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CHAPTER I

Introduction

1.1 Background

The calculation of time dependent observables in liquids can be a very di¢ cult

and computationally intensive process; however, many time dependent properties

are of central importance to understanding chemical phenomena. Vibrational energy

relaxation, di¤usion, and reaction kinetics are a few examples of important chemical

phenomena that are time dependent and also can be computationally expensive to

simulate. This becomes especially true if the system must be described quantum

mechanically. As opposed to equilibrium observables, which can be calculated from

complete knowledge of the partition function of the system, nonequilibrium observ-

ables require a di¤erent time correlation function (TCF) which can then be related

to the time dependent observable of interest. Computer simulations can then be

used to calculate the TCF; however, this may not be a trivial task. If the system

requires a quantum mechanical description, some sort of semiclassical (SC) approach

is needed, as the exact quantum simulation of TCFs is beyond the reach of modern

computer resources. Even with a SC procedure, the calculation can still be extremely

computationally expensive; however, an accurate description of time dependent phe-

nomena in liquids can provide important microscopic insight into time dependent

1
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phenomena that may not be able to be shown by experiment.

1.2 Equilibrium and Nonequilibrium Statistical Mechanics

Statistical mechanics provides the way to calculate macroscopic observables, which

are functions of pressure, volume, internal energy, etc., in terms of microscopic prop-

erties, speci�cally, molecular and atomic positions. Given complete knowledge of

the system�s equilibrium partition function, any macroscopic equilibrium observable,

hAi0, can be calculated from given microscopic properties. If the system can be

described classically, the equilibrium partition function is de�ned as [83, 12]

Z =

Z
dQ

Z
dPe��H(Q;P) (1.1)

where � = 1
kBT

, kB is the Boltzmann constant, T , is the temperature, Q and P are

the phase space atomic positions and momenta, respectively, andH(Q;P) is classical

Hamiltonian for the system. Using the partition function, any classical macroscopic

equilibrium observable, hAiCl0 , can be written as

hAiCl0 =

R
dQ
R
dP A(Q;P) e��H(Q;P)

Z
(1.2)

where the equilibrium phase space probability density is given by � = e��H(Q;P)

Z
. For

example, the total internal energy of a classical system can be written as

hHiCl0 =

R
dQ
R
dP H(Q;P) e��H(Q;P)

Z
(1.3)

If quantum mechanical e¤ects play a signi�cant role, then the equilibrium quantum

mechanical partition function of the system must be used, which is de�ned as

Z = Tr
h
e��

bHi (1.4)
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where Ĥ, is the quantum mechanical Hamiltonian operator. Any quantum mechan-

ical equilibrium macroscopic observable can then be written as

D bAEQM
0

=
Tr
h bAe�� bHi
Z

(1.5)

where the quantum mechanical equilibrium phase space density operator is given by

�̂ = e��
bH

Z
. Analogous to the previous example, the quantum mechanical internal

energy of the system can be written as

D bHEQM
0

=
Tr
h bHe�� bHi
Z

: (1.6)

The calculation of time dependent phenomena requires the use of nonequilibrium

statistical mechanics. Within this formalism, many time dependent observables can

be related to di¤erent TCFs. As opposed to equilibrium statistical mechanics, where

a single partition function corresponding to the system at a particular equilibrium

state is used to calculate all equilibrium observables for the system, a di¤erent TCF

must be used for each observable of interest. The general formula for a classical time

correlation function is

C(t) = hA(t0)B(t+ t0)i = lim
�!1

1

�

�Z
0

dtA(t0)B(t0 + t) (1.7)

where A(t) = A [Q(t);P(t)], B(t) = B [Q(t);P(t)]. and fQ(t);P(t)g evolve accord-

ing to Newton�s equations of motion. If the system is ergodic, then, given a long

enough amount of time, a single trajectory will be able sample all available state

points in phase space. If this is the case, then the general time average Eq. (1.7) can

be replaced by the following classical ensemble average expression

C(t) =
1

Z

Z
dQ

Z
dP e��H(Q;P) A(Q;P) B [Q(t);P(t)] (1.8)
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The quantum mechanical expression for a general TCF analogous to equation 1.8 is

given by

C(t) =
1

Z
Tr
h
e��

bHÂ B̂(t)i (1.9)

where B̂(t) = eicHt=~B̂ e�icHt=~ is the operator B̂ in the Heisenberg representation.

1.3 Linear Response Theory

Using a �rst order perturbation approach, linear response theory (LRT) can be

used to understand time-dependent phenomena using a time correlation function

formalism[68, 12]. Here and in what follows the system will be assumed to be classi-

cal, although this formalism can easily be generalized to a quantum system. Assume

a system in thermal equilibrium with the Hamiltonian H0. A perturbation, A, is ap-

plied to the system to push it slightly away from equilibrium and the system is then

allowed to equilibrate with respect to the perturbation. The Hamiltonian describing

this situation is Htot = H0+fA, where f is a parameter detailing the strength of the

perturbation. At time t = 0, the perturbation is turned o¤ and the system is allowed

to relax. The phase space probability density describing the perturbed system at

time t � 0 is

� =
e��(H0+fA)R

dQ
R
dPe��(H0+fA)

; (1.10)

and the probability density at time t� 0 is given by

�eq =
e��H0

Zeq
(1.11)

where Zeq =
R
dQ
R
dPe��H0 is the equilibrium partition function. This is shown

schematically in Fig. 1.1.

To understand the phase space probability density of the system at t = 0, Eq.

(1.10) is written in terms of Eq. (1.11). Because the perturbation was assumed to
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Figure 1.1: Schematic represenation of a system slightly pertubed from equilbrium
at t < 0.

be small such that H0 � fA, Eq. (1.11) can be expanded linearly in terms of A:

� =
e��(H0+fA)R

dQ
R
dPe��(H0+fA)

� e��H0R
dQ
R
dPe��H0 [1� �fA] [1� �fA] (1.12)

=
e��H0

Zeq � Zeq� hAi0
[1� �fA]

=
e��H0

Zeq
[1� �fA] [1 + �f hAi0]

= �eq [1� �f (A� hAi0)] = �eq [1� �f �A]

where �A � A � hAi0. Because the unperturbed Hamiltonian is time invariant and

because of the time-reversal symmetry arising from Hamilton�s equations of motion

for propagating the positions and momenta, Q and P respectively, in time, the time

propagation of the probability density �(t), can be written as

�(t) = �eq [1� �f �A(�t)] (1.13)

The time dependent probability density in Eq. (1.13) can now be used to calculate

the macroscopic time dependent average value of some observable, �B(t):

�B(t) =

Z
dQ

Z
dP�(Q;P; t)B(Q;P) (1.14)

=

Z
dQ

Z
dP�eq [1� �f �A(Q�t;P�t)]B(Q;P)

= hBi0 � �f h�A(�t)Bi
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Using the property of classical time correlation functions such that h�A(�t)B(0)i =

h�A(0)�B(t)i0, the �nal result of Eq. (1.14) can be rewritten as

hBi0 � �f h�A(�t)B(0)i = hBi0 � �f h�A(0)�B(t)i0 (1.15)

This leads to the �nal result

� �B(t) = ��f h�A(0)�B(t)i0 (1.16)

which is a TCF. The importance of this formalism and its resulting expression is that

it is able to take a macroscopic nonequilibrium time dependent average and relate

it back to an equilibrium time correlation function. The expression in Eq. (1.16)

is a measure of microscopic �uctuations around some equilibrium value, and the

correlation of those �uctuations can be used to simulate time dependent phenomena.

This result is equivalent to the Onsager Hypothesis, which states that the relaxation

of nonequilibrium disturbances is governed by the same laws as the �uctuations in a

microscopic equilibrium system. This is also known as the Fluctuation Dissipation

Theorem.

1.4 Chemical Kinetics

The calculation of �rst order chemical reaction rate constants can be treated

within the linear response formalism[12, 11]. Here and in what follows, the system

will be assumed to be classical, although this formalism can be generalized to a

quantum system. Assume a �rst order chemical reaction with a one dimensional

collective reaction coordinate, q, that takes the system from the reactant state to

the product state. The phase space corresponding to this system will include a

bottleneck region corresponding to the area of the reaction barrier that is assumed
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to be centered at q�. When the reaction coordinate crosses the barrier the reaction

will proceed from reactants to products or vice versa. Phenomenologically, the rate

constant can be written as

xp(t)

xp(0)
= e�kt (1.17)

where xp(t) is the mole fraction of the products at time t and k is the chemical

reaction rate constant. In this case, the observable is the mole fraction, which can

be written microscopically as a ensemble average of the Heaviside function of the

reaction coordinate

xp = hh(q � q�)i0 (1.18)

where

h(q � q�) =
�
1 ; q > q�

0 ; q < q�
(1.19)

The choice of perturbation in this case will also be a Heaviside function however,

other perturbations can be used provided they perturb the chemical equilibrium.

The phenomenological rate constant can now be written in terms of the Heaviside

function such that

xp(t)

xp(0)
=
�h [q � q�] (t)
�h [q � q�] (0)

= e�kt (1.20)

In the long time limit such that t� 1=k, the time derivative is applied to both sides

of Eq (1.20), resulting in the following expression:

@

@t

hh(q � q�)i (t)
hh(q � q�)i (0) = �k (1.21)

The Heaviside averages can then be rewritten using the linear response formalism:

@

@t

h�h [q(0)� q�] �h [q(t)� q�]i0
h�h [q(0)� q�] �h [q(0)� q�]i0

= �k (1.22)

Applying the time derivative givesD
�h [q(0)� q�] � _h [q(t)� q�]

E
0

h�h [q(0)� q�] �h [q(0)� q�]i0
(1.23)
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The time derivative of the Heaviside function can then be written as

� _h(q(t)� q�) = _h [q(t)� q�] (1.24)

=
@

@q
h [q � q�] _q(t)

= _q(t)�(q � q�)

where �(q � q�) is the Dirac delta function and _q(t)�(q � q�) is the so called �ux.

This leads to the �nal result, known as the reactive-�ux (RF) TCF.

k =
h _q(0)�(q � q�)h [q(t)� q�]i0
hh [q � q�]i h1� h [q � q�]i0

(1.25)

The RF-TCF is able to calculate reaction rate constant in simulations by measuring

the amount of recrossing of the reaction coordinate over the free energy barrier and

correlating this to the so-called �ux of the reaction coordinate over the barrier. The

RF-TCF formalism allows the simulation to take into account any recrossing that

may be induced by the solvent. If an approximation is made such that the direction

of the reaction coordinate velocity, _q, at the top of the free energy barrier determines

the �nal state and thus there can be no recrossing, then Eq. (1.25) leads to the

transition state theory (TST) approximation for reaction rate constants, kTST :

kTST =
h _q�(q � q�)h [ _q]i0

hh [q � q�]i h1� h [q � q�]i0
(1.26)

It is important to note that the TST approximation includes no information about

the reaction dynamics is entirely dependent on the equilibrium conditions of the

system.

1.5 Di¤usion

In addition to the LRT formalism, other theoretical methods can be used to relate

TCFs to time dependent observables. Di¤usion is an important chemical process
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that can be described using a time correlation function formalism[68, 83, 163]. The

calculation of di¤usion coe¢ cients by computer simulation is an important problem

because of the wide availability of experimental data. Di¤usion can serve as an

important benchmark for new intermolecular force �elds. Di¤usion coe¢ cients are

also a common benchmark in testing quantum dynamics methodologies[55, 84, 96,

113, 119, 116, 118, 117, 121, 123].

Here and in what follows the system will be assumed to be classical. To relate

the di¤usion coe¢ cient to a time correlation function, the di¤usion coe¢ cient can

be de�ned in terms of the well known Einstein di¤usion equation.



x2
�
= 2Dt (1.27)

where x is the displacement in one direction around an origin x = 0, and D is the

di¤usion coe¢ cient. From the classical equations of motion, x(t) =

tZ
0

ds vx(s), where

v is velocity in one direction of the di¤using particle, and the average displacement

can be written as 

x2
�
0
=

* tZ
0

ds1vx(s1)

tZ
0

ds1vx(s1)

+
0

(1.28)

This expression can then be substituted into Eq. (1.27) to yield* tZ
0

ds1vx(s1)

tZ
0

ds1vx(s1)

+
0

= 2Dt (1.29)

Taking the time derivative of both sides of the equation leads to

tZ
0

ds hvx(t)vx(s)i0 = 2D (1.30)

Because the expression in Eq. (1.30) relates equilibrium �uctuations of the velocity

to di¤usion, the choice of time origin is arbitrary. The left hand side of Eq. (1.30)
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can be rewritten as
tZ
0

ds hvx(t)vx(s)i0 =

tZ
0

ds hvx(t� s)vx(0)i0 (1.31)

=

tZ
0

du hvx(u)vx(0)i0

The di¤usion equation can only be assumed to be valid a long times, leading to the

resulting expression relating the di¤usion coe¢ cient to the velocity-velocity correla-

tion function (VVCF):

D =

1Z
0

du hvx(u)vx(0)i0 (1.32)

Eq. (1.32) can be generalized to three dimensions:

D =
1

3

1Z
0

du hv(u)v(0)i0 (1.33)

where v2 = v2x+v
2
y+v

2
z . Importantly, Eq. (1.32) and Eq. (1.33) can be thought of as

memory functions, giving a measure of howmuch the velocity at later times is a¤ected

by the initial velocity. If the di¤using molecule or atom experiences many collisions

that change the velocity, then the VVCF will decay faster, and the resulting di¤usion

coe¢ cient will be smaller. If collisions with the solvent have very little e¤ect on the

velocity of the di¤using object, then the VVCF will decay slower and the resulting

di¤usion coe¢ cient will be larger.

1.6 Vibrational Energy Relaxation

Vibrational energy relaxation (VER) is the process by which a molecular mode

is vibrationally excited and gives its energy to the bath. This process has a rate

constant associated with it that can be related to a bath correlation function. Be-

cause vibrational relaxation often requires treating the dynamics within a quan-

tum mechanical framework, the following derivation will take a quantum mechanical
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approach[93]. Consider a harmonic vibrational mode coupled to a the other degrees

of freedom in the system. The overall Hamiltonian is given by

Ĥ =
p̂2

2
+
1

2
!2q̂2 +

NX
j�1

P̂j
2
+ V (Q̂; q̂) (1.34)

where ! is the vibrational frequency of the relaxing mode, q̂ and p̂ are the mass

weighted vibrational displacement coordinate and conjugate momentum operators,

respectively, N is the number of degrees of freedom (DOF) coupled to the vibrational

mode, Q̂ = (Q̂1; : : : ; Q̂N) and P̂ = (P̂1; : : : ; P̂N) are the mass weighted coordinate

and momentum operators of the degrees of freedom coupled to the vibrational mode,

respectively, and V (Q̂; q̂) is any potential energy other than the vibrational potential

energy 1
2
!2q̂2. If it is assumed there is weak coupling between the system (the relaxing

vibrational mode) and the bath (all other degrees of freedom coupled to the mode),

then the non-harmonic potential, V (Q̂; q̂), can be expanded to �rst order in q around

q = 0:

V (Q̂; q̂) = V (Q̂)
���
q=0

+
@V

@q

����
q=0

q̂ � V̂B(Q) + F (Q̂)
 q̂ (1.35)

where F (Q̂) = @V
@q

���
q=0

is the force of the bath on the relaxing mode when the mode

is frozen at its equilibrium bond length. This is a reasonable approximation to make

because the displacement of the mode due to vibration will generally be small and

will cause very little perturbation to the surrounding environment. If this is not the

case, this approximation is not valid.

The Hamiltonian in Eq. (1.34) can now be separated into system, bath, and

system-bath coupling terms:

Ĥ = ĤS + ĤB + ĤBS (1.36)

where ĤS =
p̂2

2
+ 1

2
!2q̂2, ĤB =

NX
j�1

P̂j
2
+ V̂B(Q), and ĤBS = F (Q̂)
 q̂. The system

Hamiltonian ĤS, is a one dimensional harmonic oscillator and its stationary states
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and energy levels are well known:

ĤS jni = En jni (1.37)

where En = (n+1=2)~! for n = 0; 1; 2; 3; : : :. The system-bath coupling term, ĤBS,

can also be written in terms of the system stationary states:

ĤBS =
X
n;n0

�̂n;n0 
 jni hn0j (1.38)

where �̂n;n0 � hn0jF (Q̂)q̂ jni is a bath operator. From Red�eld theory, the population

relaxation rate constant from some state n to another state n0 is given by

kn0 n =
1

~2

1Z
�1

d�ei(n�n
0)Cnn0;n0n(�) (1.39)

where

Cnn0;n0n(�) = TrB

h
�̂eqB �̂n;n0�̂n0;n

i
(1.40)

= jhnj q̂ jn0ij2 TrB
h
�̂eqB F̂ (�)F̂

i
= jhnj q̂ jn0ij2CF (�)

and CF (�) is the quantum mechanical force-force correlation function (FFCF)

CF (�) = TrB

h
�̂eqB F̂ e

i bH�=~F̂ e�i bH�=~i (1.41)

. Using harmonic oscillator raising and lowering operators, the matrix element

hnj q̂ jn0i can be calculated:

hnj q̂ jn0i =

r
~
2!
hnj â+ ây jn0i (1.42)

=

r
~
2!

hp
n0 hn jn0 � 1i+

p
n0 + 1 hn jn0 � 1i

i
=

r
~
2!

hp
n0 �(n; n0 � 1) +

p
n0 + 1 �(n; n0 � 1)

i
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As a result, only vibrational transitions between subsequent states are allowed. The

rate constants for the allowed transitions are given by

kn n+1 =
(n+ 1)

2~!

1Z
�1

d�ei!�CFF (�) (1.43)

� (n+ 1)

2~!
~CFF (!)

where ~CFF (!) =

1Z
�1

d�ei!�CFF (�) is the Fourier transform (FT) of the FFCF.

At a low enough temperature such that �~! � 1, which is true for many molec-

ular vibrations, only states 1 and 2 will be signi�cantly populated. As a result only

the k0 1 rate constant will be be signi�cant. The resulting expression for the k0 1

rate constant is given by the Landau-Teller formula

k0 1 =
1� e��~!
2~!

~CFF (!) (1.44)

The Landau-Teller formula in Eq. (1.44) has a clear classical limit in the case where

�~! � 1:

kCl0 1 =
�

2
~CClFF (!) (1.45)

where ~CClFF (!) is the FT of the classical FFCF, which is de�ned as

CClFF (t) =
1

ZB

Z
dQ

Z
dP e��HB(Q;P)F (t)F (0) (1.46)

where ZB is the partition function of the bath. Although the classical FFCF is

computationally simpler to calculate, it can lead to very poor approximations to the

VER rate constant unless the transition frequency is much smaller than kT , which

is rarely the case.

1.7 Linearized Semiclassical approximation

The calculation of an exact quantum mechanical TCF is not computationally

feasible for complex systems such as liquids using currently available computational
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resources. This is because the computational e¤ort scales exponentially with the

number of DOF when simulating quantum dynamics directly. A way to avoid this

problem is to use some sort of semiclassical approximation[155, 143, 156, 145, 146,

154, 144]. The linearized semiclassical (LSC) is a particularly attractive method

because it can be derived directly from the real time path integral representation of

the TCF[133] and the resulting dynamics of the coordinates and momenta will be

classical.

Consider a general quantum mechanical TCF:

C(t) =
1

Z
Tr
h
e��

bHÂei bH=~B̂e�i bH=~i (1.47)

The TCF, C(t) can also be equivalently expressed as a real time path integral

C(t) =

Z
dx+0

Z
dx�0

Z
x+N

Z
dx�N



x+0
�� e�� bHÂ ��x�0 � 
x�0 �� ei bH=~ ��x�N� (1.48)

�


x�N
�� B̂ ��x+N� 
x+N �� e�i bH=~ ��x+0 �

=
� m

2�~"

�N Z
dx+0 � � �

Z
x+N

Z
dx�0 � � �

Z
dx�N (1.49)

�


x+0
�� e�� bHÂ ��x�0 � 
x�N �� B̂ ��x+N� ei(S+N�S�N)=~ (1.50)

where the time is written in discrete terms f0; "; 2"; : : : ; N" = tg and the N ! 1

limit will be taken at a later stage. The forward and backward actions, S�N , are given

by

S�N = "
N�1X
j=0

241
2
m

 
x�j+1 � x�j

"

!2
� V (x�j )

35 (1.51)

where " = t=N . The integration variables can then be changed from x+0 ; : : : ; x
+
N ,

x�0 ; : : : x
�
N to y0; : : : ; yN , z0; : : : ; zN , such that

yj =
1

2

�
x+j + x

�
j

�
, zj = x+j + x

�
j (1.52)

The path integral expression in Eq. (1.48) can then be linearized by expanding

the di¤erence between the forward and backward actions, S+N � S�N , linearly with
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respect to the di¤erence between the forward and backward paths, z0; : : : ; zN , such

that

S+N � S�N � "

N�1X
j=0

hm
"2
(yj+1 � yj) (zj+1 � zj)� V 0(yj)zj

i
(1.53)

= "

N�1X
j=0

zj

hm
"2
(2yj � yj�1 � yj+1)� V 0(yj)

i
+" z0

hm
"2
(y1 � y0)� V 0(y0)

i
+" zN

m

"2
(yN � yN�1)

The integration over z1; : : : ; zN�1 can then be preformed analytically using the

identity Z
dzje

�i=~"[m="2(yj+1�2yj+yj�1)+V 0(yj)]zj (1.54)

=
2�~
"
�
hm
"2
(yj+1 � 2yj + yj�1) + V 0(yj)

i
In the limit of N !1 ("! 0),

" z0

hm
"2
(y1 � y0)� V 0(y0)

i
! z0p0 (1.55)

and

" zN
m

"2
(yN � yN�1)! zNpN (1.56)

where p0=m = lim"!0(y1 � y0)=" and pN=m = lim"!0(yN � yN�1)=". Changing the

integration variables from y1; : : : ; yN�1 to f1; : : : ; fN�1; where

fj =
m

"2
(yj+1 � 2yj + yj�1) + V 0(yj); (1.57)

and integrating over the f1; : : : ; fN�1 leads to the following approximation

C(t) =
1

2�~

Z
dy0

Z
dyt

Z
dz0

Z
dzt

����@p0@yt
���� (1.58)

�hy0 + z0=2j e��
bHÂ jy0 � z0=2i (1.59)

�hyt � zt=2j B̂ jyt + zt=2i e�ip0z0=~eiptzt=~ (1.60)
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Here, the limit N ! 1 has been explicitly been included such that yN ! yt and

zN ! zt. It should also be noted that yt = yt(y0; p0) follows a classical trajectory.

This due to the following

fj =
m

"2
(yj+1 � 2yj + yj�1) + V 0(yj) = 0 (1.61)

N!1! m
d2

dt2
y(t) = �V 0(yt) (1.62)

Lastly, changing the integration variable yt into p0 and using the de�nition of the

Wigner transform

Aw(x; p) =

Z
d�e�ip�=~ hx+�=2j Â jx��=2i (1.63)

yield the LSC approximation to a quantum mechanical TCF:

C(t) � 1

2�~

Z
dy0

Z
p0

h
e��

bHÂi
W
(y0; p0)BW (y

Cl
t ; p

Cl
t ) (1.64)

where yClt and pClt are propagated classically from initial state fy0; p0g. The LSC

approximation can provide a computationally feasible way to calculate quantum

mechanical time correlation functions because all of the dynamics are propagated

classically. Given some initial quantum mechanical distribution of positions and mo-

menta, determined by the Wigner transform
h
e��

bHÂi
W
, the positions and momenta

can be propagated classically, which is quite computationally feasible for liquids sim-

ulations. The Wigner transform,
h
e��

bHÂi
W
, cannot be calculated using standard

integral solving methods due the sign problem resulting from the highly oscillatory

exponential term, e�ip�=~. This means that an alternate method must be used to

solve the sign problem if using the LSC approximation to solve a quantummechanical

TCF.
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1.8 Semiclassical Force-Force Correlation Function

Calculating the FFCF using a LSC approach will require some sort of strategy to

avoid the sign problem resulting from the Wigner transform in Eq. (1.64). One way

to solve this problem is to approximate the Wigner transform with the goal of solving

it analytically. This is the approach taken by Shi and Geva in their development of

a LSC expression to the FFCF[134].

The LSC approximation to the FFCF is given by

C(t) � 1

Zb

1

(2�~)N

Z
dQ0

Z
dP0

h
�F̂ e��Ĥb

i
W
(Q0;P0)�FW (Q

(Cl)
t ;P

(Cl)
t ) ; (1.65)

where,

�FW (Q
(Cl)
t ;P

(Cl)
t ) = F (Q

(Cl)
t )� hF (Q0)i0 ; (1.66)

and

h
�F̂ e��Ĥb

i
W
(Q0;P0) =

Z
d�e�iP0�=~hQ0+�=2je��ĤbjQ0��=2i�F (Q0+�=2)

(1.67)

To solve the Wigner transform in Eq. (1.67), it is useful to preform a quadratic

expansion of the potential energy of the bath, V (Q) , around an arbitrary point

Q = Q0:

V (Q) � V (Q0) +
NX
k=1

@V

@Q(k)

����
Q=Q0

h
Q(k) �Q(k)0

i
+
1

2

NX
k=1

NX
l=1

@2V

@Q(k)@Q(l)

����
Q=Q0

h
Q(k) �Q(k)0

i h
Q(l) �Q(l)0

i
(1.68)

The quadratic term in Eq. (1.68) is then rewritten in terms of mass-weighted coor-

dinates,
np
M (k)

h
Q(k) �Q(k)0

io
, and Hessian matrix elements,

Hk;l =
1p

M (k)M (l)

@2V

@Q(k)@Q(l)

����
Q=Q0

; (1.69)
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followed by a normal mode transformation:

1

2

NX
k=1

NX
l=1

@2V

@Q(k)@Q(l)

����
Q=Q0

h
Q(k) �Q(k)0

i h
Q(l) �Q(l)0

i
=

1

2

NX
k=1

NX
l=1

Hk;l

�p
M (k)

h
Q(k) �Q(k)0

i��p
M (l)

h
Q(l) �Q(l)0

i�
=

1

2

NX
k=1

(
(k))2
�
Q(k)n

�2
: (1.70)

In Eq. (1.70),

Q(k)n =

NX
l=1

Tl;k
p
M (l)

h
Q(l) �Q(l)0

i
(1.71)

are the mass-weighted normal mode coordinates, and f(
(k))2g are the eigenvalues

of the Hessian matrix, fHk;lg. Rewriting the linear term in Eq. (1.68) and the

kinetic energy of the bath in terms of the normal mode coordinates and momenta

leads to the local harmonic approximation (LHA) of the quantum-mechanical bath

Hamiltonian around Q = Q0:

Ĥb �
NX
k=1

1

2

�
P̂ (k)n

�2
+ V (Q0) +

NX
k=1

G(k)n Q̂
(k)
n +

1

2

NX
k=1

(
(k))2
h
Q̂(k)n

i2
; (1.72)

where

P̂ (k)n (Q0) =
NX
l=1

Tl;k(M
(l))�1=2P̂ (l) (1.73)

and

G(k)n (Q0) =

NX
l=1

Tl;k(M
(l))�1=2

@V

@Q(l)

����
Q=Q0

: (1.74)

In order to proceed, Eq. (1.67) is rewritten in the following way:

h
�F̂ e��Ĥb

i
W
(Q0;P0) = hQ0je��ĤbjQ0i

�
Z
d�e�iP0�=~

hQ0 +�=2je��ĤbjQ0 ��=2i
hQ0je��ĤbjQ0i

(1.75)

��F (Q0 +�=2) :
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The LHA will not be applied to the hQ0je��ĤbjQ0i factor preceding the integral (this

is essential if the resulting approximation is to yield the correct classical limit and

coincide with the exact result at t = 0 - see below). Instead the LHA is applied to

the ratio, hQ0 +�=2je��ĤbjQ0 ��=2i=hQ0je��ĤbjQ0i using the following identity

(C is a proportionality constant that does not depend on Q1 and Q2),

hQ1je��[P̂
2=2+
2Q̂2=2]jQ2i = C exp

8><>: � 

2~

1
sinh(�~
)

� [cosh(�~
)(Q21 +Q22)� 2Q1Q2]

9>=>; ; (1.76)

leading to the following approximation:

hQ0 +�=2je��ĤbjQ0 ��=2i
hQ0je��ĤbjQ0i

� exp
"
�

NX
j=1

�(j)(�(j)
n =2)

2

#
; (1.77)

where,

�(j)
n =

NX
k=1

Tk;j
p
M (k)�(k) (1.78)

and

�(j) =

(j)

~
coth

�
�~
(j)=2

�
: (1.79)

�(j) in Eq. (1.79) is real and positive when [
(j)]2 > 0. Some of the normal

mode frequencies can be imaginary ([
(j)]2 < 0), in which case, 
(j) in Eq. (1.79)

can be replaced by i
(j), where 
(j) is real and positive. In this case, ~�(j) !


(j) cot
�
�~
(j)=2

�
is still real and positive as long as �~
(j) > �. In actual applica-

tions, unusable values of �(j) are very rare (typically showing up less than once per

1000 randomly sampled con�gurations).

In order to solve Eq. (1.67) analytically, the �dependence of the force, �F (Q0+

�=2) needs to be understood. To this end, it is assume that �F (Q0+�=2) can also
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be approximated by its quadratic expansion, in terms of �=2 around Q = Q0:

�F (Q0 +�=2) � �F (Q0) +
NX
k=1

F 0k
�(k)

2
+
1

2

NX
k=1

NX
l=1

F 00k;l
�(k)

2

�(l)

2

= �F (Q0) +
NX
k=1

~F 0k
�
(k)
n

2
+
1

2

NX
k=1

NX
l=1

~F 00k;l
�
(k)
n

2

�
(l)
n

2
; (1.80)

where,

F 0k =
@F

@Q(k)

����
Q=Q0

; F 00k;l =
@2F

@Q(k)@Q(l)

����
Q=Q0

(1.81)

and

~F 0k =
NX
l=1

(M (l))�1=2Tl;kF
0
l ;

~F 00k;l =
NX
i=1

NX
j=1

(M (i)M (j))�1=2Ti;lTj;kF
00
i;j : (1.82)

Substituting the approximations in Eq. (1.77) and Eq. (1.80) into Eq. (1.75),

changing the integration variables from f�(k)g to f�(k)
n g, and performing the Gaussian

integral over f�(k)
n g analytically, yields the following result:

h
�F̂ e��Ĥb

i
W

= hQ0je��ĤbjQ0i
NY
j=1

�
4�

M (j)�(j)

�1=2
(1.83)

� exp
"
�
(P

(j)
n;0)

2

~2�(j)

#
[�F (Q0) +D(Q0;Pn;0)] ; (1.84)

where,

D(Q0;Pn;0) = �i
NX
k=1

~F 0kP
(k)
n;0

~�(k)
+

NX
k=1

~F 00k;k
4�(k)

�
NX

k;l=1

~F 00k;lP
(k)
n;0P

(l)
n;0

2~2�(k)�(l)
: (1.85)

Substituting Eq. (1.83) back into Eq. (1.65), and changing the integration vari-

ables from fP (k)0 g to fP (k)n;0g then leads to the LSC-LHA to the quantum mechanical

FFCF:

C(t) �
Z
dQ0

hQ0je��ĤbjQ0i
Zb

Z
dPn;0

NY
j=1

�
1

�(j)�~2

�1=2
exp

"
�
(P

(j)
n;0)

2

~2�(j)

#
[�F (Q0) +D(Q0;Pn;0)] �F (Q

(Cl)
t ) (1.86)
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The classical limit of Eq. (1.86) coincides with the exact classical result. In order

to see this note that in the classical limit:

hQ0je��ĤbjQ0i=Zb ! e�V (Q0)=

Z
dQ0e

�V (Q0); (2)�(j) ! 2=�~2; (1.87)

since �~
(j) � 1,

NX
j=1

(P
(j)
n;0)

2=~2�(j) ! �
NX
j=1

(P
(j)
n;0)

2=2! �
NX
j=1

(P
(j)
0 )

2=2M (j); (1.88)

and D(Q0;Pn;0), Eq. (1.85), vanishes as ~! 0. One is left averaging over the time

correlation of the classical forces, �F (Q0)�F (Q
(Cl)
t ).

Quantum e¤ects enter the LSC-LHA-FFCF in several ways. The initial positions

are sampled based on the exact quantum probability density,

Pr(Q0) =
hQ0je��ĤbjQ0i

Zb
=

hQ0je��ĤbjQ0iR
dQ0hQ0je��ĤbjQ0i

; (1.89)

The initial (normal-mode) momenta are sampled based on a non-classical probability

density,

Pr(Pn;0) =
NY
j=1

�
1

�(j)�~2

�1=2
exp

"
�
(P

(j)
n;0)

2

~2�(j)

#
: (1.90)

It should be noted that f�(j)g, and therefore Pr(Pn;0), depend parametrically onQ0.

The term D(Q0;Pn;0), which is referred to as the delocalized force term, Eq. (1.85),

vanishes at the classical limit and has no classical analogue. It represents a purely

quantum-mechanical e¤ect that originates from the fact that F̂ does not commute

with Ĥb, such that
�
F̂ e��Ĥb

�
W
6=
�
F̂
�
W

�
e��Ĥb

�
W
. One may therefore view this

purely quantum-mechanical term as representing the delocalized nature of the force

at t = 0.

Eq. (1.86) provides a computationally feasible way to rigorously include quan-

tum e¤ects when calculating a FFCF and gives rise to the following algorithm for

calculating the (approximate) quantum-mechanical FFCF:
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1. Sample Q0, with the probability density of Eq. (1.89), via an imaginary-time

path integral molecular-dynamics or Monte-Carlo simulation (PIMD and PIMC

respectively), and calculate F (Q0).

2. Perform a LHA around each value of Q0, �nd the normal mode frequencies,

f
(k)g, and transformation matrix, fTk;lg, and evaluate f�(k)g, f ~F 0k(Q0)g and

f ~F 00k;l(Q0)g.

3. MC Sample the initial (normal-mode) momenta, fP (k)n;0g, based on the Gaussian

probability density in Eq. (1.90).

4. Calculate Q(Cl)
t via a classical MD simulation, for each set of initial positions

and momenta, Q0 and Pn;0, and time correlate �F (Q
(Cl)
t ) with �F (Q0) and

D(Q0;Pn;0).

1.9 Conclusion

The calculation of equilibrium observables in liquids can be done microscopically

with knowledge of the systems partition function . The calculation of time depen-

dent phenomena is a more di¢ cult problem because there is no single quantity that

can be used to calculate di¤erent observables. Instead each observable of interest

must be related to a di¤erent TCF. The approaches to deriving TCF relationships to

observable are numerous. One can use a linear response approach, where the system

is assumed to be perturbed somehow and is then allowed to relax back to an un-

perturbed equilibrium. Among other quantities, this approach can be used to relate

chemical reaction rate constants to the RF-TCF, providing a way to calculate chem-

ical reaction rate constants on a time scale much smaller than the actual reaction
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lifetimes. An empirical approach can also be taken, where one begins with a macro-

scopic expression and rewrites the equations in terms of microscopic properties, as is

the case in the derivation of the VVCF for calculating di¤usion constants. A quan-

tum mechanical approach can also be taken. Beginning with assumptions about

the system and the surrounding bath, vibrational relaxation can be treated using

perturbation theory in order to relate the relaxation rate constant to the quantum

mechanical FFCF.

Because quantum mechanical TCFs cannot be calculated exactly using currently

available computational resources, the LSC approach provides a computationally

feasible way to calculate the quantum mechanical FFCF. Here, the initial conditions

are sampled quantum mechanically and the dynamics is then propagated classically.

This leads to a situation where the major computational bottlenecks are in the initial

sampling and not in the calculation of dynamics. Speci�cally, the calculation of the

LSC-LHA FFCF involves preforming a normal mode analysis of the entire system

(including the system and the solvent), at each set of sampled coordinates. This

can be a very expensive calculation, but is not prohibitively expensive and thus still

allows us to include quantum mechanical e¤ects in our FFCF in a rigorous fashion.



CHAPTER II

Vibrational Energy Relaxation in Nonpolar
Liquids

2.1 Introduction

Vibrational energy relaxation (VER) is the process by which an excited vibra-

tional mode releases its excess energy into other intramolecular and/or intermolecular

degrees of freedom (DOF). VER is prevalent in many systems of fundamental, tech-

nological and biological importance, and plays a central role in determining chemical

reactivity.[7, 14, 20, 21, 35, 34, 106, 107, 108, 15, 16, 45, 86, 142, 105, 30, 8, 73, 127,

50, 48, 49, 44, 110, 103, 92, 65, 161, 115, 109, 129, 150, 149, 151, 104, 71, 160, 95,

94, 128, 42, 27, 31, 32, 74, 23, 22, 136, 77] Recent theoretical and computational

studies of VER have been mostly based on the Landau-Teller formula,[105, 162, 72]

which gives the VER rate constant in terms of the Fourier transform (FT), at the

vibrational transition frequency, of the quantum-mechanical TCF of the �uctuat-

ing force exerted on the relaxing mode by the other DOF. Importantly, replacing

the quantum-mechanical force-force correlation function (FFCF) (Eq. 1.41) by its

classical counterpart (Eq. 1.46) can only be justi�ed in cases where the vibrational

transition frequency is signi�cantly smaller than kBT=~. Indeed, discrepancies by

many orders of magnitude have been reported between experimentally measured

24
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VER rates and those calculated based on purely classical molecular dynamics (MD)

simulations when this condition is not met.[106, 5, 3, 26, 29, 140, 125, 126, 33,

4, 36, 139, 1, 28, 131, 25, 67] However, the exact calculation of real-time quantum-

mechanical correlation functions for general anharmonic many-body systems remains

far beyond the reach of currently available computer resources.[79] A popular ap-

proach for dealing with this di¢ culty in the case of VER calls for multiplying the

classical VER rate constant by a frequency-dependent quantum correction factor

(QCF).[106, 5, 3, 26, 29, 140, 125, 126, 33, 4, 36, 139, 1, 28, 131, 25, 67] A variety

of di¤erent approximate QCFs have been proposed in the literature. However, the

choice of QCF is somewhat arbitrary and estimates obtained from di¤erent QCFs

can di¤er by orders of magnitude. Thus, the development of more rigorous methods

for computing VER rate constants is highly desirable.

In a series of recent papers, [134, 135, 61, 60, 97], a linearized semiclassical (LSC)

approach has been proposed as a rigorous method for calculating the quantum me-

chanical FFCF. The LSC method is based on linearizing the forward-backward action

in the path-integral expression for the quantum-mechanical FFCF with respect to

the di¤erence between the forward and backward paths.[133] The resulting LSC ap-

proximation for a real-time quantum-mechanical correlation function of the form:

CAB(t) = Tr
�
ÂeiĤt=~B̂e�iĤt=~

�
(2.1)

is given by Eq. 1.64, here rewritten as

CLSCAB (t) =
1

(2�~)N

Z
dQ0

Z
dP0AW (Q0;P0)BW

�
Q
(Cl)
t ;P

(Cl)
t

�
; (2.2)

where, N is the number of DOF, Q0 = (Q
(1)
0 ; : : : ; Q

(N)
0 ) and P0 = (P

(1)
0 ; : : : ; P

(N)
0 )

are the corresponding coordinates and momenta, and is the Wigner transform of the
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operator Â,[54] and, Q(Cl)
t = Q

(Cl)
t (Q0;P0) and P

(Cl)
t = P

(Cl)
t (Q0;P0) are propa-

gated classically with the initial conditions Q0 and P0.

The LSC approximation is known to be exact at t = 0, at the classical limit, and

for harmonic systems. It also provides a convenient starting point for introducing

computationally feasible schemes to calculate quantum-mechanical time correlation

functions. The main disadvantage of the LSC approximation is that it can only

capture quantum e¤ects at short times.[145] However, it should be noted that in

complex systems such as liquids, and in the case of high-frequency VER in partic-

ular, the quantities of interest are often dominated by the behavior of short-lived

correlation functions at relatively short times.

In practice, applying the LSC approximation, Eq. (2.2), requires the calculation

of the complex phase-space integrals underlying the Wigner transforms, Eq. (1.63).

The numerical calculation of the integral in Eq. (1.63) can be extremely di¢ cult in

practice because of the oscillatory phase factor, e�iP�=~, in the integrand. In the

case of the standard FFCF, Â and B̂ in Eq. (2.2) correspond to �F̂ e��Ĥ=Z and �F̂ ,

respectively, where �F̂ = F̂ �Tr
h
e��ĤF̂

i
=Z, F̂ corresponds to the force exerted on

the relaxing mode by the bath, which consists of all the other DOF except for the

relaxing mode, Ĥ is the free bath Hamiltonian and Z = Tr
h
e��Ĥ

i
is the free bath

quantum partition function.

Neglecting centrifugal forces, which are often found to be of only minimal impor-

tance, F̂ is a function of only the bath coordinates, one �nds that [F (Q̂)]W (Q
(Cl)
t )

reduces into its classical counterpart, F (Q(Cl)
t ). Hence, the only remaining compu-

tational challenge has to do with calculating the following Wigner transform:

[�F (Q̂)e��Ĥ ]W (Q0;P0) =

Z
d�e�iP0��=~hQ0 +

�

2
je��Ĥ jQ0 �

�

2
i�F

�
Q0 +

�

2

�
:

(2.3)
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Within the original LSC local harmonic approximation (LHA) method,[134] one

proceeds by introducing the following two additional approximations:

1. Evaluating hQ0 +
�
2
je��Ĥ jQ0 � �

2
i=hQ0je��Ĥ jQ0i within the framework of the

LHA, which amounts to expanding the Hamiltonian to second order aroundQ0.

2. Expanding F (Q0 +�=2) to second order in terms of � around Q0.

The resulting Gaussian integral over � can then be solved analytically to yield

the LSC-LHA approximation for the FFCF:

CLHA�LSC(t) =

Z
dQ0

hQ0je��Ĥ jQ0i
Z

Z
dPn;0

NY
j=1

�
1

�(j)�~2

�1=2
exp

"
�
(P

(j)
n;0)

2

~2�(j)

#
[�F (Q0) +D(Q0;Pn;0)] �F (Q

(Cl)
t ) : (2.4)

Here,

Pn = Pn(Q0) =
�
P (1)n (Q0); :::; P

(N)
n (Q0)

�
; (2.5)

where
n
P
(k)
n (Q0) =

PN
l=1 Tl;k(M

(l))�1=2P (l)
o
are the normal mode momenta that

emerge from diagonalizing the Hessian matrix underlying the quadratic expansion of

the bath potential energy around Q = Q0 and

�(j) = �(j)(Q0) =

(j)(Q0)

~
coth

�
�~
(j)(Q0)

2

�
; (2.6)

where f(
(k))2(Q0)g are the eigenvalues of the Hessian matrix. The termD(Q0;Pn;0)

is given by [134]:

D(Q0;Pn;0) = �i
NX
k=1

~F 0kP
(k)
n;0

~�(k)
+

NX
k=1

~F 00k;k
4�(k)

�
NX

k;l=1

~F 00k;lP
(k)
n;0P

(l)
n;0

2~2�(k)�(l)
(2.7)

and its calculation requires as input the �rst and second derivatives of the force with

respect to the bath coordinates, that is

~F 0k =

NX
l=1

(M (l))�1=2Tl;kF
0
l ; ~F

00
k;l =

NX
i=1

NX
j=1

(M (i)M (j))�1=2Ti;lTj;kF
00
i;j : (2.8)
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where

F 0k =
@F

@Q(k)

����
Q=Q0

; F 00k;l =
@2F

@Q(k)@Q(l)

����
Q=Q0

: (2.9)

Quantum e¤ects enter the expression for CLHA�LSC(t), Eq. (2.4), in two ways:

1. Nonclassical initial sampling of the bath coordinates and momenta.

2. The nonclassical termD(Q0;Pn;0) which can be shown to vanish in the classical

limit.

Both e¤ects were found to be important for the applications considered in Refs.

[134, 135, 61, 60, 97]. Importantly, the nonclassical term D(Q0;Pn;0), which can be

traced back to the �rst and second order terms in the above mentioned expansion

of F (Q0 +�=2) in powers of �, was found to play an important role in enhancing

the VER rate. Although the calculation of the �rst and second derivatives of the

bath-induced force with respect to the bath coordinates, which is required as input

for calculating D(Q0;Pn;0), is in principle straightforward, in practice it can become

increasingly cumbersome with the increasing complexity of the force �elds. Fur-

thermore, unlike the second derivatives required for calculating the Hessian matrix

underlying the LHA, the above mentioned force derivatives are usually not part of

the output of standard packages for performing MD simulations. In this chapter we

develop an alternative scheme for calculating VER rate constants which, while still

based on LSC and LHA, avoids the above mentioned expansion of the bath-induced

force in terms of � and as a result is more accurate and does not require force

derivatives as input.
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2.2 Theory

Consider the following general quantum-mechanical Hamiltonian of a vibrational

mode linearly coupled to a bath:

Ĥtot =
p̂2

2�
+ v (q̂) +

NX
j=1

(P̂ (j))2

2M (j)
+ V

�
Q̂
�
� q̂F

�
Q̂
�
: (2.10)

Here, q̂, p̂, � and v (q̂) are the relaxing mode coordinate, momentum, reduced mass

and bath-free vibrational potential; Q̂, P̂,
�
M (1); :::;M (N)

	
and V

�
Q̂
�
are the co-

ordinates, momenta, masses and potential energy of the bath DOF and F
�
Q̂
�
is

the potential force exerted by the bath on the relaxing mode.

The standard expression of the population relaxation rate constant between the

�rst-excited and ground vibrational states is usually given in terms of the FT, at the

transition frequency, of the standard FFCF [105, 162, 72]:

k1 0 =
1

2�~!10
~C(!10) : (2.11)

Here, !10 is the transition frequency and

~C(!) =

Z 1
�1
dtei!tC(t) (2.12)

is the FT of the FFCF, given by

C(t) =
1

Z
Tr
h
�F̂ e��ĤeiĤt=~�F̂ e�iĤt=~

i
; (2.13)

where Ĥ =
PN

j=1
(P̂ (j))2

2M(j) + V (Q) is the free bath Hamiltonian.

The population relaxation rate constant k10 can also be cast in terms of a variety

of alternative expressions which are completely equivalent to Eq. (2.11). One such

expression, which will be particularly useful for our purpose, can be based on the

symmetrized FFCF given by:

Cs(t) =
1

Z
Tr
h
e��Ĥ=2�F̂ e��Ĥ=2eiĤt=~�F̂ e�iĤt=~

i
: (2.14)
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The fact that the FTs of Cs(t) and C(t) are related in a simple manner, namely

~C(!) = e�~!=2 ~Cs(!) ; (2.15)

then allows us to obtain the following alternative expression for the population re-

laxation rate constant:

k1 0 =
1

2�~!10
e�~!10=2 ~Cs(!10) : (2.16)

In the next step, we attempt to evaluate Cs(t) within the framework of the LSC

and LHA approximations. We �rst note that within the LSC approximation [see Eq.

(2.2)]:

CLSCs (t) =
1

(2�~)N

Z
dQ0

Z
dP0

h
e��Ĥ=2�F̂ e��Ĥ=2

i
W
(Q0;P0) �F

�
Q
(Cl)
t

�
:

(2.17)

Clearly, the main challenge in calculating CLSCs (t) lies in evaluating the following

Wigner transform:

h
e��Ĥ=2�F̂ e��Ĥ=2

i
W
(Q0;P0)

=

Z
d�e�iP0�=~

�
Q0 +

�

2

���� e��Ĥ=2�F̂ e��Ĥ=2 ����Q0 �
�

2

�
: (2.18)

Using the closure relation
R
dQ0jQ0ihQ0j = 1̂ we can rewrite the matrix element in

the integrand in the following from:�
Q0 +

�

2

���� e��Ĥ=2�F̂ e��Ĥ=2 ����Q0 �
�

2

�
=

Z
dQ0�F (Q0)

�
Q0 +

�

2

���� e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 ����Q0 �
�

2

�
=

Z
dQ0�F (Q0) hQ0j e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 jQ0i

Q0 +

�
2

�� e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 ��Q0 � �
2

�
hQ0j e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 jQ0i

(2.19)
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The ratio in the integrand,

Q0 +

�
2

�� e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 ��Q0 � �
2

�
hQ0j e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 jQ0i

; (2.20)

can then be evaluated within the LHA. To this end, we expand the bath potential

energy to second order around the yet to be speci�ed point Q = Q�, and then

analytically solve the resulting Gaussian integral over �, to obtain the LSC-LHA

approximation of Cs(t):

CLHA�LSCs (t) =

Z
dQ0

Z
dQ0

hQ0j e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 jQ0i
ZZ

dPn

NY
j=1

�
1

�(j)�~2

�1=2
exp

"
�(P

(j)
n )2

~2�(j)

#
�

�F (Q0)�F (Q
(Cl)
t [Q0;P0]) (2.21)

Here, Pn = Pn(Q�) =
�
P
(1)
n (Q�); :::; P

(N)
n (Q�)

�
are the normal mode momenta that

emerge from diagonalizing the Hessian matrix underlying the quadratic expansion of

the bath potential energy around Q = Q� and
�
�(j)
	
are the same as in Eq. (2.6),

where f(
(k))2g are the eigenvalues of the Hessian matrix.

Eq. (2.21) represents the main theoretical result of this work. Similarly to Eq.

(2.4), it reduces to the classical FFCF in the classical limit. However, it should

be noted that the high-frequency FT of the standard and symmetrized FFCFs is

expected to exhibit nonclassical behavior, and therefore di¤ers quite signi�cantly.

It should also be noted that in deriving Eq. (2.21) we did not resort to expanding

�F (Q0) to second order around Q0 (or any other point). In this respect, Eq. (2.21)

is in fact less approximate than Eq. (2.4). At the same time calculating Eq. (2.21)

does not require force derivatives as input! One consequence of this is that the

D(Q0;Pn;0) term, Eq. (2.7), which played such an important role in accounting for

the nonclassical behavior of the standard FFCF, is no longer present. Instead, the
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nonclassical behavior of the symmetrized FFCF is accounted for by the following

attributes:

1. Nonclassical sampling of bath coordinates and momenta (similar to that in Eq.

(2.4)).

2. The initial force is not calculated at the initial position used to generate the

classical trajectory leading to the force at a later time t.

3. The factor e�~!10=2 (see Eq. (2.16)) which actually coincides with the so-called

Scho�eld QCF.[131]

It should also be noted that up to this point, we have not speci�ed the point

Q� around which the LHA is performed. This choice will obviously a¤ect the actual

frequencies of the instantaneous normal modes and thereby the values of �(j), which

will in turn a¤ect the values of the initial momenta that are sampled and the resulting

CLHA�LSCs (t). Below, we will consider three possible and rather natural choices for

Q�, namely:

� Q� = Q0, which corresponds to the initial con�guration for the classical tra-

jectory that generates the force at time t, �F (Q(Cl)
t ).

� Q� = Q0, which corresponds to the con�guration used for calculating the initial

force, �F (Q0).

� Q� = Qc, which correspond to the centroid con�guration of the cyclic imagi-

nary time path integral.

It should be noted that the distinction between the �rst two choices is absent

from Eq. (2.4) since in this equation the initial force is calculated at the initial
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con�guration which is used as an initial condition for the classical trajectory. As will

be shown below, at least for the applications that we have considered, performing

the LHA around Q0 appear to yield results that are similar to these obtained via Eq.

(2.4) and also compare well with experiment.

The calculations of CLHA�LSCs (t) reported below were based on Eq. (2.21) and

carried out following the algorithm:

1. Perform an imaginary-time path integral molecular-dynamics or Monte-Carlo

simulation (PIMD and PIMC respectively), [6, 10] and use it to sample the

initial con�guration, Q0, and the con�guration at which the initial force is

calculated, Q0. To this end, it should be noted that within the context of

a PIMD/PIMC simulation, each DOF is represented by a ring polymer of

P beads labeled 0; 1; 2; :::; P � 1. Assuming that P is even, Q0 is identi�ed

with the con�guration of the beads labeled 0, while Q0 is identi�ed with the

con�guration of the beads labeled P=2.

2. Perform a LHA around eitherQ0 orQ0 orQc, �nd the normal mode frequencies,

f
(k)g, and corresponding transformation matrix, fTl;kg, and use it to calculate

f�(k)g and sample the initial (normal-mode) momenta, fP (k)n g.

3. Calculate Q(Cl)
t via a classical MD simulation for each sampled initial con�gu-

ration Q0 and normal mode momenta Pn;0, and time correlate �F (Q
(Cl)
t ) with

�F (Q0).

4. Repeat steps 1-3 until reaching the desired convergence.
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2.3 Applications

2.3.1 Exponential Coupling to a Harmonic Bath

The �rst model that we will consider involves a bath consisting of uncoupled

harmonic oscillators of di¤erent frequencies,

Ĥ =

NX
j=1

 
(P̂ (j))2

2M (j)
+
1

2
M (j)(!(j))2(Q̂(j))2

!
; (2.22)

and a force which is exponential in the bath coordinates,

F̂ (Q̂) = exp

"
NX
j=1

c(j)
r
2M (j)!(j)

~
Q̂(j) :

#
: (2.23)

The exact quantum-mechanical FFCF can be obtained analytically for this model

and is given by [99, 120, 28]:

C(t) = eB(0)(eB(t) � 1) ; (2.24)

where

B(t) =

Z 1
0

d!�(!)f[n(!) + 1]e�i!t + n(!)ei!tg ; (2.25)

�(!) =
NX
k=1

�
c(k)
�2
�(! � !(k)) (2.26)

and n(!) = [exp(�~!)� 1]�1.

It should be noted that the LSC approximation is exact when the system is

harmonic. Thus, for this model, Eq. (2.21) actually coincides with the exact sym-

metrized FFCF. To this end, we note that for the bath harmonic Hamiltonian in Eq.

(2.22) one can show that:

1

Z
hQ0j e��Ĥ=2 jQ0i hQ0j e��Ĥ=2 jQ0i =

NY
j=1

�
M (j)!(j)

�~

�
exp

�
��(j)

�
Q
(j)
0

�2
+
�
Q0(j)

�2�
(2.27)

� exp
�
�M

(j)(!(j))

~
2

sinh (�~!(j)=2)
Q
(j)
0 Q

0(j)
�
: (2.28)
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Substituting this result into Eq. (2.21) then yields:

CLHA�LSCs (t) = exp

"
NX
j=1

�
c(j)
�2(

coth

�
�~!(j)

2

�
+

cos
�
!(j)t

�
sinh (�~!(j)=2)

)
� 1
#
:

(2.29)

The exact standard FFCF, Eq. (2.24), can then be obtained from Eq. (2.29) by

using the identity C(t) = Cs(t +
i�~
2
). Details of this derivation are shown in the

Appendix. This should be contrasted with Eq. (2.4) which involves the additional

expansion of the force �F (Q0 +�=2) around Q0, to second order in terms of �.

Indeed, in this case it can be shown that[134]

CLHA�LSC(t) = eBR(0)
��
eBR(t) � 1

�
+ ieBR(t)BI(t)�

1

2
eBR(t)B2I (t)

�
; (2.30)

where BR(t) and BI(t) are the real and imaginary parts of B(t), respectively, which

clearly di¤ers from the exact result, Eq. (2.24).

~C(!) as obtained via Eqs. (2.24) and (2.30) are compared to the corresponding

fully classical result in Fig. 2.1. The calculations were performed with the following

spectral density,

�(!) = 2�
!�

!�+1c

exp

�
�!

2

!2c

�
; (2.31)

and for the following values of the parameters: � = 0:20, � = 3 and �~!c = 4:0.

Fig. 2.1 shows that although Eq. (2.4) is in rather good agreement with the exact

results for a wide range of frequencies, discrepancies start appearing with increasing

frequency which can be attributed to the additional approximation embodied in the

above mentioned expansion of �F (Q0+�=2) to second order with respect to �. At

the same time, Eq. (2.21) is seen to coincide with the exact result at all frequencies,

thereby testifying to its less approximate nature.
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Figure 2.1: The exact ~C(!) in the case of a harmonic bath and a force which
is exponential in the bath coordinates. Note that in this case ~C(!) coincides
with ~CLHA�LSCs (!)e�~!=2. Also shown are ~CLHA�LSC(!), ~CCl(!) and e�~!=2 ~CCl(!)
(Scho�eld QCF).

2.3.2 The Breathing Sphere Model

The next system studied was VER of a spherically symmetric solute (so called

breathing sphere) in a monatomic solvent.[27, 17, 47, 134] Calculations were per-

formed on a two-dimensional liquid and under the assumption that the solvent atoms

and the solute have the same mass and interact via identical pair potentials of the

Lennard-Jones type (for more details see Ref. [134]). The calculations reported be-

low were performed using a square simulation cell containing 81 atoms at a reduced

density and temperature of �� = 0:70 and T � = 0:68, respectively. Periodic boundary

conditions and a potential cuto¤ at 3� have been employed. PIMD simulations were

performed with 16 beads per atom. The classical equations of motion were solved via

the velocity Verlet algorithm, and the FFCF was obtained by averaging over 30,000

trajectories of length 8.0ps each.

In Fig. 2.2a, we compare CLHA�LSCs (t) as obtained via Eq. (2.21) with the
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real part of CLHA�LSC(t) as obtained via Eq. (2.4), and the corresponding classical

FFCF, CCl(t). The LHA underlying the calculation of CLHA�LSCs (t) was performed

around the above mentioned three di¤erent con�gurations, namely Q0, Q0 and Qc.

It should be noted that the initial value and rate of decay of CLHA�LSCs (t) are smaller

than these of CCl(t). This is contrast to the initial value and rate of decay of the real

part of CLHA�LSC(t) which are larger in comparison to their classical counterparts.

As a result, ~CLHA�LSCs (!) < ~CCl(!) < ~CLHA�LSC(!) throughout the entire range

of frequencies. Thus, in the case of CLHA�LSCs (t) the combined e¤ect of nonclassical

initial sampling and the fact that the initial force is calculated at Q = Q0, rather

than at Q0, is to diminish the value of ~CLHA�LSCs (!) relative to its classical counter-

part. In contrast, in the case of CLHA�LSC(t), the combined e¤ect of the very same

nonclassical sampling and a nonclassical initial force that includes the D(Q0;Pn;0)

term enhances ~CLHA�LSC(!) relative to its classical counterpart. However, it should

be remembered that ~C(!) = e�~!=2 ~CLHA�LSCs (!) (see Eq. (2.16)). Hence, a more

meaningful comparison is between ~CLHA�LSC(!) and e�~!=2 ~CLHA�LSCs (!). Indeed,

as we show in Fig. 2.2b, e�~!=2 ~CLHA�LSCs (!) is comparable to ~CLHA�LSC(!), regard-

less of the choice of LHA. It should also be noted that e�~!=2 ~CCl(!) is signi�cantly

larger than both ~CLHA�LSC(!) and e�~!=2 ~CLHA�LSCs (!). It should also be noted that

the Scho�eld QCF signi�cantly overestimates of the VER rate (see Fig. 2.2b).

An interesting observation is related to the numerical convergence of ~CLHA�LSCs (!)

in comparison to ~CLHA�LSC(!). As is well known, in the absence of resonance with

other vibrations, ~C(!) is expected to decay asymptotically with frequency in an ex-

ponential manner. As a result, it becomes increasingly more di¢ cult to average out

the statistical noise accompanying any real-life simulation, which is needed to calcu-

late the increasingly small value of ~C(!) at high frequencies. In fact, it is a common
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Figure 2.2: (a) A comparison of CLHA�LSCs (t) (with the LHA performed around either
Q0 or Q0 or Qc), Re[CLHA�LSC(t)] and CCl(t) for the breathing sphere model; (b) A
semilog plot of ~CLHA�LSCs (!)e�~!=2 (with the LHA performed around eitherQ0 orQ0

or Qc) ~CLHA�LSC(!), ~CCl(!) and e�~!=2 ~CCl(!) (Scho�eld QCF) for the breathing
sphere model.

practice to obtain ~C(!) at high frequencies by extrapolating the exponential gap

law, which usually emerges at low frequencies, to much higher frequencies.[98, 99]

Now, because ~Cs(!) = e��~!=2 ~C(!), its high frequency value is signi�cantly smaller

than ~C(!), which in turn makes it even more di¢ cult to obtain a converged result.

Thus, one expects that obtaining a converged estimate of ~Cs(!) at a given frequency

will be computationally more demanding than obtaining a converged estimate of

~C(!) at the same frequency. However, in practice, we found that it is still possible

to obtain converged estimates of ~Cs(!) over a wide enough range of frequencies for

the exponential gap law to emerge and serve as basis for extrapolation to higher

frequencies.

Another interesting observation is the dependence of ~Cs(!) on the LHA. Although

the results of di¤erent types of LHA are relatively similar, there are discernible

di¤erences that become increasingly larger upon extrapolation to the high frequency

domain. In practice, we have observed that, at least for the systems considered here,
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the best agreement with the estimates obtained via the original LSC-LHA method,

as well with experiment when available (see next section), were obtained when the

LHA was performed around Q0, that is around the con�guration used for calculating

the initial force. This can be explained by the fact that performing the LHA around

Q0 leads to the most nonclassical sampling of momenta, thereby maximizing the

quantum e¤ect, which in this case corresponds to lowering the value of ~Cs(!).

2.3.3 Neat liquid oxygen and nitrogen

Finally, we consider the VER of the homonuclear diatomic molecules O2 and N2

in the corresponding neat liquid. Calculations were performed on a three-dimensional

liquid at 77K, with densities of 22.64 nm�3 and 17.37 nm�3 for O2 and N2, respec-

tively, using site-site pair potentials of the Lennard-Jones type (for more details see

Refs. [135, 61]). All calculations were preformed with 108 molecules contained in

a cubic cell with periodic boundary conditions. PIMD simulations were performed

with 16 beads per atom. Each FFCF was averaged over 50,000 trajectories, each of

length 40ps. In the case of CLHA�LSCs (t), the calculations were performed using the

above mentioned three types of LHA around Q0, Q0 and Qc.

In Figs. 2.3a and 2.4a, we compare CLHA�LSCs (t) as obtained via Eq. (2.21)

with the real part of CLHA�LSC(t) as obtained via Eq. (2.4), and the corresponding

classical CCl(t), in the cases of liquid oxygen and liquid nitrogen, respectively. The

LHA underlying the calculation of CLHA�LSCs (t) was performed around Q0, Q0 and

Qc. The corresponding frequency domain results are shown in 2.3b and 2.4b. The

results are seen to follow trends similar to those observed in the case of the breathing

sphere model, namely:

� The initial value and rate of decay of CLHA�LSCs (t) are smaller than these of
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Figure 2.3: (a) A comparison of CLHA�LSCs (t) (with the LHA performed around
Q0), Re[CLHA�LSC(t)] and CCl(t) for neat liquid oxygen; (b) A semilog plot of
~CLHA�LSCs (!) (with the LHA performed around Q0), ~CLHA�LSC(!), ~CCl(!) and
e�~!=2 ~CCl(!) (Scho�eld QCF) for neat liquid oxygen. Solid lines were obtained from
the simulation and dashed lines correspond to extrapolations. The experimental
value is indicated by � at the vibrational transition frequency of oxygen (1553cm�1).
The insert shows ~CLHA�LSCs (!) on a narrower range of frequencies.

CCl(t), which are in turn smaller than these of the real part of CLHA�LSC(t).

As a result, ~CLHA�LSCs (!) < ~CCl(!) < ~CLHA�LSC(!) throughout the entire

range of frequencies.

� The calculation of ~CLHA�LSCs (!) at high frequencies converges signi�cantly

more slowly than that of ~CLHA�LSC(!) due to the fact that ~Cs(!) = e��~!=2 ~C(!)

becomes increasingly smaller than ~C(!) with increasing frequency.

� The best agreement with the predictions of the LSC-LHA method as well as

with experiment (see Table 2.1) are obtained when the LHA is performed

around Q0.

� The agreement of the prediction obtained via Eq. (2.21) with experiment in the

case of oxygen is somewhat inferior to that obtained via Eq. (2.4) in the case
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Figure 2.4: (a) A comparison of CLHA�LSCs (t) (with the LHA performed around
Q0), Re[CLHA�LSC(t)] and CCl(t) for neat liquid nitrogen; (b) A semilog plot of
~CLHA�LSCs (!) (with the LHA performed around Q0), ~CLHA�LSC(!), ~CCl(!) and
e�~!=2 ~CCl(!) (Scho�eld QCF) for neat liquid nitrogen. Solid lines were obtained
from the simulation and dashed lines correspond to extrapolations. The experimental
value is indicated by � at the vibrational transition frequency of nitrogen (2327cm�1).
The insert shows ~CLHA�LSCs (!) on a narrower range of frequencies.

of oxygen, and vice versa in the case of nitrogen. However, both predictions

are far superior to the corresponding classical predictions which underestimate

the VER rates by many orders of magnitude.

� The Scho�eld QCF alone signi�cantly overestimates the VER rate. However,

the agreement with experiment can be signi�cantly improved by replacing

~CCl(!) by ~CLHA�LSCs (!).

Oxygen Nitrogen
Experiment 395� 18 (1:8� 0:5)� 10�2
Classical (285� 31)� 10�4 (3:1� 0:4)� 10�10
Eq. (2.4) 783� 62 (1:9� 0:3)� 10�3
Eq. (2.21) (2:0� 1:2)� 104 (6� 3)� 10�2

Table 2.1: k10=s�1 for neat liquid oxygen and nitrogen at 77 K. The experimental
results for oxygen and nitrogen were adopted from Refs. [147] and [56], respectively.
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2.4 Conclusion

This work has presented a new approach for calculating VER rates based on the

LSC and LHA approximations. The new approach is based on applying the LSC and

LHA approximations to the symmetrized FFCF, rather than to the standard FFCF.

The main advantage of the resulting scheme is that it does not involve a power

expansion of the initial force in terms of the Wigner transform integration variable

� and as a result is more accurate and does not require force derivatives as input.

The main disadvantages of the new scheme are its slower convergence rate, due to

the fact that ~Cs(!)� ~C(!) at high frequencies and its ambiguity with respect to the

choice of con�guration around which the LHA is to be performed. Nevertheless, we

were able to demonstrate that the new approach is computationally feasible despite

its slow convergence even in the highly challenging case of nonpolar liquids. In

this context, it should be noted that one expects much faster VER rates in polar

systems, thereby making it easier to overcome the slow convergence rate. We have

also observed that performing the LHA around the con�guration used for computing

the initial force, which corresponds to the most nonclassical momentum sampling,

yields the best predictions in comparison to the original LSC-LHA approach as well

as experiment.

It should be noted that while quantum e¤ects tend to enhance ~C(!) relative to

~CCl(!), they actually tend to diminish ~Cs(!) relative to ~CCl(!). Thus, the ability

of the LSC and LHA approximations to capture this trend reversal in a quantitative

manner is a testimony to the robustness and versatility of these approximations.

Because of the methods elimination of the need to calculate force-derivatives, it

is well suited for use with package software and complicated potentials where the
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calculation of the force derivatives would prove cumbersome and computationally

expensive.

2.5 Appendix

In this appendix we will prove that the application of Eq. 2.21 to a bath of

uncoupled harmonic oscillators

Ĥb =

fX
j=1

 
(P̂ (j))2

2M (j)
+
1

2
M (j)(!(j))2(Q̂(j))2

!
(2.32)

with a force that is exponential in the force coordinates

F̂ (Q̂) = eR(Q̂) (2.33)

where

R(Q̂) =

fX
j=1

c(j)
r
2M (j)!(j)

~
Q̂(j) : (2.34)

yields the exact quantum mechanical solution.

The exact quantum mechanical result to the FFCF is given analytically by

C(t) = eB(0)(eB(t) � 1) ; (2.35)

where B(t) = hR̂0(t)R̂(0)i0 and

B(t) =

Z 1
0

d!

fX
k

�
c(k)
�2
�(! � !(k))f[n(!) + 1]e�i!t + n(!)ei!tg (2.36)

=

fX
k

�
c(k)
�2 f[n(!) + 1]e�i!t + n(!)ei!tg; (2.37)

de�ning the real part of B(t) as

BR =

fX
j=1

�
c(j)
�2
coth

�
�~!(j)

2

�
cos
�
!(j)t

�
(2.38)
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and the imaginary part as

BI = �
fX
j=1

�
c(j)
�2
sin
�
!(j)t

�
: (2.39)

In order to calculate the FFCF, we apply Eq. (2.21) to this system.

The �F (Q0)� �F (Q(Cl)
t [Q0;P0]) term in the previous equation can be expressed

explicitly as

F (Q0)F (Q
(Cl)
t [Q0;P0])� hF̂ iF (Q0)� hF̂ iF (Q(Cl)

t [Q0;P0]) + hF̂ i2 (2.40)

To solve Eq. (2.21), we will employ the identity
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Solving the four integrals arising from Eq. (2.40) yields the following solutions :Z
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Combining all of these results we �nd that
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Lastly, because B(0) =
Pf

j=1

�
c(j)
�2
coth

�
�~!(j)
2

�
, we see that the application of Eq.

(2.21) to this system yields the exact quantum mechanical solution,

C(t) = eB(0)
�
eB(t) � 1

�
: (2.48)



CHAPTER III

Vibrational Energy Relaxation in Polar Liquids

3.1 Introduction

Vibrational energy relaxation (VER), is an important physical phenomena to

understand because of the fact that the way energy �ows in and out of reactive modes

has a major in�uence on chemical reactivity[7, 14, 20, 21, 35, 34, 106, 107, 108, 15,

16, 45, 86, 142, 105, 30, 8, 73, 127, 50, 48, 49, 44, 110, 103, 92, 65, 161, 115, 109, 129,

150, 149, 151, 104, 71, 160, 95, 94, 128, 42, 27, 31, 32, 74, 23, 22, 136, 77]. Previous

work in our group [152] has presented a calculation of VER in nonpolar solvents using

the Landau-Teller formula,[105, 162, 72] and a force-derivative-free (FDF) version of

the LSC-LHA previously used in our group [134, 135, 61, 60, 97]. This FDF-LSC

method is based applying a symmetrized time correlation function (TCF) to the

LSC approximation. The original LSC expression derived by linearizing the forward-

backward action in the path-integral expression for the quantum-mechanical force-

force correlation function (FFCF) with respect to the di¤erence between the forward

and backward paths[133],resulting in the following form for a real-time quantum-

mechanical correlation:

CAB(t) = Tr
�
ÂeiĤt=~B̂e�iĤt=~

�
(3.1)
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given by

CLSCAB (t) =
1

(2�~)N

Z
dQ0

Z
dP0AW (Q0;P0)BW

�
Q
(Cl)
t ;P

(Cl)
t

�
; (3.2)

where N is the number of DOF, Q0 = (Q
(1)
0 ; : : : ; Q

(N)
0 ) and P0 = (P

(1)
0 ; : : : ; P

(N)
0 )

are the corresponding coordinates and momenta, and

AW (Q;P) =

Z
d�e�iP�=~hQ+�=2jÂjQ��=2i (3.3)

is theWigner transform of the operator Â,[54] andQ(Cl)
t = Q

(Cl)
t (Q0;P0) andP

(Cl)
t =

P
(Cl)
t (Q0;P0) are propagated classically with the initial conditions Q0 and P0.

Applying a local harmonic approximation and a second order expansion of the

force allows the highly oscillatory Wigner transform in Eq. 3.3 to be solved ana-

lytically (cf. Chapters 1 and 2) resulting in the LSC-LHA approximation for the

FFCF:
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Here,
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where
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PN
l=1 Tl;k(M

(l))�1=2P (l)
o
are the normal mode momenta that

emerge from diagonalizing the Hessian matrix underlying the quadratic expansion of

the bath potential energy around Q = Q0 and
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where f(
(k))2(Q0)g are the eigenvalues of the Hessian matrix. The termD(Q0;Pn;0)

is given by [134]:

D(Q0;Pn;0) = �i
NX
k=1

~F 0kP
(k)
n;0

~�(k)
+

NX
k=1

~F 00k;k
4�(k)

�
NX

k;l=1

~F 00k;lP
(k)
n;0P

(l)
n;0

2~2�(k)�(l)
(3.7)



49

and its calculation requires as input the �rst and second derivatives of the force with

respect to the bath coordinates, that is

~F 0k =

NX
l=1

(M (l))�1=2Tl;kF
0
l ;

~F 00k;l =
NX
i=1

NX
j=1

(M (i)M (j))�1=2Ti;lTj;kF
00
i;j : (3.8)

where F 0k =
@F
@Q(k)

���
Q=Q0

; F 00k;l =
@2F

@Q(k)@Q(l)

���
Q=Q0

:

The delocalized force term, D(Q0;Pn;0); is purely quantum mechanical and has

been found to contribute signi�cantly to VER in previous studies [134, 135, 61, 60,

97]. Speci�cally, the nonclassical term D(Q0;Pn;0), which can be traced back to

the �rst and second order terms in the above mentioned expansion of F (Q0 +�=2)

in powers of �, was found to play an important role in enhancing the VER rate.

Although the calculation of the �rst and second derivatives of the bath-induced

force with respect to the bath coordinates, which is required as input for calculating

D(Q0;Pn;0), is in principle straightforward, in practice it can become increasingly

cumbersome for complex force �elds, for example, the simulation of polar solvents

using Ewald summations to capture long range electrostatic forces. Furthermore,

unlike the second derivatives required for calculating the Hessian matrix underlying

the LHA, these force derivatives are usually not part of the output of standard pack-

ages for performing MD simulations. In previous work, we developed an alternative

scheme for calculating VER rate constants which, while still based on LSC and LHA,

avoids the above mentioned expansion of the bath-induced force in terms of� and as

a result is more accurate and does not require force derivatives as input. Part of the

motivation for this work was to eventually be able to calculate quantum mechanical

VER rates in complex systems using package software such as AMBER, speci�cally

for polar liquids.

Experimentally, it is known that VER in a polar solvent occurs much faster than
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in a nonpolar solvent. For example, while the relaxation lifetime in liquid oxygen

and nitrogen is on the order of milliseconds [147, 56], in liquid HCl it is on the order

nanoseconds[15, 16]. When using the Landau-Teller formula to calculate the VER

rate constant from the FFCF, the enhancement of the rate can be thought to come

about from some extra force in the TCF. In polar liquids, the nonbonded force of

the solvent on the vibrating mode will consist of Lennard-Jones contributions and

electrostatic contributions

Ftot = FLJ + Fel: (3.9)

As a result, the FFCF in a polar liquid can be broken into the following parts:

C(t) = hFLJ(0)FLJ(t)i0 + hFel(0)Fel(t)i0 + hFLJ(0)Fel(t)i0 + hFel(0)FLJ(t)i0 (3.10)

The enhancement of this rate can be due to either new contributions from the electro-

static parts of the force, the cross terms, or from from modi�cations to the Lennard-

Jones terms that arise from rearrangement of the solvent around the relaxing mole-

cule due to electrostatic forces. Previous work by Ladanyi and Stratt has shown

that the enhancement of the rate is mainly dependent on the Lennard-Jones part of

the force and not the electrostatic or cross terms[70]. The mechanism they proposed

is that the electrostatic forces in the polar solvent lead to so called electrostriction,

where the solvent is positioned close enough to the relaxing molecule to allow the

usually inaccessible parts of the Lennard-Jones repulsive wall to be reached. In this

case it is the Lennard-Jones forces that contribute to the rate with little contribu-

tion from the electrostatic and cross terms. What is not understood is role quantum

mechanical e¤ects will play, if any, on VER in polar systems. Previous studies on

polar liquids were all done using a classical model to study VER; however, as we

have shown before[134, 135, 61, 60, 97, 152], for systems where quantum e¤ects play
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an important role, a classical description may lead to an inadequate description of

the system. To this end, we have applied our FDF-LSC-LHA methodology to the

problem of calculating VER in neat polar liquids to clarify if the electrostriction

explanation holds when quantum e¤ects are taken into account. It should also be

noted that this work is the �rst ever application of a LSC method to calculating a

quantum mechanical FFCF in polar liquids.

3.2 Theory

Because the electrostatic forces are only position dependent, the theoretical frame-

work developed for VER in nonpolar solvents can be used to calculate the quantum

mechanical FFCF. Section 2.2 contains a detailed description of the theory. The

FDF-LSC-LHA is applied to the calculation of VER in polar liquids in the same way

as was shown previously.

3.3 Applications

3.3.1 Liquid Methyl Chloride

The �rst system we considered was the VER in neat liquid methyl chloride. The

methyl chloride molecules were modeled as rigid dipolar diatomic molecules using

site-site Lennard-Jones and Coulomb interactions, where the force-�eld parameters

are taken from the model developed by Hammes-Schi¤er and Tully[43]. Calculations

were performed using the AMBER molecular dynamics software package[19] on a

liquid at 249 K, with a density of 12.0 nm�3. All calculations were preformed with

500 molecules contained in a cubic cell with periodic boundary conditions. PIMD

simulations were preformed with 32 beads per atom. Each FFCF was averaged over

15,000 trajectories, each of length 4 ps. In the case of CLHA�LSCs (t), the calculations
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Figure 3.1: A semilog plot of ~CLHA�LSCs (!) (with the LHA performed around Q0),
~Cs(!), ~CCl(!) and e�~!=2 ~CCl(!) (Scho�eld QCF) for neat methyl chloride at 249 K

were performed using the above mentioned LHA around Q0.

In Fig. 3.1 we compare the Fourier transform of the quantum mechanical FFCF,

e�~!=2 ~CLHA�LSCs (!) and the uncorrected symmetrized FFCF, ~CLHA�LSCs (!); as ob-

tained via Eq. (2.21) and the corresponding classical ~CCl(!) and Scho�eld QCF

e�~!=2 ~CCl(!) results. The LHA underlying the calculation of CLHA�LSCs (t) was per-

formed around the above mentioned con�guration Q0: As can be seen in the �gure,

the quantum mechanical FFCF calculated from Eq. (2.21) agrees well with the

classical result. This is most likely due to the low characteristic frequency of the

vibration (!0 = 709 cm�1): Although the full quantum mechanical FFCF agrees well

with the classical result, the uncorrected symmetrized FFCF is actually lower than

the classical result. This is a testament to the robustness of Eq. (2.21). In classical

systems, the approximation is able to compensate itself to account for the e�~!=2

factor. It is also apparent from the �gure that the corresponding Scho�eld QCF, in

which the classical FFCF is multiplied by the same e�~!=2 factor, overestimates the



53

quantum e¤ects.

3.3.2 Liquid Hydrogen Chloride

The next system we studied was VER in neat liquid hydrogen chloride. The

hydrogen chloride molecules were modeled using Lennard-Jones parameters from the

general AMBER force �eld (GAFF)[158], and the partial charges for the Coulombic

charges were assigned using a HF/6-31G* restrained electrostatic potential (RESP)[157].

The quantum mechanical calculations were done using Gaussian 03. Calculations

were preformed using the AMBER molecular dynamics software package[19] on a

liquid at 188 K, with a density of 19.671 nm�3. This state point was chosen because

of the experimental VER rate data available[18]. All calculations were preformed with

500 molecules contained in a cubic cell with periodic boundary conditions. PIMD

simulations were preformed with 32 beads per atom. Each FFCF was averaged over

180,000 trajectories, each of length 4 ps. In the case of CLHA�LSCs (t), the calculations

were performed using the above mentioned LHA around Q0.

In Fig. 3.2 we compare the Fourier transform (FT) of the quantum mechanical

FFCF, e�~!=2 ~CLHA�LSCs (!) and the uncorrected symmetrized FFCF, ~CLHA�LSCs (!);

as obtained via Eq. (2.21) and the corresponding classical ~CCl(!) and Scho�eld

QCF e�~!=2 ~CCl(!) results. As can be seen in the �gure, e�~!=2 ~CLHA�LSCs (!), gives

good agreement with the experimental result. Also, because of the relatively high

characteristic frequency of the relaxing mode (2783 cm�1), there is de�nitely a quan-

tum enhancement e¤ect. This quantum e¤ect is manifested in the lowering of the

of the uncorrected symmetrized FFCF, ~CLHA�LSCs (!), which is then multiplied by

the e�~!=2. Also, because of the faster rate associated with VER in polar solvents,

the quantum mechanical FFCF obtained from Eq. (2.21) can be extrapolated at
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Figure 3.2: A semilog plot of ~CLHA�LSCs (!) (with the LHA performed around Q0),
~Cs(!), ~CCl(!) and e�~!=2 ~CCl(!) (Scho�eld QCF) for neat liquid hydrogen chloride
at 188 K

Rate (s�1)
Experiment 1:3� 109
Classical (0:023� :009)� 109
Scho�eld QCF (46� 18)� 109
Eq. (2.21) (1:3� 0:9)� 109

Table 3.1: k1 0=s�1 for neat liquid hydrigen chloride at 188 K. The experimental
result was adopted from Refs. [18].

higher frequencies than in previous work done in nonpolar solvents[152]. The clas-

sical FFCF, ~CCl(!), underestimates the the experimental result and the Scho�eld

QCF, e�~!=2 ~CCl(!), over estimates the result. Importantly, this result is the �rst

application of a rigorous semiclassical approach to studying VER in polar liquids. A

comparison of the calculated VER rate constants for is shown in Table 3.1.

Although the results in Fig. 3.2 provide insight into the quantum e¤ects, they do

not show the di¤erence between the classical and quantum mechanical mechanisms of

VER. To this end, we decomposed the FFCF into Lennard-Jones, electrostatic, and
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Figure 3.3: A semilog plot of the full, Lennard-Jones, electrostatic, and cross term
contributions to ~CCl(!) for neat hydrogen chloride at 188 K

cross term contributions. In Fig. 3.3 we compare the full, Lennard-Jones, electro-

static, and cross term contributions to the FT of the classical FFCF, ~CCl(!): As can

be seen in the �gure, electrostriction seems to explain the enhanced rate constant.

The Lennard-Jones contribution to the classical FFCF almost completely dominates

the FFCF with almost no contribution to the �nal result from the electrostatic and

cross terms. In the classical FFCF, it is most likely that the electrostatic forces serve

to position the solvent close enough to the relaxing molecule to sample regions of

the Lennard-Jones repulsive wall that would have been inaccessible in the absence

of electrostatic forces.

In Fig. 3.4 we compare the full, Lennard-Jones, electrostatic, and cross term

contributions to the FT of the quantum mechanical FFCF, e�~!=2 ~CLSC�LHAs (!): In

contrast to the classical case, the full FFCF is not dominated by the Lennard-Jones

term but instead also includes contributions from the electrostatic term. Although
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Figure 3.4: A semilog plot of the full, Lennard-Jones, electrostatic, and cross term
contributions to e�~!=2 ~CLSC�LHAs (!) for neat hydrogen chloride at 188 K

electrostriction seems to be the classical mechanism leading to the enhancement of

VER rates in polar solvents, quantum mechanically this is not the case. It is possible

that the quantum e¤ects instead allow the system to explore classically forbidden

regions of both the Lennard-Jones and electrostatic potentials. This may then lead

to the enhancement seen in VER rates in polar liquids.

3.4 Conclusion

Building on work previously presented, we have shown that because of its rela-

tive ease in implementation, we have used the AMBER molecular dynamics software

package to study the quantum mechanical e¤ects of VER in polar solvents using

the FDF-LSC-LHA FFCF, which is based on applying the LSC methodology to the

symmetrized FFCF. This is the �rst ever study of VER in a polar solvent using semi-

classical methods. We have found that the in the case of methyl chloride, which has a

low characteristic vibrational frequency, almost no quantum enhancement was seen.
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The classical and quantum FFCFs agreed well with each other. The uncorrected

FFCF was still lower than the classical result. This is a testament to the robustness

FDF-LSC-LHA method, which is able to take into account the classical character

of the system so that the correction term, e�~!=2 does not lead to an overestimated

quantum mechanical FFCF. We also found that using the Scho�eld quantum correc-

tion factor, which is analogous to the symmetrized FFCF, leads to an overestimation

of quantum e¤ects.

In order to understand whether electrostriction plays a signi�cant role in quantum

mechanical VER rates for polar systems, we studied the vibrational relaxation of

neat liquid hydrogen chloride. As opposed to the case of VER in methyl chloride,

there are indeed signi�cant quantum mechanical e¤ects that enhance the VER rate

even further. We also looked at the contributions to the FFCF in the classical

and quantum mechanical cases and found that classically, electrostriction seems to

be the dominant mechanism for rate enhancement in polar solvents. Classically,

the electrostatic forces played no direct role in enhancing FFCF. In the quantum

case, the electrostatic forces were found to play a dominant role. This shows that

electrostriction is not the dominant mechanism for quantummechanical enhancement

of VER rates in polar solvents. This also shows the importance of including quantum

mechanical e¤ects and the danger in assuming that mechanisms that hold in classical

systems will also hold in quantum mechanical systems.



CHAPTER IV

Di¤usion in Quantum Liquids

4.1 Introduction

The calculation of quantum mechanical time correlation functions (TCF) is of

central importance to the study of dynamics processes in liquids where quantum

e¤ects play a signi�cant role. For example calculation of quantum mechanical VER

rates in liquid oxygen or nitrogen can di¤er from the classical calculation by many

orders of magnitude[61, 56, 135, 147, 152]. Liquid para-hydrogen at 25 K is another

example of a system where quantum e¤ects cannot be ignored. In this case, if the

liquid is simulated using what is generally considered a very accurate force �eld, the

classical state point turns out to lie in the liquid-vapor coexistence regime, whereas

experimentally this state point is a liquid[85, 84]. Because of the importance of

quantum e¤ects in liquid hydrogen and the availability of experimental data and an

accurate force �eld, the calculation of di¤usion coe¢ cients via a quantum mechanical

velocity-velocity correlation function (VVCF) has become a benchmark problem for

quantum dynamics methods[84, 55, 96, 119, 116, 118, 117, 121, 123].

The exact calculation of quantum mechanical TCFs, however, is beyond the cur-

rent capability of modern computationally available resources due to the exponential

scaling of the computational e¤ort with the number of degrees of freedom (DOF)

58
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involved in quantum calculations. One of the methods proposed to capture quantum

dynamics is to use a semiclassical approach, where the initial conditions are sam-

pled quantum mechanically and the dynamics are propagated classically. One such

method, the linearized semiclassical (LSC) approximation, has been derived by Miller

and coworkers[143, 155, 145, 146, 154, 144, 156] via linearizing the forward-backward

action in the semiclassical [79, 143, 155, 156, 153, 39, 40, 41, 78, 111, 76, 75, 82, 112,

88, 87, 53, 51, 62, 100, 101, 81, 90, 132, 148, 69, 102, 91, 80] initial value represen-

tation [87, 53, 51, 62, 91, 89, 52, 66, 63, 114, 37, 64, 141] expression for a real-time

quantum mechanical correlation function, with respect to the di¤erence between the

forward and backward trajectories. Shi and Geva have also shown that the very same

approximation can also be derived by linearizing the exact real-time path integral

expression for the correlation function, without explicitly invoking the semiclassical

approximation[133]. The LSC approximation for a general time correlation function

is given by

C(t) � 1

Zb

1

(2�~)N

Z
dQ0

Z
dP0

h
Âe��Ĥb

i
W
(Q0;P0)BW (Q

(Cl)
t ;P

(Cl)
t ) ; (4.1)

where the Wigner transforms are

[Âe��Ĥb ]W =

Z
d� e�iP0�=~hQ0 +�=2jÂ e��

bHb jQ0 ��=2i (4.2)

and

BW =

Z
d� e�iP0�=~hQ0 +�=2jB̂jQ0 ��=2i (4.3)

It is important to note that when B̂ is a function of only position or momentum, the

Wigner transform will be equal to B(Cl). Because of the highly oscillatory nature

of the integrals, the Wigner transform cannot be solved directly. One approach to
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this problem is to introduce a local harmonic approximation (LHA), where a normal-

mode analysis is used to solve the Wigner integral analytically. For the case of solving

VER rates via a quantum mechanical force-force correlation function (FFCF) (cf.

Chapters 1, 2, and 3), the LHA of the bath Hamiltonian leads to

Ĥb =
NX
j=1

(P̂ (j))2

2M (j)
+ V

�
Q̂
�

(4.4)

�
fX
k=1

1

2
(P̂ (k)n )2 + V (Q0) +

fX
k=1

G(k)n Q̂
(k)
n +

1

2

fX
k=1

(
(k))2[Q̂(k)n ]
2

where

Q̂(k)n =

fX
l=1

Tl;kM
1=2[Q(l) �Q(l)0 ] (4.5)

P̂ (k)n (Q0) =

fX
l=1

Tl;kM
�1=2P̂ (l) (4.6)

are the mass weighted normal mode coordinates and momenta, respectively, f(
(k))2g

are the eigenvalues of the corresponding mass weighted Hessian matrix

Hij =
1

(M (i)M (j))1=2
@2V

@Q(i)@Q(j)
(4.7)

and

G(k)n (Q0) =

fX
l=1

Tl;kM
�1=2 @V

@Q(l)

����
Q=Q0

(4.8)

Ultimately this approximation will allow us to solve the Wigner integral in Eq. (4.2)

analytically with respect to �; however, the normal mode calculation leads to a

computational bottleneck when diagonalizing the mass weighted Hessian matrix.

Each trajectory of the simulation requires a normal mode analysis of the entire

simulation. As the the number of degrees of freedom increases, this can become

computationally expensive. Because of this we have introduced an normal mode

free (NMF) approximation to the LSC-LHA developed by Shi and Geva[134, 135].
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The application of this method to calculating the FFCF in a model system showed

that although this NMF-LSC method overestimated the quantum e¤ects at the high

frequencies required to calculate VER rate constants, the real time part of the FFCF

agreed well with the exact result of the model. This led us to apply our new NMF-

LSC approach to the calculation of di¤usion coe¢ cients, which can be related to the

time integral of the real part of the VVCF.

4.2 Theory

4.2.1 Force-Force Time Correlation Function

VER rate constants can be related to the Fourier transform (FT) of the FFCF

(cf. Chapters 1, 2, and 3). The full LSC approximation to the quantum mechanical

FFCF for position dependent force derived by Shi and Geva [134]:

CF (t) �
Z
dQ0

hQ0j e�� bHb jQ0i
Zb

Z
dPn;0

fY
j=1

�
1

�(j)�~2

�1=2
�

exp

"
�
(P

(j)
n;0)

2

~2�(j)

#
[�F (Q0) +D(Q0;Pn;0)]�F (Q

(Cl)
t ) (4.9)

where Pn;0 is the the initial mass weighted normal mode transformed momentum

and

�(j) =

(j)

~
coth[�~
(j)=2] (4.10)

The delocalized force term D(Q0;Pn;0) is purely quantum mechanical and is given

by

D(Q0;P0) = �i
fX
i=1

~F 0iP
(i)
n;0

~�(i)
+

fX
i=1

~F 00i;i
4�(i)

�
fX

i;j=1

~F 00i;jP
(i)
n;0P

(j)
n;0

2~2�(i)�(j)
(4.11)

where F , F 0i =
@F
@Q(i)

���
Q=Q0

, F 00i;j =
@2F

@Q(i)@Q(j)

���
Q=Q0

is the force of the bath on the

relaxing molecule and its �rst and second derivatives, respectively, and

~F 0i =

fX
j=1

(M (j))�1=2Tj;iF
0
j ; ~F

00
ij =

fX
k=1

fX
l=1

(M (k)M (l))�1=2Tk;jTl;iF
00
kl (4.12)
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are the mass weighted normal mode transformed force derivatives.

To avoid calculating the normal mode eigenvalues, the coth[�~
(j)=2] term in Eq.

(4.10) can be expanded to �rst order in ~. This is the key step in the NMF-LSC

approximation and eliminates the need to diagonalize the mass weighted Hessian

matrix. The eigenvalue dependence is removed, yielding the following result:

� � �0 �
2

�~2
(4.13)

This approximated alpha term can then be substituted into Eq. (4.9) and Eq. (4.11),

which leads to the NMF-LSC approximation of the FFCF:

CF (t) �
Z
dQ0

hQ0j e�� bHb jQ0i
Zb

Z
dP0

fY
j=1

�
�

2�M (j)
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t ) (4.14)
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M (i)M (j)
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It is important to note that the NMF-LSC approximation still includes the purely

quantum mechanical delocalized force and samples the initial positions quantum

mechanically, but the initial momentum is now sampled purely classically. The need

to calculate and diagonalize the Hessian matrix has also been removed from the

expression, eliminating the LHA computational bottleneck.

4.2.2 Di¤usion

The Hamiltonian of a bath of N identical di¤using molecules with f degrees of

freedom is

bHb = fX
i=1

(P̂ (i))2

2M
+ V̂ (Q̂) (4.16)



63

consisting of the intermolecular and intramolecular degrees of freedom for the sys-

tem [Q̂ = (Q̂(i); : : : ; Q̂(f)), P̂ = (P̂ (i); : : : ; P̂ (f)), V̂ (Q̂) = V (Q̂(i); : : : ; Q̂(f)) , M are

the corresponding coordinates, momenta, potential energy, and mass of a molecule,

respectively].

The quantum mechanical velocity -velocity time correlation function (VVCF) of

such a system is expressed in the following way:

Cv(t) =
1

N
hv̂(0) � v̂(t)i0 (4.17)

where
D
Â
E
0
= Tr[e��

bHb Â]=Zb, � = 1
kBT

, Zb = Tr[e��
bHb ], v̂(t) = ei bHbt=~ v̂ e�i bHbt=~,

v̂ = (v̂(1); : : : ; v̂(f)) = P̂=M are the velocities of the bath. This VVCF can also be

written as a momentum time autocorrelation function

Cv(t) =
1

N

1

M2
hP̂(0) � P̂(t)i0 (4.18)

with P̂ being the momentum and M the molecular mass. The di¤usion coe¢ cient

for the system molecules is calculated from the VVCF according to the following

Green-Kubo relationship[68]:

D =
1

3

Z 1
0

dtRe[hv̂(0) � v̂(t)i0] (4.19)

According to the LSC approximation, the VVCF for a system of N identical

molecules takes the following semiclassical form:

Cv(t) =
1

N

fX
i=1

1
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1
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dQ0
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dP0[P̂

(i) e��
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W (Q
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t ;P
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(4.20)

Here

P
(i)
W (Q

(Cl)
t ;P

(Cl)
t ) = P

(i);(Cl)
t (4.21)
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and

[P̂ (i) e��
bH ]W (Q0;P0) =

Z
d� e�iP0�=~hQ0 +�=2jP̂ (i) e��

bH jQ0 ��=2i (4.22)

The multidimensional Wigner phase space integral in Eq. (4.22) can be preformed

analytically by employing the LHA to the bath Hamiltonian in Eq. (4.4). The

Wigner integral in Eq. (4.22) is rewritten in the following way:

[P̂ (i) e��
bHb ]W (Q0;P0) = hQ0j e��

bHb jQ0i
Z
d�e�iP0�=~

hQ0 +�=2jP̂ (i) e�� bHb jQ0 ��=2i
hQ0j e��cHb jQ0i

,

(4.23)

however, the LHA is not applied to the hQ0je�� bH jQ0i term preceding the integral.

Instead the LHA is applied to the hQ0+�=2jP̂ (i) e�� bHb jQ0��=2i
hQ0j e��cHb jQ0i

ratio. This will allow the

Wigner integral to be solved analytically in terms of � and avoid the sign problem

associated with highly oscillatory integrals [79]. The momentum, P̂ (i), of a di¤using

molecule in Eq. (4.22) is expressed in terms of the mass weighted normal mode

momenta

P̂ (i) =M1=2

fX
j=1

TijP̂
(j)
n , (4.24)

the Hamiltonian Ĥb is replaced by its LHA, and the following identities are used

to explicitly solve the hQ+�=2jP̂
(i)e��

bHb jQ��=2i
hQ0je��cHb jQ0i

(the proportionality constants C0 and

C1are independent of Q1 and Q2) :
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The Gaussian integrals over f�(k)g are then performed analytically. This leads to

the following result:

[P̂ (i) e��
bHb ]W (Q0;P0) = hQ0j e��

bHb jQ0i
fY
j=1

�
4�

M�(j)

�1=2
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(4.27)

where

D(Q0) =
i

~
M1=2

fX
k=1

Tik
G
(k)
n (Q0)

�(k)
(4.28)

and � is the same as in Eq (4.10) and G(k)n (Q0) is the same as in Eq. (??).

We can employ the same NMF approximation that was used in calculating the

NMF-LSC FFCF by replacing � with �0 in Eq. (4.27) and Eq. (4.28), transforming

the expression back to the primitive coordinate space, and substituting the expression

into Eq. (4.20). This resulting NMF-LSC approximation to the VVCF is

Cv(t) � 1

N

fX
i=1

1

M2

Z
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where

D0(Q0) =
i�~
2

fX
i=1

@V (Q)

@Q(i)

�����
Q=Q0

: (4.31)

As in Eq. (4.14), D0(Q0), is a purely quantum mechanical term, which will be re-

ferred to as the delocalized momentum. The initial position sampling and delocalized

force terms are fully quantum mechanical, but the initial momentum sampling is

fully classical.
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4.3 Applications

4.3.1 Exponential Coupling to a Harmonic Bath

To test the NMF-LSC approximation to the FFCF, it was applied to a bath of

uncoupled harmonic oscillators at di¤erent frequencies,

Ĥb =

fX
j=1

 
(P̂ (j))2

2M (j)
+
1

2
M (j)(!(j))2(Q̂(j))2

!
(4.32)

and a force that is exponential in the bath coordinates

F̂ (Q̂) = eR(Q̂) (4.33)

where

R(Q̂) =
X
j

c(j)
r
2M (j)!(j)

~
Q̂(j) : (4.34)

The exact quantummechanical FFCF for this model can be obtained analytically[99]

and has been established as a convenient benchmark[120, 28]. The exact quantum

mechanical FFCF is

C(t) = eB(0)(eB(t) � 1) ; (4.35)

where

B(t) = hR̂0(t)R̂(0)i0 =
Z 1
0

d!�(!)f[n(!) + 1]e�i!t + n(!)ei!tg ; (4.36)

�(!) =
X
k

�
c(k)
�2
�(! � !(k)) (4.37)

and n(!) = [exp(�~!) � 1]�1. It is important to note that the expression in Eq.

(4.1) is exact when the bath is harmonic. The di¤erences from the exact solution

come from the use of the quadratic approximation of �F (Q0 +�=2). Although the

LHA is exact for a harmonic potential, the NMF-LSC approximation involves an

approximation to the � term that is a result of the LHA. By applying the NMF-LSC
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approximation to the FFCF of this system, we can compare to both the exact solution

and the full LSC-LHA solution to understand the accuracy of our new method.

The full LSC approximation to the FFCF of harmonic bath with exponential

force coupling is has been derived by Shi and Geva[134] and is given by

C(t) � eBR(0)
��
eBR(t) � 1

�
+ ieBR(t)BI(t)�

1

2
eBR(t)B2I (t)

�
; (4.38)

where BR(t) and BI(t) are the real and imaginary parts of B(t), respectively. The

NMF-LSC approximation to the FFCF is given by

C(t) � e
Pf
k=1

(c(k))2

2
coth(�~!

(k)

2
) cos2(!(k)t) � (4.39)

e
Pf
k=1

(c(k))2

�~!(k)
sin2(!(k)t) �

e
1
2
BR(0)

��
eBR(t) � 1

�
+ ieBR(t)BI(t)�

1

2
eBR(t)B2I (t)

�
:

It is interesting to note that (c
(k))2

�~!(k) is the �rst order approximation of
(c(k))2

2
coth(�~!

(k)

2
)

in orders of ~. If (c
(k))2

�~!(k) were replaced by
(c(k))2

2
coth(�~!

(k)

2
) in Eq. (4.39), the result

would be the full LSC approximation.

The real and imaginary parts of the exact [Eq. (4.35)] and approximate [Eq.

(4.38)] FFCF for this model are shown in Fig 4.1a and 4.1b, respectively, along with

the exact, full LSC, and classical expressions. The calculations were performed with

the following spectral density,

�(!) = 2�
!�

!�+1c

exp

�
�!

2

!2c

�
; (4.40)

with the parameters: � = 0:20, � = 3 and �~!c = 4:0. Fig. 4.1a shows that although

the real part of the NMF-LSC approximation is in good agreement with the full LSC

and exact expressions at t = 0, there is some deviation near the minimum. This

deviation becomes more pronounced when looking at the imaginary part in Fig.
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4.1b. The stronger deviation from the exact expression is due to the increase in

classical character introduced by approximating the � term to �rst order in ~.
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Figure 4.1: A comparision of the real (a), and imagionary (b) parts of the FFCF for
the NMF-LSC, LSC-LHA, exact, and classical solutions to the FFCF of a system of
uncoupled harmonic oscillaotrs with exponential coupling to the force.

The FT of the NMF-LSC [Eq. (4.39)], full-LSC [Eq. (4.38)], exact [Eq. (4.35)]

and classical FFCFs are shown in Fig 4.2 on a semilog plot. The approximate FT

of the FFCF is given as obtained from the full, real part and imaginary part of the

respective FFCFs, [for the exact FFCF, ~C(!) = 4
R1
0
dt cos(!t)CR(t)=(1 + e

��~!) =

�4
R1
0
dt sin(!t)CI(t)=(1 � e��~!)]. At ! = 0, the NMF-LSC FFCF coincides with

the classical FFCF and not the exact quantum mechanical expression. This behavior

is not seen at higher frequencies though, showing that the NMF-LSC still contains

some of the quantum character. The LSC-LHA approximation agrees well with the

exact expression as previously reported by Shi and Geva[134]; however, at high fre-

quencies the NMF-LSC results deviate greatly from the exact expressions. Although

the NMF-LSC seems to fail at high frequencies, its success with capturing the quan-

tum e¤ects in the real time part of the FFCF was our motivation for applying the

method to di¤usion.
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Figure 4.2: A comparision of the full, real, and imagionary contributions to the FT
of the FFCF for the NMF-LSC, LSC-LHA, and exact solutions to the FFCF of a
system of uncoupled harmonic oscillaotrs with exponential coupling to the force.

4.3.2 Liquid para-Hydrogen and Liquid ortho-Deuterium

In order to calculate the VVCF for liquid para-hydrogen or liquid ortho-deuterium

using the NMF-LSC approximation, the interactions between molecules were de-

scribed using the Silvera-Goldman potential[137, 138]. This potential has been widely

used to calculate the VVCF in liquid para-hydrogen and ortho-deuterium and has

been shown to agree very well with experimental results when used in MC and mole-

cular dynamics (MD) simulations[9, 130]. The Silvera-Goldman potential treats the

molecules as though they were spherical particles and depends only on the distance

between them.

The Silvera-Goldman potential is given by:

V (r) = exp(�� �r � 
r2)�
�
C6
r6
+
C8
r8
+
C10
r10

�
fc(r) +

C9
r9
fc(r) (4.41)
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where

fc(r) =

8><>:
e�(rc=r�1)

2
(r 6 rc)

1 (r > rc)

(4.42)

and � = 1:713, � = 1:5671, 
 = 0:00993, C6 = 12:14, C8 = 215:2, C10 = 4813:9,

C9 = 143:1, rc = 8:321, in atomic units.

The NMF-LSC approximation to the VVCF in Eq. (4.29) is calculated accord-

ing to the following procedure. The initial equilibrium positions are sampled ac-

cording to the quantum mechanical probability
R
dQ0

hQ0j e�� bHb jQ0i
Zb

using either path

integral molecular dynamics (PIMD) or path integral Monte Carlo (PIMC) meth-

ods. The initial momenta are sampled classically using the Gaussian distributionR
dP0

fQ
j=1

�
�

2�M

�1=2
exp

�
��(P (j)0 )2

2M

�
. The delocalized momentum, D0 (eq. 4.31), is

evaluated at the initial quantum mechanical con�guration, Q0. The system is then

propagated classically using molecular dynamics (MD), after which, the VVCF av-

erage over the total number of molecules is evaluated. This process is then repeated

over many di¤erent trajectories in order to calculate the ensemble average VVCF.

Using the methods described above, we evaluated the VVCF and di¤usion co-

e¢ cient for liquid para-hydrogen at 14 K, � = 0:0235 Å
�3
and 25 K, � = 0:0190

Å
�3
and liquid ortho-deuterium at 20.7 K, � = 0:0254 Å

�3
, each with a periodi-

cally replicated simulation cell size of 256 molecules. Each system was equilibrated

using the PIMD VV3 algorithm with 4 Nosé-Hoover chains[59] and P = 52, P = 32,

for liquid para-hydrogen at 25 K and 14 K, respectively, and P = 32 for liquid or-

tho-deuterium. Each trajectory was propagated for 4 ps using the velocity Verlet

algorithm. The VVCF was averaged over 20 000 trajectories for all systems.

The real part of the NMF-LSC VVCF function for para-H2 at 14 K, 25 K, and

ortho-D2 is shown Fig. 4.3a. Because of the purely classical initial momentum
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Figure 4.3: Real (a) and imaginary (b) parts of the VVCF calculated for liquid
para-hydrogen at 14 K, 25 K, and liquid ortho-hydrogen at 20.7 K

sampling, the VVCF at t = 0 is dependent on the temperature of the system. The

VVCFs shown in Fig. 4.3 also shows negative amplitudes resulting from direction

reversing collisions between molecules for the lower temperature14 K para-H2 and

20.7 K ortho-D2 systems, but not for the 25 K system. The imaginary part of the

VVCF is shown in Fig. 4.3b. It should be noted that the imaginary part of the

VVCF, which is purely quantum mechanical, is very large compared to the real

part. This suggests, as was seen in Fig. 4.2, that the NMF-LSC method seems

to overestimate quantum e¤ects. This is a curious result because the NMF-LSC

actually samples the initial momentum classically. One would expect to see reduced

quantum character.

The di¤usion coe¢ cients calculated from the real part of the VVCF are shown in

Table 4.1. The table also compares the NMF-LSC calculated di¤usion coe¢ cient to

experimental values and values calculated using various quantum dynamics methods.

What is found is that most of these methods, including the NMF-LSC , agree reason-

ably well with the experimental value. We believe this is not due to the reliability or
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Figure 4.4: A comparison of the normalized real part of the VVCF for para-hydrogen
at 14 K calculated using the NMF-LSC method, pair propagator-foward backward
semiclassical dynamics (PP-FBSD)[96], ring polymer molecular dynamics (RPMD)
[84], centroid molecular dynamics (CMD) [55], maximum entropy analytic continu-
ation (MaxEnt) [121], and quantum mode coupling theory (QMCT)[123]

robustness of these methods at capturing quantum e¤ects, but is instead due to the

poor choice of di¤usion as a benchmark. Because di¤usion can be calculated from

the real part of the VVCF, many of the quantum e¤ects can be poorly estimated and

still have no e¤ect on the di¤usion coe¢ cient. This was seen in Fig. 4.3b, where, the

over estimated imaginary part had no e¤ect on the �nal di¤usion coe¢ cient. Part of

the problem lies with the fact that there is no exact solution to the VVCF in liquid

hydrogen. As can be seen in Fig. 4.4, the normalized real part of the NMF-LSC

VVCF for para-H2 at 14 K compared with other methods. The NMF-LSC VVCF

does not agree well with the other the methods presented; however, there is not

good agreement among all of the methods presented. Instead, what is seen is that

the methods that are most theoretically similar show agreement with each other.
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Di¤usion Coe¢ cient (Å
2
= ps)

H2 (14 K) H2 (25 K) D2 (20l7 K)
NMF-LSC 0.600�0.004 1.958�0.008 0.505�0.003
PP-FBSD 0.75�0.07 1.68�0.05 � � �
CMD 0.35�0.05 1.52�0.08 0.40�0.06
RPMD 1.59�0.01 0.33 �0.01 � � �
QMCT 0.30 1.69 0.49
MaxEnt 0.28 1.47 � � �
Experiment 0.4 1.6 0.36

Table 4.1: A comparison of the di¤usion coe¢ cient for para-hydrogen at 14 K 25
K, and ortho-deuterium at 20.7 K calculated using the NMF-LSC method, pair
propagator-foward backward semiclassical dynamics (PP-FBSD)[96], ring polymer
molecular dynamics (RPMD) [84], centroid molecular dynamics (CMD) [55], max-
imum entropy analytic continuation (MaxEnt) [121], and quantum mode coupling
theory (QMCT)[123]

4.4 Conclusion

We have introduced an NMF approximation to the original LHA-LSC approxi-

mation developed by Shi and Geva. This new NMF-LSC removes the computational

bottleneck involved in performing a normal mode analysis for each set of sampled

coordinates. This new approximation to quantum mechanical TCFs samples the ini-

tial positions quantum mechanically, but samples the momentum classically and still

retains a modi�ed purely quantum mechanical delocalization term. The NMF-LSC

approximation was applied to two systems: the calculation of the FFCF of a bath of

uncoupled harmonic oscillators coupled to an exponential force and the di¤usion co-

e¢ cient and VVCF of liquid H2 at two di¤erent state points and liquid D2 at a single

state point. We found that the although the NMF-LSC FFCF coincided well with

the exact solution in the real part of the time domain, at high frequencies it devi-

ated greatly. We also found that although calculated di¤usion coe¢ cients agree well

with experimental measurements, the NMF-LSC seems to overestimate the purely
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quantum mechanical imaginary part of the VVCF. We see this as a evidence that

di¤usion is a poor benchmark for testing quantum dynamics methods, as the �nal

result can poorly estimate quantum e¤ect and yet still agree well with experimental

results. Part of this problem lies in the fact that there is no way to calculate an

exact solution to the quantum mechanical VVCF in a liquid with many degrees of

freedom.



CHAPTER V

Isomerization of Hexatriene in Methanol and
Cyclohexane

5.1 Introduction

The in�uence of solvent dynamics on solute is extremely important to understand-

ing chemical processes in solutions. Solvent-solute interactions can play a strong role

on chemical reactivity and energy transfer between the solute and solvent. Studies

by Harris et. al.[46] on the isomerization rate constant of 1,3,5-cis-hexatriene (Z-

HT) from the cZt-HT to tzt-HT conformers (where c and t designate cis and trans

conformations about the single bonds) have shown that the isomerization process

is highly dependent on solvent choice. This isomerization is shown schematically in

Fig. 5.1 on the gas phase general AMBER force-�eld (GAFF)[19, 157] potential sur-

face as where the charges were assigned using the AM1-BCC model[57, 58]. In their

study, Harris and coworkers measured the temperature dependence of the cZt-HT

! tzt-HT hexatriene isomerization and attempted to understand the conformational

relaxation in terms of viscosity in the context of Kramers theory. In this context,

the rate constant can be written as

k = kTST � (5.1)

75



76

where k, is the relaxation rate constant, kTST is the transition state theory (TST)

approximated rate constant, and � is the transmission coe¢ cient that corrects the

kTST rate constant for solvent e¤ects. In the limit of high friction, the transmission

coe¢ cient can be written as

� =
!a
�


(5.2)

where 
 is a parameter such that 0 � 
 � 1, !a is the imaginary curvature of the

energy barrier, and � is the shear viscosity. The transmission coe¢ cient is able to

correct for solvent e¤ects by taking into account the e¤ect of the free energy barrier

in either aiding or hindering the ability of the reaction to overcome the barrier and

the e¤ect of the solvent�s viscosity in either increasing or reducing recrossing over the

barrier. In comparing the e¤ects of polar and nonpolar solvents on the isomerization,

it was found that for isomerization in cyclohexane (at 298 K, � = 0:894 mPa s),

hexadecane (at 298 K, � = 3:032 mPa s), methanol (at 298 K, � = 0:544 mPa s),

and propanol (at 298 K, � = 1:945 mPa s), the rates in the alkanes were faster than

the alcohols. It was also found that the rates between the individual alkanes and the

alcohols did not follow the ��1 dependence predicted by Kramers theory.

Although a Kramers theory description of rate constants can be a powerful pre-

dictive tool for understanding how solvent a¤ects chemical reactions, it cannot always

give a microscopic description of the process occurring. As was seen in the exper-

iments Harris and coworkers, Kramers theory may also prove to be an inadequate

explanation. In this case computer simulation can be used to calculate the isomer-

ization rate constant using a linear response approach[11, 12, 13, 122, 124, 159].

Using a molecular dynamics (MD) simulation of hexatriene in various solvents, we

have been able to directly monitor the reaction coordinate, �, which corresponds

to the isomerization dihedral angle, and calculate the rate constant using from the
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linear response formalism. We can also calculate the free energy surface, calculate

the amount of barrier recrossing, and calculate the entropy change to go from the

product state to the transition state. From this data we have created a model of

how the solvent interacts with the solute and in�uences the isomerization reaction,

thus going beyond Kramers theory to directly explain the experimentally measured

results.

5.2 Theory

The isomerization rate constant can be calculated within a computer simulation

using linear response theory (cf. Chapter 1). Within this formalism the isomerization

rate constant can be written in terms of the reactive-�ux (RF) correlation function:

kRF =

D
_�(0)�(�� ��)h [�(t)� ��]

E
0

hh [�� ��]i h1� h [�� ��]i0
(5.3)

where � is the isomerization dihedral angle, _� is the velocity of the dihedral angle,

�� is the dihedral angle at the transition state. �(����) is the Dirac delta function,

and is the Heaviside function such that

h(�� ��) =
�
1 ; � > ��

0 ; � < ��
(5.4)

In a molecular dynamics simulation, the rate constant is measured by �rst equili-

brating the molecule restrained at the transition state, �� (resulting from the delta

function �(�� ��)), and then correlating the velocity of the dihedral angle at t = 0

to the Heaviside function, h [�(t)� ��]. It should be noted that the reactive �ux

correlation function is able to take into account barrier recrossing due to its time

dependence. Whenever the reaction coordinate crosses from the product state to the
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reactant state the Heaviside function will be equal to zero and the overall rate will be

lowered. In practice, the RF-TCF reaches a plateau in short time scales accessible

by computer simulation (ps) and the rate constant is measured from the plateau.

Also, because the average in Eq. (5.3) involves preparing the system restrained at

the transition state, the reactive �ux must be multiplied by the probability of being

at the transition state, namely:

Pr(��) =
e��G(�

�)Z
d�e��G(�)

(5.5)

where � = 1
kBT

, kB is the Boltzmann constant, T is the absolute temperature, and

G(�) is the Gibbs energy as a function of the dihedral angle. This probability

corresponds to the thermal average of the delta function, h�(�� ��)i0

If we assume there is no barrier recrossing, namely that at time t = 0, if the

reaction coordinate is is going in certain direction it will always end up in that the

well it was moving towards, then the reactive �ux can approximated using transition

state theory. The resulting TST constant, kTST , is given by

kRF =

D
_�(0)�(�� ��)h

h
_�(0)

iE
0

hh [�� ��]i h1� h [�� ��]i0
(5.6)

In contrast to Eq. (5.3), the TST rate constant cannot take into account barrier

recrossing and is only dependent on equilibrium e¤ects. As a result, kTST can be

thought of as the upper limit of the rate constant and will always be larger than

kRF .

Once the Gibbs free energy is known, the entropy can be directly calculated using

the Maxwell relation[24]

S = �
�
@G

@T

�
P

(5.7)
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where P means the entropy is measured at constant pressure. The Maxwell relation

can then be calculated using a three point di¤erence formula.

5.3 Applications

In order to microscopically understand the e¤ect of solvent on the isomerization

of hexatriene, we used the AMBER molecular dynamics software package[19] to

simulate the isomerization of hexatriene in methanol and cyclohexane. We have run

these simulations in propanol, butanol, hexadecane, n-hexane, cycloheptane, and

n-heptane; however, these results are still in preparation and will not be discussed

here except to explain our future directions. We will instead focus on our studies

in methanol and cyclohexane. All simulations were preformed using the GAFF and

charges were assigned using the AM1-BCC semiempirical method and were done at

T =280 K, 300 K, and 320 K.

Hexatriene molecules were prepared in the tzt-HT state and solvent molecules

were then added to a truncated octahedral simulation box (378 methanol and 238

cyclohexane molecules, respectively). The systems were then energy minimized for

25,000 steps. After this, the simulations were equilibrated at constant volume and

temperature for 500 ps with a time step of 1 fs. Next, the simulations were equili-

brated at constant pressure and temperature between 1000-2000 ps until the density

relaxed to a value near the experimental density. The Gibbs energy pro�le was

then calculated using umbrella sampling simulations that were preformed at con-

stant pressure and constant temperature for 1000 ps for each angles step, �� = 4�,

with measurements recorded every 50 steps. The results were then analyzed using

the weighted histogram analysis method (WHAM)[38]. Once the transition state
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was found, the kTST calculations were preformed by restraining the dihedral angle

at the transition state and running10 restrained equilibrium simulations at constant

temperature and pressure for 200 ps, recording the �uctuations of the reaction coor-

dinate velocity every 100 steps and correlating the Heaviside function to the reaction

coordinate velocity and averaging the results. The kRF calculations were calculated

by equilibrating the system with the dihedral angle restrained at the transition state

at constant temperature and pressure and then removing the temperature and angle

restraints. The unrestrained simulations were than run at constant pressure for 1

ps and the �uctuations of the reaction coordinate were recorded and the Heaviside

function was correlated to the velocity of the reaction coordinate at t = 0. These

simulations were averaged over 50,000 trajectories.

The Gibbs free energy pro�le for methanol and cyclohexane are shown in Figs.

5.2a and 5.2b, respectively. From these calculations the transition state was found to

�� = 90�. It can also be seen that as the temperature is increased, barrier height to

go from the reactant to transition state, �GR!TS increases. Comparing the barrier

heights between methanol and cyclohexane, the barrier heights are consistently lower

in cyclohexane than in methanol. This is shown in Table 5.1. The reasons for this

will be further explored below.

�GR!TS (kcal/mol)
T (K) Methanol Cyclohexane
280 5.21 4.61
300 5.34 4.78
320 5.49 5.17

Table 5.1: Reactant to transition state barrier height, �GR!TS, for methanol and
cyclohexane at 280 K, 300 K, and 320 K.

The RF-TCFs for methanol and cyclohexane are shown in Figs. 5.3a and 5.3b,
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respectively. As can be seen in the �gure, at short times the rates exhibit tran-

sient behavior seen before they plateau to the kRF value. Also, as the temperature

is increased the rates consistently become higher as is expected. The �gure also

shows that the rates for hexatriene isomerization in methanol are lower than in cy-

clohexane. This becomes further apparent in Fig. 5.4, which shows the temperature

dependence of kRF (a) and kTST (b). As expected, the TST rates are faster than

the RF rates. Also, our simulations are able to qualitatively capture the increased

rate in cyclohexane regardless of whether the rate is calculated using RF or TST

methods.

Because both RF and TST calculation show that the rates are faster in cyclo-

hexane than in methanol, we are unable to tell if the increased rate is due dynamic

e¤ects, such as barrier recrossing or equilibrium e¤ects such as barrier height. In

order to understand what is the reason for the faster isomerization rate in cyclo-

hexane, we calculated how much recrossing was seen in either solvent at 300 K. Fig.

5.5 shows a histogram of the number of recrossings seen each trajectory. The iso-

merization in cyclohexane actually shows more recrossing than in methanol. This

is surprising because more recrossing should lead to a slower rate. Because of this,

the faster rate must be due to equilibrium e¤ects. From the table, we know that

the barrier is lower in cyclohexane than in methanol. To understand why this is,

we calculated the entropy change to go from the reactant state to the transition

state, �SR!TS . Comparing the entropy changes in both solvents at 300 K, we

that in methanol �SR!TS = �10:4 cal/mol K and in cyclohexane �SR!TS = 25:1

cal/mol K. The isomerization is more entropically favorable in cyclohexane than in

methanol. We believe the reason for this has to do with the way the solvent arranges

itself around. Fig. 5.6 compares the radial distribution functions, g(r), between the
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terminal carbon in hexatriene and the center of mass in methanol or cyclohexane

at 300 K. The �gure shows that cyclohexane forms an extra solvation shell around

hexatriene. Because methanol can form hydrogen bonds, the solvent can form a more

open structure around hexatriene and interact less with the solute. Cyclohexane, on

the other hand, does not hydrogen bond, and as a result, can interact more directly

with the solute and �t into the space that opens when hexatriene is in its transition

state. As a result, cyclohexane is a able to sample more con�gurations, leading to an

increase in entropy and a lowering of the barrier. This may also be the reason for the

increased recrossing seen in cyclohexane. Cyclohexane can pack closer to hexatriene

and can collide with the isomerizing bond.

5.4 Conclusion

Using the RF-TCF and TST, we have been able to microscopically analyze the

isomerization of hexatriene in methanol and cyclohexane. We found that our calcu-

lations were able to qualitatively capture the faster isomerization rate in cyclohexane

versus methanol, however, further analysis was required to determine whether the

increased rate was due to dynamic or equilibrium e¤ects. By calculating the amount

of recrossing, we were able to �nd even though the rate was slower in methanol than

in cyclohexane, methanol had fewer barrier recrossings. Further analysis showed,

that the faster rate is due to an entropic lowering of the barrier, a result the fact

that cyclohexane is able to interact more with the solute because of its less open

structure compared to methanol . This is an extremely interesting result because,

in this case, cyclohexane is actually acting as catalyst. Cyclohexane�s interactions
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with the solute lower the free energy barrier and increase the rate constant. Impor-

tantly, using the linear response formalism allowed us to create a microscopic model

of the interactions of the solvent with the solute that would not have been possible

using Kramers theory. We have been able to measure microscopic phenomena that

is beyond the scope of macroscopic theories and yet still allows us to explain the

experimentally observed results.
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Figure 5.1: Potential surface of isomerization around single bond of hexatriene from
cZt-tZt state as a function of dihedral angle.
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Figure 5.2: Gibbs free energy pro�le of the isomerization of hexatriene in methanol
(a) and cyclohexane (b) at 280 K, 300 K, 320 K.
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(b) at 280 K, 300 K, 320 K.
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CHAPTER VI

Conclusions and Future Directions

The calculation of time correlation functions (TCF) in liquids is of central im-

portance to chemical phenomena because of the microscopic insight it can provide.

Through the use of computer simulation, a molecular level picture of the fundamen-

tal processes at work in a liquid can be gained. Linear response theory can be used

to calculate chemical reaction rates via the reactive-�ux time correlation function

(RF-TCF), after which the computer simulation can then be further analyzed in or-

der to explain results that may be di¢ cult or impossible to explain with experiments

alone. Vibrational energy relaxation (VER) rates can be calculated via a force-force

correlation function (FFCF) and can lead to an understanding of the importance

quantum e¤ects in the system. Di¤usion coe¢ cients can be calculated can be cal-

culated from the velocity-velocity correlation (VVCF) and can be used gain some

insight into the motions of the solvent.

In this work, we presented a new method for calculating quantum mechanical

VER rate constants that was both easier to implement and more accurate then the

method previously derived in our group. because of its relative ease in implementa-

tion, our force derivative free linearized semiclassical local harmonic approximation

87
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(FDF-LSC-LHA) method was applied to the study of VER in polar solvents. This

was the �rst ever use of a linearized semiclassical (LSC) method to a polar solvent

and was able to give us a new insight into the importance of taking into account

quantum e¤ects. We found that in the case of low frequency molecules, the classi-

cal and quantum mechanical FFCFs coincided well with each other, and the FFCF

was able to take this into account. We also found that, for VER in liquid hydrogen

chloride, the classical picture predicted an electrostriction mechanism, whereas the

electrostatic forces served mainly to position the solvent closer to the relaxing mole-

cule and had little contribution to the FFCF, Conversely, the quantum mechanical

calculations showed that the electrostatic forces did provide a signi�cant contribu-

tion to the FFCF. This study is an example of the danger in making mechanism

predictions based o¤ of classical calculations in cases were quantum mechanical ef-

fects cannot be ignored and may actually change the mechanism. Future studies

can continue to explore when electrostriction will play a signi�cant role and when

quantum mechanical e¤ects may cause a di¤erence to the mechanism. Speci�cally,

a comparison of the more classical I+2 in a polar solvent such as water to the more

quantum mechanical CN� also solvated in water. It would be very interesting to see

if this study would yield similar results to those seen in our study.

Another future study would be to directly tune the solvent polarity. Experimen-

tally there is no way to tune partial charges in the solvent, but instead a mixture

of polar and non polar solvent molecules can prepared. The VER rate constant can

then be measured as a function mole fraction to see whether increasing the nonpolar

character of the solvent mixture eventually decreases the rate enhancement seen in

polar solvents.

We also presented a new approximation to the LSC-LHA in which we eliminated
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the computationally expensive normal mode analysis and sampled the initial momen-

tum quantum mechanically. This new NMF-LSC method was found to overestimate

the quantum mechanical e¤ects in the system, but was able to accurately calculate

di¤usion coe¢ cients in liquid hydrogen. Our conclusion from this study was that

di¤usion, which is a common benchmark for quantum dynamics methods, is in fact a

poor benchmark because it avoids dealing with the purely quantum mechanical imag-

inary part of the VVCF. Future work in this study could involve trying to include

more quantum character into the derivation. This may involve using the di¤erent

TCF �avors as a starting point to a similar derivation, where the increase in accuracy

may compensate for the fact that the initial momentum sampling is done classically.

Lastly, we used the linear response formalism to calculate isomerization rate con-

stant in hexatriene via the RF-TCF and TST. In these studies, we found that we

were able to gain a microscopic picture of the e¤ect of solvent on the rate constant

that is not possible using macroscopic explanations such as Kramers theory. We

found that the faster rate in cyclohexane versus methanol was due to the way the

solvent can arrange itself around the solute molecule, something that would be very

di¢ cult to measure directly experimentally. We are currently in the process of study-

ing the e¤ects of many di¤erent solvents in order to understand the e¤ects of chain

length in the alcohol solvents and the e¤ects of linear versus cyclic alkanes. Future

work may also involve studying similar isomerization processes in more complicated

molecules. One possible case is stilbene, where isomerization occurs around a higher

energy double bond. Another possible system is to apply this same methodology

to work done by Anna and coworkers[2] in which they study the isomerization of

dicobalt octacarbonyl. This study could be especially interesting because it would

involve the forming and breaking of bridging carbonyls across the cobalt metal cen-
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ters. They have also seen di¤erences between solvating the molecule in cyclic and

linear alkanes. Studying this system similarly to the work we did on hexatriene may

yield a microscopic insight into the e¤ect of the various solvents on the chemical

process seen in their experiments.

The calculation of TCFs in liquids can be di¢ cult, especially when quantum

mechanical e¤ects play an important role; however, it can also be extremely fruit-

ful endeavor. The TCF formalism allows computer simulations to model dynamic

processes that would normally not be possible on the time scales accessible by com-

puter simulation. From these calculation, we can gain a microscopic insight into

the e¤ects of solvent on the solute, which is extremely important to chemistry since

much chemistry of interest occurs in solution. We can also gain a chemical insight

that may not possible to gain from experiment. It is not possible to experimentally

to separate the classical and quantum e¤ects in a system, but in a computer simula-

tion we can easily do this and understand how the quantum part e¤ects the overall

process. Even in system where quantum e¤ects play little to no role, we can gain

a microscopic insight into the system that may not possible experimentally due to

that large size of system. Because of this, computer simulation of TCF can be a

powerful compliment to experimental work in order to gain a deeper understanding

of the chemical processes involved.
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