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ABSTRACT

The problem of determining the dynamic effect of an internal nondecaying
pressure front which moves with constant velocity parallel to the axis of a
circular tube is treated. It was known that the equations for the problem of a
beam resting on an elastic foundation are equivalent to those for a circular
tube, after a simple replacement of constant terms. Thereafter, the equiva.
lent beam problem is considered with both infinite and finite lengths., The
finite beam is investigated with two types of boundary conditions: both ends
simply supported, and both ends fixed. Viscous damping is considered for
the infinite beam. The effects of shear and rotatory inertia are neglected
in all cases. It is shown that the dynamic factors for the infinite and finite
beams are nearly identical, and the solution for one circular tube is obtained
on the basis of an equivalent infinite beam.,
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INTRODUCTION

The purpose of this investigation is to determine the dynamic effect of
an internal nondecaying pressure front which moves with constant velocity
parallel to the axis of a circular tube. The differential equation of equi-
librium and compatibility for a circular tube under the action of internal
pressure with small deformation is:

d4y  Eh
D e + B - p(x) (Ref. 1) (0.1)

3

where D = B and p(x) = internal pressure. The differential equation
12(1-p3)

of equilibrium and compatibility for a transversely loaded beam resting on

elastic foundation, if the transverse deflection is small, has the same form

as (0.1), i.e.

4

EI iy ky = p(x) (Ref. 2) (0.2)
ax*4

These two equations—(0.1) and (0.2) —are entirely equivalent, if we set

ET = D = ———— and k =
12(1-p®)

3
== = (0.3)
R

Thus the solution of the problem of a beam resting on an elastic foundation
provides also the related solution for a circular tube, if replacements
FhS Eh . .
El = ———— and k = — are made, Thus this paper deals not only with the
=) 2

12(1-p%) R
dynamic effect of a beam resting on elastic foundation under forces moving
with constant horizontal velocity, but also provides a solution for an internal
pressure front moving down a circular tube, '

Both the finite beam (Part I) and the infinite beam (Part II) are con-
sidered. -Two kinds of boundary conditions—both ends simply supported and
both ends clamped-—are investigated in Part I. Viscous damping effect is
considered in Part II.

In 8ll cases, in calculating dynamic load amplification factor, we neg-
lect the effects of shear and rotatory inertia. We also assume that the
circular tube vibrates radial-symmetrically. We neglect the effect of the



longitudinal stress wave, as its velccity, v =~JgE/7 = 16,150 ft/sec, is al-
most ten times the velocity of the transverse wave propagated down the tube.

In Timoshenko's paper (Ref. L), "Method of Analysis of Statical and Dy-
namical Stresses in Rail," he has derived a formula to calculate the deflec-
tion of a simply supported beam resting on elastic foundation under a moving
force with constant velocity. His formula is identically the same as Formula
(1.10) in this paper. Using this formula, we can find the maximum bending
moment in the beam. One numerical example has been done by taking the summa-
tion of one hundred terms of the series, Using the same idea as his, we
derived the formula of the deflection curve and bending moment for the beam
with both ends clamped, but did not try to do any numerical computation. The
series in this case is very slow in its convergence.

In Kenney's paper (Ref. 6), "Steady-State Vibrations of Beam on Elastic
Foundation for Moving Load," he established a solution for the infinite beam
resting on elastic foundation, His formula is used to find maximum bending
moment both for concentrated load and uniformly distributed load. Dynamic
load amplification factors based upon the derived maximum moment formula are
computed with various velocities and wall thickness of the circular tube of
6-foot diameter.



PART T

BEAMS WITH FINITE LENGTH

1. Equation of Free Vibration.

R
Take the origin of the coordinate — Vv
at the left end of the beam, then T 3 ; 3 i i ? fk > X
4 2 TI T T T T T 71,1 LA B B B
Elé—%+§1§—%+ky = 0 (1.1) | L .
dx g ot i
Yy
Fig. 1.1
Assume y = X(x)-1(t) g
By the method of separation of variables, we have
XDk o o_a o1 | e
X EI Elg 7
Where p is a real arbitrary constant.
Now
iv
k
P +(=-02 = 0
X BT
Put
k= k
—_— 2 < 0 d 4 - 2 _
gr P and o P TR
Where o is a resl arbitrary constant too.
Then iv
D
X
and
X = Acos ax + Bsinax + Ccoshox + Dsinhox (1.2)

where A, B, C, and D are constants and determined by boundary conditions.



2, Case for a Beam with Both Ends Simply Supported.

Boundary conditions:

X(o) = X(4) = O
X"(0) = X"(&) = O (1.3)
: A = C =D =0
or X =B sin ox, sinaf =0
af = onm, o = %ﬂ

where n = 1,2,3,..

(1) From the above solufion, we have the modal shapes of the simply supported
beam for free vibration as the following:

X, = By sin 9%5 (1.k)

The modes are orthogonal.

(2) Norms of X and X"
)/ 1 )
by = f X2 ax = BS \fsin2%ﬂ§dx = 5B (1.5)
o) o)
" ! m 2 2 ng4 Z o DX nég? 2

én = 5 (Xﬁ) dx = Bj = sin e dx = e B (1.6)

(3) Response due to a moving concentrated force PO.
i, By the method of superposition of normal modes, we may assume the
deflection curve of the beam as the following:
[e9]

v = Z ap sin% (Ref. 3) (1.7)

n=1

where g, 1s a function of time t only and q, is known as the generalized
displacement,

Lagrange's equation will be used to find the response. Total strain
energy in the beam:



2
n= n=1
ki
- EIf}:n"‘qcﬁ+Tz U
b n=1 n=1

Total kinetic energy for the beam:

[oe]
1 _ :
- 28 (@Z)2 ax = 28L j{: 42 c
T oa ot s n Po
g Yo g el
Lagrange's equation: ﬁ#;x
a ,oT oT ov
_— - + = 1.8 .
at Bén) dan  ddn n (1.8) Fig. 1.2
vy
dg,
where 4, = —21 and Q, is the generalized force defined as follows:
dat

We assume the deflection curve of the beam due to a moving force Py to be

oo

y = Z qnsilfl—l%ﬂE (1.9)
n=1
At time t = O, Py 1s at the origin and at t = t;, P, moves a distance c from
the origin, thus c = vt.

Let 6y be the change of deflection of the beam of ¢ due to change of i-th
generalized coordinate gy, then

. ime . imvt
By = 04gy sin 5 = 644 sin = 7 1

The work done by the external force P, on the beam due to Sy will be

iml
£ L]

Poﬁqi sin



The generalized force times the change of i-th generalized displacement qa
will be equal to that amount of work. i.e.,

Qidq; = Poéqi sin lm;tl

" Qi = Py sin

iJ‘fV'tl
b4

Insert V, T and Q, into Lagrange's equation, we have

4 2gP nnvt
qn + g.g_— (___—_EI;E n4‘ + _l.{'_z.) n = g o Sin
yal 21 2 yal
Let
2 2 Elq4 ki
- T Gt )
val

The general solution of the differential equation will be

2g Py

q, = Ap cos wpt + By sin wyt + .
" val ®n

t
fsin 9-——"1{”1 sin w,(t-t1)dt,
YO

Suppose that both initial displacement and velocity of the beam are zero,
then

4
2g Po . nmgvty . )
q‘Il = ;,;j —%— l sin 7 sin Ll)n('t-'tl) dtl
= “efol (o sin 222 - 2 oip o t)
yawn ( 12w5-nZ ") L / o

The term nﬁv/ZSinwnt due to free vibration will be gradually damped out, so
we neglect it, and



2 ) .
a = 2g§0 S @, sin nnvt
yawn (L~ wh-n"n"v") !
y = }: dy sin E£§
n=1 4
o 43 N sin ~— sin E%XE
0
= - }2 " = 5 > (Ref. k)  (1.10)
Elx oo nt + k/ n“vya |
EIr* g EIn"

ii, Maximum stress in the beam.

Since the bending stress is linearly proportional to bending moment
M, the maximum stress, will be determined by the maximum bending moment.

Now
2
M = - EI §—%
ox
[0}
2 sin =X gin At
Py 2P, EZ 7 1
= - =)
aXZ EIJT2 ol n2 + kil _ nga . y)
EIx*n® g EIn"
%y nmx nvt
For maximum value of —=, sin == s = 1
dx2 1
(o]
ol
. Py _ cPol >L 1
e Mpegx = - EI(BXZ)max - T2 R "y Pya . A2 n=155,...
n=] 1+ w2 & - (1.11)
EIx™n

1ii, DNumerical example.

Take a circular tube with radius R and wall thickness h as an example.
Given data as following:

= 0.284 x 107° k/in.3
= 386 in./sec®

E = 29 x 10° k/in?
uo= 0.3

h = 1,0 in.

R = 36 in,

I = 120 in.

4

g



From (0.3)

Bquivelent k = 22 = 22,377 k/in.®
R
. h3 _ .3
Equivalent I = — = 0.0916 in.
12(1-15)
EI = 2655.6 k-in.

For the static case, i.e., v > 0O, but vt % 0
S 1998

w - 2Pol }Z 1 . 2Pl }J 1
2 4 4

n:l n +
EIn*n® EIx*n®

1.108 P, n = 1,3,5,....

For v = 1600 ft/sec

2P, ji =
M = 2,4 - 2
I A vya 4
n=l EIr*n® g EL°
198
N 2P:£ }: 1
2 2, kK51t vPya | 4P
n=t EIr*n® g B

1.690 Py, n = 1,3,5,....

_ . 1.690P
Dynamic load amplification factor F = ——L = 1,53
1.108P,

(4) Deflection curve for uniformly distributed load.

Let p be the intensity



3.

Case T

pdx pvdty
= sin)njTX gin DIVEL
opvi3 l 1
dy —_— S >— 4t
EITE4 1 n4 " k.£4 - n V27a_ 1
= Elrt g  EIE
[ee)
3 t gin MK gqp DOVEy
. epvi” z f ! ! dt
=4 FTx® Jo 4 kgt n=v=ya 42 t
n=1 EIx* g EI®
2pa* i sin Z=(1-cos m}ft)
4 2 2
— 2o L4 4 k{* n veya ] :}
EIn g EIx2
x=VT|
dx.
‘/F—
kall RN =
x=vt ' X
'y
Fig. 1.3
or a Beam with Both Ends Clamped.
Boundary conditions:
x(0) = X(&) = 0
X'(0) = X'(2) = O

Acos ax +B sin ax + C cosh ox + D sinh ox

C = -A, D = -B

A o= - (sin af - sinh of) B
(cos af - cosh o)

A = 4 (cos af - cosh af) B

(sin af + sinh o)

(1.12)

(1.13)

(1.1k)

(1.15)



(cos af - cosh af) (sin ol - sinh o)
(-sin f - sinh af) (cos o - cosh af)

or

cos Ol coshapl -1 = O (1.16)

(1) Modal Shape

Ancos opx + Bpsin apx + Cpcosh apx + Dpsinh opx

xn

A (cos opx - cosh apx) + Bp(sin opx - sinh opx)
n=1,2,3....
X,'s are orthogonal. (Ref. 5)

Ap, B, and Oy have the following relations:

A _ _ (Siﬂ anﬁ - sinh C{fn.e) B
n = n
(cos apt - cosh opt)
or
(cos anf - cosh oni)
AIl = + n

(sin opl + sinh apl)

cos Qpf cosh opl 1

Opl = L4.730, 7.853, 10.996, 1L4.137, 17.279,....(Ref. 3)
(2) Norms of X, and Xp

yi . o .
sin=0inl sinh2omn !
Bax = £ (x)F = a2 = — (1.17)

(cos apl - cosh opt)

pn

5

(Ref. 5)

4

(x1)%ax = fofA

(1.18)
% (cos ol - cosh apl )

sz ,  sin®opl sinh®op!
Yo

2

(3) Reponse due to P

Assume the deflection curve of the beam as the following:
[ee]

y = }Z An(t) *Xn(x)

n=1
10



From Lagrange's equation, we have

all

oo n
d, + %; (EI == + X)q, =

_&Qn

n Vafén
where Q, = PoX,(vt) is the generalized forced and defined in Section 2-(3).

Let 55

Then the solution of the differential equation will be:

a, = ﬁ Qpsin wy(t-t1)dt,y
735511 0311

if we assume the initial displacement and velocity of the beam to be zero,
The smallest value of af is 4.730, so we can put Ay =~ - B, from (1.15)

Qn = Po¥n(vty) =~ Pohy(cos opvty - sin vty - e OnVil)

LA = &, Poln “n (cos apvt - cos wpt)
7860 @n | a@-02v3

S (opsin opvt - opv sin wpt) +

WR-QEV2

1

-0nve
—é%—g‘(wncos opt - Opv sin wpt - wpe i}
WEHOEY

If we neglect the terms due to free vibration, then

l e-O!nV't

q, = £ _ PoAyd ———— (cos opvt - sin opvt) - ————

yagﬁn wp-ogve wpt ORve
y = j{: 4y (t) "X, (x)

n=1

_ &b (cos ani - cosh oml)Z

DA | ,esingoénz sinhganﬁ

————— (cos Onvt - sin opvt) - ————

W=Op V= w402V

{cos Opx - cosh apx - sin Opx + sinh ocnx} (1.19)

11



where O 's are roots of the equation cos onf cosh opl = 1 and

b

2 = & (BT +k
“n va, ( n )
- & (10 + x)
8,
[00]
Py P, (cos onl - cosh ant)Z0d .
3xZ 78 Ao Isinfopl sinhFopl
.]_ e-OénV‘t
—~————— (cos Opvt - sin gpvt) - ———— ¢ .
Lwﬁ-ocﬁx@ (cos o " 03 +0RV

{Eos OpX + cosh onx - sin Onx + sinh @n;}

Ly

M = - EI
Ox=

(L) Deflection Curve for Uniformly Distributed Force p.

(1.20)

Use the same process as that in Section 2-(4), to get the deflection

curve.,

12



PART TII

BEAMS WITH INFINITE LENGTH (REF. 6)
1. Qeneral Equation of Motion.

Y L Py, X _
s g e C% T = Bolot) (2.1)

We transpose the y-axis so that it 1s attached to the moving force P, which
moves with constant velocity v.

Let x; be horizontal coordinate in the

new system
—-—ev
Xy = X -Vt : Po > X
3 13 K 3

then (2.1) becomes VA RARARE

Oty | ayvd oy  /
EI-—4+—l—_..32£-cv———+ky y

oI & oxg o%1 (2.2a)

2 ) Fig. 2.1
- gyv-_éll; + 27 EL% co Y Po(x1,t)
ox;0t g ot ot

Put x; = x in (2.2a), since x; is a dummy variable.

As this is an infinite beam of indefinite extent both fore and aft of the
moving load, the deflected shape will not change with respect to the moving
coordinate axis after the applied load p moves on the beam for a suitable
time. All the time derivatives are zero and the equation for steady state re-
sponse will be: '

2

4. 2
pr 3V LA 8 6 Wiy - 0 (2.2b)
dx4 g dx® dx
Put
1
A o= (k/4ED)? (2.3)

13



1 LkEIg® %
Cor = 2053 ver = (32 (2.4)
e = v/vcri B = C/CCI' (2'5)

The equation becomes
v+ L(eN) 2y - 863y + Uty = 0 (2.6)
and is subjected to the following boundary conditioms.

(a) lim [y(0 + € - y(0 - ¢€)] = 0 (deflection continuous)
€>0

(p) lim [y'(0 +¢€) - y'(0 - €] 0 (slope continuous)

€0 (2.7)
(c¢) lim [y"(0 + € - y"(0-¢€] = 0 (curvature continuous)
€0
1 PO
(d) 1im [y" (0 +€) - y"(0 - €)] = - — (shear discontinuous due to
€~0 : concentrated load).

The solution of equation (2.6) with boundary conditions shown in (2.7) is

x <0

— AX
Pox 4ﬂen
2

n* + (ne)2 + % (e8/n)

1
2y s 2, 2 E
{f (GB/n+n ) sin(26%+n 2?B/n) AX + cos(26? + ﬂz ) QQB/H)%X;}
n(26%+=-208/n)2 (248a)

x>0

r“’ -1AX |
Pt | ne

|
i 1
K oln* + (n0)2 + 5 (eg/n)2]

y =

\®]

nol=

AX

{} (/n-12) sin(262+n2+26p/1)

1
+ cos(26® + 1% + gea/n)EA%}
1
1(26%+%+20p/7)2

(2.8b)

1k



where n is the positive real root of the equation
né +2624% + (64-1)n2 - 622 = O (2.9)

if © is less than 1.
2, Case Without Damping (B = 0).
From (2.9)
1
2

no= (1-6%)

(1) Deflection curve. 1
-(1-6%)2 x|

;- P | e
2k B
(1-65)2
— 5 %
1-6 1 | 2
i—‘——lz sin (1+6%)2| x| + cos(1+6%)3Ax (2.10)
(1+6%)2
(2) Bending moment.
2
_ a3
M = ET dxi
-(1-6%)2 x|
Py
= 7T 1
I (1_92)2
— 1
-(1-69)2 o3 ok
—-———;;; sin(1+62) 2| Ax| + cos(1+6%)2Ax (2.11)
1+7)2
Maximum moment occurs at x = O and
Po, 1
Mooy = T ey (2.12)

(3) Dynemic load amplification factor.

For static case

Moy = =y (Ref. 1) (2.13)

15



Dynamic load amplification factor
poo L (2.18)
(1-6%)2

(4) Uniformly distributed load.

Let O be the point where maximum moment occurs, and x;, X be the distances
from each end of the uniformly distributed load to point O.

From (2.12) L
-(1-62)2xx
am = =—-E
R ey
(1-67)2
2 % 1 1
El-g )'; Sin(l+92)§7\x + cos(lwg)ﬁkﬂ ax
1+6%)2
2B
-(1- L
Xg_g_ e ( e ) X (1_92)2 5 é‘ . 1
s ST TR | (a0 (1% T+ cos(1469) 5 ax
1 - 2
(1 92)%%x 1
~(1- o 1
) L Q(P 4z © Sin(l+92)2%X2 -
A (1-6

1
-(1-6%)2x 1
e ( ) lsin(lwz)ﬁkxﬂ

L
-(1-63) ZNxo
As xXo becomes large, e
approaches zero if @ # 1, we neglect it

X
~(1-62) Axy P pdx
W . ..p e _ el ;
- 2 1 l o
BDE (193 ek | x,
1 ' 'y
sin(1+6%) ZAx,
Fig. 2.2

For maximum moment

Y
aM 1 146%)2
— = 0, or tan(1+6°)2\x; = )1
dx; (1-62)3
For the static case (6 = 0), maximum moment occurs at tan Ax; = 1, or Axj =—:—f

- I
Y 4 . X
Mpax = jpz € sing (2.15)

16



Dynamic load amplification factor =
r 2 ,
L =(1-6%)Ax 1 3
1 le ( lsin(l+92)zkxij
1 _i
(1-04)% lre Z sin EW

(2.16)

where Ax; is determined by the formula

(5) Graphs of dynamic load amplification factors versus velocity.

These are shown both for concentrated load and uniformly distributed load
on the following pages. Since the dynamic load amplification factor depends
on ©, or v/vey where

v =

i
LkEIg2\ 4
cr

h272,/

we should use v,, as a parameter, For a circular tube with radius R and wall
thickness h, equivalent k and I will be:

B W
2’ 12(1-p3)

Vop depends on h only if E, u, and R are constants, so the graphs are drawn
with h as a parameter.

We use E = 29 x 103 k/incz, w=0,3% and R = 36 in. to plot all curves.

From Graph 1, for h = 1 in., v = 1600 ft/sec dynamic load amplification
factor F = 1.51. In comparing that with the simply supported beam calculated
in Part I, F = 1.53, dynamic load factors both for simple beam and infinite
beam are almost the same,

3. Case with Damping.

(1) Deflection curve for steady state response due to concentrated moving
force Pg.

From (2.8), we get

L7
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. nAx

P\ ne

_l °

y = =2

fo—_%

1
{; (88/n+02) sin(2624n2-208/n) Zhx
. n(26%+2-26p/ g

ii, x>0

T e (ne)2 + % (ea/n)%J

-NAX

PoA ne

+ cos( 2@2+n2-29f3/n)—2-7\x}

2k 4+ (no)2 3 (Gﬁ/n)zj

‘_.u

H
i

Noj-

AX

{: (68/1-12) sin(26%+12+26p/1)

n(26%+1%-208/1)

+ cos(2@2+n2+298/n)Kx}

~

where n 1s the positive real root of the equation

(2) Bending moment.

sin(2624n2-26p/1) 2Ax -

i x <0
Moo= - 0
PN

ii, x>0
Moo -0
DN

nG + 2@2.{]4 + (@4_1) Tl2 - G2B2 = 0

— T]?\X
ne

e+ (192 + B (ep/n)

1

]

-

-NAX
ne
ﬁ4+(n®2-F%(%VM

2

N3 - ©2q + 6p + 63p/n2 - 62p2/n3
(262+02-208/n) 3

(n®+6%) cos(26 + -Qeg/n)%xi}

&3+e%1+@s+e%ﬂff+@%ﬁﬁﬁ,
T_ (262 +92+26p/n) 2

L L
sin(26+n%+268/n) 2\x - (n2+92>cos(ze2+n2+2ea/n>2xx1u

20
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(3) Numerical example with damping ratio g = 0.02.

i, Dynamic load factor for © = 1, the most critical case.

x< 0 i
- AX i
S I T B -t B+ e/n2 - p2/yE
: 1 1
Nt 02+ 5 (/)2 - (em®-2p/n)2
1 i
sin(2+n2-28/1)2A\x - (n2+l)005(2+n2-28/n)%%x'(
x>0
B -NAX B ] 3 2 2/n3
Po | —1e L n3 4+ +p/M2+ 2/,
= - i L
N [n% + 02 + 5 (B/n)2] | (2+n2+25/n)2}

, L
sin(2+q2+25/n)%%x - (n2+l)cos(2+n2+25/n)2%xl,

t

where n is the real positive root of

n®+29* -8 = 0, B = 0.02
By Newton's method, we find
n = 0.1185
L e
Po
x>0, M = -5,MH
Dynamic load amplification factor F = 5,k4k,
ii, Dynamic load factor for @ < 1.
N6 + 20274 + (64-1)7n2 - €22 = O
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If

1
e = 0.5, 1 0.866 = (1-6%)2 ,

Q

1
Since n = (1-82)2 for B = 0, here n is the same as that without damping.
The dynamic load amplification factor does not change from that obtained
for the case without damping. For

6 = 0.8, 1 ~ 0.600 = (1-62)3
1

6 = 0.9, 1n ~ 0.436 = (1-6%)2
1

© = 0.95, n ~ 0.323 = (1-62)2

Once n is determined the dynamic load factor can be computed. TFor 6  0.95,
n is the same for both cases with and without damping, so that the dynamic
load amplification factor for both cases are equal,
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CONCLUSION

From the example of a circular tube with h = 1.0 in., R = 36 in., and
v = 1,600 ft/sec, the dynamic load factor for an equivalent beam with length
I =120 in. is 1.53 and for an equivalent infinite beam is 1.51. Those two
factors are practically the same. The deflection y of an infinite beam
resting on an elastic foundation is a f ncTion including e’(l’92)lxx‘ as a
multiplier. As |x| increases, e'(l'gg) Ax decreases very rapidly, so the
deflection at a short distance away from the loading point is nearly equal
to zero., This is equivalent to the beam's having a support there, For
this reason the simply supported, or even the clamped beam (zero end slopes),
may be treated as an infinite beam, insofar as effects of end conditions on
support interruptions are concerned.

Once ‘we'are allowed to treat the finite beam as an infinite beam, then
we can use the graphs on pages 18-19 to find the closely approximate dynamic
load amplification factors for the finite beam. The exact solution for a
finite beam derived in Part I is in a form of infinite series which converges
very slowly, so we can ignore it.

For ordinary structural members g8 varies from 0.005 to 0.03. From the
end of this paper, we know that the dynamic amplification factors with these
small damping ratios do not deviate much from the case without damping ex-
cept for © approaching 1. As the velocity of the moving force approaches
the critical, the maximum dynemic load factor is 5.15 for B = 0.02.

The actual internal pressure is a decaying wave. The calculation of
the response of the circular tube due to such a decaying wave would be com-
plex. TFor an approximate estimation of the maximum bending moment in the
circular tube caused by a decaying pressure wave, we can use an equivalent
rectangular wave pulse instead of a decaying wave to calculate the static
bending moment in the tube and multiply it by the dynamic load amplifica-
tion factor from Graph IT on page 19. If the duration of the shock wave is
large in comparison with the time required for the wave front to travel
through one segment of the tube, we can use the maximum intensity of the
decaying wave pressure as that of the rectangular wave pressure. This is
the case for our problem. Since the velocity of the wave front is from
1,000 ft/sec and the maximum length of the circular tube section in the test
region is 10 ft it takes less than 1/100 sec to travel over the whole length;
while the duration of the shock wave is 1/10 sec. Within 1/100 sec the in-
tensity of the decaying wave pressure will not change much.

23






REFERENCES

"Theory of Plates and Shells," by Timoshenko and Woinowsky-Krieger,
second edition, published by McGraw-Hill Book Co., 1959, pp. 466-481,

"Strength of Materials, Part II," by Timoshenko, S. P., third edition,
published by D. VanNostrand Co., 1956, pp. 1l-11.

"Vibration Problems in Engineering," by Timoshenko, S. P., second
edition, published by D. VanNostrand Co., 1937, pp. 348-370 and pp. 343.

"Method of Analysis of Statical and Dynamical Stresses in Rail,” by
Timoshenko, S. P., Proceedings of the Second International Congress for
Applied Mechanics, 1926, pp. LO7-418,

"Partial Differential Equations of Mathematical Physics," by Webster,
A. G., published by Hafner Publishing Co., 1950, pp. 138-1L2.

"Steady-State Vibrations of Beam on Elastic Foundation for Moving Load, "
by Kenney, J. T., Jr., Journal of Applied Mechanics, Vol. 21, No. ki,

Dec. 1954, pp. 359-36L.

25






APPENDIX I

1. Calculate maximum bending stress for a tube of radius 36 in. under static

pressure p = 100 psi

_ D
=5
6 s
0'=-6-£-‘4= 27\2= op
h? h2 h&\2 T T 1717
oR P=100 psi
R 1€V RN ST C T B hy 34w 1y
\ nPR? hR
. 5. _JphR _ A3pR 6,550 Fig. A-1
hZ V3(1-p2) h N1-p2 b
Wall thick-
ness h(in.) 1/2 3/h 1 1-1/%  1-1/2 | 1-3/4 2
Max. bending 13,000 8,730 6,550 5,240  L,370 3,750 3,270

stress o(psi)

2. Possible maximum stress in 1 in. wall tube if shock front velocity coin-

cides with the critical velocity.

ie., v 2145 ft/sec

Ass. B 0.02, p = 100 psi

Dynemic load amplification factor F = 5.4h

Static stress due to bending, from Section 1 in Appendix I:
o = 6,550 psi

Dynamic stress

o1 = 5.4k x 6,550 = 35,700 psi

Londitudinal stress, assume no dynamic amplification factor involved
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2
. 1001367 | 1800 pei

21°36.1

Total maximum possible stress

0 = o+ 02 = 37,500 psi
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APPENDIX II
Transient Response
(Time required to build up 90% of the maximum deflection)

1. For moving coordinate y = mass of the beam per unit length

E15y+7v25y v§-y-+ky-2 o ay+Cay=1§>(><,’c)

+
x4 dx2 dx ot T 7 2 ot
Let
y o= ¥(x)-7(t)
where
Y = g% [; il T t], for x =0
¢+ (10)2 + 3 (68/n)2
2
‘g =-g7\( B j,forx:O
A(ns+(ne)2 + 5 (0p/n)2
¥ EI ay + yv2 4%y cwdd - p (x1t), for x = 0
dx4 dx2 dx OAELYS s -
S =2yvYtT + YT + CYTY = 0
"+ QX:E%QZL Tt = 0
7 _—
v
o+ (S oy ST = 0 Fo
4 - X
X Aep —57£7§7§7”737;i7%r'
§f = - =5 for x =0
n
vy
Boundary conditions: Fig. A-2
t(0) = 0, limt(t) = 1

t>00
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Let

} e—rt

Boundary conditions:

T(0) = 0, lim1(t) = 1
t>00 (G)

Complementary function:

when

Fig. A-3
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Investigate

2.

v
V=C+2V'—)_\g§
l
c Y
2
C . L. 8. - lmg o 2t
Y 7 Cer Y y
v
2v lgé = 2 2B, T or
n 12 Ver

i xe2 <:%E%>
_ _gfg <%EIK%>4

2048

v o= 25‘1/5-[“(%)21

Numerical computation

For

=
1

p = 0.02, 1 =

0.28L4 1b-sec2 0.28k4

lin, o = 1

0.1185

K-sec2

386 in.3 386,000

k = 22.38 X/in.®

3L

in.S



<<
1]

oy 0.0 |22:38 x 386,000 [ifg (L )Ej
0.28k 0.1185

0.0k x 5520 x 72

]

= 15,900
7= 1-e "t
For
T = 0.9
0.1 = e v*
Lt o= 2.3 . 1.h5 x 107* sec
15,900

Distance travelled = 2,398 x 1.45 x 1074

0.347 ft

32



TR-61-60

No. Cys

[ T

Pt et pd el b e

>

DISTRIBUTION

HEADQUARTERS USAF

Hq USAF (AFOIE), Wash 25, DC
Hq USAF (AFOCE), Wash 25, DC
Hq USAF (AFTAC), Wash 25, DC
AFOAR, Bldg T.D, Wash 25, DC
AFOSR, Bldg T.D, Wash 25, DC

MAJOR AIR COMMANDS

AFSC (SCR), Andrews AFB, Wash 25, DC
AUL, Maxwell AFB, Ala
USAFIT, Wright-Patterson AFB, Ohio

AFSC ORGANIZATIONS

ASD, Wright-Patterson AFB, Ohio
BSD, AF Unit Post Office, Los Angeles 45, Calif
(BSL)
(BST)
(BSQ)
(BSR)
ESD (ESAT), Hanscom Fld, Bedford, Mass
AFCRL (CRZG), L. G. Hanscom Fld, Bedford, Mass

KIRTLAND AFB ORGANIZATIONS

AFSWC, Kirtland AFB, NMex
(SWNH)
(SWOI)
(SWRS)

OTHER AIR FORCE AGENCIES
Director, USAF Project RAND, via: Air Force Liaison Office, The
RAND Corporation (RAND Library), 700 Main Street, Santa Monica,
Calif
ARMY ACTIVITIES

ARGMA Liaison Office, Bell Telephone Labs, Whippany, NJ

33



TR-61-60

No. Cys

DISTRIBUTION (cont'd)

Director, Ballistic Research Laboratories, (Library), Aberdeen
Proving Ground, Md

Director, Evans Signal Laboratory, (Weapons Effects Section),
Belmar, NJ

Commanding Officer, US Army Engineers, Research & Development
Laboratories, Ft, Belvoir, Va

Office of the Chief, Corps of Engineers, US Army (Protective
Construction Branch), Wash 25, DC

Director, US Army Waterways Experiment Sta (WESRL), P. O. Box
60, Vicksburg, Miss
NAVY ACTIVITIES

Commanding Officer and Director, Naval Civil Engineering
Laboratory, Port Hueneme, Calif

OTHER DOD ACTIVITIES

Chief, Defense Atomic Support Agency (John E., Lewis), Wash 25, DC
ASTIA (TIPDR), Arlington Hall Sta, Arlington 12, Va

AEC ACTIVITIES
President, Sandia Corporation (Mr. W, Perret), Sandia Base, NMex
OTHER
Armour Research Foundation (Dr. T. Schiffman), 3422 So. Dearborn

St, Chicago, Il

Severdrup and Parcel and Associates, Inc, (Mr. W, Rivers), 933
Olive St, St. Louis, Mo

University of Illinois, Talbot L.aboratory, Room 207, Urbana, Ill

The University of Michigan, University Research Security Office,
Lobby 1, East Engineering Bldg, Ann Arbor, Mich

Massachusetts Inst, of Tech, Dept of Civil and Sanitary Engineering,
77 Massachusetts Ave, Cambridge 39, Mass

(Dr. Charles H. Norris)
(Dr. R. V. Whitman)

American Machine and Foundry Company, (Thomas G. Morrison),
1104 So Wabash Ave, Chicago 5, Ill

Director, Stanford Rsch Institute, (Dr. Robert Vaile, Jr), Menlo Park,
Calif

Official Record Copy (SWR, Capt Pantall)

3L






IIIIIIIIIIIIIIIIIII

0

Wi

0



