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ABSTRACT

A theory of the influence of the enviromment on y-y angular cor-
relation is presented. The theory is formulated by using the resol-
vent method, and the attenuation coefficient of the perturbed angular
correlation function, which contains the effects of the changes of
the states of the enviromment on the angular correlation,is obtained.
In the solid environment, the effects of the lattice vibrations on
the magnetic dipole-dipole coupling and the electric quadrupole coup-
ling have been analyzed by using the normal mode expansion of the
lattice displacements; and the perturbed angular correlation func-
tion is shown to be a function g the crystal temperature as experi-
mentally observed.(9)

In order to determine the nuclear electric quadrupole moments in
an excited state, which cannot be done by the usual microwave methods,
a rotational technique is suggested and the theory has been developed
for the case of asymmetric crystalline fields. For the special case
of axially symmetric crystalline field, the present theory predicts
the phase shifts in the rotational pattern of anisotropy, which agrees

(8),(19),(20)

with the observations by the Zurich group.



I. INTRODUCTION

It was first pointed out in 1940 by Dunworth(l> that the coinci-
dence measurement of two radiations emitted by a radiocactive nucleus
shows a correlation in their relative propagation directions. In the
same year the ploneer theoretical study of this angular correlation

(2)

phenomena was made by Hamilton. In this first theoretical paper
Hamilton used the time-dependent perturbation theory and the result
was restricted to the case when the intermediate state of the nucleus
in the cascade is completely unperturbed. However, the experimentally
observed angular correlations do not agree well with the theoretical
predictions based on that simplifying assumption. Many observations
are found to depend on the physical and chemical nature of the sources.
Therefore one important aspect, to which attention was drawn, is the
possible influence of extranuclear environmentson the angular correla-
tions.

In 1946 Goertzel 3) first made the theoretical investigations of
the perturbations of the angular correlations by the hyperfine-structure
interactions and externally applied magnetic fields. In his paper
Goertzel followed closely Hamilton's approach and showed that only for
an extremely short nuclear lifetime in the intermediate state would the
correlation be unperturbed. The first efforts to look at perturbation

(1)

were made in 1951 when Frauenfelder suggested that the after-effects



of B-decay or K-capture could perturbe the angular correlation. The
experiments showed indeed that there are perturbations, although the
experiments were not conclusive whether all these perturbation effects
were due to after-effects or due to static quadrupole interactions.
K. Alder<5)’(6 in his two papers reformulated Goertzel's results and
showed that the effects of the extranuclear perturbation can be factored
out as the so-called attenuation factor.

Abragam and Pound,(7) in 1953, reformulated the theory so that
it can be used to describe the effect of the electric quadrupole inter-
actions in liquids. In the same year Alber-Schonberg et gi.(S) in
Zidrich performed the most conclusive experiments on the effect of the
guadrupole interaction in a single crystal of indium. In their experi-
ments a metallic indium single crystal of axial symmetry was used and
the rotational patterns of the anisotropy with respects to the rota-
tions of the crystal axis were observed. According to the theory one
always predicts the maximum anisotropy at the zero degree of rotation.
However, Alber-Schdberg's observation shows a phase shift in the rota-
tional patterns.

Recently Ouseph and Canavan 9) have observed the temperature de-
pendence of the anisotropy by using a hafnium single crystal. Saloman
et gi.<u) (1963) have also observed the temperature dependence of the

181
anisotropy in case of Ta in a pure Hf-metal. They also found the

same deviation from the Abragam and Pound's theory as found by Sommer-



(10)

feld and Schecter.

According to Goertzel and Abragam's theories the explanation
of the observations by the Zurich group and Ouseph et al. remains un-
clear. The after-effects of P-decay or K-capture will disturb the
electronic shell and produce a magnetic shell which can cause a strong
perturbation of the angular correlation. However, for long-lived
isomer such as 48 min Cdljj'the perturbations induced by the after-
effects are unlikely. On the other hand a purely static electric
interaction in the intermediate state is also unlikely. The thermal
vibrations of the lattice points will change the electric field gra-
dient at the position of the decaying nuclei and also produce the gpin
relaxation effect due to the interaction between the nuclear spin and
the vibrating lattice system. That is, the decaying nuclei are in-
fluenced by different field gradients rather than a unique static
field. Thus it would appear that the thermal vibration of the lattice
is mainly the mechanism which causes the deviations from the theory.
Therefore it i1s desirable to have a perturbed correlation function in
which the effect of the lattice vibrations has been explicitely built
in.

In this thesis the theory of the perturbed angular correlation
is formulated by using the resolvent method. In this formulism the
energy level displacements and the spin-lattice relaxationg due to the

thermal vibrations of the lattice system have been explicitely built



in the perturbed correlation function. As shown in the Section VIII,
the difference between the present theory and the Abragam's formulism
appears only in the last factors of the attenuation coefficients. In

Abragam's formula the attenuation coefficient contains a factor

- ~/
. L "i v s 7w, _ (1.1)
$ymfb><b1ji ><gom [E>BNM AL/ = ( é;y(@ £ )j/

while in the present theory, instead of the expression (l.l), we have

GRSy rsCim TRS Ty

4%?// (# N -
X/&‘{//c_?VZj% +</K7f/l7£))7 #2 Z:Vj]'

(I R P ~

- —f— —_ c 1.2)
(R TEx 7S T(Vi))?. (&/(sz)rzfj (1.2)
In the expression (1.2), the effects of the dynamic part of the

perturbing interaction on the angular correlation are described by the

NC
thermally averaged energy level displacement function <SK(V% )>T and
NC
the relaxation function < :K(Vf )>p

In Abragam's formulism the coupled state i1s avoided and the
effects of the changes of the environments on the angular correlation
are ignored. Therefore, e.g. for the solid state environments, the ex-
pression (1.1) cannot describe the effects of the thermal vibrations

of the lattice system on the correlation function and cannot predict



the temperature dependence of the anisotropy as experimentally obserwved.
However, in the present theory these effects are systematically built
in the attenuation coefficient. One also sees clearly that the ex-
pression (1.2) predicts the temperature dependence of the correlation
function.

In fact the present theory is specially suitable for the solid
state environments in which the perturbing interactions can be naturally
decomposed into two parts. One part corresponds to the coupling Hamil-
tonian v@c when the crystal is considered as a rigid lattice system
and the other part represents the dynamic interactions VEC induced by
the vibrations of the lattice points about their equilibrium positicns.
The effects of the lattice vibrations on the magnetic dipole-dipole
coupling and the electric quadrupole coupling have been analyzed by
using the normal mode expansion of the lattice displacements as shown
in the Section IV.

It is a well-known fact that the mechanism of nuclear quadrupole
coupling in angular correlation is specially suitable for the investi-
gation of the electric moments of a nucleus in a short-lived excited
states. This cannot be done by the usual microwave technigues. S0
a particular emphasis is given to the effects of the nuclear electric
gquadrupole couplings and the functions <SK(V§C)>T and <FK(V§C)>T have
been calculated in detail for the solid state environments as shown in

the Section IV. In order to determine the nuclear quadrupole moments



in an excited state a rotational technique is suggested and the theory
has been developed for the case of asymmetric crystalline fields. As
shown in the Section V, by introducing three sets of coordinate sys-
tems, the rotational dependence of the angular correlation has been
investigated for the solid state environments with asymmetric crystal-
line fields and the functions < (VNC)> and <T (VNC)> have been cal-
' S T /7T KMV /7
culated as a function of the Euler angles between the three coordinate

systems. This aspect of angular correlation studies has not been

previously considered.



II. THE THEORETICAL INTERPRETATION OF
THE ANGULAR CORREIATION MEASUREMENTS
A. THE STATES OF THE PHYSICAL SYSTEM
The physical system which we are interested in here can be decomposed
into two components. One is a radioactive nucleus and the other compo-
nent is its environment which can be the electronic shells of an atom or
ion, a molecule, a liquid or a lattice system of a solid. Now let us con-
sider a radioactive nucleus, which is sitting at a crystal lattice site,

undergoing a cascade y-ray decay

A" 55 4
N ¢ e X,

*
We assume that the life time of ZXA is long enough so that the
B * . .
interactions between the nucleus ZXA and the crystalline fields measure-
ably perturb the angular correlations of the cascade 7y's.
In order to describe the events of the whole physical system, the
quantum states of the system are designated according to the energy

levels of the radicactive nucleus in the cascade decay.



(1) (2) (3)

[?omposit% Radioactive Nuclea%} [ Quantum Numbers for thé]
State Energy Levels LComponents of the System
(a) (o) (c)
Radioactive] [Emitted]
f Crystal
L Nucleus y-ray - L .
185> (33myq) (o)
//’”/ (kihs)
> (3m) (@)
—
7
L (koh2)
AN
4 -
B> (Jgme) (or)

The whole system ig visualized as existing in any one of these
three composite states fﬁi>, lB> and IBf> corresponding to the intial
state, the intermediate state and the final state of the radioactive
nucleus in the cascade. The eigenkets l51>, [B> and le> belong to an
orthonormal complete set of eigenkets {IB>] which satisfy the eigen-

value equation;

Holp> =55 16>
The Hamiltonian H, is a part of the total Hamiltonian 7{, of the

whole physical system, i.e.,
o , _—
% :HO7L [//
and
~ c Y~
H,=H"+H +/ +V.
1)7':::-E/-f/1# - FNC
T

/



where HN is the Hamiltonian of the radiocactive nucleus and is taken to
be a function of the internal degrees of freedom of the radioactive
c

nucleus, H is the Hamiltonian of the lattice system and is taken to

be a function of the external degrees of freedom of each lattice point

including the radiocactive nucleus, Hy is the energy of the emitted pho-

tons, and V 7 is the radiation interaction Hamiltonian of the radio-
. NC VNC . .

active nucleus. The quantities Vb and .+ are respectively the static

part and the dynamic part of the interaction Hamiltonian between the

radiocactive nucleus and the extranuclear fields.

Furthermore we define the following orthonormal complete sets of

eigenkets {|{im>), {(lo>}, {Inklkl’ n£2x2>} and {[{jm™>} such that

HIzimy> = By 15m>
%7/§7C<,:> = ZEEE(/Q>(;> /
r Aw —\
/—f’/ZZﬁﬁ,’a%Z%Q;> “"‘(;gE;/CZ%/L4%;C%4% 7%5%%; 3%%/@;%?C77€2,)X
| 'X/Cazé%f/522/i2:>.fff
== ‘__)k“ 2/
RS

(" V9157 T> = EeriCriT >

can be solved. Then the eigenket ]B> can be expressed as the product

and

of eigenkets appropriate to each component of the physical system, i.e.,
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B2 =171 Ty U, >
SIRCSI 7>,

where K stands for ({jt), then

Hig>=(Exrbatly, +E , )I8S

The @'s are a get of quantum numbers which define a quantum state
of the lattice system. The quantities j and m are respectively the
angular momentum of the radicactive nucleus and its component on a
quantization axis. The eigenket Inﬁl%l, nggxg > defines the eigenstate
of the cascade photons and Men is the occupation number of photons of
wave vector k and polarization A.

In this representation the eigenstates corresponding to the initial
state, the intermediate state and the final state of the radioactive

nucleus can be expressed as;

1> =K 3105108y Ogy >
AK§;> :::/cﬁ(i>>/(><;>‘/ 4%’%” C?ﬁi~%2.;§
//éc>:///\§£>/0](¢>//f/% ) /£3&>
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B. THE ANGULAR CORRELATION FUNCTION
An experimental arrangement for the measurements of the direc-
tion-direction angular correlation can be sketched as in Fig. 1.

Dyyrecorder

Dy-detector

[ B1) iy i l(—l Coincidence-
- recorder

‘ (Coincidence-circuit, R
I8 > : Te b N (ko|ki)
Nc(EaTclkl)

B > V—\;;\\‘H - f -

> 1\'T2(1_<-‘_2)

Do-detector

Do=recorder

Fig. 1. Schematic representations of the measurements of y-y direction-
direction correlation.

As shown in Fig. 1, the quantity ﬁl(gl) indicates the counting rate
of the first emitted photon of wave vector ki and NC(Eglg;) indicates
the coincidence counting rate of the cascade decay of yi(ki) and 7x(ks).
Since only the directional correlation i1s observed 1t is necessary to
sum over all the possible polarizations of the emitted photons. Then

Nl(g;) and Nc<£2!§;) can be written as

Nk )=, N (D)
A
/\%1(62/23‘;:::;§::/Né(fﬁ;45//2%‘%/) )

Az
/
where Nl(klkl) denotes the counting rate of the first emitted photon

of wave vector ki and polarization Ay and Nc(ggkgig;%l) denotes the
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coincidence counting rate of 71(§1%1) and 72(52%2). The quantity 7.
is the resolution time of the coincidence circuit.

This 1s the characteristic time of the instruments and we sup-
pose that T.>> TN, TN being the mean life time of the radicactive
nucleus in the intermediate state of the cascade decay.

It is important to consider here the time sequence of the coin-

cidence measurement processes.

-l Counting Time ’]
t'-'r.
i "
¢ . - | ] * : H
121 3 3 i N, -1 N,
jo— T

TNl Teo << TN

Fig. 2

As shown in Fig. 2, during a counting period the first detector
D; 1s suppost to have detected 7, at the moments ti, ta,...; tN;.qs
iy, Once the first detector has detected a y3;, it almost simultane-
ously opens the coincidence circuit for a small time interval of 1.,
the resolent time of the coincidence circuit. During this small time
interval, if the second detector has detected a Yo, a coincidence will
be registered by the coincidence recorder. Therefore one sees that
the coincidence counting rate ﬁc(Kg{Bl) is directly proportional to

-
Nl(kl). For a direction-direction correlation measurements one can de-
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A A
fine a correlation function w(EglEl) by

N ()

., A A

W?f;/{:,):: Nc(’ﬁ/f?/[ (2.1)

Here W(E;]Ql) is actually the conditional probability to detect
the second y-ray of ko following the detection of the first y-ray of
ky within a certain small time interval. In general it will depend on

AN
the resolvent time T, and TN. But in the limit of T,>> ™N? W(&zié})
will depend ¢only on the properties of the radiocactive nucleus and its
environment in the intermediate state.

If the temperature T of the source is such that the quantity kT
is much larger than the nuclear energy level splitting duve to the in-
ternal fields of the source or an external fields, then the nuclei in
the source are not oriented and the counting rate of the first radiation
will be isotropic and Ni(ki) becomes Nl(gl), i.e., independent of direc-
tions of k.

Furthermore, if the counting rate of the first y-ray is a constant
in time and the counter is not sensitive to the energy of the emitted
photon, then ﬁl(kl) is a constant Nl.

Based on these assumptions the coincidence counting rate ﬁc(gglkl)
also becomes a constant in time NC(EQIEA) throughout the experiment.

. N
For a small time interval Tt the counting rate NC(§2|§1) can be written

as;

LA q A
. U N, Z? T —AL 7@ o (2.2)
/\é(/é_,/i/?/)__jg | L(5 0%, )-'g/\é(' D/t 4;0) (22
) Az
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Then the direction-direction correlation function, defined by Eq.

(2.1), becomes

4 — V. 7é? 5 ;T — 25\ 1f
W@/_/P/’} ::L\_/ C(—Z/)Z/f/a//\?)z /Vc(ﬁzgz/_/ﬁ%) . (2.5)
A9 )

12
Any prediction about the behavior of a physical system is ex-

pressed as the mean value of a suitable operator. One must construct
A N\
an operator Q(Egkglg;%l) such that the mean value of this operator cor-
AL N
responds to the correlation measurement of Nc(ggkglgl%l,t). Then one

has

Nelooold; 1) = TRl Qo 1%, D)), (2w

where D(t) is the density operator of the system at time t and satis-

fies

1ADW) = (76, 0] . (2.5)

If‘?%gis not an explicit function of time, then the solution of

Eq. (2.5) can be expressed in terms of the time evalution operator

.D(Z-ff),.——:[/?ZJDm‘)U;’Z), (2.6)

and 'EQ?
= e

Combining Egs. (2.3), (2.4) and (2.6), the correlation function
can be expressed as

A 4 . / . 4? /) :
Wit/£,) 3 %ﬁ,‘ e @"222/ £ Z’Z/(@D/o)[/?%——@rajj (2.7)
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The operator Q(k 2%2]klkl) can be chosen as

Vs ils,) = )00, AH2,) QB ) (2.5

A +A
where (/(kA) and (k\) are the conventional photon annihilation and
creation operators. Using the representations defined in Section I
and ignoring the off-diagonal elements of the density matrix, the

trace of Eg. (2.7) can be expressed as,-(ll),(lQ)

Wil )-—w//_,z_/ %)@/U(@/& SRUD S BTy T (29)
In Eq. (2.9) we have dropped the factor Nl which is only a multi-

plicative constant in the correlation function.
The density operator D(o) describes the statistical mixture of the
states at t=o. At this moment the system is represented by an ortho-

normal complete set of eigenkets {|Bi>} and D(o) can be written as

Do )P >
) = é_, 18" Pfﬁ%ﬁi , (2.10)
where P(Bi) is the probability that the system is in an eigenstate

|B§>. The diagonal elements of D(o) become

<pelDeef; > = p(ﬁ. ). (2.11)

Substituting Eq. (2.11) into Eq. (2.9), the direction-direction

correlation function can be expressed as

Wf?/ ——ZJZ/Pﬁ) /</52/u?2~)/@>/

(2.12)
% B 4
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Essentially our problem has been reduced to the calculation of the
absolute square of the off-diagonal matrix elements of the time evalu-
tion operator U(r). By means of the resolvent method the off-diagonal

(11),(12)

matrix elements of U(T) can be calculated as [Appendix I];

™

AU _| 5 Vel i
o4~ ). (2.13)
T BHA: f, 'E 7%6/(‘%) % B/
with

2

Z/M )_ﬁ fs + /m%é %ZM/% ) (2.14)

and

V=V e (2.9)

C



ITTI. THEORY OF THE INFLUENCE OF
EXTRANUCLEAR FIELDS ON
ANGUIAR CORRELATION

Fig. 3. Geometry for finite solid angle subtended by the detectors at
the source.

By substituting Eq. (2.13) into Eq. (2.12) and taking into account
the angular resolution and the efficiency of a detector for a y-ray the

direction-direction correlation function can be written as;

A 4 - —\ B
Wit 5 £ o0 5 Ea Tt ECRT)

2 %2 Boff

L7
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3 Vﬂ Vﬂf 5.8 %’ﬂf
P
@—.— R /QE)/[E &, ‘—-//4 )] i ), 51

In Eq. (3.1) the zg: denotes the summation of directions of the
ki1€Ak

first y-ray over the finite solid angle QDl subtended by the detector
D; at the source and the summation of all possible energies of the
first y-ray, Z;(XlTl) and <£KX2T2) are respectively the efficiencies
of the detector D; for the first y-ray and of the detector D, for the
second y-ray. These efficiencies are functions of the distance tra-

versed by the y-ray inside the detector and can be expressed as

T,
éi(ﬁx)Qs) =/-& G

-75272

and

E(IZLZ) / — &
where T3 and T are the linear attenuation coefficients of y1 and 72
in the detectors D; and Dy respectively, x; and xp are respectively the
distances traversed by 731 and ys inside the detectors Di and Dy and can
be calculated as a function of the thickness t and radius y of the de-
tectors and the angle B‘s.(29>

The quantity 4 75(-1E5i) ig given by Eg. (2.14). It will be shown
2

in thenext section that Eq. (2.1L4) can be expressed as

LY -i5) =SV + ST 12 //71 /W,/Z (3.2)

In Eq. (3.2) the quantities sB(vﬁc) and SB(Vy) can be interpretated

as the energy level displacements of the nuclear level corresponding to
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state IB> due to the dynamic part of the coupling between the radio-
active nucleus and the crystal and due to the radiation interaction

" . /A C ya
V. The quantities 3 FB(Vf ) and 3

rg(V’) are respectively the level
width due to the VSC and Vy. For our purpose we will only note the
existence of SB(Vy) and will not be concerned with its effects. Then
the correlation function can be written as
Wkrh)=2, 5, 5 3 PaiEcat)E B 7))

fek ket 33, B el

#
NG, /M,c;, s ,/ijk/j
#/L‘%@(VJJZE" ”"‘/S/( /#7‘/(;&/7(7’%/(
(3.3)

+7 @”ﬁujf - &)

(1)
It has been shown that VW can he separated into two parts when

the nuclear momentum is very small compared to the nucleonic momentum,
one part depends only on the external degrees of freedom of the radio-
active nucleus and the other part depends on the internal degrees of

freedom of the radioactive nucleus, i.e.,

V/—- Sl VUV) (3.4)

The factor V(y) in Eq. (3.4) depends only on the internal degrees
of freedom of the radiocactive nucleus and the photon field. The vector
Y is the position vector of the center of mass of the radiocactive nucleus

and k is the wave vector of the emitted photon.
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Using Eg. (3.4) and making the expansion

K> :; lim><mirc> (3.5)

* 7*
the factor Vgiﬁvgﬁfvgiﬁl VBle in Eq. (3.3) can be expressed as

o ~¢f: %
VB UL, = <o oede Fhs

b

S .
x<&x/ e ‘= 2}%’&(%/ €€':é‘*y}o</)x

QJ/ IR Kl s<gm TR >R g ox
/”2/ M’}//
'

<< ViR im ><ym TV 1jim: 5 «

o o
X< Violgm>}nm Vogms>,  (5:6)

The quantities Eg, Eﬁi and Eﬁf in Eq. (3.3) are the eigenvalues

from the following equations;
/-/o//g> ::E/é//@>/ (3.72)
Ho//ﬁ>:§4'//ﬁd>, (3.70)

and

H 16> =L 16>. (3.7¢)
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Substituting
N N c
H=H" 7 Ho+ 1

into Egqs. (3.7) one obtains;

A A A A T A

% —2%‘ :EK —E’Q +5( _éfc' 7%0%/ (3.9)
For our purpose we will neglect the interactions between the radio-

active nucleus and the crystalline fields before the emission of the
first photon and after the emission of the second photon. The proba-
bility P(Pi) in Eq. (3.3) can now be decomposed as P(Bi)=P(0t )P(mi).
Here P(ay) and P(m;) are the probabilities for finding the crystal and
the radiocactive nucleus in states |Qﬁ> and lj%mi> respectively. Then
substituting Egs. (3.6), (3.8) and (3.9) and neglecting the change of
the crystal state due to the emission of the y-rays, Eq. (3.3) can be

expressed as;

(%/’/r‘ =

cs) ./
X/ \ c7m”) A ((me J <7‘m//r> SK 1799 D> x

9 TR KK 7/'977/5/[ Epe~Epc {Cﬁé .
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SIS+ SRV

E~b +HCH G YIS+
J{_ -/
+12.[<[<T(T/;)/C)7+</Z(V}£7@) X

ngE/g.—E/?—/hfc%, _%C%Z) .

(3.10)
where
Nmm's =;; L ) gm 1 VIR i >«
x<gm') Vi DI 7’2')*, (5.11)
2
Nemm') E %;q;@/ Vi 1im >«
<G/ Ve inr’s, (5. 12)

and

AC
<'S<(T4J>7 =/92,-ZD//€)S&(ZA§, (3.13)

is the averaged energy level displacement over the initial state of the
system. In Eg. (3.10) we have assummed that the system is initially

at thermal equilibrium and doing the thermal average we have followed
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an gpproximation which is made by replacing the average of a ratio
) ) . (12)
of two functions by the ratio of the averaged functions.

The radiation interaction energy V(y) can be expressed as a con-

traction of two irreducible tensors of the same rank, i.e.;
. L M
\%¢Z =LS‘;54 > ) A opg Tng (3.14)
=-/

where br, 1s a constant and is a function of L, TL,M is an irreducible
tensor operator of rank L and depends only on the internal degrees of
freedom of the radicactive nucleus, and Al.M is an irreducible tensor
operator of rank L and depends only on the degrees of freedom of
the emitted photon.

From Eg. (5.1&) and using the equation for the rotational transfor-

mation of an irreducible tensor

Tomr = LR Tou

and the Wigner-Eckart theorem one has;

<7M/V?)’)/]4777>—2>J(—/) ,M < I, 7 Sx

LM A
. , Z
"(7”%'4/4//%)9@;(4?). (:19)

Where DLl(Rl) is a rotational matrix which transforms an irreducible
tensor in the radiation axis into a chosen guantization axis through R
rotation which is a set of Enler angles. The quantity (jml; Llu1|jimi)
is the clebsch—Gordan coefficient and <jHTLlHjL> is the reduced matrix

element of the nuclear tensor operator. By using Eq. (3.15), Eq. (3.11)
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can be written as;

/i ( ?777/477/9 =22_LD( ” )2 2 2 (—/)"7 +M):
Ay 7 A/L/M,M,’/l,/(/

* . .
4 é;AA,-M b /wg T 2,17 >

~

<< T N7 (73] L, 1597 )

v 1, /7 L/ Z'//;“
x(//ﬂ/'l,//, //4777,,)/0%%(/?,)%%/(/?,} : (3.16)

1 R
By using Racah's technique A( )(m'm ') can be calculated as
{Appendix II];
/ ]
Mt

Nowm) =1 )5 5 ) ST 175

4053

: N Ve ’ 7 V74
SIS Copg (L)l 17 m' )

W" / / y/
X //Z’A//']/ Z)-Q,,’Z;,Z’_Z‘/(/e)/ (3.27)
where
<7 \—\ 4,~M, X
2,0 ) =
C,C( 1) 5 ZH) Z, é/ AA,/‘M /@,,"MZZ X
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is the first y-ray radiation parameter which is a characteristic of
the emitted radiation and is independent of the nuclear states in-

volved in the tensition. A detail discussion and calculations of the

radiation parameters have been given by L.C. Biedenharn and M.E. Rose,(lu)
Similarly Aﬂg)(mm") can be expressed as;
/N (mw-—(’ﬁ/% %_/(-/) <7f//7‘ BSSENTNTS *
5Cya (L43) (9717 -711% mm-m ) W o 13, 7 ] )
%
X %_%:,_z;(/g)) (3.19)
and
Copgets) =250 b, by Ay iy A
47, 2 < (/) Z, “15 LM, Y -r1,-T5 X
2 "2
/ — . (3.20)
x(L217 , L3-1-5 /47, )

Combining Egs. (3.17) and (3.19), the products of the radiation

matrix elements in Eg. (3.10) can be written as;

EZPW) GmiIVes g, m ><om T Vesd 7//) .

A Az 7). @&

g IV [ym> G Ve S =

::(237;L4)ﬂ%ZL*Z);§£)‘:i) ‘zgsidzid/(i_ M e, FLS V/ ’b7

L/L/L2L27 7, Wﬂ
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X< Toy i >IN TN S<Il Tl Sl ToZ 175"

14

ngz/ (L/Z/Qd;éé(ézlz/)/j'ﬂﬁ/fj ~77] /7% “) ) x

5 (g oo VH - ) WL, 2 70 )«

W te 430Dy RO (R,

For the direction-direction correlation and thepure multipole ra-
diations with multipolarities of L; and Ly Eq. (3.21) can be calculated

as [Appendix III];

N i mm}——é./ Lyl 377 )"

<7} j-mi" 15 7] Vg 772 77 )«

X j_/yﬁ?m /52?) l{/%”%/fg B). (3.22)

Combining Egs. (3.22) and (3.10), the correlation function can be

expressed as
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/q

4 1\ J %z
Wik/%) = ,2/2(]%7 J-m | m=m)

7% ¢”4”74//</T

X (71, 7217 H 21007 )T RS T X m TR

/, A’;' :\/
K> Loy (82) Loy o (6 5 )

xfﬁ; %/@%_ Lyi1.77) (zé//)/[ 55,7

LR +< Sl %5/37'4'2*—‘6(/" V)) -2 Vﬁ]

A5 Gy #ACH S (D )mﬁ?/"/ )5 +—’;@( /75]

-2

X 5(5@ “‘5;—-%5%; -ZC??Z Y (3.23)

where

4—’“;; B
l;??/fml/é}ﬁ);%r_g// /9f)5(z[l)g( (3.24)
2,

and

}{Vzmﬁm (G %) =£ngzm(/%ﬁ)54g)@€5-%>
D

In case of unperturbed correlation and the direction of the first

K
y-ray is chosen as the gquantization axis, the quantities YVlmHTmml

(29)

(0162) and ?ng"-m(gzéz) have been calculated by M.E. Rose.
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Carrying out the integrations of ki and kp in Eq. (3.23), the cor-

relation function can be expressed approximately as (Appendix IV );

Widith)=>, 5 ) L (377 It iy
Bocnté9) Tymien @),

%

X

with

/. , \ N ! ! 7/ / 7/
]/ZW,Z("’”'?’””%W/ ;/%rj” (7717 )= /2]l x
X (7, it 3= 271 J< I IR SR 70
' .”/ / S0y __/V(‘\
x<7m /KXK&M)g[(ﬁMCJ) "‘(/_7/17)) 4

A7 _ s e -/
#2ll 7/ "Z[E;f'ér’*<’§(( 5SS Vj%]/ (5.21)
and
Ex~Eicr "Z (<7m//<></<//¢ﬂ> —<7m /K SSKY /m]x

(3.28)

4 !
X< 77/ V;//Wz),
NC
where Vb is the static part of the interaction Hamiltonian between the

radioactive nucleus and the extranuclear fields.
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In Eq. (3.26) the factors I, (Jj13j) and IIV2(jfjj) depend only
on the degrees of freedom of the successive radiations. They are in-
dependent of the external perturbing fields. The influence of the ex-
ternal fields on the angular correlation is entirely contained in the
third factor IIIy y (mm'm"m"’). This perturbation factor is the so-
called attenuation factor for the correlation function.

The selection rules of the clesch-Gordan coefficients, given in
the Appendixes IT and III, require that the indices vi and v, are even
integers and are restricted by the following inequalities;

O£ <2 oLY<2L, o
/ / / /
<oy <320/ (3.29)
<
0—‘72—-2] J O<25=2 2,
The integers Lj; and L, are the highest orders in the multiple ex-
pansions of the first and the second y-rays respectively.

For vanishing perturbation, Eq. (3.27) reduces to
ﬂ ) oww TA/ 2 VA w s
W,yz(%mmm ) z/—%—-)(/m,/—w /2)m=m’ )x

X/j}f?/'/"m///%z M—myé:m/ 4?7”:)')4// (550)

where ™ 1s the mean life time in the intermediate state of the radio-
active nucleus. Substituting Eq. (3.30) into Eq. (3.26) and making use

of the orthogonal properties of the clebsch-Gordan coefficients and the

addition theorem of the spherical harmonics and ignoring the angular
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resolution corrections one can easily show that Eg. (3.26) reduces to

the unperturbed angular correlation function

2
W(f}/f,)-f;@ 0:77) g i) 5 (cos s ) (5.51)

Equation (5.31) is the well-known unperturbed correlation function

which can be expressed as the sum of even Legendre polynomials.



IV. THE ATTENUATION COEFFICIENTS

As shown in Eqg. (5.27), the total influence of the extranuclear
fields on the angular correlation can be factored out as a perturba-
tion factor. This perturbation factor depends primarily on the
strength of the interaction and on the length of time it can act on
the nucleus, that i1s the mean life of the intermediate state. For a
static perturbation, the angular correlation is measureably perturbed
if wry 2 1. Here the magnitude of the perturbation is measured by
a precession frequency w. For a magnetic interaétion ® is equal to
the Larmor frequency. In case of the electric quadrupole interac-
tion w is proportional to the nuclear gquadrupole moment in the inter-
mediate state and the electric field gradient. For a time-dependent
perturbation the magnitude of the perturbation is characterized by
a relaxation time y such that when yTy2 1 the angular correlation is
perturbed. This criterion of measurable perturbation depends on the
sensitivety of the experimental arrangement. With the present ex-
perimental techniques the limits are given by wry 20.01 or YTN ZO.Ol.(l5>
The precession frequencies for a large number of solids have been meas-
ured by microwave and nuclear resonance techniques. . For quadrupole
interaction, values for w/2r as large as 3000 MC/S have been observed.

12

According to our criterion, cascade with a life time Ty R10™“gec

can thus be measurably perturbed.

31
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For a radicactive nucleus sitting in a lattice site the possible
extranuclear perturbations will be the atomic hyperfine interaction,
the nuclear magnetic dipole-dipole interaction with the surrounding
nuclei (or the magnetic interaction with an extranally applied mag-
netic field) and the nuclear electric gquadrupole interaction with the
crystalline field. In our discussions we will focus our attention on
the interactions between the radicactive nucleus and the crystalline
fields.

By substituting V=V7+V§C into Eq. (2.14), the function

A X e
< > 7K(_LE3i) >p defined by

<32’€)/C(—4‘<%, ) ” =; _P/ﬁ ) 2£}//< (—4'% ), (k.1)

can be expressed as;

‘ _ C
Bl =GV FYV, e

By s M

2
- <V, TN KBI Ve 185
<t (,P/)’;> :::/K;qugzijuz%/.) T
2 T A=>0 /? 2 == ) (k.3)
K 7 > /EL /65#/5 %. %,f,ﬁa

S, e
it %~ 5,71 )

In Eq. (L.2) we have neglected the changes of states of the lattice

system due to the emissions of the cascade photons. The eigenkets |B>'s

in Egs. (4.3) and (L4.4) should be replaced by the expansion
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B> =203 T T WIS (1.5)

In the following, we will first calculate the explicit expressions

NC
for the function </% 7K(V} )>. for the nuclear electric quadrupole

T
couplings and the magnetic dipole-dipole couplings and then consider

in some details the effect due to the radiation interaction as given

by Eq. (L.k).

A. THE EIECTRIC QUADRUPLE COUPLING
A nucleus with spin j > 1 may have an electric guadrupole moment.
This electric quadrupole moment will interact with the crystalline
field gradient and produce energy splitting. For a static quadrupole
interaction one can show that the energy splittings are not uniform
and the states are two-fold degenerate. Thus the influence of a quad-
rupole interaction on an angular correlation can no longer be described
semiclassically by a single precession frequency.
The electrostatic interaction Hamiltonian can generally be ex-
pressed as the contraction of two tensors of the same rank,
L.(’ DO ——«
V= }, 2,("’)@ V (1.6)
jg Zd J
#20 T=t
k k .
where Q§ and V-g are regpectively the nuclear electric moment tensor

and the field tensor of rank k and can be written as;

4 bt
C;%' :=€;;3 C;b‘/27b _)f}:(/égb,ijgé/), (L.7)
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and

--/e
V§ 21 }‘:7;;/ B Be ), (1.8)

In Eq. (L4.8) we have assumed that the electrostatic field is caused
by the point charges in the lattice system and e; is the point charge
at the ith lattice point (rci:gciéci)' The charge ep is the nucleonic

charge in the nucleus at the point (rp,6p,fp). By letting k=2 in Eq.

(4.5), we have the electric quadrupole interaction Hamiltonian;

- EQ ~
:22( v (59

Fig. k4

From Eq. (ha8), one sees that the interaction depends on the
length and orientation of the relative vector oy between the radio-

active nucleus and the ith lattice point. For a rigid lattice the

relative position vectors are fixed and the interaction becomes static.
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Practically, there exist no ideal, rigid crystals and the nuclei in

the crystal experience thermal vibrations. The effect of these thermal
vibrations is to create at the radioactive nucleus the time-dependent
electric field gradients on magnetic fields. As shown in Fig. 4 the
vibration of a nucleus in a crystal is described by a vector u which
indicates the displacement of the nucleus from its equilibrium position.
Then the relative position vector between the radiocactive nucleus and
the ith lattice point becomes rei=ugeci=—U.i. Here the vector ugei is
the relative equilibrium position vector and U,j=u, - uj is the rela-
tive displacement vector between these two nuclei. When the tempera-

ture is far below the melting point of the crystal, one has uﬁk:ﬁé then

the field gradient tensors can be expanded at the equilibrium positions

as; (2T

2__(2)
Ve =V /0)+ 2 Vs L (k10)
54 z]/«y 9@4&)%[]}) ((,)Z(]//)-f- 10

where V_¢ 2 (O) is an irreducible component of the field gradient ten-
sor evaluated at the equilibrium positions of the lattice points and
hu(i) is the pth component of the relative displacement between the
radioactive nucleus and the ith lattice point. If we assume the binary

interaction potential as given by Eq. (h.8), then we have

)
QZV’.‘;Q(E’/@{.’/Q/J — 2 Vg(cc, cc/ﬁé)dr* (4.11)
%yﬂ) U7 ) DUul) Ity c) )
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From Egs. (4.8) and (L4.11), Eq. (4.10) can be calculated as

V(z) /2)(0) + 2]2 f&" (Goci - Foci ) X

Tl ) 2 () F o (k. 12)
where p; denotes the effective point charge at the ith lattice point
and Min and 73, are respectively the directional cosines of &g, in the
Hth and vth directions. By using the normal mode expansion of the dis-
placement, u can be expressed as a function of the phonon creaction

and annihilation operators

U (L) QQM g ] eqila; jj)e o~
+Q(52.//5 < Gj (4.13)

Then u(i)=u,(roc)-u;(rei) can be expressed as

,‘J - 7,
X(;"' < —OGJ'ILQ(;/)(‘: (/ 6cu._. <z _“L)ji (h.1k)

(I . . . .
where €y =7 1s the ratio of the mass of the radioactive nucleus to

My

ZZ

the ith nucleus in the crystal. In case of single crystal €4 is the
isotopic factor.
When the wavelength of phonon is appreciably larger than the inter-

atomic spacing, we make the approximation

_2/\’/9( 6; oc;) ﬁ/—(' ddc[ /_;'_Q:cé) ) (k.15)
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This approximation will considerably simplify our calculations.
Although it may break down at the upper end of the Debye spectrum,
e , A . (18)
it will not affect the results appreciably.

From Egs. (4.15) and (4.1Lk) and after some calculations one has;

L
U )=5 (1 X f'/ (7

e R N R )

(- f)

XQ}}/W‘? } (da ’66%?(/?6 )][z/ #¢ @;/; i ()]+

+a(;/c)62(02y)e “GFI, Uitie3@a, Jjd, e
x(ﬁav )]—fQ/},éch/fﬂ) ‘& ’7/—074; éclf/ié'c )/

4/
x{/ o TTE, ﬂ; vel )] (k.16)

where the quantity do; stands for (1-€.i)/2c,;-
Equation (4.16) describes all the possible two-phonon processes
induced by the second term of Eq. (4.10). The first term of Eq. (L.16)
describes the processes of creation of two phonons at the same time,
while the last term describes the annihilations of two phonons at the
same time. The second and the third term describe the processes of

creating one phonon and annihilating another phonon at the same time.

This procesgs is the well-known Raman process and is overwhelmingly more
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important than the creation cr annihilation of two phonons simul-
taneously. Thus in our discussion we will only consider the Raman
processes.

Then the quadrupole coupling Hamiltonian can be expressed as

¢ / h e . | /,'
i o ((/ N, (L.17)

with

~E¢ \ (2).. ~(2)
V (f) “’< (1) Qﬂ V() (4.18)
&2 S

and
(v ,,)

R /5;: <,\ C
Ve -“‘(77/;‘/15 /5 L %{%’X
/”%/uw(zw)fufu ]

’Y[f(u[ ‘/'/l ?§ 1 ” j’_z_/—:?)(égcg /%CC') Q;Zj)(

. , 4(’“ ),r
QA e (1.19)

\‘ [‘)

[

Here Vg (0) represents the static quadrupole coupling Hamiltonian
. : - : EQ
when the crystal is considered as a rigid lattice system and V& de-
scribes the dynamic quadrupole coupling Hamiltonian induced by the
Raman processes. Substituting Eq. (L4.18) into (3.28) and Eq. (4.19)

into (4.3), one obtains for the electric quadrupole coupling,
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Epe—Exr= 7<) mirCKlims = 77 IKSCK] jm)/

\ , (2) ' 2)
x(Jm, 28/ m) T/-}/ﬂ) I/ /7//) y (1. 20)

an

<%/m> (5 iy >/K.if*:szz§
=2 Kk mm’ z

S G2 Zmf Jgmiks<pmis) %
MY 7 ¥

(ﬁ )/ }/;/mj@cz)/%zﬁjx

R Wy Rt

) NN )+ 1)
GG Fgm)- L0 9) Aty 74 3]

(L.21)

where

icy :Z_P(WW) 7).,

7(x)

igs the thermally averaged phonon occupation number in the crystal and
Ay denotes E -Ep,.

For the summation of g in Eq. (M.Ql),one should sum over all the
possible values of g in the first Brillouin zone of the reciprocal
lattice space. However, for our purpose it is sufficient to take

Debye's assumption that the sound propagation velocity v is indepen-
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dent of the direction of propagation and of the polarization of the

wave and the freguency function is taken to be

w(—ﬂi/%j :Vﬁ‘ ()4-.22>

Furthermore the total number of nuclei in a crystal is much
greater than unity, one can replace the first Brillouin zone by a

sphere, i.e., to replace :{j by
q

Vj”{ff = %/W%/ay&(—?; ) (1.23)

where V 1s the volume of the crystal. By using the expressions (h.22)

and (L4.23) and the relation

e |
;(:?W*f(y) 4725(?/, (4. 2k)

1
where P(;) is the principal value of %, then Eq. (4.21) can be expressed

A S e EQ
Z ,C(V{))T:< K(%));KZ-}—Z/;(V))T ) (b.25)
with
&¢ 2
; _JI5AY V) n(2)
<SV\(VT I = W/V/W 4 )/A/Z/Z

2 KGRk mmy

(mn

S Yl
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x (77 zg//m) /<]M/K><K//m>/ 7/{ 7

Gy=ex’
X_Z)/dw :/ou/a/ﬂjdﬂffwwx

w/(/( o _(2(;)
/2124 f’éia,zfzfgﬁ éz ijca{ Cfé ‘:éi(zg E%Za)‘J7

Wr(){P7(0) + 1)
%W—th/—%ajkk’ ‘ (1-26)

~

7,n)

x;/g; 2 / _X_;/Q@/@Q)/ m 20/im))x
Dy d-u),

/(]M/K>(K/]M>/7f/t7/dw /dw,(

LOKK/
4£

Zda 7L6C¢ 7/—2 (; _,“L)//W(w)<77(w) -/-///)\

g/.([c( Wi e 5 o
) ?ﬁ/i/% w( 7S ‘e (7 '-QM‘)/X

5O (Fw-Fe Fden) o

For a Raman process the frequencies of the two phonons w and '

satisfy w-0' = wyyx: and ® can take all the values inside the frequency
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spectrum from Uyt to wye Here wy is the maximum frequency of the
Debye spectrum.

Equation (h°26) describes the nuclear energy level displacement
in the intermediate state due to the dynamic part of the nuclear
electric quadrupole coupling. The quantity FK(VEQ) defined by Eq.
(4.27) is actually the inversion of the nuclear spin-lattice relaxa-
tion time due to the electric quadrupole coupling.

The electric field gradient tensor appeared in Egs. (4.26) and
(L.27) is produced by the ith lattice point charge in the neighbor-
hood of the radicactive nucleus in the absence of the nuclear quadru-
pole moment and is referred to as the direct field. The direct field
will polarize the radiocactive lons and this leads to an additional
field at the nucleus oppositely directed to the direct field. This
is the so-called shielding effect.(l7) Furthermore the charge cloud
of the ion can also be polarized by the nuclear quadrupole moment.
The direct field can also interact with the quadrupole and higher
moments of the charge cloud induced by the nuclear quadrupole moment.
In some cases the induced guadrupole moment can be much larger than
the nuclear quadrupole moment and therefore reinforces the nuclear
quadrupole moment. This is called the antishielding effect.

In addition to the shielding and antishielding effects there
still exists another effect called the co-valent effect which is

usvally much more important than the shielding effect. When the lattice
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is deformed by the lattice vibrations some p- or d-like orbitals are
mixed into the origional s-like wave function of the ions, then the
electrons in the non-spherically symmetric orbitals give rise to an
electric field gradient at the nucleus which in turn can interact
with the nuclear quadrupole moment. Thus the resultant quadrupole
spin-lattice coupling can be much larger than that due to the direct
field alone. The dependence of the interaction energy on the dis-
placements of the nuclei from their equilibrium positions will in
general be much stronger than the direct field interaction. How-
ever, no detail understanding of the contributions of these effects
to the spin-lattice coupling is available to us. In order to indicate
the orders of magnitude of these effects one may introduce a multi-
plication parameter £ such that the effective point charge of the
lattice point is taken to be p; = €;e;. Then the true potential be-

comes a parametic constant times the potential of the direct field.

B. THE MAGNETIC COUPLING
The magnetic coupling Hamiltonian of a lattice system of inter-
acting spins in an external static magnetic field Eo can be written

as

H,
VM:..—V ° 4 ij (L. 28)

where

Hp
V i=-AH,l T (k. 29)
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is the magnetic interaction energy between the external static field

and the magnetic moment, i, = 7dﬁ£c’ of the radiocactive nucleus, and

DD
Vv  represents the dipole-dipole interaction in the lattice system,

2
Vpo____z ﬁ/z'%? T.7, -3 (£ 56 ) (L 24) (1.30)
Li [T = 7 /

¢7<7% vAG / '{;7?

which is responsible for producing the spin-flip in the spin system.
When we focus our attention to one radicactive nucleus, we need only
to sum the indices J over the nearest neighbors of the radioactive
nucleus. Then the dipole-dipole interaction Hamiltonian can be

written as;

DD 20n) [ ,
V =%%‘ZJ\ ____:;/ 77T __)) (;Z-C_/;J')(_-Z} 'ﬁ/'/ (4.31)
R i ’

where Yo is the gyromagnetic ratio of the radiocactive nucleus and bcj

stands for 74/7.-

The vector Tejs appeared in Eq. (h.}l), is the relative position
vector between the radiocactive nucleus and the jth nearest lattice
point as shown in Fig. 5. By taking (rcj, Ocj) écj) ag the polar

coordinates of
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X Fig. 5

the vector Ecj’ the dipole-dipole coupling Hamiltonian can be ex-

pressed as;

=7 by

%/21 )ﬂ354j t/f +C +£c,+/‘) +(,/7%~// k.32)

where;

/46] =(/—3 /6052@;/. ) ]2(: ]; / ,

V | | /

\-ij - -—‘4 (// TSRS Kj/iﬁ/i/( o e T ,,f, al. -+ ) {

\

' . N (L.33)

3 ﬂtﬁj‘ c +) g

CE‘/‘ == “2 L'% %’ C&S&C/' 6 _.__7.;2 ...Z—f J (

Dy =-F5mbly ety e “Frerd

Efj—' 25&7267/ C&S@y ?/_Z;—:]:_{\
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/:;j. = —-23-54'72%- cos (%'81ﬁjjf_zgj y

A ‘
Gc]' = """5177 f9c/ & % -Z—fcjfj/

(L4.33)

20P. . C ‘
%72/‘ =—§—5an c//‘e Lf‘éj_z_ I—j.

One sees that the magnetic coupling between two spins depends on
the orientations as well as the magnitudes of theilr magnetic moments
and also on the length and orientation of the relative vector between
them. The effects of this coupling depend strongly on whether this
relative position vector is fixed in space or changes rapidly because
of the relative motion between the nuclei due to, for example, the
thermal vibrations. The effect of these thermal vibrations is to pro-
duce a time-dependent local magnetic field at the site of the radio-
active nucleus. As shown previously one can expand the field gradient

tensor at the equilibrium position as;

V%8,
VRV A G s o

7MY

Ag shown in Fig. 5, the wvectors U, and u; are the displacements

J
from the equilibrium positions of the radiocactive nucleus and the jth

nearest neighboring nucleus respectively. Following the same proce-

dures as in the case of electric quadrupole coupling, the magnetic
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coupling Hamiltonian VM can be written as

M M DD
V=le+ (1.35)

with

24&7%)

V(o)-—- %H/IZ—f%/ZQ 7[(490//@?, . (1.36)

and

=5 fi@ 23 (& )ﬂ%
% auz;/c)wzp)] 2‘{ G/ -oc g )]

’C?:ia))}:
@’ & }/}’a )]ng/)a/ﬂjcf (4.37)

In Egs. (4.%6) and (4.37) we have defined, f(Gucj, ¢ocj,ZIC; Ij) =

A . +B.: +C

e j cj + DC.j + Ecj + ch + ch + He e

M

In Eq. (4.35) V5(0) is the static magnetic interaction Hamiltonian
due to the external static field and the static dipole-dipole couplings
. . VDD. . . .
in the lattice system and . 18 the dynamic part of the dipole-dipole
interaction induced by the thermal vibrations of the lattice points.

The quantities Acj, Bejs Cejs Dejs Ecj, Fejy, Gejy and Hej as
defined in Eq. (4.33) are the operators which acting on the spin states

IIcmc> and IIjmj> will produce the following spin-flips;
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%: ame=1, ‘W&\:// A(mc+@‘):2

/—/C/n\ ay)=-/, A”&':"/, 4/4770‘77}7: -2,

One sees that the operator ch causes no change in the spin states
and describes the effect of the static local field and B.j causes a
simultaneous spin flips of two neighboring spins in opposite directions.
Therefore the operators ch and Bej cause no change in the interaction
energy and can be referred to as the adiabatic operators of the inter-

acting spin system. The operators ch, ch, Ecj’ ch, ch and ch

will cauge the change in energy state of the coupling spins and allow

to transfer energy from or to the spin system.
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Substituting Eq. (4.37) into Eg. (L4.3) one obtains

<EQT =<S VS - BT .
(7,7)
/54//7) iy by 2,
/c)> /4/%”3//“&/(%477/:‘72/;(@0/)
MM

iy 157078

- Wy

"<’<//%/m>/ﬁfﬂ/«) &mx
fdﬂf dﬂ/ww(d +c.‘ 2(52)]

g Ly =77
X[ﬁé +é W'Z(AQ )]77 /”)[4700/7‘{]4
*"[ffﬁd —Rw’- Zﬂdm']‘ (1. 10)

and

(‘;5’:;):”:95!22 2_/4_/(% /j:m m»y/»\f

%’“?))/v //Jm/k></</] m>/fp{ajx

Wy s’
W~
fa’w 5(_(202 d@,wwﬁz‘ +5¢ —‘% @ )_]
° —Q/}} __{‘Z(é /
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where we have defined

/ . -
ﬁn'm Do '}'?)/ Nl @y £77504 f/

V7 '}([‘:\J “f‘/_'g KT —f«(wf ' _/,.(,{72
/} / /g ! L/ I/ /; Z/ ‘

AT T (Bh2)
) A 7

/

and ]Im> and IIjmj> are respectively the eigenkets of the spin operator
I of the radioactive nucleus in the intermediate state and of the spin
operator Ij of the jth neighboring nucleus.

Equation (4.40) and Eq. (L.41) describe respectively the nuclear
energy level displacement and the spin-lattice relaxation effect due
to the dynamic part of the magnetic dipole-dipole couplings. It has

(18)

been shown experimentally that this relaxation effect is inade-
quate to account for the nuclear relaxation times actually observed
in most crystals and no single example is known where the observed
relaxation could be assigned to this mechanism with certainty. On
the other hand, the electric coupling of the lattice wvibrations with
the nuclear quadrupole moments is much more important and is known to
be responsible for nuclear relaxation in many crystals.

In a strong external magnetic field the dipole-dipole couplings
in the lattice system will be decoupled and the interaction Hamiltonian
V'M of a radioactive nucleus is given by Eq. (4.29). If the external
magnetic field has axial symmetry, one can chocse the symmetric axis
as the quantization axis oz and the projection of I, of the nuclear

spin on this axis commutes with VM and they can be simultaneously

diagonalized by the representation {ljm>}. Then the perturbed cor-
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relation functions of Egs. (3.26) and (3.27) can be reduced to

Wii)=3, 5, Ty Ty Dy

Y Y mm’

X.Y:mf.m[gﬁ) _szﬁvi%/@ﬂ)) (4. 15)

and

U"”/]LM//#m—ﬁ/)(j‘”’;/'-%]gm-m/)
1 =2y H Tytm=my e

where g¥ is the g-factor of the radioactive nucleus in the inter-

(. b)

_ﬂ;{yzﬁﬁmy =

mediate state, py is the nuclear magneton and Hy 1s thestrength of the
external magnetic field.

Equations (4. 43%) and (L4.44) are the same as Alder's formulas
(Ref. (7) Egs. (9) and (10)), except in the present formulism the
angular resolution corrections for the detectors have been explicitly
established in the correlation function. It has been pointed out by
Abragam(7) that Alder's formulas are only valid if there exists an
axis oz such that the projection I, of the nuclear spin on this axis
is a good quantum number. The present results, Egs. (L4.L43) and (k4. L4L),
exactly meet this condition.

If the first detector is placed along the symmetric magnetic field,

one has 01 = $; = O and

2)/+/

yymﬁm/gﬁ/ :(477/ ’”9 ",

then by using the orthonormal properties of the Clebsch-Gordan coef-
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ficients Eq. (L4.L43) can be reduced to the unperturbed angular corre-
lation function of Eg. (3.51). This is a well-known result, that the
correlation is unperturbed by such a coupling if either one of the two

radiations is emitted along the axially symmetric field.

C. THE RADTATTON INTERACTION

For our purpose it is necessary to assume that the phenomenon
of photon transport in the system does not exist. Therefore the physi-
cal system is taken to be optically thin so that the emitted photons
escape the system without interacting with the particles in the sys-
tem.

The effect due to the radiation interaction is described by Eg.
(k.4). Wnhere the summation over By is to be regarded as a summation
over all possible sets of photon occupation numbers and over all
states of the nuclei. According to the states defined in Section I
this sum can be decomposed into the contributions arising from those
states like the initial state lBi> and those states like the final
state IBf>o The contributions from the initial states correspond to
the re-absorptions of the emitted photons by the radicactive nuclei.
Since the system is assumed to be optically thin these contributions
can be disregarded.

The contributions from the states like the final stateg can be

calculated, by substituting Eq. (3.4) into Eq. (k. k), as
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Zﬁ)é(T//r——:,SL(V))/ —¢‘§Z/Z(V§ ) (4. 25)

with

»S:(/V)// = 7/2-/%2/ 32},, L /</M/K>(K/]777>/x

Az K tmm’
PWEL A d 52 )y V) )

N N — —/
Kk g o to 5y T (1.16)

~—/7Vj 7;/'/ /_32}_14/5” -£5 -4 ';ff/;; X

7
KGR > /ﬂmz_@ )<z Vi) ym
<<y Ve lpms’s. (1.7

where V(y) is the radiation interaction Hamiltonian for the emission

of the photons, L is the quantization cell length of the photon in a

(12) N

coarse-grained configuration space, Ek is the reccil energy of the
radioactive nucleus due to the emission of a photon of wave vector k,

E%; and Ey, are respectively the first and second photon energy and

N N
EK“ and EKf are respectively the total internal energy of the radio-
AL

active nucleus in the initial state and in the final state.



54

Equation (k4.L6) describes the energy level displacement caused
by the radiation interaction of the photons. As we have mentioned in
the previous section for our purpose we will only note the existance
of SK(Vy) and will not be concerned with its effects. The function
ﬁK(vy) defined by Eq. (L.47) is actually the inverse of the life-time
of the radioactive nucleus in the intermediate state. By using Eq.

(3.19), Eq. (L4.47) can be calculated as

1

Sy ¢

2 X <\
S CEPYS

Tl T 7S Tl S gl e 1)

«W(7742 12//\ O]}) (4. 48)

One sees that the function FK(Vy) ig independent of the substates
of the intermediate and the final states but depends on the angular
momenta J and jr and also on the types of transitions.

In our calculation we will let DK(Vy) = (TN)nl and %N is taken to
be the experimentally determined life-time of the radiocactive nucleus

in the intermediate state. Then Eq. (L4.45) reduces to

(L. 49)

' \
byl

Combining Egs. (4.25), (L4.46) and (L4.2) one has
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and the attenuation coefficient of Eg. (5027) can be expressed as

a4 ! | (JVA " 2/ /,
ILyytmmimion’y =) <gm 1RSI I7mb i [ S
7 AR’

"/

KIS (s 7-m 1 2] =77 )

X (]\/77/']"777”/72 7= 777//)»<

fEetS e

\ ~ M e 3/
4[4‘_& 'E,(+<,52( ZC))T—</$<’”//:))7-.?/ ' (4.51)

For electric quadrupole coupling the quantity Ex-EK' is given by
NC
Eq. (L.20). In Eq. (4.51) the energy level displacement <Sg(V. )>p
is given by Eq. (4.26) for the electric quadrupole coupling and by Eg.
(4.L40) for the magnetic dipole-dipole coupling and the function
(ﬁ NC
> Ig(V_ )>p is given by Eq. (4 27) for the electric quadrupole
coupling and by Eq. (4.41) for the magnetic dipole-dipole coupling.
From the attenuation coefficient, given by Eq. (4.51), one sees
clearly that in the present formulism the effects on the angular corre-
lations due to the changes of the states of the environments have been

explicitely and systematically built in the perturbed angular correla-

tion function.



V. THE ROTATIONAL DEPENDENCE
OF THE y-y ANGULAR
CORREIATION

(8),(19),(20)

It has been proved experimentally by the Zurich group
that the anisotropy of the y-y angular correlation is a function of the
orientation of the symmetry axis of the crystalline field. Recently
Paul and Brumner et , Alder and Steffen(gg) have calculated the aniso-
tropy function based on the Abragram's formulism for the case of axially
symmetric fields.

In this section we will investigate, by introducing a crystal co-
ordinate system and a principal coordinate system of the crystalline
field, the perturbing effect on the rotational pattern of the angular
correlation for the case of asymmetric crystalline field based on the
present formulism.

As shown in the Fig. 6, we let xyz be an arbitrarily chosen
laboratory coordinate system, XYZ be a fixed coordinate system in the
crystal and X*Y*Z* be the principal coordinates of the crystalline
field. The Euler angles between XYZ and X*Y*Z¥ coordinate systems
are taken to be (Oﬁy) which can be determined by EPR or NMR techniques.
The Euler angles between the crystal coordinates XYZ and the laboratory

coordinates xyz can be taken to the (@,(:),O), Here the Euler angles

(cBy) are defined in a right-handed coordinate system as;

/ ?(q/ Soos g ’ W = <z wl o1/
g L nyy Ly K

56
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X*

Y*

Fig. 6

Then the rotational relations between these three sets of coordinates

can be expressed as;
(Z)

3¢ (Z) —\
Sy s LY S ) OO Sy

Since an irreducible tensor operator of rank L will transform as

L
D( ) rotational group of (2L + 1) dimensional representations under

the rotation of the coordinate system, then an irreducible field gra-

(I1) (2) o Z(II)

dient tensor of rank two vV

D(E)

will transform as

(@,(:), 0) rotational group into the laboratory coordinate system

. (LT
Z<I> under the rotation of Z( ) and can be expressed as;

’I)V (2)_—2.%‘_/,\ 2) @@O(”?V(zj
AR e

2
Thus an irreducible tensor of rank two *V in the principal

%
coordinate system 2. can be transformed into the laboratory coordinate
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system as follows

(I} (2)
"’ZDJo(‘Y//) @0) 1//-’J ) (5.2)
(1).(2)

where V.t is the field gradient tensor in the Z<I).

In a rectangular cartesion coordinates the field gradient tensors
can be defined in their principal axes by two parameters, namely the
field anisotropy n and the Z¥-—component of the field gradient. Further-
more the rotational transformation is an unitary transformation, then
the transformation of Eq. (5.2) can generally be expressed as (Appendix

v);

(I)T/(z) @)
[ = WG O B6)0)+ G O PED))] (5.3)

As shown in the Appendix V, the functions F_¢ and G_¢ can be cal-
culated as a function of the Euler angles between these three sets of
coordinate systems. With this field gradient tensor operators, the

electric quadrupole interaction Hamiltonian can be expressed as

ViS50 - Yaserson) VG5, o

where *Vﬁ ) is an irreducible component of the field gradient tensor

in its principal axes and can be expressed as

(2) i - (2)
—2.// (69: 5@4) (5.5)

the coordinates (CZ*

ol 50 ¢ci) are the spherical coordinates of the

+
ith nearest neighbor of the radioactive nucleus in the 2 .
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If we assume that the thermal vibrations of the lattice points
do not destroy the crystal axes but the principal axes of the field
gradient will lose its identification due to the displacements of the
lattice points from thelr equilibrium positions, then the electric

gquadrupole coupling Hamiltonian can be expressed as;

EQ E¢
Vi) =V, k) + VL R), (5.6)

(2 (2
(f?ﬁ) L(—-U[/—’ P{/;’J’@Oo)+7/§;@)/@/§0(ywwﬁ 57
f\ég(cg@) (/5%)2: S 2_,\ ,,)_D (5@0/«
7 7

%)%%%MﬂMW@]W
x[p{ %6}/}& )](CZQ‘*"‘€¢L;/} oujyx

‘(ﬁzgfﬁ;ZZc
X_Zf( bec, am)% Qg}ﬂ)ﬂ Cfﬂ)@ g (5.8)
where R. and Ro represent the rotations of R(0By) and R(@(:)O) respec-
tively. Equation (5.7) and Eq. (5.8) describe respectively the static
part and the dynamic part of the electric quadrupole coupling under the
rotations of the crystal coordinate system. The coordinates (éZSEi

roi ¢oci> in Eq. (5.8) are the spherical coordinates of the relative
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distance at equilibrium position between the radiocactive nucleus and
the ith lattice point in the crystal coordinate system. Since the
thermal vibrations of the lattice points will destroy the identifica-
tion of the principal axis, the dynamic part of the coupling Hamil-
tonian depends, as shown in Eq. (5.8), only on the rotations of the
crystal axes and the field gradients are expressed in terms of the
coordinates of the lattice points in the crystal coordinate system.
With this coupling Hamiltonian the function < VN )>T as given

by Eq. (L.3) can be calculated as;

_ &Y __EQ \ &Y (5.9)
Gy =S (Vk)s~LTUR)S )

&Y 72 iz X
SV, o)y =(ZEES 19>/ 532

('n, n)

PO @ A28 8.5

x(7m, 22 /j'm ) /</‘¢ﬂ//<></<’/jm’> /%

Wy =k i?
77/!%_? [ a [4afda
W' o ’;) 'Q(;)/
R P A P

)(777(60)[”7(‘0)"‘,/7/%40—%60/"{Q)/r/\/]: (5.10)

and
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/
/
yo/cu dew’ [dL 40 W'
a)KK/ h (/) /_Q/gj {//"/
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//ﬁ/“, +(C/ .’:;l.:.;;; f /:C ///ﬁ/(( 7¢ // "’l //
X 777,(&))277/_(40) TJJ(%M"ZW "Za]/r/() ) (5.11)
where

/['{g F et Z\D (ﬁ@@f; et ch_,') (5.12)

The quantity Ex-Ex: in the denominator of Eq. (4.51) can now be

calculated as;

x_ _(2)

ElKhe)-Ex (RR,) = L (RA,) -—ZJL T/ (e)%

—_ Wa’?

<G //]>[ /M/KXK/]M > = pmik < /</7m>/<

G gmll 300+ PG Lpr00e)] o
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(2)

The irreducible component of the field gradient tensor *Vb (0)
appeared in Egs. (5.7) and (5.13) is evaluated at the equilibrium
positions of the lattice system in the principal axes.

From Egs. (5nlO), (5.11) and (5.13) one clearly sees that the
attenuation coefficient - IIIV1V2(mm’m"m"‘), as given by Eq. (4.51),
is a function of the strength of interaction as well as a function of

the rotations of the crystal axis and the orientations of the princi-

pal axes of the field gradients within the crystal.



VI. DETERMINATION OF THE NUCLEAR
ELECTRIC QUADRUPOLE MOMENT IN
EXCITED STATE

One of the immediate applications of the present theory is to in-
vestigate the nuclear quadrupole coupling by means of the rotational
pattern of the y-y angular correlation. The nuclear electric gquad-
rupole moment will interact with the non-spherical electric field.
Even a nucleus, which occupies a site of cubic symmetry, will have
quadrupole coupling with a fluctuating field gradients produced by
the thermal vibrations of the neighboring nuclei. The quadrupole
coupling also gives raise to an important nuclear spin-lattice relaxa-
tion and this relaxation is much more effective than that via the mag-

(18)

netic dipole-dipole coupling even at the room temperature. As we
have mentioned previously that for a cascade decay with a intermediate
state of mean life ™ = lO'lgsec the perturbing effects on the angular
correlations still can be measured. This provides us a powerful tool
to investigate the nuclear quadrupole moment in an excited states of
considerably short life times. This cannot be done with the usual
microwave techniques.

In an experimental arrangement for the measurement of the rota-
tional pattern of the angular correlation, as shown in Fig. 7, we

choose the direction of the first radiation as our z-axis. By placing

the detector Dy, which detects the second cascade radiation, along the

63
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Fig. 7

x-axis we measure the 90° correlations as a function of the rotations,
-

@y’ of the crystal axis C which is in the plane of the detectors.

Then placing Ds along the negative z-axis we measure the 180° corre-

lations as a function of @y.

Since the y; is chosen as the z-axis, then one has ©; = 551 =0

and

YZ;M”/ (pf) —’(4/77—/ O(/;;)”/ ' (6.1)
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For 90° and 180° correlations one has

) z
Y i §-Te) =t (AL

X@ i () (6.2)

and

T 22/4/
172%4,,,7/9 7‘72-0) "‘//) '4’7/0 ) (6.3)

Using Egs. (6.1), (6.2), (6.3), (4o51) and (3.26), the anisotropy

function which is defined to be

Wik ) Wikt Z)

(6.4)
W/ﬁ/%,zj
can be calculated as
— , ,
/} _ 1%/}/7%,/)/,}2_77[ ))/%%mm) _ (6.5)
szgzm/@ (mm’j_@y@nmmW) y
where m”
A
Ay = ) Lpd7) g 47 .6
02 = BTT]) L e 7172

e (2t m) /)
B’)}ﬁ” )= (/) (7*777//777/,//‘2) '—/m(o)x

/ Vo Voo .
XLy Q) l557), (e
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The functions Fyy:(RiRz), SK( (32 ))>p and <’% FK(VEQ(Rg)) i

are given by Egs. (5.13), (5.10) and (5.11) respectively. It will be
EQ
shown in the next section that the functions <Sg(V. (Rg))> and
A VEQ

< E‘F ( (Ro) )>T are functions of the crystal temperature. Therefore
we have shown that the anisotropy of angular correlation is not only

a function of the orientations of the crystal axis but also a function
of the crystal temperature. This temperature dependence of the aniso-

tropy has been experimentaliy observed by Ouseph and Canavan 4 by

using hafnium single crystal and also observed by Sommerfeldt and

10
Scheter,(l ) by E. Matthias gi.gl,(25) and by Hewitt and Taylar.(26)
4 . EQ
In order to calculate the function <SK(V} (R2))>p one has to

assume a model for the charge distribution in the crystal for the cal-
culations of the crystalline field. The model we used is the so-
called point-charge model. As mentioned before this model cannot take
into account of the shielding, antishielding and co-valent effects.

In order to compensate this point one introduces an adjustable multi-
plication parameter £ such that the effective point charge of a
lattice point is taken to be p; = Ejeq. This parameter € is deter-
mined by comparing the experimental results and the theoretical cal-

(17),(2k)

The asymmetry of the

(11)

culations in microwave techniques.
* N
crystalline, the Euler angles between 2. and L and the Z*—=compo=-

nents of the field gradient can also be obtained from microwave ex-

periments. Once these data are available, one can find the reduced
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2
matrix element <jHQ( )”j> of the nuclear electric quadrupole moment
in an excited state by comparing the experimentally measured anisotropy

as a function of (H y with the theoretically calculated anisotropy from

Eq. (6.5).
2
Once the reduced matrix element <jHQ Hj> is known, the conven-

tionally defined nuclear electric quadrupole moment Q, i.e.,

eQ =716 177> =(77: 20177) <1 17>

or

—-———n < ‘2’//“
2/#3)(7'+! &

can be calculated.
On the other hand, for a given nuclear model one can express the
expectation values of the electric quadrupole moment operators in an

excited state and in the ground state of a nucleus as follows

(2

4_: /b % /Z Y(;’;f)%/f//t = _(]’7?2'20/}'477/‘(9\7//4)/27/0/]\> y

Z’ "0/”/ % TM /Zf ’Y(/“ z‘)-é‘w‘(z =UM/‘ 20/7+) ?gj//f 12/)4@ ‘T>/

where y&jm and EBJM represent respectively the eigenstate of the
nucleus, according to the given nuclear model, in the excited state and
in the ground state. The reduced maxtric element <BJHq(2)”BJ>, on the
left-hand side of the second equation, is the reduced maxtric element

of the electric quadrupole moment in the ground state and can be found
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(28)

by the conventional methods. Once the reduced matrix elements
< ajHQ(g)Haj > and <fBJHq(2)HBJ > are known, one expects, from these
two expressions and for a given nuclear model, to investigate some
changes, e.g. a change of charge distribution, within the nucleus
due to a transition from an excited state to the ground state by
emitting a photon. This subject is beyond the scope of this thesis.
Here we only mention the possibility for a further investigation and

will not intend to make further discussion.



VII. AN EXAMPIE FOR AXTALLY
SYMMETRIC FIELD
As an example for the application of the general theory, let us
congider a simple case of a lattice system of octahedron structure.
In a regular octahedron structure a nucleus will experience a cubic
symmetric field. However, if we assume that an axial symmetric field
exists due to a vacancy at a nearest neighboring lattice site, as

shown in Fig. 8,

Y T*

Fig. 8. An 0, point group.

one immediately has the following properties;

(1) m = 0 for axial symmetry field.

*
(2) The Euler angles between Z(II) and 2, vanished. Since the
field is axially symmetric one can cnoose X* along X and Y¥

along Y.

70
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(3) mocl =afocz

ot =Qocg A, Which is the lattice constant.

(4) pr =po=cee = pg = e, pe = O due to a vacancy at the 6th
neighbor,.

(5) €ci = €o, = *°° = €cy = 1l; €cg = 0. Here we have neglected
the isotopic effect and assumed that all the nuclei have
exactly the same mass, then

!

c{ﬂ-:O, for £ =/-5, and 545-"—"74’:— '

(6) * *
@c/=%/ 7;":0/‘
M- ’Z * .__Z/—
(gocz_‘z / 50“2—_2 /

* T * 37
(9“4-2 / %W—-Z’)

* *
ocf-—:?r/ %q’ 0/‘

2* *
(9056::0/ %c(zo'

7?2"‘ =-/, 7;_Z-+ =0, %2* = 0/‘
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_ - -~
%x’r""o/ %X’*— o, %3:\4:/ .
We then have

%V*%ﬁ =Zzzf a;}k* y
B ot =T dme,

Using these properties of the lattice system and msking use of the

and

fact that the phonons obey Bose statistics so that the number n%(w) of
the phonons of energy Aw presented in a crystal at temperature T is
given by the Plank's law
o, =/
(W) = [,ex _
M (W) ={2P(Z7 )1},

and for high temperature limit by approximating

n———

)
CPET) = 2

and

Netw) = -’é—é ,

Equations (5.10) and (5.11) can be calculated as (Appendix VI);

EQ
<'SK(Z('PZ))>T=GK(@)T,2 (7.1)

and

2

&t
<—§/Z( VL(/@))>T=B/<(’@)T y (7.2)
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with

i v /5‘%7—59&0/\4 <// = - S X
GK(/@/ —_(&/—M 5'3/ / Q // 5’272//%5&
e

S 35 ) 227 3m) s < S

MM =/

X/K/]W >/ //—(; mﬁw/ x
v 2 (7.3)
’/2 ’oq/Jélij7

and

BK (k2) )@éjﬂfqi/k///&(z}// >/ P L/

=2 Kk

"Z/ 2_, 4 /‘m/,/ 2 gé/;‘on)Z/< /%/K><K”/j>m’>/ X

Ny 4 =)

X/F(é‘f@%é‘%ﬁw/zx
X(ﬁj'—éq')ji{j)]? Y

The quantity o in Egs. (7.3) and (7.4) is the maximum frequency
of the Debye spectrum in the crystal at temperature T. Substituting
the expressions (7.1) and (7.2) into Eqs. (6.8) and (6.9) the attenua-

tion coefficiencies for the 180° and 90° correlations can now be ex-

pressed as,

Ty (i) ——Z PR K 13 m SIS <K Ui
(17 7m0 )( i) 0 )
X/[Br/c’('@) 75 A ?Z/'/j -

-/
A Ege ) + Ghes (3 7’2]/7 (7-5)
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and
L) (mimine) j% GRS KL7m > amis Sk [ 7m S
(o] J-m12/0 ) (371, 70t J2d o )
B, )T+ 2T )

| L
Yo BRI+ G RIT 2T, (7.6)

where

Gm«(”) (/5%//5?&)//( //47/2)//”/2?\2%

S’: 2477017

xZ /]‘077/,/2;/7%4) Q)k/\-/ x

(L, @ @:%'ﬁa‘}/z[{(j'_d:j , )(2

&P
[ZJ [P K V> 2
K#K
/—(% [Gm RS K Jgom >/ 2/ e
5 () = / /5*5&) <G Wy~

2
;Z'E‘ mm’ =1 Om 25)0//%)///; )/J’_?"i)])(
VPG b R[S ity

_ﬂ
'f \ ’, 9,0 P 2z
K%K/K?””/kx" [ym’>/ ] , (78)



[P

From Egs. (7+6), (7+5), (7+2), (7+1) and (6.5) one can calculate

the rotational pattern of the anisotropy as a function

tions (:>y of the crystal axes. One sees clearly that
N,

are very complicated functions of (ﬁ)y and no solution

without actually carrying out the tedious calculations

tions and the rotational transformations. However, if

of the rota-

these functions

can be obtained

of the summa-

we make some

simplifications, for illustractive purpose, a considerable simple

gsolution for the condition for
y

(6.5) without carrying out the tedious numerical calculations.

= 0 can be obtained from Eqg.

This

solution is at least quanlitatively Justified by the well-known ex-

(8),(19),(=20)

periments by the Zurich group.

cix VII, the simplified solution for the condition for

can be expressed as;

fzi; /4L()<’ J

where

X
— x
Arr’ 50%5 Vi

Ag shown in the Appen-

OA
@y

=0

(7.9)

(2)<71 ¢/ (27//‘>[< TPTIRSC KL FmS —

—< ]‘/m//k/>< K1 ]‘MZZ [ -iéé—/;mj 22/ym) —

3 . x
— e )2 !
27, 0/7»77)])

(1.10;
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/ 154V Seltl2 2, . ), 2
Gix(0) = Z(g%%’;;;’/ KA 17>] x

S 2
2 (7m 28 jm) Wiex’

m =1

2
x,
$=-2

L0, B o) UL 0,6, D)

X (’122 \2 2r \ < w2
[ _,c‘?/_)@[; )/ @:k [$FI <Ky

M

N

=3 [Kgm )R>k mS)? (.11
K%( g/ ]m>/JJ 7.11)

and

@), 0.0.)=5D" v
5@;/ 2l occ)-‘%_/ ?_34/0/@?/0)_[_39[62@;3“)'(7-12)

The quantities [(:)y]max, as given by Eq. (7.9), is the angle of
rotations of the crystal axes for the maximum anisotropies in the rota-
tional pattern. From Eq. (7.9) one sees that when the crystal can be
considered as a rigid lattices one always has [(:)Y]max = 0 and Goert-
zel's and Abragam's theories can only predict this result. However,
the present theory predicts for the rotational pattern of anisotropy
the phase shift due to the thermal vibrations of the lattice points
as given by Eq. (7.9) and this simplified solution also predicts the
T2 dependence of the phase shift.

The phase shift in the rotational pattern of anisotropy are ex-

(8)
perimentally observed by Albers--Schonberg's et al. by using a
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metallic indium single crystal containing the radicactive Ip"'. From
the present theory, the phase shifts observed by Albers--Schdnbergs

can be explained as due to the thermal vibrations of the lattice points.
The effect of these thermal vibrations is to produce at the site of the
radicactive nucleus a fluctuating electric field gradients which are
responsible to produce the phase shifts in the rotational pattern of

anisotropy.



VIITI. COMPARISON WITH OTHER
PERTURBED CORREIATION
THEORTES

The theory of the influence on angular correlations of perturb-

ing interactions in the intermediate state was first investigated by

(3)

in 1946 for the case of hyperfine-structure interacticns.

(5),(6)

K. Alder reformulated Goertzel's results and extended that

Goertzel

treatment in a way which very clearly displays that the effects of
extranuclear perturbation can be factored out as a so-called attenua-
tion factor. However Alder's results are only valid if the extra-
nuclear fields are axially symmetric. In 1953 Abragam and Pound(7)

extended Alder's formulations to more general perturbations and their

result is written as

- ‘ _ .y A
W = 1% ) [[(%,) T k%, 4 4) r;?@,u;/%.@% (8.1)

with

I AR fody )= (T mud, |14 )

Y

x( IRy m iy | THh, Tom J<m/b><bjm” > x

"/ /s T -/
5 1 s m5) ) - ENE -5 )T )
16> 1>/ / 4(25//5 A’), )
where all the repeated indices should be summed over and Ep and Eb‘ are

two eigenvalues of the perturbing Hamiltonian A which is taken to

78
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be static.

According to Abragam, T the procedure for deriving the above
formula is as follows: one first starts with the well-known expres-
sion for the unperturbed angular correlation and then assumes the
presence of an interaction of the nucleus in its intermediate state
Ijm> with some extranuclear fields. This interaction, which was de-
scribed by the Hamiltonian éf , 1s assumed to act from the time the
first radiation is emitted until the time at which the second radia-
tion is emitted. During this time interval the state ]jm> changes
to different state |jm'> under the influence of the extranuclear per-
turbation. This change was represented by a time evolution operator
which was simply taken as U(t) = exp (-{& t/A) for the static inter-
action. TFinally, for the resolving time of the coincidence system
is much larger then the life-time of the intermediate state, one
performs the total-time integration for the delayed coincidences
and obtains the perturbed correlation functions as given by Egs.
(8.1) and (8.2).

On the other hand, the results from the present systematical
treatment can be summarized as

/Z A A Z ] b AR
Wl) =3+ 21, Lyptd71) Iy (777)

/)

7/2’»17
m m

v A:('
iy (i ™) Lty (4 F7)

X_Yj—ém”-mo /@ﬁ)) (8.3)
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with
ILsyytrmmimm) = 3 (i) jom13) oot
. (771, ] -mm /4’7‘”7)’\'
R

x (77 =) Ky =i )< 7m IS A<y
x <7 IRS< /T 7mm "> x
/JC[(FV» HIAS #2227, j
/
—z/Z?—: +<S(V)> —(S (VDJJ?

First of all it should be pointed out that Egq. (8.1) from the
Abragam's formulism and Eg. (8.3) from the present theory are equally
valid for either axially symmetric or ansymmetric extranuclear fields.
The general expressions for the perturbed angular correlation, as
shown in Egs. (8.1) and (8.3), have the same form and the factors
I(k1) and II(ks) have exactly the same definitions as the factors
Ivl(jijj) and II,,(Jj;13j). However the difference appears in the last
factors of the attenuation coefficients, namely in Abragam's for-

mulism the attenuation coefficient contains the factor

(7m/b)<b/jm’}(jn¢no75><é/j4n)[/ rZ = )( // (8.5)

but in the present theory we have
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JMIRSK IS Gm | > o gmn” > X

iy
X/?[((ﬁ TFs +< [T #27)]

S . - sNC - NC /
'*4[@7\:* Lot ¥ @%( A ))yu.”(/\i/(jﬁ/,('f)/%/} ,, (8.6)

The eigenket [K>, in the expression (8.6), represents an eigen-
state of the coupled system due to the static part of the coupling
Hamiltonian between the radioactive nucleus and the environment. The
effects of the dynamic part of the perturbing interaction on the cor-
relation are described by the thermally averaged energy level dis-
placement function < SK(V§C)>T and the relaxation function <PK(V§C)>T .
In Abragam's formulism the coupled state is avoided and the effects of
the changes of the environments on the correiations are ignored. There-
fore for the solid state environment Eq. (8.2) cannot describe the
effects of the thermal vibrations of the lattice system on the correla-
tion but in the present theory these effects are systematically built
in the attenuation coefficient. In fact the present thecry is
specially suitable for the solid state environments in which the per-
turbing interactions can be so naturally decomposed into two parts as
shown in the Section IV. One part corresponds to the interaction
Hamiltonian V§C when the crystal is considered as a rigid lattice sys-

N
tem and the other part represents the dynamic interactions V} in=-
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duced by the vibrations of the lattice points about their equilibrium
positions.

Furthermore in the present formulism the angular resolution cor-
rections for the detectors, as shown in Eg. (8.3), are also system-

atically built in the correlation functions.



IX. CONCLUSION

The present theory of the perturbed angular correlation is de-
veloped based on the resolvent method. In this formulism one has a
systematic treatment which contains a description of the effects of
relaxation on correlations.

As shown in the Section VIII, the perturbed angular correlation
functions obtained from the present theory and from the Abragam's
formulism have exactly the same form and are equally valid for either
axially symmetric or asymmetric extranuclear fields. However, the
difference appears in the last factors of the attenuation coef-
ficients as shown in Egs. (8.5) and (8.6). In Abragam's formulism
the coupled state is avoided and the effects of the changes of the
environments on the angular correlations are ignored. Therefore,
e.g. for the solid state environment, the expression (8.5) cannot de-
scribe the effects of the thermal vibrations of the lattice system on
the correlation function, hence cannot predict the temperature depen-
dence of the anisotropy as experimentally observed.(Q) However, in
the present theory these effects are systematically built in the
attenuation coefficient. One also sees clearly that the expression
(8.6) predicts the temperature dependence of the correlation function.
In fact the present theory is developed specially suitable for the

solid state environments in which the perturbing interactions can be
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decompocged into the static interaction and the dynamic interactions as
ghown in Section IV.

The treatment of the rotational dependence of the angular correla-
tion, as given in the Section V, has not been previously studied. The
present result predicts the rotational dependence of the dynamic inter-
action. This prediction is justified at least gquanlitatively, without
carrying out the tedious numerical calculations, by the fact that for
the gpecial case of axially symmetric crystalline field the simplified

gsolutions for the conditions for OA = 0, ag given by Eq. (7°9),

O ¢

N

predict the phase shifts in the rotational pattern of anisotropy,
which agrees with the observations by the Zirich group,(S)’(l9)’(20)

Furthermore the present theory has been developed for the cases
of asymmetric crystalline fields. This greatly increases the proba-
bility to choose the sources for experiments and the probability to
investigate the nuclear quadrupole moments in an excited state.

The problems of the recovery effects and the after-effect due to
the K-capture and B-decay preceeding the y-y cascade have remained un-
touched. These effects are so complex that a detailed theoretical de~
scription becomes extremely complicated, and in fact has not yet been
attempted. On the other hand the events happen within a very short

time and it seems very difficult to follow the sequence of events

experimentally.
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Finally, one sees clearly from the present theory that the accuracy
of the calculation of the nuclear electric quadrupole moment depends
highly on the computations of the electrostatic field gradient at the
nuclear site. The calculation of this crystalline field is extremely
difficult and a model for the charge distribution in the lattice system
is needed. Here we use the point-charge model and introduce an adjusta-
ble parameter € to take the shielding, antishielding and co-valent ef-
fects into account. For the determination of this parameter one has
to rely entirely on other measurements. Therefore the progress in
the determination of the electric quadrupole moments in an excited
state depends highly on the future development of the theory of solid

state physics and on a better understanding of the internal fields.



APPENDIX I. DERIVATION OF EXPRESSION (2.13)

It has been assumed that by a physical intuition one can separate
the total Hamiltonian g%gof a whole physical system into the sum of two

parts;
H=H, T,

and for an orthonormal complete set of eigenkets {|B>} the eigenvalue

equation
Hip> = 5P,

can be solved. In this representation we will calculate the off-
diagonal matrix elements of the time evolution operator U(T) by means
of the resolvent method. In resolvent method one defines a resolvent

function;

K2)=(2+4 %)_'/ (1.1)

This resolvent function can be represented by the lLaplase trans-

formation of the time evolution operator U(t) = =176t/ as;

=1
no
N

=0 _z
7?(2):/,%“(7(@5 <3 (x

then

4 #4000 €l>

Lt .—_-2;7/7 / defize * (£:2)

400
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It should be noted that U(t) as represented by Eq. (I.3) satis-

fies the differential equation
(2 AT) = 70Tct)

and the initial condition U(o) = 1.

From Eq. (I.1) we have
<Y ' +4 I =
%(2 *1 H, AV/éﬁ/?//(, 32”. . (I.4)

In the representations which diagonalize H, in each nuclear state

(11),(12),(13)

we introduce a non-diagonal matrix Q such that

/?/ﬁfﬁ :% f%/@//\)ﬁﬁé\ , (£.5)

In order to calculate the diagonal matrix elements of the resol-

vent function let |Bg> = |8;> and from Egs. (I.4) and I.5) one has;

(1.6)

(2% Ry e lp T = -

A
and

[Z—/VL\% a9 +,;% %‘/5@%%7’%@ _ 7. (2.7)

We now define;

é%%‘-@-)::{ %);[2. + /;.4:2:\ T//SL./@ 7?@(0 Q]/fﬁb‘/
/fﬁ/(?) T AT
2 = Yo e Vo Te G

and the functions ya, and ya. have dimension of sec”™. With this de-
Bs Br
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finitions one has;

_ /
Pl ™ 24iE 1%l (1.9)
¢ 2
/
/g}/%-: Z i+ Al sp
1’1475 HBe

provides that Z + ¢ EBi + # O.

#0and Z + 1By +
1 2

Ietting IBi> # lﬁf> and using Egs. (I.4), (I.5) and (3.7) we get,

(1.10)

Q/——{/\é—/ /9#’/?/5/5/%,9 ﬁ#:ﬁ/g/?/g@/@/?@: % /ﬁc/p

By iterating Eq. (I.10) and keeping terms only up to V= we get

Q = 'LV (1.11)
e 2 ﬁ%ﬁ; Vo e Vo
Substituting Eq. (I.11) into (I.8) and keeping terms up to V2

we have
\ “-_ A ’ //‘- /
:‘_é),é@ = 1 %A 1,;.—;/@ (7 /’%a %—/6/ (I.12)

¥
Since the radioactive nucleus ZXA only undergoes the y-ray cas-
cade decay we therefore realize that Vﬁfﬁi = 0. Then from Egs. (I.11),

(I.5) and (I.9) we have

S Vo V.
%ﬁ(gj (34%79 (2+¢E+%)(2+¢§+%/£ﬂg+%\ . (1.13)
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From Egs. (I.13) and (I.3) we obtain the off-diagonal matrix

element of U(t);

A4 e0 Z%'
B> =55 [ z{%ﬁl/ ;/2- i
: s B i Wi By

-1 0%
where

A . ___Vf_%’f.
’E{;____ . /Ié/g} 2 _né/g
(I.15)

. Kdg(z) o
~ a@(i)

p

-L

w‘" L
- ﬁéf'r-ﬁé’f 2+4 }"/

It will be shown that the function 121 is the relaxation function

and the energy level displacement function for the energy level corre-
sponding to the ith eigenstate of the radiocactive nucleus. Since our
purpose is to invegtigate the effects on the angular correlation by
the interactions between the nucleus in the intermediate state and the
crystal, we will only consider the relaxation and energy displacement
associated with the intermediate states.

By neglecting 7p, and 7g.. Eg. (I.14) can be written as;

(I.16)

<Gl L) |p, >/;%€ i -z )@/%c—) LG&]

where ’9* Vé ;57
7 2o
15,5 )__//,,m =
Dot ITL (2+44%}[2+L%—f¢ é/éj (T.17)

A-419
34£DC
I(é%)_(vm e 5/26%
) st 277C (2~f¢§)(g+c%_f CZ (/)
ZZ

- 00
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In Eq. (I.17) we have made use of the fact that all the singu=-
larities of the function of Z lie on the imaginary axis. Sihce the
inversion formula holds for all positive finite wvalue of A one can
take the limit A>O+ and still have the singularities lying to the
left of the Bromwich path.

Making the transformation of Z = Z-i Eﬁi and using the convolu-
tion theorem, Eqg. (I.l?) can be expressed;

5 = s
10 5) = Es~G + K Q1 )/2] )

(1.18)

,//é'

— ‘4%‘
{é—; %+¢/(4§/2 je

where

1{%—4%) e /V:.,,é/ (1.19)
—'/% /5/6’ %—:;:%—é &, —tg,,n-"'t 9

Substituting Eq. (I.18) into Eq. (I.16) and realizing that for a

fixed Eg_ the most important contribution for Eg. (I.l6) arises when
i

E, = EB and making use of the fact that
By f

. ety LG T4 ,2 -
e R N

can be replaced by 6(E5i“E5f)’ one obtains;

r

KB:ITRT) I = _ 5 Yoo Y, Or &, @
“ /4*/% R %)/ 77



APPENDIX II. DERIVATION OF THE EXPRESSION (3.17)

From Eq. (3.16), one has

) = 5555 Pem )5 35 )
77, AL,MM/,{/{/

X/L)L/-_M /4,_ M/<]// 7//4>(7// 7:,//74> X

4/%’/

é X

' / \ \ w’ oy
P Lp ) (G L 1 )

/‘“4(/?) D M’(/?) (I1.1)

By the symmetry properties of the rotational matrices

_M L

L
,/(m#/) Dy () (11.2)
and the Clebsch-Gordan series

“ A’/ O /7,7 /
—9{/,14/@) ‘Q(,’M,’(W’) =%/ (4, 1 /—//d/ /7//”/ "%)"

7
Lty 511 1) Ly iy (F20) 5 (a13)

the product of the two rotational matrices in Eg. (I.1) can be written

as;

/% /(/-/14,

@{,M(/?)J/ K) =) 2//4/(, Lu, )2 M-, ) x

X(AM Z./—M/ﬂM M)/D‘{/( A M o (IT.4)
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Combining Egs. (II.1) and II.4), one has;

///

Afmm ngifhméggjpu éibxx

L/ Z-///*4 M

XAy w1 Ay _M/ S e l> <t Tz 17,5

x (70, L, 7= ) 1o )( g LM77 77 )x

< o ”
x;_//é/ m,—m/.’g,,’m Lo )] ) «

/
4
’

x(L/M/,' L//‘ij"”?'/"//j D/MZM,/M/'/V/(W’/ ' (I1.5)

In order to carry out they , first let us consider the symmetry
f—

my

properties of the Clebsch-Gordan coefficiency, i.e.,

(ﬁ. //—W— /‘777 _(/2/7‘7—4—%‘74
MLy = )7 ) =(=1) //X

)(/7-¢4’) /977/4/ '477) (11.6)

then the product of the two Clebsch-Gordan coefficients can be written

as;

(/‘M//’A’ %\—W&‘:m‘\)(/_,m‘_/m{ L/ 7", /2] ' )=
1ty m
- o irasimm)

(Lt Ly Yoo’ D
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The right-hand side of Eg. (II.7) represents the coupling of three
angular moments J, ji and Li' into vy through the intermediate angular
momentum L;. One can choose another intermediate angular momentum
state to couple these three angular momenta. The transformation be-
tween the possible different intermediate momentum states is an unitary

transformation and is related by the Racah coefficients as

(777, 7,90/ 77,2970 )G ws 75723 |7 99y #77; ) =

.,_Z_[%/+/)(2/ vﬂy WZJQ]]} //

I//
X (o7 7.90)7 7, )7, ) 7% 49,/ 5 g pmyem ) (11.8)
272,/373 2}]/,]23/12j),
Using Eq. (II.8), Eq. (II.7) can be written as;
(]m Ly M0 1577y J Ly tp=m) £ 79 “ g 2] 907"l ) =

34y ~Ly~m1 -L

=(-/) (2:41) 4/21‘4’) W?/ LN IE

X //QM[ , L,/%?/ZML‘ e 447////[ 7\—477/ ! [47/’7)//47/1477/)‘ (11.9)

The remaining Clebsch-Gordan coefficiency containing m' and m"'

n (II.5) can be written
\ / o 7
A -/'A/ */-r‘-Z/ 7‘772. —47)///

(3 L) =) gy ) = (~1) A

/2/2];//2/7& " -7’7' 7477/ (IT1.10)
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Substituting (II.10) and II.9) into (II.5) and using the ortho-

gonal property of the Clebsch-Gordan coefficients;

Z ! ' \ i \ v/
& (75 JeM-P g )37, 2y -0, 77 ) ::.—a;j./)
and the symmetric properties of the Racah coefficient;

_ . , . 4 +\]\—/L‘\ _% N / |
Wiz e;) = 1) Wit 27)

one finally obtains

o ‘ D AL
Amr) =) 5, 55 Gy T s

“14 7,1

j v ¥ A 1/ sy
x <7 72,'///4‘> C/y/z (Z,L,’/[ym/,;_m /ym_y;y/x

Weye,},97:) 10
WNGjLiL;27:) Doy 1 (F), (1r.11)

with
SN, AT *#
i (LL)) = -1) b ,
x(é,M//‘Z_,/—M,—Z,/Lf -Z',j' (11.12)

CVlTl(LLLl') is the so-called radiation parameter which is
characteristic of the emitted radiation and is independent of the
properties of the nuclear states involved in the transition. A detail
discussion and calculations of this radiation parameter have been

(1h)

given by L.C. Biedenharn and M.E. Roge.



APPENDIX III. DERIVATION OF THE EXPRESSION (3.22)

From Eg. (5.21), the products of the radiation matrix elements

can be written as;

SN S B <imi Ver lims <y 1 Vet 17, 5"

A, 7,

5 G Vel lym><gmy V) md's' =
~@ )2 5, S ST

4 ’
/41.4212 (AN ;/zé

x <l Tl >< 72/,//»9%/;//74//]\)(/’;//[;///\ .
X Z/T,(Z' i//)c%’[z(éz Lé)(j»”j]"?’/?% ?)7-/-27”7,\/

<(m, j-mif] mm) WejgLiL), 37 )

g )
s WaijLals, 2 5,) J;,,%,_Z/(f?,)@w,_z (&),

(111.1)

where T1 = M1-M;' and 75 = Mo=Ms' are the polarization parameters of
the emitted radiations. Since we are only interesting in the direc-
tion-direction correlation, the rotations of Rj and Ry for the y; and
the 7o need only two Euler angles to define their rotations for this
unpolarized observations. The absence of any dependence of the third

(1k)

Euler angle will result T = 0. Thus for unpolarized y=-rays one has;
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<, +/

Cyofé/é//)——-(—/) (2[-/—/)/2[,7‘/)‘7(1 /, Z. —////0)

Ly#] (III.2)

Choltals) =(1) r2Ly# )(212+Q]/42/ Li-1)%0o)

Furthermore the reduced matrix element in Eq. (III.l) are in general

neither real nor Hermitian but they satisfy;

_L -—~Z,¢

NS =072 g F)" G, =

Using Egs. (III.2) and (III.3), Eq. (III.1) can be written for a

pure multipole radiation with multipolarity of L; and Ly as;

; St (ta+ls Y=L, +L])-2].
@) 3,550 R

Glf L0422 ol

- /v v
":é/éfix/f.‘])];ﬂz ST 7)x
x (7o) ]‘—4?7”72477/—4?7”9/]’”2‘]'-%7///{ W-mﬁjfv

X .Dw / (/?)_) s (ﬂ?) (I11.4)

where we have defined

7 7=/
F1L47)=61) Crapenarenzien)

x (L 1L-1/0) WTILL YR (111. 5)

The functions fV(LL’jij) have been calculated by Biendenharm and

Rose for L =1, 2, 3, 4, j; = 0, 1, 2, 3, 4 and integer j<5 and for all
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the necessary v values.

By making use of the expressions

A
2 ) 47 27" \
szz—oqbcy(é%;?cca) ==:(;cb7¢-//) .;253)4”3‘4ﬂ2(/é%,71)

and *

< Wy -7y

Lomm (8.5)=01) " Lomom (6],
and defining;

JZ%/(Ziiﬁi):== f:g;?éif;i;i;};/(;f) \;7;;(21/44,1/1/

Lyn) =) 252225 ) jé{é,zz i7)

AQ 2

(111.6)

Eq. (III.1) can be written as;

503 Pemy<gril Vediimn > 1 Ve i S

A Az M, ),

x@ ) VEpm>< 3701 VEED 1y =

m/

—L Tp37) Zy(457) ) g 12} 7 )

X(]M/—on/)//mm) _)_/7}4””’ (EE)x

X )_/—gmi,mfdﬁ/@) . (III.7)

The factors Iy, (J;3Jj) and IIVE(%;jj) depend only on the degrees of
freedom of the successive radiations and are independent of the external
perturbing fields.

The indices vi and v are even integers and are restricted by the

following inequalities;



\ (I11.8)
0£2,£27, o0& 42,

The integers L; and Lo are the highest orders in the multipole ex-

pansions of the first and the second y-rays respectively.



APPENDIX IV. DERIVATION OF EXPRESSION (3.26) AND (3.27)

After integrating over ko, the integration in Eq. (5,25) can be

expressed as

| FlaaeE)

(Iv.1)
L= /;‘LC)A (Q‘Q)—/L(Ev‘{j
where
44%7 . B
Flazee)= ,‘?if G [ S HE v
s E et 4 = E —q - &
an Com Z,
__NM
A = Ep =< S V>
A =Eu =< ST o )
(1v.3)

— a R _//
=—-§24z Zj[/)T-f/;r?/VjJ/
- M T M
- =2’<z/K/(VT)7T+/’V/{KC—/jj,
_ 3 2_ - o
FEI =556 B Iytay)

The prime in Ilvg(jfjj) denotes the replacement of Es in the func-
tion Ilvg(jfjj) by Eki—Ekf-El, here E; is the first y-ray energy. If
the total width ¢ of the radiocactive nucleus is much less than the

nuclear level splitting, then by using the relations

and é/j:g ?*46’ - 2(7/ —/Lw_aﬁ?)
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2€>0 ?—cé "f(’?/ +c/77’d?7)
Eq. (IV.2) can be approximated as;

Fiacee!) o Ef Mcaf/a/)/E/ f/ %C:g),/g,

a

(Iv.L)
a4 J[( 2)-<1a'J=’),

Let EOl be the first y-ray energy emitted by the nucleus without
extranuclear perturbations, then the quantities a and a' can be written

as;
’ — N
q = éE;/ :féjéf)f "’<:FEL:[LZ;,);>7~ /

L M (Iv.5)
Q'=E, 2 alg —<Skr(Vei >y,

where AEyx stands for the nuclear energy level splitting due to extra-

nuclear perturbations. It is realized that the quantity Eol, which ig

. . vNC R

in the order of Mev, is much greater than AE, and <Sk< . )>T which is
NC

in the order of ev. By neglecting AEx and <SK(V% )>T compared with

E,,, one has a~Ey, and a'v Eo,, and Eq. (IV.k4) becomes

[lagee’) = -2 ’7/4‘5,25922_@//7". 77) _/f/);& (2.77) (1v6)

Substituting Eq. (IV.6) into (IV.1) one has

T = _RMES G Tyins)) Iy %77 (17.7)
— (Zc)é (6+¢) - 2 (4 -4")

Combining Egs. (IV.7) and (3.26) one obtains Eqs. (3.26) and
(3.27).

On the other hand, when the total width of the radiocactive nucleus
is much greater than the nuclear level splitting, one can write the

integration in Eg. (3.23) as;
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Eing

s "}‘/5)%5,

;Z’:: (1v.8)
ﬂ%;g) a/~/ X )
/S?*é: /ék;7"*53')(77;€*2;/)

with Em

éf; = /Z£C:7éa
éj — __ZE;/ v€4f:f£?[?;17—§7 jﬁ
C{;; "lﬂéz:g: a L <f//ﬂ7[1>r

(1v.9)

here we have neglected the nuclear level displacements due to the
radiation interaction and extranuclear perturbations. The factor

|§+E1I2 in the denominator of Eq. (IV.8) can be expressed as
— 2 - - 2 )2
/i’*t// = (C/ 'C@/) +[-/2—§'/'?w ) (IV.lO)

Since Eo,, which is the first y-ray energy, is much greater than
A V7 . . ,
— (V' ), one sees that the integrand of Eq. (IV.8) is a sharply peaked
2

function at E; = Ey,. Thus by evaluating the integrand at this point,
01 :

one has
_ ‘2 2. S vy ) v
T =b & 6 BRI T o)
G gy
\ WM
o Vi 4/ ’Vf}/]/ |

Using Eq. (IV,ll), the attenuation coefficient for the perturbed

(Iv.11)

angular correlation function can be expressed as;
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ﬁ//mmmm 2_,(7%; 1] - om” ) x

AT

x(7m, 7 L/m"/ﬂz - MQ(}’W//C)(K /7 m' > x

. .M — \ —~ TVe
g | Ko i e i g [ V0

+/7V/ﬂ[45< —42-/< s -r/’V)fj/ v2)

Since the total width of the radioactive nucleus is much greater

C
than the nuclear level splitting, then by neglecting’%- <Fk(V§ )>T

R S ‘, - ARy
compared with 73 (V') and taking the limit -——=— <<1, the
EF(V7)

attenuation coefficient can be reduced to

_ﬂ—,))zfo”mén%”j éf/’V) (7/)70 J- ”’7/ mim’)x

X (7 'M,’ J \‘”’77 % m—my aﬁ ”y (1v.13)

Substituting Eq. (IV.13) into Eg. (3.26) and using the orthogonal
properties of the clebsch-Gordan coefficients, one can easily show
that the angular correlation ig not perturbed in this case. This

agrees with Goertzel's regult for the unperturbed angular correlation.



APPENDIX V. DERIVATION OF EXPRESSION (5.3)

From Eq. (5.2), one has;

(1) _¢2)

T/’g ,,,,,,,, (ozma (3D0) V. (v.1)

e . (23) . . (2)
According to Wigner, the rotational matrix D,g (cBy) can be

written as;

[2)(0( /) - (Y —4j) -\ (/)[2+/’)’(2—/”)/(9%fj/{2 fJ’]Z
it = fCJ/»//z K-r)l2+f-r)lirare o))

A 4+ f-r=-2/C 2 p-P+2/C

. (v.2)
/So'ﬁé’j

X ( s

*
In 2 , we need only to sum over /"= 0, *2. By Eq. (V.2), the
(2)

non-vanishing matrix elements for D, (oBy) and Dé?é(@,(:), 0)

be calculated as;

D(Z) /1/2: _4\2// )

(2) e
D, &Br)=- ”de 54'44/5@4/5 ,

D epr) =42, e ./
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10k

Ik ~i20t 2y

zz_(a/ﬁﬁ"4- € & (/+/CM/€)Z
), (o(/g/ _—:—z/' 544}(5’(/7‘—@0%)

—1 2

_8 5 (Q’/ﬁ y) = *':i S/h\/ﬁzﬁ )

~N

(2) 420 4
DZ_,(O(@/)::?L@ e ?47@//—-/6&4/3),

) 2(0/@/) 4% );/ cosfB) . J

0(8 12/,

D) = &7 e

2) 120 _p
A s )

(2) 7 2
Dotupt)="%e" 5033,

2 | 120 ¢
32_, (O(/M)—-: '2'“(:’1 e é/ﬂr‘mﬁ//*@ﬁﬁ) .

(2) / 1'20( 4.2)/ /
D.Z_Z(O(/@f);*q.@ e //+M/5)

(V. 4)

(V.5)
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(2)
22(5@0) 4 3 2

D 860-4€ " Sin@erad)

(2)

(1+ cos @) \

D) (s?Oo)_ Sin @)
(V.6)

(2)

D, ($B)0)= 48 (/ —cos@)

) 3 L 12

D,/g(ﬂ@)jO):Z E Sen @//'505@). /

(2) -1

2,(@@0) —Zie 2%,;,1@(/7#@5@),
D/ (@/@/0}-—: Zé qué/wsz E+cos @),
DIEB)0) =L 5in® cos ), P

2) _ / 'f\é 2
D, (8E)o) =7 € (cos@-cos @),

DIF@o)=2€ §MO//-@st )
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zo(@rOO) = ——‘éﬂgm @

(2)

De@@0) =~ Gintreest)
Do@80)= 1~ Fsne,

_/o(@()@) N(e{%ﬂ‘ Beos®,
b (@Ov):%—;e\ G0
D )—"—‘ZZ O(/—@c@)
D380)- b Fersdcosn)

(2) _
Q—/ (@/@0): - T//ggb;c@éﬁ(f @

2) _ ; 4P
D_/_,(S?J@,O}:Ze (cos2 @*H#Ofv@),

D_(;)., (@/@,0) = ?[_64\2%)%. @(/+ca.s @)

/

(v.8)
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(v.10)

i
N
¥

~/) (Qb(/)c’yw S‘ QQ

.D (@@0) -3 64%2}1@[/7‘&&5 @J}

(2) A 12 2 /)
D, 28 Qo)=E “(1+cos @)

*
In the L , the irreducible field tensor operators have the

following relations;

= /( 2) )
_V;zjz o, (v.11)

~(2)

6”/V

where 7 1s the field gradient anisotropy and 1s defined;

*‘ (2)

c2)

7/: 9:{_%_ 2Ly /5

ay% 83-2#4 '
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By expanding Eq. (V.1), the irreducible components of the field

gradient tensor operators can be expressed as a function of n and

*V(Z) as follows;

(ZL 2) A 2 /4 2 ©2(%H) c2(@+4,
V.=V /72‘/”—[//*605@6 +(1=<esB)e’ gjfn‘f/f i

(P \(D4f)
“f?/{-z e @/?/-/-(os ®)e ——(/—ca.s@)fjﬁ _]Sn‘qz/é?v’-

6.\ \
+/\%/—L—'_S4442@(/-—§fm2ﬁ)j/+

4 -2(Z 1) 2. 2
—’LZ[&/&% e (1#¢c0s @) Jeos2a +’CM/3) 27 M‘%M‘qijvL

| A2 ,
+5 € (/= @)/20620((/74554% )425‘@\}5544@/] -+

| (D)
128 T S @ (1pess @)fm‘/@ﬁ';,;dq,@% 209 20(] +

g 1\(@+)) |
T2C S W-cos BYSHBEaqpcosBesssor) +

7‘5-5,/242@ S /8 Cod QQ/Z/ (V.12)
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g "2) 2 2@y, 20
- V—%/ ZSmO=(rscos@)e ¢+)(/ cos@)e Q—Sﬁ%/f 7
£ (B44)

1(5799

ﬂ/?/(cmz@—f@? @)@ -7*[(05 2@ - L @e 5,,12/@7‘_

WZV;SW\ 2@(/‘-2’541%)/ +

ﬂ ~ 42D+ /
+ '6—7// 2€ @//—f cod @)[WZO(/M cadf@) -

17 /
—2(ts585m 2] + g{'@ o fné E(1-500)) Jes0 200/ / o) +
(P10

+2Aeif s [+FE (cesa@+0s9 (@) B Jesm a0y =

—*CNﬁ&%m(J 26 1 ?CN SO{M@S»«,@ZZSM Qﬁ%w/dngxivL

P .2 (V.13)
—/’4 sz@Sm/@CM2O(//

'(Z/ S Cos 2(F+)Sw ﬁ—*szOC’N(éf/)&r\Q/ +

t /—~5M @)(,.,..,5,, ﬁ)/ +

_/,A/—‘fzj/ﬂ' 42/@*ﬁm O[N;()((/-{-ﬁggp) 2140755m,1¥j -+

{ @-f/)
2{6 X O{&o& 20/1 ﬂc% +2<@<f/55 - 2C>L/ -
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-f t@‘Ww@sm/@[ ‘§m20(‘6&d/55¢<’20(—7 7

(@14
-/-,\éé e” S"Wuz@,{mﬁ[jmzo(_/_w/@%:‘,@ +

_/‘Lé?'/__:f A ”\42
CQ\( 25’)’1 @)S /GWJO(Z/ (V. 14)

(I)l 7’(2) X “(2)
— s (&) 12(.
6/ Sm@[('@ @)842 + (/Ms@)&gé}/?m/@__

_ ‘. (B ) (B,
-;2 (0 1:D-0B)e  +(cr2E)+ei®)E J/SW,&

ea@s»z@(/—gga;?y "
e

2(P+))

4 @ Sm @( /105 (H ())[Cos Qq/(/-/-cg:/@ ) +27 @_;g_om 20(] -

~2(PH)
Sh@Eyr—cos O)//CAS‘?O((/*C@\;& ) 20cofish o]+

1 (@7‘29 \ ‘
26 (6052@-@5@)5»7@/2’5'4425\/—@5/@ WJOﬁ]-/'

| (@)
"‘”;6 (@52@»‘@3@)&»4/@(25”42@/-*@;6%2%7 =

-%3%2@5)»45@%qu/ (V.15)
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@) 2 * ~(2) //—— \
= ‘/ 6 2 12(@*/7 2 12(P-
V., 0 //72—/?/“605@)6 4 (/+cos@) 312@#/7)5»‘1;@ -

‘ - (D) )
’%?Sm@[(/—cos ®)e +(1+cos@)E [ ﬁ}&%%—f

? 4—”(-2%2@(/ -Fsmi )f +

/‘/’Z / '4‘2(é-+ﬁ 2
’ 6‘7/5.’— € (1—¢os @)1205 27+ 605/2@)—2;‘6&&/&% 29_(7 +

/ 123+

e

+X € (/#cos @)220520(( /-/-Cas/? ) +2¢ ‘C&%j‘”‘. 2] -

| 15 o
_564 Sw @(/'C&S@)SWJ/@Z:[SM2Q/—@J/@@$ 20{/_

/ rz'(@ﬁ’)‘
—2Ee S//?@ﬂ*wf@)fﬂ%ﬁﬁ‘j%Qqucosﬁ@szoﬁj-f

%S"‘;Z@SM\A%C&JL’W/}/ (v.16)



APPENDIX VI. DERIVATIONS OF THE EXPRESSIONS (7.1) AND (7.2)

Using the properties listed in Section VII the function

EQ .
<SK(V% (Rg))>T as given by Eq. (5.10) can be written as

S, ¢ GEZ TP E S5
('n/n)

L (Jm.281im) [Gmir>< g’

X//:-(; @ occﬁtc‘)/éj,_ ~oel )j/fZ{;}]X
Wy ) -—LL,M-
’YP /(U 6/(»{.} 6() w WT(UJZSWMW)*/]/ (VI.1)

%K/ 0

{(g-oq ﬂj / A . )ZC(.Q (VI.2)

ﬂ/}

where

Since phonons obey Bose statistics, the number Pp(w) of the phonons

of energy Xw presented in a crystal at temperature T is given by

Plank's law

N () ——[,ex/o( / (v1.3)

In the high temperature limit, i.e., kT>>Aw, we approximate

wp(Z 22) =)+ 22 (7.4
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and

— KT

WT(W) ~/ZCW ' (VI.5)

Then Eq. (V.1) can be expressed as

SEQ
SV )3, = 2( LEVZE [y /~>/4M

FMe S 3

-
\\‘” —\

"Z.J (W 2 7)) x

S 2 2 G2

«[< I KKy ?//C/ s @}/ Ges /@m)/ p

[{, —ocj’Zj/]f/w a)fr/c) (VI.6)

where

L) Wy’

M 2
Frdy W) = ] P g™’ o

agfﬂt’ 0

Letting;

LL)/
g, =%

=Wew’ _
2 -

a

/

Eq. (VI.7) can be written as

f(“) W)= W/z/we-m 7’”/?' f 2‘/‘?’ (vr.8)




11k

Carrying out the integration in x, Eg. (V.8) can be expressed as

f(wma)m’)=_z', -7, —_Z} -7, , (VI.9)
with
‘Q@
7 SWMy éuzcz”,/ﬂ/{ ///,(‘)) (VI.10)
0@KK,
U
1, = “247 40242/07(/—&'4//«), (VI.11)
Wieyer
Uy
I .,wz 2.2 5 %
3 E Ay | WA(r-b) AW, (VI.12)
Wyeser
and
w,
Wil
1, = ‘Z"Mfwz( /-4 )d W, (VI.13)
Wyeycs

The frequency uyy: lies in the radio-frequency region and is very
small compared to the frequency wy of practically all of the lattice
. (18) : . :
oscillators. Then carrying out the integrations of I, I5, Is, and

I, and neglecting the terms with higher than the first power in b one

has,

S'/
__7, =U), ((é‘fé)/w//—é)-z—é_ +4—-’-:-5 ]) (VI.1k)
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[ _ 7
;Zé = LL;j_('Zif"jzfls/)/ (VI.16)
and
.y "/”"/"b
7, =, (& ~3%). (VL. 17)

Combining Egs. (V.1L4), (V.15), (V.16), (V.17) and (V.9) one ob-

tains

WM 4&)}(}( g
éy

(vI.18)

F(thntonrr) =

EQ
Substituting Eq. (V.18) into Eq. (V.6), the function <3K(v% (Rg))>T

can be expressed as

=7
Dl V(RIS = Creth,) T2 (v1.19)

Gilhe) = (%/58 94 i //>/-
>3 Z_/L G728 Jim) Wer

k/#K %?}7 1 =/

AR gl ke ><w tymi >/ Va4 56 G focr)/ z

X[{ (j 'ﬁ?za)jéjjjz

(VI.20)
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EQ
Similarly, the function <% FK(VT (Rg))>T as given by Eq. (5.11)

can be expressed as

- (vi.21)
BRI, =B T ’
TTUMS, 2 2, , 2
Beik) < NG o) kS

5
. / | / ’
"Z _>_ / \4 (Gm, 28 /j'M)7</M//<><K //'m>/ y
K/#K mm’ ¢ =)

)(//C(;@? @cc‘/@a‘)/zf/é;@;)?@éj]f (VI.22)



APPENDIX VII. DERIVATIONS OF THE EXPRESSIONS (7.7) AND (7.8)

The anisotropy function of angular correlation as a function of

the rotations of the crystal axes is given by Eq. (6.4);

W(ﬁp/ -/ (VII.1)
WA ) ’

A =

where
— E B | -\ .,\
Wa7) <002, Apy Dglormimor), (20
7 Y2 Mm
and

/\
2)=22 2, Bytrm) Dyl (2.5

and the functions A, ,_» Bvlv2(mm”), IIIVlvg(mm’mm’) and IITy,q (mn'm"m")

are given by Egs. (6.6), (6.7), (6.8) and (6.9) respectively.

From Eq. (VI.1), one has the condition for = 0 as

By

Wit i, %W/(f//m) W/MM)W £, 7)=0(I1.4)

where the primes denote the first derivatives of the functions with
respect to the rotations <:>y of the crystal axes. Substituting Egs.

(vI.2) and (VI.3) into (VI.4) one has
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/7
X/_/nyg_ (mmimm ) Ly (77 7)) —

7/

—ilz?r , ’(6”37732”22%7,)_223;4g(2”7¢245”4”12y7‘:=C7 . (VIiI.s5)

/"2

Now one sees clearly that Eq. (VI.B), which gives the condi-

OA

3By
solution can be obtained without actually carrying out the tedious

tions for = 0, is a very complicated function of <:>y and no
calculations of the summations and the rotational transformations.
However, if we make some simplications, for illustrative purposes, a

= 0 can

considerable simple solutions for the conditions for
2Dy

be obtained and these solutions are at least quanlitatively, without

carrying out the detail numerical calculations, Jjustified by the well-

(8),(9),(20)

known experiments by the Zirich group.
2 EQ~2 Q
In Egs. (7.5) and (7.6) we let Byy:(R2)T2 = 7 and 89 has a
dimension of time and is interpretated as the spin-lattice relaxation

time through the electric quadrupole coupling. At room temperature

EQ (18),(2k)

-1 -
T ° 1s in the order of magnitude of 10 =~ to 10 5 se

C. But
the mean life ™ in a intermediate state of a radiocactive nucleus are

mostly in the range of lO—{ to lO"lg gsec. Therefore for most cases
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we have TEQ>>TN or ;ﬁ; >> A . Then by neglecting the term A
ETN ETEQ 2TEQ
compared with iﬁ; in the attenuation coefficiency and ignoring the
2T N

rotational dependences of the unitary transformation coefficients
the derivatives of IIIVle(mm'mm‘) and IIIVlVZ(mlml’ml"ml') with re-

spect to <:>y can be calculated as;

/u)/y(/m /wf)) ~~~~~ 5 s J""‘”””’)({/(L/r/rf(/’ﬁ )+

/l\

and 7‘@’«;«%/7‘ _/// /z:(z;,(,/f@ j+@m/(ﬁ)rj (VI1.6)

174 7\
ﬂyy (77, M) 7)) Zf/,(kkmmw )/1 ”[E/me/*

"f'G/r/("/ ) szf/ - ’r—:u;%k Rh)* @KC@) 7’7/ ) (VII.7)

where

ﬁ/ (K ) = mp>< 1 M PmIRS < >
x(yb;y/,/)'-mb/a)[jwz,;'—m?//; o), (w1.8)

and

S Ormmim)) = ImIk><scsm S<ymicioen s

% (Gm) 7-m 7% 0)(ym,, 5-m) 13l m-my’), (T

J /
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Combining Egs. (VI.7), (VI.6) and (VI.5) one has;
- 77— — / , JE—— _
WE) W) - W) W(Z) =

= 022525055 Ay

)’)//5 Qj mm 2:/7],447 /{‘K /r/(/

)(V/?)////z (mm)/"U‘/;(Kkmjmjjﬁj)’/}ﬂ@’im//)(
) e 742,

2
(o BRI, iR )] Gk -

r?k’g
_./E /@,p) ”K/( ( /{9 = , (VII.10)

where

(VIT.11)

(x(CR) =/ (£ G bR ) G RIT? ]

The functions EKLKI:(Rle) and Fyr1(RiRz) are exactly the same
function. By taking thelr first derivatives with respect to y-

are approximately equal Eg. (VII.10) can be expressed as
_ _ o
W) Wim)-Wery Wi Z) =
— 1\Zh’\\ :g:} \
ZJ 2_1 L 2 /“)y,/ X

V,ﬂz y;’g'mm’w M bkt K

XB;/'y,’(mm,’Qﬁ ),z(fr/cwm ) ]c sk mmm)x
X[/}F,ﬁ./(ﬁ@ )/,(—;,z(l’/ﬂ?@ )’/[E/r}\/(’e@j—é‘%@/(ﬁ@) ’

+(f ﬁr/c/@@) 'Gm//@@)ij/;K:(ﬁf/g ) =0 . (VII.12)
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Equation (VI.12) is still an extremely complicated function of
<:>Y' However, if one examines more carefully the expression one
sees that for a given set of the indices the possible vanishing fac-
tor is the function E&K’(R1R2)‘ Therefore, by making a simple minded
calculations, namely by taking E&K'(Rle) is zero for all possible

3
a@y

indices K, one has the following condition for

= 0;

2 B k) + T G R T = 0
it

(VII.13)

From Eq. (5.15) and the rotational transformation functions
given in the Appendix IV and the symmetric properties of the Clesch-

Gordan coefficients the quantity EKK'(R1R2) can be calculated as

»* 2) ' 2), | o,
ExrRR,) =5 T, 10)<p1g)" V) Semmscn i -

7 m’

=ik K lym S YE (! 22/ ym) —

3, . . 2 -
”2{7”’/’20//”’7)_75‘” @ ' (VII.1h)

The function Ggx'(Rz) is given by Eq. (7.7) which is still a very
complicated function of (:)yo However, one realizes that the function
QKK,(Rg) describes the effect of the thermal vibrations of the lattice

points and these vibrations will in extreme case destroy the axially
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symmetric field and becomes independence of <:> . Hence for our

simplified calculations we simply replace G’ ((:) ) by G’
Combining Egs. (VI.13), (VI.14) and (7.7) one obtains the

following condition for the maximum anisotropy function in the

rotational pattern;

A // )
Z(/—D,,/m = Yw[ W‘ ‘ 7 (VII.15)

/I//)A/\ g

where

/é/KK" :ZJ\ Z;Z) <]WC')(J)//>/Z/W7K><K//W) —

o’

~<jm '/Kﬁ(K?/’f»ﬂ) ][ %Z/jm/ [22/ym) =
__2_:”.3/7‘,;,2, 20/7'/;73)_7/ (VII.16)

G (0) =2(LRVE e 97 )Y 19>/ %

W—M Sq2/
S5 o2 e
G=—p mm’

FE e
—occ )'//’j/]//z /</’”’/K><'/f//¢7))/ -

( K) e S (VII.17)
MZK/M/ <K 777 /j
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and

- ~(2)

— (2] 2
/:(;@ ,&;e,;ﬁ“') =%'JQ';(€@7SO) ‘Z';(é“ﬁccy. (VII.18)
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