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ABSTRACT 
 

Hierarchical Design and Simulation of Tissue Engineering Scaffold Mechanical, 
Mass Transport, and Degradation Properties 

 
by 

 
Hee Suk Kang 

 

Co-Chairs: Scott J. Hollister and Chia-Ying Lin 
 

 

In this study, a computational design framework was developed and demonstrated 

for hierarchical scaffold mechanical, mass transport and degradation properties. As a 

composite, multiscale structure, the tissue engineering scaffold should be designed to 

match tissue specific requirements such as tissue elastic modulus and 

diffusivity/permeability, for better tissue regeneration. In addition to these functional 

properties, the design of the tissue engineering scaffolds should include the time 

dependent change of the functions along with material degradation and erosion. With the 

aid of multiscale homogenization method and topology optimization technique, scaffold 

microstructures were designed and applied to the design of biodegradable spinal fusion 

cages. The degradation characteristics by the presence of microstructures were addressed 

using multiscale homogenization model of diffusion reaction system. 

The mechanical properties (bulk modulus) of the topology optimized 

microstructures range from 10% to 37% of base material property, whereas the mass 



xv 

transport properties (diffusivity) range from 12% to 41% of free diffusivity. The designed 

properties were optimal within known cross-property bounds connecting diffusivity and 

bulk modulus. Mechanical compression test confirmed the good correlation between the 

designed and experimentally measured Young’s moduli. As a clinical application, the 

topology optimization technique was adapted to the design of biodegradable fusion cages 

with the integrated global-local topology optimization. The mechanical strength of the 

fusion cage made of PCL was demonstrated to support physiological loads at human 

lumbar spine. Degradation of the porous scaffolds was characterized using a multiscale 

homogenization technique, demonstrating the effect of the release profiles of acidic 

products from polymer hydrolysis at local microstructure scale on the release at the 

global scaffold scale.  

The precise characterization and controlled design and fabrication within same 

theoretical framework will provide the basis of a consistent knowledge regarding the 

correlation between scaffold design parameters and the tissue regeneration. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

1.1 Overview 

As recent engineering and technology demand materials with more functions at 

lower cost, the needs for tailoring material properties have increased in the design of 

composite material. Composite materials, due to its inherent versatility offered by their 

different components and hierarchies, are currently widely investigated, especially as 

potential replacements for naturally occurring composite, such as biological tissue. 

However, the analysis and characterization of composites is extremely difficult due to its 

complex hierarchical structures. Intuitively, various combinations of the material 

constituents, as well as their configurations, alter the properties of the composite, whereas 

the pore configuration, or pore architecture, is one of the main design parameters that 

control the properties of the composite.  

Computational multiscale modeling methods, such as the homogenization method, 

can provide rigorous and efficient theoretical background for the analysis and 

characterization of the hierarchical structures by connecting the pore architecture to the 

effective properties of the composite. Such multiscale modeling is crucial to the 
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engineering of tissue scaffolds which, in turn, are keys to tissue regeneration, supporting 

and guiding cells, as well as delivering biologics and external stimuli through the pores. 

The aim of engineered tissue scaffolds is to provide temporary support for cells, 

mimicking the roles of the natural extracellular matrix (ECM) (Hollister et al. 2009). 

ECM not only provides structural support to the cells within, but also actively interacts 

with the cells to perform other active functions. As proposed by Brand (Brand 1992), 

ECM also serves as a filter to cells from external mechanical and mass transport stimuli. 

Furthermore, ECM adapts itself according to external mechanical stimuli, which is 

obvious evidence of the structure-property relation. Likewise, tissue engineering 

scaffolds can play more active roles as temporary substitutes for ECM, being designed by 

controlling their internal architectures to specific requirements.  

Combined with the multiscale homogenization, topology optimization allows 

designers to find an optimal pore architectural layout for the desired mechanical and mass 

transport properties of the scaffold itself.  Indeed, for the design of hierarchical structures, 

topology optimization may be a particularly promising technique in the design of 

microstructure. Because tissue functions are best approximated or measured by the 

mechanical and mass transport properties, the design of the tissue engineering scaffolds 

must incorporate optimal pore configuration or material layout at the microscopic scale to 

match the properties of  natural tissues at the macroscopic scale.  

The degradation of the scaffolds further complicates the hierarchical design by 

introducing a dynamic change of the properties of the initial scaffold. Failure to properly 

model this dynamic could easily undercut the ability of the scaffolds to properly function 

in vivo. In vivo, the scaffold structure is expected to degrade at a predictable rate in line 
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with the generation of tissue (i.e. bone) destined to take over the necessary functions of 

the original structure. Furthermore, the transfer of the functions from scaffold to tissue 

should occur seamlessly during the process of degradation. Hence, the initially designed 

functional properties of scaffolds may need to remain at a consistent level throughout the 

tissue regeneration.  In fact, in a recent study (Jiya et al. 2009), biodegradable cages used 

in spinal fusion failed due to premature loss of device integrity, which is in turn was the 

direct result of the inability to predict and correlate structural degradation in respect to 

bone regeneration. Without being able to model the dynamic of degradation and 

necessary functional properties, device integrity in hierarchical scaffold design is 

relegated to chance.  

In response to the issues of degradation, several mathematical models have been 

proposed to explain the underlying mechanisms of the degradation of biodegradable 

polymers. Particularly, models based on diffusion-reaction equations under continuum 

assumptions are often adapted to investigate the spatial differences of the degradation as 

well as the temporal change. However, prediction of the degradation of scaffolds may 

need multiscale modeling because the degradation can be altered in the presence of the 

porous architecture. In fact, the pore architecture affects the degradation of scaffolds as 

well as the mass transport properties through their pores, which can again affect the 

diffusion of the degradation products. The multiscale homogenization theory, in this 

regard,can model the degradation of hierarchical scaffolds, accurately considering the 

effect of the microstructures. 

To tailor the properties of scaffolds as well as to compensate for the loss of 

functions due to degradation, the study goal was to provide a systemic design framework 
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for tissue engineering scaffolds based on multiscale homogenization method and 

topology optimization. First, homogenization of linear elasticity and homogenization of 

diffusivity were derived to evaluate scaffold mechanical and mass transport properties. 

Then, microstructural topology optimization in a multiobjective form was applied to 

obtain various microstructures with different mechanical and mass transport properties. 

To demonstrate the hierarchical scaffold design in a clinical application, in situ porous 

biodegradable fusion cages were designed, fabricated, and tested. Finally, the degradation 

behavior of the hierarchical scaffolds was predicted based on multiscale diffusion-

reaction equations. 

 

1.2 Integrated Design Framework for Tissue Engineering Scaffolds 

In order to provide an integrated design framework for tissue engineering scaffolds, 

rigorous design method that support the property-structure relations as well as the 

fabrication methods that reproduce the designed architecture and properties are 

indispensible. In addition, the knowledge of the design parameters and their target values 

is of paramount importance. Based on these targets, the computational design framework 

can produce optimal designs with controlled pore architecture and functional properties. 

Furthermore, as scaffolds degrade, the controlled architecture and properties can change 

and must be accounted for in a systemic design approach. 

With regard to the designed and target properties, the comparison between tissues 

and scaffolds is made at tissue or organ scale. As shown in Figure 1.1, natural tissues, say, 

long bone has several hierarchical levels ranging from the lacunar-canliculi network 

through trabecular and cortical bone to whole bone level. The pore architecture of 
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scaffolds mimicks the microstructures by trabecular and cortical bones. Because the 

functions of the tissues are measured at the whole bone level, the properties of the 

scaffolds are characterized at the (global) scaffold scale. Thus, the properties of tissues 

and scaffolds are compared at the global scale while the design is conducted at the 

microstructural level. A hierarchical scaffold design framework should, therefore, be able 

to consider the rigorous relation between microstructures and the global level properties 

and functions of a scaffold.  

 

 

 

Figure 1.1 Hierarchical structure of long bone from lacunar-canliculi network 
through trabecular and cortical bones to whole bone level. The properties 
of tissue engineering scaffolds are compared at the whole bone level 
(Liebschner and Wettergreen 2003). 
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1.2.1 The Tissue Engineering Scaffold 

The tissue engineering approach for repairing diseased or damaged tissues utilizes 

biomaterial scaffolds delivering biologics, including cells, genes, and/or proteins. Isolated 

donor cells are cultured on a scaffold and the cell-scaffold construct is implanted into a 

tissue defect site (Langer and Vacanti 1993; Kim and Mooney 1998). During in vitro cell 

culture and after implantation, a scaffold serves several roles in tissue regeneration. The 

tissue engineering scaffolds should provide anatomical tissue shape to fill in the tissue 

defect site and preserve three-dimensional space to guide tissue formation, provide 

temporary functional support under physiological conditions, and enhance cell functions 

and tissue regeneration via mass transport of nutrients, wastes and other biologics 

(Hollister 2005). These scaffold roles are influenced by its internal architectures 

including porosity, pore size, and interconnectivity, which also determine the effective 

properties. Thus, the goal of scaffold design should be to find a pore geometry, or 

microstructure that best achieves a desirable functional environment for a regenerated 

tissue.  

However, the appropriate or optimal design parameters a scaffold should provide 

are generally tissue specific and often conflict with each other. Furthermore, there is little 

consensus among researches as to the optimal properties of scaffolds. Regarding pore 

morphological parameters, pore size and void volume were demonstrated to affect the 

bone healing with spatial variation (Aronin et al. 2009). Pore sizes between 100 and 400 

µm were proposed for better osteoconduction (Cyster et al. 2005), while no significant 

differences in the bone formation was found for scaffolds with pore size greater than 300 

µm (Roosa et al. 2010). Kuboki et al. found that a pore size of 300–400 μm was optimal 
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for bone formation (Kuboki et al. 1998). Porosity, or void volume fraction, has been 

considered as one of scaffold design parameters.  

With regard to the scaffold effective properties, it is hypothesized that scaffold 

elastic or aggregate modulus should match that of healthy tissues at the defect 

(Hutmacher 2001), which spans 10 ~ 1500 MPa (elastic modulus) for trabecular bone 

(Goulet et al. 1994)  and 0.5~3.0 MPa (aggregate modulus) for articular cartilage  

(Boschetti et al. 2004; Demarteau et al. 2006). While satisfying these mechanical 

requirements, the bone tissue engineering scaffolds should be designed with high 

diffusivity, permeability or porosity for better cell migration and biologics transport. On 

the other hand, scaffolds for cartilage regeneration are often designed with limited 

transport property due to the avascular and low metabolic nature of cartilage (Malda et al. 

2003). Kemppainen and Hollister demonstrated that low permeability environment is 

favorable for cartilage regeneration, whereas high permeability was correlated to more 

matrix production (Kemppainen and Hollister 2010).  

In the aforementioned scaffold roles, “temporary support” implies that the scaffold 

should eventually disappear and transfer the functional role to regenerate tissues (Figure 

1.2). The degradability of the scaffold introduces more complexity into the scaffold 

design, since the initially designed properties are altered during in vitro cell preparation 

and in vivo implantation. The scaffolds must retain the mechanical integrity up to a 

certain juncture in tissue remodeling, typically 6 month for bone regeneration 

(Hutmacher 2000). However, since the timeline for degradation starts during in vivo cell 

culture, the design target should be adjusted to reflect the pre-implantation and 

implantation degradation.  
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Figure 1.2 Schematic diagram of the complex interplay between degradation of the 
scaffold and tissue regeneration. From initial scaffold fabrication through 
cell/tissue culture in vitro and in vivo remodeling of the tissue, the 
scaffold-tissue construct is expected to maintain the desired functional 
properties. (Hutmacher 2000) 

 

 

The proposed integrated scaffold design framework in this study is based on the 

computational homogenization theory combined with topology optimization in order to 

tailor scaffold internal architectures, thus providing an “optimal” environment for cells 

and regenerate tissues. Based on the broad ranges and time dependency of design 

requirements, a design technique should be able to rigorously control the pore 

architecture and its properties. Furthermore, the design technique should be able to 

address the time dependent changes of the morphological and mechanical characteristics 
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of the scaffolds. In order to design the best scaffold for a particular reconstruction 

application, we must be able engineer scaffolds by combining hierarchical design and 

computational simulation with biomaterial fabrication to achieved desired properties. The 

systemic design of scaffolds using homogenization method and topology optimization 

will allow us to experimentally test the engineered scaffolds in in vitro cell models to 

large in vivo functional animal models to determine relevant and critical scaffold 

characteristics.  

 

1.2.2 The Homogenization Theory 

Theoretical background supporting the hierarchical scaffold design is the 

asymptotic homogenization method. The homogenization method enables us to estimate 

the effective properties of composite or porous scaffolds with periodic microstructures as 

well as model porous media as continuum with homogenized properties. The 

homogenization method, which was developed and extensively investigated by French 

mathematicians, was first studied to solve fluid flow problem in porous media. The 

method have since been applied to linear and nonlinear mechanics problems in mechanics, 

head transfer problems, vibration, electromagnetism, and wave propagation in porous 

media (Bensoussan et al. 1978; Sanchez-Palencia et al. 1987; Auriault et al. 2009). 

Major assumption of the mathematical formulation is the separation of the scale. 

For a composite with large numbers of microstructures, the physical processes become 

difficult and often impossible because of the large heterogeneities. If the scale of the 

microstructure is sufficiently small, an averaged behavior or properties of the system can 

be described by phenomenological or experimental investigation. The homogenization 
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method here provides a method to investigate the local structural effect to the 

macroscopic description, with assumptions of separation of scale and periodicity of 

microstructures. That is, the homogenization process converts a problem in a composite 

into local problem in unit microstructure and an equivalent macroscopic problem (Figure 

1.3).  

With periodic boundary condition, the macroscopic flux driven microscopic 

quantity distribution within the local domain is averaged to give the effective properties 

of the equivalent continuum. The final solution including the local structural contribution 

can be obtained through the localization process by summing the solutions for different 

scales. If the small parameter for the separation of scale approaches zero, the description 

at the equivalent continuum serves as the final solution.  

 

 

 

 

Figure 1.3  Homogenization process finds a macroscopic equivalent (averaged) 
description from the analysis of the local microstructure. 
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The effective properties of composite materials have theoretical bounds for given 

material volume fractions, or porosity. Hashin and Shtrikman derived variational bounds 

on the effective magnetic permeability (Hashin and Shtrikman 1962), the effective bulk 

modulus and shear modulus (Hashin and Shtrikman 1963). Those bounds were improved 

by coupling bulk modulus and shear modulus, using the translation method (Cherkaev 

and Gibiansky 1993). Various bounds including fluid permeability and electrical 

conductivity are derived in (Torquato 2002). 

However, when multiple properties are considered simultaneously, there are cross-

property bounds that link the properties through the microstructure. Gibiansky and 

Torquato derived cross-property bounds between conductivity and elastic modulus were 

derived (Gibiansky and Torquato 1993; Gibiansky and Torquato 1995; Gibiansky and 

Torquato 1996). Rigorous link between permeability and electrical conductivity was 

derived in (Avellaneda and Torquato 1991). As noted by the authors of these studies, the 

bounds of electrical conductivity can be effective to thermal conductivity, diffusion, 

dielectric constant and magnetic permeability due to mathematical equivalency. 

In cross-property bounds with competing properties, or ill-ordered material phases, 

the tradeoff between properties is readily apparent. For example of cross-property bounds 

between bulk modulus and diffusivity, achieving the higher bulk modulus can only be 

achieved with reduced diffusivity while the higher diffusivity can only be achieved at 

reduced bulk modulus. This cross-property bound can be utilized in defining design 

targets when multiple properties are involved simultaneously. 

Mimicking the hierarchical nature of biological tissues, scaffolds can be designed 

by repeating representative unit structures, called unit cells, in 3-dimensional space. The 
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theoretical characterization of the porous scaffold can be obtained by the homogenization 

analysis of the unit cell, assuming sufficiently small unit cell dimension relative to the 

entire porous scaffold. Scaffold dimensions in our study vary from 5 mm to 25 mm while 

the size of unit microstructures ranges 1 mm to 2.7 mm, which typically yields the small 

scale parameter of 0.2. Note that the smallest possible unit cell size is limited by the 

fabrication resolution in the hierarchical scaffold design. In comparison of the 

homogenization method with standard mechanics in this case, Hollister and Kikuchi 

demonstrated that homogenization method predicted local strain energy density within 30% 

of deviation from direct analysis of composite, compared to 70% error with standard 

mechanics approach (Hollister and Kikuchi 1992). Furthermore, error correction with 

higher order terms in the asymptotic expansion can be considered as suggested by 

Auriault et al. (Auriault et al. 2005). 

 

1.2.3 Topology Optimization 

Topology optimization distributes limited material volume within a predefined 

design domain such that the final structural architecture satisfies the optimization 

objective and constraints. There are three categories in the structural optimization: size 

optimization, shape optimization, and topology optimization (Figure 1.4). Size 

optimization problems seek an optimal thickness distribution of predefined structural 

members. By changing the dimensions of each structural member, it finds a structure 

with main contribution. Shape optimization changes the boundary of structures without 

altering the structural interconnectivity, or topology. That is, the number of holes remains 

constant during optimization. It should be noted that these methods depend on the a 
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priori knowledge of the structural configuration. On the other hand, the topology 

optimization seeks optimal structural topology when the structure is not known. Typically, 

the design domain is composed of regular finite elements, each of which is assigned a 

design variable. The design variables represent the structural topology. The optimization 

algorithm adjusts the design variables to determine the optimal structural topology. 

 

 

 

Figure 1.4 Illustration of (a) size optimization, (b) shape optimization, and (c) 
topology optimization. (figure from (Guest 2005)) 

 

 

Topology optimization has gained popularity after the pioneering work by Bendsøe 

and Kikuchi (Bendsoe and Kikuchi 1988). Introduction of continuous variables based on 

the homogenization of materials with solids and voids expanded the practical engineering 

applications of the topology optimization. The problem, which was redefined as the 

distribution of micro-holes in the design domain, could now determine the final structural 

topology. Bendsøe (1989) later proposed a simpler alternative, artificial material law, to 

homogenized materials (Bendsøe 1989). Although it is not physically based, the artificial 

material law gained popularity because of its simplicity.  
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The above methods of the artificial material law have been successfully adopted 

into structural optimization in the problems of mechanics, such as minimum compliance 

design, compliant mechanism design (Sigmund 2001), structural vibration problems 

(Diaz and Kikuchi 1992), heat conduction (Gersborg-Hansen et al. 2006), fluid flow 

problems (Gersborg-Hansen et al. 2005; Guest and Prevost 2006), crashworthiness of 

vehicles (Pedersen 2004) and the design of material microstructures (Sigmund 1994; 

Sigmund 1994; Sigmund 1995). 

Among these applications, material microstructure design problems, so called 

inverse homogenization, have been extensively studied since Sigmund demonstrated the 

design of microstructures with prescribed properties (Sigmund 1994). Recently, two 

effective properties were concurrently optimized in the design objective or constraints. 

Heat conductivity and electric conductivity were optimized in an ill-ordered composite to 

be matched with Schwarz primitive minimal surface (Torquato et al. 2003). Effective 

permeability and bulk modulus were simultaneously maximized in the multiobjective 

formulation and demonstrated the variations of the optimal microstructures by the choice 

of weight values (Guest and Prevost 2006). Bulk modulus and thermal conductivity were 

maximized by minimizing both mechanical and thermal compliances in 2D (de Kruijf et 

al. 2007). The authors explored Pareto optimality by varying weights for mechanical and 

transport properties. Isotropic microstructures with maximized bulk modulus and 

conductivity were designed (Challis et al. 2008). The authors also explored design 

changes with the different combinations of weighting factors.  
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Figure 1.5 Microstructures are designed to match the bulk modulus (KH) and 
diffusivity (DH) of a porous scaffold with those of normal healthy tissue 
(K* and D*, respectively).  

 

 

It is well known that topology optimization in its relaxed form suffers from 

numerical instabilities such as checkerboard patterns and mesh dependent solutions 

(Sigmund and Petersson 1998). To avoid these instabilities, filtering techniques were 

introduced following the idea of digital image processing (Sigmund 1994). The filtering 

technique is most popular and generally adapted in the topology optimization. Highly 

oscillating element density values are smoothed by averaging element densities over a 

range of neighborhood elements or by averaging the design sensitivity derivatives. In 

addition, filtering techniques have been utilized to control minimum structural member 

size by assigning the radius value. The density filtering, however, interferes with design 

density evolution by design sensitivity, producing non-converged density distribution. 

The sensitivity filtering, applied to the design sensitivity derivative, can produce 

converged solutions.  

In this study, we adapted the inverse homogenization method with multiple 

property consideration. Effective diffusivity and bulk modulus were simultaneously 

optimized to achieve prescribed target properties. The error between the effective 
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properties and target properties were minimized in the objective function. The numerical 

instability was controlled with a nonlinear sensitivity filtering technique. 

 

1.2.4 Solid Freeform Fabrication 

The fabrication of custom designed scaffold architectures becomes feasible with the 

aid of solid freeform fabrication (SFF) technique. With its accuracy and reproducibility, 

SFF has become popular for manufacturing of tissue engineering scaffolds. Compared to 

conventional methods such as solvent casting and particulate leaching (Mikos et al. 1994), 

gas foaming (Mooney et al. 1996), and freeze drying (Whang et al. 1995), SFF provides 

more flexibility to fabricate 3D shapes for anatomic defects as well as more accuracy to 

reproduce intricate pore architecture. The conventional methods can also control scaffold 

functional properties by changing porogen size, temperature or pressure, yet limited 

within certain ranges (Taboas et al. 2003). However, the conventional methods are 

difficult when producing shapes with precise anatomy to fit in a tissue defect site. The 

particular strength of SFF is for fabrication of scaffolds designed for high load bearing 

applications such as orthopedic fixation devices and fusion cages.  

Several types of SFF techniques are available for tissue engineering scaffolds. 

Hutchmer et al. demonstrated the fabrication of PCL scaffolds by Fused deposition 

modeling (FDM). Williams et al. fabricated poly(ε-caprolactone) (PCL) scaffolds using 

selective laser sintering technique (Williams et al. 2005). Shor et al. used precision 

extruding deposition (PED) to manufacture scaffolds with PCL and hydroxyapatite (HA) 

mixture (Shor et al. 2008). Among these, a selective laser sintering SFF technique was 

used in this study for fabrication of optimal scaffolds and biodegradable fusion cages 
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using PCL and HA. These scaffold samples were used for mechanical tests to validate the 

theoretically designed properties.  

 

1.3 Biodegradable Fusion Cages 

1.3.1 Spinal Fusion Cages 

Spinal fusion is a surgical intervention for patients with disc degenerative condition. 

When conventional non-surgical treatments fail, two or more vertebral bodies are fused 

to remove segmental instability, which can cause nerve root irritation and low back pain. 

In 2001, 357,000 patients underwent lumbar spinal surgery in the US alone, of which 

over 122,000 were lumbar spinal fusions for degenerative disc conditions (Deyo et al. 

2005). It was 220% increase from 1990 and the increase was accelerated after FDA 

approval of intervertebral cages in 1996. 

Spinal fusion can be categorized to posterolateral fusion and interbody fusion. 

Posterolateral fusion combines posterior elements by placing bone graft between 

transverse processes with pedicle screws, while intervertebral disc space remains intact. 

Interbody fusion unites anterior vertebral bodies by placing bone grafts at the 

intervertebral disc space. The use of interbody fusion cages as an adjunct for bone graft 

was attributed to the high rate of failure associated with use of bone graft alone or use of 

posterior pedicle screws and rods (McAfee 1999). With superior rigidity, the interbody 

fusion cages can bring immediate stability and enhance fusion rate by removing relative 

motion at the treated site. Furthermore, the amount of grafting bone can be reduced with 

the introduction of the fusion cages. 
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Bagby first introduced a perforated stainless steel basket for treating horses with 

Wobbler Syndrome and eliminated the need for autograft harvesting by packing 

cancellous bone chips from the reaming procedure of the vertebral endplates (Bagby 

1988). Then, Kuslish and Bagby made modifications of the strainless steel basket and 

developed the Bagby and Kuslish (BAK) cage (Kuslich et al. 1998). This cylindrical 

titanium cage has threads for increased stability of the device and fusion rate with a 

stand-alone anterior device. Ray also developed a titanium interbody fusion cage with 

deep threads for posterior lumbar interbody fusions (PLIF) (Ray 1997).  

There are several different types of lumbar fusion cages according to the cage 

placement approach: Posterior lumbar interbody fusion (PLIF), Anterior lumbar 

interbody fusion (ALIF), and Transforminal lumbar interbody fusion. With PLIF, the 

spine is approached from posterior along with laminectomy for better visualization of the 

nerve roots. Then, the nerve roots are retracted to one side and the intervebral discs are 

removed. An interbody cage with bone graft is then inserted into the disc space, through 

which, new bone grows from a vertebral body to the next one. PLIF has advantage of 

leaving less scar tissue due to minimal incision of muscles. However, posterior approach 

has potential risks of nerve root injury. In addition, the removal of anterior disc material 

may not be sufficient compared to anterior approach, which leaves less space to bone 

graft or fusion cages.  

ALIF, on the other hand, approaches the spine through the abdomen. The ALIF can 

avoid nerve injury and incision of back muscles. It also allows better access to the 

intervertebral disc space and complete removal of disc material. However, the removal of 
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anterior longitudinal ligaments is not favorable for maintaining segmental stability. In 

addition, anterior approach may damage the large blood vessels and result in hemorrhage.  

TLIF is a minimal invasive procedure where the spine is approached through a 

foramen from posterior. Unlike PLIF, the TLIF removes only one facet joint to 

decompress the disc space and fusion cage is placed from one side. A portion of annulus 

fibrosus is dissected, nucleus pulposus removed, and single fusion cage or bone graft is 

inserted. Further stabilization is augmented by posterior fixation such as pedicle screws 

and rods. 

1.3.2 Biodegradable Cages 

Early clinical reports on using these cages, which were mostly made of metals, are 

generally positive. However, these metallic cages were often associated with several 

complications, including device related osteopenia, subsidence, and migration (Smith et 

al. 1991; Aoki et al. 2009). The excessive rigidity of the device might cause the 

absorption of adjacent bones by stress shielding effects, loosening the device fixation to 

host bone. In addition, these metallic cages often fail to effectively transfer loads to 

stimulate bony tissue remodeling (Kanayama et al. 2000; van Dijk et al. 2002). These can 

cause retarded fusion, which may be ended up with pseudarthrosis (nonunion) and cage 

migration (Chen et al. 2005). Radiopacity of metallic cages also interfere with 

visualization of bony fusion at the treated site during postoperative follow up evaluation 

(Cizek and Boyd 2000; Robertson et al. 2009), making it difficult to determine the 

progress of bony healing. Finally, the permanent material may cause long-term foreign 

body reaction. In some cases, wear debris or corrosion of material causes inflammation of 

surrounding soft tissues (Brantigan and Steffee 1993). 
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The shortcomings and complications of non-degradable metallic and polymeric 

cages made researchers to explore the utility of biodegradable material in the high load 

bearing fusion devices. The apparent advantage of biodegradable cages is that the 

material will disappear after complete bony fusion. This can avoid possible foreign body 

reaction as well as secondary removal surgery. The radiolucency of the biodegradable 

material confers better visualization and evaluation after surgery. With reduced cage 

stiffness to adjacent bone level, the biodegradable cages are less likely related to stress 

shielding effects and more transfer load to the ingrown bone. Van Dijk and colleagues 

have investigated the utility of poly L lactic acid (PLLA) cages in a large animal goat 

model. They demonstrated that reduced cage stiffness enhanced bony fusion (van Dijk et 

al. 2002). The feasibility for lumbar interbody fusion and biocompatibility of the PLLA 

cages were also demonstrated in four years of in vivo animal study (van Dijk et al. 2005). 

Despite these advantages, however, the biodegradable cages may suffer from 

weaker mechanical properties. Further deterioration of the structural integrity due to 

degradation after implantation may lead to failure of fusion. The time dependent 

mechanical property changes were correlated with loading conditions, temperature and 

humidity (Smit et al. 2008). They also found that the biodegradable cages might undergo 

premature device failure in an in vivo condition (Jiya et al. 2009). It should be noted that 

these studies used conventional designs (Weiner and Fraser 1998), including hollowed 

cylinders with threads, open boxes, and vertical rings, for biodegradable cages. Also note 

that mere replacement of permanent materials with biodegradable polymers in 

conventional designs like hollow cylinders or open boxes may not provide sufficient 

strength for lumbar fusion. 
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1.3.3 Design of Porous Biodegradable Fusion Cages Using the Integrated Global-Local 

Topology Optimization 

The integrated global and local topology optimization, in this respect, may 

overcome the complications related to the intrinsic weakness of the material. The global 

topology optimization is for optimal material density layout, whereas the local topology 

optimization is for the design of microstructures with maximized permeability and 

stiffness. The global density layout serves as a map for particular microstructures to be 

used. The porosity of microstructures is determined according to the global density, or 

porosity. The local microstructural topology optimization can then provide maximized 

permeability and maximized elasticity for given porosity. Globally optimized structure 

will provide maximum structural support while locally optimized microstructures provide 

maximal permeability for bony ingrowth and metabolic transport.  

This multiscale optimization approach is such flexible as to be applied with various 

property microstructures and base biomaterial. Thus, the method can be readily applied to 

customize the fusion cage for preclinical large animal models as well as human clinical 

studies. The porous biodegradable fusion cages may enhance bony fusion with well-

controlled interconnected pore architecture. 

 

1.4 Hydrolytic Degradation of Biodegradable Polymers 

Biodegradable polymers, particularly aliphatic polyesters such as poly glycolic acid 

(PGA), poly lactic acid (PLA), and poly(ε-caprolactone) (PCL), are mostly investigated 
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and utilized for biomedical and tissue engineering applications. These polymers have 

been used for degradable sutures, orthopaedic implants, drug delivery system, and tissue 

engineering scaffolds (Ueda and Tabata 2003; Vaccaro et al. 2003).  

One of the degradation mechanisms of aliphatic polyesters is hydrolysis. Water 

molecules penetrate into the amorphous region in bulk polymer and attack the polymer 

backbone to be cleaved into smaller polymer chains with acid and alcohol end groups, 

since these polyesters have a carboxylic acid end group at one end and a hydroxyl group 

at the other end (Figure 1.6). The produced carboxylic acids are known to involve in the 

hydrolysis as catalysis, accelerating the hydrolysis by acid-catalysis. The produced acids, 

especially for PLA, can easily dissociate, resulting in an acidic environment, which 

lowers local pH environment and accelerates the hydrolysis reaction speed. Particularly 

in clinical applications, the acidic environments formed within biodegradable implants by 

hydrolysis may also cause inflammation of surrounding tissues. Biodegradation in vivo 

also involves enzymatic degradation, producing lactic acids, water and carbon dioxide.  

 

 

Figure 1.6  Structural formula of PLA, PGA, and PCL (Ueda and Tabata 2003) 
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There are two different degradation or erosion mechanisms: surface erosion and 

bulk erosion. In a surface eroded polymer, mass loss during degradation occurs at the 

polymer surface, changing the shape of the structure. In bulk eroded polymer, 

degradation rates over the polymer are uniform, and degradation and mass loss occur 

homogeneously throughout the polymer. In general, these two different mechanisms can 

be described with relative difference in the diffusion of water and hydrolysis rate. Von 

Burkesroda et al. presented a comprehensive model of these two different erosion 

behaviors (von Burkersroda et al. 2002). In their model, the relative speed of water 

diffusion and the hydrolysis reaction was introduced in a non-dimensional parameter. 

From this parameter, a measure for critical length can be derived. If the size of a bulk 

eroded specimen is greater than the critical length, the specimen undergoes surface 

erosion. It should be noted that, in many cases, the aliphatic polyesters undergoes bulk 

erosion, indicating that water diffusion into the polymer is much faster than hydrolysis 

reaction. 

In bulk erosion, one of complex behaviors is heterogeneous degradation: the inner 

region degrades faster than outer periphery. The production of the hydrolysis is 

carboxylic acid, which again acts as a catalyst for the reaction and accelerates the 

reaction rate by acid autocatalysis. The product small chains with a carboxylic acid end 

group become water soluble and freely diffuse within the polymer matrix. The release of 

the small chains out of bulk polymer accounts for the mass loss during degradation. The 

diffusion of the acids at the periphery quickly occurs, whereas the acid end group inside 

takes longer time and accelerates the hydrolysis inner region before escape. Finally, the 

center of the polymer specimens is hollowed, the periphery remaining as a wall (Vert et 
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al. 1994). In addition, fast degradation is often observed in thick polymer specimens as 

opposed to thin polymer specimens, which has been explained by a the similar 

mechanism: the interplay between the acid end group diffusion and hydrolysis reaction 

(Grizzi et al. 1995). The acidic product with the water soluble small chains take more 

time to escape the thick polymer block, which allows more time to accelerate hydrolysis 

within the polymer matrix. 

In order to determine the underlying mechanisms of polymer degradation, several 

computational and mathematical models have been proposed. Examples include 

empirical models based on hydrolysis kinetics, Monte Carlo simulation based models, 

models for chain cleavage, and a diffusion-reaction based model. Among these, the 

diffusion-reaction model has advantage over others in that it predicts spatial and temporal 

differences of polymer degradation based on autocatalytic hydrolysis. For the design of 

degrading hierarchical scaffolds, it is important to know the effect of pore architecture, i.e. 

the spatial distribution of material on degradation, i.e. temporal behavior. Moreover, the 

diffusion reaction model can be readily extended to multiscale model using the 

homogenization method, providing rigorous relation between pore architecture and 

degradation of the hierarchical scaffolds.  

Multiscale modeling of the degradation of porous scaffolds may provide insights 

into the affects of pore architecture design on both initial mechanical properties and the in 

vivo change in properties due to degradation. We postulated that a hierarchical scaffold 

design approach based on topology optimization and multiscale homogenization would 

produce a biodegradable scaffold strong enough to support physiological loads before 
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implantation, but that with the introduction of  the multiscale degradation model could 

assure the integrity of the design in vivo. 

 

1.5 Outline of Thesis 

The goal of this study is to provide a computational framework for the design of 

hierarchical scaffolds with tailored mechanical and mass transport properties. In order to 

address the degraded material properties after implantation, a diffusion-reaction based 

model was adapted to characterize the degradation of the scaffold. To this end, we 

derived the homogenization of mechanical and mass transport phenomenon in a porous 

scaffold in chapter 2. For the mechanical property characterization, linear elasticity was 

considered. The effective elasticity tensor is directly obtained from the homogenization 

of linear elasticity. For mass transport measures, diffusion and fluid permeability were 

considered. Then, homogenization of diffusion-reaction equations were derived for 

multiscale analysis of hydrolysis. The effective diffusivity and linear elasticity were 

utilized in the microstructural topology optimization in chapter 3. Assuming isotropic 

material design, the bulk modulus and diffusivity were optimized using homogenization 

based topology optimization. The theoretically designed properties were compared with 

mechanical compression test results. As a clinical application of the hierarchical scaffold, 

biodegradable fusion cages were designed using a global-local integrated topology 

optimization technique in chapter 4. Applying biodegradable material in a high load 

bearing site is one major challenge. The global topology optimization addresses the 

strength issues while the local topology optimization provides sufficient mass transport 

within the cage. Finally, a diffusion-reaction based model was adapted to characterize 
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degradation of porous scaffolds in chapter 5. Homogenization of the diffusion-reaction 

equation was applied to describe the diffusion and reaction of the produced acid end 

groups.  
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CHAPTER 2 
 
 

HOMOGENIZATION OF SCAFFOLD MECHANICAL AND MASS 
TRANSPORT PROPERTIES 

 

 

 

2.1 Overview 

The asymptotic homogenization method is the theoretical basis for the hierarchical 

scaffold design scheme (Hollister 2005), where tissue engineering scaffolds are 

considered as composite or porous media with repeated unit microstructures. A porous 

medium, or a porous structure, is defined as a mixture of solid material with pores inside. 

The pore can be either empty or fluid saturated in this study. The characterization of such 

scaffolds is conducted by experiments on the fabricated specimen, which is always 

required before in vitro and in vivo studies. However, experimental measurements are in 

many cases limited so as to be correlated in an averaged sense without knowing detailed 

phenomena in the pores. On the other hand, numerical evaluation of the properties of 

scaffolds is challenging because of the complexity of pore geometry, which demands 

high computational costs. Multiscale modeling and analysis techniques such as the 

homogenization method are of great importance with rigorous connection between 

detailed microstructures and macroscopic properties..  
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The homogenization method is a well-established mathematical modeling 

technique when there is a separation of the length scales between the macrostructure and 

microstructure. Assuming the hierarchically designed scaffolds possess good separation 

between scaffold scale and microstructure scale, the homogenization method can be 

utilized to characterize mechanical function of the scaffold as well as mass transport 

properties through the pores.  

In this chapter, we will derive the homogenization of elasticity, homogenization of 

diffusion, homogenization of reaction-diffusion, and homogenization of Stokes flow, to 

numerically characterize the scaffold properties as well as design microstructures with 

prescribed properties. The homogenized diffusivity and elasticity, along with 

multiobjective topology optimization, were utilized in the design of microstructures with 

tailored material properties in chapter 3. In tissue engineering, the permeability is mostly 

adopted as a mass transport property measure of biological tissues as well as scaffolds, 

owing to its relatively simple experimental setting. The homogenization of Stokes flow in 

porous media is known to produce Darcy’s law in the macroscopic scale. From the 

homogenization of Stokes flow, the effective permeabilities of the scaffolds were 

evaluated. Last, the homogenization of reaction-diffusion was derived for the 

computational simulation of polymeric scaffold degradation in chapter 5. The acid-

catalyzed hydrolysis reaction in solid matrix produces water soluble acidic monomers, 

which can diffuse through the porous scaffold, both solid and pores. With the aid of 

rigorous theoretical basis, the effects of pore architecture on the degradation of porous 

scaffolds can be further elucidated. 



29 

2.2 Preliminary 

The homogenization process finds an equivalent macroscopic boundary value 

problem from differential equations with highly oscillating coefficients. The 

homogenization method can be also used to determine the effective macroscopic 

properties from an analysis of a representative microstructure of a porous media or 

composite material assuming periodicity (Bensoussan et al. 1978; Sanchez-Palencia et al. 

1987). The analysis responses at a local level with periodic boundary conditions are 

averaged to give the effective properties at a global scale. While the macroscopic variable 

represents the scaffold level scale, the microscopic variable describes the pore domain, or 

unit microstructure. In general, the local microstructure domain is defined in a 

rectangular cuboid, Y, for 3D problems. 

[Y]0,  [Y]0,  [Y]0,Y 321 ××=  (2.1)

The periodicity means any quantity has the following relations 

)()( yNYy FF =+  (2.2)

where N is a diagonal matrix, whose components Nii are arbitrary integers. The pore 

geometry is also periodic. 

A major assumption is the separation of the scales between the global and local 

structures. Based on this assumption, a small variable, ε , for the ratio between 

microscopic length scale and macroscopic length scale can be defined as  

1<<=
i

i

y
xε  (2.3)

where ix  is a the length or the macroscopic scale and iy  is the number of microscopic 

lengths that occur in one microscopic length, ix .  
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The hierarchical gradient can be defined with respect to the macroscopic length 

scale by the chain rule.   
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Substitution of the expanded field variables and the hierarchical derivatives into the 

governing equilibrium equations leads to macroscopic and microscopic equilibrium 

equations. The microscopic equation can be solved by applying unit gradients of the 

macroscopic variables under the assumption of the periodicity of the microstructure and 

properties. The analysis is to investigate the asymptotic behavior of the system as ε  

approaches zero.  
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where εσ ij  is a stress tensor, if is body force, it  is traction on traction boundary 

T Ω∂ , jn is outward normal, ε
kle  is the small strain tensor, ijklC  is the linear elasticity 

tensor, ε
ku

 
is the displacement, and the superscript ε  indicates the dependence on the 

microstructure.  
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With the asymptotic expansion of the displacement, iu ,  
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and hierarchical derivative,  
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the equation (2.5) becomes 
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where 

  

  

3

2

1

l
ijkl

i

l
ijkl

il
ijkl

i

l
ijkl

i

x
C

x
A

y
C

xx
C

y
A

y
C

y
A

∂
∂

∂
∂

=

∂
∂

∂
∂

+
∂

∂
∂
∂

=

∂
∂

∂
∂

=

 (2.9)

 

It is remarked that FA =φ1  in the microscopic domain, where φ  is Y-periodic, 

admits unique solution up to an additive constant, if and only if 0)( =∫Y
dyyF  

(Bensoussan et al. 1978). 

 

From the leading order, 2−ε  

0),()0( =
∂
∂

∂
∂ yxu

y
C

y k
l

ijkl
i

 (2.10)

we notice that the only Y-periodic solution is )(),( )0()0( xuyxu kk = . 
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From the 1−ε , the microstructural governing equation is derived. 

)0()1(

 k
l

ijkl
j

k
l

ijkl
j

u
x

C
y

u
y

C
y ∂

∂
∂
∂

−=
∂
∂

∂
∂  (2.11)

Notice that the separation of variables in the right hand side of (2.11), the solution 

form of )1(
iu  is 

( ) )(
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)1( x

x
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l

kkl
ii χχ +

∂
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−=  (2.12)

Substitution of (2.12) into (2.11) results in the microscopic equilibrium governing 

equation,  
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C
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∂
=

∂
∂

∂
∂ χ  (2.13)

where ijklC  is the localized elasticity and χ k
pq  is the characteristic displacement resulting 

from the unit strain in pq-direction (pq=11, 22, 33, 12, 23, and 31). 

 

From 0ε , the condition of )2(
iu  having Y-periodic solution is  

( ) 0)1(
2

)0(
3 =++∫ dYfuAuA

Y iii  (2.14)

Substitution of (2.9) and (2.12) into (2.14) yields the following macroscopic 

equilibrium equation. 
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 (2.15)

 

The homogenized elasticity properties are calculated as: 
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ijpqijkl
H
ijkl )(1 χ

 (2.16)

where H
ijklC  is the homogenized elasticity tensor, and ijklC  is the localized elasticity. 

 

2.4 Homogenization of Diffusion 

Knowing the effective diffusivity is important for understanding diffusive transport 

in biological tissues. The governing equation of diffusion is  

⎟
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∂
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i x
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x
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t
u  (2.17)

where u can be the concentration of chemical species or molecules, ijD  is the diffusivity 

tensor, and f is source term.  

Assuming scale separation, the concentration of a solute can be expanded with the 

scale ratio, 1/ <<= ii yxε . 

L+⋅+⋅+= ),(),(),( 2
2

10 yxuyxuyxuu εεε  (2.18)

and hierarchical derivative can then be expressed using the chain rule 

iii yxx ∂
∂

+
∂

∂
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∂
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ε
1

 
 (2.19)

By substituting (2.3) and (2.4) into the governing equation (2.2), the governing 

equation becomes  

...)()()(0 031221
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0211
1

01
2 +

∂
∂

+−+++++= −−

t
ufuAuAuAuAuAuA εεε  (2.20)

where 1A , 2A , and 3A  are operators defined as 
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By equating 2−ε  term to zero, we can notice that one can notice that the only Y-

periodic solution is )(00 xuu = . 

 

From 1−ε  term in equation (2.20), the following microscopic equation is derived 

based on the finding that 0u  is function of x only.  
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Because the variables are separated in the right hand side of equation (2.21), 1u has 

the following form, based on the above-mentioned remark. 
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with 0)( =∫ dyy
Y

jχ . 

Substitution of (2.21) into (2.22) yields the microscopic governing equation. 
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where ijD  is the local diffusivity and χ p  is the characteristic concentration resulting from 

the pth unit concentration gradient (p=1,2,and 3). 
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Finally,  the 0ε term can be expressed as 

t
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The condition that 2u has a unique solution in Y is  
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Substitution of (2.22) into (2.25) yields the macroscopic governing equation. 
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where ∫=
Y
dYY . 

From the observation of (2.26), the effective diffusivity can be defined as 
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where H
ijD  is the homogenized diffusivity, ijD  is local diffusivity, and jχ is the solution 

of the microscopic equation.  

It should be noted that if the diffusion occurs only in the pore space, then the 

integration domain in equation (2.10) is confined within the pore. The macroscopic 

equation has the following form. 
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where φ  is the porosity of the medium.  
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2.5 Implementation of the Homogenization of Elasticity and Diffusivity 

The effective elasticity and diffusivity were calculated using voxel based finite 

element codes. For elasticity, equation (2.13) is solved and used to calculate effective 

elasticity using (2.16), whereas the effective diffusivity is calculated from (2.27) by 

solving equation (2.23). The unit cell domain was discretized into voxel elements, or 8-

node hexahedral elements. Periodic boundary conditions were implemented by assigning 

equivalent nodal constraints by assuming symmetries in the unit cell geometry and the 

local properties (Hassani 1996; Auriault and Lewandowska 2001). In this way, only one-

eighth domain was considered if used in the microstructural topology optimization, which 

saved computational time and memory compared to the calculation on full unit cell 

domain. In addition, the element-by-element preconditioned conjugate method was used 

as a solver for the finite element analysis of the microscopic problems because of its 

efficiency when dealing with large degrees of freedom.  

 

2.6 Cross-Property Bounds on Diffusivity and Bulk Modulus 

There are upper and lower bounds on the effective properties for composite material 

for given material volume fractions. Hashin and Shtrikman derived well-known bounds 

for isotropic magnetic permeability and bulk/shear moduli using variational principles 

(Hashin and Shtrikman 1962; Hashin and Shtrikman 1963). The theoretical bounds for 

the effective magnetic permeability also hold for the effective diffusivity owing to the 

mathematical equivalency. For isotropic, three dimensional, solid-void phase composites, 

the upper bound on the effective bulk modulus and the effective diffusivity can be 

expressed in terms of the solid phase volume fraction and phase properties. 
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Kmax
iso =

(3/4)ρKG
(1− ρ)K + (3/4)G

 (2.29)

Dmax
iso =

2(1− ρ)D
2 + ρ  

(2.30)

where  is solid phase volume fraction, K and G are the bulk and shear moduli of solid 

phase and D is a free isotropic diffusion coefficient of a solute in the fluid phase. Figure 

2.1 illustrates the bounds on the relative isotropic diffusivity and bulk modulus in terms 

of solid phase volume fraction. The competition between elasticity and mass transport is 

obvious from the plots. 

When multiple, conflicting properties are considered simultaneously, there are 

cross-property bounds that connect those properties through the microstructure. Such 

cross-property bounds provide an achievable range of one property if the other is known. 

For cross-property bounds that link bulk modulus and isotropic conductivity (diffusivity), 

Gibiansky and Torquato derived the sharpest known cross-property bounds using 

translation methods (Gibiansky and Torquato 1996). The cross-property upper bounds for 

an ill ordered solid-void(fluid) phase (  and ) can be defined in 

diffusivity-bulk modulus phase plane with a hyperbola segment that passes through three 

points, )0,( max
isoD , ),0( max

isoK and ),)1(( 21 KD ρρ− , where 1D  and 2K  are the diffusivity 

and bulk modulus of the void phase, )0(2 =D  and 2K are the diffusivity and bulk modulus 

of the solid phase, and isoDmax  and isoKmax  are defined in equations (2.29) and (2.30), 

respectively. ρ  is solid volume fraction. 

ρ

∞=12 / KK 0/ 12 =DD
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Figure 2.1  Normalized theoretical bounds on isotropic diffusivity and bulk modulus 
plotted as a function of solid phase volume fraction 

 

 

 

Figure 2.2  An example of cross-property bounds on the effective bulk modulus and 
diffusivity for ill-ordered composite, adapted from Gibiansky and 
Torquato (Gibiansky and Torquato 1996). 
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Figure 2.2 illustrates an example for the cross-property bounds in the diffusivity-

bulk modulus phase for an ill ordered composite where ,  and 50% 

porosity. As can be seen, lower bounds are straight lines parallel to the axes. All feasible 

elasticity/diffusivity designs for a 50% porous material must lie within the lines in Figure 

2.2. As noted by the authors, their cross-property bounds hold for both isotropic and 

cubic symmetric composites. 

 

2.7 Homogenization of a Diffusion-Reaction Equation in Porous Media 

The purpose of this section is the derivation of the homogenization of diffusion-

reaction equations to be applied to the multiscale hydrolytic degradation modeling of the 

hierarchical scaffolds. The diffusion reaction based degradation model includes the ester 

bond concentration and diffusion of carboxylic acid end group. Especially, the diffusion 

of carboxylic acid end group in the pores is assumed much faster than that in the solid 

polymer matrix. The following derivation only considered such conditions, as a starting 

point.  

2.7.1 Derivation 

When a solute diffuses through a porous medium composed of two components 

with highly different diffusivities, anomalous diffusion behaviors occurs (Auriault and 

Lewandowska 1995). Consider the unit cell domain, 21 ΩΩ=Ω U , where 1Ω  is the fluid 

saturated pore and 2Ω  is solid scaffold matrix. 1Ω  is continuous domain and 2Ω is or is 

not continous (Figure 2.3).  

 

∞=12 / KK 0/ 12 =DD
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Figure 2.3 Schematic of a unit microstructure domain, showing two sub-regions with 
different diffusivities.  

 

 

The diffusivity tensor is defined as 

⎪⎩

⎪
⎨
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Ω
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=
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)2(
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in       
in       

ij

ij
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D
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We assume )2()1(
ijij DD >> .  

 

The diffusion-reaction equation considered in this section is  
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X
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D
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c
i

j
ij

i

+=
∂
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∂
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−
∂

∂
         in Ω  (2.31)

 

Each domain has its own variable: 1c for solute concentration in 1Ω and 2c  for 

solute concentration in 2Ω . The reaction is assumed to take place in 2Ω  only. 
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(2.32)

where if  is a source term, )( 2
εcg is a reaction term, and in is outward normal at pore 

surface. 

This system in a porous medium provides four characteristic diffusion times 

according to the effective diffusivity in each phase ( 1D  and 2D ) and characteristic 

lengths of different scales ( L  for global scale and l  for pore scale). 

1

2

1 D
LT L =  and 

1

2

1 D
lT l =  in 1Ω , 

2

2

2 D
LT L =  and 

2

2

2 D
lT l =  in 2Ω  

(2.33)

The separation of scale can be represented by the effective diffusivity ratio between 

two phases, defined as in (Auriault and Lewandowska 1995).  

q

D
D ε=

1

2  (2.34)

 

Then, different homogenized behaviors are derived according to the ratio of LT1 , 

characteristic diffusion time of a solute in 1Ω  at global scale and lT2 , characteristic 

diffusion time of a solute in 2Ω  at pore scale. 
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q

L

l

T
T −= 2

1

2 ε  (2.35)

 

If q < 2, or the diffusivities in solid and pore are of same order, the macroscopic 

equation was shown to have an effective property that is sum of the effective diffusivity 

in each phase (Auriault et al. 2009). It is also shown that the local diffusion becomes 

negligible if q=3. The following derivation of the homogenization is when q=2. A 

nondimensional version of the equations can be produced using the following 

representation of the dimensional variables, with the over bar denoting the dimensionless 

variables: 
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If )1(2

1

1 O
L
DT c

L = , indicating diffusion of a solute through 1Ω is comparable to the 

diffusion by the boundary condition imposed at the global scale. Then 
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Using asymptotic expansions of 1c and 2c , and the hierarchical derivative, we have 

the following equations from the orders of ε : 
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The compatibility condition becomes 
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First, from 2−ε  of (2.38) and 1−ε  of (2.40), the boundary value problem for )0(
1c  

can be derived. 
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where it is clear that )(),( )0(
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From (2.39), the problem for )0(
2c  is defined.  
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Assuming that )()0(
1 xc is known on Γ  by solving macroscopic equation which will 

be derived below, we can set ),()(),( *
2

)0(
1

)0(
2 yxcxcyxc += , where *

2c  is zero in 1Ω . Then 

the problem becomes 
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The equation for )1(
1c is derived from 1−ε  of (2.38) and 0ε  of (2.40). 
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∂  appears as a forcing term. The solution can be the following 

form, using the separation of variable and linearity. 
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Substitution of (2.45) into (2.44) yields a local problem for characteristic 

concentration in 1Ω  by global unit gradient. 
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The macroscopic problem for )2(
1c  is obtained from 0ε  of (2.38) and 1ε  of (2.40). 
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The condition for the existence of )2(
1c  is that the integration of the right hand side 

of the partial differential equation over 1Ω  should be zero. Taking integration over local 

domain, using divergence theorem and substitution of (2.45) into (2.47) yields 
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where ∫Ω
Ω= dY  and 1φ  is volume fraction of 1Ω . Note that in  is outward normal vector 

at the boundary of 1Ω (into solid region).  
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In sum, the homogenization of reaction-diffusion equation in (2.37) is derived in 

this section. The solution converges in two-scale sense to ),/,(),( *
21 txxctxc ε+ , where 

0),/,(*
2 =txxc ε  in 1Ω .  
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This homogenized diffusion-reaction system was shown to have unique solution 

(Pankratov et al. 2003).  

 

2.7.2 Solution Process 

In the equation (2.49), microscopic equation and macroscopic equation are coupled. 

Diffusive flux from the solid ( 1Ω ) is averaged over the solid-void boundary to serve as 

source term in the macroscopic equation, while the microscopic equation involves the 

macroscopic variable ( )0(
1c ) and its time derivative ( tc ∂∂ /)0(

1 ). In order to solve this 

system, the right hand side of the macroscopic equation should be evaluated at every ix  

in the macroscopic domain, at which position the microscopic equation should be solved 
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using )()0(
1 ixc  and 

ixt
c
∂

∂ )0(
1 . Then, the macroscopic equation can be solved with the source 

term. Furthermore, this calculation is repeated every time step. 

Solution step is as follows: 

1. At ktt = , the time dependent diffusion-reaction equation (2.50) is solved 

using ),()0(
1 ki txc  and  

t
txc ki

∂
∂ ),()0(

1  at every nodal point of the global 

domain. This gives ),( 1
*
2 +ki txc . 

2. The right hand side of equation (2.49) is also evaluated from the solution of 

(2.50) at every nodal points of the global domain. 

3. Then, equation (2.49) is solved to calculate ),( 1
)0(

1 +ki txc  and 
t

txc ki

∂
∂ + ),( 1

)0(
1 . 

4. Repeat steps 1 through 3 until the system reaches steady state. 

 

2.8 Homogenization of Stokes Flow 

2.8.1 Derivation 

Stoke equation governs the flow of Newtonian, incompressible, viscous fluid in 

porous media. Here the homogenization of Stokes flow in porous media is derived from 

the microscopic scale, following Auriault et al. (Auriault et al. 2005).  

Let L  be the characteristic length for macroscopic scale and l  be the characteristic 

length for microscopic scale. L can be the scaffold size whereas l  can be pore size. The 

separation of scale can then be described by 
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1<<=
L
lε  (2.52)

The momentum balance equation is derived from Navier-Stokes equation by 

neglecting inertial term. 

0=
∂
∂

−
∂
∂

∂
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ij

i

j X
p

X
v

X
μ    in pΩ  (2.53)

where μ is fluid viscosity, iv is velocity, and p is pressure. The incompressibility 

condition is described by the continuity equation. 

0=
∂
∂

j

i

X
v   in pΩ  (2.54)

 

The adherence (no slip) condition is 

0=iv   on Γ  (2.55)

 

The nondimensionalized momentum balance equation becomes 

μ ∂2v i
∂y j∂y j

− Q ∂p 
∂yi

= 0  (2.56)

where lXy ii /= , μ = μ /μc , v i = vi /vc , p = p / pc , and 
cc

c

v
lpQ

μ
= , which is the ratio of 

pressure to viscous force. The quantities with subscription c imply their characteristic 

values.  

 

The local viscous flow is driven by a macroscopic pressure gradient. 
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The nondimensionalized Stokes equations become 

μ ∂2v i
∂y j∂y j

−
1
ε

∂p 
∂yi

= 0 in pΩ  (2.59)

∂v i
∂y j

= 0  in pΩ  (2.60)

v i = 0  on Γ  (2.61)

 

 

The homogenization of the Stokes equations can be derived by the perturbation of 

the velocity and pressure with ε . 

...),(),(),( )2(2)1()0( +++= yxvyxvyxvv iiii εε   (2.62)
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we can get series of equations from each term collected by equal powers of ε .  
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From the lowest order of ε ,  

∂p (0)

∂yi

= 0 (2.68)

we notice that p (0) = p (0)(x) . 

 

From the zero order of ε , together with compatibility and adherence condition, the 

local flow equation is derived. 

μ ∂2v i
(0)

∂y j∂y j

−
∂p (1)

∂yi

−
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= 0 in *
pΩ  (2.69)

∂v i
(0)

∂y j

= 0  in *
pΩ  (2.70)

v i
(0) = 0   on *Γ  (2.71)

where v i
(0)  and p (1) are Ω-periodic. This system is known to have a unique solution of 

characteristic velocity in the following form 
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and the pressure solution is in the form 

p (1) = −a j
* ∂p (0)

∂x j

+ p*(1)(xi) (2.73)

where 1
Ωp

a j
*dΩ

Ω p
∫ = 0. 

 

Substituting (2.72) and (2.73) into the equation (2.69) yields the local problem. 
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(2.74)

By averaging the second term of the compatibility condition in (2.67), the effective 

permeability can be calculated. 

ijij kK
μ
1

=  (2.75)

where ijK  is the effective permeability in nondimensional form and ∫Ω Ω⋅
Ω

=⋅
p

d1 . 

Darcy’s law in the macroscopic scale is described as  
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where (2.77) is derived from volume averaging of the second term of (2.67).  

In dimensional form, the effective permeability  
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ijij KlK 2−=  (2.78)

 

2.8.2 Implementation and Validation 

Voxel based finite element codes were implemented for the evaluation of the 

effective permeability. The microstructural geometry is represented using binary 

variables assigned on each voxel element: 0 for pore space and 1 for solid. The finite 

element modeling and analysis is confined within pore space. In order to calculate the 

effective permeability, the local Stokes problem (2.74) was solved using a stabilized 

mixed finite element formulation following (Hughes et al. 1986). The advantage of this 

formulation is that equal order elements can be used for both velocity and pressure. 

However, the assembled matrix in the finite element formulation is asymmetric. Thus, 

taking advantage of regular voxel elements, an element-by-element preconditioned bi-

conjugate gradient (EBE-PBCG) method was adapted as non-symmetric matrix solver. 

Although it is generally known that the PBCG method does not always converge to a 

solution, it works for most of our permeability analysis on the scaffold microstructures. 

The permeability code were validated in comparison with the results by (Lee et al. 

1996), where the effective permeability values were calculated on Wigner-Seitz grain 

(Figure 2.4) and compared to empirical formulation for permeability through media with 

general types of inclusions such as spheres, cubes and hexagonal prism. As the authors 

commented, the homogenized permeability values are comparable and in trend with the 

empirical formula, with slightly lower estimates. Our permeability code also repeated the 

same results (Figure 2.5). More deviation from the empirical permeability values may be 

attributed to the voxel modeling of the Wigner-Seitz grain unit microstructure. 
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Figure 2.4 Unit microstructure of Wigner-Seitz grain, from (Lee et al. 1996). 

 

 

 

Figure 2.5 The effective permeability by the homogenization code was compared to 
an empirical formulation used in (Lee et al. 1996). 
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2.9 Conclusion 

In this chapter, the homogenization linear elasticity, diffusion, diffusion-reaction, 

and Stokes flow were derived. Using the asymptotic expansion of the variables, the 

homogenization method can provide rigorous theoretical background in the analysis of 

elastic and transport problems in the hierarchical porous scaffolds. This homogenization 

process allows us to characterize the functional properties of the designed scaffolds, as 

well as to tailor the properties when designing scaffolds with tissue-specific properties. 
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CHAPTER 3 
 
 

SCAFFOLD MICROSTRUCTURE DESIGN USING THE 
MICROSCTRUCTURAL OPTIMIZATION 

 

 

 

3.1 Introduction 

Scaffold pore architectures such as pore size, pore shape, and interconnectivity are 

known to affect the regenerate tissue inside. These microstructural parameters are also 

correlated with mechanical and mass transport properties of the scaffolds. Thus, the goal 

of the design of tissue engineering scaffolds is to find optimal microstructures that 

achieve prescribed mechanical and mass transport properties.  

One way to achieve these diverse design goals is adapting optimization schemes in 

hierarchical scaffold design (Hollister 2005). In the hierarchical scaffold design scheme, 

unit microstructures, or unit cells (structural unit, not biological cells) are chosen from 

unit cell libraries and assembled to form a scaffold global shape that fits into anatomical 

defects. The mechanical and mass transport properties of the scaffold are computed using 

the homogenization method based on double-scale asymptotic expansion (Bensoussan et 

al. 1978; Sanchez-Palencia et al. 1987). Pore architectures can be designed with 

predefined geometries such as three orthogonal cylindrical pores or spherical pores. 

Hollister et al. optimized pore diameters of scaffolds with three orthogonal cylindrical 
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pores using the homogenization method and empirically fitted polynomials that relate 

pore diameters and the effective stiffness tensor (Hollister et al. 2002). Transport 

requirements were considered by imposing a lower bound constraint on porosity.  

In more general cases, however, new microstructures with target properties can be 

sought using topology optimization (Bendsoe and Kikuchi 1988; Sigmund 1994; 

Sigmund 1995). Topology optimization distributes material within a unit microstructure 

such that the final structure meets specified design targets. Lin et al. adapted the topology 

optimization to find scaffold microstructures that achieved target anisotropic elastic 

constants (Lin et al. 2004). Hollister and Lin further extended the method by introducing 

effective permeability to the optimization scheme to design scaffolds with maximized 

permeability (Hollister and Lin 2007). However, the permeability was not coupled with 

the mechanical property in the optimization procedure, so that maximizing permeability 

could affect the mechanically optimized microstructure. 

Recently, several multifunctional material design schemes based on the topology 

optimization have been proposed. Guest and Prevost proposed a general 3D 

microstructure design scheme using the topology optimization method to achieve 

maximized bulk modulus and isotropic permeability (Guest and Prevost 2006). They 

optimized microstructures by differentially weighting mechanical and transport terms in 

the objective, allowing designers to tailor the material properties. de Kruijf et al found 

optimal structures with maximized bulk modulus and thermal conductivity by minimizing 

both mechanical and thermal compliance in 2D (de Kruijf et al. 2007). The authors 

explored Pareto optimality by varying weights for mechanical and transport properties. 

Challis et al., by a level set method, presented the design of isotropic unit structures with 
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maximized bulk modulus and isotropic conductivity (Challis et al. 2008). The authors 

also explored design changes with the different combinations of weighting factors.  

The design of multifunctional material structures with maximized properties is 

gaining interest in many engineering fields. Tissue engineering scaffolds, however, must 

be tailored to a wide range of mechanical and mass transport properties, including cross 

property relationships that fall well within the interior of cross-property bounds, not just 

on the boundaries of the cross-property bounds. For example, cartilage needs low mass 

transport and mechanical properties (Kemppainen and Hollister 2010), which lay well 

within the interior of the mass transport and mechanical cross-property bounds.  

Thus, the goal of this study was to explore possible microstructure designs with 

various combinations of effective bulk moduli and diffusivities. In order to design 

microstructures with ranges of mechanical and mass transport properties, we adapted a 

local microstructure topology optimization scheme based on the SIMP method for target 

optimization. The target properties were chosen within known cross-property bounds 

connecting effective bulk modulus and isotropic diffusivity. Various microstructures 

were designed and utilized within actual tissue engineering scaffolds. A porous 

biodegradable interbody fusion cage was designed as a biomedical application of 

multifunctional microstructures by integrating the result from global topology 

optimization and the local microstructure optimization.  The resulting integrated local and 

globally designed structures were then built using solid free-form fabrication techniques. 
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3.2 Tailoring Scaffold Properties 

3.2.1 Material Interpolations 

Microstructure topology optimization computes the optimal topology of scaffold 

microstructure by distributing material density within the unit cell domain under design 

objectives and constraints. The design domain is discretized with the finite elements 

assigned with density values, ranging from 0 through 1. In this relaxed problem, material 

laws should be defined to relate element densities and local material properties. In 

addition, the intermediate density values are penalized to have a final discrete design. The 

most common local material law is the Solid Isotropic Microstructure with Penalization 

(SIMP) (Bendsoe and Sigmund 1999). We utilized the SIMP method for elasticity:  

Cijkl = ρ pCijkl
base,    ( 1>p ) (3.1)

where ijklC  is the element stiffness tensor, ρ  is the element density, p is a penalization 

factor, and base
ijklC  is the stiffness tensor for the base material. For the diffusivity, a SIMP-

like material law can be applied to the interpretation of the intermediate densities with 

penalization, 

base
ij

p
ij DD )1( ρ−= ,    ( 1>p ) (3.2)

where ijD  is the element diffusivity tensor, ρ  is the element density, p is a penalization 

factor, and base
ijD  is the free diffusivity tensor for the fluid phase. With the local material 

laws defined for both stiffness and diffusivity, the objective function and sensitivity 

derivatives are derived with respect to material density ρ , and the optimization problem 

can be solved by updating ρ  at each iteration.  
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For the phase base material, we used unit isotropic diffusivity, D=1 for the void 

phase. For the base material solid phase, we chose Poisson’s ratio equal to 1/3 with a 

Young’s modulus of 1, which yields a bulk modulus of 1. In this case, the designed 

properties could be easily compared within the cross-property bounds normalized to base 

material properties. 

 

3.2.2 Problem Statement for Target Optimization 

In order to tailor the material properties directly, the optimization problem was 

defined to minimize the error between the target and the effective bulk moduli and 

diffusivities, with constraints on porosity:  
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(3.3)

where HK  is the homogenized bulk modulus, *K  is the target bulk modulus, HD  is the 

homogenized isotropic diffusivity, *D  is the target isotropic diffusivity, cubicf  is the 

cubic error function and wi ( 3,,1K=i ) are weighting factors, lbφ  and ubφ are the upper 

and lower bounds of porosity, iρ is i-th element density, and N  is the total number of 

elements. 

Pursuing isotropic or cubic symmetric material microstructures, the effective bulk 

modulus was converted from elastic stiffness tensor components assuming 

isotropic/cubic symmetry in the final result. 
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In the same way, the effective diffusivities were evaluated as average of the 

diagonal terms in diffusivity tensor. 
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D11

H + D22
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3
 (3.5)

The cubic error function is defined to minimize the differences among three normal 

components, three off-diagonal terms, and thee shear terms in the stiffness tensor 

components, respectively.  
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where H
ijklC  are the components of the homogenized stiffness tensor. This multiobjective 

formulation can be easily converted to a formulation in which one of the target properties 

is optimized while the other is constrained. 

3.2.3 Implementation 

Topology optimization, in its relaxed formulation, still requires additional 

treatments to avoid known numerical instabilities such as checkerboard patterns and 

mesh dependencies (Sigmund and Petersson 1998). We applied a nonlinear filtering 

scheme to the sensitivity derivatives to prevent checkerboard patterns and mesh 

dependency as proposed by Sigmund (Sigmund 1994). Assuming unit cell size of 1 mm 
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in each direction, a filter radius of 3 elements was chosen to maintain a minimum 

physical feature size (0.15mm) for the 40×40×40 element unit cells. When the mesh 

resolution was increased to 60×60×60, the filter radius was increased to 4 elements to 

maintain the minimum physical feature size (0.13mm). Finally, to solve the optimization 

problem, the Method of Moving Asymptotes (MMA) was adopted to provide greater 

efficiency in solving problems with a large number of variables and a small number of 

constraints (Svanberg 1987). 

3.3 Results 

Our results demonstrate that the properties of the microstructures can be tailored to 

meet various scaffold requirements such as stiffness and mass transport using topology 

optimization with SIMP interpolation and sensitivity filtering. Target design points were 

chosen close to the cross-property upper bounds. Figure 3.1 illustrates various 

microstructural architectures obtained in this study and the achieved properties are 

presented in Table 3.1.  The mesh resolution for microstructures (A), (C), (E), (G), and (F) 

was 60×60×60, and the mesh resolution for the other microstructures was 40×40×40. The 

designed microstructures were identified within the cross-property bounds in Figure 3.2.  

Bear in mind that the porosities of the designed microstructures satisfied the 

constraints despite the lack of an exact match in the corresponding cross-property bounds. 

This is because the porosity constraints were set at a small range around the target 

porosity. For example, the porosity constraints were set less than 52% and greater than 48% 

for the design of 50% porosity microstructures. Nonetheless, there was excellent 

agreement between the target and designed bulk moduli and diffusivities Figure 3.3. 



63 

Because of the theoretical cross-property bounds for 50~60% porosities, the 

maximum normalized diffusivities are 0.4 and 0.5, respectively. Thus, we may consider 

diffusivity over 0.3 as high diffusivity for 50~60 % porosity materials. 

 

3.3.1 Microstructures with High Diffusivity 

Microstructures with relatively high diffusivity designed for either 50% or 60% 

porosity approached the cross-property upper bound, as depicted in Figure 3.1-D through 

Figure 3.1-H. The properties of the microstructures illustrated in these figures were 

isotropic. It should be noted that the designed microstructures have different topologies 

while the achieved properties were close to each other. Interestingly, the property pair of 

the microstructure in Figure 3.1-F is the closest to the cross-property upper bound, 

implying that the structure is optimal. Furthermore those microstructures designed to 

have 60% porosity showed lower bulk modulus of approximately 0.1 of that of the solid 

phase. When the structures were specified within cross-property bounds, both structures 

again have near optimal properties because the properties are close to the upper bounds 

(Figure 3.2).  
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Figure 3.1  Microstructures obtained by targeting bulk modulus and diffusivity close 
to the upper cross-property bounds, for 30% porosity (a, b and c), 50% 
porosity (d, e and f) and 60% porosity (g and h) 
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Table 3.1 Properties of microstructures tailored with target bulk moduli and 
diffusivities. 

Microstructures Porosity Diffusivity* Bulk 
Modulus* 

Young’s 
Modulus* 

Poisson’s 
ratio 

A 0.2825 0.1276 0.3734 0.4875 0.2824 

B 0.3030 0.1340 0.3565 0.5273 0.2535 

C 0.2935 0.1616 0.3317 0.4277 0.2851 

D 0.4831 0.3016 0.1512 0.2258 0.2511 

E 0.4828 0.3156 0.1624 0.1955 0.2994 

F 0.5037 0.3330 0.1522 0.2251 0.2535 

G 0.5802 0.3556 0.1246 0.2442 0.1734 

H 0.5882 0.4164 0.1114 0.0973 0.3544 

* The values are normalized to the base material properties. 

 

 

 

3.3.2 Microstructures with Low Diffusivity 

Microstructures designed to achieve low diffusivity for 30% porosity were also 

close to the corresponding cross-property upper bounds (Figure 3.1-A through C).  The 

optimized structures have thick members across the diagonal of the unit cell domain to 

achieve high bulk modulus, and small pore diameters to decrease diffusivity. The 

normalized diffusivities of these microstructures were between 0.12 and 0.17 (Table 3.1). 

These low diffusivity structures are also close to the upper cross-property bounds due to 

high bulk modulus (Figure 3.2).  
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Figure 3.2  Microstructures designed to achieve properties close to the upper cross-
property bounds are specified within the cross-property bounds 
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Figure 3.3  The achieved diffusivities (upper) and bulk moduli (lower) were compared 
with target properties for the microstructures presented in Figure 3.1 
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3.3.3 Microstructure targeting Low Diffusivity and Low Bulk Modulus 

A microstructure designed with low diffusivity and low bulk modulus achieved the 

target properties although it contains significant intermediate densities.  For cartilage 

tissue engineering applications, microstructures with low modulus and low diffusivity are 

desired.  Such microstructures lie within the interior of the cross property bounds, well 

away from the upper limits that have been the target of most multiphysics microstructural 

topology optimization applications.  These targets present significant challenges as the 

increase of material will increase bulk modulus (although decreasing diffusivity) and vice 

versa, the opposite of the design goal.   

 

 

Figure 3.4  (A) Microstructures with low diffusivity and low bulk modulus, (B) 1/8 of 
the designed microstructure and (C) representative cross-sectional view of 
the structure. 
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To eliminate the intermediate densities, we used post processing. We designed a 

low diffusivity and low bulk modulus microstructure, by targeting a diffusivity of 0.1 and 

a bulk modulus of 0.1. However, the result of the post processing changed the very 

properties we were trying to target. The intermediate density values were interpolated 

using SIMP model. After applying a threshold, the properties shifted towards cross-

property upper bounds. 

One interpretation as to why we got intermediate densities is that the algorithm 

converged to local minimum before all densities were penalized. We employed the 

convention of Sigmund’s continuation method to avoid convergence to a local minimum 

(Sigmund 1995). However as expected, this essentially heuristic approach could not 

sufficiently penalize the intermediate densities: the final mechanical and transport 

properties are a diffusivity of 0.12 and a bulk modulus of 0.1, which is not a totally 

satisfactory solution to the problem. The full structure and 1/8th of the structure are shown 

in Figure 3.4-A and Figure 3.4-B, respectively. In addition, representative cross-sectional 

view of the density distribution were illustrated in Figure 3.4-C. There are significant 

amounts of grey elements at convergence, which may indicate local minima. There are 

very weak connections between large spheres at the corners.  

 

3.3.4 Microstructures with the same porosity but different bulk modulus and diffusivity 

A particular strength of the target optimization is the capability to create 

microstructures of the same porosity, but with a range of bulk modulus and diffusivity. 

We successfully designed microstructures with 45~50% porositiy (Figure 3.5) that had 

diffusivities ranging from 16% to 33% and effective bulk moduli ranging from 12% to 24% 
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of base diffusivity and bulk moduli, respectively. This reflects the algorithms ability to 

distribute the same amount of material in different layouts to attain dramatically different 

effective mechanical and mass transport properties. The microstructures in Figure 3.5 can 

be used to experimentally investigate the sole effect of material distribution on load 

bearing and mass transport without the confounding variation of changing porosity.  

 

 

 

 

 

 

Figure 3.5  Microstructure designs with ranges of diffusivities for 50% porosity 
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3.3.5 Comparison of Designed Properties with Experimental Measurements 

Using SFF technique, the scaffolds were fabricated from PCL and HA mixture for 

compression tests. Because the scaffold microstructures were represented using voxel 

elements, a three-dimensional version of pixels, optimal scaffolds could be generated by 

simply repeated in 3D voxel space using an image based modeling technique. Test 

specimen dimensions were 8 mm × 8 mm × 16 mm, and unit microstructures were scaled 

to have a dimension of 2.67mm × 2.67mm × 2.67 mm. This corresponds to 3×3×6 of unit 

microstructures. The voxel representation of the specimens was converted to STL model 

for fabrication by SFF technique.  

A selective laser sintering technique was utilized to fabricate the specimens by 

sintering PCL and HA in a powder bed. In Figure 3.6, the specimens (A)~(H) 

corresponds to microstructures (A)~(H) in Figure 3.1. Compression tests were conducted 

on these scaffold specimens to be compared with designed mechanical properties. MTS 

Alliance RT30 electromechanical test frame (MTS Systems Corp., MN) was used with 

strain rate of 1 mm/min with preload of 1 lb. TestWorks4 software (MTS Systems Corp., 

MN) was used to collect load-displacement responses. Average stress was obtained from 

the recorded load divided by the undeformed cross-sectional area of the specimen (~ 64 

mm2). In the similar manner, average strain was calculated from the displacement divided 

by the undeformed height (~16 mm).  

The stress-strain curve is presented in Figure 3.7. The experimental modulus was 

obtained by the slope of a line that connects the origin and 1% strain point. The moduli 

obtained by the average stress and strain were compared with designed Young’s modulus, 
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which was calculated from bulk modulus and Poisson’s ratio because the optimized 

microstructures were all cubic symmetric (Table 3.2).  

 

 

 

 

 

 

Figure 3.6 Scaffolds with optimal microstructures were designed and fabricated using 
SFF. 

  



73 

 

 

 

 

 

Figure 3.7  Stress-strain curves obtained from compression tests of the fabricated 
scaffolds designed with the optimal microstructures. 

 

 

 

 

  



74 

Table 3.2 Comparison of theoretical Young’s modulus calculated from the 
homogenization method, and experimental Young’s modulus measured 
compression tests. 

Microstructures Theoretical Young’s Modulus* Experimental Young’s Modulus** 

A 0.4875 0.2167 

B 0.5273 0.4424 

C 0.4277 0.2479 

D 0.2258 0.1284 

E 0.1955 0.2186 

F 0.2251 0.1373 

G 0.2442 0.1509 

H 0.0973 0.0571 

* Values are normalized to the base material Young’s modulus.  
** Experimental Young’s moduli are normalized to experimental Young’s moduli of 
bulk specimen (295MPa). 
 

 

 

Figure 3.8 Theoretical Young’s modulus was correlated to experiments.  
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As presented in Figure 3.8, the theoretical Young’s moduli were correlated to 

experimental Young’s moduli, although the latter being lower than the former. It should 

be noted that small geometric features such as struts and holes in the microstructures 

were not accurately fabricated in some cases. For example, disconnected struts were 

identified between unit microstructures in Figure 3.6-B.  In the selective laser sintering 

process, the laser beam scanning speed and power affect the exposed energy at a spot, 

which determines the minimum curing path size. Geometric features, smaller than the 

minimum path size, were skipped based on preset fabrication accuracy of the machine. 

Considering manufacturing defects, the theoretically designed properties seemed to 

provide upper bound for the experimentally measured properties. 

 

3.4 Discussion 

It is hypothesized that scaffolds should provide mechanical and mass transport 

properties as close as possible to native tissues to enhance tissue regeneration (Hollister 

et al. 2009). As an active component, scaffolds should be able to provide a proper 

mechanical environment so as to maintain structural integrity at the defect site as well as 

transmit appropriate mechanical stimuli to newly generated tissues (Thomson et al. 1995; 

Hutmacher 2001; Simmons et al. 2001). In addition, scaffolds should provide appropriate 

mass transport conditions that can influence cell phenotype, tissue ingrowth, and nutrient 

conditions (Malda et al. 2004; Hollister et al. 2009). However, it is still unclear what 

optimal properties the scaffold should provide for the best tissue regeneration. For 

example, there have been inconsistent suggestions on the optimal pore size or porosities 

for tissue regeneration. Moreover, different levels of mass transport environment have 
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been shown to result in differentiation to different cell types and degrees of tissue 

regeneration (Malda et al. 2003).  

In order to rigorously investigate correlations between functional environments and 

tissue regeneration, the ability to design scaffolds with controlled mechanical and mass 

transport properties is necessary. In this study, we were able to design microstructures for 

scaffolds with tailored mechanical and transport properties using topology optimization. 

Cross-property bounds provide the feasible design space in the bulk modulus and 

diffusivity plane. Thus, topology optimization combined with cross-property bound can 

be a very useful design tool for creating microstructures with significant, controlled 

variations in mechanical and mass transport properties. 

To avoid numerical instabilities inherent to the topology optimization, we applied 

the nonlinear sensitivity filter proposed by Sigmund (Sigmund 1994). Filtering 

techniques are known to work well to avoid known instabilities such as checkerboard 

patterns and mesh dependence. The drawback of the filtering technique is that final 

structure often contains intermediate density values along solid-void boundaries due to 

the blurring effect of the filter. However, we found in many cases that 0-1 designs were 

achieved with the nonlinear sensitivity filter. We measured the convergence of the 

intermediate densities toward 0 or 1 by (3.7). 

∑
=

−
=
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i
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conv N
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1 5.0

5.01 ρ
 (3.7)

convR approaches 1 as the intermediate densities are penalized toward either 0 or 1. 

With the SIMP topology optimization and sensitivity filter, we were able to obtain 

microstructures with an convR  index over 0.95, which can be considered converged.  
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If convR is less than 0.95, the designed properties may shift towards upper cross-

property bounds after post processing. From a practical view point, this may be beneficial 

because the premature solution still serves as a design choice. However, achieving a 

discrete solution is more desirable in terms of tailoring the material properties and 

creating a manufacturable design. In this regard, other techniques can be applied such as 

density filtering with a Heaviside step function (Guest et al. 2004) or addition of a 

nonlinear diffusion term to the objective function (Wang et al. 2004).  

Many microstructure design studies have presented the composite or porous 

structures that are near or on the cross-property upper bounds (Guest and Prevost 2006; 

de Kruijf et al. 2007; Challis et al. 2008). In these previous works, two competing 

properties were maximized simultaneously. However, one of our main interests in this 

study was to design microstructures whose properties are far from the upper bounds.  

Of particular interest in our study was the design of microstructures with low 

diffusivity and low bulk modulus. As presented in the result section, our design 

converges to a minimum. More often than not the convR  index was less than 0.8. If we 

targeted a design point far from the upper cross-property bounds, the convR  index was 

even smaller. To evaluate the difficulty of achieving this inner design point, we tested 

three design points: (1) K=0.2 and D=0.3, (2) K=0.15 and D=0.2, and (3) K=0.1 and 

D=0.15. We used the same problem statement and control parameters for filtering until 

convergence at a (local) minimum was achieved.  

The outer point or the point on the upper bounds was easily achieved with an convR  

index of almost 0.99. For the middle design point, the convR  index was 0.93, which means 

the final design contained a blurry solid-void boundary. However, for the innermost 
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design point case, the convR  index was 0.71 and the structure exhibited a clear grey layer 

in addition to the black solid structure. This can be clearly noticed in the histogram plots 

(Figure 3.9) in which the number of elements having a given density are plotted in bins. 

The inner design point case had a large amount of elements containing density values of 

around 0.3~0.4.  One explanation is that the presence of grey regions represents sub-

microstructures that give more degrees of freedom in reaching the interior targets than 

can be reached using pure 0-1 designs.  This is actually seen in the hierarchical structure 

of biologic tissues, which have feature sizes ranging from the nanometer to centimeter 

scale. 

 

 

 

 

Figure 3.9 Histograms of densities of three microstructure designs targeting K = 0.2 
and D = 0.3, K = 0.15 and D = 0.2, and K = 0.1 and D = 0.1 



79 

Another important factor is the consideration of the manufacturability. Particularly 

for the low diffusivity designs, small holes develop to limit diffusivity. Considering the 

size of unit cells (typically around 1 mm) in the skeletal tissue scaffolds, the small holes 

may not be manufactured due to the limited fabrication resolutions. As for the 

optimization problem, it would be interesting to control the member size as well as hole 

size as manufacturing control factors.  

In our study, diffusivity was considered in this scaffold design because diffusion 

characteristics of the scaffold can govern overall cell migration and tissue regeneration as 

well as oxygen and nutrient delivery and metabolic waste removal. Thus, mathematical 

models of cell migration and tissue regeneration have adapted diffusion like equations 

(Anderson and Chaplain 1998; Adachi et al. 2006). In addition, diffusivity and 

permeability of scaffolds are well correlated (Hollister et al. 2008). Moreover, there are 

known cross-property bounds on the effective diffusivity and bulk modulus, which can 

suggest feasible design characteristics. 

As a temporary substitute for extracellular matrix, the scaffolds should provide 

tissue specific functional environments during new tissue formation. However, there is 

still little experimental data available regarding optimal effective scaffold properties for 

tissue regeneration. Moreover, conflicting findings have been reported regarding the 

effect of oxygen diffusion on cartilage regeneration, demonstrating the need for testing 

scaffolds with a range of designed properties (Malda et al. 2004). In this regard, the 

microstructural topology optimization method, which is able to produce scaffolds with a 

range of designed properties, will provide more opportunities to investigate relevant 

scaffold properties. 
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CHAPTER 4 
 
 

POROUS BIODEGRADABLE INTERBODY FUSION CAGE DESIGN USING 
THE INTEGRATED GLOBAL-LOCAL TOPOLOGY OPTIMIZATION 

 

 

 

4.1 Overview 

Spinal fusion is a treatment option for degenerative spinal conditions when 

conservative treatments fail. In 2001, 357,000 patients underwent lumbar spinal surgery 

in the US alone, of which over 122,000 were lumbar spinal fusions for degenerative disc 

conditions (Deyo et al. 2005). Interbody cages provide stability and limit motion at the 

bone graft site as well as allow immediate restoration of disc height and neuroforaminal 

volume, thus enhancing fusion rate and effectively relieving pressure and pain (McAfee 

1999; Chen et al. 2010). Conventional metallic cages, packed with bone graft or bone 

morphogenetic protein, result in good radiographic fusion rates (> 90%) and improved 

clinical outcomes (Kuslich et al. 1998; Whitecloud et al. 1998).  

The current metallic cages, however, are associated with excessive rigidity that 

may increase postoperative complications such as stress shielding, device related 

osteopenia, and subsidence (Smith et al. 1991; Kanayama et al. 2000). Although having 

superior mechanical stiffness and strength, metallic cages often fail to effectively transfer 

loads to stimulate bony tissue remodeling (Kanayama et al. 2000; van Dijk et al. 2002). 
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Radiopaque metallic cages also interfere with visualization of bony fusion at the graft site 

during postoperative follow up (Cizek and Boyd 2000; Robertson et al. 2009), making it 

difficult to determine the progress of bony healing. Furthermore, it has been reported that 

titanium particulate debris can cause an inflammatory reaction in surrounding soft tissues  

(Cunningham et al. 2003).  

Biodegradable/bioabsorbable fusion cages made of polylactide copolymers have 

gained increasing attention because of their primary advantage over nondegradable 

material, namely that the material disappears over time, being replaced with newly grown 

tissue (van Dijk et al. 2002; van Dijk et al. 2005). The material properties of 

bioresorbable materials are closer to vertebrae trabecular bone, thereby distributing the 

load more evenly to the ingrown bone and the device (van Dijk et al. 2002).  

In spite of these beneficial aspects, the use of biodegradable cages for lumbar 

interbody fusion is rare due to significantly lower stiffness compared to metallic or non-

degradable polymeric cages. Although the degradability is a desirable feature of 

orthopedic implants for bone healing, it is critical that reduction in material properties 

due to degradation be timed to coincide with increase in mechanical stability resulting 

from bone growth. The time dependent change (decrease) of mechanical properties has 

been correlated to higher load frequency, higher temperature, and higher humidity, 

possibly explaining early device failure of biodegradable cages in a clinical study (Smit 

et al. 2008). 

In an effort to address the intrinsic disadvantages of bioresorbable materials, 

several biodegradable cages were investigated in pre-clinical animal models, 

demonstrating good outcomes (van Dijk et al. 2002; Kandziora et al. 2004; Smit et al. 
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2006). However, concerns of early device failure were again raised with too rapid in vivo 

degradation being the suspected reason.  In these studies, conventional designs (Weiner 

and Fraser 1998) including hollowed cylinders with threads, open boxes, and vertical 

rings, were used for biodegradable cages. Mere exchange of permanent materials for 

biodegradable polymers in conventional designs like hollow cylinders or open boxes may 

not provide sufficient strength for lumbar fusion. 

A hierarchical scaffold tissue engineering strategy(Hollister 2005) with topology 

optimization may overcome these hurdles in the design of biodegradable fusion cages, 

with the capability of controlling the functional properties by designed microstructures. 

Based on this concept Lin et al. applied integrated global-local topology optimization to 

design porous titanium fusion cages that provide sufficient but not excessive strength and 

effectively transmit strain energy to the regenerate bone.(Lin et al. 2004) Topology 

optimization distributes a limited amount of material within a predefined design domain 

under specific loading conditions to achieve desired mechanical stiffness. Lin et al. 

further tested the efficacy of the optimized cages made of titanium.(Lin et al. 2007) It 

should be noted that the goal of these previous studies were reducing stiffness to avoid 

complications associated with excessive rigidity. However, biodegradable cages, with 

less stiffness, already satisfy the previous design goal. The design target should address 

the problem related to weaker material properties.  

Thus, the goal of our study was to design, fabricate, and test biodegradable PCL 

cages which are mechanically strong enough to support loads, have sufficient pore space 

for delivery of biologics and bone ingrowth, and can transfer loads seamlessly from the 

designed cage to newly grown bone tissue. We assumed that a globally optimum 
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structure maximizes the overall stiffness of the fusion cage and locally optimized 

microstructures maximize the transport characteristics of the fusion cage.  

4.2 Fusion Cage Design by Integrated Global-Local Topology Optimization 

Integrated global-local topology optimization was utilized in order to balance the 

mechanical stability and mass transport properties of the porous biodegradable fusion 

cage. The global topology optimization was used to obtain an optimal material density 

distribution that maximizes the stiffness of the fusion cage, while the microstructural 

topology optimization allowed maximal fluid permeability (correlated with high pore 

interconnectivity) of the porous fusion case for a given material density map. For design 

validation, the porous fusion cage was built using a solid freeform fabrication technique 

of laser-sintering PCL powders mixed with HA. Then, compression tests and finite 

element analyses were conducted to determine yield loads of the fabricated cage relative 

to in vivo lumbar spine loads  

4.2.1 Finite Element Modeling for the Global Topology Optimization 

The global topology optimization determines optimal material density distribution, 

or material density map, which maximizes the stiffness of the fusion cage with 

constrained volume fraction to preserve sufficient porosity for bony fusion. Topology 

optimization, in general, is executed within finite elements which are assigned with a 

density value representing the structural topology. The density values can have 0 or 1: 0 

indicates no material or void and 1 indicates a solid. It is well known that this discrete 0 

or 1 optimization problem is ill-posed and lacks solution.(Sigmund and Petersson 1998) 

Relaxation of the original 0-1 problem by introducing a continuous variable ranging from 
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0 to 1 enables the problem to be solved using conventional mathematical programming 

methods. However, this often allows the intermediate density values in the optimization 

result so that post processing techniques are required to determine the final structural 

topology. In our study, the density distribution was segmented into several regions, which 

served as a map (Hollister et al. 2000; Hollister et al. 2002)  to place specific 

microstructures within the lumbar fusion design space.  

 

 

 

 

Figure 4.1  Ligamentous finite element models of minipig lumbar spine segments 
(L2~L5) and the design domain for the global topology optimization at 
L4-L5 level. 
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Table 4.1 Mechanical Properties of Components of the Finite Element Models 

Components Young’s Modulus 

(MPa) 

Poisson’s Ratio Cross-sectional 
Area (mm2) 

Cortical bone 12,000 0.3 - 

Cancellous bone 100 0.2 - 

Equivalent Disc 5 0.4 - 

Facet joints 5 0.4 - 

Ligaments (rod elements) 

    ALL 

    PLL 

    ITL 

    ISL 

    SSL 

 

20 

20 

58.7 

11.6 

15 

 

 

 

63.7 

20 

4 

40 

30 

Poly(ε-caprolactone) 300 0.3 - 

 

 

For the global topology optimization, the finite elements were modeled based on 

the CT images from a Yucatan minipig (Figure 4.1). CT images for lumbar spine motion 

units from L2 through L5 were segmented into a 3D geometric representation (STL 

format) using Simpleware ScanIP software (Simpleware Ltd., Exeter, UK). The STL files 

were smoothed and converted to a geometric representation (IGES format) (RapidForm, 

Inus Technology, Inc., Seoul, Korea), which allowed easy modeling of additional soft 

tissues such as intervertebral discs and facet joints using a commercial solid modeling 

software, Unigraphics NX (Siemens PLM Software, Plano, Texas). The finite elements of 

vertebral bodies were modeled as cortical shells (shell elements) and cancellous bones 

(tetrahedral elements). Then, tetrahedral meshes for facet joints were added to fill the gap 

between the superior and inferior articular facets. Rod elements were used to model 
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spinal ligaments, such as anterior longitudinal ligaments, posterior longitudinal ligaments, 

intertransverse ligaments, interspinous ligaments and supraspinous ligaments. The design 

domain for global material density map was defined at L4-L5 level intervertebral disc 

space (Figure 4.1). 

Material properties for the minipig lumbar spine motion segments were adapted 

from previous FE studies found in literature (Shiraziadl et al. 1986; Lin et al. 2004; 

Zhong et al. 2006) and assumed to be those of humans (Table 4.1). For PCL, the modulus 

was obtained from the compression test of fabricated solid cylinders and Poisson’s ratio 

was assumed to be 0.3. We applied 5 Nm of flexion, extension, lateral bending and 

torsion with 115N of pre-compression to simulate the physiological loading condition. 

Especially, the pre-compression load was determined such that the resultant stress level 

in the intervertebral disc model matches the experimentally measured pressure.(Ekstrom 

et al. 2004)  

To achieve the global density map in physiological loading conditions, the 

objective function to be minimized was evaluated as a weighted sum of the compliances 

at different loading modes: flexion, extension, lateral bending and torsion. Because 

biodegradable scaffolds with 50% porosity were successfully demonstrated for bone 

regeneration in our group (Lin et al. 2005; Schek et al. 2005), the volume fraction of the 

final fusion cage was constrained less than 50%, which also ensures the minimum 50% 

porosity for sufficient bone ingrowth. As a manufacturing constraint, structural member 

size was constrained between 1.6 mm and 3.5 mm. Symmetric constraints were also 

applied to the sagittal plane for non-symmetric loading (lateral bending). The 
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optimization was performed using OptiStruct, a commercial topology optimization solver 

(HyperWorks OptiStruct, Altair Engineering, Troy, MI). 

4.2.2 Microstructure Design using Local Topology Optimization 

Local topology optimization produces optimal microstructures that achieve 

prescribed effective mechanical and mass transport properties of the global structure 

(Kang et al. 2010). Assuming that a global structure consists of repeated porous 

microstructures and the size of the microstructure is small enough compared to the size of 

the global structure, the averaged property can be evaluated by the method of 

homogenization (Sanchez-Palencia et al. 1987). The homogenization method determines 

the averaged properties of the global structure from an analysis of a representative 

microstructure of a porous media or composite material assuming periodicity. The 

analysis responses at the local length scale are averaged to give the effective properties at 

global scale. Based on homogenization theory, the local topology optimization can find 

microstructural topology that has average properties the global structure matched with 

prescribed properties. In each optimization step, the algorithm evaluates current average 

properties by the homogenization method and updates element density in the 

microstructural domain to minimize the difference between the obtained and prescribed 

properties. 

A microstructure can be considered optimal if it’s the resulting effective property it 

generates is close to a theoretical bound. There are known theoretical bounds on the 

effective properties of porous material. The bounds limit the maximally achievable 

property for given material volume fraction, or equivalent porosity. In the case of two 
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properties which are competing, cross-property bounds limit the maximally achievable 

property pairs (Gibiansky and Torquato 1996). 

Based on the optimality within the cross-property bounds, two different methods 

were utilized in designing microstructures: the first one with primitive geometries and the 

second one with the local topology optimization. The first approach has an advantage 

over the second one in that it can easily integrate geometries of local and global 

structures including fixation geometry and a bullet-shaped tip. On the other hand, the 

advantage of local topology optimization is that based on the desired properties, it can 

automatically generate optimal microstructures.  

For the microstructures with primitive geometries, three orthogonal cylindrical 

holes were modeled, and the geometric features were adjusted to match a prescribed 

porosity. The mechanical and mass transport properties were then evaluated with the 

homogenization method and the optimality was checked within the cross-property bounds. 

For the microstructures with the local topology optimization, the target properties were 

identified on the upper cross-property bounds and the algorithm then designed the 

optimal microstructures. 

4.2.3 Fusion Cage Design for an in situ large animal model 

The global density map obtained from the global topology optimization gives a 

material volume fraction distribution between 0 and 1, not a prescribed architecture.  We 

then replace the global density map with several representative microstructures with 

different porosities according to regional density levels. The global density map was 

segmented into high density and low density regions. Low bulk modulus microstructure 

was used to replace the low density region and high bulk modulus microstructure was 
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used for the high density region. The threshold density value was determined such that 

the overall porosity of the global design domain matched 50%. Finally, the outer wall 

was designed to add more stability to the fusion cage. Detailed geometric features were 

added such as a bullet-shaped tip for easy insertion of the fusion cage and fixation 

geometries such as teeth for increasing pull out friction.  

For the integration of the geometry-based approach, Boolean operations were 

conducted among different microstructures using Unigraphcs NX. On the other hand, for 

the integration of the optimal microstructures, an image based modeling technique was 

utilized. The optimal microstructures were obtained by local topology optimization 

performed on voxel meshes.  The resultant microstructures were also represented in 

voxels. The outer wall with detailed features was voxelized using Voxelcon (Quint, 

Tokyo, Japan). The integration of global and local structures can then be done by 

replacing corresponding voxel element values. The final integrated fusion cage design in 

voxel representation can be easily converted to STL format to be built using solid 

freeform fabrication techniques. 

4.2.4 Fabrication and Testing: 

To validate the mechanical stiffness and strength of our optimal fusion cages, 

compression tests were conducted on manufactured fusion cages. The final designs were 

fabricated using a Formiga P100, a selective laser sintering (SLS) solid freeform 

fabrication (SFF) machine (EOS GmbH - Electro Optical Systems, Germany). Poly(ε-

caprolactone) (PCL) powders mixed with a small volume of hydroxyapatite (HA) were 

used for the layer by layer laser sintering of our designs. For comparison, a conventional 

TLIF cage was reverse-engineered using micro-CT scan. Then, the conventional design 
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was also fabricated with the same material, PCL/HA mixture. The two optimized cages 

and the conventional TLIF cage were mechanically tested using an MTS test machine 

(MTS Systems Corp., MN) (1 mm/min with preload of 1 lb). The load-displacement 

responses were compared among the optimal and conventional designs. It should be 

noted that the optimal designs were scaled to match the height of the conventional TLIF 

design. Solid cylindrical specimens (8mm in diameter and 16mm in height) were also 

fabricated and mechanically tested to measure Young’s modulus and yield stress of the 

sintered bulk PCL/HA mixture. The Young’s modulus was defined as the slope of the 

linear region of stress-strain curve and the yield stress was measured from the 

intersection of the 0.2% offset of the linear slope and the original stress-strain curve. 

To further validate the load supporting capacities of the optimal fusion cages and 

predict yield of the cages, image based finite element analyses were conducted. The 

optimal designs without detailed geometric features were converted to voxel elements in 

Voxelcon. Compression loads of 1500N, which is generally accepted as load level at 

human low back with moderate activity (Nachemson 1966), were applied on the top of 

the cages and the bottom was constrained. To investigate how the stress levels changed 

after initial bony fusion inside the optimal cages, additional models were prepared by 

filling pore space with cancellous bone.  

In order to estimate the yield of the porous fusion cages, we applied the Weibull 

function fitting method to the cumulative histogram of von Mises stress distribution. 

Saitou et al. have developed a systemic method to estimate the yield of porous scaffolds 

by interpolating the fitted Weibull function to cumulative histogram of von Mises stresses 
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based on experimentally measured yield stress of bulk specimen (Saito et al. 2010). The 

modified cumulative Weibull function was defined as 

( )))/(exp()1())/(exp(1)( 21 kk rppf λσλσσ −−+−−=  (4.1)

where σ is von Mises stress, p  is weighting factor, 1k  and 2k are shape parameters, 

λ  and r  are scale parameters. In general, p , r , 1k  and 2k  are constants for the same case, 

thus leaving λ  proportional to the applied load level. The assumption in this method is 

that, at yield stress ( yσ ), the modified Weibull function has ε−1 , with small ε . Then, 

yλ  can be calculated from the equation 

( ) ελσλσ −=−−+−− 1))/(exp()1())/(exp(1 21 k
yy

k
yy rpp  (4.2)

Once at least two cumulative functions under two loading cases are obtained, we 

know 1λ , 2λ  and yλ  and the applied loads, say 1F  and 2F . The load level at yield, yF  can 

then be interpolated. The small parameter,ε , represents the portion of number of voxels 

that is allowed to be over experimental yield stress, and can be determined by the 

compression tests. In order to use the Weibull fitting method, the image based finite 

element analyses were conducted on the optimal cage models under 1000N, 2000N, and 

3000N. Then, the loads at yield were estimated for our optimal fusion cages. 

4.3 Results 

Our results demonstrated that the integrated global-local topology optimization 

scheme was successfully applied to the design of porous fusion cages. SFF technique 

demonstrated the feasibility of manufacturing porous fusion cages, whereas the 

mechanical tests and validation simulations confirmed that the optimized fusion cages 

had yield loads 3x typical human lumbar spinal loads.  
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4.3.1 Global Density Map and Local Microstructures 

To design a mechanically stable porous fusion cage, we obtained an optimal 

material density distribution with maximum stiffness at 50% porosity (Figure 4.2). High 

density regions were properly located to support the applied loadings, i.e. flexion (Figure 

4.2-A), extension (Figure 4.2-B), lateral bending (Figure 4.2-C) and torsion (Figure 4.2-

D). In addition, the combination of all the loadings resulted in the summation of all high 

density regions (Figure 4.2-E). For the combination of all the loading modes, equal 

weighting factors were assigned to all the loading cases in this study. It should be noted 

that the different weighting factors for each loading mode will produce different global 

density distributions. For instance, if one loading mode, say flexion, is dominant over the 

other modes, a global density map similar to one in Figure 4.2-A will be obtained. The 

global density map was segmented into high density and low density regions with a 

threshold density value of 0.5. Figure 4.3 illustrates segmentations of the global density 

map under flexion (Figure 4.3-A), extension (Figure 4.3-B), lateral bending (Figure 4.3-

C), torsion (Figure 4.3-D), the combination of all the loadings (Figure 4.3-E) was chosen 

in this study to implement optimal pore architectures.  

The diffusivity or permeability of the porous fusion cage was maximized by 

designing porous architectures using local topology optimization using the global volume 

fraction as a constraint.  The optimally designed microstructures were then substituted 

into appropriate locations within the global density map. The close proximity of the 

microstructure properties to the cross-property upper bounds indicates that the 

mechanical and mass transport properties of the microstructures are optimal (Figure 4.4).  
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Figure 4.2. Global density maps obtained using the global topology optimization, 
under (A) flexion, (B) extension, (C) lateral bending and (D) torsion. (E) 
represents the combination of all loading modes used for the final 
integrated design. 
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Figure 4.3 Segmented global density maps, under (A) flexion, (B) extension, (C) 
lateral bending and (D) torsion. (E) represents the combination of all 
loading modes used for the final integrated design. 
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Figure 4.4. All the property pairs of the microstructures are on the cross-property 
upper bounds, which indicates the microstructures are optimal. (A) and (C) 
were designed using the microstructural topology optimization and (B) 
and (D) were designed using primitive pore geometry (cylindrical holes). 
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Table 4.2 Mechanical and mass transport properties of the microstructures used in 
the design of porous fusion cages. 

Microstructures in 
Figure 4 

Normalized Effective 
Bulk Modulus (%) 

Normalized Effective 
Young’s Modulus (%) 

Normalized Effective 
Diffusivity (%) 

(A) 33.2 42.8 16.2 

(B) 22.4 38.9 24.5 

(C) 11.1 9.7 41.6 

(D) 9.3 20.2 44.8 

 

 

For the microstructures with cylindrical pores, the high bulk modulus 

microstructure (Figure 4.4-B) showed 22.4% of the base material bulk modulus whereas 

the low bulk modulus microstructure (Figure 4.4-D) showed 9.3% of the base material 

bulk modulus. Likewise, for the optimized microstructures, the high bulk modulus 

microstructure (Figure 4.4-A) showed 33.2% of the base material bulk modulus whereas 

the low bulk modulus microstructure (Figure 4.4-C) showed 11.1% of the base material 

bulk modulus. The optimized microstructures exhibited more mechanical stiffness but 

less diffusivity than the cylindrical pores. (Table 4.2)  
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Table 4.3 Stiffness and yield loads of two designed cages with and without 
microstructures were compared with those of conventional TLIF cage and 
PLLA cages in reference (van Dijk et al. 2003).  

  Stiffness (N/mm) 0.2% Yield Load (N) 

Cylindrical Pore Cage 7117.9 3376.2 

Optimal Pore Cage 7548.6 2923.5 

Cage Wall Only 5228.1 1947.4 

Conventional TLIF 2455.4 1248.5 

PLLA Cage 4000* 3500* 

* These are average values of stiffness and yield load taken from (van Dijk et al. 2003). 

 

 

4.3.2 Integrated Design 

By integrating the global density map and local microstructures, we successfully 

designed optimal porous fusion cages with maximum stiffness and permeability. The 

segmentation of the global density map for the combination of flexion, extension, lateral 

bending and torsion (Figure 4.3-E) was chosen for the integrated fusion cage design as a 

representative example. To guaranty overall stability of the fusion cage, we surrounded 

the porous structure with a ‘solid wall’. To do this, we defined the periphery of the design 

domain as pure solid, inside of which was replaced with microstructures. The high 

density region (rendered region in Figure 4.3-E) was replaced with high bulk modulus 

microstructures and the low density region (empty region in Figure 4.3-E) was replaced 

with load bulk modulus microstructures. For fixation, a saw tooth geometry was added to 

the top and bottom of the outer wall. For easy insertion of the fusion cage, a bullet-shaped 

tip was modeled to one lateral solid region whereas the other lateral solid region was 
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reserved for the surgical tool connection. The integrated porous structure and final fusion 

cage design are illustrated in Figure 4.5.  

 

4.3.3 Fabrication and Mechanical Test 

Using a SFF technique with a PCL/HA mixture, we successfully fabricated 

prototypes of the optimal porous fusion cages with all the complex pore geometries and 

detailed features outlined above (Figure 4.6-A). It should be noted that the current design 

and fabrication methods are flexible such that the cage designs were easily customized to 

different species. For example, the smaller cage in Figure 4.6-B was scaled to fit in the 

intervertebral disc space of a domestic pig lumbar spine (Figure 4.6-C). In addition, we 

scaled the optimal cages by 1.5 to meet the human scale, for which the conventional 

TLIF cage was designed (the larger cage in Figure 4.6-B). In this way, a fair comparison 

of the mechanical strengths could be possible between optimized porous designs and 

conventional TLIF design. 
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Figure 4.5 Final integrated design of the porous fusion cage. (A) Top, side, and 
isometric views of the optimized pore architecture, and (B) final integrated 
design with detailed geometric features. 

 

 

 

Figure 4.6 (A) A prototype fabricated using SFF and (B) prototypes scaled to fit the 
minipig (upper) and human(lower) intervetebral disc spaces. (C) The 
customized cage was checked in the domestic pig lumbar intervertebral 
disc space.  
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The compression tests, conducted on the prototypes without detailed saw tooth 

geometry (Figure 4.7), clearly showed that our optimal fusion cages are stronger than the 

biodegradable TLIF design (Figure 4.8). The stiffness of the porous fusion cage with 

optimized microstructures was 7548.6 N/mm and that of the porous fusion cage with 

cylindrical microstructures was 7117.9 N/mm, while the stiffness of the biodegradable 

TLIF design was 2455.4 N/mm. Based on 0.2% offset yield stress, the yield was 3376 N 

(0.667 mm compression displacement) for cylindrical pore fusion cage and 2923 N 

(0.588 mm compression displacement) for optimal pore fusion cage. The yield of the 

biodegradable TLIF cage was 1248 N (0.618 mm compression displacement), which was 

less than that of our cage without pore structures (1947 N at 0.584 mm compression 

displacement).  

Solid cylinders (8 mm diameter and 16 mm height) were fabricated to determine 

the bulk compressive modulus and yield stress of the sintered PCL/HA mixture (Figure 

4.9). The Young’s modulus was 295.3±13.6 MPa and yield stress was 10.4±0.2 MPa 

(n=10).  
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Figure 4.7.  For compression tests, the the fusion cages (A) with cylindrical pore 
microstructures and (B) with optimized microstructures, and the 
conventional TLIF cage were fabricated without detailed features to 
eliminate the initial yield caused by the teeth-like geometric features. 

 

 

 

Figure 4.8 Compression test results confirmed that the superior stiffness and strength 
of the optimized designs over the conventional TLIF design. 
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Figure 4.9 Stress-strain curve obtained from the compression test of a bulk 
cylindrical specimen to determine the Young’s modulus and yield stress 
for the finite element analysis. 
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4.3.4 Estimation of Yield from the Stress Analysis 

Finite element analyses confirmed that porous PCL cages can support physiological 

loading. We designed our porous cage with thick wall structure surrounding inner pore 

architecture. To check the load carrying capacity, we first conducted the FE analysis on 

the wall structure. The maximum von Mises stress was 8.23 MPa under 1500N of 

compressive force (Figure 4.10-(A)), which is below the experimentally measured yield 

stress (10.4 MPa) for sintered bulk PCL/HA specimen. However, introduction of 

microstructures raised the local stress levels over the yield at the thin structural features 

(Figure 4.10-(B) and (C)). Based on the observation of compression tests (Table 4.3), 

however, the yield of the global structure was over 3000N, indicating surrounding wall 

supported the load over local yield load. When assuming initial bony fusion, the local 

stresses at the pores reduced to 9.34 and 8.6 MPa, which is below yield again (Figure 

4.10-(D) and (E)). This demonstrated load transfer from the fusion cage to new generate 

bone. 

Predicted yield load of our optimal fusion cages was 1403 N for cylindrical pore 

fusion cage and 1723 N for optimized pore fusion cage, from the interpolation of fitted 

Weibull functions of two loading cages. The cumulative histogram of the von Mises 

stresses and corresponding Weibull functions were presented in Figure 4.11. The allowed 

portion of voxels that undergo local yield (10.4MPa) was 1% in this case. In other words, 

the global porous structure is assumed to withstand the maximum load while 1% of 

voxels showing von Mises stress over the experimentally measured yield stress. Although 

there were significant differences in the theoretical prediction and experimental 
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measurements, the computational yield predictions provided a lower, conservative bound 

on the actual experimental yield load.   

 

 

 

 

 

Figure 4.10 (A) Von Mises stress level for optimal fusion cage without pore structures 
is below the yield stress (8.5 MPa). With initial pore structures (B) and (C), 
the stress level increased over the yield compared to (A). However, after 
initial bony fusion inside the pores (D) and (E), the stress level decreased 
below the yield (9 MPa). These results indicate that major loading support 
is provided by outer wall. Although local yield at the microstructures 
increases initially, ingrown bone will take over the loads from the fusion 
cage, alleviating the load burden at the microstructures.   
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(A) 

 
(B) 

Figure 4.11 Cummulative histogram of von Mises stress distribution (dotted curves) 
and Weibull fittings (solid curves) over the entire voxels under different 
compressive loads. Computationally predicted maximum load was (A) 
Fy=1403 N for fusion cage with cylindrical pores and (B) Fy=1724 N for 
fusion cage with optimal pores. 
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4.4 Discussion 

Biodegradable cages have received considerable attention as an interbody fusion 

system. The underlying rationale is that reduced stiffness adjacent to bone may eliminate 

stress shielding and that complete resorption of the cage can avoid adverse foreign body 

reactions.  Conventional hollowed cylindrical cages or vertical ring types, however, may 

not be adequate as a candidate design for biodegradable cages. The thin wall geometry 

originally designed for metallic cages may collapse under physiological loading condition 

when simply replacing permanent materials like titanium or PEEK with significantly less 

stiff biodegradable polymers.  A global-local topology optimization approach combined 

with SFF fabrication technique may overcome this intrinsic difficulty in the design of the 

biodegradable load bearing implants.   

In this regard, the integrated global and local topology optimization was 

demonstrated in the design of PCL cages that achieve these generally desired stiffness 

and strength characteristics needed for better fusion outcomes. Furthermore, this design 

approach is highly flexible so as to be readily applied to either pre-clinical animal models 

or human clinical studies. The global topology optimization can incorporate anatomically 

accurate shape, which makes in situ fusion cage design possible. Various physiologically 

relevant loading modes at the lumbar spine were concurrently considered in the 

optimization procedure to ensure the in vivo structural integrity. Measured compressive 

strength revealed that our optimally designed PCL cages could support physiological load 

magnitudes at the lumbar spine. Furthermore, this design technique facilitates the design 

of fusion cages with specific physiological demands by introducing local microstructures 

with various stiffness, permeability and diffusivity properties.  
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With the solid freeform fabrication technique, our optimal PCL cages could be 

accurately constructed with controlled pore architectures and sufficient mechanical 

properties. The effectiveness of a laser sintered PCL as bone scaffold was previously 

attested by its stiffness close to that of trabecular bone and anatomically specific global 

shape with controlled porous architecture to allow bony ingrowth .(Williams et al. 2005) 

While the modulus of bulk PCL specimen was 120MPa in their study, the experimental 

and computationally estimated compressive modulus of porous scaffolds ranged from 46 

to 68 MPa, falling within the lower range of human trabecular bone (Goulet et al. 1994).  

In our study, compressive modulus of bulk cylindrical specimen was 295 MPa, which is 

in the mid range of reported values (120~450 MPa).(Engelberg and Kohn 1991; Williams 

et al. 2005; Ang et al. 2007; Eshraghi and Das 2010) The improved strength may be due 

to optimally determined SLS processing parameters, including laser power, beam path 

speed, and PCL powder particle size.  

Our porous fusion cages were demonstrated to support physiological loadings. To 

estimate in vivo load level in different postures, intradiscal pressure was measured in 

flexion up to 30º using pressure needle, and converted to load by multiplying disc area 

which was measured from an MRI scan.(Takahashi et al. 2006) In their study, the load 

levels at L4~L5 lumbar spine have been estimated around 500N to 3000N, varying 

according to posture. In another study, theoretical estimation of axial loads at L3 were 

reported to range from 340N ~ 2350N. (Schultz et al. 1982) Our compression tests 

revealed that the optimal fusion cages scaled for human vertebral geometry could 

withstand over 3kN of loads, which is above the physiological level of the human lumbar 

spine. The comparison of compressive mechanical responses with conventional TLIF 
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cages also demonstrated that inadequacy of adapting a design previously used for 

metallic cages. 

Poly L-lactic acid (PLLA) has been utilized for biodegradable fusion cages with 

demonstrated feasibility for lumbar interbody.(van Dijk et al. 2002; van Dijk et al. 2002; 

van Dijk et al. 2003) In these studies, the PLLA cages were designed to have modulus of 

4.2GPa, compressive stiffness of 4kN/mm, and average compressive yield load 3500 N. 

The optimal PCL cages in this study exhibited yield load equivalent to PLLA cages and 

had compressive stiffness that was higher than the PLLA cages (Table 4.3). It should be 

noted that thick solid wall around porous architecture contributed to the relatively high 

yield strength as well as stiffness compared to low modulus. Although the PLLA cages 

were designed for a large animal study and our optimal cages tested were scaled to 

human scale, the height of our specimen (9 mm) was comparable to the PLLA cages. In 

addition, the authors reported successful fusion with a flexible PLLA cage, which has 

2kN compressive stiffness. Based on these comparisons, our PCL fusion cages may be 

feasible for lumbar interbody fusion.  

The stiffness of our fabricated fusion cage can be improved by increasing HA 

contents in PCL powder, owing to HA’s high stiffness. Shor et al. demonstrated 40% 

increase in the compressive modulus by adding 25% HA.(Shor et al. 2008) It was also 

reported that the stiffness of the PCL and HA mixture was proportional to the content of 

HA.(Ang et al. 2007) The reason we chose 7% of HA was due to a limitation of our SLS 

laser beam controllability. With further optimization of the laser beam parameter, our 

sintered PCL-HA composite fusion cages may have improved mechanical strength. 

 



109 

 

Figure 4.12  The deformation of the optimal fusion cage under compression up to 50% 
strain showed typical behavior of ductile material. 

 

 

In addition to sufficient compressive modulus for load bearing, the ductility of the 

PCL may play a favorable role in preventing fracture of the cage into small pieces and 

maintaining the structural connectivity even under excessive loading condition. PCL has 

a very low glass transition temperature of -62°C and melting point of 57°C. At room 

temperature or in a body, PCL is in a rubbery state thus exhibiting high 

ductility.(Engelberg and Kohn 1991)  Figure 4.12 shows the deformation of the optimal 

PCL cage after compression up to 50% strain. Although there was buckling of the thinner 

posterior wall, the overall structural topology was maintained without breaking apart  

The long degradation profile compared to other degradable polymers may make 

PCL more suitable to the interbody fusion, which requires a long healing time of more 

than one year. Fast degradation and loss of structural integrity may cause poor fusion 

performance. Jiya et al. raised concern of using PLDLLA cages in their prospective 

randomized clinical study of comparing fusion performance between PEEK and 

PLDLLA cages.(Jiya et al. 2009) Their PLDLLA showed significantly higher subsidence 
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and lower fusion rate compared to PEEK due to early device failure. The authors 

explained that the rapid decrease of mechanical strength during degradation could be 

related to the device failure, which in turn resulted in the low rate of fusion. In vitro 

measurements of mechanical properties of PCL, such as modulus and yield stress, were 

shown to remain unchanged during the entire degradation time course.(Karjalainen et al. 

1996) PCL was also shown to maintain initial elastic modulus and 95% of polymer mass 

up to 12 month in vivo (Pitt et al. 1981). 

In an effort of elucidating optimal scaffold design parameters for better tissue 

regeneration, pore architectures, such as pore size and porosity, have been extensively 

investigated. Although there were large variations among researchers regarding optimal 

pore size, a minimum 300 um pore size has been suggested to enhance bone growth and 

capillary formation.(Karageorgiou and Kaplan 2005)   The minimum pore size of our 

optimal cages was approximately 800 um, which is limited by current SLS processing 

parameters.  In a previous study in our group, no significant differences were found in 

bone growth into PCL scaffolds at longer time point between pore sizes of 350 um and 

800 um .(Roosa et al. 2010) Thus, it is expected that our porous PCL cages may enhance 

bone ingrowth with large enough pores, along with the maximized permeability design 

by local topology optimization. 

The validity of using quadrupeds in the spine biomechanics studies has been 

questioned due to the differences in the anatomy and posture of quadrupeds.(Goel and 

Gilbertson 1997) However, spinal trabecular arrangements were found to be similar 

between human and porcine vertebrae, indicating axial compression along the spinal axis 

is dominant in porcine spine based on Wolf’s law.(Lin et al. 1997) In addition, facet 
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joints are interlocking, rather than sliding with each other, which indicates that the load 

perpendicular to spinal column can be converted to longitudinal stress along the spinal 

column. Smit also supported the large quadraped pig animal model because of these 

similar loading modes.(Smit 2002) The author, however, noted that the considerably 

higher density of trabecular bone in quadruped vertebral bodies is an indication of higher 

load levels in the animal lumbar spine. The global topology optimization in this study 

was conducted with porcine lumbar spine geometry but the material properties were 

human.  For application in a pre-clinical study, it will be important to consider the effect 

of these differences by developing the optimal topology designs for both sets of material 

properties.   

 

 

Table 4.4 Surface to volume ratio of the microstructures used in this study 

Microstructures Porosity (%) Pore surface area 
(mm2) 

specific surface area 
(mm-1) 

(A) 29.4 12.54 1.568 

(B) 40.0 9.61 1.201 

(C) 58.8 14.16 1.770 

(D) 60. 9.36 1.170 

 

 

One of the possible applications of optimal microstructures in the interbody fusion 

would be controlled release of biologics such as BMP2. Although the microstructures 

were optimized in terms of functional properties such as permeability and diffusivity, it 

should be noted that the optimally designed microstructures were found to have larger 
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pore surface area than in the cylindrical or spherical pore microstructures (Table 4.4).  

Increased surface area with maximized permeability may increase the efficacy of 

osteobiologic release, especially if the BMP2 can be tightly bound to the cage with local 

retention.  It is possible to modify the surfaces of these optimized cages using either 

biomineralization methods (Murphy et al. 2000) or by chemical conjugation techniques 

(Zhang et al. 2010).  Integration of designed cages with osteobiologic delivery could 

address current limitations of current cage delivery systems that used a collagen sponge 

for osteobiologic delivery that is separate from the load bearing cage.   

In conclusion, integrated global-local topology optimization combined with SFF 

technique in PCL and HA is promising method for the design of biodegradable fusion 

cages. Based on experimental and computational verification, optimally designed PCL 

cages have sufficient mechanical properties to support lumbar interbody loads.  This 

combined with the longer degradation period of PCL may make bioresorbable cages 

again a viable solution for spine fusion applications.  Of course, it will be necessary to 

rigorously test this postulate in a large pre-clinical animal model. 

 



113 

 
 
 
 
 

CHAPTER 5 
 
 

MULTISCALE MODELING OF HYDROLYTIC DEGRADATION OF 
HIERARCHICAL SCAFFOLDS 

 

 

 

5.1 Introduction 

Degradation is one of the key features of the tissue engineering scaffolds. The 

scaffold provides initial functions, which new tissues take over as the scaffold degrades. 

This transition of functions should occur seamlessly so that the scaffolds maintain the 

initially designed functions throughout tissue healing (Figure 1.2). Although a scaffold is 

optimally designed, it may fail to heal defected tissues due to loss of tissue-scaffold 

functions, which can be caused by its early degradation. In this aspect, the design of the 

hierarchical scaffold should consider the changes of the properties and functions. To this 

end, the understanding of the degradation of polymeric scaffolds is key to successful 

design of the hierarchical scaffolds. 

Aliphatic polyesters such as poly glycolic acid (PGA), poly lactic acid (PLA), and 

poly(ε-caprolactone) (PCL) are most commonly used biodegradable polymers in the 

tissue engineering. They are known to degrade by autocatalytic hydrolysis (Pitt et al. 

1981; Li et al. 1990; Siparsky et al. 1998). These polymers have hydroxyl end groups on 

one end and carboxylic acid end group on the other of the polymer chain. Water 
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molecules penetrate into polymer matrix and randomly attack ester bonds at polymer 

backbone, producing smaller chains with carboxylic acid end group. As degradation 

proceeds, the polymer chains become smaller to be dissolved into aqueous medium. 

These water soluble small chains can diffuse out of polymer matrix, resulting in loss of 

mass. The chain cleavage of the aliphatic polyesters is accelerated by carboxylic acid end 

groups that are initially present or produced by the hydrolysis reaction (Li et al. 1990). 

The observations that thick polymer specimen degrades faster than thin one or faster 

degradation at the center of the specimen have been explained by the relative speed of the 

diffusion of the water soluble acidic products and auto-catalytic hydrolysis.  

The complexity and difficulty in the design of biodegradable implant devices are 

attributed to this heterogeneous degradation of bulk eroded polymers. The design of the 

hierarchical scaffolds may be even more challenging due to the presence of complex pore 

architectures. The pore architecture of the hierarchical scaffold determines scaffold 

effective property, which will influence the transport of water and acidic products from 

hydrolysis reaction.  

Of the mathematical or computational models formulated to address hydrolytic 

degradation of biodegradable polymers, empirical models based on the kinetic equations 

of hydrolysis and auto-catalytic hydrolysis are  the simplest and easiest approaches, as 

presented in (Pitt and Gu 1987; Siparsky et al. 1998). Though these models can provide 

relatively accurate predictions, they only simulate the temporal changes of degradation 

and cannot reflect the spatial differences.  

Some models capable of predicting temporal and spatial changes of molecular 

weights are based on Monte Carlo simulation (Gopferich and Langer 1993; Gopferich 
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1997), with the assigned life expectancy of a pixel based on Poisson’s process. However, 

these models are not based on the actual degradation mechanism and, hence, cannot 

adequately relate to degradation with controlling parameters.  

Wang et al. proposed a phenomenological degradation model, based on a diffusion-

reaction continuum model (Wang et al. 2008), which addresses not only the spatial 

distribution of the ester bond concentration (equivalently molecular weight), but also the 

diffusion of carboxylic acids. Thus, they could demonstrate the heterogeneous bulk 

erosion and provided a degradation map according to the non-dimensional parameters for 

relative autocatalytic effects and the relative speed of diffusion of acidic products.  

In this chapter, a diffusion-reaction model is adapted to the simulation of the 

hydrolytic degradation of solid polymer as well as porous scaffolds. Furthermore, the 

homogenization method is applied to provide a multiscale hydrolytic degradation model 

for hierarchical scaffolds. Unlike classical diffusion reaction equations based on 

phenomenological observations, the homogenization technique can rigorously simulate 

the effect of pore architecture on the effective properties of the scaffolds. The operating 

hypothesis is that the degradation of a porous scaffold is affected by the diffusion of 

water soluble chains with a carboxylic acid end group, which is in turn controlled by pore 

architecture. The goal of multi-scale modeling is to find design parameters of pore 

architecture that dominate the degradation of the porous scaffold and are key to the 

systematic design of hierarchical scaffolds with controlled degradability. 

In order to investigate the effect of pore architecture on the degradation behavior in 

a more rigorous manner, currently available reaction-diffusion models were utilized to 

qualitatively simulate the different erosion mechanisms (surface/bulk erosion) by 
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accounting for water diffusion and hydrolysis. In addition, the aforementioned 

heterogeneous erosion was demonstrated by the interplay between the diffusion of acidic 

products and autocatalytic hydrolysis. The current model was then adapted to simulate 

the degradation of porous scaffolds in relation to scaffold geometric parameters. Finally, 

the multi-scale homogenization for diffusion reaction based degradation was used to 

rigorously investigate the effect of microstructures on the degradation. 

 

 

5.1.1 Hydrolysis Kinetics: Autocatalysis 

The degradation of linear aliphatic polyesters begins with the attack of water 

molecule at an ester bond. With the presence of carboxylic acid, one reaction produces 

another carboxylic acid, consuming water molecule and ester bond (Figure 5.1). This 

already presented carboxylic acid and produced one during the degradation are known to 

accelerate the hydrolysis by acid catalysis (Pitt et al. 1981; Siparsky et al. 1998). 

For acid-catalyzed hydrolysis, the following kinetic relation has been proposed (Pitt 

et al. 1981). 

]COOH][E][OH[]COOH[]E[
2k

dt
d

dt
d

==−  (5.1)

where ]COOH[  is the concentration of carboxylic acid end group, ]E[  is the 

concentration of ester bonds, [H2O] is the concentration of water molecule, and k is 

reaction rate constant.  
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Figure 5.1 Acid-catalyzed hydrolysis reaction 

 

 

The concentration of the acid end group, [COOH], can be related to the molecular 

weight of the polyester or to the concentration of ester bonds, [E], ((Lyu and Untereker 

2009)) 

nDP
]E[

nM
]COOH[ ≈=

ρ
 (5.2)

where ρ is the density of the polyester, which is typically 1.2 g/cm3. nM is the number 

average molecular weight and nDP is the number average of the degree of 

polymerization.  

 

Substitution of (5.2) into (5.1) results in  

2
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⎞
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⎛ ρρ k
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Assuming constant polymer density throughout degradation, 
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⎜
⎝
⎛

nM
1'

nM
1 k

dt
d  (5.4)

where )/](OH[' 2 mkk ρ=  with m number of repeating monomer unit in a polymer chain. 

Thus, the molecular weight change by autocatalytic degradation of polyesters can be 

modeled as simple exponential decay with initial molecular weight, 0nM . 
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)'exp(
nM
nM

0

tk−=  (5.5)

This simple relationship works well in describing the change of molecular weight 

of many types of polyester. As discussed by Pitt et al. (Pitt et al. 1981), however, the 

carboxylic acid group in aliphatic polyesters may participate in the transition state of the 

reaction in its undissociated form. Thus, the reaction rate may be dependent on the half 

order of the acid end group concentration, rather than the first order concentration. 

Siparsky (Siparsky et al. 1998) showed in a solution hydrolysis study that the 

autocatalytic degradation of PLA was best fitted with half order of carboxylic end group 

concentration as catalyst acid concentration, while first order of acid concentration is 

used in the product.  

2/1
2 )]COOH]([E][OH[]E[

aKk
dt

d
−=  (5.6)

where aK  is acid dissociation constant.  

PCL appeared to following first order kinetics than half order of carboxylic acid in 

the same study (Siparsky et al. 1998). As a starting point, second order kinetics are used 

with the pseudo first order reaction rate, O][H' 2kk = , assuming water concentration is 

constant. Some measured values of the pseudo first order reaction rates are presented in 

Table 5.1. 
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Table 5.1 Autocatalytic hydrolysis reaction rates of linear aliphatic polymers (Pitt et 
al. 1981; Antheunis et al. 2009). 

Polymer Reaction Kinetics Reaction rate Reference 

PCL k[H2O][E] 3.07×10-3 (/day) Pitt 1998 

PCL k[H2O] 0.421×10-3 (/mol/day) Antheunis 2009 

PLA k[H2O] 6.44×10-3 (/mol/day) Antheunis 2009 

PLGA75:25 k[H2O] 10.3×10-3 (/mol/day) Antheunis 2009 

PLGA53:47 k[H2O] 12.9×10-3 (/mol/day) Antheunis 2009 

[H2O] is concentration of water molecules, and [E] is concentration of ester bonds. 

 

5.2 Computational Modeling of Hydrolytic Degradation 

In this section, the polymer degradation process was modeled using a set of 

diffusion-reaction equations which account for ester bonds (CE), small polymer chain 

dissolved in aqueous media (CM), and water molecules (CW). Characteristic phenomenon 

of aliphatic polyesters such as the transition between bulk erosion and surface erosion, 

and heterogeneous bulk erosion are demonstrated in the diffusion reaction equations. 

 

5.2.1 Diffusion-Reaction Based Model for Erosion Mechanisms 

Hydrolysis depends on ester bond and water molecule concentration (Siparsky et al. 

1998). The interplay between water diffusion velocity and the hydrolysis reaction rate 

determines the erosion mechanism: either surface erosion or bulk erosion. This has been 

supported by several theoretical studies that modeled the erosion mechanism based on the 

relative speed of water diffusion compared to hydrolysis (von Burkersroda et al. 2002; 

Lyu et al. 2005; Rothstein et al. 2009). 
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In this section, a diffusion-reaction system was used to qualitatively characterize 

the erosion mechanism based on water diffusion and the hydrolysis reaction.  
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where EC , and WC  are the concentration of ester bonds and water molecule, repectively. 

WD  is the water diffusion tensor and k is the second order reaction rate. Typical values 

of the diffusion coefficient of water in an amorphous polymer are about 10-8 to 10-9 cm2/s 

(Milroy et al. 2003; Lyu and Untereker 2009). 

Nondimensionalized equations are derived as  
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where ** '/1 EE Ckt = , WW DLt /2* = , */ EWW CCC = , */ EEE CCC = , L/xX =  
*
EC is 

initial ester bond concentration, L is half the plate thickness. 

 

We can then introduce a non-dimensional parameter, Wε , which is the ratio of the 

characteristic time of the hydrolysis reaction to the characteristic time for water diffusion. 
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According to this variable, a different erosion mechanism is simulated. 
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• 1>>Wε : The time of water diffusion is much smaller than the hydrolysis 

reaction. Thus, polymer undergoes bulk erosion.  

• 1<<Wε : The time of water diffusion is much greater than the hydrolysis 

reaction. Thus, the polymer undergoes surface erosion. 

• 1~Wε : The time of water diffusion is comparable to the hydrolysis reaction. 

Thus, polymer undergoes in between bulk and surface erosion. 

 

For a large plate of PLA with 2 cm thickness, 7.27=Wε  using the following values, 

implies that it will undergo bulk erosion. 

• 810−=WD  cm2/s = 31064.8 −× (cm2/day) 

• =k 3105.6 −× (/day/mol) 

• nMρ/nDP* ⋅=EC = 500*1.2 (g/cm3) / 50,000 (g/mol) = 0.012 mol/ cm3 

• L=2cm 

It is expected that at a thickness greater than 10 cm, PLA is expected to start the 

transition from bulk erosion to surface erosion.  

The transition of erosion mechanisms according to Wε , can be more clearly 

visualized by the analysis in the large plate model. The large plate domain can be 

approximated with 1 dimensional diffusion reaction problem assuming no diffusion in the 

tangent directions to the plate surface (Figure 5.2). The symmetric boundary condition 

was assigned at x=0 (center of the plate) and homogeneous boundary condition was set at 

x=1 (outer surface of the plate).  
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Figure 5.2 The diffusion reaction problem in a large plate of PLA is approximated as 
one dimensional problem. 

 

 

Figure 5.3 clearly illustrates the transition of bulk erosion to surface erosion 

according to the nondimensional parameter, εW. Note that x = 0 indicates the center of the 

plate and x = 1 indicates surface of the plate, in the plots. With εW=100, homogeneous 

degradation was simulated throughout the polymer dimension, while complete 

degradation occurred from the right side when εW=0.01. If εW is around 1, transition 

between the erosion mechanisms is observed. The ester bond concentration has been 

correlated to molecular weight, so the spatial distribution of the local ester bond 

concentration can be regarded as the molecular weight distribution. It should be noted 

that this is rather a qualitative estimation for the degradation mechanism. Considering our 

typical scaffold size ranges from 5 mm to 50 mm, bulk erosion is assumed for all the 

following sections.  

 

 



123 

 

Figure 5.3 Bulk erosion occurs if water diffusion is much faster than the hydrolysis 
reaction(εW=100), and surface erosion occurs when water diffusion is 
much slower than hydrolysis(εW=0.01). The X axis is perpendicular to 
polymer plate with its origin at the center of the thickness. The local ester 
bond concentration along the x axis was assumed to be proportional to the 
local molecular weight. 

 

 

5.2.2 Heterogeneous Degradation in Bulk Erosion 

A similar reaction-diffusion equation can be applied to simulate the heterogeneous 

degradation in bulk eroded polymers. In this case, the concentration of water soluble 

small chains with a carboxylic acid end group (CA) and the ester bond concentration (CE) 

are included in the system of diffusion-reaction equations. We assumed that water 

diffusion is much faster than hydrolysis and that water is abundant throughout the 

simulation, indicating bulk erosion. It is also assumed that if the molecular weight of a 

polymer chain is below a threshold value, the small polymer chain becomes soluble in 

water. Then, the water soluble small polymer chains can diffuse out of the polymer 

matrix, resulting in a mass loss of the polymer. The interplay between the autocatalytic 
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hydrolysis reaction and the water soluble monomer may determine the degradation 

behavior of the bulk eroding polymers.  

It is hence assumed in this section that: 

• Water is already diffused throughout the polymer matrix and abundant. 

Thus, the hydrolysis kinetics can be considered as pseudo first order 

kinetics, assuming constant water concentration. 

• the presence of second order kinetics of acid-catalyzed hydrolysis per (5.1). 

• an uncatalyzed hydrolysis reaction is included, which ensures the initial 

production of carboxylic acid end groups in this model. 

 

From the acid catalyzed reaction kinetics of (5.1), two rate equations can be derived 

for carboxylic acid production and ester bond consumption. Considering the production 

and diffusion of small carboxylic acid ( AC ), and ester bond consumption ( EC ), the 

nondimensionalized form of the coupled diffusion-reaction equation is 
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1k  and 2k  are pseudo first order uncatalyzed hydrolysis reaction rate and pseudo first 

order acid catalyzed hydrolysis reaction rate, respectively. AD  is the diffusion coefficient 

of small chains with carboxylic acid end group. *
EC is the initial ester bond concentration, 

L is half the plate thickness. 
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As presented in Wang et al (Wang et al. 2008), the ratio of both uncatalyzed and 

acid-catalyzed hydrolysis reaction rates, and the ratio of acid-catalyzed hydrolysis 

reaction to diffusion of small chains control system behavior.  

Let us set *

*

A

E
A t

t
=ε . The large value of Aε  indicates a fast acid group diffusion (or a 

slow hydrolysis reaction), and a small value of Aε  indicates a fast hydrolysis reaction (or 

slow acid group diffusion). For the ratio of the uncatalyzed reaction rate and acid 

catalyzed reaction, a large 12k  implies the reduced effect of autocatalysis, whereas small 

12k  implies relative dominance of autocatalysis.  

Figure 5.4 illustrates the differential effects of Aε  and 12k  on the spatial variations 

of degradation along the polymer matrix. In Figure 5.4 , the upper three plots are for 12k

=0.1 and lower three are for 12k =1. In addition, plots in the left column are for Aε =0.1, 

plots in the center column are for Aε =1, and plots in the right column are for Aε =10.  For 

Aε =0.1 (slow acid diffusion) and 12k =0.1 (dominant autocatalysis over uncatalyzed 

hydrolysis), the heterogeneity was maximized, with faster degradation at the center (x=0) 

than at the surface (x=1). On the other hand, it appears that larger Aε  results in 

homogeneous degradation. The effect of  12k  can be observed by comparing plots in the 

upper and lower row in Figure 5.4. Large 12k  tends to accelerate overall degradation 

speed. We may conclude that heterogeneous bulk erosion can be observed with greater 

autocatalytic hydrolysis and reduced diffusivity of the acidic product. 
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Figure 5.4 Heterogeneous erosion was simulated with different Aε  and 12k  values. 
Larger Aε  tends to increase heterogeneity in the ester bond concentration 
while larger 12k  accelerates the overall degradation speed. 

 

 

Figure 5.5 Molecular weight profiles (degradation) along time were demonstrated 
with different εA and 12k  values: The left hand plot is for 12k =0.1 with 
varying εA, the center plot is for 12k =1, and the right hand plot is for 12k
=10. For 12k =10, the effect of εA vanishes. (curves in green: εA =0.1, 
curves in blue: εA =1, and curves in red: εA =10) 
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In Figure 5.5, normalized molecular weight profiles were presented. The molecular 

weights remaining in the polymer were calculated by integrating the remaining ester bond 

concentrations within polymer domain. With the reduced effects of uncatalyzed 

hydrolysis (smaller 12k ), the differential effects of the degradation profile by εA  are 

evident. When 12k  was increased to 10, no effects of Aε  were observed.  

Another interesting factor is mass loss, which was modeled by out flux of acid end 

groups as shown in Figure 5.6. As Aε  increases (fast diffusion), initial burst of acid 

outflux was clearly demonstrated. The peak values of the bursts were proportional to 12k . 

It should be noted that the boundary flux profile is bell shaped. This observation will be 

utilized as a simplified model for the homogenization of reaction diffusion in the 

following section.   

 

 

Figure 5.6 Fluxes of the small carboxylic acid end groups out of the polymer matrix 
were plotted over simulation time with varying Aε  values. 
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5.2.3 Degradation of Porous Scaffolds 

Pore architectures such as pore size as well as porosity, and interconnectivity 

(diffusivity/permeability) have been correlated with tissue regeneration. The degradation 

of porous scaffold can also be affected by these architectural parameters. To investigate 

the effect of pore architecture on the degradation, microstructures with different physical 

sizes were modeled. Then, finite element models of two different scaffolds were prepared 

with Comsol Multiphysics (Figure 5.7). The diffusion reaction system of (5.12) and (5.13) 

was used to simulate the degradation of these scaffolds. Scaffolds composed of 2x2x2 

unit microstructures were modeled by assigning symmetric boundary conditions. The 

diffusion of the carboxylic acid end group concentration at the opposite sides of 

symmetric planes were set at zero. The initial concentration of carboxylic acid was zero 

and the ester bond concentration was one. 
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Figure 5.7 The simulation domain consists of 2x2x2 unit microstructure array 
(implemented by symmetric boundary conditions), and surrounding 
medium. 

 

 

 

Figure 5.8 Comparison of molecular weight profiles between scaffolds with 2mm and 
5mm unit microstructures. Scaffold with large unit microstructures 
degrade faster than those with small unit microstructures. 
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The simulation results demonstrated faster degradation of larger scaffolds (Figure 

5.8). This result confirms that thicker polymer blocks degrade faster than thinner ones. In 

this simulation, Aε  was 0.002 for the scaffold with 5mm unit microstructures, and Aε  

was set at 0.01 for the scaffold with 2mm unit microstructures. 12k  was set 0.7 for both 

scaffolds. The differences in Aε  are due to the different characteristic lengths. 

To further investigate the size effect, a series of degradation simulations were 

conducted with scaffolds of different pore size microstructures. Unit microstructures with 

cylindrical holes were modeled for this purpose by varying the hole diameters. The size 

of the unit microstructures was the same for all the models, thus the size of the scaffolds 

was the same, too. The results showed that the scaffolds with smaller hole size degraded 

faster than those with larger holes (Figure 5.9). This supports that the thicker polymer 

degrade faster than thinner polymer because the hole size is inversely proportional to the 

strut size in this case. It should be noted that the hole size is proportional to 

diffusivity/permeability for the scaffolds with cylindrical microstructures. Furthermore, 

one may postulate that scaffolds with high diffusivity degrade slowly due to fast removal 

of acidic product that is involved in the hydrolysis. Although it appears that mass 

transport properties of the scaffolds affected the degradation, current diffusion-reaction 

model cannot simulate the diffusion of the acidic products within pores. Thus, more 

rigorous investigation may need a multiscale modeling to account for the effects of 

detailed microstructures on the degradation. 

 



131 

 

Figure 5.9 Molecular weight profiles were compared among scaffolds with different 
strut size microstructures. Larger strut size, or thickness, were shown to be 
related to faster degradation. 

 

5.3 Homogenization Model for Hydrolytic Degradation of Porous Scaffold 

This section provides the derivation of the homogenization model of diffusion-

reaction system for the hydrolytic degradation of porous scaffold. Since we only consider 

a case in which diffusivities of a solute (carboxylic acid end group) in the solid and pore 

are highly two orders of magnitude different, this homogenization model presented in this 

thesis is not complete. However, this will offer a good starting point to extend the current 

diffusion-reaction model to a multiscale model. 

5.3.1 The Governing System of Equations 

The degradation of aliphatic polyesters is generally known to follow bulk erosion 

mechanism. The mechanism is briefly explained by initially rapid decrease in molecular 

weight and the consequent deceleration occurring upon the release of monomers. At the 

later stage, actual mass loss occurs because these small polymer chains become water 
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soluble and diffuse out of the polymer matrix. It is also known that these acidic products 

become involved again in the reaction, resulting in acid-catalyzed hydrolysis. The 

diffusion of the acidic product, or water soluble small chains, has been attributed to the 

heterogeneous erosion of bulk eroded polyesters. For example, Grizzi et al. compared the 

degradation of thick plates and thin films made from poly(DL-lactic acid) to investigate 

the size dependency of the degradation (Grizzi et al. 1995). The authors demonstrated 

that the inner region of the thick plates degrades faster than outer shell, ultimately 

resulting in a hollow structure at the end of degradation.  

In our hierarchical scaffolds, the degradation behavior may be altered by the pore 

architecture. At the pore surface inside the scaffold, the water soluble monomers can 

release to the pore region as well as diffuse through the polymer matrix. Release from the 

hierarchical scaffold may be dependent on the effective diffusivity of the scaffold, which 

in turn can be controlled by the scaffold pore architecture as shown in chapter 3. If a 

scaffold is designed to possess low diffusivity, the accumulation of the acids may occur 

in the pore and affect the degradation of pore surface area. A computational model based 

on the multiscale homogenization method would be a good candidate for simulating the 

degradation of the porous scaffolds. We derived the homogenization of reaction-diffusion 

in chapter 2. The homogenized equations account for production and diffusion of the 

water soluble acids. The hydrolysis reaction is assumed to occur only in the solid matrix, 

so that the rate equation for the ester bond concentration being considered as local 

phenomenon.  

The governing equation accounting for the reaction-diffusion of the water soluble 

small acidic chain is derived from equation (2.49), assuming linear reaction terms in the 
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local equation. The rate equation for the ester bond is coupled through these reaction 

terms at the local polymer domain.  

The system of homogenized reaction-diffusion equations in nondimensional formis  

∫Γ Γ
∂
∂

Ω
−=

∂
∂

∂
∂

−
∂

∂ dnc
y

D
x

cD
xt

c
i

j
ij

j

H
ij

i

*
2

)2(
)0(

1
)0(

1
1

1φ  (5.14)

t
ccccckTckTc

y
D

yt
c

EcLEL
j

ij
i ∂

∂
−+′+′=

∂
∂

∂
∂

−
∂

∂ )0(
1)0(

1
*
222111

*
2

)2(
*
2 )(

 
(5.15)

)( )0(
1

*
222111 cccckTckT

t
c

EcLEL
E +′−′−=

∂
∂

 
(5.16)

where 1k′  and 2k′  are uncatalyzed and acid-catalyzed reaction rates, respectively. 

)0(
1c  and *

2c  are carboxylic acid concentrations in the pore and polymer matrix, 

respectively, and Ec  is the ester bond concentration. LT1  is the characteristic time for 

diffusion in the pore space defined in (2.33). H
ijD  is the effective diffusivity of the 

carboxylic acid end groups in the pore and )2(
ijD  is the nondimensional diffusivity of 

carboxylic acid end groups in the polymer matrix.  cc2  is a characteristic concentration 

of the carboxylic acid end groups in the solid matrix. In fact, cc2  can be the initial ester 

bond concentration, as used in equations (5.12) and (5.13). Note that hydrolysis reaction 

occurs at solid matrix, which is 2Ω  in Figure 2.3. Thus, the rate equation for ester bond 

concentration is solved in the microstructure domain only. The equations (5.14)~(5.16) 

are homogenized version of equations (5.12) and (5.13). Also note that )0(
1c , the 

carboxylic acid concentration in the polymer matrix, is relative to *
2c , the carboxylic acid 
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concentration in the pore. That is, )0(
1c  is zero in the pore and at the pore-polymer matrix 

boundary and has values inside the polymer matrix. 

In the following sections, we first investigated the behavior of the macroscopic 

equations by decoupling the system of equations (5.14)~(5.16), to see the effect of global 

source term on the response of macroscopic equation. Then, the coupled equation is 

directly solved by introducing microstructures at some sample locations. 

 

5.3.2 Investigation of the Macroscopic Equation 

The macroscopic equation (5.14) contains a source term which is dependent on the 

local boundary flux out of the solid polymer domain. The integration of the local flux 

along the solid-void boundary serves as a source term in the macroscopic equation. The 

efflux of acids, or release of the acidic small chains, is time dependent, as illustrated in 

Figure 5.6. To investigate the behavior of the macroscopic equation by the time 

dependent source term, we first tested the probability density function of the normal 

distribution as a time dependent source term in (5.14), to impose a standard bell shaped 

production of acids along the degradation time (Figure 5.6). 
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where σ  is the variation and μ  is the mean value. 

Equation (5.17) was solved in a one-dimensional domain as illustrated in Figure 5.2. 

For the time dependent source term defined in (5.18), release of the small chains, were 
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measured at the polymer surface (x=1). As presented in Figure 5.10, changing the 

effective diffusivity in the equation resulted in different efflux profiles over time. Typical 

delays in the release profiles were observed with decreased effective diffusivity. However, 

the porosity (volume fraction of pore domain) of the microstructure is generally 

proportional to the effective diffusivity. Considering the linear relation between porosity 

and effective diffusivity, the differential effects of the diffusivity appears to vanish 

(Figure 5.11). For this purpose, we assumed the porosity equals the normalized effective 

diffusivity.  

From these observations, we may predict the acidic chain release profiles for 

different microstructures. For example, a scaffold made of a microstructure with 50% 

porosity and 10% diffusivity will release the small polymer chains with a delayed profile. 

On the other hand, a scaffold with 50% porosity and 40% diffusivity will release the 

chains in a pattern following the source term profile.  

In the homogenization formulation (equations (5.14)~(5.16)), the macroscopic 

equation and microscopic equation are coupled in both time and space. We expected that 

the solution of this coupling system will give more detailed effects ofmicrostructures on 

the degradation. 
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Figure 5.10 Without considering porosity at the time derivative term, the effective 
diffusivity affects the flux profile. 

 

Figure 5.11 Effluxes were measured for a bell shaped time dependent source term. The 
effect of the effective diffusivity (DH) was not observed.  
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5.3.3 Evaluation of the Non-Dimensional Parameters 

Before solving the equations (5.14)~(5.16), the nondimensional parameters should 

be evaluated with physically relevant values. Suppose that the scaffold dimension (L) is 2 

cm, and unit microstructural dimension (l) is 0.1 cm. Because the homogenized equation 

is valid when q=2 in relation (2.35), that is lL TT 21 ≈ , the diffusion of the carboxylic acid 

in the pore of the scaffold is comparable to the diffusion of the carboxylic acid in the 

polymer matrix within a unit microstructure. From the parameter values in Table 5.2 , the 

nondimensional coefficients in equations (5.15) and (5.16) can be estimated. 

35.01 ≈′ LTk  

1.021 ≈′ cLcTk  
(5.19)

 

 

 

Table 5.2 Parameters used in this study. 

Parameter Value Description Reference 

D1 1.22×10-3 (cm2/day) Diffusivity in the 
pore 

Estimated by the relation

2
2

21 / lLDD =  

D2 1.218×10-5 (cm2/day) Diffusivity in 
polymer matrix 

(Wang et al. 2008) 

C2c 1.73×10-2 (mol/cm3) Initial concentration 
of ester bonds 

(Wang et al. 2008) 

 
4.29×10-4 (/mol/day) Uncatalyzed  

reaction rate 
(Wang et al. 2008) 

 
6.44×10-3 (/mol/day) Autocatalysis 

reaction rate 
(Antheunis et al. 2009) 

 

1k ′

2k ′
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5.3.4 Solving the coupled Multiscale Degradation Model 

In the simulation model, illustrated in Figure 5.12,  the macroscopic domain is a 

porous infinite plate with repeating unit microstructures, which is modeled as a one 

dimensional problem. For demonstration purpose, we assumed two dimensional 

microstructures at five sampling points in the macroscopic domain for demonstration 

purpose. The microstructure domain is further divided into a polymer matrix and pore 

space. The effective diffusivity used in the macroscopic equation is calculated from the 

homogenization of diffusion in the pore space. The microscopic equation (5.15) and (5.16) 

are solved in the polymer matrix domain and provide a time dependent source term. 

Because of the coupling of the macroscopic variable and its time derivative in equations 

(5.15), with the source term from local flux in (5.14), these equations should be solved 

together.  

 

Figure 5.12 Schematics of the simulation domain. An infinite plate was modeled one 
dimensional problem, where x=0 at the center of the plate and x=1 at the 
plate surface. two dimensional microscopic domains were defined at five 
sampling points in the global domain for the local boundary value 
problems. Local boundary flux serves as a global source term. 
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A symmetric boundary condition was imposed at x=0 (center of the plate) while 

homogeneous boundary condition was imposed at x=1. In the local problem, periodic 

boundary conditions were imposed. 

At the initial time point, the microscopic equation was solved five times with initial 

values from the five sampling points. Then, the integrated local boundary fluxes were 

fitted to a function of x, the global spatial variable. With this interpolated function as the 

source term, the macroscopic equation was solved. Then, the initial values for both 

equations were updated and moved to the next time step. Using FEMLab scripting, these 

solution steps were implemented within a loop, along with the effective diffusivity 

calculation.  

5.3.5 Results 

Using FEMLab, the effective diffusivity was evaluated as 0.343. With the 

assumption that the scaffold undergoes bulk erosion and there is no solid-fluid boundary 

change, the effective diffusivity remains constant throughout the simulation. The local 

characteristic concentration is shown in Figure 5.13.  

 

 

Figure 5.13 Characteristic concentration distribution in the pore domain. Volume 
averaging gives the effective diffusivity. 
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Figure 5.14 The change of distribution of carboxlyic acid end group concentrations 
were plotted at different time points. Note that at x=0, acid concentration 
is maximum while its time derivative is zero. Also note that at x=1, acid 
concentration is zero while its time derivative is maximum. 

 

 

Figure 5.15 (A) Nondimensionalized efflux of carboxylic acid end groups at five 
representative unit microstructures were plotted as the simulation time. (B) 
Nondimensionalized efflux of carboxylic acid end groups at the boundary 
(x=1) of the global domain. 
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Figure 5.14 illustrates the change of distribution of carboxlyic acid end group 

concentration over different time points. It should be noted that at x=0, acid concentration 

is maximum while its time derivative is zero. Also note that at x=1, acid concentration is 

zero while its time derivative is maximum. These quantities are important because they 

affect the local boundary fluxes at different locations, which in turn affects the global 

quantities. 

Figure 5.15 shows the time course of local acid end group flux at the solid-void 

boundary and the global acid end group flux at the global domain boundary (x=1). The 

profiles of local acid fluxes were different at different locations because of the effect of 

global concentration and its time derivative. It should be noted that the global flux was 

delayed compared to local acid flux at x=1. In the degradation of the bulk polymer matrix 

in section 5.2.2, similar delayed acid release was in Figure 5.6. With the presence of 

microstructures, delayed release occurred twice, locally and globally. This indicates that 

the design of microstructures may control the degradation of the porous scaffolds. 

Obviously, this argument needs further quantitative evaluations.  

Figure 5.16 and Figure 5.17 illustrate the molecular weight profile and mass loss. 

The molecular weight profile was assumed to be proportional to ester bond 

concentrations within the polymer matrix, whereas the mass loss was measured as the 

cumulative release of carboxylic acid end groups. Both demonstrated typical degradation 

behavior. Although the current multiscale model assumes only one case – the high 

diffusion contrast between solid and pore, it may provide a more accurate prediction for 

the degradation of hierarchical scaffolds with the same order of diffusivity of acids in 

both pore space and polymer matrix. 
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Figure 5.16 Normalized ester bond concentration (molecular weight profile) within the 
polymer matrix (solid region of porous scaffold) was demonstrated for 
k1=0.35, k2=0.1, DH=0.343, and D2=1.0.  

 

Figure 5.17 The cumulative efflux from the outer surface of the infinite plate (x=1).  



143 

 

5.4 Conclusion and Future Work 

We were able to successfully demonstrate the hydrolytic degradation of 

hierarchical scaffolds made of biodegradable polyesters. Based on simple diffusion 

reaction equations, the complex processes during polymer degradation and erosion were 

qualitatively characterized, providing an important tool for the design of tissue 

engineering scaffolds involving degradation. For example, the nondimensional parameter 

for the ratio of hydrolysis reaction time to water diffusion can provide a rough idea of 

suitable biomaterials and device size. Furthermore, this tool makes it possible to predict 

the failure of implanted device with specific dimensions by using the nondimensional 

parameters accounting for the interplay between the hydrolysis reaction and the acidic 

product diffusion.  

In the hierarchical tissue scaffolds, the above-mentioned phenomena are largely 

affected by pore architecture, including pore size, strut size, pore shape, and related 

functional properties. In order to investigate the effects of microstructures, a multiscale 

homogenization method was derived and applied to the hydrolysis reaction and 

carboxylic acid release. In this study, the effects of the microstructure on the release of 

carboxylic acid end groups, or small polymer chains, were investigated. However, this 

model needs further quantitative investigations in addition to comparisons between 

scaffolds with different pore architectures. Finally, to adequately predict device failure 

time in vivo, the model should address the changes of the mechanical properties along 

with the degradation. Additional validation of the current multi-scale model is required to 

provide necessary insight into the role of complex pore architecture on the ultimate 
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performance of hierarchical scaffolds. The elaborated validation of current multiscale 

model will further extend the knowledge of how the complex pore architecture finally 

affects the performance of the hierarchical scaffolds. 
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CHAPTER 6 
 
 

CONCLUSION 
 

 

 

6.1 Summary and Conclusion 

As a multifunctional composite biomaterial, tissue engineering scaffolds need to be 

tailored to satisfy the properties and functions of healthy tissue, as well as maintain the 

desired function throughout tissue healing to ensure optimal tissue regeneration. In order 

to design a hierarchical scaffold that can meet these requirements, a systemic design 

framework employing the homogenization method and topology optimization may be 

required.  

To design a hierarchical scaffold that can meet these requirements, a systemic 

design framework employing the homogenization method to characterize hierarchical 

scaffold design is invaluable. Characterizing the scaffold’s mechanical and mass 

transport properties ensures a truly representative design framework. Because tissue 

functions are best represented by these properties, the scaffold properties should be 

tailored to match the properties of healthy tissues. The characterization method should 

consider the effect of pore architecture, which has been correlated to both tissue 

regeneration and scaffold performance. The design framework should also produce a pore 
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architecture that achieves prescribed mechanical and mass transport properties. For given 

design requirements, designers do not know the corresponding a priori de novo pore 

structures that give rise to specific effective properties. Structural optimization techniques 

such as topology optimization can provide versatile option in this case.  

To elucidate the effects of scaffold design parameters on tissue regeneration, Solid 

freeform fabrication offers the best option for building the necessary complex 3D 

architecture with sufficient accuracy and reproducibility. Controlled pore architectures 

could be accurately reproduced in this study with consistent mechanical and mass 

transport properties, which will allow the verification of the design by in vitro and in vivo 

experiments. Without a proper fabrication method, it is not possible to correlate the 

designed properties to tissue regeneration.  

Finally, the design framework should be able to address the changes of the 

designed properties accompanying scaffold degradation that are so critical to preventing 

premature scaffold failure and promoting appropriate regeneration of the target tissue. 

Although a scaffold is designed with tailored mechanical and mass transport properties, it 

starts degradation from in vitro culture throughout in vivo implantation. Thus, it is likely 

that the scaffold cannot provide sufficient function as designed. With the computational 

models for hydrolytic degradation, further controlling parameters can be identified to 

modify the original designs. With multiscale modeling techniques, more rigorous 

correlation can be obtained between pore architecture and degradation properties. 

To implement and test the design framework for the hierarchical scaffolds, we 

presented in this work that the microstructure design with tailored mechanical and mass 
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transport properties, the design of porous biodegradable fusion cage using the integrated 

global-local topology optimization, and computational simulation of scaffold degradation.  

As tissue function is characterized with mechanical stiffness, so the scaffold 

function was characterized by homogenization of elasticity. Good correlation was 

obtained between experimental and predicted moduli. To facilitate and control tissue 

ingrowth and biologic delivery, the effective diffusivity and permeability were calculated 

with the homogenization of diffusion and the homogenization of Stokes equation. 

Microstructures with tailored mechanical and mass transport properties were obtained by 

optimizing bulk modulus and diffusivity concurrently in a multiobjective formulation. 

Designed microstructures were optimal as they are on or close to theoretical upper 

bounds, indicating that both mechanical and mass transport properties are maximized.  

As an example of the clinical application of the microstructural topology 

optimization, we also presented a porous inter-body fusion cage design using a global-

local integerated topology optimization technique  (Lin et al. 2004) that demonstrated 

sufficient mechanical properties to support lumbar inter-body loads. The integrated 

global-local topology optimization combined with SFF technique in PCL and HA is a 

promising method for the design of biodegradable fusion cages because it can produce a 

porous structure with optimal mechanical and mass transport properties. . Based on 

experimental and computational verification, optimally designed PCL cages have 

sufficient mechanical properties to support lumbar interbody loads. This combined with 

the longer degradation period of PCL may breathe more life into the solution of bio-

resorbable cages for spinal fusion applications.  
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Finally, an effective mathematical model of porous biodegradable scaffold based 

on diffusion-reaction equations and multi-scale homogenization was demonstrated. 

Complex phenomena observed during polymer degradation were first demonstrated using 

diffusion-reaction equations. Then a multi-scale homogenization method was adapted to 

investigate the effects of a microstructure on the degradation profile. Because of the 

coupling in time and space in the homogenized equation, a solution method was proposed 

to approximate the continuum problem at discrete sampling points. Macroscopic acid 

release was demonstrated to follow the microscopic acid release into pore space. 

Combining the observations from the single scale and multiscale diffusion-reaction 

systems, different acid release profiles are expected. 

 

6.2 Future Study 

The homogenization method provides a theoretical background in the design of 

hierarchical scaffolds. However, the practical size of scaffold specimen is limited by the 

resolution of fabrication technique. Using PCL and HA powders, the smallest hole the 

selective laser sintering machine in this study could build is 800 um. The dimension of 

the scaffold, typically adopted in animal studies, is as small as 5 mm.   In some cases the 

scale may not provide sufficient separation to apply the homogenization theory to? the 

design. However, the inclusion of higher order terms as correctors may compensate for  

the errors in such cases. 

Microstructure design using topology optimization can be extended using other 

techniques for suppressing numerical instabilities such as perimeter control. One of the 

possible applications of optimal microstructures in the inter-body fusion would be 
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controlled release of biologics such as BMP2. In general, BMP2 related complications 

are attributed to the initial burst of release, which can cause adverse reactions at the 

surrounding soft tissues. An alternative approach is to deliver BMP2 requires high 

surface area for prolonged release (chapter 4). To this end, perimeter control or surface 

area control schemes commonly adapted in the topology optimization can be used to 

optimally control the release of such biologics. 

For the fusion cage, a multilevel optimization technique was utilized to obtain 

maximum stiffness and permeability design. As a first step, we separated the multiscale 

problem into global and local scale problems, by solving a minimum compliance problem 

at a macroscopic scale and then applying optimized microstructures. In fact, the later 

applied microstructures can alter the originally designed global property. As proposed by 

Coelho et al. this may be avoided by solving the two scale problem simultaneously. At 

each time point, material density at the global domain serves as a volume fraction 

constraint in the local cell problems. The local cell problems are solved to provide the 

effective properties for the global problem. In this way, the alteration of properties will 

desist as the algorithm converges.  

The multiscale modeling of hydrolytic degradation was proposed in this study 

based on the homogenization of diffusion reaction equations. Although the derivation 

followed a theoretically proven method, it remains to be challenged by actual application, 

requiring quantitative experimental validation, both in vitro and in vivo. Comparative 

studies of scaffolds with different pore architectures are also required for what reasons?    

Finally, to predict the device failure time critical to scaffold success in high load 

bearing applications, the model should incorporate values for mechanical properties 



150 

garnered experimentally. Experimental measurements for hierarchically designed 

scaffolds will provide ultimate validation of our proposed model. In short, a single 

unifying theoretical framework embodying precise characterization of scaffolds, together 

with controlled design and fabrication, can provide the critical correlation between 

scaffold design parameters and tissue regeneration necessary for successful, tailored 

constructs. 
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