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Abstract 
 

Attention overcomes processing limitations by enhancing information relevant to 

task goals and suppressing distraction.  Although researchers agree that task goals are 

stored in memory, it is unclear how attention and memory are linked at the moment that a 

goal-related stimulus is detected, thereby capturing attention.  We predicted that 1) 

attention capture leads to an involuntary orientation of attention to the related goal in 

memory; and 2) only a single goal can be attended during attention capture, consistent 

with a memory model that posits a “focus of attention” possessing a capacity limit of one.  

Our findings in Chapter 2 support our first prediction: participants oriented attention to 

the wrong task goal when instructed by an irrelevant but salient stimulus to do so.  The 

set-specific capture phenomenon identified in Chapter 3 is also consistent with the first 

prediction, and supports the second.  When participants searched for visual targets 

matching either of two current goals (e.g., identify both green and orange letters), 

identification accuracy was much lower when the target and an immediately preceding 

distractor were different target colors (e.g., green and orange) than when they were the 

same color (e.g., green).  In Chapter 4, we reported that this set-specific capture cost 

could be eliminated when participants focused attention on the goal related to the target 

(e.g., green) prior to the appearance of a distractor relating to a different goal (e.g., 

orange).  In line with the second prediction, this result suggests that only one goal can be 

enhanced at a time.  Chapter 5’s results provided direct support for our second 

hypothesis: only the most recently attended goal influenced current target identification, 



 

 ix 

whereas previously attended goals did not.  This result is only explained by the focus of 

attention model, and cannot be explained by an alternative graded, limited-resources 

model. Collectively, these studies provide a novel link between attention and memory 

when multiple goals guide behavior.  
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Chapter 1  
General Introduction 

 
 Goal-directed attention is essential for most everyday cognitive operations, such 

as carrying on a conversation in a noisy bar, searching for a friend in a crowd of people, 

or doing homework while a roommate watches television in the next room.  In each of 

these situations, attention boosts the signals of the incoming information relevant to 

current goals, while suppressing signals arising from irrelevant information.   

 Most models agree that goal-oriented or top-down attention is mediated by a 

fronto-parietal network (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000; 

Corbetta & Shulman, 2002; Hills, 2006; Mesulam, 2004).  Dorsolateral frontal regions 

maintain representations of current goals, also known as attentional sets.  These regions 

communicate with parietal regions, which distribute limited resources to behaviorally 

relevant stimuli and tasks (Banich, et al., 2000; Corbetta, et al., 1998; Hopfinger, 

Buonocore, & Mangun, 2000).  This fronto-parietal network allocates resources by 

biasing sensory regions of the brain (e.g., visual or auditory cortices) to facilitate the 

processing of relevant stimuli and to suppress input from irrelevant information (Bunge, 

Ochsner, Desmond, Glover, & Gabrieli, 2001; Kanwisher & Wojciulik, 2000; Kastner, 

De Weerd, Desimone, & Ungerleider, 1998; Kastner, Pinsk, De Weerd, Desimone, & 

Ungerleider, 1999).  

 Though attention usually helps us achieve our objectives, it can sometimes lead us 

astray.  A commonly studied way in which attention leads us away from our goals occurs 
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when we erroneously direct attention to irrelevant information in the environment, as in 

the case of contingent attentional capture.  This phenomenon is so named because 

distractors that share features with a current attentional set capture attention, demanding 

limited resources.  In capture studies using visual search tasks, the presence of target-like 

distractors in a display slows participants’ search (Lavie & de Fockert, 2005; Olivers, 

2008; Theeuwes, 1992).  In spatial cuing tasks, capture is observed as a moderate benefit 

when a target-like distractor appears just before a target in the same location (thereby 

directing attention to that location), and as a cost when they appear in different locations 

(Downing, 2000; Folk & Remington, 2008; Folk, Remington, & Johnston, 1992; Gibson 

& Kelsey, 1998).  Finally, in capture studies with rapid serial visual presentation (RSVP) 

displays, participants are less likely to identify a briefly presented target when it appears 

shortly after a target-like distractor than when it appears after a stimulus not sharing 

features with an attentional set (Folk, Ester, & Troemel, 2009; Folk, Leber, & Egeth, 

2002; Folk, Leber, & Egeth, 2008; Moore & Weissman, in press).  In an everyday 

example of contingent attentional capture, it is harder to find one’s friend in a crowd 

when there are many others who look like him/her (e.g., similar height, hair color, outfit) 

than when his/her features are unique.  

 Another behavioral cost arising from top-down attention occurs when one 

implements the wrong task goal.  This can occur when an attentional set that was 

previously but not currently relevant continues to guide behavior (Leber, Kawahara, & 

Gabari, 2009; Thompson, Underwood, & Crundall, 2007), or when a participant 

switching among multiple tasks accidentally loads the wrong one (Moore, Porter, & 

Weissman, 2009; Yeung, Nystrom, Aronson, & Cohen, 2006).  To take another example 
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from every day, a worker who changes jobs and adopts a new commute may have 

difficulty loading the task goal to drive to the new location, because the task goal to drive 

to his/her old job may still influence behavior.  

 Understanding the limits of attention when multiple goals guide behavior is 

especially important in an increasingly multi-tasking society (Carrier, Cheever, Rosen, 

Benitez, & Chang, 2009), but these limits remain unclear.  On the one hand, some studies 

indicate that we can manage multiple task goals efficiently and without behavioral costs 

(Dux, et al., 2009; Maquestiaux, Lague-Beauvais, Ruthruff, Hartley, & Bherer, 2010; 

Schumacher, et al., 2001).  Intuition from personal experience coheres with these 

results—it seems safe, under most conditions, to talk on one’s cell phone while driving.  

On the other hand, numerous studies demonstrate severe multi-tasking costs (Dejong, 

1993; Pashler, 1994; Tombu & Jolicoeur, 2003; Van Selst, Ruthruff, & Johnston, 1999), 

and cell phone use while driving is known to be a major cause of accidents (Laberge-

Nadeau, et al., 2003; Neyens & Boyle, 2007).   

 The present studies examine involuntary orienting to task goals in working 

memory; collectively, they aim to understand attentional mechanisms when multiple 

goals guide behavior.  In these investigations, we draw upon an existing model of 

memory to explain behavioral costs due to attention, thereby providing a new link 

between attention and memory.  

The first study (Chapter 2) uses functional magnetic resonance imaging (fMRI) to 

demonstrate that irrelevant instructions can cause involuntary orienting of attention to a 

currently inappropriate task. When participants maintain two goals in working memory 

with the expectation of performing either task on any given trial (e.g., “look at the 



 

 4 

screen” or “listen to the headphones”), irrelevant instructions presented closely in time 

with relevant instructions can cause the attentional network to enhance the wrong goal 

set, as indexed by an increase in activity to the wrong sensory cortex. Though the interval 

between the instructions and target presentation is sufficiently brief to avoid a behavioral 

cost, the imaging results provide clear evidence that irrelevant stimuli in the environment 

can cause an involuntary shift of attention to the wrong task. 

The second study (Chapter 3) again demonstrates that an irrelevant stimulus can 

cause a task goal in memory to become enhanced, and it invokes a limited-capacity focus 

of attention model from the working memory literature to account for this enhancement.  

In this study, participants search for letters appearing in either of two target colors (e.g. 

“green” and “orange”) in a rapid serial visual presentation (RSVP) stream.  Replicating 

prior findings of contingent attentional capture, participants are less likely to identify 

targets when the targets are preceded by irrelevant, target-colored distractors than when 

targets are preceded by distractors that are not target-colored.  Critically, contingent 

capture is two to three times larger when the distractor (e.g., green) and subsequent target 

(e.g., orange) match different attentional sets than when they match the same attentional 

set (e.g., both orange).  Additional experiments demonstrate that this effect, which we 

call set-specific capture, is not due to bottom-up perceptual priming or feature 

interference.  We suggest that participants involuntarily enhance the attentional set that 

matches the distractor (e.g., “identify green letters”).  They do so by placing the set in the 

focus of attention, a structure in working memory that is limited to a single item.  

The third study (Chapter 4) explores how set-specific capture costs can be 

reduced in an RSVP task similar to that in Chapter 3.  To accomplish this, irrelevant 
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stimuli (e.g., a green digit) guide participants to focus attention on the appropriate 

attentional set (e.g., “identify green letters”) prior to distraction related to a different goal 

(e.g., an orange peripheral letter).  This procedure results in preserved target 

identification performance when the target’s color matches the same attentional set as the 

first stimulus (e.g., green), and matches a different attentional set than the peripheral 

distractor.  In addition to showing how set-specific capture can be eliminated, this study 

contributes to the evidence supporting the focus of attention model proposed in Chapter 

3.   

The fourth study (Chapter 5) compares the focus of attention model to an 

alternative, limited-resources account of the set-specific capture findings from Chapters 3 

and 4; it finds that only the focus of attention model can explain set-specific capture.  In 

this study, participants maintain three search sets for colored letters (e.g., orange, green, 

and lavender) that appear in an RSVP stream.  Up to three targets appear on each trial, 

and participants are to identify all of them.  When the first two targets (T1 & T2) match 

different attentional sets (e.g., orange and lavender) and are both correctly identified, 

participants are equally likely to identify the third target (T3) when it is the same color as 

T1 (e.g., orange) as when it is a third color (e.g., green); thus, T1’s corresponding 

attentional set is not still enhanced when T3 is presented.  However, if T2 is not 

identified, participants are more likely to identify T3 when it is the same color as T1, 

which indicates lingering enhancement of T1’s corresponding set.  Taken together, these 

results demonstrate that only one attentional set (i.e., that of the most recently-identified 

target) can be enhanced in the focus of attention at a time. The findings support the focus 

of attention model.   
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Chapter 2  
Consciously perceived, irrelevant instructional cues can hijack the 

attentional network 
 

 Abstract 
Functional neuroimaging studies of endogenous cued attention suggest that a 

fronto-parietal attentional network keeps track of current task objectives in working 

memory and enhances activity in posterior sensory regions that underlie the perceptual 

processing of behaviorally relevant stimuli.  Relatively little is known, however, about 

whether consciously perceived, irrelevant instructional cues can hijack the attentional 

network, leading to an enhancement of the perceptual processing of irrelevant stimuli.  

Using a cross-modal attentional cueing task in combination with functional magnetic 

resonance imaging, we found that such irrelevant cues can indeed hijack the attentional 

network, as indexed by increased activity in (a) frontal regions that control attention and 

(b) sensory cortices that underlie the perceptual processing of task-irrelevant stimuli.  

Furthermore, we found that in left ventrolateral (but not dorsolateral) prefrontal regions, 

the magnitude of this increased activity varies with whether an irrelevant instructional 

cue is presented simultaneously with (versus after) a relevant instructional cue.  These 

findings show that consciously perceived, irrelevant instructional cues can activate 

inappropriate task objectives in working memory, resulting in a hijacking of the 

attentional network.  Moreover, they reveal different time courses of hijacking effects in 

ventrolateral and dorsolateral prefrontal regions, consistent with models in which these 

regions make distinct contributions to cognitive control. 
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 Introduction 
The ability to voluntarily and flexibly orient attention toward behaviorally 

relevant stimuli is a fundamental aspect of human cognition.  Some models posit that this 

ability is enabled by a fronto-parietal attentional network (Corbetta, et al., 2000; Corbetta 

& Shulman, 2002; Hills, 2006; Mesulam, 2004), in which lateral prefrontal regions of the 

brain keep track of current task objectives in working memory (Banich, et al., 2000; 

Milham, Banich, & Barada, 2003; Miller & Cohen, 2001) and communicate those 

objectives to parietal regions that allocate attention to behaviorally relevant stimuli (M. 

Corbetta, et al., 1998; Hopfinger, et al., 2000).  The attentional network is also thought to 

bias activity in sensory regions of the brain to favor the perceptual processing of 

upcoming relevant stimuli (Kanwisher & Wojciulik, 2000; Kastner, et al., 1998; Kastner, 

et al., 1999).  Consistent with this model, cueing humans to attend to an upcoming 

behaviorally relevant feature of the task environment (e.g., a specific color or spatial 

location) leads to a relative enhancement of activity in frontal and parietal regions of the 

attentional network as well as in sensory regions that underlie the perceptual processing 

of the behaviorally relevant feature (Hopfinger, et al., 2000; Kastner, et al., 1999; 

Shulman, et al., 1999).   

While often beneficial, the cognitive flexibility that allows us to voluntarily direct 

our attention can have costs.  One such cost is attentional capture, a phenomenon in 

which attention is drawn to irrelevant stimuli that share critical features (e.g., color) with 

target stimuli as defined by task objectives (Downing, 2000; Folk, Leber, & Egeth, 2002; 

Folk, et al., 1992) or that, for other reasons, stand out in the environment (Theeuwes, 

1994; Yantis & Hillstrom, 1994).  Presenting irrelevant stimuli that capture attention 

greatly impairs the identification of target stimuli that are presented soon afterwards 
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(Folk, et al., 2002).  As an everyday example, while searching for a friend in a red shirt at 

a crowded sporting event, the appearance of a stranger wearing a red shirt may capture 

one’s attention and interfere with one’s ability to locate the friend. 

A second cost that derives from this cognitive flexibility is that representations of 

previously relevant task objectives sometimes remain activated in working memory even 

when they are no longer relevant, resulting in increased attention to irrelevant stimuli and 

in slower and/or less accurate performance (Yeung, et al., 2006).  Drawing again from 

everyday experience, if the goal of playing offense remains activated in a basketball 

player’s working memory for too long after the other team steals the ball, then the player 

may be unable to quickly switch to playing defense in order to prevent the other team 

from scoring.  Disruptions of attention associated with the activation of irrelevant task 

objectives in working memory are also prominent after brain damage to the lateral 

prefrontal cortex (Berger & Posner, 2000) and in numerous clinical syndromes, such as 

drug addiction (Ventura, Alcaro, & Puglisi-Allegra, 2005), and attention deficit and 

hyperactivity disorder (Casey, et al., 1997; Max, et al., 2005).  For these reasons, there 

has been growing interest in understanding under what circumstances irrelevant task 

objectives become activated in working memory. 

The authors of two recent studies used variants of attentional cueing tasks, in 

combination with functional magnetic resonance imaging (fMRI), to directly investigate 

some of the conditions under which irrelevant task objectives become activated in 

working memory, and the behavioral and neural consequences of experimentally 

inducing such activation (Brass & von Cramon, 2004b; Lau & Passingham, 2007).  In 

both studies, a relevant instructional cue directed participants to perform one of two 
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possible tasks on an upcoming target stimulus, while an irrelevant instructional cue 

signaled either the same task (congruent cues) or a different task (incongruent cues). 

Brass and von Cramon (2004b) reported increased error rates to identify targets that 

followed incongruent (versus congruent) cues (i.e., a behavioral cue congruency effect). 

However, they observed no difference in brain activation for incongruent and congruent 

cues (i.e., a neural cue congruency effect).  Thus, this initial study revealed a behavioral 

deficit associated with activating irrelevant task objectives in working memory, but shed 

no light on the neural underpinnings of that deficit. 

Lau & Passingham (2007) also manipulated cue congruency to investigate the 

behavioral and neural consequences of activating irrelevant task objectives in working 

memory.  Similar to Brass and von Cramon (2004b), they reported slower and less 

accurate behavioral performance for targets that followed incongruent (versus congruent) 

cues.  However, they also observed significantly greater activation for incongruent than 

for congruent cues in the mid-dorsolateral prefrontal cortex (DLPFC), a neural structure 

that is thought to play a key role in maintaining task objectives in working memory 

(Banich, et al., 2000; Hopfinger, et al., 2000; Milham, et al., 2003; Miller & Cohen, 

2001).  One interpretation of this neural cue congruency effect is that incongruent cues 

led to the activation of both relevant and irrelevant task objectives in working memory 

while congruent cues led to the activation of only relevant task objectives (Lau & 

Passingham, 2007).  Consistent with this interpretation, activity in posterior cortical 

regions underlying performance of the irrelevant task was greater for incongruent than for 

congruent cues.  These findings suggest that activating irrelevant task objectives in 

working memory impairs behavioral performance by hijacking the attentional network 
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into enhancing the processing of currently irrelevant task representations, including 

representations of irrelevant stimuli.  

Of importance, such hijacking differs from various distracter interference effects 

that are more traditionally reported in the selective attention literature.  For example, 

while hijacking leads to the activation of an irrelevant task goal in working memory, 

contingent attentional capture results in a shift of spatial attention toward irrelevant 

stimuli whose features match a relevant task goal (Folk, et al., 1992; Serences, et al., 

2005).  Similarly, distracters in selective attention tasks (e.g., the Stroop and flanker 

tasks) often impair performance because they activate competing responses that are 

associated with a relevant task goal (MacLeod, 1991).  Thus, hijacking effects differ from 

various other types of distracter effects because they stem from the activation of an 

irrelevant goal in working memory, rather than from the activation of a relevant goal. 

A key finding in Lau and Passingham’s (2007) study was that cue congruency 

effects in the dorsolateral prefrontal cortex were observed only when irrelevant 

instructional cues were not consciously perceived.  This finding concurs with evidence 

indicating greater distraction from irrelevant stimuli that are unconsciously (versus 

consciously) perceived, an effect that may occur because unconsciously perceived stimuli 

sometimes fail to be inhibited by attentional control mechanisms (Tsushima, Sasaki, & 

Watanabe, 2006).  However, it conflicts with a vast literature indicating that consciously 

perceived, irrelevant stimuli robustly interfere with the performance of selective attention 

tasks by activating irrelevant semantic and response representations in working memory 

(MacLeod, 1991).  From the perspective of this latter literature, it is perplexing that both 

Brass and von Cramon (2004b) and Lau and Passingham (2007) did not observe neural 
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evidence indicating that consciously perceived irrelevant stimuli can activate irrelevant 

task objectives in working memory. 

One possible explanation is that the simple shapes that served as irrelevant 

instructional stimuli in these studies (e.g., squares and diamonds) were not strongly 

associated with irrelevant task objectives.  The degree to which a stimulus is strongly and 

automatically associated with an irrelevant semantic or response representation often 

predicts the amount of interference that it will evoke when it serves as a distracter in a 

selective attention task (Dunbar & MacLeod, 1984; MacLeod & Dunbar, 1988).  For 

example, due to our extensive language training, words automatically activate irrelevant 

semantic and response representations in working memory which, in turn, interfere with 

the performance of selective attention tasks (MacLeod, 1991).  Given these 

considerations, effects of consciously perceived cue congruency on brain activity should 

be most clearly visible when irrelevant instructional cues are strongly associated with 

irrelevant task objectives. 

In which brain regions might one expect manipulations of consciously perceived 

cue congruency to influence activity?  First, one might expect to observe cue congruency 

effects in posterior sensory regions whose nature is similar to the effects reported by Lau 

and Passingham (2007).  More specifically, for congruent cues one should expect a 

relative enhancement of activity in task-relevant sensory regions, consistent with the 

existing literature on endogenous cued orienting of attention (Kanwisher & Wojciulik, 

2000; Kastner, et al., 1998; Kastner, et al., 1999).  For incongruent cues, however, one 

should expect a reduction of this enhancement, or possibly even a reversal, in which there 

is an enhancement of activity in task-irrelevant sensory regions (Lau & Passingham, 
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2007).  In short, the nature of cue congruency effects in the sensory cortices should reveal 

whether consciously perceived, irrelevant instructional cues can hijack the attentional 

network. 

Second, one might expect to observe larger effects of cue congruency on brain 

activity when a relevant and an irrelevant instructional cue are presented simultaneously 

than when they are presented sequentially (i.e., when the irrelevant cue is presented 

nearly a second after the relevant cue) in the left ventrolateral prefrontal cortex (VLPFC).  

The left VLPFC is thought to retrieve task sets or stimulus-response mappings from 

memory (Brass & von Cramon, 2004a; Bunge, 2004).  Overall, the demands imposed on 

such retrieval processes should be greater when an irrelevant cue signals a different 

(versus the same) task than a relevant cue (Brass & von Cramon, 2004b; Lau & 

Passingham, 2007; Mattler, 2005).  However, since cue-triggered retrieval of a task set 

from memory is usually completed in well under a second (Monsell & Mizon, 2006), any 

increase in the demands on task-set retrieval processes that is imposed by varying cue 

congruency should be maximal when a relevant and an irrelevant cue are presented 

simultaneously and minimal when they are presented sequentially (i.e., when the 

irrelevant cue is presented almost a second after the relevant cue).  Drawing once again 

from everyday life, it is often much more difficult to retrieve from memory the mental set 

that is appropriate for performing a particular cognitive task (e.g., playing chess) when a 

distracter (e.g., a commercial on TV) simultaneously activates a competing, irrelevant 

task set in working memory (e.g., watching a movie) than when a distracter activates a 

competing task set only after the relevant task set has been retrieved. 
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Third, in contrast to the left VLPFC, one might expect to observe relatively 

similar cue congruency effects in a simultaneous and a sequential presentation condition 

in dorsolateral prefrontal cortex (DLPFC) regions that help to maintain task sets in 

working memory (Banich, et al., 2000; Miller & Cohen, 2001) and in dorsal anterior 

cingulate cortex (ACC) regions that detect or resolve conflict between relevant and 

irrelevant task sets (Luks, Simpson, Feiwell, & Miller, 2002; Orr & Weissman, 2009). In 

both presentation conditions, it may be harder to maintain information about the relevant 

task set after an irrelevant instructional cue activates a competing task set in working 

memory (i.e., incongruent cues) than after it activates the relevant task set (i.e., congruent 

cues).  Similarly, in both presentation conditions incongruent cues should impose greater 

demands than congruent cues on processes that detect and/or resolve conflict between the 

relevant and the irrelevant task sets.  Thus, cue congruency effects in the DLPFC and the 

dorsal ACC may not vary as a function of the relative timing with which a relevant and 

an irrelevant instructional cue are presented. 

Fourth, one might expect to observe cue congruency effects in superior and/or 

inferior parietal regions that manage and allocate attentional resources.  As we stated 

earlier, lateral prefrontal regions that keep track of current task objectives in working 

memory (Banich, et al., 2000; Milham, et al., 2003; Miller & Cohen, 2001) are thought to 

communicate with parietal regions that allocate attentional resources to behaviorally-

relevant stimuli (Corbetta, et al., 1998; Hopfinger, et al., 2000).  Thus, if irrelevant 

instructional cues influence activity in lateral prefrontal regions underlying working 

memory, they might also influence activity in parietal regions that allocate attentional 

resources. 
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With the considerations above in mind, we used a cross-modal attentional cueing 

task (Figure 2-1) in combination with fMRI to investigate whether consciously perceived, 

irrelevant instruction words can hijack the attentional network, and whether the extent of 

any such hijacking depends on the relative timing with which the relevant and the 

irrelevant instruction words are presented.  In each trial, a relevant visual cue (“Look” or 

“Hear”) instructed participants to attend to and identify either the visual letter (“X” or 

“O”) or the auditory letter (“X” or “O”) within a possibly upcoming, multisensory letter 

pair.  Accompanying the relevant visual instruction word was an irrelevant auditory word 

(“Look” or “Hear”) that signaled either the same task as the visual instruction word 

(congruent cues) or the opposite task (incongruent cues).  The irrelevant auditory 

instruction word was presented either at the same time as the relevant visual word 

(simultaneous condition) or 850 ms later (sequential condition).  In cue-plus-target trials, 

a multisensory letter pair was presented 1.875 seconds after the relevant visual cue word. 

Participants were asked to identify the target letter (“X” or “O”) that appeared in the cued 

sensory modality while ignoring the distracter letter in the other modality. The distracter 

letter was either the same as the target letter in the cued modality (congruent target-

distracter pairs) or different (incongruent target-distracter pairs).  In cue-only trials, the 

cue was not followed by a target.  These trials allowed us to isolate the neural correlates 

of attentional control processes that were specific to our cue stimuli (Corbetta, et al., 

2000).  We note that the simultaneous condition used here was also used in a different 

study from our laboratory (Orr & Weissman, 2009), but that only the present study, 

which involved different participants, included both the simultaneous and the sequential 

presentation conditions. 
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The view that consciously perceived, irrelevant instruction words can activate 

irrelevant task objectives in working memory leads to four predictions.  First, it predicts 

that the typical pattern of biasing activity in the sensory cortices for an audiovisual cued 

attention task (i.e., a relative enhancement of activity for “Look” versus “Hear” cue-only 

trials in the visual cortex, and the opposite effect in the auditory cortex) (Weissman, 

Warner, & Woldorff, 2004) should be observed more strongly for congruent than for 

incongruent cue-only trials.  Second, it predicts larger effects of cue congruency in the 

simultaneous than in the sequential condition in left VLPFC regions that retrieve task sets 

from memory to guide subsequent performance (Bunge, 2004).  Third, it predicts cue 

congruency effects in DLPFC regions that maintain task sets in working memory (Lau & 

Passingham, 2007) and in dorsal ACC regions that detect and/or resolve conflict between 

relevant and irrelevant task sets (Luks, et al., 2002; Orr & Weissman, 2009) and that the 

magnitude of these effects will not vary across the simultaneous and the sequential 

conditions.  And fourth, it predicts cue congruency effects in parietal regions that allocate 

attentional resources to behaviorally-relevant stimuli (Corbetta, et al., 1998; Hopfinger, et 

al., 2000). 

 Materials and Methods 

Participants 
Twenty University of Michigan students (10 female) between the ages of 18 and 

30 participated in the study.  All participants were right-handed, had normal or corrected 

to normal vision, and had no history of neurological disorders.  Each received $20 per 

hour for participating, and the experiment lasted approximately 2 hours.  Participants 

gave informed consent before the experiment in accordance with the University of 

Michigan Medical School Institutional Review Board.   
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Data acquisition  
A Dell PC running Presentation software (Neurobehavioral Systems, Albany, CA) 

presented the experimental stimuli and recorded participants’ responses.  Visual stimuli 

were projected onto a screen at the back of the magnet’s bore and were viewed through a 

mirror.  Auditory stimuli were delivered through MR-compatible headphones.  

Headphone volume was adjusted for each participant separately, such that the auditory 

stimuli could be heard clearly over the background noise produced by the MR scanner.  

Participants’ responses in the scanner were registered by an MR-compatible response 

box.  

All MRI images were collected on a 3T Signa whole-body scanner equipped with 

a standard head coil.  The blood oxygenation level-dependent (BOLD) signal was 

measured using a reverse spiral imaging sequence (repetition time (TR), 1250ms; echo 

time (TE), 30ms; field of view (FOV) 22cm; flip angle, 70º; 27 contiguous 4.5-mm-thick 

slices; in-plane resolution 3.44 x 3.44 mm).  Anatomical images were collected in the 

same axial orientation as the functional images, but with a T1-weighted gradient-echo 

(GRE) sequence (TR, 250 ms; TE, 5.4ms; flip angle, 90º; in-plane resolution 0.86 x 086 

mm).  Every participant completed six runs of the experimental task, each of which 

consisted of 96 trials over a period of 8 minutes and 10 seconds.  During each functional 

run, 389 brain volumes were collected. The first six images from each run contained no 

trials and were discarded prior to analysis. 

Task 
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Figure 2-1: Experimental Task. 

In each trial, a visual cue (‘LOOK’ or ‘HEAR’) instructed participants to attend to and identify 
either the visual letter (‘X’ or ‘O’) or the auditory letter (‘X’ or ‘O’) of a possibly upcoming 
audiovisual letter pair.  An irrelevant auditory word signaled either the same task as the visual cue 
or the opposite task.  In the simultaneous condition, the irrelevant auditory word was presented at 
the same time as the visual cue.  In the sequential condition, the irrelevant auditory word was 
presented 850 ms after the visual cue.  In cue-plus-target trials, an audiovisual target-distracter letter 
pair was presented 1.875 seconds following the onset of the relevant visual cue.  The distracter letter 
was presented in the opposite modality as the target letter and was equally likely to be the same letter 
as the target (congruent target-distracter pairs) or a different letter (incongruent target-distracter 
pairs).  In cue-only trials (33%, not shown), the relevant visual cue was not followed by a target-
distracter letter pair. 

 
Participants were instructed to maintain fixation on a small white dot (0.15º x 

0.17º) presented at the center of the screen throughout each run. At the start of every trial, 

a relevant visual cue word (“LOOK”, 3.12º x 0.86º; or “HEAR” 3.12º x 0.86º) appeared 

on the screen for 350 ms (Figure 2-1, top).  The visual cue word instructed participants 

either to maintain attention in the visual modality (i.e., “LOOK”) or to switch attention to 
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the auditory modality (i.e., “HEAR”).  An irrelevant (binaural) auditory word was also 

presented, either at the same time as the visual cue word (simultaneous condition) or 850 

ms after the onset of the visual cue word (sequential condition).  The irrelevant auditory 

word signaled either the same task as the relevant visual word (congruent cues; 50% of 

trials) or the opposite task (incongruent cues; 50% of trials).  In cue-plus-target trials 

(66%), a briefly-presented multisensory letter pair (duration, 350 ms) appeared 1875 ms 

after cue onset (Figure 2-1, bottom).  Each letter within this audiovisual letter pair was 

either an “X” or an “O” (in the visual modality, the “X” subtended 1.10º x 1.36º of visual 

angle and the “O” subtended 1.18º x 1.38º of visual angle).  The distracter letter in the 

uncued modality was equally likely to be the same letter as the target (congruent target-

distracter pairs; Figure 2-1, bottom left) or a different letter (incongruent target-distracter 

pairs; Figure 2-1, bottom right).  In cue-only trials (33%), the cue was not followed by a 

multisensory letter pair, which allowed us to isolate brain activity that was specific to our 

cue stimuli (Corbetta, et al., 2000).  

Participants were instructed to indicate whether the letter in the cued modality 

was an “X” or an “O” by pressing one of two response buttons as quickly and as 

accurately as possible, using either the index or the middle finger of their right hand.  If a 

response was not detected within 1875 ms after target onset, an error was recorded. 

Decision-response mappings were counterbalanced across participants.  In all trials, the 

fixation dot changed color from white to red 1875 ms after cue onset.  Because this 

change was coincident with target presentation in cue-plus-target trials, in cue-only trials 

it signaled to participants that no target would occur and, hence, that they could cease 
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attending (Corbetta, et al., 2000).  At the end of each trial (i.e., 3750 ms after trial onset), 

the fixation dot reverted to white. 

Design 
For each participant, we interleaved three runs of the sequential condition with 

three runs of the simultaneous condition.  Half of the participants started with the 

sequential condition (i.e., sequential, simultaneous, sequential, simultaneous, sequential, 

simultaneous) while the other half started with the simultaneous condition.  Prior to 

entering the scanner, participants completed a training session in which they briefly 

practiced the sequential and simultaneous task conditions.  Participants were required to 

achieve 90% accuracy over a 32-trial block for each task condition before performing the 

task in the scanner.  Every participant achieved this criterion on the first attempt.  

  In each run, there were 12 trial types (four cue-only and eight cue-plus-target), 

each of which was presented eight times in a randomized order.  Thus, there were a total 

of 96 trials per run. The four cue-only trial types consisted of the four possible 

combinations of Cued Modality (Look, Hear) and Cue Congruency (congruent, 

incongruent).  The eight cue-plus-target trial types consisted of the eight possible 

combinations of Cued Modality, (Look, Hear), Cue Congruency (congruent, 

incongruent), and Target Congruency (congruent, incongruent).  To optimize regression 

estimates of the BOLD responses that were produced by each of our 12 trial types, the 

inter-trial interval (ITI) was varied between zero and five TRs using a nearly exponential 

distribution that favored short ITIs (Miezen, Maccotta, Ollinger, Peterson, & Buckner, 

2000).  

 Data analysis 
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The behavioral data were analyzed using SPSS (SPSS, 2006).  Next, the 

functional images were corrected for asynchronous slice acquisition, head movement, 

normalized to Montreal Neurological Institute (MNI) space (voxel size: 3.75 x 3.75 x 4.5 

mm), and spatially smoothed with a three-dimensional Gaussian filter (8 mm full-width 

half-max) using SPM2 (Friston, 1995).  Due to head movements greater than 3 mm, two 

participants were excluded from further analyses, leaving a total of 18 participants.  

The time series for each functional run was modeled using a finite impulse 

response model.  This model empirically derives the stimulus-locked BOLD response 

across time to each trial type in an event-related design without assuming a canonical 

hemodynamic response shape, and has been validated in prior studies (Ollinger, Corbetta, 

& Shulman, 2001; Ollinger, Shulman, & Corbetta, 2001).  We estimated 14 TRs (17.5 s) 

of the BOLD response for each trial type, yielding 168 regressors (12 trial types x 14 

TRs) in the design matrix.  We also included six motion regressors (i.e., SPM2 estimates 

of translation along and rotation around the x, y, and z axes) and two regressors for the 

linear trend and the y-intercept term.  For every participant, parameter estimates for each 

trial type were converted to units of percent signal change from baseline (i.e., the y-

intercept term) in each run and then averaged across runs of the same type (i.e., 

sequential or simultaneous).  

 Voxelwise analyses 
We performed two random effects, one-sample t-tests.  The first t-test localized 

voxels in which the cue congruency effect (i.e., greater peak activity for incongruent than 

for congruent cue-only trials) was significantly larger in the simultaneous condition than 

in the sequential condition.  Peak activity was defined as the maximum fMRI signal 
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between 3.75 and 6.25 seconds after stimulus onset.  The second t-test localized voxels 

that showed significantly greater peak activity for incongruent than for congruent cue-

only trials, averaging across the simultaneous and the sequential conditions.  Each of 

these directional t-tests was thresholded at t(17) = 3.63, p < 0.001 (one-tailed).     

 Region of interest analyses 
Regions of interest (ROIs) in the left DLPFC, the right DLPFC, and the dorsal 

ACC were centered on coordinates that were localized in a prior study of cross-modal 

attention, which used the same multisensory target stimuli (Weissman, et al., 2004).  All 

other ROIs were defined functionally, based on average activity for all cue-only or all 

cue-plus-target trials.  We first performed a one-way repeated-measures analysis of 

variance (ANOVA) across time (14 TRs) on the average stimulus-locked response to all 

types of cue-only trials.  After the resulting F-map was height and extent thresholded (p < 

0.01; five contiguous voxels), we defined ROIs in the right VLPFC and in the left 

middle/posterior VLPFC.  Because we did not identify ROIs in either the superior 

parietal lobe (SPL) or the inferior parietal lobe (IPL) in the cue-only map, we next 

constructed an analogous F-map (height and extent thresholded to p < 0.01; five 

contiguous voxels) based on the average stimulus-locked BOLD response across time (14 

TRs) to cue-plus-target trials.  Using this map, we defined ROIs in the right SPL, the left 

SPL, and the left IPL (no right IPL region was identified).  We also defined two ROIs in 

the sensory cortices: the top-activating region of visual (occipital) cortex and the top-

activating region of auditory (temporal) cortex.  The relatively liberal thresholds that 

were used to define our ROIs did not bias the outcome of our subsequent analyses 

because all subsequent ROI-level contrasts were orthogonal to the contrasts that we used 
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to create the ROIs.  Each ROI consisted of a 27-voxel cube centered on a local maximum 

(see Table 2-1). 

Region of Interest Brodmann Area MNI Coordinates 

x              y             z 

Left dorsolateral prefrontal cortex 9 -48 15 31 

Right dorsolateral prefrontal cortex 9 48 19 31 

Left ventrolateral prefrontal cortex 9/44 -41 8 32 

Right ventrolateral prefrontal cortex 9/44 53 12 36 

Dorsal anterior cingulate cortex 32 -2 6 52 

Right superior parietal lobe 7 34 -68 45 

Left superior parietal lobe 7 -15 -75 54 

Left inferior parietal lobe 7 -34 -60 45 

Right middle occipital gyrus 17/18 34 -90 -5 

Left superior temporal gyrus 42 -53 -34 14 

Table 2-1: Regions of interest in the present study. 

Parameter estimates for each trial type were averaged across all voxels in each 

ROI.  Random effects analyses were then performed to contrast peak activity for different 

trial types.  As in the voxelwise analyses, peak activity in cue-only trials was defined as 

the maximum fMRI signal between 3.75 and 6.25 seconds after cue onset.  To allow for 

both task- and participant-related variability, peak activity was estimated separately for 

each trial type and participant.   

 Results 

 Behavior 
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Mean reaction time and mean accuracy were analyzed in separate repeated-

measures analyses of variance (ANOVAs) with four within-participants factors: 

Condition (simultaneous, sequential), Cued Modality (visual, auditory), Cue Congruency 

(congruent, incongruent), and Target Congruency (congruent, incongruent).  Two 

significant main effects replicated our findings from a prior study (Weissman, et al., 

2004).  First, participants were both faster (864 ms vs. 939 ms, F(1,17) = 59.01, p < 

0.0001) and more accurate (97.8% vs. 96.5%, F(1,17) = 11.79, p < 0.003) when 

responding to congruent (versus incongruent) target-distracter pairs.  Second, participants 

were both faster (865 ms vs. 938 ms, F(1,17) = 44.18, p < 0.0001) and more accurate 

(98.1% vs. 96.2%, F(1,17) = 8.789, p < 0.009) when responding to targets in the visual 

(versus the auditory) modality.  
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Figure 2-2: Peak activity in cue-only trials in visual and auditory cortex regions of interest. 

(a) Axial slices of visual and auditory cortex regions of interest overlaid on an MNI-normalized 
anatomical brain.  In this and subsequent figures, z coordinates refer to MNI space. (b) Peak activity 
in cue-only trials as a function of Brain Region (visual cortex, auditory cortex), Cued Modality 
(visual, auditory) and Cue Congruency (congruent cues, incongruent cues) averaged across the 
simultaneous and the sequential conditions.  Asterisks indicate significant simple effects or 
interactions.  Notice that the pattern of biasing activity that is typical for an audiovisual cued 
attention task (i.e., greater activity for “Look” than for “Hear” cues in the visual cortex and greater 
activity for “Hear” than for “Look” cues in the auditory cortex) was observed for congruent cues 
while the reverse pattern was observed for incongruent cues.  (c) Positive biasing activity in the visual 
cortex (i.e., activity for “Look” cue-only trials minus activity for “Hear” cue-only trials) averaged 
with positive biasing activity in the auditory cortex (i.e., activity for “Hear” cue-only trials minus 
activity for “Look” cue-only trials), plotted separately for the simultaneous and the sequential 
conditions.  Notice that there was significantly more positive biasing activity in the sequential 
condition than in the simultaneous condition. 
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We also observed a significant interaction between Target Congruency 

(congruent, incongruent) and Cued Modality for accuracy, F(1,17) = 5.85, p < 0.027.  

Accuracy for congruent targets was always numerically higher than accuracy for 

incongruent targets, but this difference was significantly larger when participants were 

cued to “Hear” (97.3% vs. 95.1%; F(1,17) = 17.47, p < 0.001) than when they were cued 

to “Look” (98.4% vs. 97.7%; F(1,17) = 1.93, p > 0.18).  No other behavioral effects were 

significant.   

 FMRI 
Sensory Regions 

Our first prediction was that the typical pattern of biasing activity in the sensory 

cortices for an audiovisual cued attention task (Weissman et al., 2004) would be observed 

more strongly in congruent than in incongruent cue-only trials.  Specifically, for 

congruent cues we predicted an interaction between Cued Modality (visual, auditory) and 

Brain Region (visual cortex ROI, auditory cortex ROI) indicating a relative enhancement 

of activity in the visual cortex for “Look” versus “Hear” cue-only trials, and a relative 

enhancement of activity in the auditory cortex for “Hear” versus “Look” cue-only trials.  

For incongruent cues, however, we predicted that this pattern would be significantly less 

pronounced, or possibly even reversed, consistent with a hijacking of the attentional 

network (Lau & Passingham, 2007).  We tested these predictions in the regions of visual 

and auditory cortex that were most highly activated by our stimuli (Figure 2-2a; see 

Materials and Methods).   

Consistent with our first prediction, we observed a significant three-way 

interaction among Cue Congruency (congruent, incongruent), Cued Modality (visual, 
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auditory) and Brain Region (visual cortex ROI, auditory cortex ROI), F(1,17) = 9.36, p < 

0.0071 (Figure 2-1b).  For congruent cues we observed a significant two-way interaction 

between Cued Modality and Brain Region, F(1,17) = 5.18, p < 0.036.  As expected, this 

interaction reflected a relative enhancement of activity in the visual cortex for “Look” 

versus “Hear” cue-only trials, and a relative enhancement of activity in the auditory 

cortex for “Hear” versus “Look” cue-only trials (Figure 2-1b, left).  Neither of the simple 

effects associated with this interaction was significant (both p > 0.06, one-tailed).  

However, the nature of the significant interaction clearly indicates a relative shift of 

activity toward the sensory cortex corresponding to the cued modality.  For incongruent 

cues, we also observed a significant interaction between Cued Modality and Brain 

Region, F(1,17) = 7.15, p < 0.016.  As expected, this interaction reflected a relative 

enhancement of activity in the visual cortex for “Hear” versus “Look” cue-only trials, and 

a relative enhancement of activity in the auditory cortex for “Look” versus “Hear” cue-

only trials (Figure 2-1b, right).  Neither of the simple effects associated with this 

interaction was significant (both p > 0.12, two-tailed).  However, the nature of the 

significant interaction clearly indicates a relative shift of activity toward the task-

irrelevant sensory cortex signaled by the irrelevant auditory word.  These findings 

support our hypothesis that consciously perceived, irrelevant instruction words that signal 

a competing task set can hijack the attentional network, leading it to enhance the 

perceptual processing of irrelevant stimuli.  

We also investigated whether the magnitude of the cue congruency effects above 

varied in the simultaneous and sequential conditions.  The four-way interaction among 

Condition (simultaneous, sequential), Cued Modality (visual, auditory), Cue Congruency 
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(congruent, incongruent), and Brain Region (visual ROI, auditory ROI) did not achieve 

significance, F(1,17) < 1.  Therefore, cue congruency effects in the sensory cortices did 

not differ for the simultaneous and the sequential conditions. 

Finally, we investigated whether merely presenting the irrelevant auditory word 

simultaneously with (as compared to 850 ms after) the relevant visual cue might distract 

participants in a relatively general way, causing them to orient less attention to the cued 

sensory modality.  To test this prediction, we defined an overall measure of positive 

biasing activity, which was the average of positive biasing activity in the visual cortex 

(i.e., activity for “Look” cue-only trials minus activity for “Hear” cue-only trials) and 

positive biasing activity in the auditory cortex (i.e., activity for “Hear” cue-only trials 

minus activity for “Look” cue-only trials).  As expected, we found significantly less 

positive biasing activity in the simultaneous condition than in the sequential condition, 

F(1,17) = 5.29, p < 0.034 (Figure 2-1c).  Thus, independent of cue congruency, 

presenting the irrelevant auditory word simultaneously with (versus after) the visual cue 

interfered with orienting attention to the cued sensory modality. 

 

Frontal Regions 

Our next two predictions concerned activity in frontal regions.  Our second 

prediction was that left VLPFC regions that retrieve task sets from memory would show a 

cue congruency effect that was significantly larger in the simultaneous than in the 

sequential condition.  Our third prediction was that activity in DLPFC regions involved in 

maintaining task sets in working memory and activity in dorsal ACC regions that detect 

or resolve conflict between relevant and irrelevant task sets would be greater for 
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incongruent than for congruent cue-only trials, and that the magnitude of these effects 

would not differ for the simultaneous and the sequential conditions.   

 Voxelwise Analyses 
To test our second prediction about the left VLPFC, we performed a voxelwise t-

test to locate brain regions in which the cue congruency effect was significantly larger in 

the simultaneous than in the sequential condition.  This analysis revealed no significant 

activations, t(17) = 3.63, p < 0.001 and 8 contiguous voxels. We chose this threshold and 

cluster size from our previous investigation (Orr & Weissman, 2009).  

To test our third prediction about the DLPFC and the dorsal ACC, we performed 

a voxelwise, random-effects t-test to localize brain regions that showed greater activation 

for incongruent cue-only than for congruent cue-only trials, averaging across the 

simultaneous and the sequential conditions, t(17) = 3.63, p < 0.001 and 8 contiguous 

voxels.  This analysis revealed two activations in the left posterior superior temporal 

gyrus (center of mass coordinates in MNI space: x = -57, y = -42, z = 8, Brodmann Area 

(BA) 22, cluster size, 10 voxels; center of mass: x = -65, y = -53, z = 10, BA 22, cluster 

size, 8 voxels) and one activation in the culmen (i.e., anterior vermis) of the cerebellum 

(center of mass: x = 9, y = -42, z = -10; cluster size, 8 voxels).  No other activations were 

observed.  
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Figure 2-3: Activity in cue-only trials plotted in frontal and parietal regions of interest. 

(a) Axial slices showing regions of interest on the MNI-normalized brain.  These regions include the 
left VLPFC, the right VLPFC, the left DLPFC, the right DLPFC, and the dorsal ACC. (b) Activity in 
cue-only trials plotted as a function of Condition (sequential, simultaneous) and cue congruency 
(congruent, incongruent) in each region of interest.  In the left VLPFC (but not in the other regions), 
cue congruency effects were significantly larger in the simultaneous condition than in the sequential 
condition. 

 ROI Analyses 
As noted above, our voxelwise analyses did not reveal significant activations in 

either frontal or parietal regions.  Thus, we functionally defined ROIs in bilateral regions 

of the middle/posterior VLPFC, the left superior parietal lobe (SPL), the right SPL, and 

the left inferior parietal lobe (IPL) and defined ROIs in bilateral regions of the DLPFC 

and the dorsal ACC using coordinates from one of our prior studies (Weissman, et al., 

2004) (see Materials and Methods, and Figure 2-3).  To correct for multiple comparisons 
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in the following analyses, we considered significance levels to be p-values that were less 

than 0.01.     

Consistent with our second prediction, in the left middle/posterior VLPFC (Figure 

2-3b, top left) we observed a significant interaction between Cue Congruency (congruent, 

incongruent) and Condition (simultaneous, sequential), F(1,17) = 9.24, p < 0.008.  As 

hypothesized, this interaction occurred because there was significantly greater peak 

activity in incongruent than in congruent cue-only trials in the simultaneous condition, 

t(17) = 2.80, p < 0.0062, but not in the sequential condition, t(17) = 1.  In the right 

VLPFC (Figure 2-3b, top right), which may play a role in inhibiting irrelevant task sets 

(Brass & von Cramon, 2004a), we observed significantly greater peak activity in 

incongruent than in congruent cue-only trials, t(1,17) = 3.08, p < 0.004 (averaged across 

the simultaneous and the sequential conditions), but there was no significant interaction 

between Cue Congruency and Condition, F(1,17) = 1.22, p > 0.28.  Thus, as predicted, 

cue congruency effects in the left VLPFC were significantly larger in the simultaneous 

than in the sequential condition, in line with models suggesting a role for this region in 

retrieving task sets from memory. 

We observed weak evidence to support our third prediction.  First, we found a 

trend towards greater peak activity in incongruent than in congruent cue-only trials in 

bilateral regions of the DLPFC (left DLPFC: t(17) = 1.88, p < 0.04; Figure 2-3b, bottom 

left; right DLPFC: t(17) = 1.87, p < 0.04; Figure 2-3b, bottom middle).  As expected, the 

size of the cue congruency effect did not vary significantly across the simultaneous and 

the sequential conditions (left DLPFC: F(1,17) = 2.28, p > 0.149; right DLPFC: F (1,17) 

< 1).  We also observed a similar pattern in the dorsal anterior cingulate cortex (Figure 
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2-3b, bottom right).  Specifically, there was a trend towards greater peak activity in 

incongruent than in congruent cue-only trials, t(17) = 1.75, p < 0.05 (averaged across the 

simultaneous and the sequential conditions), and the size of this effect did not vary 

significantly across the simultaneous and the sequential conditions, F (1,17)  < 1.  These 

findings are consistent with those suggesting a role for the DLPFC in maintaining task 

sets in working memory and with those suggesting a role for the dorsal ACC in detecting 

or resolving conflict between relevant and irrelevant task sets. 

Parietal Regions  

Our fourth prediction was that cue congruency effects would be observed in 

superior and inferior parietal regions that allocate attentional resources to behaviorally 

relevant stimuli (Corbetta, et al., 1998; Hopfinger, et al., 2000).  However, ROI analyses 

in parietal regions revealed neither an overall cue congruency effect (i.e., averaged across 

the simultaneous and the sequential conditions) nor an interaction between Cue 

Congruency (congruent, incongruent) and Condition (simultaneous, sequential).  

Exploratory analyses, which should be interpreted with caution, revealed significant 

effects of Cue Congruency in the simultaneous condition (left SPL: t(17) = 1.827, p < 

0.043; right SPL: t(17) = 1.880, p < 0.039; left IPL, t(17) = 2.078, p < 0.027), but not in 

the sequential condition (left SPL, t(17) < 1; right SPL, t(17) <1; left IPL, t(17) < 1). 

 Discussion 
We often become distracted from performing a primary task (e.g., reading) when 

an irrelevant stimulus (e.g., a television commercial) activates representations of an 

irrelevant task in working memory (e.g., watching a movie). Consistent with such 

everyday experiences, current models of selective attention posit that a major source of 
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distraction during task performance stems from the activation of irrelevant task objectives 

in working memory (MacLeod, 1991; Wagner, Maril, Bjork, & Schacter, 2001).  In line 

with such models, we found that consciously perceived, irrelevant instructional cues that 

were strongly associated with an irrelevant task hijacked the attentional network, as 

indexed by heightened activity in (a) frontal regions that control attention and (b) sensory 

cortices that underlie the perceptual processing of irrelevant stimuli.  Moreover, we found 

that effects of irrelevant instructional cues on activity in the left middle/posterior VLPFC 

varied with whether a relevant and an irrelevant instructional cue were presented 

simultaneously or sequentially.  These findings have important implications for our 

understanding of the functional neuroanatomy of selective attention (Ventura, et al., 

2005). 

Consistent with our first prediction, we observed strong evidence in the sensory 

cortices that consciously perceived, irrelevant instructional stimuli can hijack the 

attentional network.  Cueing participants to attend for a possibly upcoming target that is 

defined by its spatial location (Hopfinger, et al., 2000; Woldorff, et al., 2004), color 

(Giesbrecht, Woldorff, Song, & Mangun, 2003), or sensory modality (Weissman et al., 

2004) often leads to a relative enhancement of activity in sensory regions that process the 

attended attribute, even before the target is presented (Corbetta & Shulman, 2002).  In 

line with such findings, we observed a relative enhancement of activity in the sensory 

cortex corresponding to the cued modality for congruent cues, in which the relevant 

visual cue and the irrelevant auditory word signaled the same task (e.g., “Hear”).  

However, for incongruent cues, in which the irrelevant auditory word (e.g., “Look”) 

signaled the opposite sensory modality as the relevant visual cue (e.g., “Hear”), we 



 

 33 

observed a relative enhancement of activity in the sensory cortex corresponding to the 

modality that was signaled by the irrelevant auditory word.  Since the irrelevant auditory 

words were played at the same volume as the auditory targets that participants 

successfully identified, our findings show that consciously perceived, irrelevant 

instructional stimuli can hijack the attentional network. 

Other results in the sensory cortices indicated that merely presenting the irrelevant 

auditory word simultaneously with (versus after) the visual cue interfered with attention-

orienting processes in a relatively general way that did not depend on cue congruency.  

Specifically, regardless of cue congruency, there was significantly less positive biasing 

activity in the sensory cortices (i.e., greater activity for “Look” than for “Hear” cue-only 

trials in the visual cortex and greater activity for “Hear” than for “Look” cue-only trials 

in the auditory cortex) in the simultaneous than in the sequential presentation condition.  

This finding fits nicely with prior work indicating that presenting any sort of task-related 

information at an irrelevant stimulus dimension can be distracting (Milham, et al., 2002). 

In line with our second prediction, in the left middle/posterior VLPFC we 

observed a significantly larger cue congruency effect when the irrelevant auditory word 

was presented simultaneously with (versus after) the relevant visual cue.  This result is 

highly consistent with models in which the left middle/posterior VLPFC participates in 

retrieving from memory either (a) task sets or (b) stimulus-response mappings that are 

associated with task sets (Brass & von Cramon, 2004a; Bunge, 2004).  Given that a task 

set can be retrieved in well under a second (Monsell & Mizon, 2006), such retrieval 

processes likely operate relatively early in the cue-target interval.  Moreover, demands on 

such processes are likely greater when a simultaneously presented irrelevant instructional 
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cue signals a competing (versus the same) task set as a relevant cue.  In light of the 

hijacking effects that we observed in the sensory cortices, the larger cue congruency 

effect in the simultaneous (versus sequential) condition might also index the retrieval of 

both the relevant and the irrelevant task set into working memory (Lau & Passingham, 

2007).  Future studies might therefore be aimed at determining whether cue congruency 

effects in the left middle/posterior VLPFC reflect processes that work harder to retrieve a 

relevant task set under conditions of distraction or, alternatively, processes that 

erroneously retrieve an irrelevant task set. 

Our results in the left middle/posterior VLPFC may also be accounted for by 

models in which this region selects relevant semantic information in the context of 

competing semantic distracters (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; 

Badre & Wagner, 2007).  Indeed, such models readily account for our finding that cue 

congruency effects were larger in the simultaneous condition, in which the relevant task 

representation needed to be selected in the context of a competing task representation, 

than in the sequential condition, in which the relevant task representation could be 

selected before the irrelevant task representation was retrieved.  Also consistent with such 

models, the specific region of left VLPFC that we have identified is highly proximal to a 

region of the left middle/posterior VLPFC that has previously been linked to semantic 

selection (Badre, et al., 2005).  Future studies will be needed to determine whether cue 

congruency effects in the left middle/posterior VLPFC reflect processes that retrieve task 

sets from memory (Bunge, 2004) or processes that operate on such task sets after they are 

retrieved in order to select relevant task sets among competing ones (Badre, et al., 2005; 

Badre & Wagner, 2007).               
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We found weak but suggestive evidence to support our third prediction. There 

were trends towards cue congruency effects in bilateral regions of the DLPFC and the 

dorsal ACC. We also found a significant cue congruence effect in the right VLPFC. For 

none of these effects did the magnitude significantly differ in the simultaneous and the 

sequential conditions.  Cue congruency effects in the DLPFC may reflect increased 

demands on processes that maintain relevant representations in working memory after an 

irrelevant stimulus activates competing representations (Sakai & Passingham, 2002; 

Sreenivasan & Jha, 2007).  Given the hijacking effects that we observed in the sensory 

cortices, cue congruency effects in the DLPFC may also index the maintenance of both a 

relevant and an irrelevant task set in incongruent cue-only trials (Lau & Passingham, 

2007).  Cue congruency effects in the dorsal ACC may reflect processes that detect or 

resolve conflict between relevant and irrelevant task sets (Luks, et al., 2002; Orr & 

Weissman, 2009).  Finally, cue congruency effects in the right VLPFC may reflect 

increased demands on processes that inhibit irrelevant task sets that become activated in 

working memory during the processing of incongruent cues (Brass & von Cramon, 

2004a).  Future studies will be necessary to distinguish among these and other possible 

interpretations of the cue congruency effects that we have observed.  Nonetheless, our 

findings are important because they provide some initial insight into which frontal 

regions are hijacked by consciously perceived, irrelevant instructional cues.  Moreover, 

they both replicate and extend our findings from a prior experiment with different 

participants, the design of which included only a simultaneous presentation condition 

(Orr and Weissman, 2009), by demonstrating that cue congruency effects in the DLPFC 
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and the dorsal ACC do not vary with whether relevant and irrelevant task cues are 

presented simultaneously or sequentially.  

In line with our fourth prediction, we also observed cue congruency effects in 

bilateral regions of the superior parietal lobe and in the left inferior parietal lobe.  More 

specifically, exploratory analyses in these regions revealed greater activity for 

incongruent than for congruent cue-only trials in the simultaneous (but not the sequential) 

condition.  Parietal regions are thought to allocate attention to behaviorally relevant 

stimuli (Corbetta, et al., 1998; Hopfinger, et al., 2000).  Thus, cue congruency effects in 

parietal regions may index the effect of activating irrelevant task objectives in frontal 

regions on processes that orient attention. 

Finally, we observed cue congruency effects in the left posterior superior 

temporal gyrus and in the anterior vermis (i.e., culmen) of the cerebellum.  Activity in the 

left posterior superior temporal gyrus (BA 22) is thought to increase with demands on 

phonological processes (Graves, Grabowski, Metha, & Gupta., 2008; Rumsey, et al., 

1997).  To the extent that participants sub-vocalized the visual cue word, demands on 

phonological processes were likely greater in incongruent than in congruent cue-only 

trials.  Indeed, only in incongruent cue-only trials did the irrelevant auditory word 

activate phonological representations that conflicted with those needed to sub-vocalize 

the relevant visual word.  Activity in the anterior vermis is thought to underlie processes 

related to response preparation and response inhibition (Desmond, Gabrieli, Wagner, 

Ginier, & Glover, 1997; Simmonds, Pekar, & Mostofsky, 2008).  We speculate that 

incongruent cue-only trials imposed greater demands than congruent cue-only trials on 

inhibitory processes that prevented participants from subvocalizing the irrelevant 
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auditory word.  In sum, we observed cue congruency effects in left posterior superior 

temporal and anterior vermis regions which underlie, respectively, phonological and 

motor processes that were likely recruited by our verbal cue stimuli. 

Our finding that consciously perceived, irrelevant instructional cues can hijack the 

attentional network stands in stark contrast to the findings from two previous fMRI 

studies (Brass & von Cramon, 2004b; Lau & Passingham, 2007).  In these studies, 

hijacking occurred only when the irrelevant instructional cues that signaled an irrelevant 

task were presented below the threshold of conscious perception.  Notably, the simple 

geometric forms (e.g., squares and diamonds) that served as irrelevant instructional cues 

in these prior studies were not strongly associated with the irrelevant task objectives they 

were meant to activate in working memory.  It is well known, however, that consciously 

perceived distracters in selective attention tasks produce the greatest interference when 

they are strongly associated with irrelevant semantic and response representations 

(MacLeod, 1991).  For example, irrelevant words in the Stroop task are thought to 

produce especially large interference effects because words have been automatically 

associated with their meanings and vocal responses through extensive language training.  

The present finding that consciously perceived auditory words (“Look” and “Hear”) can 

hijack the attentional network is thus highly consistent with the existing literature on 

selective attention, but future research will be required to fully understand the boundary 

conditions in which hijacking occurs.  

Our data indicating that cue congruency effects in the left VLPFC were more 

pronounced in the simultaneous than in the sequential presentation condition is also 

generally consistent with the literature on selective attention. A predominant finding in 
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this literature is that interfrence from irrelevant stimuli is greater when those stimuli are 

presented simultaneously with (versus after) target stimuli (for a review, see MacLeod, 

1991). Such data clearly indicate that temporal overlap in the processing of relevant and 

irrelevant stimuli plays an important role in determining the efficiency of selective 

attention when only a single task set is activated. Here, we have shown that temporal 

overlap in the processing of relevant and irrelevant stimuli can also influence whether 

irrelevant stimuli can activate irrelevant task sets in working memory. Thus, our findings 

further underscore the importance of temporal factors in determining the efficiency of 

selective attention. 

A limitation of the present study is that we did not observe significant effects of 

cue congruency on behavioral measures of performance.  The lack of such behavioral 

effects makes it difficult to determine whether frontal and parietal regions whose activity 

is influenced by cue congruency participate in “protecting” a relevant task set from 

distraction (Jha, Fabian, & Aguirre, 2004; Sakai & Passingham, 2002) or, alternatively, in 

orienting attention to irrelevant stimuli (Lau & Passingham, 2007).  Given that behavioral 

performance following incongruent (versus congruent) cues is impaired for only about 

300 ms (Mattler, 2005), the absence of behavioral cue congruency effects in the present 

study (which featured a 1.875 second cue-target interval) is unsurprising.  Due to the 

relatively short temporal duration of behavioral cue congruency effects, brain imaging 

techniques that offer higher temporal resolution than fMRI, such as, for example, 

magnetoencephalography (MEG), may be especially useful for dissociating brain regions 

that “protect” a relevant task set under conditions of distraction from brain regions that 

orient attention to irrelevant stimuli. 
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In conclusion, we have found that irrelevant instructional cues can hijack the 

attentional network even when they are consciously perceived.  Moreover, we have found 

that the relative timing with which relevant and irrelevant instructional cues are presented 

influences the extent of this hijacking in certain regions of the attentional network.  

Future studies will be important for advancing our understanding of how irrelevant task 

objectives become activated in working memory and for revealing the behavioral and 

neural consequences of activating such representations in both neurologically-intact and 

clinical populations.  
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Chapter 3  
Involuntary transfer of a top-down attentional set into the focus of 

attention: Evidence from a contingent attentional capture paradigm 
 

 

 Abstract 
We investigated whether involuntarily directing attention to a target-colored 

distractor causes the corresponding attentional set to enter a limited-capacity focus of 

attention, thereby facilitating the identification of a subsequent target whose color 

matches the same attentional set.  As predicted, in Experiment 1 contingent attentional 

capture effects from a target-colored distractor were only one half to one third as large 

when subsequent target identification relied on the same (versus a different) attentional 

set.  In Experiment 2, this effect was eliminated when all target colors matched the same 

attentional set, arguing against bottom-up perceptual priming of the distractor’s color as 

an alternative account of our findings.  In Experiment 3, this effect was reversed when a 

target-colored distractor appeared after the target, ruling out a feature-based interference 

account of our findings.  We conclude that capacity limitations in working memory 

strongly influence contingent attentional capture when multiple attentional sets guide 

selection.    
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 Introduction 
In order to protect limited-capacity information processing systems, attention is 

posited to direct processing resources toward stimuli that are important for achieving 

current behavioral goals (Desimone & Duncan, 1995; Posner & Rothbart, 2007).  Such 

goal-directed attention is thought to be made possible by representations of behavioral 

goals, which specify the attentional settings that are needed to optimize the processing of 

behaviorally-relevant stimuli (Folk, et al., 1992).  For example, the goal of searching for 

a lemon at the grocery store is usually linked to searching for the color yellow.  Once 

such attentional settings are specified, top-down signals are posited to bias sensory 

processing in favor of stimuli whose features match these settings (Corbetta & Shulman, 

2002), thereby enhancing the ability of relevant stimuli to gain access to limited-capacity 

systems. 

While selective attention usually helps to prevent irrelevant stimuli from gaining 

access to limited-capacity systems, sometimes it has the opposite effect.  For example, 

when one is searching for a lemon at the grocery store, all yellow items in the fruits and 

vegetables section—including lemons, peppers, and squash—may attract attention.  Put 

another way, attention is often involuntarily directed to an irrelevant stimulus that 

possesses a feature (e.g., a particular color) that matches a top-down attentional set.  In 

the laboratory, contingent attentional capture refers to a phenomenon in which 

involuntarily directing attention to an irrelevant stimulus that possesses a task-relevant 

feature impairs the identification of a subsequent target stimulus (Folk, et al., 1992).  

Contingent capture effects have been observed in spatial cuing (Bacon & Egeth, 1994; 

Folk, et al., 1992; Gibson & Kelsey, 1998), visual search (Olivers, 2008), and rapid serial 
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visual presentation (RSVP) paradigms (Folk, et al., 2002; Folk, et al., 2008; Leblanc, 

Prime, & Jolicoeur, 2008; Serences, et al., 2005), and are thought to arise because a 

distractor whose properties match an attentional set is processed more deeply, as though 

it were a target (Folk, et al., 2002).  Because this deeper processing is serial and capacity-

limited, it impairs the identification of a target that appears later in time or at a different 

location.  Thus, while selective attention usually limits the processing of irrelevant 

stimuli, it sometimes enhances such processing.   

Although the phenomenon of contingent attentional capture is firmly established 

in the literature, relatively little is known about such capture in the context of maintaining 

multiple attentional sets.  Current models of working memory posit that up to four 

representations can be maintained simultaneously (Cowan, 2001; Jonides, et al., 2008; 

Oberauer, 2002).  Consistent with such models, participants can maintain rules for at least 

three tasks in task switching experiments (Mayr & Keele, 2000; Monsell, 2003).  

Moreover, in visual attention tasks contingent capture effects can be produced by 

irrelevant stimuli that match either of two concurrently maintained attentional sets 

(Adamo, Pun, Pratt, & Ferber, 2008; Ansorge & Heumann, 2003).  Nonetheless, it 

remains unclear whether some contingent attentional capture effects are different when 

participants maintain multiple attentional sets than when they maintain just a single 

attentional set. 

Evidence to suggest that contingent attentional capture effects may indeed differ 

in these two situations comes from numerous findings indicating that it possible to focus 

attention on only one representation in working memory at a time (Oberauer, 2002, 

2003).  First, when multiple items are maintained in working memory, the time it takes to 
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identify the most recently presented or rehearsed item is much shorter than the time 

needed to identify other items, suggesting that this item is alone in the focus of attention 

(McElree, 2001).  Second, in experiments that investigate the updating of multiple 

counters, participants are faster when updating the same counter sequentially than when 

switching between counters, indicating that only one counter can be focused at a time 

(Berti, 2008; Garavan, 1998).  Third, task switching studies show that participants are 

faster and more accurate when repeating the same task than when switching from one 

task to another, suggesting that participants can only focus on one task set at a time 

(Hsieh & Allport, 1994; Monsell, 2003).  And fourth, participants experience a smaller 

“attentional blink” (i.e., decreased accuracy when identifying the second of two rapidly 

presented targets) when the same attentional set is used to identify the two targets than 

when different attentional sets are used, regardless of whether the attentional sets are 

defined by conceptual category (e.g., letters vs. digits) (Juola, Botella, & Palacios, 2004) 

or by location (Vachon, Tremblay, & Jones, 2007).  These findings suggest that 

voluntarily directing attention to a particular stimulus or task causes the corresponding 

attentional set to enter the limited-capacity focus of attention, thereby enhancing future 

behaviors that rely on the same set.  

In the present study, we investigated whether involuntarily directing attention to a 

distractor that possesses a target-defining color also causes the corresponding attentional 

set to enter the focus of attention.  According to this enhancement hypothesis, an integral 

component of deeply processing a target-colored distractor is moving that item’s 

attentional set into the focus of attention until the item has been successfully identified.  

In line with this possibility, various theories of visual search posit that detecting a 
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potential target leads to the recruitment of working memory processes that attend, 

identify, or otherwise consolidate that item (see Dux & Marois, 2009).  And, consistent 

with this view, it has been shown that information about distractors is transferred into 

working memory during the performance of capture tasks (Belopolsky, Kramer, & 

Godijn, 2008).  However, none of the existing contingent attentional capture studies 

requiring participants to maintain multiple attentional sets has explored whether one set 

ever becomes prioritized, or enhanced, over the others during the time course of a single 

trial (Adamo, et al., 2008; Ansorge & Heumann, 2003). 

The enhancement hypothesis predicts that contingent attentional capture effects 

caused by deeply processing a target-colored distractor should be smaller when a target 

appearing soon afterwards matches the same (versus a different) attentional set.  Deeply 

processing a target-colored distractor should always impair the identification of a 

subsequent target.  However, this impairment should be reduced when target 

identification relies on the same attentional set and, therefore, does not involve loading a 

different attentional set into the focus of attention.  This view is consistent with the 

findings from working memory, task switching, and attentional blink studies that we 

reviewed earlier, all of which demonstrate a relative enhancement in performance when a 

target can be identified using the attentional set that is currently inside the focus of 

attention.  As an everyday example, when one is searching for both lemons and garlic at 

the grocery store, deeply processing a yellow pepper may cause the “lemon” attentional 

set to temporarily enter the focus of attention.  While the “lemon” attentional set is 

prioritized, it could become comparatively easier to notice a nearby lemon than a garlic 
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bulb, even though it may still be harder to notice either item than if the yellow pepper had 

not captured attention.  

The enhancement hypothesis may appear to contradict previous findings from 

visual search tasks indicating that the manner in which attentional sets are used in one 

trial can influence how they are used in the next trial (Belopolsky, Schreij, & Theeuwes, 

2010).  Specifically, although inter-trial priming of attentional sets is not always observed 

(Ansorge & Horstmann, 2007; Ansorge, Horstmann, & Carbone, 2005), in some studies 

identifying a distractor that possesses a target-defining feature (e.g., a particular color) in 

one trial is associated with a decreased attentional bias toward that feature in the next trial 

(Lleras, Kawahara, & Levinthal, 2009).  The present experiments differ from these prior 

studies, however, because they investigate within-trial changes to attentional control 

settings.  Thus, as we will argue in greater detail in the General Discussion, the 

enhancement hypothesis does not contradict prior findings regarding inter-trial priming 

effects in visual search tasks. 

It is also important to note that the enhancement hypothesis makes no explicit 

assumptions about the manner in which multiple attentional sets are maintained during 

active search for a target stimulus (i.e., before an item possessing a target-defining feature 

is detected).  In some models, attentional sets are maintained in working memory (e.g., 

(Olivers & Meeter, 2008).  However, there is also evidence that attentional sets can 

influence visual search even when they are not actively maintained in working memory 

(e.g., Thompson, et al., 2007).  In either case, the enhancement hypothesis posits that the 

detection of a potential target (including a distractor that possesses a target-defining 
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feature) leads the attentional set corresponding to that item to enter the limited-capacity 

focus of attention.   

Finally, although the enhancement hypothesis posits an interaction between 

attention and working memory, it does not speak directly to an active debate concerning 

this interaction.  Specifically, there is an ongoing controversy over whether people 

automatically orient attention to stimuli whose features match the contents of working 

memory, but which are not the targets of an ongoing search task (e.g., Houtkamp & 

Roelfsema, 2006; Olivers, 2009; Soto, Heinke, Humphreys, & Blanco, 2005; Woodman 

& Luck, 2007).  In contrast, the enhancement hypothesis assumes that people 

automatically orient attention to stimuli whose features match the contents of working 

memory (i.e., an attentional set within the focus of attention), and which are the targets 

of an ongoing search task.  As others have noted (Olivers, 2009), this assumption is not 

related to the current debate and data to support this assumption have been reported in 

numerous prior studies of contingent attentional capture (e.g., Folk, et al., 2002; Folk, et 

al., 1992; Leblanc, et al., 2008; Serences, et al., 2005). 

 

 Experiment 1 
In Experiment 1, we tested the enhancement hypothesis by instructing participants 

to search a central RSVP stream for letters that were presented in either of two possible 

target colors (e.g., orange and green).  The presence of irrelevant colors in the central 

RSVP stream made it necessary for participants to maintain two attentional sets, one for 

each target color.  Some targets in the central RSVP stream were preceded by a colored 

distractor that appeared in either of two peripheral RSVP streams.  As in prior studies, we 
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defined contingent attentional capture as lower target identification accuracy when a 

target-colored (e.g., orange) distractor preceded a target than when a non-target-colored 

(e.g., lavender) distractor preceded a target (Folk, et al., 2002; Folk, et al., 2008; 

Serences, et al., 2005; Visser, Bischof, & Di Lollo, 2004).  Consistent with the 

enhancement hypothesis, we predicted that contingent attentional capture effects would 

be smaller when a target-colored distractor’s color (e.g., green) matched the same 

attentional set as the color of an upcoming target (e.g., green) than when it matched a 

different attentional set (e.g., orange). 

 

 Methods 
Participants 

Twenty-eight University of Michigan students (fifteen female) participated in 

exchange for course credit or $10.  All participants (age range: 18-30 years) reported 

normal or corrected vision and no history of neurological injury or disease.  Each gave 

informed written consent in accordance with the University of Michigan Behavioral 

Sciences Institutional Review Board requirements. 

 

Procedure and Design 

Our task was similar to other contingent attentional capture experiments that have made 

use of RSVP displays (Folk, et al., 2002; Folk, et al., 2008; Serences, et al., 2005).  
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Participants viewed three RSVP streams.  In the central stream, 

 

Figure 3-1: The contingent attentional capture tasks that we used in the present study. 

(A) Participants searched for target-colored letters that appeared within a heterogeneously-colored, 
central rapid serial visual presentation (RSVP) stream while ignoring occasional colored distractors 
that could appear in either of two peripheral RSVP streams.  Performance was measured in three 
types of task blocks.  In one (Set Size 2, Experiments 1-3), participants searched for two target colors 
(e.g., orange and green) in the central RSVP stream.  In Experiments 1 & 2, targets in the central 
RSVP stream appeared alone or 1-4 items after a colored peripheral distractor (see text for details).  
In Experiment 3, targets appeared alone, 1-2 items after a colored peripheral distractor, or 1-2 items 
before a colored peripheral distractor (not shown).  Colored peripheral distractors were Non-Target-
Colored (NTC) (e.g., a lavender “V”), Same-Target-Colored (STC), in which case the peripheral 
distractor’s color (e.g., an orange “X”) matched the same attentional set as the subsequent target’s 
color (e.g., an orange “G”), or Different-Target-Colored (DTC), in which case the peripheral 
distractor was target-colored (e.g., an orange “D”), but matched a different attentional set than the 
subsequent target’s color (e.g., a green “B”).  In the second type of task block (Set Size 1, Experiment 
1, not shown), participants searched for only one target color in the central RSVP stream.  Set Size 1 
included the same trial types as Set Size 2 with the exception of the DTC trial type.  In both set sizes, 
non-target letters in the central stream were also colored to ensure that participants were required to 
search for letters in the central RSVP stream that possessed the specific target color(s).  Non-
distractor items in the peripheral streams were grey.  (B) In the third type of task block (Any Color, 
Experiment 2), participants identified any colored letter in the central RSVP stream.  Non-target 
letters in the central RSVP stream were grey as were non-distractor letters in the peripheral RSVP 
streams. 
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letters appeared in five or six different colors (see Apparatus and Stimuli).  In two 

peripheral RSVP streams, most of the letters were grey.  Depending on the block, 

participants searched for letters in the central RSVP stream that appeared in one target 

color (Set Size 1) or in either of two possible target colors (Set Size 2).  Participants 

indicated whether target-colored letters in the central RSVP stream were from the first or 

the second half of the alphabet, respectively, by pressing the “J” or “K” key on a 

computer keyboard with the index or middle finger of their right hand.  The first key 

press logged within 2200 ms following a target was recorded as the response to that 

target.  The time between target-colored letters in the central RSVP stream varied 

randomly from 2320 ms to 4060 ms.  Every 32 trials, participants were given a self-paced 

break. Figure 3-1A provides a schematic of the task. 

Both set size blocks contained the following trial types: (1) Target Alone, in 

which a target was not preceded by a distractor, (2) Same-Target-Colored (STC) 

distractor, in which a target was preceded by a distractor of the same color, and (3) Non-

Target-Colored (NTC) distractor, in which a target was preceded by a non-target-colored 

distractor.  Set Size 2 had an additional trial type: Different-Target-Colored (DTC) 

distractor, in which a target was preceded by a target-colored distractor whose color 

differed from that of the target.  In STC, NTC, and DTC trials, the distractor appeared 

one to four frames before the target which corresponded, respectively, to stimulus onset 

asynchronies (SOAs) of 116 ms, 233 ms, 350 ms, and 466 ms.  

Of importance, our design ensured that any performance differences between STC 

and DTC trials would reflect varying amounts of contingent attentional capture rather 

than varying amounts of response congruency in these trial types.  Specifically, in all trial 
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types with distractors (i.e., STC, NTC, and DTC), whether the target-colored distractor 

and the upcoming target were from the same or different halves of the alphabet was 

orthogonal to whether the target-colored distractor and the target had the same or 

different colors.  Thus, potential effects of response congruency in the present design 

were not confounded with our measures of attentional capture.  

In addition to the critical trial types above, occasional catch trials (in which the 

display paused for 1000 ms on an item) measured whether participants were successfully 

maintaining the target color(s) in each set size block.  In Target Catch trials, the display 

paused on a target-colored letter that participants were supposed to identify.  In Non-

Target Catch trials, the display paused on a non-target-colored letter that participants 

were not supposed to identify.  The main purpose of the catch trials was to ensure that 

participants were equally capable of maintaining one and two target colors.  With the 

display paused for 1000 ms, we eliminated the encoding limitations that were imposed by 

the rapid speed and immediate masking of targets in the RSVP stream, thereby providing 

a relatively pure test of color memory.  We reasoned that if participants maintained one 

and two target colors equally well, then a difference in the amount of contingent capture 

measured in Set Size 1 and Set Size 2 could not be attributed to an underlying difference 

in the ability to maintain one and two attentional sets.      

There were 288 trials in Set Size 1: 48 Target Alone, 48 catch (24 target, 24 non-

target), 96 NTC (4 SOAs, 24 per SOA), and 96 STC (4 SOAs, 24 per SOA).  There were 

also 288 trials in Set Size 2: 48 Target Alone, 48 catch, 64 NTC (4 SOAs, 16 per SOA), 

64 STC (4 SOAs, 16 per SOA), and 64 DTC (4 SOAs, 16 per SOA).  
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Each set size block began with instructions explaining the task followed by 48 

practice trials.  During the practice trials, the display began slowly (250 ms per item), but 

gradually accelerated to full speed (116 ms per item) by the 24th trial.  The order in which 

the different set size blocks were performed was counterbalanced across participants.  

 

Apparatus and Stimuli  

Stimuli were displayed on a 19” Viewsonic CRT monitor with a 60 Hz refresh 

rate, controlled by a Dell PC running Windows XP.  The experiments were programmed 

using Presentation® software (Neurobehavioral Systems, Inc.).  A viewing distance of 80 

cm was enforced by a chin rest.  Three RSVP streams containing letters (2.07˚ x 1.88˚) 

were presented simultaneously on a black background: one stream appeared at fixation 

while two others appeared 4.22˚ to the left and 4.22˚ to the right of fixation.  Letters 

appeared successively in each RSVP stream for 100 ms, followed by a blank gap lasting 

16 ms.  Target-colored letters and colored peripheral distractors were drawn from the 

beginning (A, B, C, D, and G) and the end (T, V, X, Y, and Z) of the alphabet to 

minimize demands on decision-making processes and, consequently, to provide a 

sensitive measure of contingent attentional capture.  Other letters in the display were 

drawn from the entire alphabet except I, O, and W.  
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Figure 3-2: Two color wheels to generated colored letters. 

All six colors in each wheel had the same lightness (L*) value in CIELAB space.  In Set Size 1 and Set 
Size 2, three equally-spaced colors from a single wheel (numbers 2, 4, and 6) served as irrelevant 
colors in the central rapid serial visual presentation (RSVP) stream.  Among the remaining three 
colors (1, 3, and 5), either one (Set Size 1) or two (Set Size 2) served as the target color(s) while the 
third served as the non-target color for colored distractors in the peripheral RSVP streams.  A 
control experiment established that, for each color wheel, all possible pairings of the target and non-
target colors (numbers 1, 3, and 5) were equally discriminable.  Nonetheless, we counterbalanced 
which specific colors (numbers 1, 3, or 5) served as target and non-target colors across participants.  
All grey letters in the display had the same lightness value in CIELAB space (L*) as colored letters 
appearing in the same task block.  In Experiments 1 and 2, the specific color wheel that was assigned 
to a particular task block (Set Size 1 or Set Size 2 in Experiment 1, Set Size 2 or Any Color in 
Experiment 2) was counterbalanced across participants.  In the Any Color condition of Experiment 
2, only three equally-spaced colors (numbers 1, 3, and 5) from a single color wheel appeared in the 
central and peripheral RSVP streams.  In Experiment 3, only the light color wheel was used because 
performance was measured in just a single task block (Set Size 2). 

 
Because contingent attentional capture can be influenced by bottom-up salience 

(Yantis & Egeth, 1997) and by the relative discriminability of target and distractor stimuli 

Color Light Color Wheel Dark Color Wheel 

Name RGB values Name RGB values 

1 Orange 239, 90, 0 Brown 122, 55, 0 

2 Tan 169, 132, 0 Olive 96, 90, 0 

3 Green 48, 166, 0 Teal 0, 100, 104 

4 Turquoise 0, 159, 247 Blue 55, 29, 216 

5 Lavender 135, 98, 255 Purple 140, 0, 175 

6 Magenta 250, 59, 184 Red 147, 0, 67 

1!

2!

3!

4!

5!

6!
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(Anderson & Folk, In press), we attempted to match our colors across several important 

dimensions.  First, we attempted to equate the perceptual salience (i.e., luminance and 

saturation) of all colors in each set size block.  Second, within each set size block, we 

attempted to make the target colors equally discriminable from each other and from the 

color of the non-target-colored distractor.  To accomplish these objectives, we created 

two 6-color wheels in CIELAB color space (see Figure 3-2), one dark (L* = approx. 40) 

and one bright (L* = approx. 70).  The colors in each wheel were chosen to be as 

psychologically different (i.e., discriminable) from each other as possible.   

A control experiment verified that our selection of colors was appropriate for 

testing our hypotheses about contingent attentional capture.  In each trial, participants 

viewed a central RSVP stream containing 10 letters, which was presented at the same 

speed as in the main experiment (116 ms per item).  All of the letters in the RSVP stream 

had the same lightness value (L*) in CIELAB color space.  Although most of the letters 

in the RSVP stream were grey, the second and ninth letters were assigned either the same 

color or two different colors from one of the color wheels.  Participants judged as quickly 

as possible whether the colored letters were the same or different.  Because participants 

take longer to judge two stimuli as being “different” when those stimuli are somewhat 

similar than when they are very different (Farell, 1985; Posner & Mitchell, 1967), we 

were able to determine how psychologically different each color was from other colors in 

the same wheel.   

Critically, we found three non-adjacent colors in each wheel to be equally 

discriminable.  That is, mean reaction times to respond “different” to any two of these 

three colors did not significantly differ (all p > 0.4, n = 35).  These three colors from each 
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wheel served as the target color(s) and the Non-Target-Colored (NTC) distractor color in 

one set size block.  The precise mapping of each of these three colors to the target and 

NTC distractor stimuli was counterbalanced across participants.  The remaining three 

colors in each wheel were randomly assigned to non-target items that appeared in the 

heterogeneously-colored, central RSVP stream within the same set size block.  A 

different color wheel was used in each set size block in order to avoid proactive 

interference or practice effects from prior attentional sets (Leber & Egeth, 2006; 

Thompson, et al., 2007).  The color wheel assigned to each set size block was 

counterbalanced across participants. 

 

 Results 
Mean accuracy was the dependent measure in all analyses.  At the outset, we 

excluded four participants whose performance indicated that they were unable to 

consistently identify target-colored letters in the central RSVP stream.  Specifically, each 

of these participants failed to respond correctly in at least 90% of target catch trials 

and/or produced false alarms in more than 10% of non-target catch trials in one or both 

set size blocks.  Among the remaining 24 participants, catch trial accuracy was equivalent 

across set size (Set Size 1 hits vs. Set Size 2 hits: 96.7% vs. 96.4%, t(23) = 0.419, p = 

0.679; Set Size 1 false alarms vs. Set Size 2 false alarms: 5.1% vs. 4.1%; t(23) = 0.707, p 

= 0.487).  Furthermore, performance in Target Alone trials did not significantly differ in 

Set Size 1 and Set Size 2 [86.2% vs. 82.4%, t(23) = 1.68, p = 0.11].  Thus, it would 

appear that participants maintained one and two attentional sets equally well.  
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Figure 3-3: Data from Experiment 1. 

Mean target identification accuracy is plotted as a function of SOA and distractor type in Set Size 2 
and Set Size 1.  In each set size, target identification accuracy at short SOAs was lower when a target 
was preceded by a Same-Target-Colored (STC) versus a Non-Target-Colored (NTC) distractor, 
indicating the presence of contingent attentional capture.  The magnitude of this effect did not differ 
in Set Size 1 and Set Size 2.  However, consistent with the enhancement hypothesis, target 
identification accuracy in Set Size 2 was lower when a target was preceded by a Different-Target-
Colored (DTC) distractor than when it was preceded by a STC distractor. 

 
To test the enhancement hypothesis, we performed a repeated-measures ANOVA 

with distractor type (STC, DTC) and SOA (116 ms, 233 ms, 350 ms, 466 ms) as factors 

using the data from Set Size 2.  First, in line with prior research (Folk, et al., 2002; Folk, 

et al., 2008), there was a main effect of SOA [F(3,69) = 31.08, p < 0.0001] indicating that 

participants performed more poorly at shorter than at longer SOAs.  Second, consistent 

with the enhancement hypothesis, there was a main effect of distractor type [F(1,23) = 

43.56, p < 0.0001] indicating that performance was better in STC than in DTC trials.  

Third, and also consistent with the enhancement hypothesis, there was an interaction 

between distractor type and SOA [F(3,69) = 7.93, p < 0.0001] because performance 
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recovered more quickly in STC than in DTC trials (Figure 3-3, left).  In sum, the data 

from Set Size 2 were highly consistent with the enhancement hypothesis. 

We also determined whether the magnitude of contingent attentional capture as it 

is traditionally defined (i.e., worse performance in STC than in NTC trials) interacted 

with set size.  To do so, we performed a repeated-measures ANOVA with the factors set 

size (1, 2), distractor type (STC, NTC), and SOA (116 ms, 233 ms, 350 ms, 466 ms).  

First, replicating prior studies of contingent attentional capture (Folk, et al., 2002; Folk, et 

al., 2008), we observed main effects of distractor type [F(1,23) = 36.73, p < 0.0001] and 

SOA [F(3,69) = 23.64, p < 0.0001], as well as an interaction between distractor type and 

SOA [F(3,69) = 9.47, p < 0.0001].  In short, performance was worse in STC than in NTC 

trials, and this performance decrement was larger at shorter than at longer SOAs (Figure 

3-3).  Second, a main effect of set size [F(1,23) = 8.60, p < 0.007] indicated better 

performance in Set Size 1 than in Set Size 2.  Third, and critically, although contingent 

attentional capture was present within each set size block [Set Size 1: F(3,69) = 11.08, p 

< 0.0001; Set Size 2: F(3,69) = 11.15, p < 0.0001], its magnitude did not vary with set 

size.  Neither the two-way interaction between set size and distractor type nor the three-

way interaction among set size, distractor type, and SOA was close to achieving 

significance (F < 1 in both cases).  Thus, we found no evidence to suggest that the 

magnitude of contingent attentional capture differed in Set Size 1 and Set Size 2.     

Finally, whether the peripheral distractor and subsequent target were from the 

same or different halves of the alphabet did not affect the results.  Specifically, when 

response congruency was included as a within-participants factor in our analyses, we 

observed no main effects or interactions involving this factor (all p > 0.5).  
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 Discussion 
Experiment 1 yielded two principal results.  First, in line with the enhancement 

hypothesis, contingent attentional capture effects in Set Size 2 were significantly smaller 

in STC than in DTC trials.  That is, when participants searched for two target colors, 

target identification accuracy was higher when a target was preceded by a peripheral 

distractor that possessed the same (versus a different) target color.  Second, the 

magnitude of contingent attentional capture did not vary with the number of attentional 

sets that participants maintained.  This result is consistent with our analyses of catch trial 

performance, which suggested that participants were able to maintain one and two 

attentional sets equally well.   

We now consider two possible accounts of the enhancement effect (i.e., better 

performance in STC than in DTC trials).  First, in line with the enhancement hypothesis, 

deeply processing a peripheral target-colored distractor may cause the corresponding 

attentional set (e.g., identify orange letters) to enter the focus of attention, thereby 

facilitating the identification of a subsequent target whose color matches the same 

attentional set (e.g., another orange letter) as compared to a different attentional set (e.g., 

a green letter).  Second, and more trivial, a target-colored peripheral distractor may prime 

a subsequent target’s color in a bottom-up fashion, such that the visual system is more 

prepared to see a target in that color than in a different color (Henson, 2003).  We could 

not distinguish between these accounts in Experiment 1 because the relationship between 

a peripheral distractor’s color and a subsequent target’s color (same or different) was 
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confounded with whether these colors matched the same or different attentional sets.  

Thus, we conducted a second experiment. 

 

 Experiment 2 
In Experiment 2, we sought to distinguish between the enhancement and priming 

accounts of our findings in Experiment 1 by measuring performance in two task blocks.  

In one block (Set Size 2 from Experiment 1), participants searched for letters that 

appeared in either of two colors within the central RSVP stream.  Because distractor 

items in the central RSVP stream were heterogeneously colored, participants needed to 

maintain two attentional sets, one for each target color.  In the other block (Any Color), 

participants searched for letters that appeared in any color (except grey) within the central 

RSVP stream.  Because all of the distractor items in the central RSVP stream were grey, 

participants could maintain just a single attentional set (i.e., identify any colored letter).  

We reasoned that if the enhancement effect in Set Size 2 is due to bottom-up perceptual 

priming of the target’s color, then it should also be observed in Any Color.  On the other 

hand, if the enhancement effect in Set Size 2 stems from the fact that deeply processing a 

peripheral target-colored distractor leads the corresponding attentional set (e.g., identify 

orange letters) to enter the focus of attention, then this effect should be absent in Any 

Color, a result that would be consistent with prior findings from a similar paradigm (Folk 

et al., 2008).  Indeed, because all colors match the same attentional set in Any Color, the 

entry of that attentional set into the focus of attention should not be associated with 

relatively less capture in STC than in DTC trials.   
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 Methods 
Participants 

Forty new individuals who had not been in Experiment 1 (twenty-three female) 

participated in Experiment 2 for $10.  Participants (age range: 18-30 years) reported 

normal or corrected vision and reported no history of neurological injury or disease.  

Each consented in accordance with the University of Michigan Behavioral Sciences 

Institutional Review Board requirements. 

 

Apparatus, Stimuli, and Procedure 

Experiment 2 used the same apparatus and stimuli as Experiment 1.  In the Set 

Size 2 task block, participants performed the Set Size 2 task from Experiment 1 with two 

minor changes.  First, all catch trials were replaced by Target Alone trials because we 

were no longer comparing retention of the attentional sets in Set Size 2 to that in Set Size 

1.  Second, the RSVP streams were slowed slightly to 133 ms per item in order to match 

the duration of distraction to that in the Any Color task block described below.   

In the Any Color task block, participants searched for any colored letter among 

grey items in the central RSVP stream, making the same judgment about target letters as 

they did in Set Size 2.  Because reducing the heterogeneity of an RSVP stream results in 

higher target identification accuracy (Folk, et al., 2002), we increased the speed of the 

RSVP streams in the Any Color block to 33 ms per item (with no blank space) to avoid 

ceiling effects.  Thus, each target was presented for just 33 ms.  To equate the duration of 

distraction in Any Color and Set Size 2, peripheral colored distractors in the Any Color 

block lingered for four frames, or 133 ms (Figure 3-1B).  To equate the temporal 

intervals during which distraction occurred in Any Color and Set Size 2, peripheral 



 

 60 

colored distractors in the Any Color block were presented 0-133 ms, 133-266 ms, 266-

400 ms, or 400-533 ms before central targets. 

There were 288 trials in the Any Color block: 96 Target Alone, 128 Different-

Target-Colored (DTC) (4 SOAs, 32 per SOA) and 64 Same-Target-Colored (STC) (4 

SOAs, 16 per SOA).  This trial distribution matched that in Set Size 2, in which one third 

of the trials with distraction were STC.  A 48-trial practice session began slowly (100 ms 

per frame) and accelerated gradually to 33 ms per frame by the 24th trial. 

Analogous to Experiment 1, we counterbalanced across participants the order in 

which the two blocks (Set Size 2 and Any Color) were performed as well as the color 

wheel that was assigned to each block. 

 

 Results 
Mean accuracy was the dependent measure in all analyses.  At the outset, six 

participants (three female) were eliminated due to low accuracy (i.e., below 70% in 

Target Alone trials in either block).  In the remaining 34 participants, mean accuracy in 

Target Alone trials did not significantly differ in the Any Color (89.9%) and Set Size 2 

(87.6%) task blocks, p = 0.2, suggesting that participants maintained the target colors 
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equally well in these blocks.    

 

Figure 3-4: Data from Experiment 2. 

Mean target identification accuracy is plotted as a function of SOA and distractor type in Set Size 2 
and Any Color.  (A).  Consistent with the enhancement hypothesis, target identification accuracy was 
worse in Different-Target-Colored (DTC) distractor trials than in Same-Target-Colored (STC) 
distractor trials in Set Size 2, but not in Any Color (B).  Critically, this effect was still observed in a 
subgroup of participants in whom the magnitude of attentional capture in Any Color (i.e., mean 
accuracy in Target Alone trials minus accuracy in STC and DTC trials) did not differ from an 
equivalent measure of attentional capture in Set Size 2 (i.e., mean accuracy in Target Alone trials 
minus mean accuracy in STC trials). 
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The results from Set Size 2 replicated our findings from Experiment 1.  First, we 

observed evidence of contingent attentional capture as it is traditionally defined (i.e., 

worse performance in STC than in NTC trials; Figure 3-4A, left).  Indeed, a repeated-

measures ANOVA with distractor type (STC, NTC) and SOA (133 ms, 266 ms, 400 ms, 

533 ms) as factors revealed (a) a main effect of distractor type [F(1,33) = 7.23, p < 0.011] 

because performance was worse in STC than in NTC trials, (b) a main effect of SOA 

[F(3,99) = 17.1, p < 0.0001] because performance was worse at shorter than at longer 

SOAs, and (c) an interaction between distractor type and SOA [F(3,99) = 4.46, p = 

0.006] because the difference in performance between STC and NTC trials was greater at 

shorter than at longer SOAs.  Second, a repeated-measures ANOVA with distractor type 

(STC, DTC) and SOA (133 ms, 266 ms, 400 ms, 533 ms) as factors revealed an 

enhancement effect (Figure 3-4A, left).  More specifically, we observed (a) a main effect 

of distractor type [F(1,33) = 54.66, p < 0.0001] indicating better performance in STC 

than in DTC trials, (b) a main effect of SOA [F(3,99) = 62.9, p < 0.0001] indicating 

worse performance at shorter than at longer SOAs, and (c) an interaction between 

distractor type and SOA [F(3,99) = 24.02, p < 0.0001] indicating that performance 

recovered from distraction more quickly in STC than in DTC trials.   

We next examined performance in the Any Color block to determine whether the 

results supported the enhancement or the priming hypothesis.  As expected, the data 

supported the enhancement hypothesis (Figure 3-4A, right).  In particular, the 

enhancement effect found in Set Size 2 was not observed in Any Color as indexed by (a) 

the absence of a main effect of distractor type [F(1,33) = 0.22, p = 0.64] and (b) the 
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absence of an interaction between distractor type (STC, DTC) and SOA [F(3,99) = 1.5, p 

= 0.22].   

Critically, we did observe evidence of attentional capture in Any Color.  First, 

there was a main effect of SOA [F(3,99) = 11.52, p < 0.0001] indicating that performance 

was worse at shorter than at longer SOAs.  Second, mean accuracy at the shortest SOA in 

trial types with target-colored distractors (i.e., mean accuracy in STC and DTC trials at 

the 133 ms SOA, 85.3%) was significantly worse than mean accuracy in Target Alone 

trials (89.9%), [t(33) = 2.80, p < 0.008].  Thus, as predicted, attentional capture was 

observed in Any Color, even though the enhancement effect was not observed.   

 Given these results, we next investigated whether the enhancement effect was 

larger in Set Size 2 than in Any Color by performing a repeated-measures ANOVA with 

block (Set Size 2, Any Color), distractor type (STC, DTC), and SOA (133 ms, 266 ms, 

400 ms, 533 ms) as factors.  As expected, a two-way interaction between block and 

distractor type [F(1,33) = 18.63, p < 0.0001] indicated a significantly larger enhancement 

effect in Set Size 2 than in Any Color.  Moreover, a three-way interaction among block, 

distractor type, and SOA [F(3,99) = 11.93, p < 0.0001] revealed that the tendency for the 

enhancement effect to be larger at shorter than at longer SOAs was more pronounced in 

Set Size 2 than in Any Color.  These differences are apparent when comparing the data 

from Set Size 2 to the data from Any Color in Figure 3-4A. 

Finally, as in Experiment 1, whether the distractor and target letters were from the 

same or different halves of the alphabet did not affect the results.  In particular, there 

were no main effects or interactions involving response congruency (all p > 0.4). 
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Subgroup Analysis 

One might wonder whether the enhancement effect was present in Any Color, but 

could not be observed statistically because the overall magnitude of attentional capture 

was close to floor.  Indeed, attentional capture at the shortest SOA in Any Color (i.e., 

mean accuracy in Target Alone trials minus mean accuracy in STC and DTC trials) was 

associated with only about a 5% reduction in target identification accuracy.  In contrast, 

an equivalent measure of attentional capture at the shortest SOA in Set Size 2 (i.e., 

capture arising from a distractor whose color matched the same attentional set as the 

target’s color; that is, mean accuracy in Target Alone trials minus mean accuracy in STC 

trials) was linked to about a 15% reduction in target identification accuracy.  Thus, it is 

possible that we failed to observe an enhancement effect in Any Color simply because 

target-colored distractors did not strongly capture attention.   

To evaluate this possibility, we performed additional analyses on a subgroup of 

our participants.  The members of this subgroup were chosen as follows.  First, we ranked 

each participant in terms of the overall size of his or her overall attentional capture effect 

in Any Color at the shortest SOA (i.e., mean accuracy in Target Alone trials minus mean 

accuracy in STC and DTC trials).  Second, we selected participants for the subgroup 

analysis if their overall capture effect in Any Color exceeded the median capture effect 

for the entire group.  Confirming that our criteria for forming the subgroup were 

adequate, in this subgroup the magnitude of attentional capture at the shortest SOA (133 

ms) was highly significant in Any Color [t(16) = 5.19, p < 0.0001] (Figure 3-4B, right).  

Moreover, the magnitude of attentional capture in Any Color (10.9%) was similar to the 

equivalent measure of attentional capture in Set Size 2 defined in the preceding paragraph 
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(12.5%).  In short, we successfully created a subgroup of participants in which the 

attentional capture effect in Any Color was relatively large. 

We recognize that, due to regression of the mean, an equally large capture effect 

in Any Color might not be observed in a follow-up experiment involving this particular 

subgroup of participants.  However, the goal of the subgroup analysis was simply to 

assess whether an enhancement effect in Any Color could be observed when attentional 

capture effects were relatively large and, consequently, any potential ceiling effects on 

the size of the enhancement effect were removed.  Thus, the subgroup analysis was 

appropriate for achieving this objective. 

It is also important to note that our selection criteria for membership in the 

subgroup and our subsequent analyses of the enhancement effect were orthogonal.  

Selection into the subgroup was based on having a large overall capture effect in the Any 

Color condition, as defined by the difference between Target Alone performance and the 

average of STC and DTC performance at the shortest SOA.  In contrast, the enhancement 

effect was defined by the difference between the STC and DTC trial types.  Thus, our 

method of choosing individuals for the subgroup analysis did not bias the results of our 

subsequent analyses of the enhancement effect in these participants, either in Any Color 

or in Set Size 2. 

As expected, the subgroup analysis replicated the main findings from the overall 

analysis.  First, a repeated-measures ANOVA with distractor type (STC, DTC) and SOA 

(133 ms, 266 ms, 400 ms, 533 ms) as factors and mean accuracy in Any Color as the 

dependent measure revealed (a) no main effect of distractor type [F(1,16) = 0.009, p = 

0.925] and (b) a main effect of SOA [F(3,48) = 15.43, p < 0.0001] because performance 
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was worse at shorter than at longer SOAs.  Second, a repeated-measures ANOVA with 

distractor type (STC, DTC) and SOA (133 ms, 266 ms, 400 ms, 533 ms) as factors and 

mean accuracy in Set Size 2 as the dependent measure revealed significant main effects 

of (a) distractor type [F(1,16) = 13.24, p < 0.002] and (b) SOA [F(3,48) = 26.94, p < 

0.0001], as well as (c) an interaction between distractor type and SOA [F(3,48) = 5.50, p 

< 0.002].  In short, as in the overall analysis and consistent with the enhancement 

hypothesis, in Set Size 2 performance was worse in DTC than in STC trials and this 

difference was greater at shorter than at longer SOAs; in contrast, in Any Color no such 

effects were observed.   

Critically, the subgroup analysis also replicated our finding of a significantly smaller 

enhancement effect in Any Color than in Set Size 2.  A repeated-measures ANOVA with 

block (Any Color, Set Size 2), distractor type (STC, DTC) and SOA (133 ms, 266 ms, 

400 ms, 533 ms) as factors revealed (a) a two-way interaction between block and trial 

type [F(1,16) = 8.13, p < 0.012] and (b) a three-way interaction among block, trial type, 

and SOA [F(3,48) = 5.03, p < 0.004] (Figure 3-4B).  Put simply, as in the overall 

analysis, the difference in performance between STC and DTC trials was significantly 

larger in Set Size 2 than in Any Color, and this effect was more pronounced at shorter 

than at longer SOAs.  Thus, in line with our hypothesis, the enhancement effect was 

significantly larger in Set Size 2 than in Any Color, even in participants who exhibited 

relatively large capture effects in Any Color.     

Finally, as in the overall analysis, there were no main effects or interactions 

involving response congruency (all p > 0.4).  
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 Discussion  
Our findings from Experiment 2 further support the enhancement hypothesis 

while weighing against the possibility that the enhancement effect in Set Size 2 stems 

from bottom-up perceptual priming of the distractor’s color.  First, we replicated the 

enhancement effect observed in Experiment 1.  That is, in Set Size 2 performance was 

better in STC than in DTC trials.  Second, the enhancement effect was absent in Any 

Color, in which all colors matched the same attentional set.  Third, and critically, the 

enhancement effect was significantly smaller in Any Color than in Set Size 2, even when 

the overall magnitude of attentional capture was matched in these task blocks within a 

subgroup of the participants.  Taken together, these results indicate that the enhancement 

effect found in Set Size 2 was not due solely to bottom-up perceptual priming of the 

distractor’s color.  Thus, our findings in Experiment 2 further support the enhancement 

hypothesis. 

 

 Experiment 3 
In Experiment 3, we investigated another alternative account of the enhancement 

effect in Set Size 2.  According to this alternative account, better performance in STC 

than in DTC trials occurs because there is confusion about the location of the target in 

STC trials, but confusion about both the location and the color of the target in DTC trials.  

In other words, the target-colored distractor activates a representation of an incorrect 

location in STC trials, but activates a representation of an incorrect location and a 

representation of an incorrect color in DTC trials.  Given that there are fewer sources of 

confusion, or interference, in STC than in DTC trials, this interference-based account 
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predicts better performance in STC than in DTC trials and, therefore, appears to explain 

our findings as well as the enhancement hypothesis. 

In Experiment 3, we distinguished between these competing accounts by varying 

whether the target-colored distractor was presented before or after the critical target.  

While both accounts predict better performance in STC than in DTC trials when the 

critical distractor appears before the target, they make different predictions about 

performance in STC and DTC trials when the critical distractor appears after the target.  

The interference-based account still predicts better performance in STC than in DTC 

trials because interference is always lower in STC than in DTC trials.  In contrast, the 

enhancement hypothesis predicts better performance in DTC than in STC trials.  

According to this hypothesis, detecting a potential target leads the attentional set 

corresponding to that item’s color to enter into the focus of attention.  Thus, a target-

colored distractor that appears immediately after the target should be detected more 

readily, and hence interfere with performance to a greater degree, when its color matches 

the same attentional set as the target than when its color matches a different attentional 

set.  In sum, the goal of Experiment 3 was to contrast two accounts of the enhancement 

effect by comparing performance in STC and DTC trials when a target-colored distractor 

was presented after a target.      

 

 Methods 
Participants 

Thirty-six new individuals who had not participated in either Experiment 1 or 

Experiment 2 (20 female) participated in Experiment 3 for $10 or course credit.  
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Participants (age range: 18-25 years) reported normal or corrected vision and no history 

of neurological injury or disease.  Each gave informed written consent in accordance with 

the requirements of the University of Michigan Behavioral Sciences Institutional Review 

Board. 

 

Apparatus, Stimuli, and Procedure 

 We used the same apparatus and stimuli as in Experiments 1 and 2.  Colors for the 

letter stimuli were drawn from the light color wheel only; the dark color wheel was not 

used in this experiment. 

The procedure was the same as that for the Set Size 2 condition of Experiment 1 

with three exceptions.  First, we replaced the 350 ms and 466 ms SOA trial types with -

116 ms and -233 ms SOA trial types.  Thus, in half the trials the distractor appeared 

before the target (the 116 ms and 233 ms SOA trial types), while in the other half the 

distractor appeared after the target (the -116 ms and -233 ms SOA trial types).  Second, 

we doubled the number of trials in each trial type to increase statistical power.  Third, as 

in Experiment 2, we did not include catch trials, and so used Target Alone performance 

as a criterion for including participants.  In total, there were 576 trials: 192 Target Alone, 

128 NTC (32 per SOA), 128 STC (32 per SOA), and 128 DTC (32 per SOA).   

 

 Results 
 Mean percent correct was the dependent measure in all of our analyses.  At the 

outset, we excluded 8 participants with poor performance (Target Alone accuracy below 

50%).  We set a lower threshold for exclusion in Experiment 3 than in Experiment 2 for 



 

 70 

two reasons.  First, we reasoned that participants who were less skilled at this task might 

experience greater capture from a target-colored distractor (either STC or DTC) that 

appeared after a target, an effect that needed to be present for us to test our hypotheses in 

Experiment 3.  Second, as a group, the participants in Experiment 3 performed more 

poorly than those in Experiments 1 and 2.  

First we conducted two separate repeated-measures ANOVAs in order to examine 

whether we replicated the capture and enhancement effects found in Experiments 1 and 2.  

The first ANOVA had two factors: distractor type (NTC, STC) and SOA (116 ms, 233 

ms).  This ANOVA showed that we replicated the basic contingent attentional capture 

effect when the target-colored distractor appeared before the target.  More specifically, it 

revealed main effects of distractor type [F(1,27) = 4.44, p < 0.045] and SOA [F(1,27) = 

7.87, p < 0.009], as well as a distractor type X SOA interaction [F(1,27) = 4.71, p < 

0.039].  As in Experiments 1 and 2, performance was worse in STC than in NTC trials, 

and this difference was larger at the 116 ms SOA than at the 233 ms SOA (Figure 3-5, 

right).  
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Figure 3-5: Data from Experiment 3. 

Mean target identification accuracy is plotted as a function of SOA and distractor type.  When the 
distractor appeared prior to the target (positive SOAs; right side of the figure), performance was 
better in NTC than in STC trials, indicating contingent attentional capture.  Performance was also 
better in STC than in DTC trials, indicating an enhancement effect.  In each of these trial types, 
performance was better at the longer (233 ms) than at the shorter (116 ms) SOA, likely because 
participants had more time to recover from distraction.  When the distractor appeared after the 
target (negative SOAs; left side of the figure), performance was worse in STC than in either NTC or 
DTC trials, as predicted by the enhancement hypothesis.  Performance was better at the longer (-233 
ms) than at the shorter (-116 ms) SOA, probably because target identification was more likely to be 
completed before the critical distractor appeared at the longer than at the shorter SOA. 

 
The second ANOVA also had two factors: distractor type (STC, DTC) and SOA 

(116 ms, 233 ms).  This ANOVA showed that we replicated the enhancement effect when 

the target-colored distractor appeared before the target.  Specifically, it revealed main 

effects of distractor type [F(1,27) = 33.00, p < 0.0001] and SOA [F(1,27) = 23.65, p < 

0.0001], as well as a distractor type X SOA interaction [F(1,27) = 15.24, p < 0.001].  

Consistent with Experiments 1 and 2, performance was better in STC than in DTC trials, 

Distractor  

before target 

Distractor  

after target 

SOA (ms) 
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and this difference was greater at the 116 ms SOA than at the 233 ms SOA (Figure 3-5, 

right). 

Next, we performed the critical analysis needed to distinguish between the 

enhancement and interference hypotheses.  As uniquely predicted by the enhancement 

hypothesis, an ANOVA with the factors distractor type (STC, DTC) and SOA (-116 ms, -

233 ms) revealed a significant reversed enhancement effect; that is, performance was 

worse in STC than in DTC trials [F(1,27) = 7.06, p < 0.013] (Figure 3-5, left).    

It is important to note that the reversed enhancement effect above was caused by a 

selective performance decrement in STC trials.  First, an ANOVA with the factors 

distractor type (NTC, STC) and SOA (-116 ms, -233 ms) revealed a significant main 

effect of distractor type [F(1,27) = 7.12, p < 0.013] because performance was 

significantly worse in STC than in NTC trials.  Second, an ANOVA with the factors 

distractor type (NTC, DTC) and SOA (-116 ms, -233 ms) did not reveal a main effect of 

distractor type [F(1,27) = 0.02, p = 0.874] because performance did not differ in DTC 

and NTC trials.  Together, these results suggest that contingent attentional capture 

involves both an increase of attention to a potential target’s attentional set and a decrease 

of attention to other attentional sets.  

 Finally, as in Experiments 1 and 2, there were no main effects or interactions 

involving response congruency (all p > 0.5).   

 

 Discussion 
The results of Experiment 3 further support the enhancement hypothesis while 

ruling out an interference-based account of the enhancement effect.  As in Experiments 1 
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and 2, performance was better in STC than in DTC trials when the target-colored 

distractor appeared before the target, indicating an enhancement effect.  Critically, 

however, the enhancement effect was reversed when the target-colored distractor 

appeared after the target.  This result is inconsistent with the interference hypothesis, 

which predicts less interference (and thus better performance) in STC than in DTC trials 

regardless of whether the target-colored distractor is presented before or after the target.  

In contrast, this result is consistent with the enhancement hypothesis.  In particular, if the 

target appears before the target-colored distractor, then the entry of its attentional set into 

the focus of attention should facilitate the detection of a subsequent distractor if its color 

matches the same (versus a different) attentional set.  In sum, the results of Experiment 3 

provide further support for the enhancement hypothesis.   

 

 General Discussion 
Although selective attention usually helps to prevent irrelevant stimuli from 

gaining access to limited-capacity information processing systems, it occasionally has the 

opposite effect (Folk, et al., 1992).  For example, distractors that possess a target-defining 

color attract attention and are deeply processed in a limited-capacity manner (Folk, et al., 

2002; Serences, et al., 2005).  Here, we investigated whether such deep processing of a 

target-colored distractor causes the corresponding attentional set to enter a limited-

capacity focus of attention within working memory (Jonides, et al., 2008; Oberauer, 

2002), leading to enhanced identification of a subsequent target whose features match the 

same attentional set.  Findings from three experiments supported this enhancement 

hypothesis.  Moreover, they weighed against two alternative accounts of our results.  
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In Experiment 1, we both replicated previous findings of contingent attentional 

capture and observed initial support for the enhancement hypothesis.  First, consistent 

with prior studies of contingent attentional capture, in both set sizes target identification 

accuracy was lower when a target was preceded by a Same Target-Colored (STC) 

distractor than when it was preceded by a Non-Target-Colored (NTC) distractor, and this 

effect was larger at shorter than at longer SOAs (Folk, et al., 2002; Folk, et al., 2008).  

Such effects were similar in magnitude in Set Size 1 and Set Size 2, consistent with the 

data from catch trials suggesting that participants were able to maintain one and two 

attentional sets equally well.  Second, in line with the enhancement hypothesis, target 

identification accuracy was higher when a target was preceded by a STC distractor than 

when it was preceded by a Different-Target-Colored (DTC) distractor, and this effect was 

larger at shorter than at longer SOAs.  This enhancement effect suggests that deeply 

processing a target-colored distractor causes the corresponding attentional set to enter a 

focus of attention within working memory that can hold just a single item (Jonides, et al., 

2008; Oberauer, 2002, 2003).  

In Experiment 2, we ruled out bottom-up perceptual priming as an alternative 

explanation for the enhancement effect.  Performance was measured in two task blocks.  

In one task block (Set Size 2), participants identified letters in the central RSVP stream 

that possessed either of two target colors while ignoring letters that possessed other 

colors.  The presence of irrelevant colors in the central RSVP stream made it necessary 

for participants to maintain two attentional sets, one for each target color.  In the other 

task block (Any Color), participants identified any colored letter in the central RSVP 

stream.  Thus, they could maintain just a single attentional set and all colors matched the 
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same set.  In line with the enhancement hypothesis, the enhancement effect was highly 

robust when different colors matched distinct attentional sets in Set Size 2, but was 

completely absent when different colors matched the same attentional set in Any Color.  

This finding weighs against the possibility that the enhancement effect stems solely from 

bottom-up perceptual priming of the distractor’s color. 

However, it is important to consider whether differences in the number of 

attentional sets that participants maintained in Set Size 2 (two sets) and Any Color (one 

set) in Experiment 2 might have caused the enhancement effect to be larger in Set Size 2 

than in Any Color.  For example, contingent attentional capture effects might simply 

scale with the number of attentional sets that participants maintain.  Arguing against this 

possibility, in Experiment 1 we did not observe a significant difference in the magnitude 

of contingent attentional capture in Set Size 1 and Set Size 2.  In fact, contrasting 

performance in STC and NTC trials revealed numerically less contingent attentional 

capture in Set Size 2 than in Set Size 1.  For this reason, differences in the number of 

attentional sets that participants maintained do not appear to account for our finding that 

the enhancement effect was larger in Set Size 2 than in Any Color.  

In Experiment 3, we ruled out an interference-based account of the enhancement 

effect in Set Size 2.  According to this account, performance was better in STC than in 

DTC trials because there was confusion, or interference, with regards to the location of 

the target in STC trials, but with regards to both the location and the color of the target in 

DTC trials.  To pit this interference-based account against the enhancement hypothesis, 

we varied whether the target-colored distractor was presented before or after the target.  

As in Experiments 1 and 2, when the target-colored distractor was presented before the 
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target in Set Size 2, performance was better in STC than in DTC trials, a result that could 

be explained by either hypothesis.  However, when the target-colored distractor was 

presented after the target, performance was worse in STC than in DTC trials, a result that 

could only be explained by the enhancement hypothesis.  Thus, our findings in 

Experiment 3 not only rule out an interference-based account of the enhancement effect, 

but also provide converging support for the enhancement hypothesis. 

Although the results of Experiments 2 and 3 weigh against various alternative 

accounts of our findings, one might question how strongly they actually support the 

enhancement hypothesis.  Indeed, evidence for the enhancement hypothesis was observed 

as a reduction of contingent attentional capture costs, rather than as an improvement in 

performance relative to conditions that did not contain target-colored distractors.  

However, it is standard practice in the literature to show that an effect is present by 

demonstrating that it modulates the size of a performance decrement.  For example, in 

studies of task switching, an effect of task set reconfiguration has been revealed by 

showing that switch costs can be reduced, but not fully eliminated, by giving participants 

more time to prepare for an upcoming task switch (Meiran, Chorev, & Sapir, 2000).  

Analogously, in the present study of contingent attentional capture, an effect of 

enhancing a potential target’s attentional set has been demonstrated by showing that the 

magnitude of capture varies with whether a distractor’s color and a target’s color match 

the same or different attentional sets.  Thus, our findings support the enhancement 

hypothesis even though effects of enhancement manifested themselves as a reduction of 

contingent attentional capture costs rather than as an improvement in performance 

relative to conditions without target-colored distractors. 
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Given the robust enhancement effects that we have observed, it would appear that 

most prior studies have failed to appreciate the full range of contingent attentional 

capture effects.  In almost all contingent attentional capture studies, participants maintain 

just a single attentional set (Folk, et al., 2002; Folk, et al., 1992; Remington, Folk, & 

McLean, 2001; Serences, et al., 2005; Shih & Reeves, 2007), which means that 

contingent capture effects arising from a target-resembling distractor are estimated when 

the attentional set that defines the subsequent target is already within the focus of 

attention.  Under these conditions, such capture effects index not only a reduction of 

target identification accuracy that is caused by deeply processing a target-resembling 

distractor, but also an enhancement of target identification accuracy that is caused by the 

presence of the target-defining attentional set within the focus of attention.  Only by 

requiring participants to maintain two distinct attentional sets in Set Size 2 were we able 

to measure contingent attentional capture effects in the absence of such enhancement.  

Notably, contingent attentional capture effects at short SOAs were two to three times 

larger when the target-defining attentional set was outside the focus of attention (i.e., in 

DTC trials) than when it was within the focus of attention (i.e., in STC trials) (see the 

data from Set Size 2 in Figure 3-3, Figure 3-4, and Figure 3-5).  Thus, contingent 

attentional capture effects can sometimes be much more pronounced than previous 

studies have indicated. 

The enhancement effect is consistent with other data indicating that transferring a 

task or attentional representation into the focus of attention enhances subsequent 

behaviors involving that representation.  As we discussed in the Introduction, this view is 

supported by prior studies of working memory (Berti, 2008; Garavan, 1998; McElree, 
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2001), task switching (Hsieh & Allport, 1994; Monsell, 2003), and the attentional blink 

(Juola, et al., 2004; Vachon, et al., 2007).  For example, in the attentional blink paradigm, 

the second of two targets is identified more accurately when it matches the same 

conceptual category (e.g., digits) as the first target than when it matches a different 

category (e.g., letters) (Juola, et al., 2004).  Our findings suggest that identifying the first 

target causes the corresponding attentional set (e.g., identify digits) to be transferred into 

the focus of attention, leading to a smaller attentional blink when the second target is 

identified using the same (versus a different) attentional set.  Moreover, they indicate that 

even an irrelevant, target-resembling distractor can cause an attentional set to be 

transferred into the limited-capacity focus of attention, from which it can enhance 

subsequent behaviors relying on the same set. 

As mentioned previously, the enhancement effect may appear to conflict with 

prior data indicating that attentional sets can be primed across trials.  For example, 

although inter-trial priming of top-down attentional sets is not always observed (Ansorge 

& Horstmann, 2007; Ansorge, et al., 2005), identifying a distractor that possesses a 

target-defining color sometimes decreases an attentional bias toward that color in the next 

trial (Lleras, et al., 2009).  Based upon such findings, one might have predicted worse 

performance in the present experiments when a target possessed the same color as a 

preceding distractor in STC trials than when it possessed a different color in DTC trials, 

due to a reduction of attention to the distractor’s color.  However, given that the detection 

of a target-colored distractor initially leads that item to be deeply processed as though it 

were a target (Folk, et al., 2002), an attentional bias toward that item’s color may 

increase for a brief time (Dux & Marois, 2009), even if it is subsequently reduced.  
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Converging evidence for such an increase comes from the finding that presenting a 

distractor just before presenting the second of two targets in an RSVP stream reduces the 

magnitude of the attentional blink most strongly when the distractor possesses the 

upcoming target’s color (Nieuwenstein, 2006; Nieuwenstein, Chun, van der Lubbe, & 

Hooge, 2005).  Thus, any perceived discrepancy between our findings and previous work 

revealing inter-trial priming of top-down attentional sets (Folk & Remington, 2008; 

Lleras, et al., 2009) likely stems from the relatively short interval over which our within-

trial effects were measured. 

Although we have argued that the enhancement effect stems from a limited-

capacity focus of attention, it is worthwhile to consider whether it might alternatively 

arise from a brief lapse of attention.  This possibility is suggested by the temporary loss 

of control (TLC) model, which was first developed to explain various phenomena in the 

attentional blink paradigm (Di Lollo, Kawahara, Ghorashi, & Enns, 2005).  In this model, 

a limited-capacity central processor biases attentional filters to detect stimuli that possess 

one or more target-defining features (e.g., task-relevant colors).  When such a stimulus is 

detected, it is directed to the central processor for purposes of stimulus identification, 

during which time the central processor does not have sufficient resources to continue 

biasing the attentional filters.  Thus, until the potential target is identified, these filters are 

exogenously reconfigured by each subsequent distractor item that appears, leading to 

exogenous (rather than endogenous) changes in attentional set.   

Of importance, the TLC model cannot explain our finding that performance was 

better in STC than in DTC trials when the target-colored peripheral distractor and the 

subsequent target were separated by one or more colored distractors in the central RSVP 
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stream.  The TLC model posits that by the time a target appears in such trials, attentional 

filters should already be reconfigured to match the color of the central RSVP stream 

distractor that immediately preceded the target (for similar reasoning, see Nieuwenstein, 

2006).  Thus, identifying the target should require a time-consuming change of 

attentional set in both STC and DTC trials, leading to equivalent performance in these 

trial types.  Given that performance was better in STC than in DTC trials even when the 

target-colored distractor and the subsequent distractor were separated by one or more 

colored distractors, the TLC model does not appear able to account for the enhancement 

effect. 

Although we have emphasized enhancement when accounting for the present 

data, inhibitory mechanisms may also play a role.  For example, our finding that target 

identification accuracy was lower when the target’s color matched a different (versus the 

same) attentional set than the preceding distractor’s color may stem, in part, from a 

distractor-triggered inhibition of competing attentional sets.  In other words, when 

searching for orange and green target letters, detecting an orange distractor may result not 

only in transferring the “orange” attentional set into the focus of attention, but also in 

inhibiting the “green” attentional set.  Consistent with this possibility, task switching 

appears to involve not only loading a new task set into the focus of attention, but also 

inhibiting the previous task set (Mayr & Keele, 2000).  Given that the present 

experiments were not designed to distinguish between enhancement and inhibition, 

however, future work will be necessary to determine the relative contributions of these 

processes to the enhancement effect.     
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Our account of the enhancement effect relies on the assumption that only a single 

representation can occupy the focus of attention (Oberauer, 2002, 2003).  However, it is 

well-established that multiple items can be maintained within the focus of attention when 

they are chunked, or bound, into a single representation (Jonides, et al., 2008; Oberauer 

& Bialkova, 2009).  Consistent with this view, the behavioral cost associated with 

switching attention between items in working memory is eliminated when those items are 

bound into a single object representation.  For example, when updating a location and a 

count in working memory, participants experience no cost of switching between these 

representations when they are bound by imagining a moving number (Bao, Li, & Zhang, 

2007).  This result suggests that the enhancement effect might be absent if distinct 

attentional sets could be bound into a single representation.  While additional studies are 

necessary to test this hypothesis, such a result would provide complementary evidence 

that contingent attentional capture effects stem from a limited-capacity focus of attention 

within working memory. 

More broadly, the present findings may have important implications for real-

world activities that involve maintaining multiple attentional sets (e.g., Most & Astur, 

2007).  For example, while driving to brunch on a winding highway, we may 

simultaneously be searching for a yellow warning sign indicating an upcoming twist in 

the road and a restaurant billboard that has either the same color as (e.g., yellow, Waffle 

House) or a different color than (e.g., blue, International House of Pancakes) the warning 

sign.  The present findings suggest that drivers would be much more likely to miss such a 

warning sign when it appears in a different (versus the same) color as an immediately 

preceding, target-colored billboard.  Given that nearly 80% of car crashes are 



 

 82 

immediately preceded by a moment of driver inattention (Ranney, 2008), applied 

research should be aimed at identifying and minimizing contingent attentional capture 

effects in real-world settings.     

In sum, our findings indicate that involuntarily directing attention to a distractor 

that possesses a target-defining color (e.g., orange) leads the corresponding attentional set 

(e.g., identify orange letters) to enter a limited-capacity focus of attention within working 

memory, thereby enhancing the identification of a subsequent target whose color matches 

the same (versus a different) attentional set.  Specifically, contingent attentional capture 

effects were only one half to one third as large when detecting a target relied on the same 

(versus a different) attentional set as detecting a preceding target-colored distractor.  Of 

importance, neither bottom-up perceptual priming nor feature-based interference could 

account for this modulation of contingent attentional capture effects.  Future work 

investigating the possible influences of inhibitory mechanisms and chunking on the 

enhancement effect may reveal additional information about how capacity limitations in 

working memory contribute to contingent attentional capture effects, both in the 

laboratory and in real-world situations.  
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Chapter 4  
Set-specific capture can be reduced by preemptively occupying a 

limited-capacity focus of attention  
 

 Abstract 
Recent work has shown that contingent attentional capture effects can be 

especially large when multiple attentional sets for color guide visual search (Moore & 

Weissman, in press).  In particular, this research suggests that detecting a target-colored 

(e.g., orange) distractor leads the corresponding attentional set (e.g., identify orange 

letters) to enter a limited-capacity focus of attention, where it remains briefly while the 

distractor is being attended.  Consequently, the ability to identify a differently-colored 

(e.g., green) target 100-300 ms later is impaired because the appropriate set (e.g., identify 

green letters) cannot also enter focus of attention.  In two experiments, we investigated 

whether such set-specific capture can be reduced by preemptively occupying the focus of 

attention.  As predicted, a target-colored central distractor presented 233 ms before a 

target-colored peripheral distractor eliminated set-specific capture arising from the 

peripheral distractor.  Moreover, this effect was observed only when the central 

distractor’s color (e.g., orange) (a) matched a different set than the upcoming peripheral 

distractor’s color (e.g., green) and (b) matched the same set as the upcoming central 

target’s color (e.g., orange).  We conclude that the same working memory limitations that 

give rise to set-specific capture can be preemptively exploited to reduce it.    
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 Introduction 
Selective attention directs limited resources to stimuli that are important for 

achieving behavioral goals (Yantis & Egeth, 1997).  Moreover, selective attention 

appears to be enabled by creating and maintaining one or more attentional sets, which 

specify the perceptual and/or conceptual attributes (e.g., color, location, size, shape, or 

semantic category) that define relevant stimuli (Adamo, et al., 2008; Ansorge & 

Heumann, 2003; Atsunori Ariga & Yokosawa, 2008; Folk, et al., 1992; Pashler & Huang, 

2007; Pashler & Shiu, 1999).  Guided by such attentional sets, top-down signals enhance 

the processing of relevant stimuli while limiting the processing of irrelevant stimuli (M. 

Corbetta & Shulman, 2002).   

Sometimes, however, top-down signals have the opposite effect.  For example, 

contingent attentional capture refers to a phenomenon in which an irrelevant stimulus that 

possesses a target-defining attribute (e.g., a particular color) attracts attention as though it 

were a target (Bacon & Egeth, 1994; Folk, et al., 2002; Folk, et al., 2008; Folk, et al., 

1992; Serences, et al., 2005).  Because limited resources have been allocated to the 

irrelevant stimulus, the identification of a target that appears within a few hundred 

milliseconds afterwards is impaired.  Such capture has been observed in a variety of 

paradigms including those involving spatial cuing (Bacon & Egeth, 1994; Folk, et al., 

1992; Gibson & Kelsey, 1998), visual search (Olivers, 2008), and rapid serial visual 

presentation (RSVP) (Folk, et al., 2009; Folk, et al., 2002; Folk, et al., 2008; Leblanc & 

Jolicoeur, 2007; Moore & Weissman, in press; Serences, et al., 2005).  Thus, attentional 

sets are not always helpful for limiting the processing of irrelevant stimuli. 
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Given that minimizing distraction is crucial for enabling purposeful behavior, it is 

important to investigate whether contingent attentional capture can be reduced.  Support 

for this possibility comes from a recent study by Folk and colleagues (Folk, Ester & 

Troemel, 2009).  In this study, participants searched for letters of a particular color (e.g., 

red) within a centrally-presented RSVP stream.  Similar to prior studies of contingent 

attentional capture, a peripheral distractor impaired the identification of a subsequent 

target more when it was target-colored (e.g., red) than when it was not target-colored 

(i.e., grey).  However, this effect vanished when a target-colored distractor was presented 

in the central RSVP stream a few hundred milliseconds before the peripheral distractor 

was presented.  Folk et al. (2009) argued that detecting the central distractor led to the 

opening “of a gate between perceptual processes and higher level cognitive processes,” 

which allowed target-colored items in the central RSVP stream, but not at different 

locations, to access higher level cognitive processes.   Thus, contingent attentional 

capture arising from the subsequent peripheral distractor was reduced. 

Reducing contingent attentional capture may be even more important when 

multiple attentional sets guide target selection because contingent capture effects can be 

especially large under such conditions.  For instance, in one of our recent studies (Moore 

& Weissman, in press), participants searched a heterogeneously-colored central RSVP 

stream for occasional target letters that appeared in either of two possible colors (e.g., 

orange or green).  As in other studies of contingent attentional capture (Folk, et al., 2009; 

Folk, et al., 2002; Folk, et al., 2008; Serences, et al., 2005), a peripheral distractor 

impaired subsequent target identification more when it was target-colored (e.g., orange) 

than when it was not target-colored (e.g., purple).  Critically, at short stimulus onset 
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asynchronies (SOAs) of approximately 100-300 ms, this effect was two to three times 

larger when the peripheral distractor’s color (e.g., orange) matched a different attentional 

set than the upcoming target’s color (e.g., green) as compared to the same attentional set 

(e.g., orange).  We call this phenomenon set-specific capture.    

In our prior study, we argued that set-specific capture reflects a redistribution of 

processing resources among the attentional sets that guide visual search (Moore & 

Weissman, in press).  Specifically, we suggested that detecting a target-colored item (e.g., 

an orange letter) leads processing resources to become more strongly directed toward the 

corresponding attentional set (e.g., identify orange letters), consistent with prior claims 

that detecting a potential target leads to the recruitment of working memory processes 

that attend, identify, or otherwise consolidate that item (for a review, see Dux & Marois, 

2009).  Thus, for a brief time after a target-colored (e.g., orange) distractor is detected, it 

becomes harder to attend and identify a subsequent target if its color (e.g., green) matches 

a different attentional set than if its color (e.g., orange) matches the same attentional set.    

Further support for our view comes from two additional findings in our prior 

study (Moore & Weissman, in press).  First, although peripheral distractors captured 

attention in general, set-specific capture vanished when participants were instructed to 

search for any colored letter in a central RSVP stream containing mostly grey letters.  In 

other words, set-specific capture was no longer observed when all possible target colors 

could be maintained in the same attentional set (i.e., identify any colored letter).  This 

finding fits with our view because directing processing resources more strongly to a 

global attentional set for color should facilitate the identification of a subsequent target, 
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regardless of its exact color.  Also important, this finding rules out bottom-up perceptual 

priming of the target’s color as an alternate account of set-specific capture.   

Second, set-specific capture was reversed when the peripheral distractor appeared 

116 ms after the central target.  That is, the peripheral distractor disrupted performance 

more when its color (e.g., green) matched the preceding target’s color (e.g., green) than 

when its color matched the other target color (e.g., orange).  This finding fits with our 

view because detecting a target (e.g., a green letter) should lead to a relative increase of 

processing resources toward the corresponding attentional set (e.g., identify green letters).  

Thus, a distractor that appears soon afterward should be more likely to be attended and 

impair performance if its color matches the same (versus a different) attentional set as the 

preceding target’s color.  This finding also shows that set-specific capture does not 

simply reflect interference between the peripheral distractor’s color and the target’s color.  

If that were the case, then performance should always be worse when the distractor and 

the target appear in different colors than when they appear in the same color.  In sum, 

multiple findings suggest that set-specific capture reflects a redistribution of processing 

resources among the attentional sets that guide visual search. 

This view fits nicely with a theory of working memory in which only one item or 

representation can be maintained in a limited-capacity focus of attention (Jonides, et al., 

2008; McElree, 2001; Oberauer, 2002)1.  Support for this theory comes from a variety of 

sources including studies of working memory (Berti, 2008; Garavan, 1998; McElree, 

                                                 
1 This theory is not inconsistent with findings indicating that about four items can be 
maintained in working memory (e.g. see Cowan, 2000) for a review).  It simply suggests 
that a single item, residing in the focus of attention, is privileged in comparison to other 
items that are being maintained.  Numerous researchers espouse this view, even though 
they disagree about other aspects of working memory (Jonides, et al., 2008; McElree, 
2001; Oberauer, 2002, 2003; Oberauer & Bialkova, 2009). 
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2001), task switching (Hsieh & Allport, 1994; Monsell, 2003), and the attentional blink 

(Juola, et al., 2004; Vachon, et al., 2007).  For example, when participants maintain 

separate counters in working memory corresponding to the number of times that circles 

and triangles have been presented, they are faster to update a particular counter (e.g., the 

number of circles) just after the same (versus a different) counter has been updated (Berti, 

2008; Garavan, 1998).  Moreover, this effect is not due to perceptual priming as it 

disappears when the updating task permits the counters to be bound into a single 

representation (Bao, et al., 2007).  Thus, it has been argued that only a single item or 

representation can occupy the focus of attention at any given time (Berti, 2008; Garavan, 

1998).  

 In line with this theory, we have suggested that only a single attentional set can 

occupy the focus of attention (Moore & Weissman, in press).  Specifically, detecting a 

target-colored item (e.g., a green letter) leads the corresponding attentional set (e.g., 

identify green letters) to enter the focus of attention, where it remains for up to a few 

hundred milliseconds while the item is being attended (Moore & Weissman, in press).  

During this time, a second target-colored item may be detected.  However, it is possible 

to attend and identify this second item only if its color (e.g., green) matches the same 

attentional set (e.g., identify green letters) as the first item’s color.  If the second item’s 

color (e.g., orange) matches a different attentional set (e.g., identify orange letters), then 

it will not be identified.  

Critically, our view leads to a hypothesis about how to reduce set-specific capture 

arising from a target-colored peripheral distractor.  Namely, such capture should be 

reduced if a target-colored distractor is detected within a few hundred milliseconds before 
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the peripheral distractor is presented.  Moreover, this reduction should occur only when 

the first distractor’s color (e.g., orange) and the peripheral distractor’s color (e.g., green) 

match different attentional sets.  In such trials, detecting the first distractor’s color (e.g., 

orange) should lead the corresponding attentional set (e.g., identify orange letters) to 

enter the limited-capacity focus of attention, where it should remain for a few hundred 

milliseconds while the first distractor is attended.  If, during this time, a peripheral 

distractor that possesses a different target color (e.g., green) is detected, then the 

attentional set corresponding to its color (e.g., identify green letters) should be unable to 

enter the already-occupied focus of attention.  Thus, there should be a reduction of set-

specific capture arising from the peripheral distractor.   

Given the sizable literature investigating interactions between attention and 

working memory, it is important to clarify two aspects of our view.  First, we posit that it 

is only after a target-colored (e.g., orange) item is detected during a visual search task 

that the corresponding attentional set (e.g., identify orange letters) enters the focu\s of 

attention.  In other words, active visual search before a target-colored item is detected 

does not require an attentional set to occupy the focus of attention.  Consistent with this 

view, some researchers have argued that attentional sets are maintained in working 

memory during active visual search, but not necessarily in the focus of attention (e.g., 

(Olivers & Meeter, 2008).  Also consistent, attentional sets are able to guide visual search 

even when they are not actively maintained in working memory (Thompson, et al., 2007).  

Finally, the magnitude of contingent attentional capture that is observed when a 

distractor’s color (e.g., orange) matches an upcoming target’s color (e.g., orange) does 

not vary with the number of attentional sets for color that guide visual search (Moore & 
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Weissman, in press).  This result suggests that searching for multiple target colors does 

not involve rapidly switching the attentional set that occupies the focus of attention.  If 

that were the case, then the probability that an attentional set corresponding to a 

distractor’s color occupies the focus of attention when the distractor appears would 

decrease with the number of sets guiding visual search, leading to smaller contingent 

attentional capture effects.  In sum, multiple findings suggest that it is only after a target-

colored item is detected that the corresponding attentional set enters the focus of 

attention.     

Second, although our view posits an interaction between attention and working 

memory, it does not relate to a current debate regarding this interaction.  Specifically, 

many researchers disagree about whether stimuli whose features match the current 

contents of working memory capture attention when they are not related to an ongoing 

visual search task (e.g., Houtkamp & Roelfsema, 2006; Olivers, 2009; Soto, et al., 2005; 

Woodman & Luck, 2007).  In contrast, our view is that such stimuli capture attention 

when they are related to an ongoing visual search task.  This view is not connected to the 

current debate (Olivers, 2009). Moreover, it is a non-controversial stance that has 

received support from numerous prior studies of contingent attentional capture (e.g., 

(Folk, et al., 2002; Folk, et al., 1992; Leblanc, et al., 2008; Serences, et al., 2005).   

 

 Experiment 1 
The goal of Experiment 1 was to investigate whether it is possible to reduce set-

specific capture.  Participants searched for target-colored letters within a central RSVP 

stream.  Targets appeared unpredictably in either of two possible colors (e.g., orange and 
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green).  In some trials, a target letter was preceded by a target-colored distractor that 

appeared in one of two peripheral RSVP streams.  As in our prior study of set-specific 

capture (Moore & Weissman, in press), we expected target identification accuracy to be 

lower when the peripheral distractor’s color (e.g., green) differed from the target’s color 

(e.g., orange) than when it matched the target’s color.  Critically, a target-colored 

distractor in the central RSVP stream occasionally preceded the target-colored distractor 

in the peripheral RSVP stream.  We predicted that this central distractor would reduce 

set-specific capture arising from the peripheral distractor if its color (e.g., green) matched 

a different attentional set than the peripheral distractor’s color (e.g., orange), but not if its 

color (e.g., orange) matched the same attentional set. 

   

 Method 
Participants 

 Thirty University of Michigan students (15 female) participated in exchange for 

course credit.  All participants (age range: 18-25) reported normal or corrected vision and 

no history of neurological injury or disease.  Participants gave informed written consent 

before the experiment in accordance with the University of Michigan Behavioral 

Sciences Institutional Review Board.   

 

Procedure 
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Figure 4-1: Stimuli used in Experiment 1. 

A) Examples of the stimulus displays used in Experiment 1. Participants searched for target letters 
that could appear in either of two possible colors (e.g., orange and green) within a heterogeneously-
colored, central rapid serial visual presentation (RSVP) stream while ignoring occasional target-
colored distractors that appeared in either of two peripheral RSVP streams.  Each frame was 
presented for 116 ms.  D1 was a digit in the central RSVP stream, which was either non-target-
colored (i.e., tan, magenta, or turquoise in the _AA and _AB trial types) or presented in one of the 
two possible target colors.  D2 was a letter in one of the two peripheral RSVP streams.  D2 appeared 
two frames after D1 and was always presented in one of the two possible target colors.  Finally, the 
central target appeared two frames after D2.  (B) A list of the trial types in Experiment 1, which 
includes an example stimulus sequence for each trial type.  (C) The 6-color wheel from which 
stimulus colors were selected in Experiments 1 and 2.  Color names and RGB values are indicated 
beneath the color wheel.  

The task was similar to those in prior contingent attentional capture experiments 

that have used rapid serial visual presentation (RSVP) displays (Folk, et al., 2009; Folk, 

et al., 2002; Folk, et al., 2008; Moore & Weissman, in press; Serences, et al., 2005).  

Participants viewed three simultaneously presented RSVP streams, each of which was 

composed of letters and digits (Figure 4-1A).  In each of the two peripheral RSVP 

streams, most of the characters were grey, aside from an occasional target-colored (e.g., 
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orange or green) letter distractor.  In the central RSVP stream, each character appeared in 

one of six possible colors.  Participants were instructed to identify occasional target 

letters in the central RSVP stream that appeared in either of two target colors (e.g., 

orange and green) while ignoring characters that appeared in any of the four other colors.  

They were also told to ignore target-colored letters in each of the two peripheral RSVP 

streams.  As in a similar prior study (Serences et al., 2005), when a target-colored letter 

appeared in the central RSVP stream, participants were to indicate, via a key press, 

whether it was from the first half of the alphabet (J key, right index finger) or the second 

half of the alphabet (K key, right middle finger).  Participants were not pressured to 

respond quickly.  

As in our previous study (Moore & Weissman, in press), the three RSVP streams 

were presented continuously and the inter-target interval varied randomly across trials.  

An advantage of this procedure is that it does not allow participants to form expectations 

about when a target letter will appear.  Thus, we reasoned that it would result in relatively 

low false alarm rates.  To construct an appropriate set of inter-target intervals, we took 

into account an analysis of response times from our previous study of set-specific capture 

in which there was also no pressure to respond quickly (Moore & Weissman, in press).  

This analysis revealed that more than 95% of responses occurred within 2000 ms of 

target onset with an average response time of about 800 ms.  Thus, we felt confident in 

making our shortest inter-target interval 2333 ms.  Other inter-target intervals were 2916, 

3500, and 4083 ms.  To maintain consistent criteria for defining a target response across 

the four inter-target intervals, we defined a target response as the first key press logged 

within 2200 ms following target onset. 
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The experiment began with instructions explaining the task followed by 48 

practice trials.  During the practice trials, the rate of presentation of items in the three 

RSVP streams was slow at first (250 ms per item), but accelerated to full speed (116 ms 

per item) by the 24th trial.  During the test trials, participants were given a self-paced rest 

break every 32 trials (about every 2 minutes).   

   

 Design 

Targets in the central stream were preceded by zero, one, or two critical 

distractors.  The first possible distractor (D1) was a digit that appeared in the central 

RSVP stream four frames (466 ms) prior to the target.  D1 was either target-colored or 

non-target-colored.  If it was target-colored, then it was either the same color as the 

upcoming target or a different color.  The second possible distractor (D2) was a target-

colored letter that appeared equally often in the left and right peripheral RSVP streams.  

D2 always appeared two frames (233 ms) prior to the target and was either the same color 

as the upcoming target or the other target color.  As we describe next, there were nine 

trial types.     

Three trial types did not include D1 and D2.  In target alone trials, a target-

colored letter that participants were supposed to identify appeared for a single 116 ms 

frame in the central RSVP stream.  In target catch trials, a letter appeared in each RSVP 

stream for 1000 ms including a target-colored letter in the central RSVP stream that 

participants were supposed to identify.  In non-target catch trials, a letter appeared in 

each RSVP stream for 1000 ms including a non-target-colored letter in the central RSVP 

stream that participants were not supposed to identify.  The purpose of including catch 
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trials was to provide a relatively pure test of participants’ ability to remember the target 

colors by eliminating the severe encoding limitations that were imposed by the RSVP 

display.  In other words, these trials were included to ensure that participants were 

keeping track of the target colors.  They were not, however, important for testing our 

main hypotheses.   

Trial type  N, Exp1 N, Exp2 

Target Alone 64 64 

Target Catch 32 18 

Non-target Catch 32 18 

_AA 64 60 

_AB 64 60 

AAA 64 60 

AAB 64 60 

BAA 64 60 

BAB 64 60 

BAC 0 60 

 

Table 4-1: The number of trials per trial type in Experiments 1 and 2. 

 

Six additional trial types did include D1 and D2.  To simplify our discussion of 

these trial types, we name each one using a three-letter sequence.  In this sequence, the 

first letter represents D1, the second letter represents D2, and the third letter represents 

the target.  Further, “A” and “B” represent different target colors.  For example, “AAB” 

refers to a trial in which D1 and D2 appeared in the same target color (e.g., orange), 
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while the target appeared in a different target color (e.g., green).  Finally, an underscore 

in the first position indicates that D1 appeared in a non-target color (e.g., lavender).  For 

instance, “_AA” refers to a trial in which D1 was not target-colored (e.g., lavender) and 

D2 was the same color as the upcoming target (e.g., orange). Figure 4-1B indicates the 

three-letter label that corresponds to each of the six trial types involving distraction.  It 

also provides an example stimulus sequence for each trial type, which is further 

illustrated in Figure 4-1A.  Lastly, Table 4-1 indicates the number of trials that were 

included for each of these trial types in Experiments 1 and 2. 

Finally, we controlled for effects of response congruency in our design. 

Specifically, whether D2 and the target were from the same or different parts of the 

alphabet was fully crossed with whether D2’s color and the target’s color matched the 

same or different attentional sets (this control was unnecessary for D1, which was a digit 

whose identity was not mapped to a task-relevant response).  Thus, set-specific 

contingent attentional capture effects arising from D2 were not confounded with potential 

effects of response congruency.   

 

Apparatus and Stimuli 

Stimuli were displayed on a 19” Viewsonic CRT monitor with a 60 Hz refresh 

rate, controlled by a Dell PC running Windows XP.  Presentation® software 

(Neurobehavioral Systems, Inc.) was used to control stimulus presentation and to record 

participants’ responses.  A viewing distance of 80 cm was enforced by a chin rest. 

Three RSVP streams containing letters and digits (character size, 2.07° x 1.88°) 

were presented simultaneously on a black background: one stream appeared at fixation, 
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while two others appeared 4.22° to the left and 4.22° to the right of fixation.  A new 

character appeared in each RSVP stream every 100 ms, followed by a blank gap that 

lasted 16 ms.  Target and D2 letters were drawn from the beginning (A, B, C, D and G) 

and the end (T, V, X, Y, Z) of the alphabet, so that target identification would not rely on 

a demanding decision (e.g. “is ‘M’ from the first or second half of the alphabet?”).  D1 

digits included 2, 3, 4, 7 and 9.  Other characters in the RSVP streams included the entire 

alphabet except for I, O, and W, and all of the digits excluding 0 and 1 (see Figure 4-1A).   

The stimulus colors were identical to those in the “light” color scheme of our 

prior study (Moore & Weissman, in press).  These colors were drawn from a 6-color 

wheel (Figure 4-1C), in which each color had approximately the same CIELAB lightness 

value (L* = approx.  70).  The two target colors and single non-target color (i.e., D1’s 

color in _AA and _AB trials) were drawn from three non-adjacent colors in the wheel 

(orange, green, and lavender: colors 1, 3, and 5).  A control experiment in our prior study 

confirmed that each of these three colors was equally discriminable from the other two 

colors in the triplet (Moore & Weissman, in press).   The target and non-target colors 

were counterbalanced across participants.  The remaining three colors in the wheel (tan, 

turquoise and magenta: colors 2, 4, and 6) were randomly assigned to other characters in 

the central RSVP stream.  Moreover, the non-target color always appeared in the central 

RSVP stream once between successive targets to ensure that a non-target-colored item 

appeared in this stream as frequently as a target-colored item.  In short, the target and 

non-target colors in the central RSVP stream were equated in terms of luminance, 

salience, and frequency of occurrence.  These manipulations, in combination with the fact 

that target colors were drawn from non-adjacent colors on the wheel, ensured that 
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participants could only perform the task correctly if they maintained distinct attentional 

sets for each of the target colors. 

 

 Results  
Mean accuracy was the dependent measure in all of our analyses (Figure 4-2).  At 

the outset, we excluded eight participants (3 female) whose performance indicated that 

they were unable to keep track of the target colors.  Specifically, these participants failed 

to correctly discriminate the target letter in more than 20% of target catch trials and/or 

produced false alarms in more than 20% of non-target catch trials. 

Among the remaining 22 participants, we observed evidence of attentional 

capture.  Specifically, target identification accuracy was lower when a target was 

preceded by a target-colored peripheral distractor (79%, _AA trials) than when it was not 

preceded by such a distractor (84.0%, target alone trials), [t(21) = 3.80, p < 0.001].  

Although isolating contingent attentional capture requires a comparison of target 

identification accuracy following target-colored versus non-target-colored distractors2, 

the contrast above typically leads to the same conclusion about the presence or absence of 

contingent attentional capture (Folk, et al., 2009; Folk, et al., 2002; Folk, et al., 2008; 

Moore & Weissman, in press; Serences, et al., 2005).  As this conclusion is not critical 

for testing our main hypotheses, we now turn to discuss set-specific capture effects. 

                                                 
2 In our prior study (Moore & Weissman, 2009), robust contingent attentional capture 
effects were revealed by this comparison.  In the present study, however, we did not 
include trials in which a target was preceded by a single non-target-colored distractor 
because they were not critical for testing our main hypotheses.  Moreover, we did not 
want to lose power by reducing the number of trials for the trial types that were critical 
for testing our hypotheses. 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Of importance, the results supported our hypothesis about reducing set-specific 

capture.  Replicating our previous finding of set-specific capture, _AB performance 

(71.2%) was worse than _AA performance (79.8%), [t(21) = 3.80, p < 0.001].  As 

predicted, however, this set-specific capture effect vanished when D1’s color matched a 

different attentional set than D2’s color.  Specifically, performance did not differ in BAA 

(74.7%) and BAB (77.8%) trials [t(21) = 1.71, p = 0.11].  Further suggesting that D1 

reduced set-specific capture, target identification accuracy was actually higher in BAB 

than in _AB trials [t(21) = 2.62, p < 0.016].  Together, these findings indicate that D1 

reduced set-specific capture arising from D2 when D1’s color matched a different 

attentional set than D2’s color. 

 

Figure 4-2: Results from Experiment 1. 

Target identification accuracy plotted separately for each of the main trial types in Experiment 1.  
Consistent with prior studies, performance in all conditions involving distraction was significantly 
worse than performance in target alone trials, consistent with an overall attentional capture effect.  
Also as expected, performance in _AB trials was worse than performance in _AA trials, in line with a 
set-specific capture effect.  Critically, when D1’s color matched a different attentional set as D2’s 
color, set-specific capture vanished as indicated by (a) no difference in performance between BAB 
and BAA trials and (b) better performance in BAB than in _AB trials.  In contrast, when D1’s color 
matched the same attentional set as D2’s color, set-specific capture was still present as indicated by 
worse performance in AAB than in AAA trials.  Error bars illustrate the standard error of the mean. 
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Also as predicted, set-specific capture arising from D2 was not reduced when 

D1’s color matched the same attentional set as D2’s color.  Indeed, target identification 

accuracy was worse in AAB (70.7%) than in AAA (80.8%) trials [t(21) = 4.08, p < 

0.001].  Moreover, target identification accuracy did not significantly differ in AAB and 

_AB trials [t(21) = 0.17, p = 0.87].  These findings indicate that D1 did not reduce set-

specific capture arising from D2 when D1’s color matched the same attentional set as 

D2’s color. 

We also investigated whether D1 reduced contingent attentional capture effects 

arising from D2 when D1, D2, and the target were all the same color, as in Folk et al.’s 

(2009) study.  Surprisingly, we did not observe significantly higher target identification 

accuracy in AAA than in _AA trials [t(21) = 0.53,  = 0.61].  We reserve a discussion of 

this failure to replicate Folk et al.’s (2009) finding for the General Discussion.  

Finally, whether D2 and the target were from the same or different halves of the 

alphabet did not influence the results.  In particular, there was no main effect of response 

congruency, and response congruency did not interact with any other factors (all p > 0.4).  

 

 Discussion 
In Experiment 1, two sets of findings confirmed our prediction that D1 would 

reduce set-specific capture arising from D2, but only when D1’s color matched a 

different attentional set than D2’s color.  First, target identification accuracy (a) did not 

differ in BAB and BAA trials and (b) was higher in BAB than in _AB trials.  These 

results indicate that D1 reduced set-specific capture arising from D2 when D1’s color 
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matched a different attentional set than D2’s color.  Second, performance was (a) worse 

in AAB than in AAA trials and (b) not better in AAB than in _AB trials.  These results 

indicate that D1 did not reduce set-specific capture arising from D2 when D1’s color 

matched the same attentional set as D2’s color.  Taken together, these findings provide 

converging evidence that contingent attentional capture arising from a peripheral 

distractor can be reduced under certain conditions (Folk et al., 2009).  Next, we consider 

two hypotheses about how D1 might reduce set-specific capture arising from D2 when 

D1’s color matches a different attentional set than D2’s color.  

The D1 capture hypothesis posits that D1 reduces set-specific capture arising 

from D2 simply by preventing the attentional set corresponding to D2’s color from 

entering the focus of attention.  According to this account, when D1 is detected, the 

attentional set corresponding to its color enters the focus of attention and still occupies it 

when D2 appears two items later (233 ms after D1 onset).  Thus, when D2 is presented, 

the attentional set corresponding to its color is unable to enter the focus of attention.  

When the processing of D1 is completed, the attentional set corresponding to its color 

leaves the focus of attention, and this occurs before the target appears four items later 

(466 ms after D1 onset).  Therefore, the focus of attention is unoccupied when the target 

appears, leading to equivalent performance in BAB and BAA trials.   

The D1 capture hypothesis also explains why performance is better in BAB than 

in _AB trials.  In particular, since D1 is not presented in _AB trials, the attentional set 

corresponding to D2’s color is able to enter the focus of attention, where it still resides 

when the target appears two items later.  Because the attentional set corresponding to 

D2’s color does not match the upcoming target’s color, target identification is impaired.  
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In sum, the D1 capture hypothesis nicely explains our findings indicating that D1 reduces 

set-specific capture arising from D2 when the colors of D1 and D2 match different 

attentional sets.   

The D1 enhancement hypothesis posits that D1 reduces set-specific capture 

arising from D2 by bringing the upcoming target’s attentional set into the focus of 

attention.  As in the D1 capture hypothesis, when D1 is detected, the attentional set 

corresponding to its color enters the focus of attention.  Moreover, when D2 is presented 

two items (233 ms) later, its corresponding attentional set is unable to enter the already-

occupied focus of attention.  However, unlike the D1 capture hypothesis, the attentional 

set corresponding to D1’s color still occupies the focus of attention when the target is 

presented four items (466 ms) later.  Thus, in BAB trials, D1 reduces set-specific capture 

arising from D2 in two ways.  First, it prevents the attentional set corresponding to D2’s 

color from entering the focus of attention.  Second, it leads the attentional set that 

specifies the upcoming target’s color to enter the focus of attention. 

Can the D1 enhancement hypothesis account for the effects we have observed?  

On the one hand, it nicely explains why target identification accuracy is higher in BAB 

than in _AB trials.  Specifically, the attentional set corresponding to the target’s color is 

already inside the focus of attention when the target appears in BAB (but not _AB) trials, 

thereby facilitating target identification.  On the other hand, the D1 enhancement 

hypothesis appears to have difficulty explaining why target identification accuracy is not 

significantly higher in BAB than in BAA trials.  However, the absence of this effect may 

not be inconsistent with the D1 enhancement hypothesis.  In some trials, the processing 

of D1 may be completed before D2 appears two items later, meaning that the focus of 
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attention is not occupied when D2 appears.  Thus, the attentional set corresponding to 

D2’s color enters the focus of attention and is still there when the target appears two 

items later.  The effect of D2 occupying the focus of attention when the target appears is 

to impair target identification in BAB trials while enhancing it in BAA trials, potentially 

leading to no overall difference in performance between these trial types.  For this reason, 

it is unclear whether our findings in Experiment 1 support the D1 capture hypothesis or 

the D1 enhancement hypothesis.  Thus, we conducted a second experiment. 

 

 Experiment 2 
In Experiment 2, we sought to distinguish between the D1 capture and D1 

enhancement hypotheses.  The task was identical to that in Experiment 1, except that 

participants identified target letters appearing in any of three possible colors within the 

central RSVP stream.  Using this task, we were able to include an additional trial type, 

BAC, in which D1, D2, and the target were all different target colors.  We reasoned that 

even if the attentional set corresponding to D2’s color occasionally entered the focus of 

attention, it would impair target identification equally in BAB and BAC trials.  Thus, 

contrasting performance in these two trial types would allow us to determine if it 

mattered whether D1’s color matched the target’s color and, consequently, to distinguish 

between the D1 capture and D1 enhancement hypotheses.  Specifically, the D1 capture 

hypothesis predicted equivalent performance in these trial types; in contrast, the D1 

enhancement hypothesis predicted better performance in BAB trials than in BAC trials.  

 

 Methods 
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Participants 

Forty-four University of Michigan students (25 female) participated in exchange 

for course credit.  All participants (age range: 18-25) reported normal or corrected vision 

and no history of neurological injury or disease.  Participants gave written informed 

consent before the experiment in accordance with the University of Michigan Behavioral 

Sciences Institutional Review Board.   

 

Procedure and Design 

The task was the same as that in Experiment 1 except that participants were told 

to identify letters in the central RSVP stream that appeared in any of three possible target 

colors (Figure 4-3 provides example trials for the main trial types).  Consequently, 

Experiment 2 employed the same trial types as Experiment 1 with the exception of one 

new trial type: BAC (see Figure 4-1A).  In this trial type, D1’s color, D2’s color, and the 

target’s color (e.g., orange, green, and lavender) matched distinct attentional sets.  The 

number of trials per condition differed slightly from that in Experiment 1 to 

accommodate the new trial type (see Table 4-1 for details). 
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Figure 4-3: Stimuli in Experiment 2. 

(A) Examples of the stimulus displays used in Experiment 2.  Participants searched for target letters 
in a central RSVP stream that could appear in any of three possible colors (i.e., orange, green, and 
lavender) while ignoring occasional target-colored distractors that appeared in either of two 
peripheral RSVP streams.  Using three target colors allowed us to include an additional trial type, 
BAC, in which the colors of D1, D2, and the target all matched different attentional sets.  (B) A list of 
the trial types in Experiment 2, which includes an example stimulus sequence for each trial type. 

 
Apparatus and Stimuli 

 The apparatus and stimuli in Experiment 2 were the same as those in Experiment 

1 with one important exception: there were now three target colors (i.e., orange, green, 

and lavender: colors 1, 3, and 5 of the 6-color wheel shown in Figure 4-1C).  Due to this 

change, the non-target color (i.e., D1’s color in _AA and _AB trials) was chosen 

randomly from colors 2, 4, and 6 in the color wheel (i.e., tan, turquoise, and magenta).  

Although each of these colors was not equally discriminable from each of the target 

colors, the main contrast of interest (i.e., BAB versus BAC) did not involve trial types in 
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which a non-target color was presented.  Thus, our choice was acceptable.  Moreover, it 

allowed us to use a similar color scheme as in Experiment 1, thereby making the stimulus 

displays in Experiments 1 and 2 more comparable than would otherwise be the case. 

 

 Results 
Mean accuracy was the dependent measure in all analyses.  Before conducting the 

critical analyses, we excluded eleven participants (five female) whose performance 

indicated that they were unable to remember the target colors.  In particular, these 

participants failed to correctly discriminate the target letter in more than 20% of target 

catch trials and/or produced false alarms in more than 20% of non-target catch trials. 

 The results of Experiment 2 replicated the main findings of Experiment 1 (Figure 

4-4).  First, performance was worse in _AA trials (80.2%) than in target alone trials 

(82.7%), [t(33) = 2.71, p < 0.01], consistent with an attentional capture effect (Folk, et 

al., 2009; Charles L.  Folk, et al., 2002; Folk, et al., 2008; Moore & Weissman, in press; 

John T.  Serences, et al., 2005).  Second, performance was worse in _AB (74.0%) than in 

_AA (80.2%) trials [t(33) = 3.78, p < 0.001], in line with a set-specific capture effect 

(Moore & Weissman, in press).  Third, set-specific capture was reduced when D1’s color 

matched a different attentional set than D2’s color as indicated by statistically equivalent 

performance in BAB (77.8%) and BAA (76.4%) trials [t(33) = 1.15, p = 0.26] as well as 

better performance in BAB (77.8%) than in _AB trials (73.6%) [t(33) = 2.10, p < 0.043].  

Fourth, set-specific capture was not reduced when D1’s color matched the same 

attentional set as D2’s color as indicated by statistically equivalent performance in AAB 
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(73.7%) and _AB (73.6%) trials [t(33) = 0.26, p = 0.80].  In sum, Experiment 2 replicated 

the main findings of Experiment 1.  

 

Figure 4-4: Results from Experiment 2. 

Target identification accuracy plotted separately for each of the main trial types in Experiment 2.  
Experiment 2 replicated the three main findings of Experiment 1.  First, there was an overall 
attentional capture effect as performance in all conditions involving distraction was worse than that 
in target alone trials.  Second, there was a set-specific contingent attentional capture effect because 
performance in _AB trials was worse than performance in _AA trials.  Third, set-specific capture 
was reduced when D1’s color matched a different attentional set than D2’s color.  Specifically, 
performance in BAB trials did not differ from performance in BAA trials and was better than in 
_AB trials.  Critically, in line with the D1 enhancement hypothesis, performance was better in BAB 
than in BAC trials.  Error bars illustrate the standard error of the mean. 

 As we mentioned in the discussion of Experiment 1, the findings above do not 

allow us to distinguish between the D1 capture and D1 enhancement hypotheses.  

Therefore, we arbitrated between these hypotheses by comparing performance in BAB 

and BAC trials.  As uniquely predicted by the D1 enhancement hypothesis, target 

identification accuracy was significantly higher in BAB (77.8%) than in BAC trials 

(72.8%) [t(33) = 3.46, p < 0.002].  Also in line with the D1 enhancement hypothesis, set-

specific capture was observed in BAC trials; specifically, performance was significantly 
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worse in BAC trials (72.8%) than in BAA trials (76.4%) [t(33) = 2.39, p < 0.023].  Thus, 

our findings in Experiment 2 support the D1 enhancement hypothesis.   

 As in Experiment 1, we also investigated whether focusing spatial attention on an 

upcoming target’s location reduces contingent attentional capture (Folk, et al., 2009).  

However, once again, no such effect was observed.  Quite the opposite, performance was 

significantly worse in AAA than in _AA trials, [t(33) = 2.16, p < 0.038].  We reserve a 

discussion of this result for the General Discussion.  

 Finally, whether D2 and the target were from the same or different parts of the 

alphabet did not influence the results.  There was no main effect of response congruency, 

and response congruency did not interact with any other factors (all p > 0.3).   

 

 Discussion  
In Experiment 2, we distinguished between the D1 capture and D1 enhancement 

hypotheses.  The D1 capture hypothesis predicted equivalent performance in BAB and 

BAC trials.  In contrast, the D1 enhancement hypothesis predicted better performance in 

BAB than in BAC trials.  Critically, our findings supported the D1 enhancement 

hypothesis.  Thus, it would appear that D1 reduced set-specific capture by bringing the 

upcoming target’s attentional set into the focus of attention. 

 

 General Discussion 
In everyday life, visual search is often guided by multiple attentional sets for 

color.  For example, in the produce section at the grocery store, one may simultaneously 

search for apples and bananas by maintaining the colors red and yellow in distinct 
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attentional sets.  Using a laboratory analog of this task in which participants searched for 

target letters appearing in either of two possible colors (e.g., orange and green), we 

recently reported a novel contingent attentional capture effect (Moore & Weissman, in 

press).  Specifically, approximately 100-300 milliseconds after a target-colored (e.g., 

orange) peripheral distractor was presented, it was more difficult to identify a target if its 

color (e.g., green) matched a different attentional set (e.g., identify green letters) than if 

its color (e.g., orange) matched the same attentional set (e.g., identify orange letters).  

Low-level factors (e.g., perceptual priming) could not account for this set-specific capture 

effect.  Thus, we suggested that detecting a target-colored item leads the corresponding 

attentional set to briefly enter a limited-capacity focus of attention in working memory, 

which temporarily impairs the ability to attend and identify a subsequent item whose 

color matches a different attentional set.   

In the present study, we further tested our hypothesis by investigating whether it 

is possible to reduce set-specific capture.  We reasoned that presenting a target-colored 

(e.g., orange) central distractor (D1) would lead the corresponding attentional set (e.g., 

identify orange letters) to enter the focus of attention.  Therefore, if a different-target-

colored (e.g., green) peripheral distractor (D2) was presented 233 ms afterward, the 

attentional set corresponding to its color (e.g., identify green letters) would be unable to 

enter the already-occupied focus of attention.  The result, we predicted, would be a 

reduction of set-specific capture arising from D2.   

 In Experiment 1, we both replicated our prior findings of set-specific capture and 

observed initial support for our hypothesis.  First, target identification accuracy was 

lower when D2’s color and the subsequent target’s color matched different attentional 
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sets than when they matched the same attentional set, consistent with set-specific capture 

(Moore & Weissman, in press).  Second, this effect was reduced by presenting D1 before 

presenting D2, but only when D1’s color matched a different attentional set than D2’s 

color.  Thus, the results of Experiment 1 supported our hypothesis. 

 In Experiment 2, we distinguished between two competing hypotheses about how 

D1 reduces set-specific capture arising from D2.  The D1 capture hypothesis posits that 

D1 prevents the attentional set corresponding to D2’s color from entering the focus of 

attention.  In contrast, the D1 enhancement hypothesis posits that D1 prevents the 

attentional set corresponding to D2’s color from entering the focus of attention and 

brings the upcoming target’s attentional set into the focus of attention.  Consistent with 

the D1 enhancement hypothesis, set-specific capture was reduced in BAB trials, in which 

D1’s color and the target’s color matched the same attentional set, but not in BAC trials, 

in which D1’s color and the target’s color matched different attentional sets.  Bringing 

the upcoming target’s attentional set into the focus of attention was thus crucial for 

reducing set-specific capture arising from D2.  

Although the present findings support the D1 enhancement hypothesis, whether a 

particular experiment provides support for the D1 enhancement or the D1 capture 

hypothesis should depend on the amount of time separating D1 from the target.  In 

particular, our hypothesis posits that the attentional set corresponding to D1’s color 

remains in the focus of attention only as long as D1 is attended.  Evidence to support the 

D1 enhancement hypothesis should therefore be obtained only when D1 is presented just 

before the target, such that the attentional set corresponding to D1’s color still occupies 

the focus of attention when the target appears.  In contrast, evidence to support the D1 
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capture hypothesis might be observed when more time separates D1 from the target.  

Finally, even when a constant amount of time separates D1 and D2 (e.g., 233 ms in the 

present study), D1 capture and D1 enhancement might occur in different trials if there is 

variability across trials in the amount of time spent attending to D1.  Thus, additional 

studies investigating the temporal parameters that give rise to D1 enhancement and D1 

capture will likely be needed to fully appreciate the conditions under which set-specific 

capture can be reduced. 

Future studies investigating the time course of set-specific capture may also shed 

light on why the present results differ so markedly from prior findings indicating that 

attentional sets can be strategically primed across trials (Belopolsky, et al., 2010).  In 

seeming contradiction to the present results, these findings indicate that target 

identification in trial n is worse if a target shares a feature with a distractor in trial n-1 

than if it does not (Lleras, et al., 2009; Olivers & Humphreys, 2003).  However, this 

discrepancy is likely more apparent than real because set-specific capture and inter-trial 

priming of attentional sets have strikingly different time courses.  Specifically, while set-

specific capture lasts for only a few hundred milliseconds, inter-trial priming of 

attentional sets emerges only after a second or more has passed.  Thus, we would argue 

that set-specific capture reflects a short-lived enhancement of the attentional set 

corresponding to a distractor’s color, which serves to increase attention to a possible 

target (Dux & Marois, 2009); in contrast, inter-trial priming of attentional sets may 

reflect a strategic modulation of attentional control settings that is influenced by whether 

attending to a particular target color was beneficial in the prior trial (Folk & Remington, 

2008).  In sum, although we have found that set-specific capture influences performance 
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in ways that differ markedly from inter-trial priming of attentional sets, this result likely 

stems from the different temporal intervals over which the two phenomena operate.    

We have argued that the present findings fit nicely with a limited-capacity focus 

of attention that maintains just a single item, but other explanations are possible.  For 

example, our findings could also arise from an unequal allocation of limited resources 

among multiple attentional sets, consistent with models in which attention is allocated to 

multiple representations in a graded fashion (McLeod, 1977; Vergauwe, Barrouillet, & 

Camos, 2009).  More precisely, an attentional set might receive the most resources when 

a stimulus matching its color appears first, fewer resources when a stimulus matching its 

color appears second, and so on.  In such a scenario, detecting D1’s color (e.g., orange) 

would lead the corresponding attentional set to receive the lion’s share of resources, but 

would not fully prevent the attentional set corresponding to D2’s color (e.g., green) from 

receiving some resources as well.  Still, D1 would greatly reduce the resources allocated 

to D2.  Thus, this “divided resource” account might also explain our finding that D1 

reduced set-specific capture arising from D2. 

 To distinguish between focus of attention and divided resource accounts of our 

findings, one could use a variant of our task in which participants identify D1, D2, and 

the target at the end of each trial3.  In this task, one could compare target identification 

accuracy in BAB and BAC trials given that both D1 and D2 were successfully identified.  

Selecting trials in which D1 and D2 were identified would be crucial since, according to 

the focus of attention account, simply detecting a target-colored item does not guarantee 

                                                 
3 Such a task would require a discrete trial format as opposed to the continuous paradigm 
that we used in the current study. 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that the corresponding attentional set enters the focus of attention (i.e., it will not enter if 

the focus of attention is already occupied). 

Critically, when D1 and D2 are both identified, the focus of attention and divided 

resource accounts make distinct predictions about relative performance in BAB and BAC 

trials.  According to the focus of attention account, target identification accuracy in these 

conditions should not differ.  Indeed, after D2 is identified, only the attentional set 

corresponding to its color (i.e., “A”) should occupy the focus of attention.  Thus, the 

ability to identify a target whose color (i.e., “B” or “C”) matches a different attentional 

set should be uniformly poor.  In contrast, the divided resource account predicts higher 

target identification accuracy in BAB than in BAC trials.  This account posits that 

resources have been divided between the attentional sets corresponding to D1’s color 

(“B”) and D2’s color (“A”).  Thus, a target should be identified more accurately if its 

color (“B”) matches one of these attentional sets than if its color (“C”) does not match 

either of these attentional sets.  Future studies aimed at differentiating between these 

accounts will likely further our understanding of set-specific capture.     

Studies that distinguish trials in which D2 is identified from those in which D2 is 

not identified might also be useful for determining whether task set inhibition influences 

the size of set-specific capture effects.  Evidence for task set inhibition often comes from 

task switching studies, in which participants respond more slowly and less accurately 

when the task they are cued to perform in one trial mismatches (versus matches) the task 

they performed in the previous trial (Monsell, 2003; Rubenstein, Meyer, & Evans, 2001; 

Wylie & Allport, 2000).  Critically, this effect is exacerbated when participants are 

required to switch to a task that was recently performed, suggesting that switching away 
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from a task involves inhibiting the associated task set (Mayr & Keele, 2000).  In the 

present study, we observed better performance in BAB than in BAC trials, suggesting 

that switching attention from D1 to D2 did not lead task set inhibition to be applied to 

D1.  However, the application of task set inhibition to D1 may only have been necessary 

when the attentional set corresponding to D2’s color actually entered the focus of 

attention, which probably occurred infrequently in BAB and BAC trials.  Thus, isolating 

trials in which D2 is identified, and therefore enters the focus of attention, could be 

helpful for revealing whether task set inhibition influences the magnitude of set-specific 

capture effects. 

 The present results fit conceptually with prior findings indicating that contingent 

attentional capture arising from a target-colored peripheral distractor can be reduced 

(Folk, et al., 2009), but they do not replicate those findings.  Specifically, we did not 

observe better performance in AAA trials than in _AA trials.  Our failure to replicate this 

effect may stem from any of several differences between our experimental design and 

that of Folk et al. (2009).  These include requiring participants to maintain multiple 

attentional sets as compared to just one and embedding peripheral distractors in RSVP 

streams instead of presenting them in isolation.  A critical difference, however, may 

involve the nature of the target-colored central distractor, which was a digit in our 

experiments as compared to a square that outlined the central RSVP stream in Folk et 

al.’s (2009) study.  Because D1 was a digit in our study, it resembled a letter and 

probably consumed limited resources that were needed to identify the upcoming target 

letter.  In contrast, the square that outlined the central RSVP stream in Folk et al.’s study 

did not resemble a letter and probably did not consume resources that were needed to 
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identify the upcoming target letter.  In sum, differences between the paradigms used to 

investigate contingent attentional capture effects may explain why the present results did 

not replicate Folk and colleagues’ finding that performance was better in AAA than in 

_AA trials.    

As we suggested earlier, the present findings may have important implications for 

everyday activities in which target selection is guided by multiple attentional sets.  For 

example, while driving on a winding highway, a driver may be searching for both a 

yellow warning sign indicating an upcoming curve in the road and a restaurant billboard 

that is printed in the same color as the warning sign (e.g., yellow, Waffle House) or in a 

different color (e.g., blue, International House of Pancakes).  The existence of set-specific 

capture suggests that the driver would be more likely to miss the yellow warning sign 

when it is immediately preceded by a target-colored billboard appearing in a different 

(versus the same) color.  However, the present findings suggest that such effects could be 

reduced by placing a salient yellow object on the side of the road shortly before the 

billboard appears, thereby bringing the color of the upcoming warning sign into the focus 

of attention.  Because almost 80% of car accidents are preceded by a moment of driver 

inattention (Ranney, 2008), failing to minimize set-specific contingent attentional capture 

in real-world situations may lead to dire outcomes.     

In conclusion, we have shown that set-specific capture can be reduced by bringing 

an upcoming target’s attentional set into a limited-capacity focus of attention.  This 

finding fits with other data indicating that contingent attentional capture can be reduced 

(Folk et al., 2009).  It also has important implications for everyday activities in which 

multiple attentional sets guide the selection of relevant stimuli.  Future studies 
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investigating whether and how reducing set-specific capture arising from a target-colored 

distractor depends on (a) the relative times at which target and distractor stimuli are 

presented, (b) conscious perception of the target-colored distractor, and (c) task set 

inhibition may reveal important new information about how to minimize distraction in 

both laboratory and real-world situations. 
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Chapter 5  
Set-specific capture reflects a limited-capacity focus of attention 

 

 Abstract 
 We recently found that contingent attentional capture effects are larger when a 

distractor and target match different concurrently-maintained attentional sets than when 

they match the same attentional set, a phenomenon we call set-specific capture (Moore & 

Weissman, in press).  In a rapid serial visual presentation (RSVP) search for green and 

orange target letters, target identification was more impaired when a green distractor 

preceded an orange target by 100-300 ms than when it preceded a green target.  We 

explained this result by positing that distractor detection leads to an immediate 

enhancement of the corresponding attentional set.  In the current study, we examined 

whether this enhancement is all-or-none as suggested by a limited-capacity focus of 

attention model, or graded as suggested by a shared resources model.  Using an RSVP 

task in which participants searched for letters appearing in any of three possible colors 

and identified up to three targets on a single trial, we found evidence to support the all-or-

none focus of attention model.  
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 Introduction 
 Selective attention to allows us to avoid overloading limited processing resources 

by facilitating the perception of information while inhibiting distraction.   To accomplish 

this, attentional settings define targets related to our current goals based on perceptual or 

conceptual attributes such as color, location, size, or category (Adamo, et al., 2008; Ariga 

& Yokosawa, 2008; Folk, et al., 1992; Olivers, 2008).  These attentional sets then bias 

sensory systems to boost signals of incoming stimuli that share features with targets 

(Corbetta & Shulman, 2002).  Together, the components of this attentional network help 

to preserve limited processing resources for goal-related stimuli.  

 Visual search and contingent attentional capture studies provide evidence that 

attentional sets are flexible, susceptible to priming, and adaptive to optimize behavior.  

For example, in studies of the distractor-previewing effect, participants are faster to 

respond to a color singleton target when the distractors on the current trial are the same 

color as those on the previous trial (Ariga & Kawahara, 2004; Lleras, et al., 2009).  An 

interpretation is that when a feature (e.g. red) is associated with the concept “distractor,” 

we tune our attentional sets to be biased against this feature, thus facilitating target 

identification when the target has different a different feature (e.g. blue).  Contingent 

attentional capture studies also provide evidence that attentional sets are susceptible to 

inter-trial priming (Belopolsky, et al., 2010; Olivers & Humphreys, 2003).  For example, 

using a search task in which targets and uninformative pre-cues could both be colored 

either red or green, Folk & Remington found that cueing effects were much larger when 

the cue on the current trial was the same color as the target on the previous trial than 

when it was the same color as the distractor on the previous trial (Folk & Remington, 
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2008).  In other words, features that were common with recent targets became enhanced, 

and features that were common with recent distractors became suppressed.  These 

findings indicate that we use task information to constantly update and refine our 

attentional sets in order to best achieve our goals.   

 Using a contingent attentional capture paradigm, we recently demonstrated that 

attentional sets can be changed more rapidly, and in a less controlled or beneficial fashion 

(Moore & Weissman, in press).  More specifically, we determined that when attention is 

captured by a stimulus sharing features with a current attentional set, the corresponding 

set is temporarily enhanced.  In our study, participants searched a heterogeneously-

colored RSVP stream for occasional targets that appeared in either of two colors (e.g. 

orange and green).  As in other contingent attentional capture studies (Folk, et al., 2002; 

Folk, et al., 2008; Serences, et al., 2005), a peripheral distractor impaired performance 

more when it was target colored (e.g. orange) than when it had a different color (e.g. 

purple.)  Critically, at short stimulus onset asynchronies (SOAs) of 116-233 ms, this 

effect was two to three times larger when the peripheral distractor (e.g. orange) was a 

different target color than the subsequent target (e.g. green), as compared to when the 

target and distractor were the same color (e.g. both orange).  We identified this 

phenomenon as set-specific capture, and demonstrated in follow-up experiments that the 

effect is not due to bottom-up perceptual priming, but rather enhancement of the 

attentional set corresponding to the relevant feature.  Critically, and contrary to the 

studies reviewed above, our results show attention is briefly increased towards a feature 

possessed by a current distractor.  In set-specific capture, any stimulus matching an 
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attentional set, target or distractor, can cause a brief enhancement of the corresponding 

set.   

 What mechanism best describes the attentional set adjustment observed in set-

specific capture?  One possibility is that the mechanism involves balancing resources 

across currently maintained attentional sets, as would be suggested by a graded 

enhancement model.  This account may be likened to limited-resource models of 

attention that posit a shared resource for concurrently maintained items or task rules 

(McLeod, 1977; Vergauwe, et al., 2009).  According to this graded model, the detection 

of an item matching one of the current attentional sets leads to a temporary change in the 

distribution of resources allocated to each set.  Other modulations of attentional set such 

those mentioned above (Ariga & Kawahara, 2004; Belopolsky, et al., 2010; Folk & 

Remington, 2008; Lleras, et al., 2009; Olivers & Humphreys, 2003) likely rely on a 

graded enhancement model.  For example, items that are defined by a previous (but not 

current) attentional set still capture attention, and this effect dissipates gradually rather 

than abruptly (Leber & Egeth, 2006; Thompson, et al., 2007).  Thus, one would expect in 

these experiments that the balance of strength of attentional sets was also changing 

slowly over the course of multiple trials.  

 Another possibility, which we raised in our previous investigations, is that set-

specific capture involves an all-or-none adjustment of attentional set (Moore & 

Weissman, in press, submitted), as would be suggested by a focus of attention model. 

This model is based on a current model of working memory that posits a focus of 

attention limited to a single item (Jonides, et al., 2008; McElree, 2001; Oberauer, 2002, 

2003), and suggests that the act of attending to a target-colored item (e.g. an orange 



 

 121 

distractor) leads the corresponding attentional set (e.g. identify orange letters) to enter the 

focus of attention (Moore & Weissman, in press).  According to this model, during active 

search (i.e. before a target-colored item has been detected), attentional sets reside outside 

the focus of attention, either in the region of direct access in working memory (Oberauer, 

2002, 2003) or in long term memory4, and from here, they boost the signals of target-

colored stimuli in order to facilitate target detection.  Only once a target-colored item has 

been detected does the corresponding attentional set enter the focus of attention. Entry 

into the focus is required for deeper processing, including identification.  Critically, only 

one attentional set can be present in the focus of attention at a time.  Thus, if a stimulus 

matching a different attentional set appears while another set is in the focus of attention, 

the stimulus may be detected, but it will not be attended or identified.  

Support for this model comes from a variety of sources, including studies of 

working memory (Berti, 2008; Garavan, 1998), task switching (Monsell, 2003), and the 

attentional blink (Juola, et al., 2004).  For example, when maintaining in working 

memory the number of items that have been presented of different types of stimuli (e.g. 

circles and triangles), participants are faster to update a particular counter (e.g. the 

number of circles) just after the same counter has been updated, as opposed to when 

another counter has been most recently updated, suggesting that only a single counter can 

occupy the focus of attention at a time (Garavan, 1998).  This difference cannot be 

explained by perceptual priming; when the instruction is to update a single counter for all 

                                                 
4 There is a debate on whether attentional sets are maintained in working memory 
(Olivers & Meeter, 2008) or in a more durable, capacity-unlimited state such as long term 
memory (Leber & Egeth, 2006; Thompson, et al., 2007).  The focus of attention model 
does not contribute to this debate. 
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items, whether the previously presented stimulus matches the current one does not affect 

response time (Bao, et al., 2007).  

 Because both the graded enhancement and focus of attention models are 

consistent with our previous findings, we designed the current study to distinguish 

between these models of set-specific capture.  Participants searched an RSVP stream for 

targets matching any of three different concurrently maintained attentional sets (orange, 

green, and lavender colored letters.)  Every RSVP trial contained up to three targets, each 

of which could be any of the target colors.  We examined accuracy for the third target 

(T3) depending on whether it was the same color as either of the previous two targets, 

under the conditions that a) T1 and T2 were different target colors, and b) both T1 and T2 

were correctly reported.   

Under these conditions, the two models made different predictions.  The focus of 

attention model predicted T3 performance would not differ depending on whether T3 was 

the same color as T1.  For example, when T1 was orange and T2 was green, participants 

would be equally likely to identify an orange T3 as a lavender T3.  The graded 

enhancement model, on the other hand, predicted that T1’s color would have a lingering 

influence on T3 performance.  Thus, T3 performance would be better when it was the 

same color as T1 than when all targets were different colors, because T1’s corresponding 

attentional set would still be partially enhanced at the time of T3 identification.  In the 

example in which T1 was orange and T2 was green, the graded enhancement model 

predicted participants to be more likely to identify T3 when it was orange than when it 

was lavender.  
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 Method 

 Participants 
Forty-two University of Michigan students from 18 to 25 years of age participated 

in exchange for course credit. All participants reported normal or corrected vision and no 

history of neurological injury or disease. Each consented in accordance with the 

University of Michigan Behavioral Sciences Institutional Review Board.  

 

 Apparatus and Stimuli 
Colored letter stimuli were displayed on a 19” Viewsonic CRT monitor with a 60 

Hz refresh rate, controlled by a Dell PC running Windows XP.  Presentation software 

(Neurobehavioral Systems, Inc.) displayed stimuli and collected responses.  Participants 

viewed the screen from 80 cm using a chin rest.  

On each trial, fifteen letters (2.07° x 1.88° in size) appeared successively in a 

rapid serial visual presentation (RSVP) display in the center of the screen, with a black 

background.  Letters included all from the alphabet except for I, O, and W.  No letter 

repeated within a trial.   

We colored the letters according to the “light” color scheme of Moore & 

Weissman (Moore & Weissman, in press). These colors were chosen for their near-

uniform salience (luminance and saturation) as well as equal perceptual distance from 

each other.  Participants were instructed to search for three target colors, which were 

orange, lavender, and green.  Other colors in the display were magenta, tan, and turquoise 

(see Figure 5-1 for a color wheel and R,G,B values).  Because there were no more than 

three targets on a single trial but there were fifteen letters, these non-target colors 

repeated often over the course of a trial.  They were randomly assigned to the non-target 
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letters in the display with the contingency that no two letters in a row would have the 

same color.  

 

Figure 5-1: Experimental task and stimuli. 

On each trial, participants viewed an RSVP stream containing 15 colored letters and one to three 
targets, which were colored orange, green, or lavender.  Other items in the display were tan, 
magenta, and turquoise (see color wheel and table for R,G,B values).  Items in the stream appeared 
for 150 ms followed by a blank space lasting 16 ms.  In the figure, the T1 Only trial type represents a 
full trial.  The other trial types depict example targets and intervening non-target stimuli as they 
would appear in the middle of an RSVP trial.  The first target (T1) appeared anywhere from the 
fourth to eighth item in the stream.  AA and AB trials contained two targets (T1 & T2) that were the 
same (AA) or different (AB) colors, and were separated by one (lag 2) or three (lag 4) intervening 
items.  BAA, BAB, and BAC trials contained three targets (T1, T2 & T3), each of which was 
separated by one intervening item.  The trial types were named according to the colors of T1, T2, and 
T3—in BAA, the colors of T2 and T3 matched but were different from T1; in BAB, the colors of T1 
and T3 matched but were different from T2; and in BAC, each target was a different color. 

 

 Procedure  
 The participants’ task was to identify letters in the 15-item stream that matched 

any of three target colors, and they were told trials could contain one, two, or three 

targets. Letters appeared for 150 ms followed by a 16 ms blank space between stimuli.  

The first target appeared anywhere from the fourth to the eighth position in the RSVP 

stream (assigned randomly).  
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At the end of the RSVP display on each trial, a prompt appeared asking for the 

identity of the first target.  Participants were instructed to type the exact letter of that 

target.  Immediately, the prompt would then ask for the second target, and after receiving 

a response, the third target.  The next RSVP trial started 500 ms after participants made 

the third response.  Participants were instructed to press the space bar to advance through 

the prompts if they saw fewer than three targets on a trial.  We reasoned that the 

uncertainty regarding the number of targets on a trial would lead to fewer false alarm 

guesses.  

 

 Design 
 There were eight trial types (Figure 5-1).  In T1 Only trials (n = 168), a single 

target appeared.  The remaining seven trial types were labeled using a combination of 

“A,” “B,” and “C” to represent variable names for the three target colors.  For the two 

trial types  with two targets, AA trials (n = 84) were those in which the first (T1) and 

second targets (T2) were the same color (e.g. both were lavender), and AB trials (n = 84) 

were those in which T1 and T2 were different colors (e.g. T1 was orange, and T2 was 

green.)  In half of AA and half of AB trials, T1 and T2 were separated by one intervening 

non-target item (Lag 2 condition).  In the other half, T1 and T2 were separated by three 

intervening non-target items (Lag 4 condition).   

The five trial types with three targets were AAA, AAB, BAA, BAB, and BAC.  

For these trial types, each target was always separated by one intervening non-target 

item.   AAA and AAB trials (not pictured in Figure 5-1) were not critical for 

distinguishing between the focus of attention and graded enhancement hypotheses, but 
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we included them anyway in smaller numbers (n = 24 each) so that participants would 

not develop expectations about the color of the third target (T3) based on the colors of T1 

and T2. Including a small number of these trial types also allowed us to maintain an equal 

number of trials (168) containing one, two, and three targets.  However, because there 

were fewer AAA and AAB trials in the experiment, we lacked sufficient power to 

analyze their results, and thus will not report them.  

There were 42 trials in each of the BAA, BAB, and BAC trial types.  In these 

trials, T1 and T2 were always different target colors. T3 matched T2 (BAA), matched T1 

(BAB), or was different from both T1 and T2 (BAC).   

 

 Data Analysis  
We used accuracy as the dependent measure in all analyses.  Accuracy was based 

on percentage of hits to a target in a trial type out of the total number of trials of that type 

in the experiment.  Some analyses (e.g., T3 accuracy) were contingent upon correctly or 

incorrectly identifying other targets in the same trial (e.g. T1 and/or T2).  Thus, at times 

there were uneven numbers of trials per trial type across participants, because participants 

had different accuracies on other targets within a trial.  For all analyses, we included only 

those participants with at least four trials in each condition.  Moreover, though our tests 

were all within-subject comparisons, we used the conservative Welch t-test, as this 

statistic does not require the groups to have equal variance.  Note that this t-test calculates 

the degrees of freedom based on the estimated variance in each group, and so the degrees 

of freedom will be different across analyses.  
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 First we identified our comparisons of interest, and eliminated participants with 

fewer than four trials in each critical trial type.  We considered critical types to be the 

following: T2 accuracy given T1 correct in AA and AB trials (at both lags); T2 accuracy 

given T1 incorrect in AA and AB trials (at both lags); T3 accuracy given both T1 and T2 

correct in BAA, BAB, and BAC trials; and T3 accuracy given T1 correct but T2 incorrect 

in BAA, BAB, and BAC trials.  In total, we eliminated seven participants and were left 

with thirty-five.  These participants were eliminated for having too few errors in trial 

types requiring T1 or T2 to be incorrect, or too many errors in trial types requiring both 

T1 and T2 to be reported correctly.    

 

 Results 
 We first examined trials with two targets in order to determine whether we 

replicated our previous finding of set-specific capture (Moore & Weissman, in press).  

Consistent with set-specific capture, in trials with correct responses to T1, T2 accuracy 

was better in AA than AB trials at both lag 2 [AA = 91.2%, AB = 53.4%, t(59) = 7.07, p 

< 0.0001] and lag 4 [AA = 86.0%, AB = 68.4%, t(48) = 4.78, p < 0.0001] (Figure 5-2, 

left).  Also consistent with our previous findings, the set-specific effect was larger at lag 

2 than at lag 4 [F(1,35) = 14.8, p < 0.0001].   

We next examined trials in which T1 was missed to determine whether, consistent 

with both models, set-specific capture would be present only when T1 was identified.  

Consistent with their predictions, in trials with missing or incorrect responses to T1, T2 

accuracy was the same in AA and AB trials for both lags [for lag 2: AA = 83.1%, AB = 
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86.3%, t(56) = 0.745, p = 0.459; for lag 4: AA = 80.8%, AB = 78.2%, t(59) = 0.691, p = 

0.492] (Figure 5-2, right).  

 

Figure 5-2: T2 performance on trials with two targets. 

Accuracy is reported as the percent of correct responses.  The left panel displays T2 performance 
when T1 was also correctly reported.  Black bars correspond to the AA trial type, and white bars to 
the AB trial type.  Replicating our prior findings of set-specific capture, performance was better in 
AA than in AB trials at both Lags 2 and 4.  The double asterisk indicates a p-value less than 0.0005.  
The right panel displays T2 performance when T1 was missed or reported incorrectly.  Black bars 
again represent AA trials and white bars AB trials.  T2 performance was unaffected by T1’s color 
when T1 was missed. 

  

We also found evidence for set-specific capture in trials with three targets, by 

measuring T3 accuracy when T1 and T2 were both correctly reported on BAA, BAB, and 

BAC trials.  Performance was better in BAA trials (66.6%) than on either of BAB trials 

(24.6%) [t(67) = 6.78, p < 0.0001] or BAC trials (23.6%) [t(69) = 6.83, p < 0.0001].  

Thus, when all three targets were identified, T3 identification was facilitated when T2 

and T3 matched the same attentional set.   
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 In order to differentiate between the focus of attention and graded enhancement 

models, we compared T3 performance in BAB versus BAC trials under the same 

conditions (T1 and T2 reported correctly).  Consistent with the focus of attention model, 

performance was equivalent on BAB and BAC trials [t(67) = 0.046, p = 0.963], 

suggesting that once T2 was correctly identified, T1 was no longer enhanced and 

therefore had no lingering influence on T3 performance (Figure 5-3, left). 

 

Figure 5-3: T3 performance, contingent on T1 and T2 report. 

The left panel displays T3 performance when both T1 and T2 were correctly reported in BAA, BAB, 
and BAC trials.  Performance was better when T3’s color was the same as T2’s (BAA), than when it 
was not (BAB and BAC).  Critically and in support of the focus of attention model, BAB and BAC 
performance did not differ.  The right panel displays T3 performance in the same trial types when 
T1 was correctly reported, but T2 was missed.  Now, BAB performance was better than BAA and 
BAC, and there was no difference between BAB and BAC.  This result indicates that when T2 was 
missed, T1’s color influenced T3 identification, whereas T2’s color did not. A double asterisk 
indicates p < 0.0005, and a single asterisk indicates p < 0.05. 
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It is possible that the result above was caused by a graded enhancement 

mechanism in which both T1’s and T2’s corresponding attentional sets were 

simultaneously enhanced, but T1’s enhancement had simply worn off by the time T3 was 

presented.  To investigate this possibility, we performed an analysis on the same trial 

types when T1 was reported correctly but T2 was missed.  For this graded enhancement 

explanation to hold, we would not expect to find evidence of T1 enhancement.  To the 

contrary, performance was better in BAB trials (80.9%) than in either BAC (73.1%) 

[t(65) = 2.30, p < 0.025] or BAA (68.4%) trials [t(54) = 2.72, p < 0.008].  This result 

suggests that T1’s corresponding attentional set remained enhanced when T2 was missed.  

Together, these findings support the focus of attention model and argue against the 

graded enhancement model.   

Also of note, there was no difference in performance between BAC and BAA 

trials [t(61) = 0.949, p = 0.346], suggesting that T2’s attentional set was not enhanced 

when T2 was missed. See Figure 5-2, right.  

We repeated all analyses using conventional paired sample t-tests and replicated 

every result.  

 

 Discussion 
 We replicated our previous findings of set-specific capture in a new paradigm 

requiring the report of multiple targets, while also finding support for the focus of 

attention model.  Consistent with our prior findings of set-specific capture, participants 

were more accurate at reporting the second of two targets (T2) when the previously 

identified target (T1) was the same color as T2 (AA trial type) than when it was a 



 

 131 

different color (AB trial type).  This effect disappeared when T1 was not identified, 

indicating that T1’s corresponding set had not been enhanced, and therefore that T2 

identification was not impaired.  These results are similar to those found in our previous 

contingent capture experiment, in which target identification was more impaired when a 

preceding target-colored distractor was a different target color than when it was the same 

color as the target (Moore & Weissman, in press). 

In support of the focus of attention model of set-specific capture, we found that 

only the attentional set corresponding to the most recently-identified target influenced 

future target identification.  More specifically, when T1’s color and T2’s color matched 

different attentional sets and both were reported accurately, T3 performance was better 

when it was the same color as T2 (BAA trials) than when it was different (BAB and BAC 

trials).  Critically, whether T3 was the same or a different color as T1 (BAB or BAC 

trials) did not affect T3 performance.  In other words, when both T1 and T2 were 

reported accurately, T1’s corresponding attentional set was no longer enhanced at the 

time of T3 detection.  This result is uniquely predicted by the focus of attention model, 

because this model states that only one set can be in the focus of attention at a time.  

Thus, it predicts no lingering enhancement of a previously-enhanced set, as long as a 

different one was attended to more recently.  

 One might argue that the graded enhancement model could still explain the above 

result if, by the time of T3 presentation, the enhancement of T1’s corresponding 

attentional set has worn-off.  According to this argument, at an earlier time point than the 

presentation of T3, T1 and T2’s attentional sets would both be simultaneously partially 

enhanced, but our task was not sensitive (i.e. fast) enough to detect this moment of shared 
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enhancement.  This explanation is highly unlikely, though, when considering T3 

performance in the face of T2 misses.  When T1 was correctly reported but T2 was not, 

T1’s corresponding attentional set remained enhanced: T3 performance was better in 

BAB than in either BAA or BAC trials.  The most parsimonious account for this pattern 

of findings is provided by the focus of attention model—in order for a target to be 

processed deeply enough to be identified, its corresponding attentional set must enter the 

focus of attention.  Because the focus is limited to a single item, only the attentional set 

corresponding to the most-recently identified target is enhanced.  Sure enough, when T1 

was reported correctly and T2 was missed, performance on T3 mirrored that of trials with 

two targets (see Figure 5-3, right, and Figure 5-2, left).  BAB performance was similar to 

AA performance at lag 4, and both BAA and BAC performance were similar to AB 

performance at lag 4.   

 We have argued that T1’s corresponding attentional set exerts no influence on T3 

performance when T1 and T2 are correctly identified. Nonetheless, one might wonder 

why T3 performance in the BAA trial type appears to be lower than T2 performance in 

the AA trial type when all previous targets have been correctly identified.  If only T2’s 

corresponding attentional set influences T3 performance, then it should not matter that T1 

and T3 match different attentional sets in BAA.  However, T3 accuracy in this condition 

was lower than T2 accuracy in AA.  We argue that T1’s corresponding attentional set 

does not influence T3 performance, but rather the difference between BAA and AA trials 

reflects an additional cost for trial types with three targets.  Precisely, on BAA, BAB, and 

BAC trials, participants must maintain three specific responses in working memory 

through the duration of the trial. AA performance, on the other hand, requires 



 

 133 

maintaining just two responses.  A better link to make is the one mentioned in the 

previous paragraph comparing trials with two targets to those with three targets in which 

T2 is missed (i.e. Figure 5-3, right).  In both cases, just two responses must be maintained 

during the trial.  As mentioned previously, these scores were similar.  

 The evidence in favor of the focus of attention model over the graded 

enhancement model provides further support that set-specific capture is a different 

phenomenon than inter-trial priming of attentional set.  In these studies, attentional sets 

change over long time-scales, such as across a block of trials (Leber & Egeth, 2006; 

Thompson, et al., 2007) or from one trial to the next (Belopolsky, et al., 2010; Lleras, et 

al., 2009; Olivers & Humphreys, 2003).  Typically, participants make beneficial 

adjustments to attentional sets, by boosting the signal of features shared with recent 

targets (Olivers & Humphreys, 2003), suppressing the signal of features shared with 

recent distractors (Ariga & Kawahara, 2004; Lleras, et al., 2009), or both (Folk & 

Remington, 2008).  In set-specific capture, on the other hand, both distractor and target 

detection lead to rapid enhancement of the corresponding attentional set (Moore & 

Weissman, in press, submitted).  To further differentiate the root of these phenomena, we 

presently showed that set-specific capture is best explained by a limited-capacity focus of 

attention model, in contrast to inter-trial priming results that are better explained by a 

graded enhancement model.   

 Our study also provides evidence that set-specific capture is not likely to be 

related to task-set inhibition.  Evidence for task set inhibition comes from task switching 

studies in which participants respond more slowly and less accurately when the task they 

are cued to perform in one trial is different from (versus the same as) the task they 



 

 134 

performed in the previous trial (Mayr & Keele, 2000; Monsell, 2003; Rubenstein, et al., 

2001; Wylie & Allport, 2000). Critically, this effect is exacerbated when participants are 

required to switch to a task that was recently performed, suggesting that switching away 

from a task involves inhibiting the associated task set (Mayr & Keele, 2000).  In the 

present study, we observed equivalent T3 performance in BAB and BAC trials when T1 

and T2 were both correctly reported, signifying that switching attention from T1 to T2 

did not cause task set inhibition to be applied to T1.  Thus, set-specific capture is unlikely 

related to task set inhibition.  

 In contrast to findings demonstrating that subliminally presented stimuli can 

capture spatial attention, our results suggest that attentional set enhancement during set-

specific capture only occurs when a stimulus has been consciously perceived.  Wyble and 

colleagues found that participants were more likely to report the second of two targets in 

a rapidly changing display when the first and second targets were in the same location 

than when the targets appeared in different locations, even when the first target was not 

reported (Wyble, Bowman, & Potter, 2009).  Therefore, an unconsciously-perceived 

target was capable of drawing spatial attention.  However, in the present study, we 

demonstrated that attentional set enhancement requires identification of the item 

matching the set.  For example, we observed set-specific capture in trials with two targets 

(AA > AB), but only when T1 was identified correctly.  Likewise, when T1 was reported 

correctly and T2 was missed, T3 performance was the same on BAA and BAC trials.  In 

both cases, the attentional set corresponding to a missed target was never enhanced. 

These results point out a key difference between set-specific and spatial capture, which 

future studies should further explore.  
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In sum, we replicated set-specific capture in an RSVP paradigm with multiple 

targets on a single trial, and we provided evidence for the focus of attention model of set-

specific capture.  Specifically, consistent with set-specific capture, accuracy to the second 

of two targets was better when it was the same color as the first target than when it was a 

different color, and this difference was present only when the first target was correctly 

identified.   In support of the focus of attention model over the graded enhancement 

model, performance on T3 following correct identification of T1 and T2 did not depend 

on whether T3’s color matched T1’s color, and this result could not be explained by a 

rapid recovery from graded enhancement of T1.  These results suggest that only a single 

attentional set can be enhanced at a time.  Future studies will be required to clarify other 

components of this model, such as how multiple attentional sets are maintained (i.e. in 

long-term or short-term memory) during active search, and whether multiple sets can 

enter the focus of attention if the sets are temporarily bound into a single set (Bao, et al., 

2007).  
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Chapter 6  
General Discussion 

 
 The current studies demonstrated that external irrelevant stimuli can cause an 

involuntarily direction of attention to a goal in working memory.  In Chapter 2, we 

showed that irrelevant instructions bearing resemblance to relevant instructions caused 

participants to prepare the wrong task. Chapters 3 & 4 demonstrated that an irrelevant 

item resembling a target caused participants to enhance the search set related to that 

target.  In Chapter 5, we provided evidence that this enhancement took place in a limited-

capacity focus of attention within working memory.  Collectively, these studies provide a 

novel link between attention and memory systems, and they help to clarify how our 

ability to multitask is limited.   

 The focus of attention model of goal enhancement 
 Based on findings from Chapters 3-5, we proposed a focus of attention model to 

explain how attention is directed to goals (i.e., attentional sets) in working memory.  

According to this model, multiple attentional sets can simultaneously be maintained in 

memory without costs (as compared to maintaining a single set), and they serve to boost 

signals coming from stimuli that share target features.  However, the model states that 

only a single attentional set can be present at a time in a privileged state within working 

memory called the “focus of attention.” The detection of a stimulus matching an 

attentional set (e.g., a target or a target-like distractor) causes the corresponding 

attentional set to enter the focus of attention, an action that is required in order for the 
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stimulus to be processed deeply enough to be identified.  

 

Figure 6-1: Depictions of attentional set enhancement in the focus of attention and limited resource 
models 
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 The focus of attention model is all-or-none, in contrast to a graded limited-

resources model (Figure 6-1).  According to the focus of attention model, an attentional 

set is either enhanced in the focus or not.  A limited-resource model, on other hand, 

contends that attentional set enhancement can be shared across different sets, in a graded 

fashion.  This model is akin to shared resource models of attention for multiple tasks or 

items (MacLeod & Dunbar, 1988; McLeod, 1977).  The data from Chapter 5 argue 

against a graded model of attentional set enhancement, finding that only the attentional 

set corresponding to the most recently identified target in a series of targets exhibits 

evidence of being enhanced.   

 The focus of attention model is based on a structure in working memory 

containing a single item that is more privileged (i.e., activated) than any other 

information in memory (Jonides, et al., 2008; McElree, 2001; Oberauer, 2002, 2003).  

Models of working memory that include a focus of attention do not all agree on the rest 

of the structure or capacity of working memory.  For example, McElree posits that 

working memory is limited to the focus of attention, and the rest of memory can be 

considered long-term-memory, in various states of activation (McElree, 2001).  

Consistent with a large body of evidence that working memory capacity is about four 

items (Cowan, 2000), Oberauer’s model contends that working memory contains both the 

privileged focus of attention and a region of direct access with a capacity of three 

additional items.  The remainder of memory is long-term (Oberauer, 2002, 2003) (Figure 

6-2).  Finally, in a recent review, Jonides and colleagues attempt to reconcile these views 

by stating that working memory is limited to a single item, but that often multiple items 
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can be bound into a single representation (Jonides, et al., 2008). 

 

Figure 6-2: Models of working memory positing a focus of attention limited to a single item 

 
 Given disagreement in the literature, our focus of attention model does not make a 

claim regarding where attentional sets are maintained (i.e., in long-term or short-term 

memory) as they guide behavior prior to the detection of a potentially relevant stimulus.  

As stated above, memory models disagree as to whether there is even a working memory 

structure outside of the focus of attention.  In the attention literature, some believe that 

attentional sets are maintained in working memory (Olivers & Meeter, 2008), but others 

contend that attentional sets reside in a more permanent state, such as long-term memory 

(Folk & Remington, 2008; Leber, et al., 2009).  Thus, it is possible that attentional sets 

reside either in a region of direct access in working memory, or in long-term memory.  In 

fact, attentional sets may occupy different structures in memory depending on the 

experimental paradigm (e.g., a new attentional set may be defined on a trial-by-trial basis, 
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or the same set may be maintained throughout the experiment) (Lien, Ruthruff, & 

Johnston, 2010).  

 Critically, our model asserts that no attentional set enters the focus of attention 

until a potentially relevant item has been detected.  An alternate view would state that 

attentional sets must be in the focus of attention to guide search. Therefore, when 

multiple sets guide behavior, they would cycle in and out of the focus of attention during 

active search, taking turns in the privileged state.  According to this view, the probability 

that a particular attentional set occupies the focus at any given moment should decrease 

as the number of concurrently maintained attentional sets increases.  Therefore, 

traditional contingent attentional capture effects should be reduced the more attentional 

sets guide behavior, because an item would capture attention only if its corresponding 

attentional set is currently in the focus.  Moreover, the cycling view would predict overall 

target identification performance to be worse as more sets are maintained in memory.  To 

the contrary, we found that contingent capture effects were the same when one or two 

attentional sets guided behavior, as was identification performance when targets appeared 

without any distractors (Chapter 3, Experiment 1).  Though we did not compare across 

set size in Chapter 4 (Experiments 1 and 2 were performed between subjects), a glance at 

the data suggests that target identification did not differ whether two or three attentional 

sets were maintained (in both experiments, Target Alone accuracy was 83.7%).  For these 

reasons, our focus of attention model states that attentional sets remain outside of the 

focus of attention during active search, and enter only once a potentially relevant item has 

been detected.  
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 Neural mechanisms of orienting to goals in wm 
 Chapter 2 provides neural evidence as to how attention is oriented to a current 

goal in memory.  We showed that the orienting of attention to a goal in memory is likely 

facilitated by the same attentional network regions that are responsible for directing 

attention to goal-relevant stimuli (Corbetta, Kincade, & Shulman, 2002; Corbetta & 

Shulman, 2002; Hopfinger, et al., 2000).  We found several frontal and parietal regions 

that were more active when relevant and irrelevant cues were incongruent than when the 

cues were congruent; thus these regions probably reflected the shift of attention to a goal 

in memory.  As participants prepared a task, this shift of attention occurred whether the 

cues were congruent or incongruent.  However, when the cues were incongruent, 

participants sometimes prepared the wrong task first, as evidenced by our data from the 

sensory regions.  Consequently, correct performance required a second shift of attention 

to the other goal.  Research investigating the neural mechanisms of episodic memory 

retrieval also suggests that the same regions are responsible for orienting to both 

environmental stimuli and memories (Cabeza, 2008; Ciaramelli, Grady, Levine, Ween, & 

Moscovitch, 2010; Ciaramelli, Grady, & Moscovitch, 2008). 

 Our behavioral studies on contingent attentional capture (Chapters 3-5) provide 

evidence that once attention has been allocated to a goal, that goal enters the focus of 

attention in memory; but our studies do not indicate a potential neural correlate of the 

focus.  Recent work from a verbal working memory task shows that the neural correlate 

of the focus of attention might be the inferior temporal (IT) cortex (Nee & Jonides, 

2008).  In addition to representing the most recently rehearsed item, the IT cortex is more 

functionally connected to frontal-parietal network regions than are other memory regions 

that represent other remembered stimuli in the task.  Given that the IT has been 
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implicated in visual perception, we might expect this region to provide the neural 

correlate of the focus of attention in our contingent capture tasks in which participants 

search for colored letters.  

 

 Future directions 
 Though our studies answer several questions about multitasking and the 

relationship between attention and memory, they also raise questions to be answered with 

future investigations.  One question is whether attentional sets are maintained in working 

memory or in long-term memory.  Solving this problem could inform both the debate 

regarding the relationship between working memory and attention in visual search 

(Downing, 2000; Downing & Dodds, 2004; Olivers, 2008; Olivers, 2009; Olivers & 

Meeter, 2008; Woodman & Luck, 2007) and the debate about the structure of memory 

(Cowan, 2000; Jonides, et al., 2008; McElree, 2001; Oberauer, 2002, 2003; Oberauer & 

Bialkova, 2009).   

 One way to examine how attentional sets are maintained when not in the focus 

would be to test participants’ capacity to maintain multiple sets.  We know that three sets 

can concurrently guide behavior with no noticeable cost in performance, but can four or 

five sets guide behavior?  Though not everyone agrees (Jonides, et al., 2008; McElree, 

2001), numerous studies suggest that working memory capacity is about four items 

(Awh, Barton, & Vogel, 2007; Todd & Marois, 2004; Xu & Chun, 2006); (see Cowan, 

2000) for an extensive review).  Thus, if working memory imposes a limit to the number 

of sets that can be concurrently maintained, completing a search task when five or more 

attentional sets define targets should be far more difficult (if even possible) than 



 

 143 

completing a search task when one or two attentional sets define targets.  If participants 

can complete these searches equally well, suggesting no obvious limit to the number of 

attentional sets that can be concurrently maintained, then the attentional sets are likely 

stored in long-term memory.  

 Though a seemingly simple study to conduct, this proposed experiment raises 

methodological challenges.  For example, as the number of attentional sets increases, the 

percentage of stimuli in the environment sharing features with an attentional set will also 

increase, as long as the search environment does not change.  For example, if you were to 

search a crowd of people for four different friends at once, more people in the crowd 

would capture attention because they share characteristics with at least one of your 

friends than if you were searching for only one friend.  In our investigations, we found 

that the search environment for isoluminant, equally salient colors is too small to require 

participants to maintain more than three attentional sets at a time.  In other words, when 

participants must search for more than three colors, the colors are too perceptually similar 

to distinguish targets from other items in the display.  An appropriate experiment testing 

the limit of maintaining multiple sets would require a different (i.e., broader) stimulus 

dimension than color, as well as careful controlling of the search environment.    

 Another question of interest is whether the focus of attention can enhance more 

than one attentional set at a time, by binding sets together to form a single representation.  

Experiment 2 of Chapter 3 suggests this is possible, because set-specific capture vanishes 

when targets are defined as any colored letter in the central RSVP stream.  Thus, 

participants combine all colors into a single attentional set to complete this task.  In 

working memory studies, binding also allows multiple items to enter the focus of 
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attention.  For example, Bao and colleagues gave participants a task to update a number 

and the spatial location of a dot in a grid.  At the start of the trial, participants saw a 

number and a location.  Participants then viewed about 20 images of arrows (up, down, 

left and right) that provided instructions for updating the grid location, intermixed 

randomly with plus signs that signaled participants to increment the number.  They were 

to press a button after each stimulus display as soon as they had updated the appropriate 

counter.  Participants who maintained separate counters observed a reaction time cost 

when switching from one counter to the next as compared to updating the same counter 

twice in a row.  However, participants who adopted a strategy in which they incremented 

a digit located inside of a spatial grid (thereby binding the counters) did not experience a 

cost when switching between counters (Bao, et al., 2007).  Thus, an important question is 

whether certain strategies can encourage the binding of attentional sets in visual search, 

thereby potentially eliminating set-specific capture costs.   

 A third important problem to explore is learning the neural correlate of the focus 

of attention.  To find its location using our current behavioral paradigms, one could use 

fMRI to compare activity under conditions in which only a single attentional set enters 

the focus of attention (e.g., “AA” or “AAA” trials in Chapter 5) with conditions in which 

multiple attentional sets enter the focus of attention (e.g., “AB” or “BAC” trials in 

Chapter 5).  This contrast would likely result in the region(s) supporting the switch into 

the focus of attention.  As mentioned previously, evidence exists that the focus of 

attention is in the IT cortex (Nee & Jonides, 2008).  However, it is possible that the focus 

of attention is instantiated differently for different kinds of stimuli.  For example, for 

attentional sets related to listening (e.g. see Chapter 2), the focus of attention might be 
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part of the auditory cortex.  Regardless, a good test of our model would be to measure 

whether our manipulation coheres with the existing literature on the neural correlates of 

the focus of attention.  

 These studies and others will help us further understand the link between attention 

and memory, and how these systems act together when multiple goals drive behavior.   
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