  

Specifically, we showed that these nanostructured materials are biocompatible and 

possess excellent electrochemical properties for neural prosthetic applications. Most 

importantly, we were able to design biofunctional interfaces that can modulate cellular 

behaviors by integrating biological molecules into LBL assembled CNT composites. The 

combination of LBL assembly with CNTs is the enabling ingredient of this platform 

technology, allowing the unique properties of CNTs to be exploited and additional 

functionalities to be incorporated with high level of control over the material structure 

and composition. 

 In Chapter 2, we demonstrated the novel usage of high content screening assays 

as a convenient and universal tool for investigating the cytotoxicity of nanomaterials. We 

found that unlike CdTe quantum dots, gold nanoparticles, and freely dispersed CNTs, 
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which produced various cytotoxic effects on cells, LBL assembled CNT composite thin 

films were found to be nearly inert. Specifically, we observed little to no change in the 

cell number, nuclear area, mitochondrial membrane potential, and intracellular free 

calcium concentration of neural cells cultured on the CNT composite films, indicating 

their inertness and biocompatibility as a cellular interfacing material. 

In Chapter 3, we investigated the potential of interfacing LBL assembled CNT 

composites with neural stem cells (NSCs) because their plasticity and ability to 

reestablish neuronal circuits may be an important component in the engineering of an 

stable, biocompatible, and effective neural interface. In this chapter, we demonstrated 

that mouse embryonic NSCs from the cortex can be successfully differentiated to 

neurons, astrocytes, and oligodendrocytes with clear formation of neurites on LBL CNT 

thin films. The results suggest that LBL CNT films are a suitable substrate for NSCs as 

cell viability, metabolic activity, neurite outgrowth, and expression of neural markers 

were found to be similar to those obtained from NSCs differentiated on poly-L-ornithine 

coated surface, a commonly employed growth substratum for NSCs.  

In Chapter 4, the electrochemical properties of electrodes made from LBL 

assembled CNT composites were established and compared with electrodes made from 

iridium oxide and poly(3,4-ethylenedioxythiophene) (PEDOT). A thorough investigation 

was carried out to study properties such as electrochemical impedance, charge storage 

capacity, voltage excursion, and electrochemical stability, showing that the CNT 

electrodes outperformed the other electrodes. The LBL assembled CNT composites were 
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not only more stable electrochemically but also demonstrated more pronounced 

reductions in electrical impedance and augmentations in cathodic charge storage 

capacity. This clearly indicates that they are an excellent electrode material for neural 

prosthetic applications.  

In Chapter 5, LBL composites were prepared from CNTs and laminin to create 

an interface that can mediate the differentiation and electrical stimulation of neural stem 

cells. The laminin-CNT composite films were found to enhance the differentiation of 

NSCs. Cells exhibited extensive neurite outgrowth and formed functional neural network. 

In addition, excitation of cells was demonstrated by applying a lateral current through the 

CNT film, confirming the functionality of the differentiated NSCs, as well as the utility 

of the conductive CNT substrate.  

In Chapter 6, LBL assembled CNT composite films were engineered to 

incorporate plasmid DNAs, allowing that composites to deliver genetic materials to 

surrounding cells and thus altering their biological properties. The transfection efficiency 

of these functionalized CNT composites was found to be remarkably higher than the 

conventional solution-mediated technique. By using plasmid expression vectors for 

neural basic helix-loop-helix proteins, neurons were generated from multipotent cells 

adhering to the CNT multilayers. This chapter illustrates the possibility of a substantially 

improved level of tissue-device integration through recruiting and programming of 

resident stem cells in the nervous system.  
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In Chapter 7, we described our approach in developing an in vitro three-

dimensional neural tissue model for testing electrode coatings designed to mitigate 

electrode-induced gliosis. Our goal is to build a model system solely based on cell lines, 

which will negate the use of primary cells and the sacrifice of animals, making the testing 

of electrode materials much cheaper, faster, and easier.  

 In summary, the studies presented in this dissertation provide a detailed 

characterization of the biocompatibility and electrochemical properties of LBL assembled 

CNTs composites. In addition, these studies also serve as valuable examples regarding 

the design and implementation of biofunctionalities in the CNT composites and provide 

important insights into the interaction between nanomaterials and cellular behaviors. All 

of the work presented in this dissertation clearly and strongly supports our hypothesis that 

LBL assembly of CNT composites is a powerful and versatile platform for creating a 

multifunctional neural interface that cannot be achieved using traditional electrode 

materials.  
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8.2 Future Directions 

Despite the many exciting results generated from this dissertation, there is still 

much to be explored in realizing the full potential of a neural interface platform based on 

LBL assembled CNT composites. One property that remains to be characterized and 

optimized is the long-term stability of CNT composites in biologically relevant 

conditions. Since neural prosthetic devices need to stay inside the body for many years, 

accelerated stability testing of CNT composites would be necessary and could yield 

valuable information. Such testing may involve incubating the nanostructured CNT 

material in a simulated body fluid at body temperature with stirring of the fluid.1, 2 The 

physical structure, surface morphology, and electrochemical properties of the CNT LBL 

composites should be monitored as material degradation can significantly impact the 

biocompatibility and functionality of an implanted neural interface. Post processing of 

LBL assembled CNT composites, such as chemical crosslinking or heat treatment, may 

be required to achieve optimal stability since the high concentration of ions in simulated 

body fluid could destabilize the native composite films, which are held together by a 

combination of electrostatic and weak forces. Post processing strategies are promising as 

they have been shown to be effective in optimizing the mechanical strength and stiffness 

of CNT LBL composites.3 

Another direction of research that deserves attention is the fabrication of 

conductive CNT LBL films with neural tissue-like stiffness. While LBL assembled CNT 

films with high tensile strength and stiffness have been produced in the development of 
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ultra-strong materials,3, 4 very little work has been devoted to the engineering of soft 

multilayer materials.5 Several studies have demonstrated that matrix stiffness not only 

affects the adhesion of cells, but also controls the differentiation of stem cells.6-9 For 

example, mesenchymal stem cells were shown to commit to the lineage specified by 

matrix elasticity. Specifically, soft matrices that mimicked brain elasticity induced 

differentiation toward neurons while stiffer matrices that mimicked muscles were 

favorable for differentiation into myoblasts.8, 9 Both neurons and myoblasts are 

electroactive cells that can be electrically stimulated using conductive substrates like 

CNT LBL films.10 By engineering CNT LBL films with elasticity resembling that of the 

neural tissue (E~0.1-1 kPa),9 it may be possible to reduce acute inflammatory responses 

caused by mismatch in mechanical properties and increase neuronal differentiation of 

resident stem/progenitor cells. The level of control afforded by LBL assembly, as well as 

the wide selection of molecular species available to this nanostructuring technique, will 

be essential for this task. Since the desired material is most likely going to be a hydrogel 

film, the key challenge will be the ability to achieve sufficient electrical conductivity in 

this hydrated multilayer structure.  

The last direction of research to be discussed here is the fabrication of a thin film 

electrode array based on LBL assembled CNT composites. This challenge could generate 

the most impact and encompasses several aspects that go hand in hand with each other, 

including miniaturization, patterning, and packaging of the conductive CNT LBL films. 

One important function highly desired by neural prosthetic devices is the ability to 

acquire high temporal and spatial frequency signals. This function requires the 
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deployment of multiple number of recording electrodes that are not only small (< 0.5 

mm2) but also positioned close to each other.11 The ability to precisely fabricate such an 

array of electrode pads will require a patterning technology that is compatible with LBL 

assembled composite films. Conventional lithography techniques have been successfully 

utilized to create fine patterns on thin films fabricated from LBL assembly.12-14 This 

interesting combination of top-down and bottom-up techniques can be similarly applied 

to CNT LBL films. Although patterning of LBL films using soft-lithography has been 

demonstrated, the fine balance of forces required at the interface may be a limiting factor 

for certain combinations of materials.15 Another interesting strategy for generating 

patterns on LBL films is the use of laser ablation techniques. Femtosecond laser 

patterning of conducting polymer thin films16 has already been demonstrated and should 

be equally applicable to CNT LBL films. The ability to precisely pattern CNT LBL films 

would allow both a dense array of electrodes and their interconnection wires to be 

constructed solely from LBL assembled CNT composites. However, the interconnection 

wires must be packaged and protected with an insulating material to prevent contact with 

the surrounding tissue and fluids. The insulating layer or packaging material can also be 

fabricated from LBL films, and the electrodes can be selectively exposed using 

lithographic techniques. The large surface area covered by this outer insulating layer 

requires it to be biocompatible but also offers opportunities for additional functions to be 

incorporated, such as selective adhesion, anti-inflammatory, and drug delivery.17 With 

careful engineering and selection of materials, it would be possible to fabricate a thin film 

electrode array built entirely from LBL composite films. With a thickness of only a few 



 222 

micrometers, this thin film electrode array would provide highly conformal coverage over 

the convoluted brain surface, which is critical to the establishment of a stable neural 

interface and the acquisition of quality signals.  We envision that such a device would be 

most suitable and successful as a new generation of subdural, non-penetrating surface 

electrode system.18, 19  
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