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Abstract 

Materials that incorporate actinides are critical to the nuclear fuel cycle, either as 

nuclear fuels or nuclear waste forms.  In this thesis, I examine four materials:  i) ThO2-

UO2 solid solutions, ii) binary ThO2-CeO2-ZrO2 solid solutions, iii) Np-doped studtite, 

iv) Np-doped boltwoodite.  Computational methods, particularly density functional 

theory (DFT) calculations and Monte-Carlo (MC) simulations, are used to determine the 

energetics and structures of these actinide-bearing materials.  The solid-solution behavior 

of nuclear fuels and nuclear waste forms indicate the thermodynamic stability of the 

material, which is important for understanding the in-reactor fuel properties and long-

term stability of used fuel. 

The ThxU1-xO2 and ThxCe1-xO2 binaries are almost completely miscible; however, 

ΔGmix reveals a small tendency for the systems to exsolve (e.g., ΔEexsoln(ThxU1-xO2) = 0.13 

kJ/(mol cations) at 750 K).  Kinetic hindrances (e.g., interfacial energy) may inhibit 

exsolution, especially at the low temperatures necessary to stabilize the nanoscale 

exsolution lamellae observed in the ThxU1-xO2 and CexZr1-xO2 binaries.  Miscibility in the 

Zr-bearing binaries is limited.  At 1400 ˚C, only 3.6 and 0.09 mol% ZrO2 is miscible in 

CeO2 and ThO2, respectively. 

The incorporation of minor amounts of Np5+,6+ into uranium alteration phases, e.g., 

studtite [UO2O2(H2O)4] or boltwoodite [K(UO2)(SiO3OH)(H2O)1.5] , may limit the 

mobility of aqueous neptunyl complexes released from oxidized nuclear fuels.  Np6+-

incorporation into studtite requires less energy than Np5+-incorporation (e.g., with 

source/sink = Np2O5/UO3 ΔEincorp(Np6+) = 0.42 eV and ΔEincorp(Np5+) = 1.12 eV).  In 

addition, Np6+ is completely miscible in studtite at room temperature with respect to a 

hypothetical Np6+-studtite.  Electronic structure calculations provide insight into Np-

bonding in studtite.  The Np 5f orbitals are within the band gap of studtite, resulting in 
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the narrowing of the band gap from 2.29 eV for studtite to 1.09 eV for Np-incorporated 

studtite. 

Three charge-balancing mechanisms for the substitution of Np5+ for U6+ were 

compared: i) addition of H+ [ΔEincorp(bolt) = 0.79 eV; ΔEincorp(stud) = 1.12 eV], 

ii) interlayer coupled substitution [ΔEincorp(bolt) = 1.40 eV], iii) intra-layer coupled-

substitution [ΔEincorp(bolt) = 0.86 eV].  Solid-solution calculations of the intra-layer 

coupled-substitution mechanism, where Np5+ and P5+ substitute for U6+ and Si4+, predict 

an incorporation limit of 585 ppm at 300 °C. 
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Chapter 1  

 

Introduction 

Increasing global awareness on issues of climate change and the need for alternative 

energy has sparked a “Nuclear Renaissance.”  Nuclear energy is a sustainable, carbon-

neutral energy resource; however, many scientific obstacles, specifically materials 

challenges, need to be overcome for nuclear energy to take hold globally (Guerin et al., 

2009). 

In both an open (i.e., direct disposal) and a closed (i.e., reprocessing) fuel cycle, used 

nuclear fuel (UNF) is destined for long term geologic disposal (Figure 1.1) modified from 

Ewing, 2006).  For the once-through fuel cycle, which is currently used for commercial 

UNF in the United States, the long-term disposal plan is that the UNF be directly 

disposed in a geologic repository.  During reprocessing, the short-lived fission products 

137Cs and 90Sr are removed to drastically reduce the radioactivity and heat load of the 

waste.  U and Pu are extracted from the waste for reuse as new fuel, typically a mixed 

oxide fuel (PuxU1-xO2).  Less than 1% of the original U and Pu remain in the waste after 

reprocessing; however, according to the current separations plans in the United States, 

other actinides, such as Th, Np, and Am remain in the waste stream (Ewing, 2010).   
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Figure 1.1. Schematic of the open (blue) and closed (red) fuel cycle, where the steps 
present in both cycles are in black, which is a majority of the cycle.  The green stars 
indicate steps of the fuel cycle where materials properties calculated in this thesis are 
relevant.  Note that for both the open and closed fuel cycle, the end stage is geologic 
disposal.  Figure modified from (Ewing, 2006), where the figure was reprinted with 
permission from End Points of Spent Nuclear Fuel and High-Level Radioactive Waste in 
Russia and the United States by the National Academy of Sciences (National Research 
Council 2003). 
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Thus, even if the used fuel is reprocessed, some waste is generated that requires long-

term geologic disposal. 

There are many parts of the nuclear fuel cycle that have materials challenges.  For 

example, the development of harder and more radiation resistant cladding material is 

crucial to extending the longevity and enhancing the safety of a reactor (Allen et al., 

2008; Guerin et al., 2009; Zinkle and Busby, 2009).  In terms of reprocessing, a huge 

research initiative is focused on developing compounds that can target and separate 

specific radionuclides.  For example, the newly patented thorium borate 

([ThB5O6(OH)6][BO(OH)2]·2.5H2O) capable of anionic exchange could be used to 

separate radionuclides, specifically TcO4
-, from UNF (Wang et al., 2010).  Decades of 

research has focused on the development and understanding of waste immobilization 

matrices, such as borosilicate glass or pyrochlore (Donald et al., 1997; Ewing et al., 2004; 

Lutze and Ewing, 1988).  This thesis is focused on the thermochemistry of actinide 

oxides from their natural state (e.g., uranothorianite) to their use as fuels (e.g., ThxU1-

xO2), and finally, to their altered radioactive waste forms (e.g., uranyl minerals). 

Uranium dioxide (UO2) is the primary nuclear fuel.  After use in a commercial light 

water reactor with a burnup of 40 MWd/kg of U (MegaWatt days/kg of uranium), 96% of 

the UO2 remains, while 3% is converted to fission products (e.g., Cs, Sr, Tc) and 1% 

transuranium elements (e.g., Th, Np, Pu) (Bruno and Ewing, 2006).  The volatile 

radionuclides form fission gas bubbles (e.g., Xe, Kr, I), while others migrate to the grain 

boundaries (e.g., Cs, Se, Tc).  During a nuclear reaction, the fuel pellet expands and 

cracks releasing the radionuclides into the gap region between the pellet and the cladding.  

Radionuclides in the grain boundaries and gap region are immediately released upon 
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contact with water.  Other fission products form oxide or ε-particle/metallic precipitates 

within the fuel matrix (left side of Figure 1.2).  The release of these elements is slow and 

depends on the dissolution rate of the fuel matrix.  Many of the actinides and lanthinides 

(e.g., Ce, Th, Np, Pu) are expected to be in solid solution with the UO2 matrix; however, 

nanoscale exsolution or cation-ordering may occur, which can affect properties such as 

the thermal conductivity of the fuel.  The homogeneity of the dioxide solid solutions is 

also important for the development of mixed oxide fuels (e.g., ThxU1-xO2) and inert 

matrix fuels (e.g., UxZr1-xO2).  Interestingly, UO2 corrodes more readily as compared 

with ThO2 (Demkowicz et al., 2004; Skomurski et al., 2008).  Thus, the addition of Th 

into the UO2 matrix of nuclear fuel can have a significant impact on the long term 

corrosion resistance of the UNF. 

Safety assessment for a nuclear waste repository or an environmental remediation site 

necessitates the evaluation of the mobility of radionuclides exposed to the environment.  

Although initially the waste is protected by barriers, such as stainless steel waste 

containers and geologic media (e.g., bentonite clay is a proposed back-fill for repository 

tunnels in France), the waste will eventually be exposed to groundwater.  If the 

radioactive waste comes into contact with water, several processes occur (right side of 

Figure 1.2).  Radiolysis of the water in contact with the radioactive waste causes the 

generation of oxidants, such as, H2O2, (Amme, 2002).  The oxidizing species cause 

oxidation and dissolution of the fuel matrix (UO2  UO2+x) and concurrent oxidation of 

other redox-sensitive radionuclides (e.g., Np4+  Np5+).  Matrix dissolution is enhanced 

by aqueous ligands (e.g., HCO3
-), and the resulting actinide-complexes are mobile in the 

groundwater.  However, aqueous uranyl-complexes are commonly immobilized via  
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Figure 1.2. A schematic of UNF showing (left) where elements migrate during and after 
production in a nuclear reaction.  The elements in red are instantaneously released when 
the UNF is in contact with water, while those in blue have slower release rates. (right) 
The processes that occur on or near the UNF surface when in contact with ground water 
in a geologic repository that cause the UNF to alter.  Figure modified from (Bruno and 
Ewing, 2006). 
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precipitation as secondary phases.  Uranium alteration phases are well documented at the 

natural reactors at Okelobondo, at uranium deposits (e.g., Peña Blanca in Mexico), and as 

by-products of UNF corrosion studies (Finch and Murakami, 1999; Wronkiewicz et al., 

1992; Wronkiewicz et al., 1996).  The essential question is: What happens to the long-

lived radionuclides as the UO2 alters to secondary U-phases? 

Just as uranyl minerals precipitate in oxidizing environments, other aqueous species 

may be immobilized via precipitation as alteration products.  If the concentration of the 

aqueous species does not reach the solubility limit of a mineral phase, the aqueous 

complex may be immobilized by sorption onto a mineral surface, such as the (001) 

surface of hematite (Fe2O3).  However, if the sorption substrates are colloidal mineral 

particles, mobility in the groundwater may actually be enhanced (Novikov et al., 2006; 

Utsunomiya et al., 2009).  Finally, radionuclides may be incorporated into or co-

precipitate with uranium alteration phases (Burns et al., 1997b). 

A detailed understanding of the aqueous and solid-state geochemistry of the 

radionuclides is necessary to accurately evaluate their fate in the environment.  Advances 

in the fields of actinide geochemistry and mineralogy have played, and will continue to 

play, a large role in enhancing scientists’ understanding of the interactions between 

actinide species in aqueous environments, on mineral surfaces, and in solid solution with 

rock-forming minerals. 

Basic actinide mineralogy has led the way for a comprehensive study on the crystal-

chemistry (Burns, 2005; Burns et al., 1997a; Forbes et al., 2008), thermodynamics 

(Guillaumont et al., 2003; Helean et al., 2003; Kubatko et al., 2006) and kinetics 

(Gorman-Lewis et al., 2008; Shoesmith, 2000) of actinide-bearing materials.  For 
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example, in the previous half century it was well accepted that uranium strongly 

partitioned between the 4+ and 6+ oxidation states, leaving the U5+ inconsequential in 

oxidation models and the prediction of crystalline phases (Heal and Thomas, 1949).  

However, recent X-ray photoelectron spectroscopy (XPS) and computational modeling 

results indicate the presence of U5+ during the reduction of U6+ on magnetite 

nanoparticulates (Ilton et al., 2010).  Thus, the fundamental concept of uranium redox 

processes includes a transition via U5+. 

While U4+-minerals are limited primarily to uraninite (UO2+x) and coffinite (USiO4), 

the complexity of U6+-mineralogy warrants the use of a hierarchical classification system 

(Burns et al., 1997a).  Ranging from clusters to sheets to framework structures, the 

structure and thermodynamic properties of U6+-phases, both natural and synthetic, have 

been widely studied over the past several decades to better understand the basic science 

of solid-state actinide chemistry, as well as to gain understanding on possible sources for 

uranium in the environment.  The basic building block for U6+ complexes and crystalline 

structures is the linear uranyl ion (UO2
2+), where the dioxo molecule is formed from a 

uranium atom strongly bound to two oxygen atoms.  Similarly, neptunyl and plutonyl are 

also the basic building blocks of their respective aqueous actinyl complexes and 

crystalline phases (Forbes et al., 2008). 

The ionic radii for 4+ Th, U, Np, and Pu with the same coordination are relatively 

similar.  For example, the ionic radii for tetravalent actinides Th, U, Np, and Pu with 

coordination number (CN) 8 are 1.19, 1.14, 1.12, and 1.10 Å, respectively.  In addition, 

the actinyl molecules for U, Np, and Pu have very similar geometries.  The uranyl U6+-O 

bond length is 1.79 Å, while the neptunyl Np5+-O bond length is 1.84 Å (Burns et al., 
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1997a; Forbes et al., 2008).  Therefore, one might postulate that their solid-state 

chemistry is similar, and, in fact, the 4+ actinide oxides (AnO2) all have the cubic fluorite 

structure.  However, the structural varieties are quite complex for the higher oxidation 

states, and the transuranium structures do not directly mimic the U-phases.  For example, 

the U6+-silicate boltwoodite has the α-uranophane anion topology, while it is the Np5+-

phosphate that has the same anion topology (Note: Thus far, a Np6+-silicate with the 

boltwoodite chemistry and crystallography has not been synthesized).  In addition, 

mixed-oxidation state structures are more common for the transuranium structures than 

for uranium structures. 

Quantum-mechanical calculations can be used to understand Np-phases on an 

electronic and atomic scale.  While well-established in actinide quantum chemistry, the 

use of quantum-mechanical calculations is relatively new to the study of solid-state 

actinide chemistry.  The ultimate goal of a computational study is to generate predictive 

results, thus careful comparison with experimental work at the early stages of 

computational simulation is essential in order to validate the theoretical model.  

Computational research is also used to test a theory or probe a material at a level beyond 

the capabilities of analytical techniques.  Thus, calculations are meant to complement 

experiments – not only to repeat or confirm experimental findings, but actually provide 

insight into the experimental results.  In terms of their predictive power, well established 

computational techniques can be used to guide experiments to save time and money. 

This thesis is focused on understanding the thermodynamic stability of actinide 

containing materials using quantum-mechanical calculations and Monte-Carlo 

simulations.  The specific aims of this dissertation are to: 
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• Understand the competition between the driving forces and hindrances for 

exsolution and/or ordering in solid solutions (Chapter 2); 

• Determine the solid-solution behavior of binary dioxides with the fluorite 

structure (Chapters 2 and 3); 

• Understand the impact of innate properties (e.g., ionic radii, charge, electronic 

configuration) on the stability of solid solutions of actinides (Chapters 2-5); 

• Evaluate possible incorporation mechanisms for the charge-balanced substitution 

of Np5+ for U6+ in uranyl minerals (Chapters 4 and 5). 

The overarching scientific objective is to better understand the electronic behavior 

and crystal chemistry of actinide-containing materials via solid-solution calculations of 

actinide dioxides (e.g., ThxU1-xO2) in which the thermodynamic mixing properties are 

calculated and phase diagrams are constructed (Chapters 2 and 3) and the determination 

of the electronic structure of uranyl phases (Chapter 4).  The motivation for much of this 

work is to provide an understanding of actinide behavior that can be used in a safety 

assessment of a geologic repository, where the focus was primarily to understand natural 

mechanisms that immobilize actinide elements.  Such mechanisms include the 

incorporation of Np into uranium alteration phases (Chapters 4 and 5). 

My research has also included collaborations, where high pressure calculations were 

performed to support experimental measurements on coffinite (USiO4) phase transitions 

(Zhang et al., 2009), and with University of Notre Dame, where I have helped develop an 

experiment to complement my calculations in which the corrosion of Np-doped UO2 is 

observed.  The corrosion experiment, which began almost two years ago, is ongoing.  

While the preliminary UO2 corrosion experiment revealed slight uranium alteration after 
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24 weeks, uranium alteration products have not been observed for the corrosion of Np-

doped UO2 pellets even after 64 weeks. 

In Chapters 2 and 3 quantum-mechanical calculations and Monte-Carlo simulations 

are used to calculate the thermodynamic mixing properties (i.e., enthalpy, free energy, 

and configurational entropy) of oxide fuel materials, specifically ThxMe1-xO2 and 

Me'xZr1-xO2 (Me = U, Ce; Me' = Th, Ce).  Such oxide materials share the cubic fluorite 

structure.  While ZrO2 is typically monoclinic or tetragonal until extremely high T, a 

cubic structure can be stabilized (e.g., Y-stabilized ZrO2).  Phase diagrams are generated 

based on the free energy of mixing.  The tendencies towards exsolution are evaluated 

based on the height of the peak of the ΔGmix curve above the tangent line connecting the 

minima of the curve.  The competitive kinetic hindrances derived from the strain caused 

by the lattice mismatch at the lamellae interfaces are estimated and compared with the 

tendency towards exsolution in order to fully understand the thermodynamics of the 

oxide binaries.  The solid-solution behavior of these materials impacts fuel fabrication, 

in-reactor performance, and the corrosion-resistance of the waste. 

When UNF alters, aqueous actinide complexes are released from the waste.  

Incorporation of Np into uranium alteration phases may be a mechanism for 

immobilization of the aqueous actinides.  Experimental corrosion studies of UO2 and 

UNF have shown the precipitation of several hexavalent uranium phases including 

studtite [(UO2)O2(H2O)4] and boltwoodite [K(UO2)(SiO3OH)(H2O)1.5].  The objective of 

this computational study is to gain an atomistic understanding of the behavior of Np in a 

uranyl bonding environment, which will indicate favorable or unfavorable incorporation 

under repository conditions.  Coupled-substitutions are necessary to substitute Np5+ for 
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U6+ in order to maintain charge neutrality.  An addition of an H+ atom provides the 

charge-balance in Np5+-incorporation into studtite.  Boltwoodite has a more complex 

crystal structure.  Therefore, the following coupled-substitutions for Np5+-incorporation 

into boltwoodite include: i) addition of an H+ atom, ii) interlayer substitution (i.e., 

divalent cation for K+) , and iii) intra-layer substitution (i.e., P5+ for Si4+).  The energy 

required for the system to incorporate Np is calculated and the limit of Np incorporation 

for a specific charge-balancing mechanism is estimated.  That is, for the intralayer 

substitution mechanism, the limit of Np5+-incorporation into boltwoodite at 300 °C is 

about 585 ppm.  These results are significant as they complement experimental work 

(e.g., Burns and Klingensmith, 2006) and, with further calculations, can be used to 

interpret and extrapolate the results from laboratory experiments to predict Np-behavior 

under repository conditions. 

The incorporation energy is calculated based on a stoichiometric reaction that 

describes the incorporation.  For example, Np5+-incorporation into studtite (i.e., Np5+ and 

H+ substitution for U6+) is described by the following reaction: 2[UO2O2(H2O)4] + 

½Np2O5 + ½H2O  (NpOOH)(UO2)(O2)2(H2O)8 + UO3.  The incorporation energy is the 

difference of the sum of the total energy of the products minus that of the reactants.  

Quantum-mechanical geometry optimizations are performed for not only studtite and Np-

substituted studtite, but also the reference phases (e.g., Np2O5).  Np5+ has 2 unpaired 5f 

electrons; therefore, the spin configuration is important for obtaining the lowest energy 

structure.  My results indicate that the anti-ferromagnetic spin configuration is favorable, 

which is in agreement with experimental results (Forbes et al., 2007), and provides 

insight into magnetic spin ordering. 
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Chapter 2  

 

Thermodynamic properties of ThxU1-xO2 (0 < x < 1) based on 

quantum-mechanical calculations and Monte-Carlo 

simulations 

Abstract 

ThxU1-xO2 (0 < x < 1) binary compositions occur in nature, uranothorianite, and as a 

mixed oxide nuclear fuel.  As a nuclear fuel, important properties, such as the melting 

point, thermal conductivity, and the thermal expansion coefficient change as a function of 

composition.  Additionally, for direct disposal of ThxU1-xO2, the chemical durability 

changes as a function of composition, with the dissolution rate decreasing with increasing 

thoria content.  UO2 and ThO2 have the same isometric structure, and the ionic radii of 

octahedrally coordinated U4+ and Th4+ are similar (1.14 nm and 1.19 nm, respectively).  

Thus, this binary is expected to form a complete solid solution.  However, atomic-scale 

measurements or simulations of cation ordering and the associated thermodynamic 

properties of the ThxU1-xO2 system have yet to be determined.  A combination of density-

functional theory, Monte-Carlo methods, and thermodynamic integration are used to 

calculate thermodynamic properties of the ThxU1-xO2 binary (ΔHmix, ΔGmix, ΔSmix, phase 
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diagram).  The Gibbs free energy of mixing (ΔGmix) indicates a small tendency for the 

system to exsolve at equilibration temperatures below 1000 K (e.g., Eexsoln = 0.13 kJ/(mol 

cations) at 750 K).  However, the energy gain by exsolution may not overcome the 

increase in interface energy between exsolution lamellae (EIF = 0.4 kJ/(mol cations) for 

an exsolution lamellae thickness of 10.2 Å), unless the lamellae reach a thickness of 

45.9 Å.  Monte-Carlo simulations converge to an exsolved structure [lamellae || )1(21 ] 

only for very low equilibration temperatures (below room temperature).  In addition to 

the weak tendency to exsolve, there is an ordered arrangement of Th and U in the solid 

solution [alternating U and Th layers || {100}] that is energetically favored for the 

homogeneously mixed 50% Th configurations.  Still, this tendency to order is so weak 

that ordering is seldom reached.  The excess configurational entropy (ΔSmix) is 

approximately equal to the point entropy at all temperatures, indicating that the system is 

not ordered. 

Introduction 

Thorium and uranium are the two heaviest naturally-occurring elements, and both are 

utilized in nuclear fuels.  While 0.7% of naturally-occurring uranium is the fissile 235U 

isotope, thorium only occurs as the fertile 232Th isotope.  However, 232Th can be 

converted to 233U, which can be bred in both thermal and fast neutron reactors, because 

the value of η (i.e., the mean number of fission neutrons produced per thermal neutron) is 

greater than 2.0 over a wide range of the thermal neutron spectrum (IAEA, 2005).  The 

232Th to 233U conversion occurs via the neutron absorption and subsequent β-decays in 
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Reaction 1.  Either fissile 235U or 239Pu is needed in Th-fuels to initiate the fission 

required to convert fertile 232Th to fissile 233U. 

 UPaThTh 233
days 27τ

β233
mins 22τ

β233
barns 7.37

 n,232

2
1

2
1 ==

⎯→⎯⎯→⎯⎯⎯ →⎯
−−γ  (1) 

There has been renewed interest in Th-based fuels because of advantages related to 

proliferation resistance (Herring et al., 2001; IAEA, 2005; MacDonald and Lee, 2004) 

and enhanced in-reactor performance (Kurina et al., 2002; Kutty et al., 2008; Murabaya 

et al., 1969; Takahashi and Murabayashi, 1975; Tyagi et al., 2004).  In addition, Th-based 

fuels have a higher chemical durability, as thorium only exists in its 4+ oxidation state, 

whereas uranium exists primarily in the 4+ and 6+ oxidation states.  Due to the presence 

of two unpaired electrons for U4+, UO2 is easily oxidized in the presence of water and 

oxygen to a wide variety of U(VI)-compounds (Skomurski et al., 2008).  Aqueous 

dissolution of UO2 is significantly decreased when doped with Th (Demkowicz et al., 

2004).  Thus, the addition of ThO2 improves the chemical durability of oxide fuels in a 

geologic repository. 

Naturally-occurring isometric thorianite, ThO2, is isostructural with uraninite, UO2+x.  

Unit cell parameters change almost linearly according to Vegard’s law with changing 

composition, which has lead most to conclude that this binary forms a complete solid 

solution (Hazen et al., 2009; Robinson and Sabina, 1955).  However, mixed Th-U oxides, 

uranothorianite, may be exsolved at the nanoscale (Becker et al., 2006; McEnroe et al., 

2002).  The same type of nano-scale exsolution and/or cation ordering of mixed-Th-U 

nuclear fuels may affect important properties, such as thermal conductivity, the thermal 

expansion coefficient, and the melting point of such a solid solution.  Thus, in addition to 



22 

 

knowledge of the thermophysical and thermodynamic properties of polycrystalline Th-

based fuels, an understanding of cation ordering of mixed oxide fuels is essential to fully 

understand the in-reactor behavior of the fuel.  Quantum-mechanical calculations and 

Monte-Carlo simulations of the complete ThxU1-xO2 solid-solution binary have been used 

to calculate the enthalpy of mixing (ΔHmix).  Subsequent thermodynamic integration was 

applied to derive the Gibbs free energy (ΔGmix) and configurational entropy (ΔSmix) of 

mixing.  The Gibbs free energy of mixing (ΔGmix) is used to generate a binary 

temperature-composition phase diagram for ThxU1-xO2, and atomic-scale cation ordering 

is evaluated. 

Methodology 

Three consecutive computational methods were used to determine the solid-solution 

thermodynamic properties of ThxU1-xO2: 1) quantum-mechanical geometry optimizations, 

2) Monte-Carlo simulations, and 3) thermodynamic integration.  The quantum-

mechanical calculations were conducted in order to determine the optimized geometry of 

the end-members (i.e., ThO2, UO2), as well as intermediate compositions (e.g., ThxU1-

xO2, where 0 < x < 1).  The enthalpy of mixing was calculated from the quantum-

mechanical results.  The final energies from the quantum-mechanical calculations are 

then used to calculate cation-cation interaction parameters for all possible pairs of 

exchangeable cations.  For instance, in the ThxU1-xO2 series, interaction parameters are 

calculated for Th-U, Th-Th, and U-U for first-, second-, third-, and fifth-nearest neighbor 

interactions.  The interaction parameters are then used in the Monte-Carlo simulation to 

calculate temperature-dependent thermodynamic properties of the solid-solution series.  
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Using a Monte-Carlo approach allows one to evaluate millions of configurations for 

different compositions in much larger supercells than is possible using quantum-

mechanical calculations. 

Quantum-mechanical calculations 

The program CASTEP (CAmbridge Serial Total Energy Package; Payne et al., 1992; 

Segall et al., 2002) was used for the ground state total energy calculations.  CASTEP is a 

density functional theory-based code that uses plane waves as the basis function and 

pseudo-potentials to approximate the behavior of the core electrons.  Ultra-soft 

pseudopotentials were used to approximate the role of the core and inner valence 

electrons (Vanderbilt, 1990).  Outer valence electrons (U 5f36s26p66d17s2, Th 

6s26p66d27s2, and O 2s22p4) are treated explicitly in the Hamiltonian of the Schrödinger 

equation.  The spin-polarized generalized gradient approximation (GGA) with the PW-91 

(Perdew and Wang, 1992) functional was used to approximate the electron exchange and 

correlation energies.  GGA has shown greater structural agreement for UO2 geometry 

optimizations than localized density approximation (LDA) (Skomurski et al., 2006).  The 

kinetic energy cut-off for the planewaves was 800 eV and the k-point spacing was 0.1 Å-

1, which results in 9 k-points for the 2×1×1 unit cell without symmetry.  The total energy 

convergence tolerance was 1·10-5 eV/atom.  Geometry optimizations were performed 

without symmetry constraints (i.e., P1), and the starting lattice parameters for the 

intermediate structures were weighted averages of the end-member unit cell parameters.  

A spin-polarized approach was used for unit cells containing U to take into account the 

behavior of the two unpaired 5f electrons in the 4+ oxidation state. 
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Both binary oxides have the cubic fluorite structure, and each unit cell contains four 

formula units (Z = 4).  The cation occupies every other cube formed by the oxygen 

sublattice (Figure 2.1), resulting in four possible exchangeable cation sites for a 1×1×1 

unit cell and eight exchangeable cation sites for a 2×1×1 unit cell.  The four exchangeable 

cations of a unit cell are equidistant from each other, forming a tetrahedral coordination 

polyhedron around the oxygen. 

Generating interaction parameters 

The total energy as calculated by CASTEP is the formation energy from the zero 

valent gaseous species.  The enthalpy of mixing from the quantum-mechanical 

calculations is determined as the difference between the total energy with some 

concentration x of Th in UO2 and a linear combination of the total energies of the end-

members (Equation 2).  The quantum-mechanical calculations are ground-state (0 K) 

calculations; therefore, the enthalpy of mixing is considered to be an energy of mixing 

(ΔEmix).  The energy of mixing of Th into UO2 can also be described by a Hamiltonian 

that takes into account the interactions between the cations, i.e., the Th-Th, U-U, and Th-

U interactions (Equation 3). 

  ΔEmix
CASTEP = E(ThxU1-xO2) – [x E(ThO2) + (1 – x) E(UO2)]  (2) 

  ΔEmix
fit = E0 + ∑i (ni

Th-UEi
Th-U + ni

Th-ThEi
Th-Th + ni

U-UEi
U-U)  (3) 

In Equation 3, i is the type of interaction as identified by the distance of the cation 

interaction (i.e., next-, second-, third-nearest neighbor interaction), ni
 is the number of 

iterations of a type i in a given cell configuration (e.g., n1
Th-U would be the number of first 

nearest-neighbor Th-U interactions), and Ei is the excess energy contribution associated  
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Figure 2.1. Uraninite (UO2+x) and thorianite (ThO2) have the fluorite crystal structure, 
where the cations are octahedrally coordinated and occupy every other cube generated by 
the oxygen sublattice.  The larger atoms in this figure represent the cation in the foremost 
oxygen cube and the smaller atoms occupy the cubes into the page. 
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with a given cation-cation pair.  The asymmetry of the system and the overall shape of a 

randomly ordered sub-regular solid solution are approximated by a Margules function 

(Equation 4).  Later calculations are concerned with excess properties, so the interaction 

energies from Equation 3 (Ei) are combined into an exchange parameter Ji, which 

describes the energy associated with the Th-U cation exchange (Equation 5). 

  E0 = x (1 - x)[W1x + W2 (1 - x)] (4) 

  Ji
Th-U = Ei

Th-U – ½ (Ei
Th-Th + Ei

U-U)  (5) 

The interaction parameters Ji
Th-U and the Margules parameters W1 and W2 are fit to the 

quantum-mechanically determined energy of mixing according to Equation 6.  The 

interaction parameters for the solid-solution series and Margules parameters are listed in 

Table 2.1. 

  Eexcess = E0 + ∑ni
Th-UJi

Th-U  (6) 

The quality of fit for the interaction parameters is evaluated by comparing the fit 

using different numbers of configurations and compositions across the ThxU1-xO2 binary.  

Two fit scenarios are compared in Table 2.1.  For a 1×1×1 unit cell, the only type of 

cation-cation interaction, as identified by the distance between two cations, is the first 

nearest-neighbor interaction because all cations are at an equal distance r from each other 

(r = 3.86 Å).  Due to the computational expense of the quantum-mechanical calculations, 

the expansion of the unit cell was limited to 2×1×1.  This unit cell expansion improved 

the fit for the exchange parameters, and increasing the number of configurations adds 

more energetic information on longer-range interactions.  The types of cation-cation 

interactions increased from only first nearest-neighbor interactions to the inclusion of  
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Table 2.1. Margules and interaction parameters fit for 1×1×1 unit cells and 2×1×1 unit 
cells. 

 

Parameter 
Cation-cation 
distance (Å) 1×1×1 2×1×1 

W1 (kJ/mol exchangeable cations)  25.1 15.2 
W2 (kJ/mol exchangeable cations)  7.4 2.8 

J1 (J/mol Th-U interactions) 3.86 -3.0 24.0 
J2 (J/mol Th-U interactions) 5.48 N/A 24.0 
J3 (J/mol Th-U interactions) 6.69 N/A -2.0 

J4 (J/mol Th-U interactions) 7.72 N/A 
linearly dependent 

→ N/A 
J5 (J/mol Th-U interactions) 8.65 N/A -18.0 

Correlation coefficient  0.926 0.960 
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fifth nearest-neighbor interactions.  J1-3 represent the first, second, and third nearest 

neighbor interactions (r1 = 3.86 Å, r2 = 5.48 Å, r3 = 6.69 Å), and J5 represents the fifth 

nearest neighbor interactions (r5 = 8.65 Å).  The forth nearest-neighbor interaction does 

not improve the fit because this parameter is linearly dependent on the first nearest-

neighbor interaction.  The absolute value of the first and fifth nearest-neighbor interaction 

parameters are about equal but opposite in sign (i.e., if the system tends to have more 

nearest-neighbor U-Th interactions, homocationic U-U and Th-Th fifth nearest-neighbor 

interactions would be favored and vice versa).  The 2×1×1 fit was used for the Monte-

Carlo simulations to include the most information about the energetics of the Th-U 

system. 

Monte-Carlo simulations 

The exchange parameters, Ji, are used in the Monte-Carlo simulations to calculate the 

lattice energy for millions of different cation configurations.  The excess enthalpy of 

mixing is calculated for the solid-solution series using the methodology previously 

described (Ferriss et al., 2008; Ferriss et al., 2010; Reich and Becker, 2006).  An energy 

E is associated with each starting configuration, and the energy change associated with 

swapping cation positions is ΔE.  If ΔE is negative, meaning that the new configuration is 

more energetically favored than the previous configuration, the new configuration is 

accepted.  If ΔE is positive, then the new configuration is accepted with a probability 

following a Boltzmann distribution.  In practice, the swap is accepted if exp(-ΔE/kT) is 

greater than a random number between 0 and 1.  An 8×8×8 supercell of the conventional 

unit cell was constructed for the Monte-Carlo simulations, resulting in 2048 



29 

 

exchangeable cation sites.  The excess entropy and free energy of mixing are then 

calculated using the Bogoliubov integration scheme (Ferriss et al., 2010; Myers, 1998; 

Yeomans, 1992). 

Structure analysis of quantum-mechanical calculations 

The unit cell parameter and <Me-O> (Me = U, Th) bond lengths are compared to 

extended X-ray adsorption fine structure (EXAFS) and X-ray diffraction (XRD) 

measurements in order to validate the quantum-mechanical calculations.  The relationship 

between the ThxU1-xO2 unit cell parameter and concentration of Th, where 0 < x < 1, 

follows Vegard’s law (Figure 2.2); that is, the deviation of the lattice parameters from a 

line connecting uraninite and thorianite is less than the scatter of the experimental and the 

calculated values for different configurations.  The calculated unit cell parameter for the 

end-members (Table 2.2) are within ±0.3% of the experimental values, where the UO2 

end-member is calculated to be 0.3% larger, and the ThO2 end-member is calculated to be 

0.3% smaller than the experimental unit cell measurements (Hubert et al., 2006).  The 

shorter <Th-O> distances are expected according to the findings that DFT-GGA 

calculations typically result in smaller lattice parameters and shorter bond lengths.  The 

longer <U-O> distances may be attributed to the commonly reported errors of DFT 

calculations on highly correlated 5f electrons (U4+ contains two).  However, the reported 

lattice parameters for UO2 range from 5.468 to 5.471 Å (Hubert et al., 2006; Wyckoff, 

1963). 

The <Me-O> bond lengths for the first-shell distances and <Me-Me> bond lengths for 

the second-shell distances are compared to experimental EXAFS results, which show that  



30 

 

 

 

 

Figure 2.2. (a) The weighted average of the quantum-mechanical calculations and 
experimental measurements (Hubert et al., 2006) lattice parameter versus concentration 
results are in agreement with Vegard’s law (solid line based on experimental results) 
within ~ 0.3% (± 0.015 Å) based on (b) the plot of the excess values with respect to the 
end-member lattice parameters. 
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Table 2.2. Comparison of calculated unit cell length with measured values. 
 

Structure Calculated Measured Difference 
ThO2 5.583 Å 5.598 Å -0.3% 
UO2 5.487 Å 5.471 Å 0.3% 
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the first-shell <Me-O> distances vary slightly across the solid solution range; however, 

second-shell <Me-Me> distances vary significantly with composition (Hubert et al., 

2006).  Similar results are observed for the calculated <Me-O> and <Me-Me> distances 

(Table 2.3).  After correcting the bond lengths based on the 0.3% mismatch in the lattice 

parameter, the bond length as a function of Th concentration has no specific trend in 

excess bond length based on a linear combination of the end-members (Figure 2.3). 

Thermodynamic properties of mixing 

The enthalpy of mixing is positive at all temperatures, indicating that this is not an 

ideal solid-solution, which is a first indication that some unmixing may occur (Figure 

2.4a).  The absolute values of the maxima of the enthalpy of mixing, however, are 

relatively small, only about 3 kJ/(mol exchangeable cations) at 1000 K.  For comparison, 

the maximum enthalpy of mixing at 1000 K for the ThSiO4-USiO4 solid solution is about 

11 kJ/(mol exchangeable cations) (Ferriss et al., 2010).  The enthalpy of mixing curves 

are asymmetric with a maxima around x = 0.63 Th mole fraction; thus, the greatest 

amount of unmixing is expected to occur in this composition range.  Lower enthalpy 

structures (i.e., an ordered structure and an exsolved structure) are marked in Figure 2.4a 

and discussed below. 

In order to quantify the degree of unmixing, the free energy of mixing has to be 

evaluated.  At temperatures below 1000 K, the free energy of mixing curves for the 

ThxU1-xO2 binary have a minimum at low and high Th concentrations, indicating 

exsolution (Figure 2.4b).  The contact points, where the tangent line touches the energy 

of mixing curve, define the minimum and maximum Th concentration between which  
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Table 2.3. Comparison of calculated <Me-O> (Me = Th, U) bond lengths with measured 
values. The calculated values are averaged over all <Me-Me> and <Me-O> bonds within 
each configuration. 

 

solid 
Calculated distance Å Measured distance Å 

<Th-O> <U-O> <Me-Me> <Th-O> <U-O> <Me-Me> 
ThO2 2.42  3.95 2.42  3.96 

Th0.5U0.5O2 2.41 2.39 3.91 2.42 2.38 3.92 
UO2  2.38 3.87  2.37 3.87 
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Figure 2.3. The calculated nearest-neighbor <Th-O> and <U-O> bond lengths are 
corrected for the 0.3% mismatch in the lattice parameter and compared with EXAFS 
measurements. 
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Figure 2.4. Thermodynamic mixing properties with respect to concentration Th and 
temperature from the Monte-Carlo simulation (a) Enthalpy of mixing with the enthalpy 
for the ordered and exsolved structures marked; (b) Gibbs free energy of mixing indicates 
a tendency for exsolution, where the driving force (Eexsoln) is labeled at 750 K and 430 K; 
(c) Configurational entropy is nearly equal to the point entropy (configurational entropy 
without ordering) at all temperatures. 
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exsolution can potentially occur.  Thus, the solvus can be derived based on the 

intersection of the tangents to each temperature-dependent free energy curve, and the 

resulting temperature-composition phase diagram for the ThxU1-xO2 binary is shown in 

Figure 2.5.  The phase diagram in Figure 2.5 is, however, based on the assumption that 

all energy contributions are considered in the Monte-Carlo calculations and the 

subsequent thermodynamic integration.  The validity of this assumption and additional 

energy contributions are discussed below.  As shown in Figure 2.4c, the configurational 

entropy at all temperatures is almost equal to the point entropy, which is the 

configurational entropy without ordering, indicating that the system is not converging to 

a specifically ordered state. 

The lack of cation ordering, as indicated from the configurational entropy curves, is 

observed from the Monte-Carlo results at all calculated temperatures (Figure 2.6a).  

However, based on the free energy of mixing, exsolution is expected to occur below 

1000 K.  Figure 2.6b shows a completely mixed ordering scheme of alternating Th/U 

layers || to (100) that is homogeneous down to the scale of the original conventional unit 

cell.  Symmetrically equivalent to this ordered structure are alternating Th/U layers || to 

(001) and (010).  Slightly more energetically favorable, according to the Monte-Carlo 

simulations, is the nano-exsolved structure in Figure 2.6c.  The driving force, or 

respective energy to go from the mixed to the exsolved structure, is defined as the 

exsolution energy (Eexsoln) labeled in Figure 2.4b.  A further complication arises from the 

fact that the exsolved layers, which are indexed to be )1(21  in Figure 2.6c, may be a 

linear combination of exsolution in the {111}, {100}, and their symmetry-equivalent 

directions.  That means that the exsolution pattern can change direction as shown in the  
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Figure 2.5. Estimated temperature-composition phase diagram indicating the miscibility 
gap in the ThxU1-xO2 binary. 
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Figure 2.6. Schematic of cations indicating the (a) random arrangement of cations at 
temperatures above 200 K, (b) alternating U and Th layers || {1 0 0}, which is the most 
favorable unexsolved configuration for a 50:50 composition, and (c) exsolved lamellae 
structure || )1(21  at temperatures below 200 K which is one of the most favorable 
exsolved structures. 
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experimental BSE image of exsolved grossular-andradite garnet by Pollok et al. (2001).  

Extremely low equilibration temperatures (< 200 K) would be necessary to stabilize a 

lamellar structure, which would result in a substantially lower enthalpy of mixing for 

0.5 mole fraction Th (1.69 kJ/(mol exchangeable cation)).  If the system were to order, 

the enthalpy of mixing would be 1.87 kJ/(mol exchangeable cation) at 0.5 mole fraction 

Th.  However, energetic competition between ordering in different directions and 

exsolution in different directions out-weighs the driving forces for ordering and/or 

exsolution. 

The driving force for the exsolution, Eexsoln, is determined as the difference between 

the maximum of the free energy of mixing curve and the tangent line that connects the 

minima of the same curve.  The tendency towards exsolution is exemplified in Figure 2.7, 

which shows free energy of mixing curves for three simulated binaries at a given 

temperature, T.  The free energy of mixing curves have different maxima at 0.5 

concentration; however, the phase diagram for each of the simulated binaries would be 

identical, solely based on the concentrations corresponding to the intersection of a 

tangent line through the minima.  The system with largest Eexsoln has the greatest tendency 

for exsolution.  The Eexsoln for the ThxU1-xO2 binary at temperatures below 1000 K is 

small – from 0.13 kJ/(mol cations) at 750 K up to 1.12 kJ/(mol cations) at 333 K – 

indicating that the tendency towards exsolution is low.  The Monte-Carlo simulations 

inherently “flatten” the free energy curves because the cations are able to swap positions 

with cations some distance away.  Basically, the system is able to tunnel through 

kinetically hindered configurations (e.g., consisting of very thin exsolution lamellae with 

a number of interfaces between U-rich and Th-rich phases) that would be caused by slow  
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Figure 2.7. Example Gibbs free energy of mixing curves versus composition indicating 
that, while the maximum of the curves are different in magnitude, the composition at 
which the tangential line to the minima intersects each curve is the same (marked in red 
on the x-axis). 
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cation diffusion rates; however, diffusion is not explicitly considered during the Monte-

Carlo simulation.  Exsolution is further hindered by factors such as the buildup of a 

lattice mismatch at the interface.  Low temperatures are necessary for exsolution (by 

producing high Eexsoln values) to overcome the interfacial energy (EIF) of the exsolution 

lamellae; however, the same low temperatures would slow down the diffusion that is 

needed to actually generate low-energy exsolution features, such as lamellae. 

Exsolution occurs when the Eexsoln is greater than the EIF, which is composed of a 

chemical and strain component.  The chemical contributions (i.e., the local U-Th 

interactions across the interface) to the interface energy are contained in the interaction 

parameters, Ji.  However, the strain that accumulates as a result of the lattice mismatch is 

not included because only small unit cells can be used in the quantum-mechanical 

calculations that are the basis for the derivation of the J’s.  A large quantum-mechanical 

unit cell would be required in order to calculate the strain between a U-rich and Th-rich 

phase, which would be computationally expensive.  Thus, results from a study on the 

solid solution and phase separation of the isometric garnet compositions, andradite 

[Ca3Fe2(SiO4)3] and grossular [Ca3Al2(SiO4)3], are used as a rough estimate for the 

interface energy (Becker and Pollok, 2002).  The garnet solid solution may be a suitable 

analogy because the grossular-andradite system has similar lattice mismatch (1.8%) as 

the uraninite-thorianite system, and interfaces are chemically similar, i.e., between high-

spin (U4+ or Fe3+) and low-spin (Th4+ or Al3+) phases.  The EIF for the grossular-andradite 

exsolution lamellae was calculated to be ~ 1 meV/Å2 or 96.5ּ10-3 kJ/(mol Å2) (Becker 

and Pollok, 2002), and this value is used in Equation 7 to calculate the EIF for the ThO2-

UO2 lamellae. 
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EIF = A (Å2/unit cell)  ּ  E'IF (kJ/(mol Å2))  ּ  1/Nc (unit cell/# cations)   (7) 

= 37778.72 Å2/cell ּ 96.5ּ10-3 kJ/(mol Å2) ּ 1/8198 (cell/# cations) 

≈ 0.4 kJ/(mol cations) 

where A is the area of the interface, E'IF is the interface energy per unit area taken from 

the grossular-andradite example, and the Nc is the number of cations in the unit cell.  The 

factor 1/Nc is used to normalize the interface energy to a number of cations involved in 

the formation of the interfaces rather than an interface area, which makes it easier to 

compare EIF with Eexsoln.  The total interface area was obtained by cleaving the 8×8×8 

supercell along the )121(  starting at the first interface, resulting in a rectangular slab 

with 8 interchanging layers of U and Th.  The total interface area is 37,778 Å2/cell, and 

the total number of cations in the slab is 8,198 cations/cell.  The EIF for the exsolved 

Th0.5U0.5O2 structure is 0.4 kJ/(mol cation) – substantially larger than the Eexsoln at 750 K, 

which indicates that the driving force for exsolution cannot overcome the interface 

energy.  The above estimate of the driving force to form lamellae versus the build-up of 

interface energy becomes more favorable for the former if the lamellae are thicker.  In the 

above example, EIF and Eexsoln become equal if the average thickness of the lamellae 

increases from ~10.2 Å (i.e., the lamellae are about three cation rows thick and spaced 

about 3.4 Å apart) to ~45.9 Å.  However, slow diffusion requires much longer 

equilibration times.  In addition, wider/thicker lamellae would have to be formed without 

going through the less energetically favored thinner ones, which is unlikely.  These 

additional hindrances are even greater at lower temperatures.  For example, the Eexsoln at 

333 K (Eexsoln = 1.12 kJ/(mol cations)) is greater than the EIF, yet exsolution is not 
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observed in the Monte-Carlo simulation until below room temperature.  The onset of 

exsolution is reached well before discernable exsolution lamellae are observed because 

the driving force for exsolution is small. 

Composition of natural and synthetic ThxU1-xO2 

One approach to validating the incorporation limit of ThO2 in UO2, as calculated in 

this study, is to compare the calculated results with analytical data on the compositions of 

natural and synthetic samples.  The difficulty with such an approach is that most 

analytical methods do not distinguish between nanoscale exsolution features and truly 

homogeneous solid solutions.  In addition, especially for synthetic samples, equilibrium 

is often not reached due to insufficient time for equilibration.  Finally, whether the 

thermodynamically-possible incorporation limit is actually reached in natural samples 

may be limited by the composition of the fluid from which the solid solution formed. 

Natural samples of uraninite and thorianite containing various amounts of Th and U, 

respectively, have been documented (Berman, 1957; Evins et al., 2005; Frondel, 1958; 

Jensen and Ewing, 2001; Robinson and Sabina, 1955).  Uraninite samples from the 

natural fission reactor at Oklo-Okélobondo uranium deposit in southeast Gabon contain 

minimal amounts of ThO2 (< 0.1 wt% oxide) (Evins et al., 2005; Jensen and Ewing, 

2001).  The Oklo-Okélobondo uranium deposits formed during the accumulation of 

oxidized U-rich saline fluids, which later came into contact with reducing oil-rich fluids, 

causing the reduction of U6+ to U4+.  Thorium, which only occurs in the 4+ oxidation 

state, would not have been mobilized in the oxidized U-rich saline fluid.  Thus, Th is 

present as a fissiogenic daughter product of 240Pu and 236U generated by neutron-capture 
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reactions (Jensen and Ewing, 2001).  Similarly, only minimal concentrations of ThO2 are 

found in sedimentary and vein-type uraninite deposits due the oxidation of uranium to 

U(VI) in solution prior to precipitation. 

Of the three types of natural uraninite deposits (sedimentary, vein-type, or igneous), 

typically only the igneous deposits contain fractions of ThO2 greater than 1 mol % 

(Berman, 1957; Finch and Ewing, 1992).  The composition of uraninite and thorianite 

from igneous rocks of the Grenville province of the Canadian Shield contain U:Th ratios 

ranging from 9.2 to 0.43.  The compositions of the uraninites were evaluated based on 

oxide weight % using U3O8 as the U-oxide (25-73 wt% U3O8 and 7-55 wt% ThO2) 

(Robinson and Sabina, 1955).  Frondel (1958) noted that uraninites primarily contain < 

20 wt% ThO2, and those containing equal amounts of U and Th are rare.  Based on the 

compositions of natural samples, there is no clear evidence that the ThxU1-xO2 binary is a 

continuous solid solution. 

Chemical analysis and XRD data for synthetic ThxU1-xO2 support the hypothesis of 

complete solid solution, based on the agreement of the unit cell parameters with Vegard’s 

law, which is an indirect measure that indicates the linearity of the energetics of the 

binary (Lambertson et al., 1953; Slowinski and Elliott, 1952; Trzebiatowski and 

Selwood, 1950; Tyagi et al., 2004).  The unit cell parameters of natural and synthetic 

samples are typically measured using bulk analysis techniques, such as X-ray diffraction 

(XRD); thus, potential local expansion or contraction beyond Vegard’s law would be 

difficult to detect.  In addition, Vegard’s law is only a rough indication of the 

thermodynamics across a solid-solution series.  The synthesis temperatures for typical 

specimens range from 1273 K to 1573 K - above the critical temperature based on the 
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calculations in this study.  Thus, if the synthetic samples were cooled rapidly, a 

homogeneous composition would be quenched. 

Comparison with calorimetric measurements 

Calorimetric measurements can be used to determine the energetic state of 

intermediate compositions for direct comparison to the calculated thermochemical 

parameters of the solid solution.  The calculated enthalpies and Gibbs free energies are 

reported as enthalpies of mixing and free energies of mixing.  Thermodynamic mixing 

properties are calculated in reference to a linear combination of the end-members and can 

be directly compared to measured thermodynamic mixing properties.  The measured 

enthalpies and Gibbs free energies from solid-solution experiments are typically for 

intermediate compositions; thus, end-member enthalpies and Gibbs free energies must be 

obtained from different studies in order to calculate the excess properties.  For example, 

Kandan et al. (2009) reported enthalpy increments (HT – H298) for ThxU1-xO2, where 

x = 0.1, 0.5, and 0.9.  The enthalpy increments reported by Fink (1982) for the end-

members are used to convert the enthalpy increments of the intermediate members to 

enthalpies of mixing so that the measurements can be compared with the 

computationally-determined enthalpies of mixing (Figure 2.8a).  The calculated and 

measured enthalpies of mixing both have limited temperature dependence.  In addition, 

the asymmetry of the calculated enthalpy curve is similar to the asymmetry of the 

measured enthalpy curve, as indicated by the similar change in the enthalpy between 

XTh = 0.1 and 0.9 for the calculated (1.8 kJ/(mol cations)) and measured 

(1.5 kJ/(mol cations)) results. 
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Figure 2.8. (a) Comparison of Monte-Carlo results at 1000 K and 1500 K with enthalpy 
of mixing from Kandan et al. (2009), using Fink (1982) for end-member enthalpies.  Both 
have a similar asymmetry and small changes with temperature. (b) Comparison of 
Monte-Carlo results at 1500 K with Gibbs free energy of mixing from Dash et al. (2009), 
using Robie and Hemingway (1995) for end-member energies.  Dash et al. results are 
shown as they appear to be calculated based on Equation 23 in their paper, based on only 
ΔG, and based on Equation 23 using ΔH instead of ΔG.  In addition, -T*point entropy is 
shown. 
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The enthalpies of mixing across the ThxU1-xO2 binary are small (< 3 kJ/(mol 

exchangeable cation)); therefore, the Gibbs free energy of mixing is dominated by the 

configurational entropy.  This effect is observed by comparing the calculated Gibbs free 

energy of mixing with the measured Gibbs free energy of mixing (Dash et al., 2009).  

The measurements, reported for ΔfGo
m, are for the intermediate compositions (x = 0.8036, 

0.902, 0.9412, 0.9608, 0.9804) and ThO2, but not UO2.  Both end-members are required 

in order to convert the measurements to Gibbs free energies of mixing, so the ΔfGo
m for 

ThO2 and UO2 were taken from Robie and Hemingway (1995).  Figure 2.8b shows a 

comparison of the ΔGmix at 1500 K for the intermediate compositions measured by Dash 

et al. (2009) with respect to the end members reported in Robie and Hemingway (1995) 

and the computationally-determined Gibbs free energies of mixing.  The measured ΔGmix 

are calculated based Equation 8, which is modified from Dash et al. to convert the 

reference frame from Th1-yUyO2 to ThxU1-xO2 (i.e., the reference system of this study). 

ΔGmix(ThxU1-xO2, s, T) = {ΔfGo
m(ThxU1-xO2, s, T)} – {x ΔfGo

m(ThO2, s, T)  

+ (1-x)·ΔfGo
m(UO2, s, T)} + T·R{(1 - x)·ln(1 - x) + x·lnx}   (8) 

Based on Equation 8, the measured ΔGmix are about four times more negative (i.e., 

lower in energy) than the calculated results.  However, Equation 8, as written in Dash et 

al., is inaccurate.  The last term is the point entropy, which is the ideal entropy of mixing, 

but the ΔfGo
m term already includes entropy.  If the point entropy term is eliminated, the 

calculated ΔGmix is only twice that of the measured ΔGmix.  Equation 8 can be rewritten 

such that the enthalpy of formation (ΔfHo
m) replaces the free energy of formation (ΔfGo

m) 

(Equation 9).  The measured ΔfHo
m across the binary decreases almost linearly with 
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increasing temperature; however, above 1000 K the ΔfHo
m fluctuates slightly (Dash et al., 

2009; Robie and Hemingway, 1995). 

ΔGmix(ThxU1-xO2, s, T) = {ΔfHo
m(ThxU1-xO2, s, T)} – {x ΔfHo

m(ThO2, s, T)  

+ (1-x)·ΔfHo
m(UO2, s, T)} + T·R{(1 - x)·ln(1 - x) + x·lnx}   (9) 

The calculated and measured enthalpy of mixing is small (< 3 kJ/mol for the 

calculated values and < 1 kJ/mol for the measured samples; Figure 2.8a).  Thus, a good 

estimate of the Gibbs free energy of mixing is based on the ideal entropy of mixing (also 

shown in Figure 2.8b).  While systematic measurements of ΔGmix for the full solid 

solution from ThO2 to UO2 are currently not available, the measurements described 

above are in good agreement with the calculated ΔGmix. 

Implications for ThxU1-xO2 solid solutions 

Analysis of nanoscale exsolution (shown in Figure 2.6c as a computational example) 

in experiments is often difficult because one has to have nano-scale resolution, and this is 

often difficult to detect.  For example, transmission electron microscopy has been used to 

resolve the nano-scale exsolution lamella in the isometric garnet compositions, andradite 

and grossular, which was previously considered a complete solid solution (Pollok et al., 

2001).  However, few studies exist in which such high-resolution techniques are used to 

re-evaluate solid solutions.  Ordering within the unit cell, as shown in Figure 2.6b, but 

extending only to the range of a nano-domain is often even harder to detect 

experimentally.  To a certain degree, one would be able to detect the internal domain 

structure (e.g., number of Th-U interactions in the first coordination shell) using EXAFS.  

However, the local structure information obtained using EXAFS is spatially averaged.  
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To the authors’ knowledge, an atomic-scale investigation of the energetics and cation 

ordering in the ThxU1-xO2 system has not been conducted. 

The cation ordering determined from the Monte-Carlo simulations and the phase 

diagram generated from the calculated Gibbs free energy of mixing indicate that the 

ThxU1-xO2 system has a small tendency to exsolve below 1000 K (727 °C); however, 

exsolution lamellae are observed only for calculations at temperatures below 200 K.  The 

only experimental evidence that may indicate exsolution in the ThxU1-xO2 binary is the 

sharp increase in magnetic susceptibility at 55 mol% ThO2 in UO2 (Trzebiatowski and 

Selwood, 1950).  However, nano-scale exsolution cannot be detected from bulk analysis 

techniques (e.g., XRD).  Natural and synthetic samples could be homogeneous, and 

appear completely miscible, due to quenching from the high synthesis temperatures 

(> 1000 °C), and kinetic hindrances due to slow cation diffusion may inhibit exsolution. 
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Chapter 3  

 

Atomistic calculations of the thermodynamic properties of 

mixing for tetravalent metal dioxide solid solutions: 

(Zr,Th,Ce)O2 

Abstract 

The thermodynamic properties of mixing for ThxCe1-xO2, CexZr1-xO2, and ThxZr1-xO2 

were calculated using quantum-mechanical calculations and Monte-Carlo simulations.  

The solid-solution properties are calculated within the isometric Fm3m framework, and 

phase transitions have yet to be considered.  The maximum enthalpies of mixing, which 

occur at infinite temperature and x = 0.5, are 2.7, 11.8, and 23 kJ/(mol exchangeable 

cations) for ThxCe1-xO2, CexZr1-xO2, and ThxZr1-xO2, respectively.  While the ThxCe1-xO2 

binary indicates exsolution below 600 K, the tendency for exsolution is small (Eexsoln = 

1.5 kJ/(mol cations) at T = 200 K).  The tendency for exsolution is significant for the Zr-

bearing binaries, where at T = 1000 K Eexsoln = 6 kJ/(mol cations) for the CexZr1-xO2 

binary and Eexsoln = 17 kJ/(mol cations) for the ThxZr1-xO2 binary.  Thus, there is complete 

miscibility for the ThxCe1-xO2 solid solution, but miscibility in the Zr-bearing solid 

solutions is limited.  At 1400 ˚C, only 3.6 and 0.09 mol% ZrO2 is miscible in CeO2 and 

ZrO2, respectively.  Cation ordering is observed for both the CexZr1-xO2 and ThxZr1-xO2 
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binaries at 200 K for composition x = 0.5; however, the superstructure ordering for the 

CexZr1-xO2 binary may also be considered nanoscale exsolution, in which the two-cation-

layer thick lamellae exsolve parallel to the )2(10 . 

Introduction 

Several AX2 oxides are known to share the isometric fluorite, CaF2, structure, 

including those relevant to current and advanced nuclear fuels (e.g., UO2, ThO2).  For U-

based fuels, Zr, Ce, and Th are all the result of nuclear reactions or radioactive decay.  

Mixed-Th-U fuels are being researched in the United States and are already in use in 

India.  Ce is often used experimentally as a surrogate for Pu because of similarities in 

atomic radii and valence states.  In addition, the Ce-Zr dioxide binary has been 

extensively studied for use as an automobile exhaust catalyst, fuel cell electrolyte, and 

oxygen gas sensor (Subbarao, 1981; Yashima et al., 1996; Kaspar et al., 1999).  At high 

temperatures, ZrO2, which has been proposed as an inert matrix fuel, can also have the 

fluorite structure.  These oxides are thought to form complete solid solutions.  The 

homogeneity of the solid solutions, as well as the thermodynamic properties of mixing, 

must be known to truly understand the behavior of such materials in fuel fabrication, 

performance in a reactor, and behavior as a waste form.  An extensive atomistic 

evaluation of the ThxU1-xO2 binary was previously reported (Shuller et al. 2010) and that 

work is now expanded to the dioxide solid solutions containing tetravalent cations with 

unoccupied f orbitals.  Specifically, binaries within the ThO2-CeO2-ZrO2 system are 

evaluated here.  The thermodynamic mixing properties of these dioxide solid solutions 

are calculated, including the enthalpy of mixing, Gibbs free energy of mixing, and 

configurational entropy of mixing.  From these properties, one can identify any tendency 
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toward exsolution or the formation of stable ordered phases.  The mixing in these binaries 

may affect physical and chemical properties, such as thermal conductivity, which will 

influence the performance of nuclear fuels. 

Methods 

Quantum-mechanical (QM) geometry optimizations are used to calculate the enthalpy 

of mixing for a variety of compositions and configurations.  QM calculations are used to 

capture electronic information, which may be important for the evaluation of cation 

ordering.  Approximations are necessary for solving the Schrödinger equation for multi-

bodied systems.  The current results were calculated using the planewave (as basis 

functions for the overall wavefunction), pseudo-potential (to mimic the role of the core 

electrons) code CASTEP (Segall et al., 2002) with the generalized gradient 

approximation (Perdew et al., 1996) for the electron exchange and correlation 

contributions to the total energy.  The kinetic energy cut-off for the planewaves was 

500 eV and the k-point spacing was 0.1 Å-1, which results in 9 k-points for the 2×1×1 

unit cell (P1) that was chosen for calculating the energy of a limited number of cation 

configurations within the (Zr,Th,Ce)O2 solid solution.  The total energy convergence 

tolerance was 1·10-5 eV/atom.  Geometry optimizations were performed without 

symmetry constraints, and, in order to improve convergence and save computational 

time, the starting unit cell parameters for the intermediate structures were weighted 

averages of the end-member parameters.  A spin-polarized approach was unnecessary 

because none of the cations involved in the solid solution have unpaired electrons.  For 

this same reason, the Hubbard U theory was not applied, as there were no unpaired 5f 

electrons that needed to be screened for Columbic interactions. 
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Cation-cation interaction parameters are fit to the energies from the QM calculations 

and are subsequently used in Monte-Carlo (MC) simulations, in which the system is 

scaled up to 2048 exchangeable cations (Ferriss et al., 2008; Reich and Becker, 2006).  

The Bogoliubov integration scheme is then used to determine the temperature-dependent 

Gibbs free energy and configurational entropy (Myers, 1998).  The details of the 

interaction parameter fitting and subsequent MC simulation and thermodynamic 

integration are in the Methods section of Chapter 2 (Shuller et al., 2010b). 

The dioxide end members all have the isometric fluorite structure, where the cations 

are in octahedral coordination and fill every other cube of the oxygen sublattice (Figure 

2.1).  ZrO2 is typically monoclinic or tetragonal unless at high temperature; however, an 

isometric structure can be stabilized at ambient conditions (e.g., Y-stabilized ZrO2) 

(Duwez et al., 1951).  The 2x1x1 unit cell contains 8 exchangeable cation sites, and there 

are multiple configurations at different compositions, resulting in 26 different 

configurations across the binary.  For the 2x1x1 unit cell 4 interaction types (J1, J2, J3, J5) 

were included in the fit, where the first interaction type describes nearest-neighbor 

interactions, the second describes second nearest-neighbor interactions, and so forth.  The 

fourth nearest-neighbor interaction is linearly dependent on the first nearest-neighbor 

interaction; therefore, J4 is not included in the fit. 

Results 

The first and fifth interaction parameters are the largest in magnitude and provide the 

most information about the system.  For example, the nearest-neighbors for the ThxCe1-

xO2 binary want to be the same cations (negative J), but at longer distances, 

heterocationic ordering (positive J) is preferred.  The fits for the different binaries are 
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compared in Table 3.1.  The Margules parameters show that the ThxCe1-xO2, CexZr1-xO2, 

and ThxZr1-xO2 binaries are nearly symmetric.  Additionally, the binaries containing Zr 

have larger Margules parameters and larger interaction parameters than the other solid 

solutions, indicating a greater tendency for unmixing or cation ordering. 

The temperature-dependent thermodynamic properties of mixing, specifically ΔHmix, 

ΔGmix, and ΔSmix, were calculated according to the Monte-Carlo simulation and 

thermodynamic integration described above.  The enthalpy of mixing is positive for all 

binaries; however, the magnitudes of the ΔHmix and ΔGmix curves, which are indicative of 

the ideality of the solid solution, vary significantly (Figure 3.1).  The maximum enthalpy 

of mixing, which occurs at a theoretical infinite temperature and x = 0.5 is only 2.7 

kJ/(mol exchangeable cations) for ThxCe1-xO2, while the maximum enthalpy of mixing is 

11.8 kJ/(mol exchangeable cations) for CexZr1-xO2 and 23 kJ/(mol exchangeable cations) 

for ThxZr1-xO2.  Interestingly, the enthalpy curves for the solid solutions containing Zr 

appear to flatten at x = 0.5 at 100 K for CexZr1-xO2 and 300 K for ThxZr1-xO2. 

The Gibbs free energy of mixing curves (Figure 3.2), which clearly show miscibility 

gaps for all binaries, is used to generate the temperature-composition phase diagram 

(Figure 3.3).  The ThxZr1-xO2 binary has a miscibility gap for all calculated temperatures 

(below 3000 K), while the CexZr1-xO2 binary has a miscibility gap below 1500 K.  While 

the ThxCe1-xO2 binary indicates exsolution below 600 K, the tendency for exsolution is 

small (Eexsoln = 1.5 kJ/(mol cations) at T = 200 K).  The tendency for exsolution is 

significant for the Zr-bearing binaries, where at T = 1000 K Eexsoln = 6 kJ/(mol cations) 

for the CexZr1-xO2 binary and Eexsoln = 17 kJ/(mol cations) for the ThxZr1-xO2 binary.  

Thus, exsolution is expected based on the Gibbs free energy of mixing. 
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Table 3.1. Cation-cation exchange fit parameters including Margules parameters (W1 and 
W2), interaction parameters (J1-5), and the correlation coefficient for the fit.  Note 
negative Ji indicates heterocationic interactions are preferred, while positive Ji indicates 
homocationic interactions are preferred. 

 

Parameter ThxU1-xO2 ThxCe1-xO2 CexZr1-xO2 ThxZr1-xO2 
W1 15.2 10.1 46.7 99.3 
W2 2.8 10.5 51.9 95.7 
J1 0.024 -0.022 -0.038 -0.030 
J2 0.024 0.009 -0.027 -0.085 
J3 -0.002 0.007 0.021 0.033 
J4 Linearly dependent on J1 
J5 -0.018 0.005 -0.001 -0.019 
Corr coeff 0.960 0.995 0.996 0.997 
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Figure 3.1. Positive enthalpy of mixing for the ThxZr1-xO2, CexZr1-xO2, and ThxCe1-xO2 
binaries indicates some unmixing, the degree of which depends on the magnitude of the 
enthalpy of mixing at x = 0.5.
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Figure 3.2. Gibbs free energy of mixing curves indicating exsolution below 600 K for 
ThxCe1-xO2, 3000 K for CexZr1-xO2 and ThxZr1-xO2. 
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Figure 3.3. Temperature-composition phase diagram showing miscibility gaps for the 
ThxCe1-xO2, CexZr1-xO2, and ThxZr1-xO2 binaries.  The solid black solidus is an average of 
the linear and Margules approximations for the incorporation limit (xinc), and the dotted 
lines represent the solidus are the Margules approximation (above the average) and the 
linear approximation (below the average). 
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In addition, the configurational entropy curves are nearly T-independent and equal to 

the point entropy, which is the configurational entropy without ordering (Figure 3.4).  

However, for the CexZr1-xO2 and ThxZr1-xO2 binaries, the configurational entropy drops 

significantly at low temperature at x = 0.5.  Thus, some cation ordering or exsolution 

lamellae are expected as discussed below. 

Discussion 

Exsolution tendency 

Although immiscibility is evident for all binaries based on the Gibbs free energy of 

mixing, the driving force for exsolution for the ThxCe1-xO2 binary may not be great 

enough to allow the system to actually exsolve.  The driving force for exsolution, Eexsoln, 

is defined as the height between the peak of the free energy curve and the tangent 

connecting the minima of that curve (Shuller et al., 2010b).  The value for Eexsoln is small 

for the ThxCe1-xO2 binary (only 1.5 kJ/(mol cations) at 200 K), which can be closely 

compared with the ThxU1-xO2 binary presented in the previous chapter.  Similarly, the 

Eexsoln for the ThxU1-xO2 binary is 1.12 kJ/(mol cations) at 333 K, which was the lowest 

calculated T.  While exsolution lamellae develop for the ThxU1-xO2 binary, no lamellae 

are observed computationally for the ThxCe1-xO2 binary.  The lack of exsolution lamellae 

are attributed to several factors, including kinetic hindrances (i.e., slow cation diffusion 

and interfacial energies), differences in cation-cation interaction parameters, and 

challenges in trying to find the appropriate exsolution pathway. 

The kinetic hindrances for the ThxCe1-xO2 binary probably outweigh the driving 

forces for exsolution.  Specifically, the Eexsoln does not overcome the interfacial energy  
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Figure 3.4. Configurational entropy curves are nearly equal to the point entropy (i.e., 
configurational entropy without ordering).  However, a sharp minima at x = 0.5 at 
extremely low T is present for the Zr-bearing binaries indicating ordering. 
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due to the lattice mismatch between the end-member phases.  The interfacial energy for 

the ThxCe1-xO2 binary is expected to be larger than that of the Th-U binary because the 

difference in ionic radii, and thus unit cell parameter, is larger.  That is, the difference in 

unit cell parameter for the ThO2-CeO2 end-members is 0.19 Å, while that for the ThO2-

UO2 end-members is 0.17 Å.  While this difference between the lattice mismatch of the 

binaries is only 0.02 Å, the kinetic hindrances towards exsolution, specifically slow 

cation diffusion, are enhanced at low temperatures, preventing the formation of 

exsolution lamellae.  Such kinetic hindrances are less important in the Monte-Carlo 

simulations because cation swaps are allowed across some kinetic barriers; therefore, 

they may not be the primary cause for the difference between the ThxU1-xO2 and ThxCe1-

xO2 simulation results. 

The primary computational difference arises from the difference in the cation-cation 

interaction parameters.  While both binaries have small interaction parameters, the sign of 

the parameters differ for different interaction types.  Most importantly, the first and fifth 

nearest neighbor interactions for the ThxU1-xO2 binary indicate homocationic interactions 

(U-U or Th-Th) are favored between nearest neighbors, while the ThxCe1-xO2 binary 

indicates heterocationic interactions are favored at nearest neighbor distances.  Thus, 

neighboring cations in the ThxCe1-xO2 binary prefer to be different.  Additionally, the 

fifth nearest-neighbor interaction for the ThxCe1-xO2 binary is three times less than the 

same interaction for the ThxU1-xO2 binary, indicating that the system has little preference 

at longer cation distances. 

Finally, exsolution in the ThxCe1-xO2 binary does not strongly favor any of the three 

most common planes, that is {100}, {110}, or {111}.  MC simulations starting with 
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exsolution lamellae parallel to (100), (110), and (111) resulted in relatively homogeneous 

solid solutions with energies of about -0.161 kJ/(mol cations) for lamellae || to (100) and 

(110) and -0.157 kJ/(mol cations) for lamellae || to (111) at 100 K.  Thus, even at 

extremely low temperature and initially exsolved cation arrangements, the potential 

lamellae of the ThxCe1-xO2 binary tend to form a random distribution of cations, resulting 

in a homogeneous solid solution.  The homogeneity of the ThxCe1-xO2 solid solution is 

further confirmed by several experimental measurements (Bukaemskiy et al., 2009; Pepin 

and McCarthy, 1981 and references therein) that show the linearity of the change in the 

unit cell parameter with composition, which is in accordance to Vegard’s law. 

As in the ThxCe1-xO2 binary, exsolution is evident from the energy of mixing curves 

for the CexZr1-xO2 and ThxZr1-xO2 binaries.  While no exsolution lamellae were observed 

computationally for the ThxCe1-xO2 binary, exsolution is expected for the Zr-containing 

binaries because the driving forces for exsolution are much larger.  The driving force for 

exsolution for the CexZr1-xO2 and ThxZr1-xO2 binaries at T = 1000 K are 

Eexsoln = 6 kJ/(mol cations) and Eexsoln = 17 kJ/(mol cations), respectively.  Such large 

tendencies for exsolution are expected based on a simple comparison of ionic radii, where 

the ionic radii of octahedrally-coordinated Zr(IV) is only 0.98 Å as compared with the 

ionic radii of octahedrally-coordinated Ce(IV) and Th(IV) (1.11 Å and 1.19 Å, 

respectively).  A local strain is imposed on the system when a cation is substituted by 

another cation that is significantly (>10%) smaller or larger.  To overcome this strain, the 

system may exsolve into lamellae that are rich in one cation and depleted in the other.  

Alternatively, the cations may order in such a way as to reduce the total energy of the 

binary.  The configurational entropy for both the CexZr1-xO2 and ThxZr1-xO2 binaries 
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show a drop in entropy at low T (Figure 3.4), which is consistent with either ordering or 

exsolution. 

Detailed experimental analysis of the nanoscale structure of Ce0.5Zr0.5O2 particles 

shows nanocrystallites on the order of 21.5 – 41.5 Å in diameter (Mamontov et al., 2003).  

Such nanocrystallites were not observed as exsolution features from the Monte-Carlo 

simulation; however, size of the nanocrystallites would require the simulation of a much 

larger system.  In this study, a 3×3×3 supercell is used for the MC simulation, which 

results in a 40.7×40.7×40.7 Å3 structure.  Thus, only one nanocrystallite could possibly 

form in the MC simulation.  However, nanoscale exsolution lamellae are observed for the 

CexZr1-xO2 binary at low T (Figure 3.5), where the lamellae are about two cation layers 

thick and form || to the )2(10 , which is a linear combination of (101)  and )1(00 .  

Competitive exsolution of lamellae || to any linear combination of the {110} and {100}, 

which are equivalent to {101} and {001} in an isometric system, such as fluorite, may be 

the cause of the experimentally observed nanocrystallites for Ce0.5Zr0.5O2.  The nanoscale 

exsolution in the CexZr1-xO2 binary may alternatively be considered as a superstructure 

ordering, which is responsible for the decrease in the enthalpy of mixing at x = 0.5 at 100 

K (Figure 3.1).  Complete exsolution would correspond to an enthalpy of mixing of zero.  

However, further exsolution into thicker lamellae may be kinetically hindered due to 

slow cation diffusion, especially at the low temperatures required for the nanoscale 

exsolution lamellae to form. 
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Figure 3.5. The CexZr1-xO2 binary displays exsolution lamellae at 100 K and x = 0.5 that 
are about two cation layers thick (~4.5 Å) and || to )2(10 . 
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Cation ordering and end-member stability 

Although the thermodynamic properties of mixing for the ThxZr1-xO2 binary appear 

similar to the CexZr1-xO2 binary, exsolution is not observed from the MC simulation.  

Thus, the significant drop in configurational entropy at low T when x = 0.5 is due to the 

ordering of the cations in an energetically favored arrangement.  A good example of 

cation-ordering is in the calcite-magnesite (CaCO3-MgCO3) solid solution, which 

exhibits a significant drop in entropy at x = 0.5.  This drop in entropy corresponds to 

ordering of the Ca and Mg, which results in the phase dolomite CaMg(CO3)2 with 

alternating Ca and Mg layers in the [001] direction (Navrotsky and Capobianco, 1987).  

Similarly, cation ordering is observed for the ThxZr1-xO2 binary at 200 K at x = 0.5, where 

rows of alternating cations lie in the (100).  Additionally, the cation rows lying in 

subsequent (100) layers along the [001] zone axis are rotated by 30° (Figure 3.6). 

No experimental evidence of an ordered phase in the ThxZr1-xO2 binary has been 

found; however, the solid-solution behavior of the ThxZr1-xO2 binary is highly dependent 

on the synthesis method.  For example, solid solutions synthesized in a series of three 

grinding, pelletizing, annealing (at 1200 °C, 1300 °C, and 1400 °C), and cooling cycles 

show phase separations from Th0.05Zr0.95O2 to Th0.95Zr0.05O2 (Grover and Tyagi, 2002).  

The phase separations were identified by the appearance of monoclinic zirconia peaks in 

powder diffraction patterns.  However, solid solutions synthesized from a melt (about 

3000 °C) and quenched show miscibility of 17.5 mol % Th in cubic-ZrO2 (Duwez and 

Loh, 1957).  The melting points for ThO2, ZrO2, and CeO2 are about 3300 °C, 2750°C, 

and 2600 °C, respectively; therefore, at small concentrations of x, homogeneous cation  
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Figure 3.6. Ordering is observed for the ThxZr1-xO2 binary at x = 0.5 and T = 200 K. 
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arrangements in the ThxZr1-xO2 and CexZr1-xO2 binaries could be quenched from a melt.  

However, upon further heat treatment, phase separation occurs due to the transformation 

of ZrO2 from a cubic to tetragonal structure.  Although the cation coordination remains 

the same in the cubic to tetragonal phase transition (CN = 8), the oxygen atoms are 

displaced, and the unit cell parameter in the c-direction is lengthened.  Experiments have 

identified two tetragonal forms (termed t, t') for the CexZr1-xO2 binary with identical 

P42/nmc space group and connectivity but different c/a ratios, where t and t' exist in the 

compositional ranges 5-20 mol% and 40-60 mol% CeO2 in ZrO2 with a c/a = 1.018 and 

1.010, respectively (Vlaic et al., 1999).  The t tetragonal form is stable at high 

temperatures and transformable to the monoclinic form at room temperature, while the t' 

tetragonal form is metastable and does not transform (Otsuka-Yao-Matsuo et al., 2003; 

Vlaic et al., 1998; Yashima et al., 1994).  In addition, a metastable tetragonal phase (t'') is 

found at high CeO2 compositions and is often misinterpreted as cubic because the c/a 

value is 1 (Yashima et al., 1994).  Oxygen displacements can be used to identify the 

metastable tetragonal structure.  In the cubic structure the z-position for the oxygen atom 

is 0.125; however, for the tetragonal structure the z position for the oxygen atom is 0.185 

(Teufer, 1962). 

Further, the tetragonal to monoclinic inversion of ZrO2 at room temperature cannot be 

suppressed.  The phase transition to the monoclinic structure involves a change in the 

coordination of the cations from 8 to 7.  The small ionic radius of Zr requires the 

shortening of the <Zr-O> bond distance, therefore, the coordination number decreases 

due to coulombic repulsion between the oxygen atoms.  Monoclinic ZrO2 (P21/c) is stable 

at room temperature and occurs in nature as baddelyite.  However, ThO2 and CeO2 are 
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stable at room temperature with the isometric fluorite symmetry (Fm3m), and occur 

naturally as the minerals thorianite and cerianite, respectively. 

The calculations presented here are based on the isometric Fm3m symmetry across 

the entire binary, yet the calculations are actually performed with P1 symmetry.  Unit cell 

elongation along one direction was observed in several quantum-mechanical structural 

optimizations, which hinted at the binary being tetragonal.  One indication that a structure 

is tetragonal or deviates from being isometric is the deviation of the c/a ratio from unity 

(e.g., Vlaic et al., 1999).  The largest c/a ratio (c/a = 1.011) for the ThxZr1-xO2 binary 

calculations is for the configuration with a concentration x = 0.5, in which the cations 

(i.e., Th and Zr) exsolve || to (001) and form lamellae that are 2 cation-layers thick.  For 

this configuration, the final unit cell parameters in the a and b directions are 5.334 Å, 

while the final unit cell parameter in the c direction is 5.393 Å.  Based on the c/a ration, 

where c/a = 1.011, this configuration could be considered as tending towards a tetragonal 

structure.  In addition, the oxygen atoms are displaced by 0.0147 fractional units in the c-

direction, which corresponds to 0.158 Å.  The original <Me-O> (Me = Th, Zr) bond 

distance was 2.32 Å, while the final <Zr-O> bond distance is 2.27 Å, and the final <Th-

O> bond distances are 2.38 Å and 2.35 Å, respectively, where the longer <Th-O> 

distances are for O that are also coordinated by Zr.  The shortening of the <Zr-O> bond 

distance is due to compensation for the smaller ionic radii of Zr.  Based on the crystal 

structure of tetragonal zirconia, the oxygen positions are expected to deviate by ~ 0.060 

fractional units in the c-direction, which corresponds to about 0.32 Å based on a c 

parameter of 5.27 Å (Teufer, 1962).  Thus, with knowledge of experimentally-determined 

end-member stability in addition to the quantum-mechanical calculations and MC 
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simulations, one can say that the ThxZr1-xO2 binary is not expected to form a solid 

solution because of the structural instability of cubic zirconia at room temperature. 

The instability of cubic zirconia at room temperature clearly contributes to the 

immiscibility of the Zr-bearing binaries.  However, cubic zirconia can be stabilized at 

room temperature with the addition of trivalent or divalent cations (e.g., Y2O3, CaO, 

MgO).  Yttria (Y2O3) is the most common trivalent oxide used to stabilize zirconia, 

where 7-70 mol % Y2O3 stabilizes ZrO2 in the cubic fluorite structure (Duwez et al., 

1951) and the solid solution referred to as yttria-stabilized zirconia (YSZ).  While the 

CeO2-ZrO2 binary contains a large miscibility gap, the CeO2-YSZ binary shows complete 

miscibility (Grover et al., 2007).  However, based on a combination of XRD and EMPA 

analyses from the same study, YSZ has minimal solubility in ThO2.  Further work is 

necessary to understand the differences in the two systems.  First, if the Ce4+ is reduced to 

Ce3+, the Ce could contribute, in addition to the Y, to the stabilization of cubic zirconia.  

Second, the ordering of Y3+ and associated oxygen vacancies may influence the solid 

solution of ThO2 and YSZ because of the single 4+ oxidation state of both Th and Zr. 

Miscibility limit 

Typically, the limit of incorporation is determined based on a tangent line connecting 

the minima of a Gibbs free energy curve.  The x values where the tangent meets the curve 

are the limits of incorporation.  For example, the tangent to the ThxCe1-xO2 curve at 400 

K meets the curve at x = 0.1 and 0.9 molar fraction of ThO2.  Thus, based solely on the 

Gibbs free energy of mixing, 0.1 mol% of CeO2 can be incorporated into ThO2 and 0.1 

mol% of ThO2 can be incorporated into CeO2.  The minima of Gibbs free energy curves 
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for the CexZr1-xO2 and ThxZr1-xO2 binaries are very close to the end members; therefore, a 

graphical approach such as the use of a tangential line is not a reliable estimate of the 

incorporation limit. 

The minima of the Gibbs free energy of mixing for the CexZr1-xO2 and ThxZr1-xO2 

binaries are beyond the resolution of the calculations.  Therefore, an estimate for the 

incorporation limit can be made based on an approximation of the Gibbs free energy 

curve, ΔGmix, which can be written in terms of ΔHmix and ΔSmix (Equation 1).  ΔHmix is 

approximated with a symmetric Margules function [ΔHmix = Ax(1-x)], and ΔSmix is 

approximated with the Stirling’s approximation [ΔSmix = -R{xlnx + (1-x)ln(1-x)}].  The A 

parameter is determined based on the enthalpy of mixing at the lowest concentration x 

calculated.  For the quantum-mechanical calculations the lowest concentration is x = 

0.125, while the smallest concentration possible in the Monte-Carlo simulation is x = 

0.0005.  This approximation becomes especially useful if only quantum-mechanical 

calculations are available (e.g., Shuller et al., 2010a).  The condition for the minimum of 

the ΔGmix becomes Equation 2, where the first derivative of Equation 1 is set equal to 

zero.  The solution to Equation 2 (Equation 3) can be numerically solved using the 

Banach fixed point theorem. 

 ( ))1ln()1(ln)1()( xxxxRTxAxxGmix −−++−=Δ  (1) 
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Alternatively, the limit of incorporation, xinc, can be approximated based on the 

assumption that the ΔHmix curve is linear at low x, where xmin is the minimum 

concentration evaluated in the Monte-Carlo simulation (Ferriss et al., 2008; 2010).  

Again, ΔGmix is written in terms of ΔHmix and ΔSmix, where the ΔHmix term is described by 

a linear approximation, i.e., ΔHmix = (ΔH1/x1)·x.  The solution to the minimum of the 

ΔGmix, based on the linear approximation of ΔHmix, is an analytical expression (Equation 

4), where ΔH1 is the enthalpy of mixing corresponding to a specific temperature T and 

concentration x1. 
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The estimated xinc can be used to generate a temperature-composition phase diagram 

(Figure 3.3).  The phase diagram in Figure 3.3 shows the composition xinc versus 

temperature based on an average of the xinc estimated by the Margules and the linear 

approximations.  The dotted line above the average is the result from the Margules 

approximation, while the dotted line below the average is the result from the linear 

approximation.  The calculated miscibility limits are significantly lower than those 

measured experimentally.  For example, at 1400 °C (1673 K), Grover and Tyagi found 5 

mol% ZrO2 in ThO2 and 20 mol% ZrO2 in CeO2 (2002), based on the refinement of unit 

cell parameters from powder X-ray diffraction patterns across the solid-solution.  

However, the calculated miscibility limit of ZrO2 in ThO2 and CeO2 at 1673 K is 0.09 
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and 3.6 mol%, respectively.  Similar discrepancies between calculated and measured 

miscibility limits were noted for solid solutions with zircon, e.g., MexZr1-xSiO4, where 

Me = Ce, Hf, Th, U, and Pu (Ferriss et al., 2010).  Both computational and experimental 

limitations are noted as the source of possible error.  Computationally, the limited 

number of configurations evaluated quantum-mechanically may be insufficient to capture 

the cation-cation interactions.  Experimentally, solid-solutions may not have reached 

thermodynamic equilibrium.  In addition, solid solutions may be exsolved on the 

nanoscale, such as the Ce0.5Zr0.5O2 nanocrystallite exsolution (Mamontov et al., 2003) 

described above. 

Conclusions 

The thermodynamic properties of mixing, specifically the enthalpy of mixing (ΔHmix), 

Gibbs free energy of mixing (ΔGmix), and configurational entropy (ΔSmix), were calculated 

for the ThxCe1-xO2,. CexZr1-xO2, and ThxZr1-xO2 binaries across the complete solid 

solution within an isometric framework (Fm3m).  As determined experimentally, the Th-

Ce binary forms a complete solid solution, and no cation-ordering or nanoscale 

exsolution was observed.  Below room temperature at x = 0.5, nanoscale exsolution with 

lamellae || to )2(10  are observed for the CexZr1-xO2 binary.  At the same conditions a 

complex cation ordering scheme is observed for the Th-Zr binary.  Cation-ordering for 

the ThxZr1-xO2 binary is unexpected due to the large miscibility gap observed in the Gibbs 

free energy of mixing, as well as the instability of cubic ZrO2 at room temperature.  ZrO2, 

however, has limited solubility for both CeO2 and ThO2.  Calculated estimates of the 

miscibility limit within the CexZr1-xO2 and ThxZr1-xO2 binaries are significantly lower 

than measured limits.  This discrepancy may be reduced by further calculations in which 
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the ZrO2 end-member is considered to be tetragonal (P42/nmc) and monoclinic (P21/c).  

Further analysis of the complete range of CexZr1-xO2 and ThxZr1-xO2 solid solutions 

within a tetragonal and monoclinic framework are necessary in order to understand the 

impact of the structural stability on the solid-solution properties of these binaries. 
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Chapter 4  

 

Quantum-mechanical evaluation of Np-incorporation into 

studtite 

Abstract 

Radionuclide incorporation into the alteration products of corroded UO2 in used 

nuclear fuel may control the release and mobility of key radionuclides, such as the very 

long-lived minor actinide, 237Np (τ1/2 = 2.1 my). Studtite, [UO2(O2)(H2O)2](H2O)2, may 

form in the presence of peroxide produced by radiolysis of water in contact with the spent 

fuel. Experiments have indicated that the studtite structure can incorporate Np; however, 

due to the low concentrations in the solid, the incorporation mechanism could not be 

determined. In this study, density functional theory is used to calculate an optimized 

structure, determine the electronic density of states, and calculate the energetics of the 

incorporation of Np6+ vs. Np5+ + H+ into the studtite structure. The definition of the 

source/sink phase (reference phase) for the cations involved in the incorporation process 

greatly affects the final incorporation energy. The incorporation energy of Np into 

studtite based on the 4+ oxide reference phases (e.g., source/sink = NpO2/UO2) results in 

lower incorporation energies (-0.07 eV and 0.63 eV for Np6+ and Np5+ incorporation, 
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respectively) than the incorporation energy calculated using higher-oxide reference 

phases (e.g., Np2O5/UO3), where the incorporation energies for Np6+ and Np5+ into 

studtite are 0.42 eV and 1.12 eV, respectively. In addition, Np6+-incorporation into 

studtite is energetically more favorable than Np5+-incorporation as assessed from the 

lower incorporation energy. Estimates of the solid-solution behavior from a combination 

of quantum-mechanical calculations and Monte-Carlo simulations indicate that the Np6+- 

and U6+-studtite solid solution is completely miscible at room temperature with respect to 

a hypothetical Np6+-studtite structure. The Np-studtite structure was calculated to be 

stable with respect to the corresponding oxides, but its formation may be kinetically 

hindered. Knowledge of the electronic structure provides insight into Np-bonding in the 

studtite structure. The Np 5f orbitals are within the band gap of studtite, which results in 

the narrow band gap of Np-incorporated studtite (1.09 eV), as compared with the band 

gap of studtite alone (2.29 eV). 

Introduction 

Used nuclear fuel (UNF) is composed of 95-99% uranium dioxide (UO2) and 1-5% 

fission products (e.g., 137Cs, 90Sr, 99Tc) and transuranium elements, e.g., 239Pu, 237Np, 

241Am (Barner, 1985; Bruno and Ewing, 2006). The oxidation and corrosion of the UO2 

matrix causes the oxidation and release of fission products and transuranium elements. 

Specific radionuclides, such as 99Tc or 237Np, are of concern due to their mobility and 

long half-lives. For example, Np is mobile as an aqueous Np5+-complex, and 237Np has a 

half-life of 2.1 million years. Experimental corrosion studies of synthetic UO2 and natural 

uraninite (UO2+x) show a similar U-alteration paragenesis – beginning with uranyl 
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oxyhydroxides, followed by uranyl silicates (Finch and Ewing, 1992; Wronkiewicz et al., 

1992, 1995). More recent UNF corrosion studies show the precipitation of studtite 

[UO2(O2)(H2O)2(H2O)2] and meta-studtite [UO2(O2)(H2O)2] (Hanson et al., 2005; 

McNamara et al., 2005), which are the only stable uranyl peroxide minerals (Kubatko et 

al., 2003) and, to the authors’ knowledge, the only stable peroxide minerals. Studtite has 

also been observed as a major alteration phase of UNF at the K East Basins of the 

Hanford site in Washington, United States (Abrefah et al., 1998). Studtite forms by the 

incorporation of peroxide (Amme, 2002), which oxidizes some of the U4+ to U6+. The 

peroxide is formed due to radiolysis of water at the surface of highly radioactive UNF. 

Studtite was first identified by Walenta (1973) and later the structure was determined 

by Burns and Hughes (2003). Studtite (C2/c) is composed of chains of distorted uranyl 

hexagonal bipyramids with interstitial water (Figure 4.1). The six uranyl equatorial bonds 

include two unique equatorial H2O and two symmetrically equivalent equatorial peroxide 

(O2)2- groups. The peroxide forms the equatorial edges that polymerize the uranyl 

polyhedra into chains parallel to [001]. U6+ is also strongly bonded to axial O2-, forming 

the linear uranyl complex. Chains of the distorted uranyl hexagonal bipyramids are 

weakly linked by hydrogen bonding via the interstitial water. Here, the chemical formula 

for studtite is written [(UO2)O2(H2O)2](H2O)2, where the UO2 signifies the uranyl 

molecule, the O2 is the equatorial peroxide molecule, the H2O inside the square bracket is 

the equatorial water molecule, and the other H2O is the interstitial water molecule. 

While other uranyl peroxide phases have been synthesized in laboratory experiments 

focused on uranium(VI)-peroxide chemistry in alkaline conditions (Burns et al., 2005;  
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Figure 4.1. Studtite projected on the (010) showing chains of uranyl polyhedra bonded by 
peroxide molecules, where the unique oxygen atoms are labeled in the detailed inset of 
two adjacent uranyl polyhedra. U atoms = blue; O atoms = red; H atoms = white. 
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Kubatko and Burns, 2006; Kubatko et al., 2007), studtite and meta-studtite are known to 

be thermodynamically stable under repository conditions (Kubatko et al., 2003). These 

two minerals may be the first alteration phases to form in both oxidizing and reducing 

repository environments due to the near-surface oxidizing conditions and presence of 

hydrogen peroxide created by radiolysis (Amme, 2002; Cejka et al., 1996; Debets, 1963). 

Thus, studtite and meta-studtite are potentially important phases for radionuclide 

incorporation and retention. 

The transport of radionuclides, such as Np, may be limited by incorporation into U-

alteration phases (Burns et al., 1997). Electron energy loss spectroscopy (EELS) analysis 

shows about 500 ppm Np incorporated into the uranyl oxyhydroxide phase of dehydrated 

schoepite (UO3(H2O)0.8) (Buck et al., 1997). However, EELS analysis at the Np MV 

energy peak is of limited value for studies of Np5+ because of a plural-scattering event 

that generates an erroneous peak at this energy (Fortner et al., 2004). Synchrotron X-ray 

absorption spectroscopy has been used to determine the incorporation limit of Np into 

uranyl oxyhydroxides and showed that there was a significantly lower concentration of 

Np incorporated into dehydrated schoepite (200 ppm) than the previous EELS analysis 

indicated (Fortner et al., 2004). Inductively coupled plasma-mass spectroscopy (ICP-MS) 

has also been used to study Np-incorporation into meta-schoepite (UO3·2H2O), Na-

compreignacite (Na2[(UO2)3O2(OH)3]2(H2O)7), uranophane (Ca(UO2)2(SiO3OH)2(H2O)5), 

and β-(UO2)(OH)2 (Burns et al., 2004). Uranyl structures with interlayer cations, such as 

uranophane, incorporated more Np (~400 ppm) than structures without interlayer cations, 

such as meta-schoepite (a few ppm). Most recently, laser ablation (LA) ICP-MS analysis 

has shown that Na-substituted meta-schoepite has a greater affinity for Np than meta-
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schoepite (Klingensmith et al., 2007). Another experiment showed that Np has a greater 

affinity for studtite than for schoepite (Douglas et al., 2005a, 2005b). The oxidation state 

of the Np in the studtite is expected to be 5+ (Kaszuba and Runde, 1999); however, there 

is some speculation that Np6+ could be incorporated (Douglas et al., 2005a). There is also 

evidence that Np5+ and Np6+ can be reduced by hydrogen peroxide forming Np4+ 

(Malkova et al., 1986; Shilov et al., 1998); however, this reduction is observed in highly 

concentrated acid solutions and is not expected in near-neutral solutions such as those 

associated with geologic repository environments. 

The knowledge of the crystal and electronic structure of studtite determined using 

quantum-mechanical calculations provides the framework for understanding potential 

incorporation mechanisms. This first-principles study presents a detailed description of 

the crystal and electronic structure of studtite and Np-substituted studtite and an analysis 

of the energetics of different Np-substitution mechanisms. The electronic structure of 

studtite is compared with the electronic structure of Np-modified studtite. Additionally, 

the incorporation of Np6+ vs. Np5+ into studtite is compared, and the charge-balanced 

incorporation mechanism of Np5+ into studtite is evaluated. 

Methods 

Quantum-mechanical calculations 

The quantum-mechanical program CASTEP (CAmbridge Serial Total Energy 

Package; Payne et al., 1992; Segall et al., 2002) was used to optimize the geometry of 

studtite and Np-substituted studtite and calculate the total energy and electronic structure 

of both phases. CASTEP is a density functional theory-based code that uses a planewave 
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approach (i.e., the wavefunctions of the valence electrons are composed of a series of 

sinusoidal functions with different wavelengths) with periodic boundary conditions to 

approximate solutions to the Schrödinger equation. The total energy of a periodic system 

is based on the ground state of the valence electrons. Ultra-soft pseudopotentials are used 

to approximate the influence of the core and inner valence electrons on the outer valence 

electrons. Outer valence electrons (U 5f36s26p66d17s2, Np 5f46s26p66d17s2, O 2s22p4, and 

H 1s1) are treated explicitly in the Hamiltonian of the Schrödinger equation. Changing the 

planewave energy cut-off from 500 eV to 800 eV changed the final energy of the studtite 

structure by 0.99 eV and the Np6+-substituted studtite structure by 1.95 eV. Further 

changing the planewave energy cut-off from 800 eV to 1000 eV changed the final energy 

of the studtite structure by only 0.10 eV. A k-point spacing of 0.07 Å-1 was used. No 

significant changes in energy have been found for increased k-point density; thus, this k-

point grid is appropriate for this type of calculation due to the relatively large size of the 

unit cell. The generalized gradient approximation (GGA) with the Perdew-Burke-

Ernzerhof (PBE) functional (Perdew et al., 1996) was used to approximate electron 

exchange and correlation. GGA has shown greater structural agreement for UO2 

geometry optimizations than localized density approximation (LDA) (Skomurski et al., 

2006). Conventional DFT calculations predict a metallic band structure for UO2, even 

though UO2 is a weak semi-conductor. Density functional theory approximations beyond 

GGA, such as the use of a Hubbard U correctional term (Anisimov, et al. 1997; Gupta et 

al., 2007), may be used to more accurately model the strongly correlated 5f electrons for 

electronic structure calculations. In the current study, GGA is used to optimize the 

geometry of studtite and Np-substituted studtite and qualitatively compare the 
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corresponding electronic structures. A spin-polarized approach is used for systems that 

contain Np5+ or Np6+ atoms in order to allow the unpaired electron spins in the 5f orbitals 

to adopt the lowest-energy configuration. 

Calculation of incorporation energies 

Final energies, calculated using CASTEP, are defined as the energy gained by 

forming a crystal from zero-valent atoms in vacuum. For example, the final energy of 

studtite is defined by the reaction given by Equation 1: 

U0 + 8O0 + 8H0 ↔ [UO2O2(H2O)2](H2O)2 

 ΔE = E{[ UO2O2(H2O)2](H2O)2} – [E{U0} + 8E{O0} + 8E{H0}] (1) 

The energy required for the formation of studtite and Np6+-substituted studtite from their 

respective zero-valent atoms (e.g., Equation 1), indicates that studtite is more 

thermodynamically stable than Np6+-substituted studtite by about 3.55 eV, where the 

energies for the zero-valent atoms were calculated for the atoms in a 10×10×10 Å box. 

The change in enthalpy describing the energy needed to form the mineral from the atoms 

in a gas phase is used only to compare studtite and Np6+-substituted studtite – not the 

incorporation energy of Np6+ into studtite. 

The energy required for the substitution of Np into a U site in studtite can be derived 

as the energy of a stoichiometric chemical reaction as shown in Equation 2, where the 

source for Np is Np2O5 and the sink for U is UO3. The incorporation energy is the 

difference between the sum of the reactant energies and the sum of the product energies. 
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[UO2O2(H2O)2](H2O)2 + ½Np2O5 + ¼O2 ↔ [(U,Np)O2(H2O)2](H2O)2 + UO3 

ΔE = E{[(U,Np)O2O2(H2O)2](H2O)2} + E{UO3} –  

[E{[UO2O2(H2O)2](H2O)2} + ½E{Np2O5} + ¼E{O2)   (2) 

The incorporation energy of Np into the unit cell of studtite, as calculated using 

Equation 2, depends on the reference phases (i.e., source for Np and sink for U) selected. 

The incorporation energy is specific to a given incorporation mechanism. For example, 

Np2O5, which is the Np oxide with the highest oxidation state of Np, was selected as the 

source for Np in the above equation with UO3 as the uranium sink; however, the 

incorporation energy is different for different source and sink couples (e.g., ½NpO2+¼O2 

and UO2 versus NpF6 and UF6). The different reference phases were chosen to evaluate 

the effect of changing the cation oxidation state between the reference phase and subject 

phase. For example, the hexafluorides are used for Np6+ incorporation so that the 

incorporation equation can be written without changing the oxidation state of any species. 

This study focuses on using solid crystalline phases (oxides and fluorides) as sources and 

sinks for Np and U. The incorporation energies for different Np-incorporation 

mechanisms are used to determine the trends of favorable incorporation mechanisms. 

The substitution of Np5+ for U6+ results in a charge imbalance; thus, a charge-

balancing mechanism is necessary. For example, one charge-balancing mechanism is the 

substitution of Np5+ + H+ ↔ U6+, which is equivalent to the coupled substitution of 

Np5+ + OH- ↔ U6+ + O2-. The location of the additional H+ within the structure is very 

important to the outcome of the energy calculations. Due to the computational expense of 

evaluating all of the different substitution mechanisms in a relatively large unit cell, 

coarse computational parameters (planewave energy cut-off of 500 eV and Γ k-point) 
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were used in the evaluation of different H+ positions within the modified studtite 

structure. The positions analyzed include H+ bonded to the axial oxygen, the peroxide 

oxygen, and the interstitial water. Equation 3 shows the stoichiometric reaction that 

describes the coupled substitution of Np5+ and H+ into the studtite structure. 

[UO2O2(H2O)2](H2O)2 + ½Np2O5 + ½H2O ↔ [H(U,Np)O2O2(H2O)2](H2O)2 + UO3 (3) 

The incorporation energy for Np5+ and H+ into studtite is the difference of the sums of the 

products and reactants of Equation 3. The incorporation energy depends on both the 

reference phases and the H+ position in the modified studtite structure. 

Calculations of the thermodynamic properties of the (U6+,Np6+)-studtite solid solution  

The thermodynamic mixing properties for the (U6+,Np6+)-studtite solid solution are 

estimated from a series of quantum-mechanical calculations in which the uranium end-

member is pure studtite and the neptunium end-member is a theoretical Np-studtite 

structure with Np6+ replacing all U6+ atoms. Due to the limited number of cations in the 

unit cell (4, limited by the computational expense of these calculations) the minimum 

amount of Np incorporated into the model structure is 25% of the actinyl sites. Note, the 

concentrations of Np in experimental studies are on the order of a few hundreds of ppm 

(Burns et al., 2004; Douglas et al., 2005a, 2005b; Klingensmith et al., 2007). However, 

quantum-mechanical calculations using lower concentrations of Np are more 

computationally expensive in terms of both time and memory because lower 

concentrations require larger unit cells. The computational time increases with number of 

electrons in a system cubed and is, thus, already prohibitive for a 2×1×1 supercell (which 

would be equivalent to a substitution of 12.5% Np into the actinyl sites). To scale up the 
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system, i.e. exploring millions of different configurations at different temperatures and 

compositions in a unit cell with several thousand cations, it is necessary to describe the 

total energy as a function of the relative positions of only the cations. The energy of the 

system is fit with a 2-parameter (W1 and W2) Margules function (Eq. 4), where E0 

describes the energy of the system as a function of the concentration, x, and accounts for 

the asymmetry of the system (Ferriss et al., 2009). Deviations from the Margules curve 

are accounted for with an exchange parameter J, which describes the energy associated 

with the A-B cation exchange (Eq. 5). Both the Margules parameters and exchange 

parameters are fit to the enthalpy of mixing from the quantum-mechanical calculations 

(Eq. 6) and used in a Monte-Carlo simulation (Becker et al., 2000; Bosenick et al., 2001; 

Becker and Pollock, 2002). 

 x)](Wxx)[Wx(E −+−= 11 210  (4) 
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The Monte-Carlo simulation is designed to accept a new configuration with a 

probability of 1 if the change in energy between the new configuration and the previous 

configuration is negative. Otherwise, if the exchange increases the energy (ΔE) of the 

system, the new configuration is accepted with a probability according to a Boltzmann 

distribution, i.e., the swap is accepted if the Boltzmann factor [exp(-ΔE/RT)] at a given 

temperature T is greater than a random number between 0 and 1 (Reich and Becker, 

2006). The Monte-Carlo simulations allow for calculations using larger supercells (such 
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as an 8×8×8 supercell containing 2048 exchangeable cation sites). Subsequent 

Bogoliubov thermodynamic integration was used to calculate the temperature-dependent 

free energy and entropy of mixing (Yeomans, 1992; Ferriss et al., 2008). 

Results and Discussion 

Refined crystal structure 

Quantum-mechanical calculations involve the positions of all of the atoms in a 

structure. The crystal structure of studtite has been determined using X-ray diffraction 

techniques, but the positions of the hydrogen atoms in studtite cannot be determined 

using traditional X-ray diffraction methods. Therefore, the hydrogen positions available 

in crystallographic databases are estimated from the O-H bond lengths (0.98 Å) 

combined with some consideration of bond valence constraints (Burns and Hughes, 

2003). No neutron-diffraction refinements are available for the determination of the H 

positions; thus, in this study, energy-optimized hydrogen positions were determined using 

quantum-mechanical optimizations of the structure. Table 4.1 shows the experimental 

studtite unit cell parameters (Burns and Hughes, 2003) versus the optimized unit cell 

parameters. The optimized unit cell parameters are within ~1% of the experimentally 

determined unit cell parameters, with the exception of the b parameter, which is within 

~2%. The quantum-mechanically optimized studtite unit cell volume is in close 

agreement (0.03%) with other the density-functional theory calculations (Ostanin and 

Zeller, 2007), which uses slightly different computational parameters (e.g., k-point mesh,  



92 

 

Table 4.1. Comparison of measured unit-cell parameters and optimized unit-cell 
parameters of the conventional unit cell of studtite, (Np6+

0.25,U6+
0.75)-studtite, and 

(Np5+
0.25,U6+

0.75)-studtite. 
 

 Experimental Computational Difference 
(%) 

(Np6+
0.25U6+

0.75)-
studtite 

(Np5+
0.25U6+

0.75)-
studtite 

a 14.07 13.96 -0.78 13.97 13.93 
b 6.72 6.88 2.38 6.88 6.98 
c 8.43 8.53 1.19 8.53 8.49 
α 90.00 90.00 0.00 90.01 90.01 
β 123.36 122.55 -0.66 122.40 121.92 
γ 90.00 90.00 0.00 90.04 89.65 

Vol. 665.7(3) 689.88 3.63 692.54 700.73 
Note: The difference column highlights the comparison of the computed studtite 
parameters with those published by Burns and Hughes (2003). 
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planewave energy cut-off).  The quantum-mechanical optimization results in the 

alignment of the H atoms of the equatorial water parallel to the (010) plane.  Figure 4.2 

shows the orientation of the water molecules pre- and post-optimization, where the 

alignment of the H+ atoms is apparent along with a change in the dihedral angle between 

the planes parallel to the U-O equatorial bonds (from 12.3° to 1.2°).  The quantum-

mechanical calculations are static ground-state (0 K) calculations; therefore, the dynamic 

behavior of the water molecules at room temperature is not captured. Table 4.2 shows the 

quantum-mechanically optimized atomic positions and bond lengths for studtite, which 

have not been previously reported. The total energy difference between the initial 

structure, using the estimated H positions proposed by Burns and Hughes (2003), and the 

optimized structure is -129.8 kJ/mol formula unit, where the formula unit is 

[(UO2)(O2)(H2O)2](H2O)2. The significant decrease in total energy of the optimized 

primitive cell with respect to the initial primitive cell is evidence that the optimized H 

positions are energetically favored. Additionally, the enthalpy of formation of studtite 

from UO3 + H2O2 + 3 H2O yields ΔE = -74.2 kJ/mol, which is in close agreement with 

the measured enthalpy of formation (-75.7 kJ/mol, Kubatko et al., 2003). 

The Np6+-substituted structure is isostructural with studtite and was constructed by 

substituting Np6+ for U6+ in one of the four actinyl polyhedra (25 atomic % Np). The 

(Np6+
0.25U6+

0.75)-studtite is optimized using P1 symmetry in order to avoid symmetry 

restrictions in the relaxation process. The optimized unit cell volume is 692.54 Å3
 

(optimized studtite volume = 689.88 Å3). The optimized unit cell parameters of  
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Figure 4.2. The pre- (a) and post- (b) optimized uranyl polyhedra show the alignment of 
the H+ parallel to the (010) plane and the change in the dihedral angle between the planes 
parallel to the Ui-Oi

equatorial bonds (traced with dotted lines). Calculations are performed 
with ground-state (0 K) static conditions; therefore, vibrations of the water molecules at 
room temperature are not observed. U atoms = blue; O atoms = red; H atoms = white. 
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Table 4.2. Optimized unit-cell parameters, fractional atomic coordinates, and bond 
distances and angles for studtite. 

 

studtite [(UO2)O2(H2O)2](H2O)2 
a (Å) = 13.96; b (Å) = 6.88; c (Å) = 8.53; β (°) = 122.55 

Vol. (Å3) = 689.88; space group = C2/c 
Element Atom no. x y z 
U 1 0.000 0.000 0.000 
Ouranyl (ur) 2 -0.004 -0.247 0.072 
Operoxide (per) 3 0.062 0.121 0.305 
Oequatorial (eq) 4 0.205 0.004 0.181 
Ointerstitial (int) 5 -0.159 -0.523 0.052 
H1

equatorial 6 0.256 0.005 0.132 
H2

equatorial 7 0.254 0.018 0.320 
H1

interstitial 8 -0.119 -0.648 0.104 
H2

interstitial 9 -0.102 -0.423 0.076 
Bond distances (Å) and angles (°) 

U-Our 1.818  Our-U-Our 180    
U-O1

per 2.400  O1
per- O2

per 1.459    
U-O2

per 2.406       
U-Oeq 2.412       
        
Oeq-H1

eq 1.005  H1
eq…Oint 1.668  Oeq-H1

eq…Oint 173 
Oeq-H2

eq 1.001  H2
eq…Oint 1.675  Oeq-H2

eq…Oint 175 
H1

eq-Oeq-H2
eq 108       

        
Oint-H1

int 0.991  H1
int…Oper 1.760  OintH1

int…Oper 173 
Oint-H2

int 0.986  H2
int…Our 1.841  OintH2

int…Our 168 
H1

int-Oint-H2
int 108       
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 (Np6+
0.25U6+

0.75)-substituted studtite are listed in Table 4.1. A CIF file for the optimized 

atomic positions of (Np6+
0.25U6+

0.75)-studtite is located in Appendix 1. This shows that the 

unit cell parameters are not more than 0.01 Å different from those of pure U-studtite. 

The unit cell parameters of [(Np5+H+)0.25U6+
0.75]-structure diverge by not more than 

0.1 Å from studtite. The substituted Np5+ is slightly displaced from the original U6+ 

position due to the coupled substitution of an H+ ion for charge-balance. Different 

locations for the H+ were considered – i.e., bonded to the axial oxygen, to the peroxide 

oxygen, and to the interstitial water molecule. The most thermodynamically stable 

position occurs for H+ is bonded to the axial O2-, which is energetically more favorable 

than the other positions by 0.8-1.3 eV. The unit cell volume for [(Np5+H+)0.25U6+
0.75]-

structure is 700.73 Å3, which is 1.6% larger than studtite and 1.2% larger than 

[Np6+
0.25U6+

0.75]-structure. The optimized unit cell parameters of [(Np5+H+)0.25U6+
0.75]-

structure are listed in Table 4.1. The quantum-mechanically optimized atomic positions 

for [(Np5+H+)0.25U6+
0.75]-structure are available as a CIF file in Appendix 2. 

Electronic structure of studtite 

The electronic-structure analysis of studtite can be described using the partial density 

of states (PDOS) and orbital projections. The DOS of the valence electrons for studtite 

are shown for electron binding energies from -30 eV to +10 eV in Figure 4.3. The inner 

valence band (from about -24 eV to -10 eV) has electron density contributions from the 

axial O 2s, peroxide O 2s, equatorial water O 2s, and U 6p orbitals. Each peak in this 

inner valence band (interval A) is labeled in Figure 4.3. 
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Figure 4.3. Partial density of states 
spectra of studtite over the entire 
calculated energy range, where 
interval A designates the inner 
valence band, interval B the outer 
valence band and interval C the 
conduction band. The peaks in 
interval A of the full studtite 
PDOS are labeled according to the 
contributing molecular orbitals. 
The peak character of the outer 
valence band and conduction band 
are detailed in the inset, which is 
divided into intervals B1, B2, B3, 
B4, and C. These intervals are 
discussed in detail in the text. a = 
Hwat 1s; b = Owat 2p; c = Oper 2p; d 
= Oax 2p; e = U 6d; f = U 5f. 
 



98 

 

The outer valence band of the studtite electronic structure (from about -10 eV to 0 

eV; interval B Figure 4.3) is divided into 4 intervals (interval B1-B4 in inset of Figure 

4.3). The lowest interval has contributions from the interstitial water O 2p, equatorial 

water O 2p, and the peroxide O 2p. The bonding orbitals within the water molecules, as 

well as hydrogen bonding between the interstitial water molecules and the uranyl 

polyhedra chains via the peroxide O 2p orbitals, are shown in the electron density orbital 

projection in this energy range (Figure 4.4). The next interval, -6 eV to -4 eV, has some 

contribution from all of the unique oxygen 2p orbitals. The U 6d is strongly correlated 

with both the equatorial water O 2p and peroxide O 2p orbitals. 

The interval from -4 eV to -1 eV has 4 major peaks and shows the strongest 

correlation between the U 6d and 5f orbitals and the peroxide O 2p, axial O 2p, and 

equatorial water O 2p orbitals. The -3.5 eV peak is comprised of the interstitial water O 

2p, equatorial water O 2p, and the peroxide O 2p orbitals. The -2.5 eV peak is comprised 

primarily of the axial O 2p orbital. The -2 eV peak is comprised primarily of both the 

water O 2p orbitals, with smaller contributions from the axial and peroxide O 2p orbitals. 

Finally, the -1 eV peak is comprised primarily of the peroxide O 2p and the equatorial 

water O 2p peak, with smaller contributions from the axial O 2p and interstitial water O 

2p orbitals. The top of the valence band and just past the Fermi level, from -0.5 eV to 0.5 

eV, has contributions solely from the peroxide O 2p orbital. Thus, the highest occupied 

molecular orbital (HOMO) is composed of electron density contributions from the 

peroxide O 2p orbital, which may play a role in processes, such as actinide incorporation 

into the uranyl structure and possible oxidation reactions in the environment. The 

peroxide O 2p electron density contribution at the HOMO level of the studtite electronic  
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Figure 4.4. Electron density orbital projection between -8 and -6 eV showing O-H 
bonding in water molecules as well as hydrogen bonding between the water molecules 
and uranyl polyhedra. 
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structure is unique to studtite, as studtite is the only thermodynamically stable uranyl 

peroxide mineral (Kubatko et al., 2003). 

As compared with the valence band, the lower conduction band (no higher empty 

conduction bands are considered in these calculations because they change neither the 

geometry nor the energetics of the system significantly) is much simpler. The unoccupied 

U 5f orbitals are the major contribution to the density of states in this region with an 

admixture of peroxide O 2p and minimal contribution from the axial O 2p orbitals 

(Figure 4.3). 

The significant peaks, in particular the peroxide contribution to electron density in the 

HOMO and the U 5f contribution to the electron density in the LUMO, are comparable to 

the studtite electronic structure calculation by Ostanin and Zeller (2007). The calculated 

band gap is 2.29 eV, which compares to the band gap calculated by Ostanin and Zeller 

(2.3 eV). This lowest-energy HOMO-LUMO transition occurs at the F k-point (0, 0.5, 0) 

in the studtite P1 Brillouin zone. 

Electronic structure of (Np6+
0.25U6+

0.75)-studtite 

The (Np6+
0.25U6+

0.75)-studtite electronic structure is also described using the density of 

states and electron density projections, along with the band structure. The DOS for the 

(Np6+
0.25U6+

0.75)-studtite is similar to that of studtite (Figure 4.5); however, there are 

additional unique types of atom/position combinations that must be considered. In 

studtite, four different oxygen types are unique: peroxide, axial (or uranyl), equatorial (U-

bonded) water, and interstitial water; while in (Np6+
0.25U6+

0.75)-studtite, seven different 

oxygen types are unique: Np-bonded peroxide, U-bonded peroxide, neptunyl, uranyl,  
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Figure 4.5. Comparison of the total DOS for studtite (solid curve) and (Np6+
0.25U6+

0.75)-
studtite (dotted curve). Peak A has electron density contribution from the Np 5f orbital of 
the (Np6+

0.25U6+
0.75)-studtite and is located within the energy region of the studtite band 

gap. The tail on the highest energy peak (B) is due to the split Np 5f peaks from the 
(Np6+

0.25U6+
0.75)-studtite. 
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Np-bonded equatorial water, U-bonded equatorial water, and interstitial water. The 

increase in the number of unique O types is due to the change in the bonding environment 

for an O bonded to a U atom versus an Np atom, which is primarily due to Np6+ having 

an extra unpaired 5f electron, while U has no 5f electrons. 

From the PDOS, two main differences are observed between studtite and 

(Np6+
0.25U6+

0.75)-studtite (labeled in Figure 4.5). Note that the difference in peak intensity 

between the spectra is not major, because the intensity is based on the number of 

electrons explicitly included in the calculation. The (Np6+
0.25U6+

0.75)-studtite unit cell has 

one more valence electron than the studtite unit cell from the substitution of Np (Z = 93) 

for U (Z = 92), which increases the number of valence electrons explicitly included in the 

calculation from 280 to 281 total valence electrons in the unit cell. One major difference 

between the PDOS of studtite and (Np6+
0.25U6+

0.75)-studtite is the width of the band gap. 

While the smallest width of the band gap for (Np6+
0.25U6+

0.75)-studtite is at the same point 

within Brillouin zone as for studtite (F k-point), the magnitude is smaller (1.09 eV) 

(Figure 4.6). The electron contributions that occupy the energy states within the studtite 

band gap are from unoccupied Np 5f orbitals. Another major difference between studtite 

and (Np6+
0.25U6+

0.75)-studtite is the presence of a tail on the highest energy peak in the 

(Np6+
0.25U6+

0.75)-studtite PDOS due to the extra empty bands used in the (Np6+
0.25U6+

0.75)-

studtite calculation for the spin optimization of the unpaired Np 5f electron (Figure 4.5). 

The subtle differences of the electronic structure caused by the incorporation of Np 

into the studtite structure are better understood through the comparison of the electron 

density contribution from Np, Np-neighboring U, and U-neighboring U, as well as the 

Np-bonded peroxide O and U-bonded peroxide O in the (Np6+
0.25U6+

0.75)-studtite  
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Figure 4.6. Band structure showing the band gap of studtite (Egap = 2.29 eV) and 
(Np6+

0.25U6+
0.75)-studtite (Egap = 1.09 eV), where the letters (k-points) on the x-axis 

signify a point within the Brillouin zone, Γ (0, 0, 0); F (0, 0.5, 0); Q (0, 0.5, 0.5); Z (0, 0, 
0.5). 
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structure (Figure 4.7 and Figure 4.8, respectively). The different contribution to the DOS 

in this region are best explained by considering the energy states between -10 eV and 5 

eV, as the regions closest to the HOMO and LUMO levels are involved in electron 

transfer. 

The main differences in the valence and conduction band are associated with the 

electron density contribution from the U and Np 5f orbitals. The differences in peak 

intensity are attributed to the number of total U and Np valence electrons. 

(Np6+
0.25U6+

0.75)-studtite contains 3 U and 1 Np, which means that 42 U electrons and 15 

Np valence electrons are calculated explicitly. Therefore, an energy state with equal 

contributions from Np and U orbitals will appear to have a greater contribution from the 

U (both Np-neighboring and U-neighboring) by a ratio of 14:5. In the conduction band 

(0.5 and 2.0 eV), as well as in the top of the valence band (~-0.5 eV), the major 

contributor to the electron density is the Np 5f orbital, which is the most significant 

difference between the Np6+ and U6+ electron density in the (Np6+
0.25U6+

0.75)-studtite 

bonding environment. Between 2 and 4 eV, the U-neighboring U and Np-neighboring U 

5f orbital has most of the density contribution, as evidenced from the single strong PDOS 

peak. In the same range, additional Np f-orbital peaks are observed due to the inclusion 

of more empty energy bands in the calculation. The extra empty bands were included to 

allow for the spin optimization due to the unpaired 5f electron of the Np6+ in the modified 

studtite structure. 

The density contributions from the U-bonded O and the Np-bonded O are similar at 

lower energy states, but show different behaviors in the conduction band. Between 0.5 

and 2 eV, only the peroxide O linking the Np- and U-polyhedra contribute to the electron  
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Figure 4.7. PDOS of (Np6+
0.25U6+

0.75)-studtite highlighting the 5f orbital contribution 
from the Np in the peroxide chain, Np-neighboring U in the peroxide chain, and U-
neighboring U in the peroxide chain, where the arrow points to the unoccupied Np 5f 
orbital that is in the studtite band gap. 
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Figure 4.8. PDOS of (Np6+
0.25U6+

0.75)-studtite highlighting the 2s and 2p orbital 
contribution from the Np-bonded and U-bonded peroxide oxygen, where the arrow points 
to the Np-bonded peroxide 2p contribution that is in the studtite band gap. 
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density, while the peroxide O linking two U-polyhedra do not (Figure 4.8). This is the 

same energy state mentioned in the previous section, where the Np 5f orbital contributes 

to the partial density of states, while the U 5f orbital does not. The peroxide could be 

important for the control of the oxidation state of incorporated species. For example, the 

amount of Np incorporated into studtite has been experimentally determined; however, 

the oxidation state of the Np (5+ vs. 6+) was not determined (Douglas et al., 2005a). The 

oxidation of Np from 5+ to 6+ during incorporation into the studtite structure may be 

facilitated by the peroxide. The smaller band gap of (Np6+
0.25U6+

0.75)-studtite as compared 

with studtite, as evidenced from the Np-studtite DOS, indicates that less energy is needed 

to excite an electron from the valence band to the conduction band for Np-doped studtite, 

as compared with studtite. Thus, (Np6+
0.25U6+

0.75)-studtite may be more sensitive to redox 

conditions during bulk dissolution. 

Thermodynamics of Np-incorporation into studtite 

The incorporation energy for the substitution of one Np6+ for one U6+ or one Np5+ and 

H+ for one U6+ in studtite is the difference between the sum of the final enthalpies of the 

products minus the sum of the final enthalpies of the reactants from a stoichiometric 

reaction describing the incorporation mechanism (e.g., Equation 2). The source for Np 

and sink for U are strategically chosen, as shown by the comparison using binary-oxide 

reference phases and hexafluoride reference phases (e.g., Table 4.3 Equations 1 and 5, 

respectively). The oxide reference phase sources for Np are NpO2 and Np2O5, while the 

sinks for U are UO2 and UO3, where Np is in the 4+ and 5+ oxidation state and U is in 

the 4+ and 6+ oxidation state. Incorporation reactions are balanced using appropriate  
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Table 4.3. Incorporation equations and energies for Np6+ in studtite with various 
reference phases. 

 

Reactants ⇌ Products E (eV) 

1 studtite + ½Np2O5 + ¼O2 ⇌ (studtite – U6+ + Np6+) + UO3 0.42 

2 studtite + ½Np2O5 ⇌ (studtite – U6+ + Np6+) + UO2 + ¼O2 2.28 

3 studtite + NpO2 + ½O2 ⇌ (studtite – U6+ + Np6+) + UO3 -0.07 

4 studtite + NpO2 ⇌ (studtite – U6+ + Np6+) + UO2 1.79 

5 studtite + NpF6 ⇌ (studtite – U6+ + Np6+) + UF6 -0.10 
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amounts of O2 and, in the case of Np5+ incorporation, H2O. The difference between Np-

incorporation energies for the cases in which the U sink is UO3 and the Np source is 

either NpO2 or Np2O5 (i.e., the difference between reactions 3 and 1 in Table 4.3) is equal 

to the enthalpy of formation of Np2O5 via the following reaction: NpO2 + O2  ½Np2O5 

(-0.49 eV). The formation of ½Np2O5 is favorable with respect to NpO2 and ½O2, which 

is supported by the synthesis of Np2O5 at low temperature from aqueous NpO2
+ on calcite 

crystals in O2-saturated solutions (Forbes et al., 2007), as well as the formation of Np2O5 

on NpO2 films reacted with atomic oxygen (Seibert et al., 2009). In addition, the 

experimentally measured enthalpy of formation of Np2O5 is -2162.7 kJ/mol (-22.4 eV), 

which is significantly lower in energy than that of NpO2 (-1074.0 kJ/mol; -11.1 eV) 

(Guillaumont et al., 2003). The measured enthalpy of formation of ½Np2O5 from NpO2 

and ½O2 is -7.4 kJ/mol (Robie and Hemingway, 1995), which is very different from the 

calculated results (-47.4 kJ/mol). The consideration of a few possible sources of error 

brings the values into better agreement. First, the enthalpy of formation of O2 is 0; 

however, computationally, some enthalpy contributes to the formation equation described 

above because the energy of O2 in a box is that of O0 + O0 O2. Thus, a PdV term for the 

O2 (2.2 kJ/mol) can be added to the experimental value. In addition, Np2O5 was 

calculated with an antiferromagnetic spin configuration, which was 10.6 kJ/mol more 

energetically favorable than the ferromagnetic spin configuration. Magnetic susceptibility 

data for polycrystalline Np2O5 indicates a transition from antiferromagnetic to 

ferromagnetic coupling of the Np moments at ~22 K and a subsequent transition from 

ferromagnetic to paramagnetic above 50 K. Thus, the Np2O5 spin configuration would 

have been paramagnetic for the experimental enthalpy measurement. Finally, the Np2O5 
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used for enthalpy measurements may not have had high crystallinity (Lemire et al., 

2001), which could account for other differences between the computational and 

experimental enthalpy of formation. 

Similarly, the difference between incorporation energies for the cases in which the Np 

source is Np2O5 and the U sink is either UO2 or UO3 is equal to the enthalpy of formation 

of the following reaction: UO2 + ½O2  UO3. The measured enthalpy of formation of 

UO3 from UO2 and ½O2 is -138.9 kJ/mol (Robie and Hemingway, 1995), which is in 

relatively good agreement with the calculated results (-179.9 kJ/mol). 

The hexafluoride reference phase used for Np6+ is NpF6, while the corresponding sink 

for U6+ is UF6, which is commonly used to manufacture nuclear fuel. Both UF6 and NpF6 

are orthorhombic (Pnma), with slightly varying unit-cell parameters, thus the chemistry 

and bonding environment for both phases are similar; therefore, the energy difference 

between the two is primarily due to the additional 5f electron of Np. The hexafluoride 

phases, however, are molecular crystals, and quantum-mechanical density functional 

theory calculations do not capture the van der Waals bonding in molecular crystals very 

accurately. The optimized unit cell parameters of the bulk hexafluoride structures are 

~10% greater than the experimentally determined unit cell parameters. 

The relative stability of the cation reference phases (i.e., source for Np and sink for 

U) affects the final incorporation energy significantly. The lowest incorporation energy is 

observed for the balanced equation in which the actinide source phase is the least stable 

with respect to other possible reference phases. For example, the incorporation energy 

calculated with NpO2 is lower than the incorporation energy calculated with Np2O5 

because NpO2 (and O2) is less stable with respect to Np2O5; thus, it is easier to 
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incorporate the Np from NpO2 into studtite. Similarly, the incorporation energy 

calculated with UO3 is lower than the incorporation energy calculated with UO2 because 

UO3 is stable with respect to UO2 and is included in the right side of the incorporation 

equation; thus, UO3 as a sink for U is favored. 

The incorporation energy of Np6+ into the studtite structure, based on the hexafluoride 

reference phases, is -0.10 eV (-9.65 kJ/mol; Table 4.3, Eq. 5), while the incorporation 

energy of Np6+ into the studtite structure based on the binary oxide reference phases is -

0.07 eV (-6.75 kJ/mol; Table 4.3, Eq. 1). The more negative incorporation energy 

associated with the hexafluoride reference phases is in part due to the instability of NpF6 

in comparison to UF6. The standard enthalpy of formation for NpF6 (-1970 kJ/mol) is less 

negative than that of UF6 (-2317 kJ/mol), indicating that more energy is necessary for the 

formation of NpF6 (Lemire et al., 2001). The instability of NpF6 as compared to UF6 

drives the incorporation equation, resulting in a more negative incorporation energy for 

Np in studtite using the hexafluoride reference phases; however, the presence of such 

hexafluoride reference phases in a geologic repository is unlikely. 

Most of the incorporation energies for the binary oxide and hexafluoride reference 

phases are outside the range of the other common substitution processes where charge 

and ionic radius are comparable. For example, the exchange energetics for Cs/K 

exchange in muscovite ranges from -5.3 kJ/mol to 15.4 kJ/mol, depending on the 

mechanism for cation exchange (Rosso et al., 2001). However, the NpO2/UO3 reference 

phase case results in a reasonably negative incorporation energy (-0.07 eV; -6.89 kJ/mol). 

The same reference phases were used to determine the energy needed to incorporate 

Np5+ into studtite (Table 4.4). The charge-balancing mechanism was the coupled  
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Table 4.4. Incorporation equations and energies for Np5+ in studtite with various 
reference phases. 

 

Reactants ⇌ Products E (eV) 

1 studtite + ½Np2O5 + ½H2O ⇌ (studtite – U6+ + Np5+ + H+) + UO3 1.12 

2 studtite + ½Np2O5 + ½H2O ⇌ (studtite – U6+ + Np5+ + H+) + UO2 + ½O2 2.98 

3 studtite + NpO2 + ¼O2 + ½H2O ⇌ (studtite – U6+ + Np5+ + H+) + UO3 0.63 

4 studtite + NpO2 + ½H2O ⇌ (studtite – U6+ + Np5+ + H+) + UO2 + ¼O2 2.49 

5 studtite + NpF6 + ½ H2O ⇌ (studtite – U6+ + Np5+ + H+) + UF6 + ¼O2 0.60 
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substitution of Np5+ and OH- for U6+ and O2-. The substitution of OH- for O2- is achieved 

by adding an H+ atom bonded to an O2- within the studtite structure. As previously 

detailed, the thermodynamically favorable position for the additional H+ atom is bonded 

to the axial O2-. The same energy trends between the different reference phase cases are 

observed for Np5+ incorporation as for Np6+ incorporation. The incorporation energy of 

Np5+ into the studtite structure, based on the hexafluoride reference phases, is 0.60 eV 

(57.43 kJ/mol; Table 4.4, Eq. 5), and the incorporation energy of Np5+ into the studtite 

structure based on the binary oxide reference phases (i.e., NpO2 and UO3) is 0.63 eV 

(60.79 kJ/mol; Table 4.4, Eq. 1). The difference between incorporation energy for the 

Np5+ and Np6+ cases is 0.70 eV (67.54 kJ/mol). Thus, Np6+ incorporation is favored over 

Np5+ in studtite. 

Thermodynamic properties of the (U,Np)-studtite solid solution  

Thermodynamic properties of the (U,Np)-studtite solid solution are calculated to 

estimate incorporation limits as a function of incorporation temperature. Enthalpies of 

mixing are based on the relative energy of different cation compositions and 

configurations with the U and Np-studtite phases as reference points. Different enthalpies 

of mixing for the same composition are due to different structural arrangements of the 

cations. For example, the relative enthalpies of mixing for 50:50 compositions range from 

-0.18 kJ/(mol exchangeable cation) to 0.68 kJ/(mol exchangeable cation), where the 

negative enthalpies of mixing correspond to configurations in which the exchanged 

cations are in the same actinyl chain along the [001] zone axis. The positive enthalpies of 

mixing correspond to configurations in which the cation exchange occurs along the [110] 
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and [111] zone axes. The interaction parameters and Margules parameters are fit to all 

configurations and compositions from the quantum-mechanical calculations. The 

Margules parameters for this system are W1 = 2.75 kJ/(mol exchangeable cation) and 

W2 = -0.65 kJ/(mol exchangeable cation).  The interaction parameters are J1 = 0.0486 

kJ/(mol U-Np interaction), J2 = 0.0004 kJ/(mol U-Np interaction), and J3 = -0.0253 

kJ/(mol U-Np interaction), where J1 describes nearest neighbor interactions along the 

[001], J2 along the [110], and J3 along the [111]. Positive J values indicate that 

homocationic interactions are favored, while negative J values indicate that 

heterocationic interactions are favored. Thus, the (Np6+,U6+)-studtite solid solution favors 

the same cations along the [001] and different cations along the [111]. The Margules and 

interaction parameters are on the same order of magnitude as the (Hf,Zr)SiO4 series, 

which is a complete solid solution (Ferriss et al., 2009). The absolute value of the 

enthalpy of mixing for any composition or configuration of this solid solution is similar 

to the enthalpies of mixing for the complete (Hf,Zr)SiO4 solid solution, but small relative 

to other incomplete solid solutions, such as (U,Zr)SiO4 solid solution (Ferriss et al., 

2009). The contribution of the excess enthalpy of mixing to the free energy of mixing is 

small as compared with the contribution of –temperature (–T) times the configurational 

entropy for all temperatures calculated (333 K – 3000 K); thus, the free energy of mixing 

is negative for all compositions of the solid solution (Figure 4.9), indicating complete 

solid solution. 

Although the incorporation energy of Np6+ into studtite is positive for the oxide 

reference phases, the thermodynamically stable limit of Np6+-incorporation into studtite 

based on the full solid-solution analysis indicates that Np6+ is completely miscible in  
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Figure 4.9. Enthalpy of mixing (kJ/mol exchangeable cation), configurational entropy of 
mixing (kJ/K mol exchangeable cation), and Gibbs free energy of mixing (kJ/mol 
exchangeable cation) vs. concentration of Np for (Np6+

0.25U6+
0.75)-studtite solid solution. 

The quantum-mechanical and Monte-Carlo results are overlaid for the enthalpy of 
mixing. The configurational entropy of mixing is close to the point entropy, which 
indicates that the system does not order. 
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studtite, assuming that there is a fully-substituted studtite (Np6+-studtite) that is 

isostructural with the U6+-studtite. Both studtite and Np6+-studtite are stable with respect 

to their oxide components (Table 4.5). The components used for this analysis include 

crystalline hydrogen peroxide (Abrahams et al., 1951), cubic ice, O2 molecule in a 

10×10×10 Å box, UO3 (Loopstra et al., 1977), and Np2O5 (Forbes et al., 2007). The 

negative formation energy for Np6+-studtite indicates the possibility for mineral 

formation; however, there are potential kinetic hindrances for the formation of Np6+-

studtite. The formation of Np6+-studtite requires the oxidation of Np either in solution or 

in the solid-state. The oxidation of aqueous Np5+, which is the dominate oxidation state in 

solution, to Np6+ requires highly oxidizing conditions (Silva and Nitsche, 1995; Kaszuba 

and Runde, 1999; Choppin 2007). 

The formation energies of Np2O5 and NpO3 were compared to understand possible 

kinetic hindrances in the solid state. While Np2O5 is the oxide with the highest Np 

oxidation state (Forbes et al., 2007; Seibert et al., 2009), the formation energy of NpO3 

with the UO3 (Fddd) structure was calculated for comparison. From the Np4+-oxide 

(NpO2) and oxygen, the formation of NpO3 is energetically favored, while from the Np5+-

oxide (Np2O5) and oxygen, the formation of NpO3 is not energetically favorable. The 

formation Np2O5 from NpO2 and oxygen is more thermodynamically favorable than the 

formation of NpO3 from the same reactants (Table 4.5). Thus, an energy barrier exists to 

oxidizing NpO2 to NpO3 via Np2O5. This energy barrier may be the reason that Np6+-

studtite has not been synthesized. Thus, the complete miscibility of Np6+ in studtite is 

wholly based on the assumption of the formation of an Np6+-studtite end-member, which 

is probably kinetically hindered. 
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Table 4.5. Enthalpy of formation from the oxide components for studtite, Np6+-studtite, 
UO3, NpO3, where the formation of NpO3 from NpO2 is compared with the formation 
from Np2O5. 

 

Reactants ⇌ Products ΔHf (eV) 

UO3 + H2O2 + 3H2O ⇌ studtite -0.77 

½Np2O5 + H2O2 + 3H2O + ¼O2 ⇌ Np6+-studtite -0.35 

UO2 + ½O2 ⇌ UO3 -1.86 

NpO2 + ½O2 ⇌ NpO3 -0.19 

½Np2O5 + ¼O2 ⇌ NpO3 0.30 

NpO2 + ¼O2 ⇌ ½Np2O5 -0.49 

Notes: The formation of Np2O5 from NpO2 is also listed for comparison. 
Hydrogen peroxide and water were calculated in their solid crystalline 
state. NpO3 was constructed using the Fddd UO3 structure. Gaseous O2 is 
necessary to oxidize the Np5+ in the formation of Np6+-studtite. 
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Concluding Remarks 

In summary, quantum-mechanical methods were used to refine the structure, 

determine the electronic structure, and calculate the incorporation energy of Np5+,6+ into 

studtite. The incorporation energy of Np6+ into studtite is lower than that of Np5+ in 

studtite for all reference phases considered; therefore, Np6+ is more likely, based purely 

on thermodynamics, to substitute for U6+ in the studtite structure. The solid-solution 

calculations indicate that Np6+ is completely miscible in studtite if a pure Np6+-studtite 

phase exists. However, the formation of Np6+-studtite is likely to be kinetically hindered. 

In addition, the electronic structure provides insight into possible incorporation 

mechanisms (i.e., the involvement of peroxide in bonding). The band gap of the 

(Np6+
0.25U6+

0.75)-studtite is less than the band gap of studtite by about 1.2 eV, due to the 

Np 5f and peroxide O 2p contribution at energy states within the studtite band gap. 

Specifically, the HOMO level of studtite and (Np6+
0.25U6+

0.75)-studtite is populated by 

electron density associated with the peroxide O 2p orbitals, which are unique to the 

uranyl peroxide structure. Electrons in the valence band, especially the upper valence 

band, are often involved in incorporation and redox processes; thus, the peroxide within 

these structures probably plays a critical role in the Np incorporation. 

Appendix 1: Np6+-modified studtite 

data_studNp6                  
_cell_length_a   13.9663 
_cell_length_b    6.8828 
_cell_length_c    8.5326 
_cell_angle_alpha   90.0131 
_cell_angle_beta  122.3995 
_cell_angle_gamma   90.0439 
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loop_ 
_atom_site_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
H     0.881071    0.352145    0.104309 
H     0.898338    0.576446    0.076154 
H     0.256283    0.004887    0.132327 
H     0.253931    0.017868    0.319186 
H     0.381096    0.852083    0.104490 
H     0.398402    1.076556    0.076165 
H     0.756237    0.504901    0.132328 
H     0.753951    0.517782    0.319210 
H     0.118926    0.352108    0.395647 
H     0.101659    0.576427    0.423803 
H    -0.256268    0.004915    0.367666 
H    -0.253969    0.017876    0.180714 
H     0.618893    0.852009    0.395893 
H     0.601668    1.076550    0.423775 
H     0.243964    0.505032    0.367600 
H     0.246131    0.517714    0.180889 
H     0.118929    0.647855    0.895692 
H     0.101662    0.423554    0.923846 
H    -0.256283   -0.004887    0.867673 
H    -0.253931   -0.017868    0.680814 
H     0.618904    0.147917    0.895510 
H     0.601598   -0.076555    0.923835 
H     0.243764    0.495099    0.867672 
H     0.246049    0.482218    0.680789 
H     0.881074    0.647892    0.604353 
H     0.898341    0.423573    0.576197 
H     0.256268   -0.004915    0.632334 
H     0.253969   -0.017876    0.819286 
H     0.381107    0.147991    0.604107 
H     0.398332   -0.076550    0.576225 
H     0.756036    0.494968    0.632400 
H     0.753869    0.482286    0.819112 
O     0.840696    0.477331    0.051744 
O     0.205204    0.003984    0.181199 
O    -0.003647   -0.246513    0.071543 
O     0.061436    0.121325    0.305207 
O     0.340717    0.977332    0.051547 
O     0.705185    0.504049    0.181221 
O     0.496326    0.253353    0.071547 
O     0.560608    0.621504    0.305177 
O     0.159336    0.477383    0.448697 
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O    -0.205246    0.003948    0.318717 
O     0.003622   -0.246580    0.428418 
O    -0.061437    0.121292    0.194873 
O     0.659265    0.977365    0.448409 
O     0.294860    0.504060    0.318659 
O     0.503561    0.253586    0.428523 
O     0.438583    0.622796    0.192977 
O     0.159304    0.522669    0.948256 
O    -0.205204   -0.003984    0.818801 
O     0.003647    0.246513    0.928457 
O    -0.061436   -0.121325    0.694793 
O     0.659283    0.022668    0.948453 
O     0.294815    0.495951    0.818779 
O     0.503675    0.746647    0.928453 
O     0.439392    0.378496    0.694823 
O     0.840664    0.522617    0.551303 
O     0.205246   -0.003948    0.681283 
O    -0.003622    0.246580    0.571582 
O     0.061437   -0.121292    0.805127 
O     0.340735    0.022635    0.551591 
O     0.705140    0.495940    0.681341 
O     0.496439    0.746414    0.571477 
O     0.561417    0.377204    0.807023 
U     0.000000    0.000000    0.000000 
U     0.500000    0.500000    0.000000 
U     0.000000    0.000000    0.500000 
Np    0.500000    0.500000    0.500000 

Appendix 2: Np5+-modified studtite 

data_studNp5_new                    
_cell_length_a   13.9258 
_cell_length_b    6.9812 
_cell_length_c    8.4917 
_cell_angle_alpha   90.0052 
_cell_angle_beta  121.9168 
_cell_angle_gamma   89.6499 
 
loop_ 
_atom_site_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
H     0.883578    0.353850    0.106699 
H     0.900529    0.575787    0.078742 
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H     0.256564    0.004766    0.132866 
H     0.254016    0.019387    0.320270 
H     0.382983    0.853465    0.105147 
H     0.396541    1.072639    0.065430 
H     0.756897    0.506734    0.131870 
H     0.753639    0.519837    0.318347 
H     0.118299    0.356113    0.397803 
H     0.100241    0.577306    0.426169 
H    -0.255715    0.000878    0.372228 
H    -0.254640    0.018963    0.183195 
H     0.623271    0.838248    0.403807 
H     0.608675    1.054734    0.452165 
H     0.245219    0.507435    0.370212 
H     0.246605    0.517676    0.182257 
H     0.117371    0.646031    0.895873 
H     0.100903    0.424251    0.925038 
H    -0.254561   -0.002824    0.871996 
H    -0.249058   -0.034312    0.688317 
H     0.618137    0.148667    0.896143 
H     0.600402   -0.073696    0.919479 
H     0.244100    0.495249    0.870191 
H     0.246869    0.482333    0.683076 
H     0.882469    0.644779    0.604302 
H     0.900202    0.423390    0.576294 
H     0.256721   -0.005302    0.630497 
H     0.252773   -0.020623    0.816723 
H     0.381502    0.147221    0.604449 
H     0.399670   -0.074161    0.572635 
H     0.756308    0.499894    0.634585 
H     0.754225    0.491825    0.821778 
H     0.504190    0.244457    0.284677 
O     0.843360    0.477956    0.054408 
O     0.205676    0.003796    0.182490 
O    -0.002340   -0.242669    0.074614 
O     0.061458    0.123310    0.305606 
O     0.340942    0.975679    0.048982 
O     0.705072    0.508209    0.180287 
O     0.496199    0.262937    0.082099 
O     0.561578    0.624257    0.299904 
O     0.158088    0.479088    0.450614 
O    -0.205506    0.007789    0.321077 
O     0.003966   -0.242396    0.428053 
O    -0.061042    0.124045    0.196562 
O     0.664838    0.958905    0.461803 
O     0.295773    0.503055    0.319843 
O     0.513597    0.237963    0.409747 
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O     0.438899    0.628947    0.192252 
O     0.157919    0.522400    0.948978 
O    -0.202647   -0.004161    0.824084 
O     0.004581    0.243066    0.928734 
O    -0.060458   -0.122387    0.696876 
O     0.658179    0.024698    0.949412 
O     0.295520    0.495256    0.821020 
O     0.502509    0.746808    0.923609 
O     0.440044    0.378353    0.699535 
O     0.842489    0.521991    0.551471 
O     0.204961   -0.006183    0.679053 
O    -0.003503    0.243136    0.573540 
O     0.062084   -0.123401    0.805300 
O     0.341810    0.024525    0.551189 
O     0.705780    0.510721    0.684585 
O     0.492139    0.756568    0.574006 
O     0.562570    0.377790    0.808251 
U     0.000881    0.000174    0.001449 
U     0.500089    0.505166   -0.001513 
U     0.000061    0.000454    0.500474 
Np    0.500336    0.509207    0.501120 
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Chapter 5  

 

Np-incorporation into uranyl phases: A quantum-mechanical 

evaluation 

Abstract 

The release and mobility of key radionuclides, such as long-lived minor actinides 

(e.g., 237Np; τ1/2 = 2.1 my), may be controlled by incorporation into the alteration phases 

of corroded UO2 in used nuclear fuel.  Experimental results suggest that uranyl structures 

with charged interlayer cations have a greater ability to incorporate Np5+ than uranyl 

structures that do not contain interlayer cations; however, the mechanism of incorporation 

has not yet been determined.  Density functional theory calculations are used to compare 

mechanisms of charge-balanced Np5+-incorporation into boltwoodite 

[K(UO2)(SiO3OH)(H2O)1.5].  The charge-balancing mechanisms considered include: i) 

H+ addition (Np5+ + H+ ↔ U6+), ii) interlayer substitution (Np5+ + Ca2+/Mg2+ ↔ U6+ + 

K+), and iii) intra-layer substitution (Np5+ + P5+ ↔ U6+ + Si4+).  The choice of the source 

and sink phases, the reference phases, for the cations involved in the incorporation 

reaction greatly affects the final calculated incorporation energy.  The incorporation 

energies using oxide (ΔEoxide = 2.4 eV) and silicate (ΔEsilicate = 1.2 eV) reference phases 
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are compared for the interlayer substitution mechanism.  Since both the source of Np in 

environmental systems and the cations released are typically aqueous complexes, 

combinations of cluster and periodic simulations were employed to model exchange with 

aqueous complexes.  For the H+ addition mechanism, incorporation from oxides 

reference phases (ΔEincorporation = 0.79 eV) is less favorable than from aqueous 

(ΔEincorporation = 0.66 eV) reference species.  Estimates of the solid-solution behavior of 

Np5+/P5+- and U6+/Si4+-boltwoodite solid solutions are used to predict the limit of Np-

incorporation into boltwoodite, where the incorporation energy of 0.86 eV results in a 

maximum amount of incorporation of 585 ppm at 300 °C. 

Introduction 

The behavior of actinide contaminants in the near-surface geosphere and biosphere is 

a serious environmental and human health issue.  Actinides may be released into the 

environment by the breach of a nuclear waste package in a geologic repository, by the 

contact of groundwater with uranium deposits, or during a nuclear reactor accident.  The 

mobility of released actinides in the environment depends on many factors, but one 

important process is the incorporation of the actinide into newly formed phases, such as 

the corrosion products on used nuclear fuel.  For example, actinide incorporation into 

mineral structures could significantly limit the mobility of actinides in geologic settings.  

Under oxidizing conditions, uranium dioxide (UO2+x), the primary uranium mineral in 

ore deposits, as well as the most commonly used nuclear fuel matrix, oxidizes to a 

sequence of uranium(VI) phases, depending on the composition of the groundwater that 

is in contact with the UO2.  The general paragenesis of uranyl alteration is from uranyl 
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oxyhydroxides to silicates/phosphates to more soluble phases such as carbonates, 

depending on the solution chemistry (Finch and Ewing, 1992; Finch and Murakami, 

1999).  Burns et al. (1997) first suggested Np(V)-incorporation into uranium alteration 

phases based on similarities in the Np(V) and U(VI) chemistries, most notably the 

because of the similarities in neptunyl and uranyl molecules. 

Several experimental studies have been conducted over the past couple of decades to 

quantify the amount of Np that can be incorporated in different uranyl phases (Buck et 

al., 1998; Fortner et al., 2004; Buck et al., 2004; Burns et al., 2004; Friese et al., 2004; 

Douglas et al., 2005; Burns and Klingensmith, 2006; Klingensmith and Burns, 2007; 

Klingensmith et al., 2007).  The analytical methods used to examine the Np-doped 

crystals have evolved over the years.  Initially, standard transmission electron microscopy 

and synchrotron techniques such as electron energy loss spectroscopy (EELS) and X-ray 

adsorption spectroscopy (XAS) were used (Buck et al., 1998; Fortner et al., 2004) to 

quantify the amount of Np incorporated into uranyl oxyhydroxides, specifically 

dehydrated schoepite [UO3·0.8H2O].  EELS data indicated that 550 ppm Np were 

incorporated into dehydrated schoepite during the corrosion of spent nuclear fuel (SNF) 

exposed to water vapor and held at 90 °C for up to 4.1 years.  Later, synchrotron XAS 

data indicated little to no Np incorporation in the dehydrated schoepite, which formed 

during similar hydration-corroded SNF experiments.  These contradicting results led to 

the explanation that a superfluous peak in EELS measurements due to a plural-scattering 

event may have contributed to the enhanced appearance of the Np M5 energy peak 

(Fortner et al., 2004).  The weaker Np M4 energy peak is not subject to such interference 

from the plural scattering event of the U M4 edge; therefore, later studies, continue the 
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use of EELS measurements to quantify Np-incorporation into uranyl phases (Buck et al., 

2004). 

A series of systematic crystal-chemistry experiments on Np5+-incorporation into 

uranyl phases continued in order to develop an understanding about the charge-balancing 

mechanism of Np-incorporation into uranyl phases (Burns et al., 2004; Burns and 

Klingensmith, 2006; Klingensmith and Burns, 2007; Klingensmith et al., 2007).  Initially, 

inductively coupled plasma-mass spectroscopy (ICP-MS) was used to quantify the 

amount of Np incorporated into synthetic uranyl phases, indicating that Np was 

incorporated into phases with charged sheet structures and interlayer cations (i.e., 

uranophane and Na-compreignacite) in the hundreds of ppm range.  In contrast, much 

lower amounts of Np (5-36 ppm) were incorporated into uranyl phases that contain only 

water in their interlayer (meta-schoepite and β-(UO2)(OH)2) (Burns et al., 2004).  The 

results for meta-schoepite are in agreement with those measured by Friese et al. (2004) 

for incorporation of Np at below-neutral pH.  Douglas et al. (2005) characterized uranyl 

silicate phases precipitated in the presence of aqueous NpO2
+ using added Na+ in solution 

as a possible charge-balancing cation, where the coupled-substitution mechanism 

involves the substitution of NpO2
+ and Na+ for UO2

2+ and H2O.  Gamma spectroscopy 

was used to measure the significant concentration of Np (780-15,800 μg/g) in the solid 

phase, and TEM/EELS indicated that the Np was associated with the uranyl crystals.  

While previous studies using traditional ICP-MS indicated an association between Np 

and specific uranyl phases, incorporation into the phases could not be confirmed.  Laser-

ablation (LA)-ICP-MS was used most recently to verify that Np5+ had been incorporated 

into the solid Na-substituted metaschoepite (Klingensmith et al., 2007). 
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All of these experimental results are interpreted as being due to a charge-balancing, 

coupled substitution mechanism; however, the resolution of the analytical techniques 

used in previous studies does not provide information on the atomic-scale substitution 

mechanism.  Observations or simulations at the atomic and electronic scale are required 

in order to understand changes in the Np-bonding environment and provide insight into 

possible charge-balancing, coupled substitution mechanisms.  In this study, quantum-

mechanical calculations are used in order to compare the ground state incorporation 

energy of a variety of mechanisms for Np5+-incorporation into boltwoodite. 

Boltwoodite: Occurrence and structure 

Boltwoodite is a naturally occurring uranium(VI) silicate that occurs as an alteration 

product of uraninite, UO2+x, at uranium deposits: Pick’s Delta mine, Emery County, Utah 

(Frondel and Ito, 1956), Pena Blanca, Chihuahua, Mexico (Wong et al., 1999), and Upper 

Jurassic Morrison Formation in the Grants uranium region, New Mexico (Deditius et al., 

2008).  In addition, boltwoodite is observed as an alteration product in laboratory 

corrosion studies of UO2 and SNF (Finn et al., 1996; Wronkiewicz et al., 1996).  The pale 

yellow to amber mineral forms aggregates of needle-like crystals (Figure 5.1). 

Boltwoodite is a uranyl silicate (P21/m) composed of sheets of edge- and corner-

sharing uranyl pentagonal bipyramids and silicon tetrahedra (Burns, 1998; Stohl and 

Smith, 1981), which follow the α-uranophane anion topology (Burns, 2005; Burns et al., 

1997).  The polyhedron geometries in the uranyl sheets are typical of uranyl structures, 

where the U(VI) is strongly bonded to two oxygen forming the linear uranyl molecule 

(UO2
2+).  The uranyl is equatorially coordinated by five oxygen atoms forming a  
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Figure 5.1. This pale yellow to amber specimen from Rossing Mine, Arandis, 
Swakopmund District, Erongo Region, Namibia shows the needle-like habit and 
aggregation is common for boltwoodite (Photo by: Rob Lavinsky, rob@irocks.com). 
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pentagonal bipyramid.  The Si cations are tetrahedrally coordinated by oxygen and an 

OH-, forming an SiO3OH group (Vochten et al., 1997).  The sheets have a net negative 

charge and stack with cations in the interlayer for charge compensation.  The interlayer is 

composed of water and either K+ or a combination of K+ and Na+, forming the K/Na-

boltwoodite solid-solution (Burns, 1998).  For computational simplicity, the boltwoodite 

interlayer in this study is composed of water and K+ (Figure 5.2). 

Computational Methodology 

Periodic density functional theory calculations as implemented in the program 

CASTEP (CAmbridge Serial Total Energy Package, (Segall et al., 2002)) were used to 

optimize the geometry and calculate the ground state total energy of the structures 

involved in the incorporation reactions.  A planewave basis set within the periodic 

boundary conditions is used to take advantage of Bloch’s theorem, which enables 

implementation of a simplified version of the Kohn-Sham equation.  Ultra-soft 

pseudopotentials are used to describe the behavior of the core electrons and their 

interactions with the valence electrons (Vanderbilt, 1990). The remaining valence 

electrons (e.g., U valence configuration = [Xe]6s26p66d15f37s2) are treated explicitly.  

The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

functional is used to approximate electron exchange and correlation (Perdew et al., 1996).  

In addition, a spin-polarized approach was taken to account for the two unpaired 5f 

electrons of Np5+.  The kinetic energy cut-off for the planewaves was chosen to be 

800 eV, and the k-point spacing was 0.07 Å-1.  The total energy convergence tolerance 

was 1·10-5 eV/atom, and the geometry convergence tolerance was 2·10-5 eV/atom. 
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Figure 5.2. Boltwoodite sheet structure shown from two directions: (a) uranyl sheet in 
which chains of edge-sharing uranyl polyhedra are connected by edge- and corner-
sharing silica tetrahedral and (b) interlayer between the uranyl sheets, which contains K+ 
and H2O. 
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What is the meaning of the CASTEP energy? 

Atomic-level calculations provide insight into processes not observed through 

analytical or experimental means; however, quantitative results (e.g., final enthalpies, 

incorporation energies) must be compared with analytical and/or experimental results to 

verify the accuracy of the calculations.  Experimentally, the enthalpy or energy of 

formation is measured for many solid phases; however, the quantum-mechanically 

determined energy of the same phase is not the energy of formation.  Depending on the 

computational method, the calculated energy for a solid phase is the lattice energy (e.g., 

GULP calculations using empirical force fields) or the reaction energy of zero-valent gas-

phase elements (e.g., CASTEP calculations).  The flowchart in Figure 5.3 shows three 

chemical reactions describing the formation of UO2 from (a) natural zero-valent phases, 

(b) gaseous zero-valent elements, and (c) ions, where the energies of the resulting UO2 

are the (a) formation energy, (b) CASTEP energy, and (c) lattice energy, respectively. 

The formation energy can be calculated in CASTEP by taking the energy difference 

between UO2 and the reactants (Umetal and gaseous O2), where gaseous O2 is calculated as 

an O2 molecule in a 10×10×10 Å box.  The lattice energy for UO2 can also be calculated, 

primarily in CASTEP, by adding the ionization energy (U0  U4+) and the electron 

affinity (O0  O2-) to the energy for the zero-valent elements.  The values for the 

ionization energy and electron affinity can be calculated using a quantum-mechanical 

cluster approach in a program such as Gaussian or taken from experimental 

measurements.  For example, the lattice energy for UO2 as calculated in GULP is -103.7 

eV using the empirical potential set described in Catlow et al. (1987), while the lattice  
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Figure 5.3. Flowchart describing the relationship between formation energy, CASTEP 
energy, and lattice energy for UO2. 
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energy for UO2 as calculated in CASTEP with (a) computationally determined ionization 

energy and electron affinity added is -104.2 eV and (b) experimentally determined 

ionization energy and electron affinity added is -98.1 eV.  Here, the zero-valent oxygen 

was calculated with a spin multiplicity of 3 (equivalent to two unpaired spins).  The 

lattice energy for UO2 as calculated in CASTEP with (a) computationally determined IE 

and EA and (b) experimentally determined IE and EA, where the zero-valent oxygen has 

a spin multiplicity of 1, equals -100.3 eV and -99.7 eV, respectively.  Table 5.1 lists the 

lattice energies determined using GULP and CASTEP.  The CASTEP lattice energies are 

calculated based on Equation 1, where IE and EA are either experimentally or 

computationally (Gaussian) determined. 

 Elattice = ECASTEP(UO2) – [(ECASTEP(U0) + IE)+2*(ECASTEP(O0) + EA)] (1) 

Calculating incorporation energies 

To understand the energy associated with the substitution of neptunium for uranium 

in boltwoodite, the incorporation energy is calculated.  The incorporation energy is the 

change in energy of a stoichiometric reaction describing the incorporation.  For example, 

Reaction 2 describes the incorporation of Np6+ for U6+ in boltwoodite, where the source 

for Np is Np2O5, the sink for U is UO3, and ¼O2 accounts for the oxidation of Np5+ in 

Np2O5 to Np6+ that is substituted for U6+.  The incorporation energy is the difference 

between the energy of the products (modified-boltwoodite and UO3) and reactants 

(boltwoodite, ½Np2O5, and ¼O2).  The energies used in the calculation of incorporation 

energy can come from CASTEP energies, energies of formation, or lattice energies, as 

long as the same type of energy is used for each compound in the reaction.  Using either  
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Table 5.1. Lattice energy (eV) for UO2 as calculated from various combinations of 
methods. 

 

Method Elattice (eV) 
CASTEP + Gaussian (O0

singlet) -104.21 
CASTEP + Gaussian (O0

triplet) -100.27 
CASTEP + Experimental (O0

singlet) -98.12 
CASTEP + Experimental (O0

triplet) -99.69 
GULP -103.65 
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energies of formation or lattice energies for calculating the incorporation energy also 

provides information with respect to the source/sink phases.  However, unless the 

modified structure is well characterized, including the atomic positions of the H+ atoms, 

e.g., using neutron diffraction data, CASTEP calculations are necessary in order to gain 

insight into the incorporation mechanism and corresponding energy as a function of the 

location of the substituted cations in the modified structure.  Even if all atomic positions 

were available from experiments, a quantum-mechanical approach is still necessary to 

account for energy contributions from electronic relaxations and spin-spin interactions.  

Thus, all incorporation energies are calculated from the CASTEP energies of the 

reactants and products.  One possible incorporation reaction (here, with the incorporation 

of Np as Np6+) can be written as in Reaction 2: 

K2(UO2)2(SiO3OH)2(H2O)3 + ½Np2O5 + ¼O2 ↔ 

K2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO3 (2) 

Neptunium(V) is the most common aqueous neptunium oxidation state for a wide 

range of geochemistries (Kaszuba and Runde, 1999); therefore, incorporation energies 

are better calculated for the substitution of Np5+ for U6+ in boltwoodite, in contrast to 

Reaction 2.  The substitution of a hexavalent cation for a pentavalent cation results in an 

overall negative charge; therefore, a charge-balancing coupled-substitution mechanism is 

necessary in order to maintain charge neutrality.  Three such charge-balancing coupled-

substitution mechanisms are considered here: i) addition of an H+ atom, ii) interlayer 

substitution, and iii) intra-layer substitution.  For the coupled substitution of Np5+ and H+ 

for U6+, several locations for the H+ atom are compared.  Similarly, for the coupled-



 

141 

 

substitution of Np5+ and a divalent interlayer cation (Ca2+ or Mg2+) for U6+ and K+, 

respectively, both interlayer K+ sites in the unit cell are compared.  The intra-layer 

coupled-substitution mechanism involves the substitution of P5+ for Si4+ in the tetrahedral 

site. 

The incorporation energy depends on the mechanism of incorporation (e.g., H+ 

addition vs. interlayer substitution), placement of substituted ions (e.g., the location of 

additional H+), and the reference phases (sources and sinks) for the ions involved in the 

substitution reaction.  The mechanism of incorporation and placement of substituted ions 

are addressed by the comparison of different charge-balancing mechanisms.  The impact 

of reference phases is considered in detail.  Oxide reference phases and aqueous ion 

reference species are compared for the H+ incorporation mechanisms, while oxide and 

silicate reference phases are compared for the different interlayer substitution 

mechanism. 

Estimating the limit of Np-incorporation 

Validating computational results with experimental measurements is essential; 

however, experiments do not measure the energy required to incorporate Np into uranyl 

phases as described in the previous section.  Instead, the limit of Np incorporation is 

measured; therefore, a computationally-determined limit of Np-incorporation is useful for 

the comparison of the calculated results with actual measurements. 

The limit of incorporation can be determined based on the Gibbs free energy of 

mixing for a complete solid solution, where a tangent connecting the minima of the Gibbs 

free energy curve indicates the limit, x, of incorporation.  However, for some solid 
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solutions, like the Np-U-boltwoodite discussed below, the minima of the Gibbs free 

energy of mixing cannot be resolved graphically due to the small limit of the 

concentrations calculated.  Ferriss et al. (2008, 2010) approximated the limit of 

substitution for a variety of elements in zircon based on the assumption that the free 

energy of mixing is essentially linear at concentrations near the minima (Equation 3). 
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The smallest concentration for which the enthalpy of mixing was calculated and that 

was used to establish the linear dependence of ΔHmix was x = 0.03 in the zircon study.  

However, due to the complexity of the boltwoodite structure, the smallest intermediate 

composition for Np-incorporation used here is x = 0.5.  Thus, the free energy of mixing is 

not linear between the minimum concentration tested (x = 0.5) and the minima of the 

Gibbs free energy. 

More rigorously, the Gibbs free energy of mixing [ΔGmix, where ΔGmix(x) = ΔHmix(x) - 

TΔSmix(x)] is determined from the enthalpy of mixing (ΔHmix) and the configurational 

entropy without ordering, ΔSmix(x) = -R[x lnx + (1-x) ln(1-x)].  The ΔHmix is then fit to a 

symmetric one-parameter Margules function, ΔHmix(x) = A x (1-x), where A is calculated 

using the enthalpy of mixing at 50% incorporation.  The minimum of the ΔGmix occurs 

when the first derivative of ΔGmix with respect to x equals zero (Equation 4), which has to 

be resolved numerically (Equation 5).  Equation 5 is solved numerically using the Banach 

fixed point theorem. 
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Results 

Substitution mechanism I: Np5+ + H+ ↔ U6+ 

In the coupled substitution of Np5+ and H+ for U6+, the energetically-favored position 

of the H+ was calculated.  Four locations were examined, which include an H+ bonded to 

i) the bridging oxygen between the silica tetrahedron and uranyl polyhedron, ii) the apical 

oxygen on the silica tetrahedron, iii) the interlayer water molecule forming hydronium, 

and iv) the neptunyl oxygen (Figure 5.4).  Reaction 6 describes the incorporation of Np5+ 

and H+ into the boltwoodite structure, where the source for Np5+ is Np2O5, the source for 

H+ is H2O, and the sink for U6+ is UO3. 

K2(UO2)2(SiO3OH)2(H2O)3 + ½Np2O5 + ½H2O ↔  

HK2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO3 

ΔEincorporation = 0.79 eV (6) 

Based on the calculated incorporation energies (inset of Figure 5.4), the most 

energetically-favored position for the additional H+ in the modified boltwoodite structure 

is bonded to the neptunyl oxygen, which results in an incorporation energy of 0.79 eV 

(76.2 kJ/mol). 

According to the bond-valence calculations, the bonds within the uranyl ion are 

nearly satisfied; therefore, the uranyl oxygen is rarely involved in additional bonding.   



 

144 

 

 

 

Figure 5.4. Boltwoodite unit cell showing possible locations for the charge-balancing H+.  
The table inset shows the Np-incorporation energy based for each H+ location. 
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Since the bond strength (bond valence) of a Np5+ neptunyl ion is less than that of a U6+ 

uranyl ion, the neptunyl bond length is generally shorter (1.84 Å), and the neptunyl 

oxygen may be involved in additional bonding.  For example, cation-cation interactions 

are often observed in Np5+-bearing phases, whereas the oxygen of one neptunyl 

polyhedron is the equatorial ligand of the neighboring neptunyl polyhedron (Forbes et al., 

2008; Sullivan et al., 1961).  While an additional H+ ion bonded to the neptunyl oxygen 

may cause the oxygen to be overbonded, an extension of the Np-O bond length and the 

influence of the secondary bonding between the interlayer and the additional H+ ion may 

be enough to allow this coupled substitution to occur.  The quantum-mechanically 

optimized OH--Np5+ bond distance is 2.10 Å, while the other neptunyl Np-O bond 

distance is 1.88 Å.  The 0.22 Å bond-length extension for the OH--Np5+ bond distance is 

necessary in order to compensate for the overbonding of the O2-. 

Substitution mechanism II: Np5+ + Ca(Mg)2+ ↔ U6+ + K+ 

For the coupled substitution of Np5+ and a divalent cation for U6+ and K+, two 

divalent cations, Ca2+ and Mg2+, were compared (Table 5.2) with two possible co-

substitution sites in the interlayer (Figure 5.5).  The distances between the substituted 

Np5+ polyhedron and sites A and B are 4.07 Å and 4.46 Å, respectively.  Site A, the site 

closer to the substituted Np5+ polyhedron, is more energetically favored than site B by 2.1 

eV (203 kJ/mol) and 1.3 eV (125 kJ/mol) for Ca2+ and Mg2+ substitution, respectively.  

Overall, Ca2+ substitution requires less energy than Mg2+ substitution at site A by 0.60 eV 

(63 kJ/mol), and the quantum-mechanically optimized distance between the Ca2+ and 

Np5+ is 3.80 Å. 
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Table 5.2. Incorporation energies for coupled substitution of Np5+ and Ca2+ or Mg2+ for 
U6+ and K+ in boltwoodite.  Both interlayer sites are compared. 

 

(units = eV) Ca2+ 
substitution

Mg2+ 
substitution

Difference 
between cations 

Site A 2.39 2.99 0.60 
Site B 4.50 4.31 -0.19 

Difference 
between Sites 2.11 1.32 -- 
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Figure 5.5. Boltwoodite unit cell indicating the distance between the two possible 
interlayer-cation substitution sites and the neptunium polyhedron. 
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Substitution mechanism III: Np5+ + P5+ ↔ U6+ + Si4+ 

The substitution of a P5+ for a Si4+ was compared for the two tetrahedral sites within a 

single boltwoodite unit cell.  The uranyl chains, which polymerize in the [010] direction, 

are connected by edge- and corner-sharing Si-tetrahedra to form sheets (Figure 5.2a).  For 

50% Np substitution, which is the only concentration calculated due to the size of the unit 

cell, there are two unique tetrahedral sites: i) both edge- and corner-sharing with the 

substituted neptunyl and ii) only corner-sharing with the substituted neptunyl.  The most 

energetically-favored site for the coupled-substitution of P5+ is the Si4+-site that is both 

edge- and corner-sharing with the substituted neptunyl, which has a Np-P distance of 

3.17 Å. 

Discussion 

Reference phase comparison 

A direct comparison of the total energies of boltwoodite and the Np-modified 

boltwoodite provides no information on the thermodynamics of incorporation because the 

two structures are not stoichiometrically equivalent.  The energy of formation for the two 

phases may be compared based on the formation from the elements (e.g., Ostanin and 

Zeller, 2007) or the oxides (e.g., formation of boltwoodite in Reaction 7). 

K2O + 2UO3 + 2SiO2 + 4H2O ↔ K2(UO2)2(SiO3OH)2(H2O)3 

ΔEformation = 466.97 eV (7) 

To more accurately evaluate the energy required to substitute one Np5+ for one U6+, 

the incorporation energy was evaluated and has been documented in the above results.  

The incorporation energy is calculated based on a stoichiometric chemical reaction that 



 

149 

 

describes the incorporation (e.g., Reaction 8), where the main mineral phase 

(boltwoodite) is the primary reactant and the modified mineral phase (Np-substituted 

boltwoodite) is the primary product.  The sources and sinks for the cations involved in the 

reaction are referred to as reference phases.  The choice of the reference phases greatly 

changes the final incorporation energy due the relative stability of the reference phases 

(Shuller et al., 2010).  Several factors influence the choice of the reference phase for a 

particular calculation including the element for substitution, the oxidation state of the 

substituted element in the primary phase (either product or reactant), the environmental 

conditions that facilitate substitution, and limitations based on the chosen computational 

approach (i.e., cluster versus periodic calculations). 

The first two criteria are relatively straightforward.  Obviously, if one is substituting 

Np for U, than the source and sink phases must contain those elements.  Avoiding 

oxidation state change between the source phase and the primary product (e.g., Np in 

source and Np in product) simplifies the reaction because no oxidant or reductant is 

needed; however, it is not necessary for the cations in question to have the same 

oxidation state in the source/sink phase and the primary product/reactant phase.  For 

example, the oxide sources/sinks with different cation oxidation states were compared.  

Table 5.3 lists the incorporation reactions and incorporation energies calculated with 

different oxide reference phases (NpO2, Np2O5, UO2, and UO3) for Np5+ and U6+.  

Gaseous oxygen (O2) is used as the oxidant or reduction product, and in the standard way 

of deriving redox reactions, H+ and H2O are used to balance the charge and 

stoichiometry, respectively.  For example, Reaction 8 describes the substitution of Np5+ 

and H+ for U6+ in boltwoodite, where the source for Np is NpO2 and the sink for U is  
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Table 5.3. Stoichiometric reactions describing the coupled-substitution of Np5+ and H+ 
for U6+ in boltwoodite comparing the Np-oxide sources and U-oxide sink phases. 

 

Reactants ↔ Products E (eV) 
bolt + NpO2 + ¼O2 + ½H2O ↔ (bolt – U6+ + Np5+ + H+) + UO3 0.30 

bolt + ½Np2O5 + ½H2O ↔ (bolt – U6+ + Np5+ + H+) + UO3 0.79 
bolt + NpO2 + ½H2O ↔ (bolt – U6+ + Np5+ + H+) + UO2 + ¼O2 2.16 

bolt + ½Np2O5 + ½H2O ↔ (bolt – U6+ + Np5+ + H+) + UO2 + ½O2 2.65 
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UO3.  O2 is necessary to oxidize Np4+ to Np5+, while H2O is the source for H+ and to 

balance the stoichiometry. 

K2(UO2)2(SiO3OH)2(H2O)3 + NpO2 + ¼O2 + ½H2O ↔ 

HK2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO3 

ΔEincorporation = 0.30 eV (8) 

The lowest incorporation energy is achieved using NpO2 as the source for Np5+ and 

UO3 as the sink for U6+.  As detailed in Shuller et al. (2010), the NpO2 reference phase 

results in the lowest incorporation energy because 2 NpO2 + ½ O2 are less stable than 

Np2O5; therefore, providing a larger driving force for the incorporation reaction.  

However, since Np2O5 is the more stable phase under oxidizing conditions, the remaining 

comparisons using solid reference phases are completed with Np2O5 as the source for Np 

and UO3 as the sink for U.  In addition, this choice provides a reference phase in which 

the cations are in the same oxidation state as in the primary reactant/product. 

While the simple binary oxide reference phases may be the logical crystalline 

reference phase choice for Np and U, binary oxides are not always the best choice for 

other cations involved in the coupled substitution.  The incorporation mechanism that 

involves coupled substitution in the interlayer requires reference phases for the divalent 

(Ca2+, Mg2+) and monovalent (K+, Na+) interlayer cations involved in the substitution.  

The oxide source for Ca2+ and sink for K+ are chosen to be CaO and K2O, respectively.  

These oxide reference phases have small unit cells, which is conducive for quantum-

mechanical calculations; however, these oxides are not prevalent in nature, indicating that 

they are not stable with respect to other mineral phases in most geologic settings and, 

thus, not a likely cation source in the environment.  Thus, oxide reference phases 
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(Reaction 9) were compared with silicate reference phases (Reaction 10) for the 

interlayer cation coupled-substitution mechanism.  The silicate phases selected, feldspars, 

are ubiquitous in nature.  The silicate source selected for Ca2+ is anorthite (CaAl2Si2O8), 

and the sink for K+ is K-feldspar (KAlSi3O8) while α-quartz (SiO2) and corundum 

(Al2O3) are the sources for Si and sinks for Al, respectively. 

K2(UO2)2(SiO3OH)2(H2O)3 + ½Np2O5 + CaO ↔ 

KCa(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO3 + ½K2O  

ΔEoxides = 2.40 eV (9) 

K2(UO2)2(SiO3OH)2(H2O)3 + ½Np2O5 + CaAl2Si2O8 + SiO2 ↔ 

KCa(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO3 + KAlSi3O8 + ½Al2O3 

ΔEsilicates = 1.20 eV (10) 

Experimental enthalpies of formation for the interlayer cation reference phases are taken 

from the literature (Robie and Hemingway, 1995).  Thus, the change in enthalpy of 

Reaction 11 (1.2 eV) is the energy difference between the oxide reference phase scenario 

to the silicate reference phase scenario (ΔEReaction 4 – ΔEReaction 5). 

 CaO + KAlSi3O8 + ½Al2O3 ↔ ½K2O + CaAl2Si2O8 + SiO2  

ΔEliterature = 1.20 eV (11) 

The substitution of Np5+ and Ca2+ for U6+ and K+ in boltwoodite results in an 

incorporation energy of 1.2 eV (115.8 kJ/mol), based on silicate reference phases. 

Similarly, for the intralayer substitution mechanism, P2O5 was selected as the source 

for P5+ and SiO2 as the sink for Si4+ (Reaction 12). 
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K2(UO2)2(SiO3OH)2(H2O)3 + ½Np2O5 + ½P2O5 ↔ 

K2(UO2)(NpO2)(SiO3OH)(PO3OH)(H2O)3 + UO3 + SiO2 

ΔEoxides = -1.10 eV (12) 

However, the resulting incorporation energy is -1.10 eV, which indicates an infinite 

amount of Np5+ can be incorporated into boltwoodite.  The solid solution calculations 

below show that a limited amount of Np5+ can be incorporated into boltwoodite based on 

the intralayer substitution mechanism.  Changing the choice of the source phase for P5+ to 

berlinite (AlPO4), where the added sink for the Al is corundum (Al2O3), results in an 

incorporation energy (0.86 eV) that more suitably reflects expected environmental 

conditions.  Thus, a consideration of the probability that the reference phase is present in 

a specific environment is necessary for obtaining a more realistic estimate of the 

incorporation energy. 

In reality, the source and sink phases for Np5+, U6+, and other cations associated with 

the incorporation reaction are often not solid mineral phases, but rather aqueous 

complexes (even though the aqueous complex may stem from dissolution of a solid 

phase).  This is especially true if the incorporation occurs via a co-precipitation of Np in 

boltwoodite or via a cation exchange mechanism.  Typically, aqueous actinides form 

complexes with ligands available in groundwater.  For example, aqueous actinides in 

groundwater containing small concentrations of dissolved carbonate will readily form 

actinyl-carbonate complexes (Choppin, 2007).  For computational purposes, simple 

aqueous species, such as actinyl complexes (e.g., NpO2
+

aq) were selected as sources and 

sinks to describe the incorporation reaction for the H+ incorporation mechanism. 
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In periodic quantum-mechanical calculations, the energy of charged species becomes 

awkward to handle, as part of a contribution to the overall energy of the system is caused 

by a non-physical interaction between the ion and a “smeared-out” charge-neutralizing 

background charge.  Charged aqueous species can conveniently be calculated using 

cluster-type quantum-mechanical calculations; however, total energies for compounds 

within one reaction should typically be calculated using the same theory.  Thus, it is 

important to ensure that the energy contributions to a reaction energy are independent of 

the method.  One way around this problem is to compose an overall reaction equation that 

is composed of sub-reactions, each of which is calculated using a consistent approach, 

but different sub-reactions may be calculated using different approaches that are, 

respectively, most suitable to handle specific boundary conditions, i.e., extended solids, 

or finite molecules that may carry a charge.  Instead, the energy of neutral complexes are 

calculated using the periodic approach implemented in CASTEP (Reaction 13), and 

subsequently converted to the charged complexes using Dmol3 calculations (Delley, 

1990; Delley, 1991).  Dmol3 is a density functional theory code that uses atomistic basis 

sets to approximate the electron density for both periodic and cluster calculations.  The 

hydration energy is estimated based on the COSMO implementation in Dmol3, which 

uses the interaction between a molecule and a dielectric fluid to approximate the 

hydration of a molecule. 

The reaction based on neutral complexes (Reaction 13) is converted to one based on 

charged aqueous complexes via Reaction 10a, where the difference between Reaction 13 

and Reaction 14a describes Np-incorporation based on aqueous species, including H+
aq 

(Reaction 14b). 
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K2(UO2)2(SiO3OH)2(H2O)3 + NpO2(H2O)4OH ↔ 

HK2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO2(H2O)3(OH)2 

ΔEincorporation = 0.32 eV (13) 

NpO2(H2O)4OHaq + UO2(H2O)5
2+

aq ↔ NpO2(H2O)5
+

aq + UO2(H2O)3(OH)2, aq + H+
aq  

ΔE = 5.33 eV (14a) 

K2(UO2)2(SiO3OH)2(H2O)3 + NpO2(H2O)5
+

aq + H+
aq ↔ 

HK2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO2(H2O)5
2+

aq 

ΔEincorporation = -5.01 eV (14b) 

The large negative ΔE for aqueous reference species indicates that an infinite amount of 

Np would be incorporated into boltwoodite; however, solid solution calculations shown 

below indicate limited incorporation.  Thus, the large negative ΔE (Reaction 14b) is a 

result of the free H+
aq as a H source, while the highly positive ΔE in Eqn. 14a stems from 

H+ being the H sink.  In natural solutions, H+ is not usually present as a free ion; rather, 

H+ is present in aqueous solutions as H3O+.  The change in energy for the formation of 

H3O+ from H2O and H+ [H2O + H+ ↔ H3O+] is -5.67 eV.  Therefore, the charge 

distribution between the actinyl complexes becomes slightly favored (Reaction 15a), and 

the incorporation reaction for Np in boltwoodite with H3O+
aq as the source for H+ results 

in a slightly positive incorporation energy (Reaction 15b). 

NpO2(H2O)4OHaq + UO2(H2O)5
2+

aq ↔ NpO2(H2O)5
+

aq + UO2(H2O)3(OH)2, aq + H3O+
aq  

ΔE = -0.34 eV (15a) 
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K2(UO2)2(SiO3OH)2(H2O)3 + NpO2(H2O)5
+

aq + H3O+
aq ↔ 

HK2(UO2)(NpO2)(SiO3OH)2(H2O)3 + UO2(H2O)5
2+

aq + H2O 

ΔEincorporation = 0.66 eV (15b) 

To the authors’ knowledge, this is the first time that this approach has been used for 

combining solid and aqueous components in quantum-mechanical calculations.  

Commonly, a pure cluster approach is used (e.g., Becker et al., 1997); however, that was 

not possible due to the complexity of boltwoodite.  Others have used programs (e.g., 

CRYSTAL) that allow for the implementation of both periodic and cluster calculations 

using a consistent basis set (Civalleri et al., 2003; Skomurski et al., 2010).  Using the 

method described above, not only the basis set, but the entire computational approach 

remains consistent throughout a total reaction involving finite charged and infinite neutral 

reactants/products, by summing over sub-reactions are each methodologically consistent. 

Limit of Np-incorporation 

The thermodynamically stable limit for Np-incorporation into the uranyl phases is 

estimated from these quantum-mechanical calculations by developing a theoretical solid-

solution series.  The coupled-substitution mechanisms in which Np5+ and P5+ replace U6+ 

and Si4+ were chosen as an example due to its low incorporation energy (0.86 eV) as 

compared with other coupled-substitution mechanisms.  Additionally, the substitution 

occurs on established structural sites, therefore limiting the possibilities for different 

solid-solution configurations.  The U-Si end-member for this solid solution series is 

boltwoodite, while the Np-P end-member is a boltwoodite with all of the U6+ replaced by 

Np5+ and Si4+ replaced with P5+, i.e., K2(NpO2)2(PO3OH)2(H2O)3.  Although this is Np-P-
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boltwoodite phase has not been observed, it is used as a theoretical end-member in order 

to calculate the enthalpy of mixing for the intermediate composition.  The boltwoodite 

unit cell has two unique U6+ sites and two unique Si4+ sites; therefore, the only 

intermediate composition calculated for a single unit cell has 50% of the polyhedra sites 

occupied by Np and 50% of the tetrahedral sites occupied by P, i.e., 

K2(UO2)(NpO2)(SiO3OH)(PO3OH)(H2O)3 (Figure 5.6). 

The enthalpy of mixing across the compositional range (x) is fit using a Margules 

function, ΔH = Ax(1-x), where the Margules parameter (A) equals 35.5 kJ/(mol 

exchangeable cation).  The resulting limit of Np-incorporation into boltwoodite with the 

P5+ charge-balanced mechanism is then predicted at a range of repository temperatures 

using the Gibbs free energy as approximated by the Margules function and the point 

entropy, ΔS = -RT[xlnx + (1-x)ln(1-x)] (Table 5.4).  At about 300 °C (573 K), the 

incorporation limit for Np in boltwoodite is ~ 585 ppm, which is on the same order of 

magnitude (hundreds of ppm) as experimental results for Np-incorporation into uranyl 

structures with charged-interlayer cations (Burns et al., 2004; Burns and Klingensmith, 

2006; Klingensmith and Burns, 2007; Klingensmith et al., 2007).  The calculated 

incorporation limit is dependent on the enthalpy of mixing at the concentration used to 

calculate the Margules parameter.  Only one configuration at 50% composition was 

calculated due to computational limitations; therefore, a precise error for the enthalpy of 

mixing cannot be determined.  Assuming the error for the quantum-mechanical 

calculations is about 1%, the range for the incorporation limit at 300 °C is 585 ± 45 ppm.  

Thus, an error of 1% in the enthalpy of mixing does not significantly change the 

incorporation limit.  However, the incorporation limit is strongly affected by the  
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Figure 5.6. Enthalpy of mixing (ΔHmix) versus composition for the solid-solution series 
based on the coupled substitution of Np5+ and P5+ for U6+ and Si4+, where the end 
members are boltwoodite [K2(UO2)2(SiO3OH)2(H2O)3] and a fully substituted 
boltwoodite [K2(NpO2)2(PO3OH)2(H2O)3] and the calculated intermediate phase is a 
50:50 composition [K2(UO2)(NpO2)(SiO3OH)(PO3OH)(H2O)3]. 
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Table 5.4. The estimated limit of Np-incorporation into boltwoodite for the coupled-
substitution of Np5+ and P5+ for U6+ and Si4+ is tabulated as a function of temperature. 

 

Temperature  
(°C) 

Estimated Np concentration 
[amount of Np/amount of (U+Np)] 

Estimated Np concentration 
[ppm of total actinides (U+Np)] 

100 1.07·10-5 10.7 
150 4.13·10-5 41.3 
200 1.20·10-4 120 
300 5.85·10-4 585 
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temperature of incorporation.  While 585 ppm Np is incorporated into boltwoodite at 

300 °C, only 10.7 ppm Np is incorporated at 100 °C.  In reference to temperature, the 

calculations and experiments cannot be directly compared.  The synthesis of boltwoodite 

occurs at 100 to 185 °C (Vochten et al., 1997; Wall et al., 2010); however, in natural 

environments different hydrothermal synthesis conditions may influence the formation of 

boltwoodite, and consequently, the incorporation of Np. 

Impact of boltwoodite chemistry on Np incorporation 

Ionic radii are often used as a first estimate for the thermodynamic stability of solid 

solutions, where, in this case, the coupled substitution of Np5+ and a divalent cation for 

U6+ and K+ would be considered a solid solution between Np5+Ca2+(Mg2+)-boltwoodite 

and U6+K+-boltwoodite.  The coupled-substitution occurs in the interlayer either during 

the precipitation of the modified boltwoodite phase or via cation exchange.  A 

comparison of the ionic radii of the interlayer cations (i.e., K+, Ca2+, and Mg2+) indicates 

that Ca2+ is more likely to substitute for K+ than Mg2+, where the ionic radius for a K+ ion 

with a coordination number (CN) of VI is 1.38 Å, while the radii of Ca2+ and Mg2+ with 

the same coordination number are 1.00 Å and 0.72 Å, respectively (Shannon, 1976).  As 

previously discussed, the computational results agree with the hypothesis that the divalent 

cation with an effective ionic radius that is more similar to the monovalent cation is more 

likely to substitute.  Interestingly, the ionic radius of Na+ (CN = VI) is 1.02 Å, which 

indicates, based solely on ionic radii, that Ca2+ would even more readily substitute into 

the interlayer of Na+-bearing boltwoodite.  Synthetic boltwoodite has been shown to 

contain both K+ and Na+ in the interlayer, and it has been hypothesized that the complete 
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solid solution of K+-Na+-boltwoodite is possible (Burns, 1998).  Further calculations and 

experiments would be necessary to determine the effect of interlayer composition on 

Np5+-incorporation energy and its incorporation limit. 

Feasibility of reaction mechanisms 

The feasibility of Np5+ incorporation into boltwoodite depends on more than just the 

incorporation energy, i.e., the thermodynamics of incorporation, which is subject to the 

substitution mechanism and the source/sink phases chosen.  In addition, the kinetics of 

incorporation and the availability of co-reactants are crucial to the feasibility of the final 

mixed Np-U phase.  Np may be incorporated into boltwoodite via cation exchange after 

the boltwoodite has already precipitated or by coprecipitation of the mineral.  Cation 

exchange is a common immobilization mechanism for groundwater contaminants and is 

often observed in cage-like or layered structures such as zeolites (Kesraouiouki et al., 

1994; Shi et al., 2009) or clays (Rosso et al., 2001).  Many uranyl minerals, including 

boltwoodite, form layered structures; thus, cation exchange between the interlayer of 

uranyl minerals and the groundwater is probable.  One study of particular importance has 

shown Cs+-exchange into the interlayer of boltwoodite, with the resulting structural 

formula Cs[(UO2)(SiO3OH)] (Burns, 1999b).  Thus, cation exchange in boltwoodite has 

been shown to occur experimentally and most likely occurs due to the stability of the 

structural sheets. 

However, for Np5+-incorporation into boltwoodite via cation exchange, the Np5+ and 

other charge-balancing cations need to not only go into the interlayer, but also diffuse 

into the structural sheets.  For example, if NpO2
+ is meant to replace UO2

2+, the NpO2
+

aq 
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must first exchange into the interlayer and then exchange from the interlayer into the 

sheet, replacing the UO2
2+.  A charge-balancing cation would need to go into the 

interlayer as well.  Another incorporation mechanism that has not yet been explored is the 

exchange of NpO2
+ for K+ in the interlayer.  However, the NpO2

+ is much larger than K+.  

Boltwoodite has shown enough structural flexibility to cation-exchange the large Cs+ for 

the K+ in the interlayer; however, such cation-exchange required the loss of all interlayer 

water groups (Burns, 1999b).  Thus, further flexibility of the structure may not be 

possible.  Purely based on size and availability, the incorporation of a H+ may be more 

likely than the exchange of a divalent cation for a monovalent cation in the interlayer, and 

this appears to be a more likely kinetic path than the exchange of a phosphate for the 

silicate in the structural sheet.  There, the main kinetic bottleneck may be the formation 

of an H+ from H3O+. 

The incorporation of Np5+ and P5+ into boltwoodite during the initial precipitation, 

essentially coprecipitation, is more likely than cation exchange, but requires the 

availability of both Np5+ and P5+ during precipitation.  Np5+, as previously discussed, is 

expected to be available in oxidizing aqueous solutions near used nuclear fuel.  Aqueous 

phosphate may also be present in the groundwater from common phosphate minerals in 

the soil or from anthropogenic sources.  For example, phosphorus from fertilizers and 

TBP (tributyl phosphate), which was used in uranium processing, are concentrated in the 

contaminated soils at the Fernald site in Ohio (Buck et al., 1996).  Natural and synthetic 

boltwoodite is well-documented (Burns, 1998; Deditius et al., 2008; Finch and 

Murakami, 1999; Frondel and Ito, 1956; Stohl and Smith, 1981; Wong et al., 1999); 

however, a Np5+P5+-boltwoodite has not been reported.  A comparison of the polyhedral 
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geometries and anion topologies of neptunyl and uranyl compounds highlights 

similarities and differences between the structures and may indicate the feasibility of the 

formation of a Np5+P5+-boltwoodite. 

Like the uranyl compounds, the neptunyl compounds can be categorized into 

hierarchical groups based on the connectivity of the neptunyl polyhedra (Forbes et al., 

2008).  Such groups include isolated and finite clusters, chains of polyhedra, sheets of 

polyhedra, and frameworks of polyhedra.  The main difference between Np5+ and U6+ 

compounds is the overwhelming presence of cation-cation interactions (CCIs) in the 

neptunyl compounds.  CCIs are defined as two cations bonded via an oxygen atom, 

where the oxygen is in equatorial relation to one cation, yet axial to the other.  Thus, 

CCIs allow the cations to be closer to one another than if the bipyramids are bonded via 

shared equatorial oxygen atoms.  Compared to the high number of neptunyl structures 

with CCIs (18 of 43 known inorganic Np5+ compounds), only less than two percent of 

uranyl structures contain CCIs.  The limited occurrences of CCIs in uranyl structures is 

probably because the uranyl U6+-O bond strength satisfies the bonding requirements of 

the O atom (Burns, 2005; Burns and Klingensmith, 2006; Forbes et al., 2008), whereas 

the neptunyl bond strength is weaker.  Thus, the neptunyl O can bond to other Np5+ atoms 

at distances equal to that of a typical equatorial bond. 

While most of the Np5+-compounds that contain CCIs are framework-type structures, 

four compounds containing CCIs exist with sheet topologies.  Additionally, of the 24 

Np5+-compounds without CCIs, 12 polymerize into sheet structures, which are the most 

common type of polymerization for U6+-compounds.  More so, several Np5+ sheet 

compounds have similar anion topology to U6+ sheet compounds, indicating a structural 
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relationship.  Several U6+-silicates, including boltwoodite, have the α-uranophane anion 

topology (Figure 5.7), for which chains of edge-sharing pentagons (typically uranyl 

polyhedra) are connected by alternating edge-sharing triangles (typically silica 

tetrahedra) and squares (Burns, 1999a).  However, a comparison of U6+- and Np5+-silicate 

topology reveals no structure types with the same topology.  None of the Np5+-silicates 

that have been synthesized, thus far, have the α-uranophane anion sheet topology (e.g., 

Li6(NpO2)4(H2Si2O7)(HSiO4)2(H2O)4 has the β-U3O8 anion-topology) (Forbes and Burns, 

2008).  Direct comparisons between the anion topology of U and Np compounds have 

only been identified for the hexavalent cations.  For example, the Np6+-phosphates 

[X(NpO2)(PO4)(H2O)3; X= K+, Na+, Rb+, NH4
+] adopt the anion topology of autunite, a 

U6+-phosphate [Ca(UO2)(PO4)2(H2O)11] (Forbes and Burns, 2007; Locock and Burns, 

2003).  While an Np6+-silicate has not yet been synthesized, one might predict, based on 

the relation of the Np6+- and U6+-phosphates, that a Np6+-silicate with the same chemistry 

as boltwoodite may form as a similar structure. 

Interestingly, the Np5+-phosphate [Ba(NpO2)(PO4)(H2O)] adopts the same α-

uranophane anion topology as boltwoodite (Forbes and Burns, 2006).  While the 

interlayer cation (Ba) is divalent, which differs from the monovalent K+ or Na+ of 

boltwoodite, the charge is balanced by the lack of extra H+.  The structural similarity 

between the Np5+-phosphate and the U6+-silicate may indicate the likelihood of the 

coupled-substitution of Np5+ and P5+ for U6+ and Si4+ in boltwoodite. 
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Figure 5.7. Schematic of the alpha-uranophane anion topology, composed of chains of 
edge-sharing pentagons connected by chains of alternating edge-sharing triangles 
(typically silica tetrahedra) and squares.  Modified from (Burns, 1999a). 
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Implications 

About 500 ppm Np is in the used nuclear fuel from a reactor with a burnup of 40 

MWd/kg of U (MegaWatt days/kg of uranium), and the amount of Np increases over 

time due to the decay of 241Am.  Murphy and Grambow (2008) note that the amount of 

Np in used nuclear fuel is about 1000 ppm at 200 years due to increasing amounts of 

237Np from decay of 241Am.  However, solubility studies indicate that less Np would be 

available in a geologic repository (~2-200 ppm) (Efurd et al., 1998; Nitsche, 1991).  

Additionally, performance assessment studies have adopted much lower solubility limits 

(e.g. 0.1 to 1 ppm; Sassani et al., 2006).  While geochemical modeling of Np-

incorporation into the uranium(VI) silicate uranophane indicates that Np is relatively 

excluded from the uranyl mineral structure (Murphy and Grambow, 2008), the aqueous 

speciation and thermodynamic properties used in the modeling are uncertain.  Based on 

the laboratory experiments and atomistic calculations the aqueous Np at a geologic 

repository could be limited via co-precipitation into uranyl minerals. 

Burns et al. (2004) showed that 400 ppm (0.4 mg Np/g U+Np) Np can be 

incorporated into uranyl phases with interlayer cations (e.g., Na-compreignacite 

synthesized at 100 °C).  Similarly, calculated incorporation limits indicate that over 100 

ppm Np can be incorporated into boltwoodite at 200 °C.  Based on solubility studies, the 

amount of Np available in solution will not reach the capacity of uranyl minerals with 

interlayer cations; thus, Np-incorporation is a viable mechanism for limiting the mobility 

of aqueous Np in an oxidizing geologic repository environment. 
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Thus far, calculations and experiments on Np-incorporation into uranyl phases have 

only shown the capacity of uranyl minerals for Np.  However, the kinetics of 

incorporation will determine the feasibility of the use of uranyl minerals for the 

immobilization of Np in a geologic environment.  For example, Np (or NpO2
+) diffusion 

rates for different pathways through the mineral structure may reveal energy barriers for 

diffusion of the ion from the interlayer into the structural sheet.  Furthermore, 

competitive cation-exchange reactions will determine which contaminants are more 

likely to be immobilized in specific uranyl minerals.  Cation exchange of Cs+ in 

boltwoodite is the only documented experiment of cation exchange in a uranyl mineral, 

but further work can clarify the role of uranyl minerals for the immobilization of 

radionuclides.  Calculations, like those presented here, can be used to guide experiments 

in terms of possible incorporation mechanisms.  For example, the calculations indicate 

that substitution in the interlayer requires the least amount of energy when the exchanged 

cations have similar ionic radii.  A complementary experiment could be done to test the 

incorporation limit of Np5+ in boltwoodite with varying interlayer compositions between 

pure K-boltwoodite to pure Na-boltwoodite.  Likewise, the experimental set-up can be 

used to guide calculations.  Using the method developed here for using aqueous 

molecular source and sink phases, calculations on incorporation energy can more 

accurately model synthesis experiments. 
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Chapter 6  

 

Conclusions 

Materials challenges are present at every stage of the nuclear fuel cycle: i) mining and 

milling uranium ore, ii) in reactor performance of nuclear fuels, and iii) the long-term 

storage of nuclear waste forms.  In particular, the properties and behavior of actinide 

solids is of great interest because of their environmental impact, their use in nuclear fuels, 

and their potential to be diverted as fissile material, e.g., for use as nuclear weapons.  For 

each of these issues, the mechanisms for and degree of incorporation of the actinides into 

materials is of critical interest. This thesis has focused on the use of computational 

methods to evaluate the solid-solution behavior in oxide fuels and in two of the principal 

alteration products of U-based nuclear fuels in a disposal environment.  In each case, 

every effort was made to compare the computational results to experimental data or 

naturally-occurring actinide phases. 

Every calculation has to make simplifying assumptions as to compromise between 

computational rigor and complexity of the system to be calculated.  A quantum-

mechanical approach was applied to get a relatively accurate idea of the energetics of 

different configurations for the solid-solution calculations and the same for different Np-

incorporation mechanisms.  The calculation of thermodynamic mixing properties for the 
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solid solutions containing many cations requires the additional implementation of Monte-

Carlo simulations to adequately scale-up the system.  For the solid solutions, a significant 

number of configurations had to be calculated, and for the alteration phases, in addition to 

their large unit cells, a number of incorporation mechanisms had to be analyzed.  Thus, a 

traditional density functional theory (DFT) approach had to be chosen that did not 

include the highest level of computational rigor.  Among the computational rigors are 

relativistic effects that can be explicitly treated or partially dealt with in the 

pseudopotentials. 

In addition, the quantum-mechanical treatment of highly-correlated 5f electrons can 

be corrected using the Hubbard U method.  For certain properties (e.g., electronic 

properties) the inclusion of a Hubbard U correctional term improves the computational 

results (Gupta et al., 2007).  Based on a preliminary comparison for the Th-U binary with 

and without the Hubbard U parameter, there is no clear trend in the resulting enthalpies of 

mixing (i.e., increasing Hubbard U does not necessarily continually decrease the enthalpy 

of mixing).  However, increasing the Hubbard U tends to promote the ideality of the Th-

U solid solution.  Experimental evidence does not confirm or reject the notion of a 

complete solid solution for the Th-U binary.  The question of applying the Hubbard U 

method to our calculations arises from having to choose the value for the Hubbard U 

parameter, which is often empirically determined based on a specific property (e.g., band 

gap, vibrational frequencies). 

Based on the current DFT calculations and MC simulations in Chapter 2, the Th-U 

binary oxide would have a thermodynamic tendency exsolve only at very low 

temperatures (below room temperature).  The exsolution lamellae are || to a linear 
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combination of {111} and {100}; thus, the exsolution of the system is frustrated by 

choosing which symmetrically-equivalent linear combination of planes to exsolve 

parallel to.  Kinetic hindrances tend to over-power the exsolution above room 

temperature.  One such kinetic hindrance is the interfacial energy caused by the strain 

from the lattice mismatch of the exsolved end-members.  Additionally, cation diffusion in 

oxides is slow, especially at low T; therefore, further hindering exsolution.  The 

thermodynamic properties of the Th-Ce binary (Chapter 3) are similar to the Th-U 

binary; however, no exsolution lamellae are observed, even at low T.  Both binaries have 

only slightly positive enthalpies of mixing; thus, the solid solutions are nearly ideal.  

Conversely, the Ce-Zr and Th-Zr binaries (Chapter 3) have highly positive enthalpies of 

mixing and a significant drop in their configurational entropy at x = 0.5 at low T.  The 

drop in configurational entropy corresponds to nanoscale exsolution in the Ce-Zr binary 

(lamellae || ( )210  or any other linear combination of {101} and {001}) and cation 

ordering in the Th-Zr binary.  Further calculations considering a tetragonal or monoclinic 

ZrO2 end-member are necessary (and under way) to fully understand the solid-solution 

behavior of this system in all different structural frameworks.  Overall, this computational 

approach for an atomistic investigation of binary oxide solid-solutions provides insight 

into the short-range cation-cation interactions that impact the miscibility of the solid 

solution and allows for the investigation of the energetics of different homogeneous and 

heterogeneous ordering schemes and for the comparison of different directions for 

exsolution within the isometric structure. 

In Chapters 4 and 5, quantum-mechanical calculations were used to determine the 

energy required to incorporating Np into uranyl minerals, specifically studtite and 
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boltwoodite.  Np6+-incorporation is more energetically favorable than Np5+-incorporation 

into studtite.  Additionally, Np6+ is completely miscible in studtite at room temperature 

with respect to a hypothetical Np6+-studtite end member that has a favorable enthalpy of 

formation based on a calculation from the oxides.  Additionally, the electronic structure 

calculations provide insight into the Np-bonding environment in studtite, where the Np 5f 

orbitals occupy the space in the band gap of studtite narrowing the band gap from 

2.29 eV to 1.09 eV. 

For Np5+-incorporation, three charge-balancing mechanisms were compared: 

i) addition of H+ [Eincorp(studtite) = 1.12 eV; Eincorp(boltwoodite) = 0.79 eV], ii) interlayer 

coupled-substitution [Eincorp(boltwoodite) = 1.20 eV], iii) intra-layer substitution 

[Eincorp(boltwoodite) = 0.87 eV].  In addition to the incorporation mechanism, the 

incorporation energy is highly dependent on the choice of source/sink phases for the 

substituted cations.  For example, the incorporation energy for the interlayer coupled-

substitution mechanism decreased from 2.4 eV to 1.2 eV by changing the source/sink 

phases for the interlayer cations from oxides to silicates.  Most significant was the use, 

for the first time, of aqueous complexes as source/sink phases in reactions with 

crystalline phases.  The aqueous reference phases are much more realistic to the actual 

sources and sinks in geologic settings; however, they have not been previously used due 

to the challenges of combining periodic and cluster calculations to derive the energy of a 

reaction containing both.  By keeping the computational theory consistent within 

chemical reactions and combining reactions using ΔEreaction, we were able convert a 

reaction using neutral molecules (calculated in a periodic framework), which are not 

likely to exist in nature, to charged aqueous species (calculated in a cluster framework). 
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Finally, solid-solution calculations for Np5+ and P5+ substitution for U6+ and Si4+ in 

boltwoodite indicate that, at 300 °C, the incorporation limit is about 585 ppm, which is 

within the same order of magnitude as experimental results that show that hundreds of 

ppm of Np can be incorporated into uranyl minerals (e.g., Na-compreignacite) that are 

synthesized at about 100 °C (Burns et al., 2004). 

There are several limitations to the quantum-mechanical calculations that make the 

results more qualitative than quantitative.  First, the systems need to remain small (less 

than 100 atoms is ideal) because the time for the calculation increases by the number of 

electrons cubed.  Thus, accurate modeling of the mineral structures is challenging.  For 

example, UO2 typically oxidizes to UO2+x (x < 0.25) and the solid-solution properties of 

ThxU1-xO2 may vary with the change in oxygen potential.  Thus, simplified binary oxide 

solid solutions were evaluated to gain insight into the cation-cation ordering.  The size 

limitation also played a significant role in the Np-incorporation calculations, where the 

minimum concentration of Np evaluated quantum-mechanically was 0.25 atomic percent 

for studtite and 0.5 atomic percent for boltwoodite.  Conversely, experiments have shown 

that Np-incorporation limits are on the order of hundreds of ppm.  In order to compare 

the incorporation limit for the calculation with experimental measurements, solid-

solutions properties were estimated based on limited quantum-mechanical configurations. 

In order to be sure that the computational limitations do not hinder the integrity of the 

calculations, results are validated with experimental measurements whenever possible.  

Most commonly, structural measurements (i.e., unit cell parameters and volume) are 

compared.  Validation of thermodynamic properties, such as enthalpy of formation or 

free energy of mixing, can be done using calorimetric measurements.  For example, 
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calorimetric measurements of the enthalpy and free energy of mixing were compared to 

solid solution calculations of ThxU1-xO2 in Chapter 2.  Similarly, calorimetric 

measurements were used to validate calculations in Chapter 4 (e.g., the calculated and 

measured enthalpies of formation of studtite were comparable). 

Finally, measurements of the limit of incorporation were compared with the 

calculated limit of incorporation (Chapter 5).  Although the incorporation limit was 

determined for different uranyl minerals under different environmental conditions (e.g., 

pH plays a large role in the incorporation limit for experimental studies), the results 

provide a qualitative confirmation that uranyl minerals may be a viable means of Np 

immobilization in a geologic environment. 

For accurate validation of the solid-solution calculations, it is imperative that 

systematic calorimetric measurements be complete for each binary.  Additionally, 

transmission electron microscopy (TEM) is a powerful tool for imaging on the nanoscale 

and can be used to validate possible cation-ordering or nano-scale exsolution; however, 

for the binary oxides discussed in Chapters 2 and 3, no TEM results are available. 

For the oxide solid solutions, future work is needed to add complexity to the system, 

including not only changing oxygen potential, but also to determine the diffusion of 

oxygen and cations within the solid solutions.  However, quantum-mechanical 

calculations are inherently static calculations; therefore, kinetic components, such as 

diffusion, should be calculated with empirical potentials developed from accurate 

quantum-mechanical calculations, or can be incorporated by using the energetics of static 

diffusion paths in the crystal. 
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For the Np-immobilization in uranyl minerals, better synergy between computational 

and experimental efforts will expedite the amount of knowledge gained concerning 

immobilization mechanisms and the limit of immobilization.  For example, the present 

calculations indicate that Ca2+ may more likely exchange in Na-boltwoodite than K-

boltwoodite.  This theory could be tested experimentally.  The synthesis of Np-doped 

uranyl minerals in the presence of different charge-balancing cations could also be tested 

experimentally.  On the computational front, diffusion of cations, in particular NpO2
+, 

through the interlayer, as well as the uranyl sheet, should be evaluated in order to 

determine possible diffusion pathways and gain insight into the kinetics of Np-

incorporation into uranyl minerals. 

Finally, a more thorough comparison of DFT and beyond-DFT theories is necessary 

to confirm the solid-solution properties of actinide-containing materials.  The Hubbard U 

parameter has been shown to correct for the over-bonding of the U 5f electrons that cause 

the metallic-like behavior in traditional DFT.  However, the Hubbard U parameter is an 

empirical fit parameter; therefore, the predictive power of calculations using such a 

theory is limited.  The development of advanced computational theories are necessary to 

accurately treat highly-correlated systems; however, in the meantime, a thorough 

comparison of materials properties (e.g., electronic, optical, mechanical) based on 

different computational approaches (e.g., DFT, Hubbard U, Hybrid) on a variety of 

actinide-containing systems (e.g., simple and complex oxides, metals) can be undertaken. 

In summary, atomistic calculations were used to determine properties of actinide-

bearing oxides that may influence behavior of the material during fabrication of the fuel, 

performance in the reactor, and stability as waste form.  The simplified approach taken 
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for the calculations in this thesis lays the groundwork for more complex future 

calculations, both in terms of the computational approach for handling highly-correlated 

5f electrons or the computational set-up for dealing with more complex systems. 
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