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ABSTRACT

The effect of trade credit on operational policies and on the relationship
between banks, suppliers, and manufacturers

by

Pierre-Yves Brunet

Co-Chairs: Volodymyr Babich and Jussi Samuli Keppo.

Companies in a broad range of industries and economies rely heavily on external

sources to finance their operations. But, external financing could be expensive and/or

difficult to obtain due to imperfections in real capital markets.

I focus on cash-constrained manufacturers that rely on external sources to fi-

nance their operations. More specifically, I focus on trade credit, the most impor-

tant source of short-term financing, and analyze its effect on operational policies and

on the relationship between banks, suppliers, and manufacturers. I discuss factors

that affect supply reliability, fixed cost to work with a supplier, and the trade credit

amount suppliers make available to manufacturers. Then, I determine how supply

risk, financing constraints, and the dual role served by suppliers affect the financ-

ing and operational decisions of manufacturers. I also contrast differences in supply

reliability, fixed cost to work with a supplier, and financing constraints between

manufacturers in developed and developing economies to address how the economic
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environment manufacturers operate in affects their financing and operational deci-

sions. Afterwards, I analyze the effect of trade credit on manufacturers’ financing

and operational decisions when there is information asymmetry between banks and

manufacturers about the credibility of manufacturers.

The analysis suggests that the optimal number of suppliers may increase as the

availability of either internal financing or trade credit diminishes and as the cost to

work with a supplier or the wholesale price increases. Surprisingly, as the standard

deviation of a supplier yield’s increases, the optimal number of suppliers could either

increase or decrease. Ceteris paribus, manufacturers in developing economies will

have more suppliers than comparable manufacturers in developed economies. But if,

in developing economies, the cost to work with a supplier is very high or the man-

ufacturer is close to bankruptcy, then this manufacturer may actually have fewer

suppliers than its counterpart in developed economies. Cash-constrained manufac-

turers should only use trade-credit to finance their operations when borrowing from

suppliers is cheap or when they are trying to signal their credibility to banks. Also,

the availability of trade credit may increase or decrease operational costs and it may

increase the total amount to borrow.
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CHAPTER I

Introduction

1.1 Motivation.

Companies in a broad range of industries and economies rely heavily on external

sources to finance their operations. But, external financing could be expensive and/or

difficult to obtain due to asymmetric information between lenders and borrowers,

high cost of capital of lenders, high cost of lenders to monitor the credibility of

potential borrowers, credit rationing by lenders, and expensive loan terms sometimes

extended by lenders with power advantage over manufacturers.

Banks often have lower costs of capital and easier access to capital than suppliers.

Therefore, banks can offer loans at cheaper rates than suppliers if they can assess how

likely manufacturers are to repay. Unfortunately, asymmetric information that often

exists between banks and manufacturers causes banks to offer unfavorable loan terms

or even deny loans to manufacturers. However, suppliers, being in the same industry

as manufacturers, can sometimes better estimate the distribution of the demand for

manufacturers’ goods than banks and the competition among suppliers to sell goods

to manufacturers might make suppliers lend to manufacturers with greater ease than

banks. This is why, even when suppliers offer credit terms that come at high costs,

the relatively easy access to supplier financing enables manufacturers to signal their

1



credit quality to banks, which facilitates access to bank loans.

1.2 Contributions.

I focus on cash-constrained manufacturers that rely on external sources to fi-

nance their operations. More specifically, I focus on trade credit1, the most impor-

tant source of short-term financing, and analyze its effect on operational policies and

on the relationship between banks, suppliers, and manufacturers. I discuss factors

that affect supply reliability, fixed cost to work with a supplier, and the trade credit

amount2 suppliers make available to manufacturers. Then, I determine how supply

risk, financing constraints, and the dual role served by suppliers affect the financ-

ing and operational decisions of manufacturers. I also contrast differences in supply

reliability, fixed cost to work with a supplier, and financing constraints between

manufacturers in developed and developing economies to address how the economic

environment manufacturers operate in affects their financing and operational deci-

sions. Afterwards, I analyze the effect of trade credit on manufacturers’ financing

and operational decisions when there are information asymmetry between banks and

manufacturers about the credibility of manufacturers.

1.3 Main results.

The analysis suggests that the optimal number of suppliers may increase as the

availability of either internal financing or trade credit diminishes and as the cost to

1Trade credit is the delay in payments from the buyer to the supplier of goods. One can think of trade
credit as a loan extended by the supplier to the buyer. The buyer effectively obtains the loan from the
supplier by not paying for the purchase initially, but it has to repay the loan later. The typical trade credit
contracts in the United States are “net 30” and “2/10 net 30” (see Ng et al. (1999)). According to the
former, the buyer does not have to pay for the purchase for 30 days, thus obtaining, effectively, a 30-day
interest-free loan. According to the latter contract, the buyer receives a 2% discount if it pays for the
purchase within 10 days, and it has up to 30 days to pay for the goods. Trade credit contracts vary by
industry and country. It is not uncommon to see trade credit terms that have maturity longer and shorter
than 30 days, and higher and lower implied interest rates.

2To better compare trade credit with other financing sources, trade credit is modeled as a cash-advance
from suppliers to manufacturers instead of a delay in payments of goods.

2



work with a supplier or the wholesale price increases. Surprisingly, as the standard

deviation of a supplier yield’s increases, the optimal number of suppliers could either

increase or decrease. Ceteris paribus, manufacturers in developing economies will

have more suppliers than comparable manufacturers in developed economies. But if,

in developing economies, the cost to work with a supplier is very high or the man-

ufacturer is close to bankruptcy, then this manufacturer may actually have fewer

suppliers than its counterpart in developed economies. Cash-constrained manufac-

turers should only use trade-credit to finance their operations when borrowing from

suppliers is cheap or when they are trying to signal their credibility to banks. Also,

the availability of trade credit may increase or decrease operational costs and it may

increase the total amount to borrow.

3



CHAPTER II

Risk, Financing and the Optimal Number of Suppliers

2.1 Introduction.

Should manufacturers in developed economies work with more or fewer suppliers

than manufacturers in developing economies? More generally, how does the number

of suppliers for a manufacturer depend on the manufacturer’s economic environment?

To answer these questions I identify several economic and business factors that might

affect the number of suppliers: supply risk, fixed costs to work with suppliers, and

access to financing (particularly trade credit financing).

Supply risk has been recognized as one of the main reasons for manufacturers to

diversify their supply base both in empirical research (see Wu and Choi (2005)) and

in theory (see Minner (2003), Agrawal and Nahmias (1997), Tang (2006), Babich et

al. (2007), Dada et al. (2007), Yang et al. (2009), Yang et al. (2008)). The severity

of exposure to supply risks depends on where suppliers are located and a variety

of other economic and business factors. For example, manufacturers operating in

developing economies may have to cope with greater uncertainty about supplier reli-

ability due to underdeveloped production, transportation, information, and financial

infrastructures, as well as insufficient legal protection and political risk1. The ram-

1For example, Ukrainian government seized assets of a number of firms in a reprivatization campaign
following the “Orange Revolution” (see Paskhaver and Verkhovodova (2007))

4



ifications of supply risk and, hence, the need for diversification also depend on the

extent to which the owners of a firm are liable for the disruption consequences. If the

owners could walk away from their financial and other obligations to their financial

partners and customers, then the owners would be less concerned about supply risk

and rely less on diversification. Although the connection between supply risk and

diversification has been studied extensively, the effect of liability on this connection,

which we study in this chapter, has received scant attention in the literature.

Fixed costs to work with suppliers create incentives for manufacturers to lean out

their supply base. These costs can take various forms. For example, some manufac-

turers (e.g. in automotive and aerospace industries) must certify potential suppliers

using rigorous and costly process before any part can be procured. Furthermore, just

the initial certification may not be sufficient. To guarantee that suppliers perform

according to the manufacturer’s expectations, suppliers must be continuously moni-

tored and the quality of their parts must be checked. Costs to monitor and contract

enforcement is significantly higher in economies with less developed legal systems

and information infrastructure.

In addition to raising capital in well-functioning and mature financial markets,

the majority of companies in the U.S.A. (and other developed countries) rely on

alternative sources, such as trade credit and private investments, to finance their

strategic, tactical, and operational decisions. In fact, trade credit financing is the

single largest source of external short-term corporate financing in the United States

(see Rajan and Zingales (1995) and Petersen and Rajan (1997)). According to Rajan

and Zingales (1995), accounts payable and creditors constituted 15%, while debt in

current liabilities was only 7.4% of the total book value for an average non-financial

5



firm in 1991.2 Several studies (see Nilsen (2002) and Atanasova and Wilson (2003))

find that the reliance on trade credit financing increases when other sources of financ-

ing are restricted (for example, during times of monetary crunch in the economy).

This is why, in developing economies, whose financial markets are still in their in-

fancy, access to trade credit has profound consequences for a manufacturer’s growth

potential, competitive abilities, and survival. Several recent empirical studies em-

phasize the importance of trade credit as a financing source in developing economies.

Fisman and Love (2003) observe that, in countries with weaker financial institu-

tions, the industries with higher dependence on trade credit financing exhibit higher

rates of growth, relative to other industries. Fisman (2001) discovers a correlation

between the availability of trade credit financing and a manufacturer’s operational

performance. Using a sample of African firms, Fisman (2001) finds that firms with

access to trade credit financing are less likely to experience stock-outs, and are more

likely to have higher production-capacity utilization. To the best of my knowledge,

the interactions among financing constraints, trade credit loans and the number of

suppliers has not been studied before, a gap that this chapter aims to fill.

In this chapter, I analyze how financing constraints, the dual role played by

suppliers as the providers of parts and the financiers of the manufacturer, supplier

risk, limited liability of the manufacturer, and fixed costs to work with suppliers

affect the manufacturer’s choices of order quantities and the number of suppliers.

Using a one-period model with homogeneous suppliers (and later a model with non-

homogeneous suppliers), I consider the joint procurement and financing decisions of

2Given the prevalence of trade credit, examples of companies that rely heavily on this form of financ-
ing are easy to find. Consider, for instance, TenderCare International, Inc., which sells disposable baby
diapers, natural formula wipes, and related products in the United States. According to this company’s
annual report, it had $1.172 million in accounts payable, and $0.007 million in short-term debt out of total
$1.218 million in total current liabilities in 2005. In the same year, the company’s cost of goods sold was
$2.185 million. Thus, with Days Payables Outstanding = Account Payables/COGS ∗ 365 ≈ 6 months,
TenderCare International depends greatly on its suppliers for financing.

6



a manufacturer with access to limited internal financing and loans from suppliers,

facing either an uncertain demand or an uncertain supply (random yield). In contrast

to the traditional operational models where the decision maker is fully liable for

losses, I model the decisions of the owners of the manufacturer, who may have limited

liability (e.g. they could be limited-liability partners or shareholders; I will refer to

the owners of the manufacturer as the shareholders in the sequel).

The contracts between suppliers and the manufacturer are assumed to be given

exogenously. This is why the contract terms, in particular, the terms of the loans ex-

tended by the suppliers to the manufacturer do not change as I perform comparative

statics analysis on the solution. There are several reasons for the contract terms to be

fixed. In practice, contracts are renegotiated on a periodic basis and are not sensitive

to short-term fluctuations in the manufacturer’s condition. Furthermore, although

I am analyzing a single product line of the manufacturer, the manufacturer might

have other product lines and might be selling in multiple markets. Thus, the contract

terms must take into account the manufacturer’s overall condition and not just the

condition of one of the manufacturer’s subdivisions. I focus on manufacturers that

do not have access to stock markets for additional financing (as is the case in some

developing economies) or consider equity financing costs to be too high (see Pagano

et al. (1998) for a discussion about the costs of going public and tradeoffs between

equity vs. bank financing). The lack of equity investor scrutiny exacerbates the non-

transparency of the manufacturer’s operations to outside investors. This asymmetric

information violates the perfect capital market assumption of Modigliani and Miller

(1958) and prevents the lenders from reacting to changing conditions of the manu-

facturer. A number of empirical studies find that loan terms are fairly insensitive to

individual firm conditions. For example, using data from a sample of small firms,
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Petersen and Rajan (1994) observe that, once a decision to extend a loan is made,

the loan terms are determined based on industry practices, economy-wide factors,

internal policies and conditions of the lender, and do not depend on the conditions

of the borrower. Ng et al. (1999) find that, while there are significant differences be-

tween industries, the trade-credit contract terms are standardized within industries,

with “net 30” and “2/10 net 30” being the most popular contracts.

Based on my analysis, I offer several testable hypotheses about the relationship

between economic conditions and size of the manufacturer’s supply base. Some

of these hypotheses have already been confirmed in prior empirical studies; others

still need to be empirically verified. Specifically, as one would expect, the analysis

suggests that the alternative financing sources (internal financing and trade credit)

are substitutable. That is, ceteris paribus, the manufacturer uses more suppliers if

internal financing is not available. Surprisingly, I also find that, because of limited

liability of the shareholders, the optimal production quantity could be increasing

in fixed costs. Furthermore, the optimal number of suppliers could be increasing

in fixed costs to work with suppliers as well, because working with more suppliers

could relax the manufacturer’s financing constraints. In addition, I observe that the

limits on loans and the wholesale price affect the optimal number of suppliers in a

non-monotone way. Interestingly, I find that the value of the shareholders and the

optimal number of suppliers of the manufacturer could be increasing or decreasing

in the standard deviation of the supplier random yield. This is a consequence of

the tradeoffs between the expected profit and the value of the option to default that

shareholders hold. I study the effects of limited liability and find that, when suppliers

are perfectly reliable, the greater the loss for which the manufacturer is responsible,

the smaller the order quantity the manufacturer will place and the fewer the number
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of suppliers with whom the manufacturer will work. However, when suppliers are

not reliable, it may happen that the greater the loss the manufacturer is responsible

for, the more suppliers the manufacturer may order from in order to take advantage

of supply-risk diversification benefits.

Finally, I address the question whether manufacturers operating in developing

economies must contract with more suppliers than manufacturers operating in de-

veloped economies. The answer is “no” if the fixed cost of an extra supplier is

high. However, in this case, my model predicts that financing constraints will force

manufacturers in developing economies to suboptimal levels of production and cause

higher stock-out rates. This conclusion is consistent with the results of earlier em-

pirical studies.

The remainder of the chapter is organized as follows. In the next section I dis-

cuss the related literature. The model, which contains both financing and operational

decisions, is discussed in Section 2.3. In Section 2.4 I find the optimal financing de-

cisions, given the optimal operational decisions. Then, I derive a series of analytical

results on the optimal operational decisions and the role of financing constraints in

the supplier selection. These analytical results guide a numerical study, the results

of which are presented in Section 2.5. Section 2.6 considers a model with hetero-

geneous suppliers. Conclusions, model limitations, and future research directions

are discussed in Section 2.7. Finally, the Appendix contains technical lemmas and

proofs.

2.2 Literature review.

If capital markets were perfect, as Modigliani and Miller (1958) proved in their

seminal paper, managers could consider financing decisions independently from the
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manufacturer’s other decisions. However, imperfections of real capital markets, such

as transaction costs, taxes, information asymmetry, and bankruptcy costs imply

that managers could generate value for shareholders by jointly considering financing

and non-financing decisions (see Harris and Raviv (1991) for a survey of research

on the choice of capital structure and the effects of market imperfections). Several

recent papers: Lederer and Singhal (1994), Li et al. (2005), Babich and Sobel (2004),

Buzacott and Zhang (2004), Xu and Birge (2004), and Boyabatli and Toktay (2007)

consider the value of combining financing, operational, and technology decisions.

Similar to those papers, I will explicitly model the manufacturer’s ordering and

financing decisions and investigate how financing terms (in my case, trade credit

terms) affect ordering decisions. For example, Buzacott and Zhang (2004) study how

asset-based bank loans affect the ability of the manufacturer to grow (using a dynamic

deterministic model) and how asset-based financing terms can be optimally set by

banks (using a one-period Stackelberg game with a stochastic demand and several

borrowers). Similar to the model in Buzacott and Zhang (2004), I consider the limited

liability of the borrower. Unlike their model, however, I focus on the manufacturer’s

choice of the number of suppliers, driven by the tradeoff between the fixed costs of

adding a supplier and the benefits of relaxing financing constraints or diversifying

supply risk. The external financing in my model is provided by the suppliers (through

trade credit), who perform a dual function by supplying components and offering

financing to the manufacturer.

A number of researchers studied the effects of trade credit on inventory policies.

For example, Gupta and Wang (2009) prove that, even in the presence of trade credit,

the order-up-to inventory policy remains optimal for a discrete-time, joint inventory-

financing model, and suggest an algorithm for computing the optimal stock level
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for a continuous-time model. The effects of delayed payments on the Economic

Order Quantity model were investigated by Haley and Higgins (1973), Chapman et

al. (1984), and Rachamandugu (1989). In this chapter, in addition to determining

optimal order quantities (as is done in the cited articles), I will compute the optimal

number of suppliers that a manufacturer should have.

If the supplier yields are random, then the manufacturer may benefit by ordering

from several suppliers. The benefits of diversification3 as a remedy for supplier

random yields were considered, for example, by Anupindi and Akella (1993), Tomlin

(2006), Tomlin (2007), Dada et al. (2007), and Federgruen and Yang (2007). Babich

et al. (2007), and Babich (2006) quantify diversification benefits when suppliers are

competing. However, the majority of the research in the random yield literature

assumes that the supplier set is exogenously given (see Yano and Lee (1995) for

an extensive review of random yield research). Among exceptions is the work by

Agrawal and Nahmias (1997), who study tradeoffs between diversification benefits

and supplier set-up costs using a one-period model with independent, multiplicative,

normally distributed supplier yields. The authors consider cases of both identical

and non-identical suppliers, provide conditions that the optimal order quantities

must satisfy, and suggest numerical procedures for determining the optimal number

of suppliers. Agrawal and Nahmias (1997) find that the optimal order quantity is

likely to be increasing and the optimal profit is decreasing in the volatility of the

supplier yield. They also find that the profit is increasing and the optimal order

quantity is likely to be decreasing in the yield’s mean.

I extend the analysis of the identical-supplier case of Agrawal and Nahmias (1997)

by adding financing decisions and financing constraints, and by allowing for the lim-

3By diversification I mean holding a portfolio of contracts, instead of just one contract. In this chapter
specifically, diversification means placing orders with several suppliers.
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ited liability of the decision makers. These additional assumptions produce results

different from those in Agrawal and Nahmias (1997). For example, while the optimal

value of the objective function is increasing in the random yield’s mean both in our

model and in Agrawal and Nahmias (1997), I observe that with the limited liability

assumption, the decision makers in my model may benefit from an increase in the

volatility of supplier yields. While diversification benefits provide a powerful incen-

tive for the manufacturer to order from several suppliers, financing constraints in the

model may either hinder or encourage diversification. Unlike Agrawal and Nahmias

(1997), I do not study in depth the supplier selection problem with non-identical

suppliers, because I focus on financing decisions, financing constraints, limited liabil-

ity, and their effects on the size of the supply base, rather than on interactions with

individual suppliers. However, I do extend the analytical results of their model with

heterogeneous suppliers to our setting.

A number of earlier studies observed effects of limited liability similar to our

findings. Gollier et al. (1997) consider the investment problem of a risk-averse firm

with limited liability. They show that the optimal exposure to risk is always larger

under limited liability compared to full liability. Brander and Lewis (1986) show that

limited liability may commit a leveraged firm to a more aggressive output stance.

Because firms will have incentives to use financial structure to influence the out-

put market, this demonstrates a new determinant of the debt-equity ratio. Faure-

Grimaud (2000) shows that asymmetric information between banks and firms plays

a crucial role in financing decisions and output market strategies. In his model, debt

causes firms to compete less aggressively: the usual (positive) limited liability effect

on quantities is offset by a negative one due to (endogenous) financing costs.
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2.3 Model and assumptions.

Consider a one-period model with a manufacturer that procures a component

from outside suppliers in order to meet random customer demand, denoted by D.

I am modeling only one of possibly several businesses that the manufacturer may

have. There exists a number of suppliers, and the managers of the manufacturer must

decide with how many suppliers to contract (the number of suppliers contracted is

denoted by N) and how much to order from each (the quantity ordered from supplier

i is denoted by yi). Similar to Agrawal and Nahmias (1997), I assume that suppliers

are identical to simplify the analysis. Therefore, each supplier receives the same

order quantity: yi = y. The total order placed with the suppliers is z = Ny.

Demand.

The customer demand D is a random variable with probability density function

(p.d.f.) g and cumulative distribution function (c.d.f.) G. Define G(x) = 1−G(x).

I will also consider models with deterministic demand D.

Assumption 2.1. Let demand D be defined over a domain [xl, xu] where 0 ≤ xl <

xu <∞. Let G be strictly increasing and twice continuously differentiable. Further-

more, assume g(x)

G
2
(x)

is increasing.

The requirement of a finite domain imposed by Assumption 2.1 is needed to rule

out pathological cases where the manufacturer may find it desirable to order arbi-

trarily large quantities. The condition that g(x)

G
2
(x)

is increasing is a weaker condition

than requiring that the demand distribution has an increasing failure rate (IFR)

and, therefore, is satisfied by all IFR distributions (and their truncated versions),

including the normal, Weibull and Gamma distributions. This assumption will be

used to establish the unimodality of the objective function later in the chapter.
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Random yield.

The yield of a supplier is random and independent across suppliers. Similar to

Agrawal and Nahmias (1997), it will be convenient to assume that the yields are

stochastically proportional and normally distributed. Therefore, if an order for y

units is placed with a supplier at the beginning of the planning horizon, a quantity

Xy will be delivered by the sales time, where X ∼ N (µ, σ). If the total order

quantity z = Ny is placed with N suppliers, then a quantity Q(N, z) = Xz will

be delivered, where X ∼ N
(
µ, σ√

N

)
. To guarantee that the probability of supplier

yield falling outside of the range [0,1] is negligible, I assume that 0 < µ± 3σ < 1.

Operational costs and revenues.

Each supplier charges the manufacturer w per unit of the component when the

order is placed. The timing of payments is not of great importance when suppliers

are perfectly reliable. When suppliers are unreliable, the manufacturer prefers to

pay after the delivery and only for items that are actually delivered. Suppliers prefer

up-front payments for the orders that have been placed. Depending on the market

power of the manufacturer and the suppliers, some combination of per-ordered and

per-delivered payment contracts will be adopted.4 Even if the manufacturer enjoys

full market power, there are circumstances when only contracts with per-ordered

payments are possible. For example, the cost of verifying the delivery size (e.g. via

quality control) could be prohibitively high, leaving the manufacturer no alternative

but to accept the entire order and rely on its customers to identify defective prod-

ucts. Furthermore, even if the inspection costs are low, in practice the manufacturer

accepts the whole order if, e.g., 98% of the products in the samples are good, be-

cause the inspection process is not error free — error rates between 20%-30% are

4As Babich et al. (2007) demonstrate, in equilibrium the suppliers and the manufacturer could be
indifferent between per-ordered and per-delivered payments.
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not unusual (see Chapter 14 and Chapter 15 in Montgomery (2005)). I analyzed

a general model with both per-ordered and per-delivered payments; however, the

insights obtained were the same as those for the model with only per-ordered pay-

ments. Therefore, for the sake of exposition, I only present the simpler model with

per-ordered payments.

In addition to variable costs, the manufacturer incurs a fixed cost of C for working

with a supplier. The fixed cost in this chapter represents an amalgam of various costs

that a manufacturer has to incur by working with a supplier, including supplier-

selection costs, contract-monitoring costs, legal fees, quality control expenses, etc.

These costs encompass both physical and financial transaction costs. Thus, the cost

of operations is NC +wz. Unmet demand becomes lost sales, and leftover inventory

has no value. Therefore, the revenue of the manufacturer is pmin[D,Q(N, z)], and

the manufacturer’s operational profit is pmin[D,Q(N, z)]− wz −NC.

Financing.

The manufacturer has two financing options for its operational decisions: internal

capital and trade credit (recall that in Section 2.1 I argued that trade credit is the

single most important form of external short-term financing). Assume that at the

beginning of the planning horizon the internal capital (which is internally generated

cash available to the manufacturer, e.g., retained earnings) is I. The manufacturer

can invest at the rate of rI .

The manufacturer may also use trade-credit contracts offered by the suppliers.

As discussed in the introduction, a trade-credit contract allows the buyer to delay

payments for the goods received, which is equivalent to the supplier offering a loan

to the buyer.5 For example, suppose that a manufacturer places an order for y units

5See Chapter 30 (p. 812 - 840) of Brealey et al. (2006) for a description of trade-credit contract terms.
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with a supplier. The supplier offers the manufacturer the choice either to make an

immediate payment of wy or to postpone paying for any part of the order until the

end of the planning horizon. At the end of the planning horizon the manufacturer

must pay a higher per unit amount w(1 + rS). Effectively, the manufacturer can

take out a loan, S, up to the monetary value of the purchase, wy (i.e. S ≤ wy),

with the supplier. The interest rate on this loan is rS. In general, the supplier may

offer a trade credit on only a part of the order (i.e. S ≤ αy, where 0 ≤ α ≤ w)

and may even offer some amount, β, regardless of the order size, just for receiving

an order from the manufacturer (i.e. S ≤ αy + β, where 0 ≤ α ≤ w ). In most

applications, β = 0. However, I derive results with a more general assumption:

β ≥ 0. The terms offered on the supplier loans can be better or worse than those

of internal financing, depending on competition among suppliers, transaction costs,

information asymmetry and other factors.6 The absolute size of the loan from a

supplier depends on the supplier’s size (in financial terms), monetary supply in the

economy, the ability of the supplier to access capital, and the credit-risk management

activities of the supplier (lenders usually limit the size of a loan that can be offered

to any single borrower). Thus, an additional constraint on the supplier loan is

S ≤ Ŝ, where Ŝ is the upper limit on the loan, regardless of the manufacturer’s

order size. Putting together two constraints on the loan from a supplier, we obtain

S ≤ S(y) = min(Ŝ, αy + β).

If the fixed cost to work with a supplier, C, is greater than the absolute limit on

the supplier loan, Ŝ, then the manufacturer cannot use additional suppliers to relax

financing constraints. To make the problem more interesting, I assume that C < Ŝ,

which, in practice, is a reasonable property. It is also natural to assume that the

6For discussions of factors affecting trade-credit terms, see Petersen and Rajan (1997), and Biais and
Gollier (1997).
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amount of money, β, the buyer receives from the supplier just by placing an order

is less than the fixed cost to work with a supplier, C. This assumption is likely to

be true in practice, because in most applications β = 0. In general, this assumption

prevents the buyer from having infinite wealth at time 0 just by placing orders with

an infinite number of suppliers (each supplier increasing the manufacturer’s wealth

by β−C > 0). To summarize, we make the following assumptions on the parameters

of the supplier loans:

Assumption 2.2. 0 ≤ α < w and 0 ≤ β < C < Ŝ.

Furthermore, I assume (to avoid trivial solutions) that the rate of return on

both financing sources, internal capital and trade credit, is small enough that the

manufacturer is able to recover the wholesale price plus the interest by selling the

product. That is:

Assumption 2.3. p > (1 + max{rS, rI})w.

In this one-period model, I assume that the loan terms are fixed. One could think,

for example, that the manufacturer makes decisions after having observed the loan

rates and the loan limits offered by the lenders. As discussed in the introduction,

in perfect capital markets, the loan terms would reflect the default probability of

the borrower and the loans would be fairly priced. However, real markets are not

perfect. For example, due to information asymmetry, suppliers may not be able

to adjust their rates in response to the changing business risk of the manufacturer.

Using data from a sample of small firms, Petersen and Rajan (1994) observe that,

once a decision to extend a loan is made, the loan terms are determined based on

industry practices, economy-wide factors, and internal policies and conditions of the

lender, and are fairly insensitive to the conditions of the borrower. One may wonder
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if the loan limits are more sensitive to the changes in the borrower’s state. As Berger

and Udell (1995) discuss, although credit line agreements usually include clauses

that allow banks to revoke credit in case of significant changes in the conditions

of the borrower, these clauses can only be invoked based on verifiable events. Even

when events are verifiable, Avery and Berger (1991) show that banks are reluctant to

invoke these clauses. Likewise, suppliers may decide to extend favorable loan terms

even to their risky customers, in order to benefit in the long run by avoiding the

costs of their customers’ defaults.

Objective.

The objective of the manufacturer’s managers is to maximize the value for the

manufacturer’s shareholders, who have limited liability because of bankruptcy pro-

tection. We are considering a single-period model and, therefore, the value of the

business is the value of its cash position at the end of the planning horizon. If the

manufacturer loses money on this business, part of the losses can be absorbed by

the other businesses that the manufacturer has. From the shareholder’s perspective,

they are liable for the losses from this business up to an amount l < 0. That is, if the

cash position of this business is x, the shareholders receive max(l, x). Special cases

of limited liability are l = −∞, in which case the shareholders are liable for all losses

(as is traditionally assumed in the operations literature) and l = 0, in which case the

shareholders are not liable for losses at all (as would be the case if the manufacturer

had only one business). In the subsequent sections I will highlight the results that

are driven by the limited liability assumption.

Timing of events and cash flows.

At the beginning of the planning horizon, the manufacturer decides on the optimal

number of suppliers, the total order quantity, and the financing sources and amounts.
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It receives loans from the suppliers, NS, and pays operational costs, NC + wz.

The suppliers deliver product by the end of the planning horizon. Random de-

mand is realized and the manufacturer collects revenue, pmin[D,Q(N, z)], repays

loans, N(1 + rS)S, or declares bankruptcy.

Mathematical formulation.

With the assumptions listed above, the manufacturer’s objective function is as

follows:

E [max {l, pmin[D,Q(N, z)]− (1 + rI)(wz +NC)− (rS − rI)NS + (1 + rI)I}] .

(2.1)

The first term inside the max operator, l, is a non-positive number and it represents

the amount of losses the shareholders are liable for. The second term inside the

max operator is the manufacturer’s cash position at the end of the planning horizon.

(Recall that if the manufacturer incurs a loss, in which case the cash position is

negative, the shareholders are liable only up to an amount l.) The cash position

itself consists of four terms. The first term, pmin[D,Q(N, z)], is the revenue from

sales, assumed to be collected at the end of the planning horizon. The second term

captures the operational costs incurred by the manufacturer at the beginning of the

planning horizon, wz + NC, inflated by the manufacturer’s internal rate of return,

rI . The third term, (rS − rI)NS, is the interest paid on supplier loans. The fourth

term, (1 + rI)I, is the manufacturer’s internal capital, I, inflated by internal rate of

return, rI .

Using max{l, x} = l+(x− l)+ and noting that l is a constant, we can simplify the
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objective (2.1), obtaining the following optimization problem for the shareholders

max
S≥0,z≥0,N∈N

E {pmin[D,Q(N, z)]− (1 + rI)(wz +NC)− (rS − rI)NS + (1 + rI)I − l}+

(2.2a)

subject to:

wz +NC ≤ NS + I, (2.2b)

S ≤ S(z/N). (2.2c)

2.4 Model analysis.

I will first investigate the optimal financing decisions when the operational de-

cisions are already fixed. Subsequently, I will investigate the optimal operational

decisions.

2.4.1 Financing decisions.

I will describe the optimal financing decision (i.e., the amount of supplier loan, S),

provided that the operational decisions (i.e., order quantity, z, and number of sup-

pliers, N) are fixed. In order for the operational decisions to be financially feasible,

we need

wz +NC ≤ NS(z/N) + I. (2.3)

Using the expression for the limit on the supplier loan S(y) = min(Ŝ, αy + β), one

can write an expression for financing feasibility of the operational decisions given by

(2.3) as follows 
(w − α)z + (C − β)N ≤ I,

wz − (Ŝ − C)N ≤ I.

(2.4)
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An inspection of problem (2.2) yields the following crucial observation: depending

on whether the supplier loan is more (rS > rI) or less (rS < rI) expensive than the

internal rate of return, the manufacturer will either borrow the smallest feasible or

the largest feasible amount from suppliers. The following proposition presents the

optimal supplier loan amounts:

Proposition 2.1. Suppose that the operational decisions — number of suppliers, N ,

and order quantity, z — are fixed and financially feasible (as in inequality (2.3)).

Then the optimal loan amounts are

Case I: rI < rS.

NS∗ = (wz +NC − I)+. (2.5)

Case II: rI > rS.

NS∗ = NS(z/N). (2.6)

Now, using optimal financing decisions (2.5), (2.6) and the expression for financing

feasibility of operations decisions (2.4), we can rewrite optimization problem (2.2) as

follows:

Case I: rI < rS.

max
z≥0,N∈N

E
{
pmin [D,Q(N, z)]− (1 + rI)(wz +NC)

− (rS − rI)(wz +NC − I)+ + (1 + rI)I − l
}+

(2.7a)

subject to:

(w − α)z + (C − β)N ≤ I, (2.7b)

wz − (Ŝ − C)N ≤ I. (2.7c)
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For Case I, the term (wz+NC−I)+ in the objective function is zero if only internal

financing is used, and it is positive if both internal and supplier financing are used.

Therefore, the equation (wz +NC)− I = 0 defines a threshold of dual financing for

Case I.

Case II: rI > rS.

max
z≥0,N∈N

E
{
pmin [D,Q(N, z)]− (1 + rI)(wz +NC)

+ (rI − rS) min
(
NŜ, αz +Nβ

)
+ (1 + rI)I − l

}+
(2.8a)

subject to:

(w − α)z + (C − β)N ≤ I, (2.8b)

wz − (Ŝ − C)N ≤ I. (2.8c)

For Case II, instead of a threshold of dual financing, we are concerned with the

threshold of exceeding supplier loan limit ; that is, whether the manufacturer will

order so much from each supplier that it will reach the limit on the supplier loan Ŝ.

Instead of proceeding with the analysis of problems (2.7) (when rI < rS) and

(2.8) (when rI > rS) separately, observe that they possess the same mathematical

structure. Therefore, we can formulate a generalized problem, which highlights the

salient model features and streamlines the analysis. That is, instead of repeating the

same analysis twice, we can perform it only once with the generalized model and

then apply the results derived to each special case. Define a generalized objective

function f(N, z) as follows:

f(N, z) = E[ΠL(N, z)]+ · 1{T (N,z)≤0} + E[ΠR(N, z)]+ · 1{T (N,z)>0} (2.9)
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where

ΠL(N, z) =


pmin [D,Q(N, z)]− (1 + rI)(wz +NC) + (1 + rI)I − l if rI < rS,

pmin [D,Q(N, z)]− (1 + rI)(wz +NC) +

(rI − rS)(αz +Nβ) + (1 + rI)I − l
if rI > rS;

(2.10)

ΠR(N, z) =


pmin [D,Q(N, z)]− (1 + rS)(wz +NC) + (1 + rS)I − l if rI < rS,

pmin [D,Q(N, z)]− (1 + rI)(wz +NC) +

(rI − rS)NŜ + (1 + rI)I − l
if rI > rS;

(2.11)

T (N, z) =


wz +NC − I if rI < rS,

αz +Nβ −NŜ if rI > rS.

(2.12)

Thus, the objective function consists of two components, defined using function ΠL

and ΠR, with function T defining the threshold ẑ seperating the domains of ΠL and

ΠR. For a given N ,

T (N, ẑ) = 0. (2.13)

Threshold ẑ is what is earlier called the threshold of dual financing and the threshold

of exceeding supplier loan limit. Throughout the remainder of the chapter, I denote

fL(N, z) = E[ΠL(N, z)]+ and fR(N, z) = E[ΠR(N, z)]+. (2.14)

Furthermore, observe that fL(N, z) and fR(N, z) have the same structure; both can

be written as E {pmin [D,Q(N, z)]− akz − bk(N)− l}+ for k = L,R, with ak and

bk(N) given by:

aL =


(1 + rI)w if rI < rS,

(1 + rI)w − (rI − rS)α if rI > rS.

(2.15)
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bL(N) =


(1 + rI)NC − (1 + rI)I if rI < rS,

(1 + rI)NC − (rI − rS)Nβ − (1 + rI)I if rI > rS.

(2.16)

aR =


(1 + rS)w if rI < rS,

(1 + rI)w if rI > rS.

(2.17)

bR(N) =


(1 + rS)NC − (1 + rS)I if rI < rS,

(1 + rI)NC − (rI − rS)NŜ − (1 + rI)I if rI > rS.

(2.18)

There is a good reason to introduce new notation. With the original parameters,

the subsequent expressions would have been difficult to parse. New parameters have

simple and practical interpretations: ak, k = L,R is the manufacturer’s unit variable

procurement cost, and bk(N), k = L,R is the manufacturer’s overhead cost.

In Section 2.4.1, we have explored the optimal financing decisions. Section 2.4.2

and Section 2.4.3 are dedicated to analyzing operational decisions.

2.4.2 Operational decisions under stochastic demand and deterministic yield.

I investigate the effect of financing constraints on the optimal operational deci-

sions for the manufacturer when the demand, D, is stochastic and the supplier yield,

X, is deterministic and perfect, i.e., Q(N, z) = z. That is, for Section 2.4.2, I make

the following assumption:

Assumption 2.4. The yields of the suppliers are deterministic and perfect, X = 1.

In Section 2.4.3, we will turn our attention to the effect of diversification for the

case with random yield and deterministic demand.
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2.4.2.1 Manufacturer’s objective function.

I begin with the analysis of the objective function of our problem, by assuming

only in Section 2.4.2.1, that problem constraints are not binding. Recall the def-

initions (2.9) and (2.14) of the manufacturer’s objective function. Unfortunately,

functions fk(N, z), k = L,R are not necessarily concave in z, for a fixed N . Hence,

the function f(N, z) is not concave in z either. Nevertheless, under Assumptions

(2.1) through (2.4), the function f(N, z) is well-behaved, as stated in the following

proposition:

Proposition 2.2. Suppose N is fixed. Then, f(N, z) is unimodal in z.

The key observation that yields the result of Proposition 2.2 is the following:

the function f(N, z) is given by fL(N, z) to the left of ẑ (i.e. for z < ẑ) and by

fR(N, z) to the right of ẑ (i.e. for z > ẑ), and the two unimodal functions fL(N, z)

and fR(N, z) intersect at z = ẑ. Given this observation, the function f(N, z) will

be non-unimodal only if fL(N, z) is decreasing and fR(N, z) is increasing in z at

z = ẑ. As it turns out, this cannot happen. Hence, the function f(N, z) is unimodal.

Furthermore, this observation leaves us with only three possibilities regarding the

behavior of functions fL(N, z) and fR(N, z) at ẑ. Either both fL(N, z) and fR(N, z)

are decreasing in z at z = ẑ (in which case, the optimal z is given by the maximizer

of fL(N, z)), or both fL(N, z) and fR(N, z) are increasing in z at z = ẑ (in which

case the optimal z is given by the maximizer of fR(N, z)), or fL(N, z) is increasing

and fR(N, z) is decreasing in z at z = ẑ (in which case, the optimal z is given by ẑ).

This observation is formalized in Lemma 2.4 (see appendix 2.8.2), which forms the

basis for an algorithm (provided in appendix 2.8.2) to determine the optimal order

quantity, z∗
def
= arg maxz{f(N, z)}, for a given N .
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One can show that fk(N, z), k = L,R is supermodular in order quantity, z, and

overhead cost, bk, for fixed N . Therefore,

Proposition 2.3. Suppose that the number of suppliers, N , is fixed. Then, for

k = L,R, z∗k
def
= arg maxz{fk(N, z)} is non-decreasing in the overhead cost, bk.

Because the overhead cost, bk, is increasing in the fixed cost to work with a

supplier, C, it follows that, if the optimal order quantity, z∗ = z∗k for k = L or

k = R, then the optimal order quantity may be increasing in C. This is an effect of

the limited liability assumption. In the model with full liability (i.e. l = −∞) the

optimal order quantity does not depend on the fixed cost, provided that the fixed

costs are small enough for the manufacturer to be in business.

One would expect that the optimal order quantity of a limited-liability manufac-

turer will be higher than the optimal order quantity of a full-liability manufacturer.

After all, limited liability curbs the manufacturer’s overage costs, thereby inducing

the manufacturer to stock larger quantities. This is, indeed, the case as stated in the

following proposition:

Proposition 2.4. Suppose that the number of suppliers, N , is fixed. Then, the more

negative the liability level, l, the smaller the optimal order quantity, z∗.

So far we have explored the choice of order quantity, z, assuming that the number

of suppliers, N , is fixed and ignoring optimization constraints. Next, let us consider

the choice of the number of suppliers, N , still ignoring optimization constraints.

Proposition 2.5. Suppose that z is fixed. Then:

(i) If rI < rS, then the objective function, f(N, z) is decreasing in the number of

suppliers, N , and the manufacturer will choose the optimal number of suppliers,

N∗ = 1.
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(ii) If rI > rS and the fixed cost to work with a supplier, C > (rI−rS)
(1+rI)

Ŝ, then the

objective function, f(N, z), is decreasing in the number of suppliers, N , and the

manufacturer will choose the optimal number of suppliers, N∗ = 1.

(iii) If rI > rS and the fixed cost to work with a supplier, C ≤ (rI−rS)
(1+rI)

β, then the

objective function, f(N, z) is increasing in the number of suppliers, N , and the

manufacturer will choose to work with the largest possible number of suppliers

(as long as the financing constraints are ignored).

These results are intuitive. Ignoring the financing constraints, part (i) of the

proposition says that, if the internal capital is the cheaper source of financing, then

the manufacturer will order from only one supplier, as there is no reason for the

manufacturer to work with multiple suppliers and incur the fixed cost of C for each

one (recall that, in Section 2.4.2, there is no supply risk). On the other hand, as

shown in part (iii), when the suppliers are the cheaper source of financing and the

cost to work with an extra supplier is much smaller than the guaranteed supplier loan

amount, then the manufacturer may choose to work with multiple suppliers, because

it can reinvest money borrowed from the suppliers in its other businesses. However,

as shown in part (ii), when the fixed cost to work with a supplier (C) is sufficiently

close to the maximum loan available from a supplier (Ŝ), then the additional loan

from a supplier will not be worth the additional fixed cost, and the manufacturer

will again choose to work with only one supplier. Finally, note that Proposition

2.5 does not describe the behavior of the objective function when rI > rS, and

(rI−rS)
(1+rI)

β < C ≤ (rI−rS)
(1+rI)

Ŝ. In this case, depending on which part (fL or fR) of the

objective function we are considering, the objective function can be either increasing

or decreasing in the number of suppliers N .
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To further study the optimal choice of the number of suppliers, N∗, we have to

consider the effects of the financing constraints.

2.4.2.2 Manufacturer’s problem with financing constraints.

When there is no limit on the total capital available to the manufacturer, Sec-

tion 2.4.2.1 describes the optimal operational decisions of the manufacturer. Un-

fortunately, the manufacturer does not have access to unlimited capital. In Section

2.4.2.2, I consider the effect of financing constraints on the manufacturer’s opera-

tional decisions.

Finding the value of optimal N for a problem with financing constraints is not

a trivial task. Even when the financing constraints are not binding, as N changes,

fL(N, z) and fR(N, z) may increase or decrease, and the unconstrained optimal or-

der quantity, z∗, may switch between z∗L, z∗R and ẑ. This complicated relationship

between N and z∗, together with the discrete nature of N , makes analytical deriva-

tion of the optimal number of suppliers, N∗, unlikely. Propositions in Section 2.4.2.1

provide structural properties of the objective function, f(N, z), and bounds on the

optimal N and z. In addition, the following propositions describe further bounds on

the optimal values of N and z due to financing constraints.

First, I will derive a bound on the optimal number of suppliers, N∗, in the presence

of financing constraints.

According to Assumption 2.2, the loan available from each supplier is less than

the cost of ordering from that supplier by at least C − β, and the difference must

be made up by the internally generated capital. Therefore, the amount of internal

capital imposes a limit on the number of suppliers the manufacturer can work with

(formally, this is seen from the first inequality in (2.4)).
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Proposition 2.6. The optimal number of suppliers, N∗, is limited by N∗ ≤ I
C−β .

Next, I will present bounds on the optimal order quantity. The number of sup-

pliers, N , restricts the feasible choices for the order quantity, z, because the number

of suppliers affect the amount of loans available to the manufacturer. The following

proposition (which follows from system (2.4) by fixing N) formalizes this relationship.

Proposition 2.7. Suppose that the number of suppliers, N , is fixed and satisfies

N ≤ I
C−β . Then:

(i) If N ≤ αI

w( bS−β)−α( bS−C)
, then the optimal order quantity satisfies

z ≤ zmax(N)
def
= I+( bS−C)N

w
. (2.19)

(ii) If αI

w( bS−β)−α( bS−C)
≤ N ≤ I

C−β , then the optimal order quantity satisfies

z ≤ zmax(N)
def
= I−(C−β)N

w−α . (2.20)

In Section 2.4.2, we have addressed the manufacturer’s operational decisions when

the demand is stochastic and the yield is deterministic. Next I focus on the case in

which the demand is deterministic and the yield is stochastic.

2.4.3 Operational decisions under deterministic demand and stochastic yield.

The manufacturer may decide to use several suppliers not only to acquire access

to a larger capital pool (as we discussed in section 2.4.2), but also to diversify risk, if

suppliers are not perfectly reliable. The tradeoffs between diversification benefits and

set-up costs, without financing constraints and with full manufacturer’s liability, have

been studied by Agrawal and Nahmias (1997). Section 2.4.3 extends their analysis by

considering a model with limited liability and financing constraints. This is a difficult

model to analyze. Therefore, for Section 2.4.3, I make the following assumption:
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Assumption 2.5. The demand, D, is deterministic.

Besides simplifying the analysis, this assumption may be useful for a problem

where the demand uncertainty is much smaller than the supply uncertainty, for

example, when the manufacturer has long-term contracts with the customers.

2.4.3.1 Manufacturer’s objective function.

Recall that the manufacturer’s objective function is given by expressions (2.9)

and (2.14). I will only consider operational decisions: number of suppliers, N , and

order quantity, z, which satisfy

Assumption 2.6. pD > akz + bk(N), k = L,R.

Assumption 2.6 can be made without loss of generality because, if it is violated,

the manufacturer is guaranteed to have negative profit. The following lemma offers a

convenient expression for fk, k = L,R (see equations (2.14) for definitions of fk, k =

L,R):

Proposition 2.8. Suppose that the number of suppliers, N , is fixed. Let X be

a random variable with c.d.f. Φ and p.d.f. φ and let fk, k = L,R be defined by

equations (2.14). Define

Γ(m) =

∫ ∞
m

xφ(x)dx, (2.21)

γ(m) = Γ′(m) = −mφ(m) (2.22)

Then,

fk(z) =(pD − akz − bk − l)
∫ ∞
D
z

φ(x) dx

+

∫ D
z

akz+bk+l

pz

[pxz − akz − bk − l]φ(x) dx

(2.23)
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f ′k(z) = p

∫ D
z

akz+bk+l

pz

xφ(x) dx− ak Pr
[
X ≥ akz+bk+l

pz

]
= p

[
Γ
(
akz+bk+l

pz

)
− Γ

(
D
z

)]
− ak Pr

[
X ≥ akz+bk+l

pz

] (2.24)

and, if γ(·)
Γ(·) is decreasing, fk, k = L,R are unimodal in z.

Using this lemma, one can prove that the objective function of the model with

the random supplier yield is unimodal in the total order quantity.

Proposition 2.9. If the mean of supplier yields is normally distributed, that is

X ∼ N
(
µ, σ√

N

)
, and Assumptions 2.2, 2.3, and 2.6 hold, then the manufacturer’s

objective function, f(z), defined by 2.9, is unimodal in the order quantity, z.

Thus, the optimization problem in Section 2.4.3 has the same structure as the

optimization problem with certain yield and random demand in Section 2.4.2. If the

number of suppliers, N , is fixed, we can find the optimal order quantity, z∗, using

the analog of Lemma 2.4 in appendix 2.8.2. Unlike the model in Section 2.4.2, each

component (fk(N, z), k = L,R) of the objective function, is submodular in the order

quantity, z, and the overhead cost, bk. Therefore,

Proposition 2.10. Suppose that the number of suppliers, N , is fixed. For k = L,R,

if bk + l > 0, then z∗k
def
= arg maxz{fk(N, z)} is non-increasing in the overhead cost,

bk, and as the liability level l becomes more negative, z∗k increases (non-strictly). If

bk + l < 0, then z∗k
def
= arg maxz{fk(N, z)} is non-decreasing in the overhead cost, bk,

and as the liability level l becomes more negative, z∗k decreases (non-strictly).

Finding the optimal number of suppliers, N∗, for the model in Section 2.4.3 is as

difficult as finding the optimal number of suppliers for the model in Section 2.4.2.

To obtain further managerial insights into the manufacturer’s optimal decisions, in
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particular, the optimal number of suppliers, we conduct a numerical study, which is

discussed in the next section.

2.5 Numerical study.

Propositions in Section 2.4 provide structural properties of the objective function,

f(N, z), and bounds on the optimal N and z. Such analytical result allow us to

devise an efficient search algorithm to find the optimal solution, thus facilitating a

numerical study. As I discuss in this section, the numerical study provides several

valuable insights into the choice of optimal operational decisions under financing

constraints.

2.5.1 Stochastic demand, deterministic yield.

First, I focus on the case in which the demand is random, but the yield is perfect

and deterministic. The numerical study uses the following default values of model

parameters: the rate of internal financing and the rate of supplier loans are (rI , rS) =

(0.2, 0.1)7, the per unit revenue is p = 3, the wholesale price is w = 0.5, the fixed cost

to work with a supplier is C = 20, the parameters of the supplier loans are α = 0.48

and β = 4, the internal capital is I = 75, the limit on the supplier loan is Ŝ = 75,

the demand is normal with mean µD = 500 and variance σ2
D = 500, and the liability

level is l = 0.

Effects of internal capital.

Consider the effects of the internal capital first, depicted in Figure 2.1. As the

internal capital, I, decreases, financing constraint forces the manufacturer to order

smaller quantities (as shown in the right panel of Figure 2.1), which, in turn, causes a

decrease in the manufacturer’s revenues. Rather than suffer from a further decline in
7the graphs look either identical or similar when (rI , rS) = (0.1, 0.2)
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Figure 2.1: The effect of the internal capital.

revenues, the manufacturer may prefer to incur the fixed cost to work with an extra

supplier who will provide the manufacturer with additional financing. Therefore,

we observe in the left panel of Figure 2.1 that, for high I, the optimal number

of suppliers, N , and the optimal order quantity, z, may increase as I decreases.

However, once the internal capital (I) becomes too small, the manufacturer will

have to reduce the number of suppliers again. To see why, recall that the limit on

the trade credit available from a supplier, S(z/N) = min{Ŝ, αz/N + β}, is less than

the cost of ordering from that supplier, wz/N + C. Therefore, for each supplier the

manufacturer works with, the difference between the trade credit and the cost of

ordering must be covered through the use of internal financing. If I is too small,

the manufacturer cannot afford the fixed cost to work with an additional supplier,

which forces the manufacturer to reduce the number of suppliers. Similar behavior

is observed in the supplier loan-limit study.

Effects of fixed cost.

An increase in the supplier fixed cost, C, may cause an increase in the optimal

number of suppliers, N . One example of such behavior is depicted in Figure 2.4 by

curves marked ‘Developing,’ which correspond to the default parameter set for these

numerical examples. This surprising result is observed for moderate C, when the
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manufacturer is borrowing the absolute maximum amount, Ŝ, from each supplier.

The following is the intuitive explanation for this phenomenon. As the fixed cost to

work with a supplier, C, increases, because of the financing constraints (inequalities

(2.4)), the manufacturer has to reduce the order quantity (and, hence, future rev-

enues) in order to pay for the increased cost, C. If the manufacturer is borrowing the

absolute maximum amount, Ŝ, (that is the second inequality in (2.4) is binding), the

manufacturer can relax its financing constraints (and increase revenues) by adding

suppliers. How many suppliers the manufacturer will add depends on the extra sup-

plier cost, C, which appears in the objective function, and also on the value of N for

when the manufacturer runs out of internal capital to finance additional fixed costs

to work with suppliers (i.e., the first inequality in constraint (2.4) becomes binding).

Effects of wholesale price.

The number of suppliers may also be non-monotone in the wholesale price, w, as

depicted in Figure 2.2 (in this numerical example, C = 5). As expected, when the
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Figure 2.2: The effect of the wholesale price.

wholesale price, w, is large, the business is barely profitable, and the manufacturer

works with few suppliers. As w becomes smaller, the manufacturer would like to

order a larger quantity (because the profit margin on each unit sold to the customer

is larger), and in an effort to order a larger quantity, the manufacturer may find
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it preferable to work with additional suppliers so that it can raise the necessary

cash. As we have already explained in our discussion on the effects of the fixed

cost to work with a supplier, the manufacturer can relax its financing constraints

by working with more suppliers, if the second inequality in (2.4) is binding. Once

the wholesale price, w, is sufficiently small, the manufacturer reduces the number

of suppliers again to save on the fixed cost to work with a supplier. Although this

reduces the cash available for purchases, which, in turn, drives the order quantity

down, the manufacturer still prefers saving the fixed cost, because the extent of the

reduction in order quantity is dampened by the small wholesale price.

Effects of the standard deviation of the demand.

The left panel of Figure 2.3 demonstrates that, depending on the value of unit rev-

enue, p, the optimal number of suppliers could be either increasing or decreasing

in the standard deviation of the demand. The key to understanding this behav-

ior is the right panel of Figure 2.3 and what we know about the relationship be-

tween the standard deviation of the demand and the optimal order quantity for the

newsvendor problem (although, because of the limited liability, we do not have a

newsvendor problem, the behavior of the optimal order quantity for our problem is

similar). For the normally distributed demand, the optimal order quantity for the
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Figure 2.3: The effect of the demand standard deviation.
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newsvendor problem is znews = µD + σDN−1 (1− a/p), where N is the c.d.f. of a

standard normal random variable, a is the variable cost, µD is the demand’s mean,

and σD is the demand’s standard deviation. From this expression, if a/p < 1/2,

then znews increases in σD, and if a/p > 1/2, then znews decreases in σD. The

unconstrained order quantity for our problem (derived from the first order condi-

tion (2.36)) also depends on the value of ratio a/p. If a/p is small (e.g. when

p = 2.1, for the case rI > rS, aL/p = [(1 + rI)w − (rI − rS)α] /p = 0.263 and

aR/p = (1 + rI)w/p = 0.286), the optimal order quantity increases and, to finance

this increase (to relax financing constraints), the manufacturer may increase the num-

ber of suppliers. Conversely, if a/p is large (e.g. when p = 0.9, for the case rI > rS,

aL/p = [(1 + rI)w − (rI − rS)α] /p = 0.613 and aR/p = (1 + rI)w/p = 0.667), the

unconstrained optimal order quantity decreases and the manufacturer can reduce the

number of suppliers because financing constraints are no longer binding.

Developing vs. developed economies.

Finally, let us contrast the effect of financing constraints on manufacturers operat-

ing in developing and developed economies and that have access to only regional

suppliers. Manufacturers in developed economies enjoy access to much more capital

compared to manufacturers in developing economies.8 In this numerical example the

loan limits for the developing economy are set to I = 75, Ŝ = 75. Let loan limits for

the developed country be I = 75, Ŝ = 300. Therefore, as Figure 2.4 illustrates, we

would expect that for any given level of the fixed cost, C, manufacturers in developing

economies will tend to have a greater number of suppliers (ceteris paribus).

Does this mean that we should expect to observe this disparity empirically? Not

8In addition to the capital availability, manufacturers operating in developed and developing economies
may also face different costs of capital. Our numerical experiments showed that that the effects of capital
costs are predictable: for instance, higher internal financing rate encourages the manufacturer to work with
more suppliers.

36



0

1

2

3

4

4 12 20 28 36

Fixed Cost

O
p

ti
m

al
 N

u
m

b
er

 o
f 

S
u
p

p
li

er
s

U.S.A.

Russia

200

300

400

500

600

4 12 20 28 36

Fixed Cost

O
p

ti
m

al
 P

ro
d

u
ct

io
n

 L
ev

el

U.S.A.

Russia

Figure 2.4: Developing vs. developed economies.

necessarily. Because manufacturers in developing economies will also tend to have

greater fixed costs, C (due to the operational inefficiencies), they may optimally keep

the number of suppliers low. However, as Figure 2.4 illustrates, if C is very large,

the model predicts that these manufacturers will place smaller orders, have lower

inventory (and hence, experience a higher frequency of stock-outs), an effect that

has been empirically observed by Fisman (2001).

Here, I focused on the availability of external financing and fixed costs as the main

differentiators between developed and developing economies. One could make further

comparisons by focusing on other differentiators, e.g., supplier yield characteristics

(suppliers in developed economies may be more reliable).

Interactions between parameter values.

Figure 2.5 shows the optimal number of suppliers as functions of the limit on supplier

loans and the fixed cost to work with a supplier, the limit on supplier loan and

the wholesale price, and the internal capital of the manufacturer and the demand

mean. Lighter shades correspond to a higher number of suppliers. The black shade

corresponds to N∗ = 1; the white shade corresponds to N∗ = 3. From Figure 2.5 we

observe that the higher number of suppliers corresponds to low fixed cost and low

supplier loan limit (left panel), or low wholesale price and low supplier loan limit
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Figure 2.5: The optimal number of suppliers. Interactions between parameter values.

(center panel). The picture in the right panel of Figure 2.5 shows that limited internal

capital may prevent the manufacturer from increasing the number of suppliers even

as the demand for products (and hence demand for financing) increases.

2.5.2 Deterministic demand, stochastic yield.

Next, I discuss the numerical results when the yield is random. In this numerical

study, I observed that the effects of the financing constraints, the fixed cost and the

wholesale price are the same under this model as in the model with deterministic

yield. Therefore, in what follows, I only focus on the effects of the random yield,

which is characterized by its mean, µ, and its standard deviation, σ, on the share-

holders’ value, the optimal number of suppliers, and the optimal order level. The

presentation will focus on the case where the internal rate is lower than suppliers’

interest rate (rI < rS). The results for the other case (rI > rS) are similar.

The numerical study uses the following default values of model parameters: unit

revenue, p = 1.75, wholesale price, w = 0.5, interest rate on supplier loans, rS = 0.2,

rate on internal capital, rI = 0.1, fixed cost to work with a supplier, C = 5, β = 4.9,

α = 0.48, absolute limit for supplier loans, Ŝ = 225, internal capital, I = 20, and

demand, D = 500.

According to the left panel of Figure 2.6, the shareholders’ value is increasing
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Figure 2.6: Shareholder value as a function of yield parameters.

as the expected yield, µ, increases. This behavior is to be anticipated, because the

manufacturer benefits if the average reliability of its suppliers increases.

Surprisingly, as shown in the right panel of Figure 2.6, the increase in the standard

deviation, σ, of the supplier yield may result in either an increase or a decrease in

the shareholders’ value. If the expected yield is high (low) the shareholders’ value

decreases (increases) in the standard deviation of the yield. To understand this

phenomenon, consider how functions fL and fR depend on mean yield X =
PN
k=1Xk
N

.

Recall that fk(X) = E
[
Πk(X)

]+
, k = L,R (see equation (2.14)). We can rewrite

this expression as

fk(X) = E
[
Πk(X)

]
+ E

[
−Πk(X)

]+
k = L,R (2.25)

The first term in (2.25) represents the manufacturer’s expected profit. Because

Πk is a concave function, as the standard deviation of yield increases, this term

decreases. The second term in (2.25) represents the value of the option to default

that shareholders hold (because they have limited liability). Function [−Πk(·)]+ is

convex and, therefore, this term increases as the standard deviation of the yield

increases. Thus, the change in the shareholders’ value, as the volatility of the yield,

σ, increases, comes from the decrease in the expected profit and the increase in
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the value of the option to default. When the expected yield is small (e.g. when

µ = 0.4), the manufacturer is close to bankruptcy and, therefore, the value of the

option provides the largest contribution to the shareholders’ value. This means that

the convex part of the objective function dominates, and the decision maker behaves

as a risk-seeking agent and responds to the increasing volatility of the supplier yield

by decreasing the number of suppliers, as shown in the left panel of Figure 2.7.

When the expected yield is high (e.g. when µ = 0.6), the expected profit provides

the largest contribution to the shareholders’ value. That is, the concave part of the

objective function dominates, and the decision maker behaves as a risk averse agent

and responds to the increasing volatility in supplier yield by increasing the number

of suppliers.
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Figure 2.7: Effect of a supplier’s yield uncertainty.

The left panels of Figures 2.7 and 2.8 confirm our intuition about diversification

and the risk-averse behavior of the decision maker. I use the standard deviation of

the order delivered as a proxy of risk and observe that, for the curves corresponding

to µ = 0.6, an increase in the optimal number of suppliers coincides with a decrease

in risk. Thus, the decision maker is acting as a risk-averse agent. Similarly, for the

curves corresponding to µ = 0.4, a decrease in the number of suppliers corresponds

to an increase in risk, indicating that the decision maker is acting as a risk-seeking
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Figure 2.8: The standard deviation of the order delivered.

agent. I defer the discussion of the right panel of Figure 2.8 until our discussion of

Figure 2.9.

Next, consider the right panel of Figure 2.7, which illustrates the effect of the

standard deviation, σ, of supplier’s yield on the optimal order quantity, z∗. I will

focus on the curve corresponding to the expected yield, µ = 0.4. Observe that the

optimal order quantity decreases in σ. To understand this behavior, note that the

profit of the manufacturer can be written as

Π = B − AXz − pmax(D −Xz, 0), (2.26)

for some constants, A and B. This is a payoff on a portfolio consisting of a safe bank

account (B), a short position in the underlying asset (Xz), and a short position

in a put option (max(D − Xz, 0)) on the underlying asset.9 The distribution of

the underlying asset is N
(
µz, σ√

N
z
)

. From the option theory, the value of the put

option increases in the underlying asset’s variance (in this case σ2

N
z2). Therefore,

assuming that the optimal number of suppliers, N∗, is constant, an increase in the

standard deviation of the yield, σ, leads to an increase in the put option value

(E[max(D − Xz, 0)]) and a decrease in the expected profit (E[Π]). Shareholders

can hedge against the effects of increasing σ by reducing the optimal order quantity,
9See Hull (2000) for definitions and discussion of option contracts.
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z∗. Finally, observe that for µ = 0.6 the optimal order level increases when the

number of suppliers changes from 2 to 3. The explanation for this behavior is akin

to the results in Proposition 2.10. As the number of suppliers increases, the overhead

cost increases and the maximizers of each of the two parts of the objective function

increase.
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Figure 2.9: Effect of a supplier’s expected yield.

Curves in the left panel of Figure 2.9 are formed due to the (now familiar) tradeoff

between the risk-seeking and risk-averse behavior of the shareholders, and also due to

a tradeoff between the benefits of diversification and the costs to work with suppliers.

Comparing the left panel of Figure 2.9 and the right panel of Figure 2.8, observe

that an increase in the number of suppliers corresponds to a decrease in risk, and

a decrease in the number of suppliers corresponds to an increase in risk. When the

expected yield, µ, is small, the convex part of the shareholders’ objective dominates

and the shareholders behave as risk-seeking agents. As the expected supplier yield

increases, the risk-seeking behavior is replaced by the risk-averse one and the number

of suppliers increases. As the expected yield continues to grow, that is, as the

suppliers become more reliable, the need for diversification becomes less pressing

and the manufacturer can start saving on fixed costs by reducing the number of

suppliers. Curves in the right panel of Figure 2.9 follow from the observation that,

42



as the suppliers become more reliable, the manufacturer does not have to order as

much to compensate for possible losses. Figure 2.10 illustrates the effect of limited
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Figure 2.10: Effect of limited liability.

liability. In this numerical study the standard deviation of the supplier yields is

σ = 0.1. First, while conducting numerical experiments, I observed that the limited

liability manifests itself only when the manufacturer is fairly close to bankruptcy

and, hence, the option to default on part of its obligations is valuable. Therefore,

Figure 2.10 contains curves for two cases which bring the manufacturer close to

bankruptcy: mean supplier yields µ = 0.35 and µ = 0.4. If supply were certain, the

more negative liability level, l, becomes, the less valuable the business becomes, the

smaller the order that will be placed, the less financing will be needed, and the fewer

suppliers the manufacturer will work with. However, when supply is uncertain, the

manufacturer benefits from diversification by working with more suppliers. Whether

the number of suppliers increases or decreases as l decreases depends on which of

the two forces (financing required vs. diversification) dominates. For the graph

corresponding to µ = 0.4 in Figure 2.10 the diversification force prevailed.

Figure 2.11 highlights the interaction between limited liability and financing con-

straints due to supplier loan limits (left panel), and diversification choices for different

values of yield parameters µ and σ. In this figure, I plot the optimal number of sup-
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Figure 2.11: The optimal number of suppliers as a function of limited liability and supplier
loan limit (left panel), and mean and standard deviation of the supplier yield
(right panel).

pliers. The lighter shades correspond to the greater number of suppliers. The black

color corresponds to N∗ = 1.
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Figure 2.12: Developing vs. developed economies. Random yield. Mean value of the
supplier yield is µ = 0.6.

Finally, Figure 2.1210 illustrates the effect of random yield the decisions of manu-

facturers in developing and developed economies and that have access to only regional

suppliers. The figure shows that a greater volatility of supplier yields will encourage

manufacturers in developing economies to have a greater number of suppliers if the

fixed cost to work with the suppliers is not too high.

10In this example, µ = 0.6.
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2.6 Heterogeneous suppliers.

In this section I will discuss the implications of relaxing the assumption of a ho-

mogeneous supplier base. In general, suppliers could differ in a number of attributes:

(µi, σi), distribution parameters of supplier i yield; wi, wholesale price charged by

suppler i; Ci, fixed cost to work with supplier i; Ŝi, absolute limit on supplier i loan

amount; (αi, βi), parameters of the supplier i trade credit loan; ri, interest rate on

supplier i loan. The multi-attribute problem of selecting a subset of suppliers for the

manufacturer to work with can only be solved numerically, except for special cases.

To begin, assume that the manufacturer can only work with a single supplier

and, hence, the supplier selection problem becomes: which supplier should win the

manufacturer’s business. For each of the suppliers one needs to solve problem (2.2)

with an additional constraint, N = 1, and then select the solution which offers the

highest value of the objective function. It is not difficult to see that, everything

else being equal, the manufacturer favors the supplier with the lowest ri, Ci, or wi,

and the highest Ŝi, βi, αi, or µi. The effect of σi is not immediately obvious. As

discussed in Section 2.4.3, the presence of the option to default may encourage the

manufacturer to take more risk, by working with suppliers whose yield distribution

has a higher standard deviation.

A general model of (2.2), where the manufacturer can work with any number of

suppliers, has the following mathematical form:

max
{~S,~y}

E
{
pmin[D,Q(~y)]− (1 + rI)

∑
i

(
wiyi + Ci1{yi>0}

)
−
∑
i

(ri − rI)Si + (1 + rI)I − l
}+

(2.27a)
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subject to:

∑
i

(
wiyi + Ci1{yi>0}

)
≤
∑
i

Si + I, (2.27b)

0 ≤ Si ≤ Si(yi), (2.27c)

Si(y) = min
(
Ŝi, βi + αiy

)
. (2.27d)

where Q(~y) is the quantity received by the manufacturer from the suppliers (possi-

bly a random variable). Similar to the analysis in Section 2.4.1, we can determine

the optimal financing decisions, given a particular choice of operational decisions.

Specifically, suppose that ~y is given. Consider only the suppliers that received pos-

itive orders (yi > 0) from the manufacturer and sort them according to the value

of the rates on their loans, ri, in increasing order. Let k = min{j : rj ≥ rI} be

the index of the first supplier whose rate exceeds the rate on internal capital for the

manufacturer. Then, for 1 ≤ i < k, the optimal loan amount is

S∗i = Si(yi). (2.28)

For i ≥ k, the optimal loan amount is

S∗i = min

Si(yi),
[∑

j

(wjyj + Cj)− I −
i−1∑
j=1

S∗j

]+
 . (2.29)

Substituting the optimal loan amounts, ~S∗, into problem (2.27) we derive an op-

timization problem with operational decisions, ~y, only. Similar to the analysis in

Section 2.4.1, the domain of the objective function of this optimization problem can

be divided into regions such that, within each region, k, the objective function is

written as fk(~y) = E {pmin [D,Q(~y)]−
∑

i(aiyi + bi)− l}+, where bi may depend

on 1{yi>0}. The constraints for this optimization problem are

∑
i

wiyi −
∑
i

(
Ŝi − Ci

)
1{yi>0} ≤ I, (2.30a)
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∑
i

(wi − αi) yi +
∑
i

(Ci − βi) 1{yi>0} ≤ I. (2.30b)

While in the model with homogeneous suppliers we had only two parts (one per

financing source) of the objective function, here there are as many parts as there are

suppliers plus one (corresponding to financing from internal capital). This makes

the problem with external financing too complex to analyze.

Let’s focus on the effect of supplier random yield. To simplify, let’s assume that

the interest rate on internal financing is the lowest (i.e. rI ≤ ri, for all i), the

manufacturer has more than sufficient internally generated capital to run the manu-

facturer (i.e. I >
∑

i(wiyi+Ci) for all reasonable values of ~y, implying, in particular,

that no loans from the suppliers are needed and limited liability is never used), and

demand, D, is deterministic. With these assumptions, we obtain a model similar

to the non-identical suppliers model in Agrawal and Nahmias (1997). The essential

difference between their model and ours lies in the assumption about payment from

the manufacturer to the suppliers. I assumed that the manufacturer pays for the

items orders, while they assumed (effectively) that the manufacturer pays only for

the items delivered. Still, the similarity between models allows us to replicate the

results in Agrawal and Nahmias (1997). Specifically, we can show that the objective

function can be represented as follows:

E

{
pmin[D,Q(~y)]− (1 + rI)

∑
i

(
wiyi + Ci1{yi>0}

)
+ (1 + rI)I

}
=

p
[
D + (µ−D)Φ(D)− σ2φ(D)

]
− (1 + rI)

∑
i

(
wiyi + Ci1{yi>0}

)
+ (1 + rI)I,

(2.31)

where φ and Φ are p.d.f. and c.d.f. of the normal random variable Q(~y), whose

mean is µ =
∑

i µiyi, and variance σ2 =
∑

i σ
2
i y

2
i . Using Theorem 3 in Agrawal and

Nahmias (1997), the objective function is concave. The first order condition for the
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order quantity with supplier i is:

pµiΦ(D)− pyiσ2
i φ(D) = (1 + rI)wi. (2.32)

Suppose that µi = µ and wi = w for all i. Then, conditions (2.32) imply that

the optimal order quantities to suppliers i and j are inversely proportional to the

variances of supplier yields:

y∗i
y∗j

=
σ2
j

σ2
i

. (2.33)

Alternatively, one may argue that the supplier market is in equilibrium where the

prices wi are proportional to the expected fraction the order suppliers deliver, that

is, wi = Aµi. In this case, the orders to suppliers will be:

y∗i
y∗j

=
σ2
j/µj

σ2
i /µi

. (2.34)

Agrawal and Nahmias (1997) solve a general non-identical supplier model only nu-

merically. Because of the financing constraints, piecewise-defined objective function,

and limited liability, our model is even more complex than that in Agrawal and

Nahmias (1997). Therefore, we also cannot solve a general model analytically.

2.7 Conclusions, limitations, and extensions.

Numerous empirical studies report that trade credit (supplier financing) is the

number one source of short-term financing in developed economies, accounting for

as much as twice the amount of short-term bank loans. The role of trade credit is

even more prominent in developing economies, where access to traditional sources

of financing is severely limited. Other differences in business environments between

developed and developing economies are the costs to work with suppliers and supplier

reliability.
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I study how trade credit financing, internal financing, cost to work with a supplier,

and the supplier yield affect the optimal number of suppliers and the optimal order

size. For this study I use a stylized model where the salient problem features are

joint operational and financing decisions and financing constraints.

The theoretical and numerical analysis generated several testable hypotheses.

Some of these hypotheses have already been confirmed in prior empirical studies.

Others can be verified in future empirical work. I derived both anticipated and

surprising results. These results can be explained by considering tradeoffs between

the main elements of the model: financing constraints and their effect on feasible

order quantity, cost to work with the suppliers and its effect on the objective func-

tion, order quantities and their effects on revenues, decomposition of the objective

function into a concave profit term (which encourages diversification) and a convex

option to default term (which encourages reducing the number of suppliers). For

example, as the availability of either internal financing or supplier loans diminishes,

the optimal number of suppliers may increase. To understand this, consider that the

manufacturer, by paying the extra cost to work with additional suppliers, benefits by

relaxing financing constraints and increasing order quantity, to earn higher expected

revenues.

More surprising are the observations that an increase in the cost to work with a

supplier or the wholesale price may result in an increase in the optimal number of

suppliers.

Also surprising is that, as the standard deviation of a supplier yield’s increases,

the optimal number of suppliers could either increase or decrease. The intuitive

explanation for this behavior is the tradeoff between the concave part of the objective

function (which induces risk-averse preferences on the manufacturer) and the convex
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option to default (which encourages risk-seeking actions by the manufacturer).

The initial motivation for this research was the question: “Should one expect

to observe empirically that manufacturers in developing economies work with more

suppliers?” The answer to this question is “it depends.” For example, everything

being equal, the analysis suggests that manufacturers in developing economies will

have more suppliers than comparable manufacturers in developed economies. But

if, in developing economies, the cost to work with a supplier is very high or the

manufacturer is close to bankruptcy, then that manufacturer may actually have fewer

suppliers than its counterpart in developed economies. In this case, the analysis

suggests that manufacturers in developing economies will place lower order quantities

and will have higher stock-out probabilities, which matches perfectly the observations

of the earlier empirical studies.

Thus, to answer the question: “Should one expect to observe empirically that

manufacturers in developing economies work with more suppliers?” one needs a so-

phisticated empirical analysis, which carefully accounts for the factors that we con-

sidered. One of the main contributions of this chapter is to provide a set of testable

hypotheses for future empirical studies.

To focus on the essential problem features, I have assumed away many other

practical concerns. For example, in comparative statics analysis, financing terms

(interest rates and loan limits) do not change as the manufacturer’s financial condi-

tions change. This presents an opportunity for the manufacturer to take advantage of

its lenders. In practice, as long as the markets are not perfect Modigliani and Miller

(1958) as defined by, this type of “mispricing” is possible.11 I selected the simplest

functional form (i.e., no changes in financing terms) to represent this phenomenon.

11This mispricing need not constitute an arbitrage, because market imperfections preclude market par-
ticipants from creating an arbitrage portfolio.
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Other assumptions are possible. However, as long as the functional form of mapping

between manufacturer’s financial state and financing terms is exogenously given,

some form of mispricing will be present and the essential predictions of my model

will not be altered, but the analysis will be more complex. For instance, I considered

an extension to the model presented, where financing terms depend on the number

of suppliers. For this more general model, I derived numerically the same insights as

the ones presented in this study.

I assumed that the manufacturer uses only trade credit as the source of external

financing. The analysis and the results are easily extended to the model where, in

addition, the manufacturer can borrow from a bank. However, this adds unnecessary

details to the presentation. For instance, instead of two parts in the objective function

I would have to consider three parts.

I presented a model where the manufacturer pays up-front for the entire order

placed with the supplier. As discussed in Section 2.3, there are many real-life systems

where this is a good assumption. However, payments for items actually delivered are

also common. I considered a more general model, where the manufacturer pays both

for the order placed and for the parts received. The analysis of this more general

model did not yield additional insights, and therefore, for the sake of exposition, I

chose to use the simpler model.

To focus on the question about the number of suppliers, I assumed that suppliers

were homogeneous. To address the question of supplier selection, a different model,

emphasizing the differences among suppliers, is needed. While we have analyzed a

model with heterogeneous suppliers, an in-depth research of the supplier selection

problem, for example, extending analysis in Dada et al. (2007) and Federgruen and

Yang (2007), is important and should be addressed in future studies.
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Other generalizations, such as the dynamic relationship between lenders and bor-

rowers and the role of asymmetric information, are also subjects for future research.

2.8 Appendix.

2.8.1 Proofs of Propositions 2.2 and 2.3.

These two proofs utilize Lemmas 2.1, 2.2 and 2.3, which are stated and proven

following the propositions’ proofs.

Proof. Proposition 2.2.

Recall that f(N, z) is given by fL(N, z) for z ≤ ẑ and by fR(N, z) for z > ẑ, where

fL(N, z) = fR(N, z) for z = ẑ. Furthermore, observe from Lemma 2.2(i),(ii) that the

function fk(N, z) is zero for z values outside the range
[
bk+l
p−ak

, pxu−bk−l
ak

]
, k = L,R.

Therefore, we can divide the proof into two cases:

Case 1: f(N, ẑ) > 0. In this case, ẑ must be in the ranges
[
bk+l
p−ak

, pxu−bk−l
ak

]
,

k = L,R.

Case 2: f(N, ẑ) = 0. In this case, ẑ must be outside the ranges
[
bk+l
p−ak

, pxu−bk−l
ak

]
,

k = L,R.

In this proof, I deal with Case 1, which is more interesting. The second case is a

degenerate case where either f(N, z) = 0 for all z ≤ ẑ or f(N, z) = 0 for all z ≥ ẑ,

and the result could be proven similarly for that case.

Lemma 2.2 shows that fL(N, z) and fR(N, z) are unimodal. Observe that, by

definition, f(N, z) = fL(N, z) for z ≤ ẑ and f(N, z) = fR(N, z) for z > ẑ. Now,

note that the function f(N, z) will not be unimodal only if it is decreasing as z

approaches ẑ from below and starts increasing once z exceeds ẑ. Equivalently, the

function f(N, z) will not be unimodal only if ∂fL(N,bz)
∂z

< 0 and ∂fR(N,bz)
∂z

> 0. Now,

I will prove by contradiction that this cannot happen. Suppose ∂fL(N,bz)
∂z

< 0 and
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∂fR(N,bz)
∂z

> 0. This, coupled with the fact that fL(N, ẑ) = fR(N, ẑ), implies that

there must exist z > ẑ such that fL(N, z) < fR(N, z). However, by Lemma 2.3, we

must have fL(N, z) ≥ fR(N, z) for z ≥ ẑ, which yields a contradiction. Therefore,

we can never have ∂fL(N,bz)
∂z

< 0 and ∂fR(N,bz)
∂z

> 0, and f(N, z) is unimodal in z. �

Proof. Proposition 2.3.

The result follows from the supermodularity of fk in (z, bk). To show supermodular-

ity, consider z such that pz − akz − bk − l ≥ 0. The derivative of fk with respect to

z is derived in Lemma 2.2 (see equation (2.38)). Taking a derivative of expression in

(2.38) with respect to bk, we find that

∂2fk
∂zk∂bk

=
ak
p
g

(
akzk + bk + l

p

)
≥ 0. �

Lemma 2.1. Consider the model with stochastic demand and deterministic supplier

yield from Section 2.1. We can write the function fk(N, z) as follows:

fk(N, z) = 1{pz−akz−bk−l≥0}

[
−(akz + bk + l)G

(
akz + bk + l

p

)
+ pzG(z) +

p

∫ z

akz+bk+l

p

xg(x) dx

]
,

(2.35)

where G(x) = 1−G(x).

Proof. Lemma 2.1

For notational convenience, define λk = akz + bk + l and observe that fk(N, z) =

E[pmin(D,Q(N, z))−λk]+, k = L,R (see equations (2.14), (2.15), (2.16), (2.17), and

(2.18)). Recall that demand D is stochastic with cdf G, and the quantity delivered,

Q(N, z), is deterministic and equal to z by Assumption 2.4. Then:

fk(N, z) = −λkE
[
1{pmin(D,z)−λk≥0}

]
+ pE

[
min(D, z)1{pmin(D,z)−λk≥0}

]
= −λk1{pz−λk≥0} Pr[pD − λk ≥ 0] + p1{pz−λk≥0}E

[
min(D, z)1{pD−λk≥0}

]
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= −λk1{pz−λk≥0}G

(
λk
p

)
+ p1{pz−λk≥0}zE

[
1{pD−λk≥0,D≥z}

]
+ p1{pz−λk≥0}E

[
D1{pD−λk≥0,D<z}

]
= −λk1{pz−λk≥0}G

(
λk
p

)
+ p1{pz−λk≥0}zG(z) + p1{pz−λk≥0}

∫ z

λk
p

xg(x) dx

= 1{pz−λk≥0}

[
−λkG

(
λk
p

)
+ pzG(z) + p

∫ z

λk
p

xg(x) dx

]
.

�

Lemma 2.2. Consider the model with stochastic demand and deterministic supplier

yield from Section 2.4.2. If pxu − akxu − bk − l < 0, k = L,R, then the function

fk(N, z) = 0 for all order quantities z in the domain of demand, [xl, xu]. Otherwise:

(i) fk(N, z) = 0 for z < bk+l
p−ak

.

(ii) fk(N, z) = 0 for z > pxu−bk−l
ak

.

(iii) fk(N, z) is unimodal in z.

(iv) There exists a unique zk ∈
[
bk+l
p−ak

, pxu−bk−l
ak

]
that maximizes fk(N, z) and satisfies

pG(zk) = akG

(
akzk + bk + l

p

)
= ak Pr [pD > akzk + bk + l] . (2.36)

Proof. Lemma 2.2.

Recall that the random variable D has a density function defined over the domain

[xl, xu]. First, suppose that pxu − akxu − bk − l < 0. Then, for any order quantity

z ∈ [xl, xu], we have pz − akz − bk − l < 0 (because, by Assumption 2.3, p > ak for

k = L,R). Therefore, for any order quantity z ∈ [xl, xu], we have 1{pz−akz−bk−l≥0} =

0. It now follows that fk(z) = 0 for any z ∈ [xl, xu] (See (2.35) in Lemma 2.1.).

Now, I turn to the more interesting case where pxu− akxu− bk− l ≥ 0, k = L,R.

Proof of (i): If z < bk+l
p−ak

, then 1{pz−akz−bk−l≥0} = 0, and the result follows from
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Lemma 2.1.

Proof of (ii): The inequality z > pxu−bk−l
ak

is equivalent to akz+bk+l
p

> xu. Hence,

the first term in brackets in (2.35) is zero. Furthermore, if z > pxu−bk−l
ak

, then one can

verify that z > xu (using also the current assumption that pxu − akxu − bk − l ≥ 0).

Hence, the second and third terms in (2.35) are also zero. It now follows that

fk(z) = 0.

Proof of (iii): By parts (i) and (ii), fk(z) = 0 for z < bk+l
p−ak

and z > pxu−bk−l
ak

.

Therefore, we will conclude the proof if we can show that fk(z) is unimodal for

z ∈
[
bk+l
p−ak

, pxu−bk−l
ak

]
. In this range, by Lemma 2.1, we have:

fk(z) = −(akz + bk + l)G

(
akz + bk + l

p

)
+ pzG(z) + p

∫ z

akz+bk+l

p

xg(x) dx. (2.37)

It is not difficult to check the following claim is true:

Claim (a): f ′k(z) > 0 at z = bk+l
p−ak

.

In addition, I will now prove the following claim:

Claim (b): f ′′k (z) < 0 whenever f ′k(z) = 0.

The first derivative of fk is

f ′k(z) = −akG
(
akz + bk + l

p

)
+ pG(z). (2.38)

The first order condition is

akG

(
akz + bk + l

p

)
= pG(z). (2.39)

The second derivative of fk is

f ′′k (z) =
a2
k

p
g

(
akz + bk + l

p

)
− pg(z) = p

[
g

(
akz + bk + l

p

)
a2
k

p2
− g(z)

]
. (2.40)

Let z0 satisfy the first order condition (2.39). Then,

f ′′k (z0) = pG
2
(z0)

 g
(
akz0+bk+l

p

)
G

2
(
akz0+bk+l

p

) − g(z0)

G
2
(z0)

 ≤ 0, (2.41)

55



where the inequality follows from the facts that z0 >
akz0+bk+l

p
and g(x)

G
2
(x)

is increasing.

Hence, we have shown that Claim (b) holds. Now, claim (a) implies that the function

fk(z) starts increasing from zero at z = bk+l
p−ak

. Furthermore, the function goes back

to zero at z = pxu−bk−l
ak

and any stationary point of the function fk(·) in the range[
bk+l
p−ak

, pxu−bk−l
ak

]
is a local maximum by claim (b). Therefore, we conclude that there

exists only one stationary point of the function fk(·) in the range
[
bk+l
p−ak

, pxu−bk−l
ak

]
,

and this stationary point is a maximizer. Hence, the function fk(·) is unimodal. (If

there were two stationary points, both of them would have to be local maxima by

claim (b), which would require the existence of a local minimum in between these

two local maxima, which contradicts claim (b).)

Proof of (iv): This follows from parts (i) through (iii) of the lemma. �

Lemma 2.3. If z ≥ ẑ, then fL(N, z) ≥ fR(N, z).

Proof. Lemma 2.3 I first prove the lemma for the case where rI < rS. From equations

(2.10), (2.11) and (2.12), observe that, when rI < rS, we have ΠL(N, z)−ΠR(N, z) =

(rS − rI)T (N, z). Furthermore, ẑ is defined in (2.13) such that T (N, z) ≥ 0 for any

z ≥ ẑ. Therefore, we conclude that ΠL(N, z)− ΠR(N, z) ≥ 0 for any z ≥ ẑ. Hence,

fL(N, z) = E[ΠL(N, z)]+ ≥ E[ΠR(N, z)]+ = fR(N, z) for any z ≥ ẑ. In the other

case where rI > rS, we have ΠL(N, z)−ΠR(N, z) = (rI − rS)T (N, z) from equations

(2.10), (2.11) and (2.12). The lemma follows similarly for this case. �

2.8.2 Proof of Proposition 2.4.

This proof utilizes Lemmas 2.4 and 2.5, which are stated and proven after the

proposition’s proof.

Proof. Proposition 2.4.

Again, I focus on the more interesting case where f(N, ẑ) > 0 (as opposed to the
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degenerate case where f(N, ẑ) = 0.) In this proof, I write z∗(l) to make explicit the

dependence of the optimal order quantity, z∗, on the maximum liability, l. Similarly,

I add l to the list of arguments for functions f(N, z) and fk(N, z), k = L,R. Define

z∗k(l) = arg max{fk(N, z, l)}. Suppose l1 > l2. Our goal is to prove z∗(l1) ≥ z∗(l2).

I will prove the result by considering four different cases, each one corresponding to

one of the cases in the statement of Lemma 2.4.

Case 1: ẑ ≤ 0. In this case, from Lemma 2.4(i), it follows that z∗(l1) = z∗R(l1)

and z∗(l2) = z∗R(l2). Now, the result follows because z∗R(l1) ≥ z∗R(l2) by Lemma 2.5.

Case 2: ẑ > 0 and ∂fL(N,bz,l1)
∂z

< 0. In this case, from Lemma2.4(ii), we know that

z∗(l1) = z∗L(l1). Furthermore, because fk(N, z, l) is supermodular in (z, l) (as shown

in Lemma 2.5), it must be that ∂fL(N,bz,l2)
∂z

< 0. Therefore, from Lemma2.4(ii), we

know that z∗(l2) = z∗L(l2). The result now follows since z∗L(l1) ≥ z∗L(l2) by Lemma

2.5.

Case 3: ẑ > 0, ∂fL(N,bz,l1)
∂z

> 0 and ∂fR(N,bz,l1)
∂z

> 0. In this case, we have z∗(l1) =

z∗R(l1) by Lemma 2.4(iii). Furthermore, note that z∗(l1) ≥ ẑ (since ∂fR(N,bz,l1)
∂z

> 0 and

fR(N, z) is unimodal), which will be used in the rest of the proof. I will consider a

number of subcases depending on the signs of ∂fL(N,bz,l2)
∂z

and ∂fR(N,bz,l2)
∂z

.

Case 3(a): ∂fL(N,bz,l2)
∂z

< 0. In this case, from Lemma 2.4(ii), we know that

z∗(l2) = z∗L(l2). Furthermore, note that z∗(l2) ≤ ẑ (since ∂fL(N,bz,l2)
∂z

< 0 and fL(N, z, l)

is unimodal). The result now follows since z∗(l2) ≤ ẑ ≤ z∗(l1).

Case 3(b): ∂fL(N,bz,l2)
∂z

> 0 and ∂fR(N,bz,l2)
∂z

> 0. In this case, from Lemma 2.4(iii),

we know that z∗(l2) = z∗R(l2). Since z∗(l1) = z∗R(l1), the result follows from Lemma

2.5.

Case 3(c): ∂fL(N,bz,l2)
∂z

> 0 and ∂fR(N,bz,l2)
∂z

< 0. In this case, from Lemma 2.4(iv),

we know that z∗(l2) = ẑ. The result follows since z∗(l2) = ẑ ≤ z∗(l1).
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Case 4: ẑ > 0, ∂fL(N,bz,l1)
∂z

> 0 and ∂fR(N,bz,l1)
∂z

< 0. In this case, from Lemma

2.4(iv), we know that z∗(l1) = ẑ. Furthermore, because fk(N, z, l) is supermodular

in (z, l), it must be that ∂fR(N,bz,l2)
∂z

< 0. Again, I consider a number of subcases

depending on the signs of ∂fL(N,bz,l2)
∂z

and ∂fR(N,bz,l2)
∂z

.

Case 4(a): ∂fL(N,bz,l2)
∂z

< 0. By Lemma 2.4(ii), we have z∗(l2) ≤ ẑ. The desired

result follows because z∗(l1) = ẑ.

Case 4(b): ∂fL(N,bz,l2)
∂z

> 0. Given that we also have ∂fR(N,bz,l2)
∂z

< 0, it follows from

Lemma 2.4(iv) that z∗(l2) = ẑ. The result now follows because z∗(l1) = ẑ as well. �

Lemma 2.4. Consider the model with stochastic demand and deterministic supplier

yield from Section 2.4.2. Suppose N is fixed. Then, the optimal order quantity

z∗ ∈
{

arg max
z
{fL(N, z)}, arg max

z
{fR(N, z)}, ẑ

}
. (2.42)

Furthermore, to find the optimal order quantity, z∗, one could use the following

properties:

(i) If ẑ ≤ 0, then z∗ = arg maxz{fR(N, z)}.

(ii) If ẑ > 0 and ∂fL(N,bz)
∂z

< 0, then z∗ = arg maxz{fL(N, z)}.

(iii) If ẑ > 0, ∂fL(N,bz)
∂z

> 0 and ∂fR(N,bz)
∂z

> 0, then z∗ = arg maxz{fR(N, z)}.

(iv) If ẑ > 0, ∂fL(N,bz)
∂z

> 0 and ∂fR(N,bz)
∂z

< 0, then z∗ = ẑ.

Proof. Lemma 2.4.

Once again, I focus on the more interesting case where f(N, ẑ) > 0 (as opposed

to the degenerate case where f(N, ẑ) = 0.) For the purposes of this proof, define

z∗k = arg maxz fk(N, z) for k = L,R. We first prove properties (i) through (iv):

Proof of (i): If ẑ < 0, then f(N, z) = fR(N, z) for all z ≥ 0 and z∗ = z∗R, which
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concludes the proof.

Proof of (ii): If ẑ > 0 and ∂fL(N,bz)
∂z

< 0, then it must be that ∂fR(N,bz)
∂z

< 0 as

well. (Otherwise, we would obtain a contradiction to the unimodality of f(N, z),

which was proven in Proposition 2.2.) Now, because f(N, z) = fR(N, z) for z ≥ ẑ,

it follows that f(N, z) must be decreasing in z for z ≥ ẑ (since ∂fR(N,bz)
∂z

< 0 and

fR(N, z) is unimodal.) Therefore, it must be that z∗R ≤ ẑ. In addition, we know

that f(N, z) = fL(N, z) for z ≤ ẑ, and, furthermore, z∗L < ẑ (since ∂fL(N,bz)
∂z

< 0 and

fL(N, z) is unimodal.) Therefore, we have z∗ = z∗L, which concludes the proof.

Proof of (iii): Since f(N, z) = fL(N, z) for z ≤ ẑ, it follows that f(N, z) must be

increasing in z for z ≤ ẑ (since ∂fL(N,bz)
∂z

> 0 and fL(N, z) is unimodal.) Therefore, it

must be that z∗L ≥ ẑ. In addition, we know that f(N, z) = fR(N, z) for z ≥ ẑ, and,

furthermore, z∗R > ẑ (since ∂fR(N,bz)
∂z

> 0 and fR(N, z) is unimodal.) Therefore, we

have z∗ = z∗R, which concludes the proof.

Proof of (iv): Since f(N, z) = fL(N, z) for z ≤ ẑ, it follows that f(N, z) must be

increasing in z for z ≤ ẑ (since ∂fL(N,bz)
∂z

> 0 and fL(N, z) is unimodal.) Furthermore,

because f(N, z) = fR(N, z) for z ≥ ẑ, it follows that f(N, z) must be decreasing in

z for z ≥ ẑ (since ∂fR(N,bz)
∂z

< 0 and fR(N, z) is unimodal.) Hence, we have z∗ = ẑ,

which concludes the proof.

The statement that z∗ ∈ {arg maxz{fL(N, z)}, arg maxz{fR(N, z)}, ẑ} now fol-

lows as a corollary to properties (i) through (iv). �

Algorithm for computing the optimal operational decisions — N∗ and z∗:

(i) For each N ≤ I
C−β .

(a) Compute ẑ: T (N, ẑ) = 0.

(b) Compute zmax(N).
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(c) If ẑ < 0, then find z∗(N) that maximizes fR(N, z) by searching over all

z ∈ [0, zmax(N)].

(d) If ẑ ≥ 0, then

i. If ∂fL(N,bz)
∂z

≤ 0, then find z∗(N) that maximizes fL(N, z) by searching

over all z ∈ [0, ẑ].

ii. If ∂fL(N,bz)
∂z

> 0 and ∂fR(N,bz)
∂z

> 0, then find z∗(N) that maximizes

fR(N, z) by searching over all z ∈ [ẑ, zmax(N)].

iii. If ∂fL(N,bz)
∂z

> 0 and ∂fR(N,bz)
∂z

≤ 0, then z∗(N) = ẑ.

(ii) Pick N for which f(N, z∗(N)) is the largest.

Lemma 2.5. Suppose that Assumptions (2.1), (2.2), (2.3), (2.4) hold. For k = L,R,

let z∗k = arg maxz{fk(N, z)}. Then, z∗k is increasing in l.

Proof. Lemma 2.5.

The result follows from the supermodularity of fk in (z, l). Consider z such that

pz − akz − bk − l ≥ 0. The derivative of fk with respect to z is given by equation

(2.38). Taking the derivative of the expression in (2.38) with respect to l, we find

that

∂2fk
∂z∂l

=
ak
p
g

(
akz + bk + l

p

)
≥ 0. �

2.8.3 Proofs of Propositions 2.5, 2.6, 2.7.

In this section, I provide the proofs of Propositions 2.5 through 2.7 followed by a

lemma that is useful for these proofs.

Proof. Proposition 2.5.

Proof of (i): In order to prove the result, I will show that for any two integers
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N1 and N2 such that N1 < N2, we have f(N1, z)− f(N2, z) ≥ 0 when rI < rS. The

desired result will then follow. Consider the following four cases:

Case 1: T (N1, z) ≤ 0 and T (N2, z) ≤ 0. In this case, by (2.9), f(N1, z) −

f(N2, z) = fL(N1, z)− fL(N2, z). The result now follows from Lemma 2.6(i).

Case 2: T (N1, z) > 0 and T (N2, z) > 0. In this case, f(N1, z) − f(N2, z) =

fR(N1, z)− fR(N2, z). The result now follows from Lemma 2.6(i).

Case 3: T (N1, z) ≤ 0 and T (N2, z) > 0. In this case, f(N1, z) − f(N2, z) =

fL(N1, z) − fR(N2, z). Since T (N2, z) > 0, we have z ≥ ẑ at N2, and, therefore,

fL(N2, z) ≥ fR(N2, z) by Lemma 2.3. Furthermore, note that fL(N1, z) ≥ fL(N2, z)

by Lemma 2.6(i). Hence, fL(N1, z) ≥ fR(N2, z), which yields the desired result.

Case 4: T (N1, z) > 0 and T (N2, z) ≤ 0. This case cannot occur, since T (N, z) is

increasing in N .

Proof of (ii): The proof is similar to that of (i) and uses Lemma 2.6(ii) where the

proof of (i) uses Lemma 2.6(i).

Proof of (iii): In order to prove the result, I will show that for any two integers N1

and N2 such that N1 < N2 , we have f(N1, z) − f(N2, z) ≤ 0 when rI > rS. It will

then follow that N∗ > 1. Consider the following four cases:

Case 1: T (N1, z) ≤ 0 and T (N2, z) ≤ 0. In this case, f(N1, z) − f(N2, z) =

fL(N1, z)− fL(N2, z). The result now follows from Lemma 2.6(iii), since fL(N, z) is

increasing N .

Case 2: T (N1, z) > 0 and T (N2, z) > 0. In this case, f(N1, z) − f(N2, z) =

fR(N1, z)− fR(N2, z). The result now follows from Lemma 2.6(iii), since fR(N, z) is

increasing N .

Case 3: T (N1, z) ≤ 0 and T (N2, z) > 0. Note from (12) that when rI > rS,

T (N, z) is decreasing in N (since β < Ŝ by Assumption 2.2). Therefore, this case
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cannot occur, since T (N, z) is decreasing in N .

Case 4: T (N1, z) > 0 and T (N2, z) ≤ 0. In this case, f(N1, z) − f(N2, z) =

fR(N1, z) − fL(N2, z). Since T (N1, z) > 0, we have z > ẑ at N1 and, therefore,

fL(N1, z) ≥ fR(N1, z) by Lemma 2.3. Furthermore, note that fL(N2, z) ≥ fL(N1, z)

by Lemma 2.6(iii). Combining these last two observations, we obtain fL(N2, z) ≥

fR(N1, z), which yields the desired result. �

Proof. Proposition 2.6.

From the first of the two constraints stated in (2.4), it follows that we must have

(C − β)N ≤ I, which yields the desired result. �

Proof. Proposition 2.7.

Proof of (i): When N ≤ αI

w( bS−β)−α( bS−C)
, it is not difficult to check any z ≥ 0 that

satisfies the second of the two constraints stated in (2.4) will satisfy the first one as

well. Therefore, when N ≤ αI

w( bS−β)−α( bS−C)
, z is bounded by the second constraint in

(2.4), which yields the desired result.

Proof of (ii): When αI

w( bS−β)−α( bS−C)
≤ N ≤ I

C−β , it is not difficult to check that

any z ≥ 0 that satisfies the first of the two constraints stated in (2.4) will satisfy the

second one as well. Therefore, in this case, z is bounded by the first constraint in

(2.4), which yields the desired result. �

Lemma 2.6. Consider the model with stochastic demand and deterministic supplier

yield from Section 2.4.2. At a fixed z:

(i) If rI < rS, then both fL(N, z) and fR(N, z) are decreasing in N .

(ii) If rI > rS and C > (rI−rS)
(1+rI)

Ŝ, then both fL(N, z) and fR(N, z) are decreasing in

N .
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(iii) If rI > rS and C < rI−rS
1+rI

β, then both fL(N, z) and fR(N, z) are increasing in

N .

Proof. Lemma 2.6.

Proof of (i): Note from (2.10) that ΠL(N, z) is decreasing in N when rI < rS.

(Note that Q(N, z) = z in the model of Section 2.4.2.) Since fL(N, z) is defined in

(2.14) to be a monotonic transformation of ΠL(N, z), we observe that fL(N, z) is

decreasing in N when rI < rS. Similarly for fR(N, z).

Proof of (ii): Note that C > (rI−rS)
(1+rI)

Ŝ is equivalent to (1+rI)C > (rI−rS)Ŝ. Now,

when rI > rS and (1 + rI)C > (rI − rS)Ŝ, we note from (2.10) and (2.11) that both

ΠL(N, z) and ΠR(N, z) are decreasing in N . The result follows, because fL(N, z)

and fR(N, z) are monotonic transformations of ΠL(N, z) and ΠR(N, z), respectively.

Proof of (iii): Note that C < rI−rS
1+rI

β is equivalent to (rI − rS)β > (1 + rI)C. Now,

when rI > rS and (rI − rS)β > (1 + rI)C, observe from (10) and (11) that both

ΠL(N, z) and ΠR(N, z) are increasing N . The result follows because fL(N, z) and

fR(N, z) are monotonic transformations of ΠL(n, z) and ΠR(n, z), respectively. �

2.8.4 Proofs of Lemma 2.8 and Propositions 2.9 and 2.10.

Proof. Lemma 2.8.

First, I prove that fk(z), defined by (2.14), can be written as in (2.23). For notational

convenience, define λk = akz+bk+l. Observe that fk(N, z) = E[pmin(D,Q(N, z))−

λk]
+, k = L,R. Recall that demand D is deterministic and the quantity delivered,

Q(N, z), is given by Xz. Then:

fk(N, z) = −λkE
[
1{pmin(D,Xz)−λk≥0}

]
+ pE

[
min(D,Xz)1{pmin(D,Xz)−λk≥0}

]
= −λk1{pD−λk≥0} Pr[pXz − λk ≥ 0]

+ p1{pD−λk≥0}E
[
min(D,Xz)1{pXz−λk≥0}

]
.
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Note that pD − λk ≥ 0 by Assumption 2.6. Hence, 1{pD−λk≥0} = 1 and we have:

fk(N, z) = −λk Pr[pXz − λk ≥ 0] + pE
[
min(D,Xz)1{pXz−λk≥0}

]
= −λk Pr[pXz − λk ≥ 0] + pE

[
Xz1{pXz−λk≥0,Xz≤D}

]
+ pE

[
D1{pXz−λk≥0,Xz≥D}

]
.

Furthermore, by Assumption 2.6, we have D
z
≥ λk

pz
. Using this observation, we can

write:

fk(N, z) = −λk Pr[pXz − λk ≥ 0] + pE
[
Xz1{pXz−λk≥0,Xz≤D}

]
+ pDPr[pXz ≥ D]

= −λk Pr

[
X ≥ λk

pz

]
+ pE

[
Xz1{λk

pz
≤X≤D

z
}

]
+ pDPr

[
X ≥ D

pz

]
.

The expression above can now be re-written as the expression presented in (2.23).

The derivative presented in (2.24) can be verified by taking the derivative of (2.23).

Next, I prove the unimodality of fk(z) when γ(·)
Γ(·) is decreasing. We start by writing

(2.24) as follows:

f ′k(z) = −akΦ
(
akz + bk + l

pz

)
− pΓ

(
D

z

)
+ pΓ

(
akz + bk + l

pz

)
. (2.43)

By taking the derivative of (2.43), we obtain:

f ′′k (z) = −φ
(
akz + bk
pz

)
ak(bk + l)

pz2
+ p

D

z2
γ

(
D

z

)
− bk + l

z2
γ

(
akz + bk + l

pz

)
. (2.44)

In what follows, we let K = akz+bk+l
pz

for convenience. In order to prove unimodality,

it will be sufficient to prove that f ′′k (z) < 0 whenever f ′k(z) = 0. To that end, we

start by restating (2.44) as follows:

f ′′k (z) = −φ(K)
ak(bk + l)

pz2
+ p

D

z2
γ

(
D

z

)
− bk + l

z2

γ(K)

Γ(K)
Γ(K).

We then substitute for Γ(K) from (2.43) in the above equation to obtain:

f ′′k (z)|f ′
k(z)=0 = −φ(K)

ak(bk + l)

pz2
+ p

D

z2
γ

(
D

z

)
− bk + l

z2

γ(K)

Γ(K)

akΦ(K) + pΓ
(
D
z

)
p

.
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Rearranging the terms, we can write:

f ′′k (z)|f ′
k(z)=0 =

p

z2
Γ

(
D

z

)[
D
γ
(
D
z

)
Γ
(
D
z

) − bk + l

p

γ(K)

Γ(K)

]

− φ(K)
ak(bk + l)

pz2
− γ(K)Φ(K)

Γ(K)

ak(bk + l)

pz2
.

Substituting γ(K) = −Kφ(K) in the above equation yields:

f ′′k (z)|f ′
k(z)=0 =

p

z2
Γ

(
D

z

)[
D
γ
(
D
z

)
Γ
(
D
z

) − bk + l

p

γ(K)

Γ(K)

]

− φ(K)
ak(bk + l)

pz2

(
1− KΦ(K)

Γ(K)

)
.

(2.45)

Observe that, by Assumption 2.6, we have pD > bk + l and D
z
≥ K. Also, note

that γ(·) < 0 (by definition). Now, invoke our assumption that γ(·)
Γ(·) is decreasing to

observe that the first term in (2.45) is negative. In addition, observe that Γ(K) =

KΦ(K) +
∫∞
K

Φ(x)dx (by integration by parts), so 1− KΦ(K)
Γ(K)

> 0; hence, the second

term in (2.45) is negative. Thus, we conclude that f ′′k (z)|f ′
k(z)=0 < 0, which concludes

the proof of the lemma. �

Proof. Proposition 2.9.

First, I prove that fk, k = L,R are unimodal in z. To that end, I need to prove

that, for X ∼ N
(
µ, σ√

N

)
, γ(·)

Γ(·) is decreasing, where γ and Γ are defined by (2.22) and

(2.21). I can then apply Lemma 2.8. φ is the p.d.f. of a normal random variable

with mean µ and standard deviation σ√
N

. Define t(m) = (m−µ)
√
N

σ
and let φS and ΦS

denote the p.d.f. and c.d.f. of the standard normal distribution, respectively. The

following observations are standard:

γ(m) = −mφS[t(m)]; Γ(m) = µΦS[t(m)] +
σ√
N
φS[t(m)]. (2.46)

From (2.46), it follows that

Γ(m)

γ(m)
= −µΦS[t(m)]

mφS[t(m)]
− σ√

Nm
(2.47)
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Note that ΦS(·)
mφS(·) is decreasing, because standard normal distribution has increasing

failure rate. Using this observation, we note from (2.47) that Γ(m)
γ(m)

is increasing in

m. Hence, γ(m)
Γ(m)

is decreasing in m.

Now the proof that the objective function is unimodal is similar to the proof of

Proposition 2.2. �

Proof. Proposition 2.10.

Take the derivative of the expression (2.24) with respect to b

∂

∂b
h′(z) =

∂

∂b

[
p

∫ ∞
az+b+l
pz

xφ(x) dx− a
∫ ∞
az+b+l
pz

φ(x) dx

]
(2.48)

= − 1

pz
φ
(
az+b+l
pz

) [
p az+b+l

pz
− a
]
≤ 0. �
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CHAPTER III

Inventory of Cash-Constrained Firms and the Option to
Acquire Future Financing

3.1 Introduction.

Companies in a broad range of industries and economies rely heavily on external

sources to finance their operations. But, external financing could be expensive and/or

difficult to obtain due to asymmetric information between lenders and borrowers,

high cost of capital of lenders, high cost of lenders to monitor the credibility of

potential borrowers, credit rationing by lenders, and expensive loan terms sometimes

extended by lenders with power advantage over manufacturers.

Banks often have lower costs of capital and easier access to capital than suppliers.

Therefore, banks can offer loans at cheaper rates than suppliers if they can assess how

likely manufacturers are to repay. Unfortunately, asymmetric information that often

exists between banks and manufacturers causes banks to offer unfavorable loan terms

or even deny loans to manufacturers. However, the competition among suppliers to

sell goods to manufacturers might make suppliers lend to manufacturers with greater

ease than banks. This is why, even when suppliers offer credit terms that come at

high costs, the relatively easy access to supplier financing enables manufacturers to

signal their credit quality to banks, which facilitates access to bank loans.

In this chapter, I focus on cash-constrained manufacturers that rely on bank loans
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and trade credit1 to finance their costs of production in expectation of the demand

for final goods. The emphasis of my analysis is to answer the following questions:

when should manufacturers use trade credit to finance their operations?; how does

information asymmetry between banks and manufacturers affect the operational and

financial decisions of manufacturers?; how does the availability of trade credit affect

the operational and financial decisions of manufacturers?; what are the benefits and

costs of the trade credit signal?

I consider a stochastic dynamic programming model to represent operations of a

cash-constrained manufacturer. Then, I analyze and compare results of two prob-

lems: a problem where a bank’s belief about the manufacturer’s credibility does not

depend on the loan repayment amount of the manufacturer; and a problem where

a bank’s belief about the manufacturer’s credibility depends on the loan repayment

amount of the manufacturer.

I show that financing considerations affect the optimal order-up-to level. Specif-

ically, when the benefit to borrow from suppliers is greater than the benefit to use

internal capital, manufacturers might borrow a high amount from suppliers and over-

order to make use of cheap supplier loans and capitalize on high demands for finished

goods; when the line of credit offered by banks is low, manufacturers might borrow

a high amount from suppliers and over-order to signal their repayment capabilities

to banks and capitalize on high demands for finished goods; when the line of credit

offered by banks is high, manufacturers might borrow a high amount from banks

and over-order to make use of cheap bank loans and capitalize on high demands for

finished goods; when the line of credit offered by lenders is low and the opportunity

cost of capital of manufacturers is high relative to other sources of financing, manu-

1See Chapters I and II to obtain a more detailed explanation of trade credit financing.
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facturers might under-order to allocate their precious capital to projects with higher

expected returns.

My analysis suggests that, if a bank extends a small line of credit to a manu-

facturer, then the manufacturer is better-off when the bank’s belief about the man-

ufacturer’s credibility depends on the loan repayment amount of the manufacturer

and, if a bank extends a big line of credit to a manufacturer, then the manufac-

turer is better-off when the bank’s belief about the manufacturer’s credibility does

not depend on the loan repayment amount of the manufacturer. Also, I show that,

if borrowing from the bank is very cheap compared to other sources of financing,

then the amount to borrow is greater in the signaling model than in the no-signaling

model.

3.2 Literature review.

Many implications of trade credit financing have been analyzed in the operations

literature. For example, Haley and Higgins (1973), and Rachamandugu (1989) in-

vestigate trade credit’s impact on the Economic Order Quantity model. Recently,

Gupta and Wang (2009) show the order-up-to-inventory remains optimal for a dis-

crete time combined inventory-financing model when trade credit is used and they

prescribe an algorithm for computing the optimal stock level for a continuous time

model.

Trade credit financing has also been analyzed in the finance literature. For exam-

ple, Petersen and Rajan (1997) observe that suppliers appear to have an advantage

over traditional financial institutions in lending to growing firms, especially if those

firms’ credit quality is suspect. According to Petersen and Rajan (1997), there

are three main reasons why suppliers appear to have an advantage over traditional
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financial institutions in lending to growing firms: the suppliers are more capable

than banks to repossess the goods from manufacturers in case of insolvency and sell

them; the buyers are possible source of future business for suppliers; and there is

a low cost of obtaining information from product market transactions, and perhaps

from other suppliers. Fisman (2001) discovers a correlation between the availability

of trade credit financing and a firm’s operational performance. Using a sample of

African firms, Fisman (2001) finds that firms with access to trade credit financing are

less likely to experience stock-outs, and are more likely to have higher production-

capacity utilization.

Various studies have been conducted on the relationship between lenders and

borrowers when lenders are facing asymmetric information about the riskiness of the

borrowers’ projects. For example, Povel and Raith (2004) study financial contracting

when an entrepreneur’s investment and its resulting revenue are unobservable to the

lender. Jaffee and Russell (1976) analyze the dynamics of a loan market in which

borrowers have more information about the likelihood of default than the lenders.

Sometimes borrowers can even consider taking actions to alleviate the asymmetric

information that exists between them and lenders in order to obtain favorable loans

from lenders. For example, Stiglitz and Weiss (1981) present a model of credit

rationing in which among observationally identical borrowers some receive loans and

others do not receive loans even if the potential borrowers are willing to accept

higher interest rates than the market interest rates or put up more collateral than is

demanded by the lenders.

In addition to studies on the asymmetric information between lenders and borrow-

ers, various studies have been conducted on the use of trade credit by manufacturers

to signal their repayment capabilities to banks. For example, Cook (1999), using data
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from a survey of 352 firms in Russia in 1995, empirically concludes that trade credit

can incorporate the private information held by suppliers about their customers in

the lending relation. The author argues that trade credit financing sends a positive

signal to financial institutions which, without that signal, might be reluctant to lend

to buyers. Cook’s empirical findings are consistent with Alphonse et al. (2006) who

use US small business data (NSSBF 1998) to show that trade credit can signal firm’s

quality and thus facilitates access to bank debt. Biais and Gollier (1997) consider

a static model in which a supplier has private information about the manufacturers

while the bank does not. In Biais and Gollier (1997), manufacturers’ revenues do

not depend on the operational decisions made by manufacturers and the decision

to finance projects is solely dictated by exogenous signals received from banks and

suppliers. Furthermore, in Biais and Gollier (1997), credit rationing occurs when the

bank cannot always assess the quality of a firm with enough precision. As a result,

many firms with positive net present value projects are denied credit from the bank.

However, suppliers might find it profitable to extend credit to some of these firms.

I focus on the use of trade credit financing as a way for manufacturers to finance

their productions and, at the same time, signal a high repayment capability to banks.

Unlike in Biais and Gollier (1997) I do not consider consider a static setting with

multiple decision-makers. Instead, I consider a multi-period model, which contains

one bank, one supplier and one manufacturer where the manufacturer is the only

decision-maker. The main motivation for the multi-period model is to address, in a

dynamic setting, the effect of the trade credit on the bank loan terms. Unfortunately,

tracing the results of a multi-pertiod model required me to sacrifice decisions made

by the suppliers and the banks. Nonetheless, my multi-period optimization model

contributes to the operations and finance literatures because I consider the joint effect
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of the loan terms, the manufacturer’s operational policies and the manufacturer’s

financial decisions on each other. However, instead of following others who have

considered the impact of operational policies on the loan interest rates set by the

bank, I am analyzing the impact of the operational policies on the loan limits.

3.3 Model and assumptions.

I solve a discrete-time, dynamic, finite horizon, stochastic model with a manu-

facturer, a bank, and a supplier, where the manufacturer is the only decision-maker.

The objective of the manufacturer is to maximize the expected net present value of

the dividends received by its shareholders.

I assume that only short-term loans are available and the manufacturer can bor-

row from the bank, the supplier, and the shareholders. Manufacturers can also use

retained earnings to finance operations. The supplier can produce unlimited number

of goods and always delivers the number of goods requested by the manufacturer.

Throughout the analysis, the interest rate on bank loans is rB, the interest rate on

supplier loans is rS, the discount factor of the cash flows provided to the manufac-

turer’s shareholders is α. Also, demands, {Dt}, for any period t ∈ {1, T} are i.i.d.

with a p.d.f. φ and an invertible c.d.f. Φ, the unit wholesale price is τ , the manufac-

turer pays m for production, the maximum credit offered by the supplier per unit of

product bought by the manufacturer is λ, and the retail price is p. The trade credit

amount cannot be greater than the wholesale price, λ ≤ τ . Thus, the total cost of a

good, for the manufacturer, is w where w = τ + m. To ensure the manufacturer is

able to make profit, w < p.

At the beginning of each period, t, the manufacturer observes its starting inven-

tory level, xt, the retained earnings level, mt, and the bank loan limit, Bt, before
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making decisions on the order quantity, Qt, dividend amount, νt, bank loan amount,

Bt, and trade credit amount, St. If the retained earnings level is negative the manu-

facturer obtains capital from its shareholders and pays a default penalty fee, Ψ(mt),

before borrowing from the bank, borrowing from the supplier, paying loan inter-

ests on the loans obtained, providing dividends to its shareholders and incurring the

manufacturing cost of the goods ordered. The production quantity, bank loan, and

supplier loan are nonnegative:

0 ≤ Qt, 0 ≤Bt, 0 ≤ St. (3.1)

To prevent the expenditures in period t from surpassing the available financing, I

require

νt + Ψ(mt) + wQt + rBBt + rSSt ≤ mt +Bt + St. (3.2)

Because νt is the only variable that can be negative in the model, constraint (3.2)

enables us to determine, at the beginning of any period t, if the manufacturer gives

dividend to the shareholders or requests money from them to cover the expenses.

At the end of the period, the supplier delivers the products, demand, Dt, is

realized and revenue, R(xt + Qt, Dt), is generated. I assume the bank is repaid

before the supplier. Therefore, at the end of the period, the manufacturer repays

the principal on the bank loan. Then, the manufacturer pays the principal on the

supplier loan.

My model is similar to the model analyzed in Li et al. (2005). As was done in

their paper, it is convenient to introduce the order-up-to level,

yt = xt +Qt, (3.3)
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and the target-capital-level,

Mt = mt − νt −Ψ(mt)− w(yt − xt)− rBBt − rSSt. (3.4)

The target-capital-level indicates the amount of capital at the manufacturer after

paying out all costs.

The loan limit of the supplier is a function of the order quantity of the man-

ufacturer, Qt, and the maximum amount of capital the supplier is willing and/or

capable to lend to the manufacturer, S. Specifically, the loan limit of the supplier is

min
[
λQt, S

]
2.

I consider two problems: a problem where the bank’s belief about the manufac-

turer’s credibility does not depend on the loan repayment amount of the manufac-

turer (no-signaling); and a problem where the bank’s belief about the manufacturer’s

credibility depends on the loan repayment amount of the manufacturer (signaling).

For the no-signaling problem, the bank loan limit at each period is B. For the sig-

naling problem, the bank loan limit, Bt, depends on the most recent line of credit

of the manufacturer, Bt−1 + St−1, and the maximum amount the manufacturer was

able to repay after realization of demand, Mt−1 +Bt−1 +St−1 +R(xt−1 +Qt−1, Dt−1).

Specifically, the bank loan limit at t = 1 is B and, for t = 2, 3, ..., T , the bank loan

limit is min[Bt−1 + St−1,Mt−1 +Bt−1 + St−1 +R(xt−1 +Qt−1, Dt−1)].

The interest rates on bank loans, rB, and supplier loans, rS are exogenously given.

Because the bank is the preferred lender, I assume that the rate, rB, is less than or

equal to the rate on trade credit terms, rS, and the opportunity cost of capital of

the shareholders, (1− α). That is, rB < min[rS, (1− α)].

I consider the situation where the planning periods occur frequently and where

time T is relatively short. This is why α, τ , m, p, λ, S, rB, and rS are constant from

2See Chapter II to obtain a more detailed explanation for the choice of supplier loan limit used.

74



period 1 to period T 3.

The next period’s starting inventory is given by

xt+1 = yt −Dt. (3.5)

The next period’s starting capital is given by

mt+1 = Mt +R(yt, Dt). (3.6)

From equations (3.3), (3.4), (3.5) and (3.6), the decision variables in period t can be

specified as yt, Mt, Bt and St instead of Qt, νt, Bt and St. Therefore, for t = 1, 2, ..., T ,

let the history of states and actions be given by

Πt
def
= (x1,m1, y1,M1, B1, S1, D1..., xt−1,mt−1, yt−1,Mt−1, Bt−1, St−1, Dt−1,

xt,mt, yt,Mt, Bt, St, Dt)

(3.7)

and let

C =
T∑
t=1

αt−1νt. (3.8)

A non-anticipative policy is a rule, for each t, on how the manufacturer chooses yt,

Mt, Bt, St as a function of Πt. An optimal policy maximizes E
[
C|x1 = x,m1 =

m,B1 = B
]

for each
(
x,m,B

)
∈ R3. Our goal is to characterize such optimal policy.

3.4 Analysis.

Although this problem appears to have three state variables (xt, mt and Bt), it

can be reduced, similar to Li et al. (2005), to a problem with two state variables (xt

and Bt) and its solution can be specified almost explicitly.

Observe, from equation (3.4), that

νt =mt −Ψ(mt)− w(yt − xt)− rBBt − rSSt −Mt. (3.9)

3See Chapter II to obtain a more detailed argument for the stationary of λ, S, rB , and rS .
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If we substitute νt in equation (3.8) by its expression in equation (3.9), we derive:

C =
T∑
t=1

αt−1
[
mt −Ψ(mt)− w(yt − xt)− rBBt − rSSt −Mt

]
(3.10)

=m1 + wx1 −Ψ(m1)− wy1 − rBB1 − rSS1 −M1

+
T∑
t=2

αt−1
[
mt −Ψ(mt)− w(yt − xt)− rBBt − rSSt −Mt

]
.

(3.11)

Recall, from equation (3.5) and equation (3.6), that xt+1 = yt − Dt and mt+1 =

Mt + R(yt, Dt). If, for t = 2, 3, ..., T , we substitute xt and mt in equation (3.11) by

their equivalent expressions in equation (3.5) and equation (3.6), then we derive:

C =m1 + wx1 −Ψ(m1)−
T−1∑
t=1

αtwDt + αR(y1, D1)− (1− α)wy1

− αΨ
(
M1 +R(y1, D1)

)
− (1− α)M1 − rBB1 − rSS1

+
T∑
t=2

αt−1
{
αR(yt, Dt)− (1− α)wyt − αΨ

(
Mt +R(yt, Dt)

)
− (1− α)Mt − rBBt − rSSt

}
.

(3.12)

For (B, S,M, y) ∈ R4, let

K(B, S,M, y) =αR(y,D)− (1− α)wy

− αΨ
(
M +R(y,D)

)
− (1− α)M − rBB − rSS.

(3.13)

Because a policy maximizes E(C|Π1) if and only if it maximizes

E(C|Π1)−

[
m1 + wx1 −Ψ(m1)−

T−1∑
t=1

αtwE(Dt)

]
, (3.14)

I utilize equation (3.12) and equation (3.13) to optimize the following criterion:

E

[
T∑
t=1

αt−1K(yt,Mt, Bt, St)

]
, (3.15)

subject to:

xt ≤ yt, (3.16)
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0 ≤ Bt ≤ Bt, (3.17)

0 ≤ St ≤ min
[
λ (yt − xt) , S

]
, (3.18)

0 ≤Mt +Bt + St. (3.19)

The maximization of the expected value in equation (3.8) is equivalent to maximizing

the expected value in (3.15). However, a dynamic program for the former problem

has a state space consisting of three state variables, whereas the latter problem has

two variables. This is why, with

K(B, S,M, y) =E
[
αR (y,D)− (1− α)wy − αΨ

(
R (y,D) +M

)
− (1− α)M − rBB − rSS

]
,

(3.20)

our general problem can be transformed into the following DP recursions.

DP Recursion for the no-signaling problem.

gt (x) = max
B,S,M,y

Jt(B, S,M, y) (3.21)

where

Jt(B, S,M, y) =K(B, S,M, y) + αE [gt+1 (y −D)] , (3.22)

gT+1 (.) =0. (3.23)

DP Recursion for the signaling problem.

ft
(
B, x

)
= max

B,S,M,y
Jt(B, S,M, y) (3.24)

where

Jt(B, S,M, y) =K(B, S,M, y)

+ αE
[
ft+1

(
B + S + min [M +R (y,D) , 0] , y −D

)]
,

(3.25)

fT+1 (., .) =0. (3.26)
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Optimization domain:

x ≤ y, (3.27)

0 ≤ B ≤ B, (3.28)

0 ≤ S ≤ min
[
λ (y − x) , S

]
, (3.29)

0 ≤M +B + S. (3.30)

In the rest of the analysis, I introduce a new variable, L, to represent the total loan

amount requested by the manufacturer, B + S.

Proposition 3.1. For a given target-capital level, M , and order-up-to level, y, the

manufacturer, at optimality, will only consider borrowing from the supplier if the

amount the manufacturer desires to borrow from the bank exceeds the bank loan limit.

Proof. I show that it is always suboptimal to borrow from the supplier if bank loans

are still available.

For any t = 1, 2, ..., T , if trade credit does not affect the bank’s belief about the

manufacturer’s credibility, then

Jt(B, S,M, y) =E
[
αR (y,D)− (1− α)wy − αΨ

(
R (y,D) +M

)
− (1− α)M − rBB − rSS

]
+ αE

[
gt+1

(
y −D

)]
.

(3.31)

Because the interest rate on bank loans is lower than the interest rate on supplier

loans it is suboptimal to borrow from the supplier if bank loans are still available.

For any t = 1, 2, ..., T , if trade credit affects the bank’s belief about the manufac-

turer’s credibility, then

Jt(B, S,M, y) =E
[
αR (y,D)− (1− α)wy − αΨ

(
R (y,D) +M

)
− (1− α)M − rBB − rSS

]
+ αE

[
ft+1

(
B + S + min [M +R (y,D) , 0] , y −D

)]
.

(3.32)
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Observe that, ft+1 depends on the total loan amount, B + S, and not on the source

of the loan. Therefore, because the interest rate on bank loans is lower than the

interest rate on supplier loans, it is suboptimal to borrow from the supplier if bank

loans are still available. �

According to Proposition 3.1, the bank, lending at a lower rate than the supplier,

is always the preferred lending source. This is why, if we define

K(L,M, y) =E
[
αR (y,D)− (1− α)wy − αΨ

(
R (y,D) +M

)
− (1− α)M − rB min

(
L,B

)
− rS

(
L−B

)+
]
,

(3.33)

then our problems can be transformed into the following DP recursions.

DP Recursion for the no-signaling problem.

gt (x) = max
L,M,y

Jt(L,M, y) (3.34)

where

Jt(L,M, y) =K(L,M, y) + αE [gt+1 (y −D)] , (3.35)

gT+1 (.) =0. (3.36)

DP Recursion for the signaling problem.

ft
(
B, x

)
= max

L,M,y
Jt(L,M, y) (3.37)

where

Jt(L,M, y) =K(L,M, y) + αE
[
ft+1

(
L+ min [M +R (y,D) , 0] , y −D

)]
, (3.38)

fT+1 (., .) =0. (3.39)

Optimization domain

x ≤ y, (3.40)
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0 ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.41)

0 ≤M + L. (3.42)

Lemma 3.1. At any period t, the shareholders’ optimal value functions, gt and ft,

are non-increasing in the starting inventory, x. Furthermore, at any period t, the

shareholders’ optimal value function, ft, is non-decreasing in the bank loan limit, B.

Proof. Recall, from (3.34), (3.37), (3.40), (3.41) and (3.42), that, for any t, gt and ft

maximize Jt(L,M, y) subject to x ≤ y, 0 ≤ L ≤ B+min[λ (y − x) , S] and 0 ≤M+L.

But, the feasible region shrinks in x while Jt does not depend on x. Therefore, for

any period t, the shareholders’ optimal value functions, gt and ft, are non-increasing

in the starting inventory, x.

For any t, ft maximizes Jt(L,M, y) subject to x ≤ y, 0 ≤ L ≤ B+min[λ (y − x) , S]

and 0 ≤ M + L. But, the feasible region expands in B while Jt is non-decreasing

in B. Therefore, for any period t, the shareholders’ optimal value function, ft, is

non-decreasing in the bank loan limit, B. �

Lemma 3.2. If the revenue function, R, is concave and the penalty function, Ψ, is

convex and decreasing, the immediate reward function, K, is concave.

Proof. Let Ω =
{
L,M, y

}
be a convex set ⊂ E3. Because expectation over the

demand, D, preserves concavity, K is concave on the convex set Ω if, for any D,

αR (y,D)−(1−α)wy−αΨ
(
R (y,D)+M

)
−(1−α)M−rB min

(
L,B

)
−rS

(
L−B

)+
is

concave. We can easily see that −(1−α)wy−(1−α)M−rB min
(
L,B

)
−rS

(
L−B

)+

is concave on the convex set Ω. Therefore, if αR (y,D)−αΨ
(
R (y,D)+M

)
is concave

on the convex set Ω, then K is concave on the convex set Ω.

Observe that, for any concave revenue function, R, αR (y,D) is concave because
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multiplying a positive number to a concave function results in a concave function.

Furthermore, −αΨ
(
R (y,D) +M

)
is concave if Ψ is convex and decreasing. �

In the rest of the analysis I assume that the revenue function is R (y,D) =

pmin(y,D) and the penalty function is Ψ(m) = ψ(m) − ψ(m)+ where ψ > 0. By

Lemma 3.2, the immediate reward function K is concave with these revenue and

penalty functions and (3.33) becomes:

K(L,M, y) =E
[
αpmin(y,D)− (1− α)wy − (1− α)M + αψ

(
pmin(y,D) +M

)
− αψ

(
pmin(y,D) +M

)+

− rB min
(
L,B

)
− rS

(
L−B

)+
]
.

(3.43)

and our problems can be transformed into the following DP recursions.

DP Recursion for the no-signaling problem.

gt (x) = max
L,M,y

Jt(L,M, y) (3.44)

where

Jt(L,M, y) =K(L,M, y) + αE [gt+1 (y −D)] , (3.45)

gT+1 (.) =0. (3.46)

DP Recursion for the signaling problem.

ft
(
B, x

)
= max

L,M,y
Jt(L,M, y) (3.47)

where

Jt(L,M, y) =K(L,M, y)

+ αE
[
ft+1

(
L+ min [M + pmin(y,D), 0] , y −D

)]
,

(3.48)

fT+1 (., .) =0. (3.49)
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Optimization domain

x ≤ y, (3.50)

0 ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.51)

0 ≤M + L. (3.52)

Proposition 3.2. At any period t, it is suboptimal to have a positive target-capital-

level before receiving the loans. That is, it is optimal to have M ≤ 0.

Proof. I show that it is always suboptimal to have M > 0 by showing that, if

M > 0, then we will improve the objective value in the DP recursion optimizations

by reducing M .

For any t = 1, 2, ..., T and M > 0, if trade credit does not affect the bank’s belief

about the manufacturer’s credibility, then

Jt(L,M, y) =E
[
αpmin(y,D)− (1− α)wy − (1− α)M

− rB min
(
L,B

)
− rS

(
L−B

)+
]

+ αE [gt+1 (y −D)] .

(3.53)

and, if trade credit affects the bank’s belief about the manufacturer’s credibility, then

Jt(L,M, y) =E
[
αpmin(y,D)− (1− α)wy − (1− α)M

− rB min
(
L,B

)
− rS

(
L−B

)+
]

+ αE
[
ft+1

(
L, y −D

)]
.

(3.54)

Terms with gt+1 and ft+1 are independent of M . Because 1 − α > 0 and, for a

fixed L and y, M is independent of the state variables, then, for any t, Jt is decreasing

in M . Therefore, any M > 0, is suboptimal. �

By definition, M indicates the target-capital level after paying out all costs and

before receiving loans. Therefore, Proposition 3.2 implies that it is suboptimal to
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maintain a positive target-capital-level after paying out all costs and before receiving

loans.

Proposition 3.3. For the no-signaling problem, it is optimal to maintain a zero

target-capital-level after receiving the total loan requested and before the realization

of the demand. That is, for any t = 1, 2, ..., T , L + M = 0 is optimal in the no-

signaling problem.

Proof. For any t = 1, 2, ..., T , observe, from (3.45), that αE [gt+1 (y −D)] is indepen-

dent of L and, from (3.43), that K(L,M, y) decreases in L. Therefore, (3.51) and

(3.52) lead to L = max(0,−M) for any t = 1, 2, ..., T in the no-signaling problem.

Recall, from Proposition 3.2, that, at optimality, M ≤ 0. Therefore, at optimality,

we get L = −M in the no-signaling problem. �

According to Proposition 3.3, it is suboptimal, in the no-signaling problem, to

borrow from the bank and/or the supplier and, afterwards, not passing the excess

capital to the shareholders. This is why, in the no-signaling problem, it is optimal to

maintain a zero target-capital-level after receiving the total loan requested and before

the realization of the demand. Furthermore, Proposition 3.3 reduces the no-signaling

problem into a problem with two decision variables. This is why, with

G(L, y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
L− pmin(y,D)

)+

+ (1− α)L− rB min
(
L,B

)
− rS

(
L−B

)+
]
,

(3.55)

and

F (L,M, y) =E
[
αpmin(y,D)− (1− α)wy − (1− α)M + αψ

(
M + pmin(y,D)

)
− αψ

(
M + pmin(y,D)

)+

− rB min
(
L,B

)
− rS

(
L−B

)+
]
,

(3.56)
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our problems can be transformed into the following DP recursions.

DP Recursion for the no-signaling problem.

gt (x) = max
L,y

Jt(L, y) (3.57)

where, gT+1(.) = 0, and, for any t = 1, 2, ..., T ,

Jt(L, y) =G(L, y) + αE [gt+1 (y −D)] . (3.58)

Optimization domain

x ≤ y, (3.59)

0 ≤ L ≤ B + min
[
λ (y − x) , S

]
. (3.60)

DP Recursion for the signaling problem.

ft
(
B, x

)
= max

L,M,y
Jt(L,M, y) (3.61)

where, fT=1 (., .) = 0, and, for any t = 1, 2, ..., T ,

Jt(L,M, y) =F (L,M, y)

+ αE
[
ft+1

(
L+ min [M + pmin(y,D), 0] , y −D

)]
.

(3.62)

Optimization domain

x ≤ y, (3.63)

0 ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.64)

M ≤ 0, (3.65)

0 ≤M + L. (3.66)

Recall that we are interested in analyzing and comparing results of two problems: a

two-period problem when the loan repayments do not affect the bank’s belief about
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the manufacturer’s creditworthiness and a two-period problem when the loan re-

payments affect the bank’s belief about the manufacturer’s creditworthiness. Before

analyzing each problem separately, it is convenient to analyze the structure of the

optimal solution of the one-period problem.

3.4.1 One-period problem.

We need to analyze:

max
L,y

J(L, y) (3.67)

where

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L

− αψ
(
L− pmin(y,D)

)+

− rB min
(
L,B

)
− rS

(
L−B

)+
]
.

(3.68)

Optimization domain

x ≤ y, (3.69)

0 ≤ L ≤ B + min
[
λ (y − x) , S

]
. (3.70)

Observe that, if L > py, then (3.68) is equivalent to

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L

− αψ
(
L− pmin(y,D)

)
− rB min

(
L,B

)
− rS

(
L−B

)+
]
,

(3.71)

and, if L ≤ py, then (3.68) is equivalent to

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L− αψ (L− pD)+

− rB min
(
L,B

)
− rS

(
L−B

)+
]
.

(3.72)

Throughout the analysis, I will use (3.68), or (3.71) and (3.72) for the expressions of

J(L, y).
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Lemma 3.3. If (1− α) ≤ αψ + rB, then, at optimality, L ≤ py.

Proof. I show that, if (1 − α) ≤ αψ + rB, then, it is suboptimal to have L > py by

showing that, if L > py, then we will improve the objective value by reducing L.

Recall that rS > rB. Therefore, (1−α) ≤ αψ+rB implies that (1−α) ≤ αψ+rS.

This is why, if (1 − α) ≤ αψ + rB, then, from (3.71), J(L, y) is decreasing in L for

any y and L > py. Hence, L > py is suboptimal when (1− α) ≤ αψ + rB. �

Lemma 3.4. If αψ + rB ≤ (1− α), then, at optimality, L ≥ B.

Proof. I show that, if αψ + rB ≤ (1 − α), then, it is suboptimal to have L < B by

showing that, if L < B, then we will improve the objective value by increasing L.

Observe, from (3.68), that, if L < B, then

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L− αψ

(
L− pmin(y,D)

)+

− rBL
]
.

(3.73)

Furthermore, observe that, if αψ+rB ≤ (1−α), then (1−α)L−αψ
(
L−pmin(y,D)

)+

−

rBL is increasing in L. This is why, if αψ + rB ≤ (1 − α), then it is suboptimal to

have L < B. �

Lemma 3.5. If αψ+ rS ≤ (1−α), then, at optimality, L = B+ min
[
λ (y − x) , S

]
.

Proof. I show that, if αψ + rS ≤ (1 − α), then, it is suboptimal to have L <

B + min
[
λ (y − x) , S

]
by showing that, if L < B + min

[
λ (y − x) , S

]
, then it is

optimal to increase L as much as possible.

Recall that rS > rB. Therefore, αψ+rS ≤ (1−α) implies that αψ+rB ≤ (1−α).

Lemma 3.4 states that, if αψ+ rB ≤ (1−α), then, at optimality, L ≥ B. Therefore,

if αψ + rS ≤ (1− α), then, at optimality, L ≥ B.
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Observe, from (3.68), that, if L ≥ B, then

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L

− αψ
(
L− pmin(y,D)

)+

− rBB − rS(L−B)
]
.

(3.74)

Furthermore, observe that, if αψ+rS ≤ (1−α), then (1−α)L−αψ
(
L−pmin(y,D)

)+

−

rSL is increasing in L. Recall, from (3.70), that L ≤ B + min
[
λ (y − x) , S

]
. This is

why, if αψ+ rS ≤ (1−α), then it is optimal to have L = B+ min
[
λ (y − x) , S

]
. �

For various relationships between the financial parameters considered in our prob-

lem, Lemma 3.3, Lemma 3.4 and Lemma 3.5 shrink the search region for the optimal

solution of our optimization problem. This is why, if (1 − α) ≤ αψ + rB, then our

one-period problem can be transformed into the following:

max
L,y

J(L, y) (3.75)

where

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L− αψ (L− pD)+

− rB min
(
L,B

)
− rS

(
L−B

)+
]
.

(3.76)

Optimization domain

x ≤ y, (3.77)

0 ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.78)

L ≤ py. (3.79)

If αψ + rB ≤ (1 − α) ≤ αψ + rS, then the one-period problem can be transformed

into the following:

max
L,y

J(L, y) (3.80)
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where

J(L, y) =E
[
αpmin(y,D)− (1− α)wy + (1− α)L− αψ

(
L− pmin(y,D)

)+

− rBB − rS(L−B)
]
.

(3.81)

Optimization domain

x ≤ y, (3.82)

B ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.83)

L ≤ max(B, py). (3.84)

If αψ + rS ≤ (1− α), then the one-problem can be transformed into the following:

max
y
J(y) (3.85)

where

J(y) =E
[
αpmin(y,D)− (1− α)wy + (1− α) min

[
B + λ (y − x) , B + S

]
− αψ

(
min

[
B + λ (y − x) , B + S

]
− pmin(y,D)

)+

− rBB − rS min
[
λ (y − x) , S

] ]
.

(3.86)

Optimization domain: x ≤ y.

Before continuing the analysis of our problem, it is convenient to visualize the

feasible regions of our problem.

With respect to y, the slope of the boundary where L = py is more positive than

the slope of the boundary where L = B+λ(y−x). Therefore, although, a priori, we

do not know where the optimal solution falls, we know that, for any x ≥ B
p

, there is

no y ≥ x for which py ≤ B + λ(y − x).

Figure 3.1 presents the feasible regions when (1− α) ≤ αψ + rB: Figure 3.1 (a)

and Figure 3.1 (b) represent the feasible region where x ≤ B
p

; Figure 3.1 (c) represents

the feasible region where x ≥ B
p

.
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Figure 3.1: Feasible regions for the one-period problem when (1− α) ≤ αψ + rB.

Figure 3.2 presents the feasible regions when αψ+rB ≤ (1−α) ≤ αψ+rS: Figure

3.2 (a) and Figure 3.2 (b) represent the feasible region where x ≤ B
p

; Figure 3.2 (c)

represents the feasible region where x ≥ B
p

. Observe that, when αψ + rB ≤ (1− α),

it is always cheaper to borrow from the bank than the shareholders even if borrowing

from the bank results in a default penalty. Therefore, the optimal amount to borrow

is always greater than B and, for any value of B and x, the optimal solution is in

region 1, region 2 or at one of the boundaries that are shown in Figure 3.2.

Figure 3.3 presents the feasible regions when (1− α) ≤ αψ + rB: Figure 3.3 (a)
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Figure 3.2: Feasible regions for the one-period problem when αψ+rB ≤ (1−α) ≤ αψ+rS .

and Figure 3.3 (b) represent the feasible region where x ≤ 0; Figure 3.3 (c) represents

the feasible region where x ≥ 0. Observe that, when αψ + rS ≤ (1− α), it is always

cheaper to borrow from the bank and/or the supplier than the shareholders even if

borrowing from the bank and/or the supplier results in a default penalty. Therefore,

for any order-up-to level y, the optimal amount to borrow is always greater than

min
[
B + λ(y − x), B + S

]
.

Proposition 3.4. (1 − α) ≤ αψ + rB. Define L0
b

def
= pΦ−1

[
(1−α)−rB

αψ

]
and y0 def

=

Φ−1
[
αp−(1−α)w

αp

]
. If the manufacturer borrows only from the bank and no constraints
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Figure 3.3: Feasible regions for the one-period problem when αψ + rS ≤ (1− α).

are active, then the optimal amount to borrow and optimal order-up-to level are L0
b

and y0 respectively. That is, when x ≤ y0, 0 ≤ L0
b ≤ B and L0

b ≤ py0, then the

optimal amount to borrow is L0
b and optimal order-up-to level is y0.

Proof. If (1−α) ≤ αψ+ rB and the manufacturer borrows only from the bank, then

our problem becomes

max
L,y

J(L, y) (3.87)
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where

J(L, y) =E
[
αpmin (y,D)− (1− α)wy − αψ (L− pD)+ +

[
(1− α)− rB

]
L
]
.

(3.88)

Optimization domain

x ≤ y, (3.89)

0 ≤ L ≤ B, (3.90)

L ≤ py. (3.91)

If we define L0
b

def
= pΦ−1

[
(1−α)−rB

αψ

]
and y0 def

= Φ−1
[
αp−(1−α)w

αp

]
, then, if L = L0

b and y =

y0, ∂J(L,y)
∂L

= [(1−α)−rB]−αψΦ
(
L0
b

p

)
= 0 and ∂J(L,y)

∂y
= αp [1− Φ(y0)]−(1−α)w = 0.

Because J is a concave function, if (1− α) ≤ αψ + rB, then it is optimal to borrow

L0
b and order-upto y0 when x ≤ y0, 0 ≤ L0

b ≤ B and L0
b ≤ py0. �

Proposition 3.5. If (1 − α) ≤ αψ + rS, the manufacturer is unable to borrow the

desired amount from the bank and we define L0
bs

def
= pΦ−1

[
(1−α)−rS

αψ

]
, then; when

x ≤ y0, and B ≤ L0
bs ≤ min[B + λ(y0 − x), B + S, py0]; it is optimal to borrow L0

bs

and order-up to y0.

Proof. If (1 − α) ≤ αψ + rS and the manufacturer borrows more than B, then our

problem becomes

max
L,y

J(L, y) (3.92)

where

J(L, y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
L− pD

)+

+ (1− α)L− rBB − rS
(
L−B

) ]
,

(3.93)
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Optimization domain

x ≤ y, (3.94)

B ≤ L ≤ B + min
[
λ (y − x) , S

]
, (3.95)

L ≤ py. (3.96)

Therefore, if we define L0
bs

def
= pΦ−1

[
(1−α)−rS

αψ

]
, then, if L = L0

bs and y = y0, ∂J(L,y)
∂L

=

[(1−α)− rS]−αψΦ
(
L0
bs

p

)
= 0 and ∂J(L,y)

∂y
= αp [1− Φ(y0)]− (1−α)w = 0. Because

J is a concave function, if (1 − α) ≤ αψ + rS, then it is optimal to borrow L0
bs and

order-up to y0 when the manufacturer is unable to borrow the desired amount from

the bank, x ≤ y0, and B ≤ L0
bs ≤ min[B + λ(y0 − x), B + S, py0]. �

Proposition 3.6. It is suboptimal to borrow from the supplier when (1− α) < rS.

Proof. Recall that, at optimality, L > B implies that the manufacturer borrows

L − B from the supplier. Therefore, I will show that if L > B and (1 − α) < rS,

then it is optimal to decrease L.

When L > B,

J(L, y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
L− pmin(y,D)

)+

+ (1− α)L− rBB − rS
(
L−B

) ]
,

(3.97)

Optimization domain

x ≤ y, (3.98)

B ≤ L ≤ B + min
[
λ (y − x) , S

]
. (3.99)

Observe that, if (1− α) < rS, then, for any L ≥ B, ∂J(L,y)
∂L

= −rS < 0. This is why,

it is suboptimal to borrow from the supplier when (1− α) < rS. �
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Proposition 3.4 and Proposition 3.5 give the optimal unconstrained order-up-to

level. Proposition 3.4 gives the optimal unconstrained amount to borrow from the

bank. Proposition 3.5 gives the optimal unconstrained amount to borrow from the

bank and supplier when the manufacturer is unable to borrow as much as desired

from the bank. Proposition 3.6 gives conditions when it is never optimal to borrow

from the supplier. I will show that joint consideration of financing and operational

decisions in our problem leads to an optimal order-up-to level that is greater than or

equal to the optimal order-up-to level in the traditional news-vendor problem. But,

beforehand, I analyze properties and the structure of the constrained problem.

Lemma 3.6. If the optimal order-up-to level is on the boundarywhere y = x, then, if

(1−α) ≤ αψ+ rB, it must be optimal to borrow from the bank the minimum between

L0
b , px and B. Furthermore, if the optimal order-up-to level is on the boundarywhere

y = x, then, if αψ + rB ≤ (1− α), it must be optimal to borrow B from the bank.

Proof. First, I consider when (1− α) ≤ αψ + rB. Then, I consider when αψ + rB ≤

(1− α).

Case: (1− α) ≤ αψ + rB.

If the order-up-to level is on the boundarywhere y = x then our problem becomes

J(L) =E
[
αpmin(x,D)− (1− α)wx+ [(1− α)− rB]L− αψ

(
L− pD

)+]
. (3.100)

Optimization domain

0 ≤ L ≤ B, (3.101)

L ≤ px. (3.102)

Observe that J is a concave function and

∂J(L)

∂L
=[(1− α)− rB]− αψΦ

(
L

p

)
. (3.103)
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Therefore, if L = L0
b , then ∂J(L)

∂L
= 0. This is why, if y = x, then it must be that

L = min(L0
b , px,B).

Case: αψ + rB ≤ (1− α).

If the order-up-to level is on the boundarywhere y = x then our problem becomes

J(L) =E
[
αpmin(x,D)− (1− α)wx+ [(1− α)− rB]L− αψ

(
L− pmin(x,D

)]
.

(3.104)

Optimization domain: 0 ≤ L ≤ B.

Observe that

∂J(L)

∂L
=(1− α)− rB − αψ > 0. (3.105)

This is why, if y = x, then it must be that L = B. �

Lemma 3.7. If the optimal amount to borrow is on the boundary where L = py and

we define ypb as the order-up-to level that satisfies

0 =αp [1− Φ (y)]− (1− α)w + [(1− α)− rB]p− αψpΦ(y). (3.106)

and ypbs as the order-up-to level that satisfies

0 =αp [1− Φ (y)]− (1− α)w + [(1− α)− rS]p− αψpΦ(y). (3.107)

then, for L ≤ B, the value function increases in y when y is less than ypb and decreases

in y when y is greater than ypb , and, for L > B, the value function increases in y

when y is less than ypbs and decreases in y when y is greater than ypbs.

Proof. If the amount to borrow is on the boundary where L = py, then, if L ≤ B,

our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
py − pD

)+

+ [(1− α)− rB]py
]
,

(3.108)
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and, if B ≤ L, our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
py − pD

)+

+ [(1− α)− rS]py
]
.

(3.109)

Optimization domain

x ≤ y, (3.110)

0 ≤ py ≤ B + min
[
λ (y − x) , S

]
. (3.111)

Observe that J is a concave function. Furthermore, observe that, when L ≤ B, we

get:

∂J(y)

∂y
=αp [1− Φ (y)]− (1− α)w + [(1− α)− rB]p− αψpΦ(y) (3.112)

and, when B ≤ L, we get:

∂J(y)

∂y
=αp [1− Φ (y)]− (1− α)w + [(1− α)− rS]p− αψpΦ(y). (3.113)

Therefore, at optimality, if L = py and we define ypb as the order-up-to level that

satisfies

0 =αp [1− Φ (y)]− (1− α)w + [(1− α)− rB]p− αψpΦ(y) (3.114)

and ypbs as the order-up-to level that satisfies

0 =αp [1− Φ (y)]− (1− α)w + [(1− α)− rS]p− αψpΦ(y) (3.115)

then, for L ≤ B, the value function increases in y when y is less than ypb and decreases

in y when y is greater than ypb , and, for L > B, the value function increases in y

when y is less than ypbs and decreases in y when y is greater than ypbs. �
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Lemma 3.8. If the optimal amount to borrow is on the boundary where L = B and

B ≤ py0, then the value function increases in y when y is less than y0 and decreases

in y when y is greater than y0. Furthermore, if the optimal amount to borrow is on

the boundary where L = B + S and B + S ≤ py0, then the value function increases

in y when y is less than y0 and decreases in y when y is greater than y0.

Proof. If the amount to borrow is on the boundary where L = B and B ≤ py, then

our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B − pD

)+

+ [(1− α)− rB]B
]
. (3.116)

If the amount to borrow is on the boundarywhere L = B + S and B + S ≤ py, then

our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B + S − pD

)+

+ (1− α)
(
B + S

)
− rBB − rSS

]
.

(3.117)

Optimization domain: x ≤ y.

Observe that J is a concave function and

∂J(y)

∂y
=αp [1− Φ(y)]− (1− α)w. (3.118)

Therefore, if y = y0, then ∂J(y)
∂y

= 0. This is why, the value function increases in y

when y is less than y0 and decreases in y when y is greater than y0. �

Lemma 3.9. If we define y0
fin as the order-up-to level that satisfies

0 =αp(1 + ψ) [1− Φ (y)]− (1− α)w (3.119)

then, if the optimal amount to borrow is on the boundary where L = B and B > py0
fin,

the value function increases in y when y is less than y0
fin and decreases in y when y is

greater than y0
fin. Furthermore, if the optimal amount to borrow is on the boundary
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where L = B + S and B + S > py0
fin, then the value function increases in y when y

is less than y0
fin and decreases in y when y is greater than y0

fin.

Proof. If the amount to borrow is on the boundary where L = B and B > py, then

our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B − pmin(y,D)

)
+ [(1− α)− rB]B

]
.

(3.120)

If the amount to borrow is on the boundary where L = B+S and B+S > py, then

our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B + S − pmin(y,D)

)
+ (1− α)

(
B + S

)
− rBB − rSS

]
.

(3.121)

Optimization domain: x ≤ y.

Observe that J is a concave function and

∂J(y)

∂y
=αp(1 + ψ) [1− Φ (y)]− (1− α)w. (3.122)

Therefore, if y = y0
fin, then ∂J(y)

∂y
= 0. This is why, the value function increases in y

when y is less than y0
fin and decreases in y when y is greater than y0

fin. �

Lemma 3.10. If we define yλ as the order-up-to level that satisfies

0 =αp [1− Φ (y)]− (1− α)w + λ

{
[(1− α)− rS]− αψΦ

(
B + λ(y − x)

p

)}
,

(3.123)

and define yλfin as the order-up-to level that satisfies

0 =αp(1 + ψ) [1− Φ (y)]− (1− α)w + λ[(1− α)− rS − αψ], (3.124)

then, if the optimal amount to borrow is on the boundary where L = B + λ(y − x),

then, for any y ≥ B−λx
p−λ , the value function increases in y when y is less than yλ
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and decreases in y when y is greater than yλ. Furthermore, if the optimal amount

to borrow is on the boundary where L = B + λ(y − x), then, for any y < B−λx
p−λ , the

value function increases in y when y is less than yλfin and decreases in y when y is

greater than yλfin.

Proof. First, we consider when y ≥ B−λx
p−λ . Then, we consider when y < B−λx

p−λ .

Case: y ≥ B−λx
p−λ .

If y ≥ x and the amount to borrow is on the boundary where L = B + λ(y − x),

then our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B + λ(y − x)− pD

)+

+ (1− α)[B + λ(y − x)]− rBB − rSλ(y − x)
]
,

(3.125)

Optimization domain: x ≤ y.

Observe that J is a concave function and

∂J(y)

∂y
=αp [1− Φ (y)]− (1− α)w + λ

{
[(1− α)− rS]− αψΦ

(
B + λ(y − x)

p

)}
.

(3.126)

Therefore, if y = yλ, then ∂J(y)
∂y

= 0. This is why, the value function increases in y

when y is less than yλ and decreases in y when y is greater than yλ.

Case: y < B−λx
p−λ .

If y ≥ x and the amount to borrow is on the boundary where L = B + λ(y − x),

then our problem becomes

J(y) =E
[
αpmin(y,D)− (1− α)wy − αψ

(
B + λ(y − x)− pmin(y,D)

)
+ (1− α)[B + λ(y − x)]− rBB − rSλ(y − x)

]
,

(3.127)

Optimization domain: x ≤ y.

Observe that K is a concave function and

∂J(y)

∂y
=αp(1 + ψ) [1− Φ (y)]− (1− α)w + λ[(1− α)− rS − αψ]. (3.128)
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Therefore, if y = yλfin, then ∂J(y)
∂y

= 0. This is why, the value function increases in y

when y is less than yλfin and decreases in y when y is greater than yλfin. �

Proposition 3.7. The optimal order up-to level in our problem is always greater

than or equal to the optimal order-up-to level in the traditional news-vendor problem.

Proof. Observe that, in the traditional news-vendor problem with no financing con-

siderations (i.e., M = 0, Ψ = 0, L = 0, m > w(y − x)), our optimization problem is

the following:

f (x) = max
y
J(y) (3.129)

where

J(y) =E
[
αpmin(y,D)− (1− α)wy

]
. (3.130)

Optimization domain: x ≤ y.

This leads to y0 as to the optimal order-up-to level for the traditional news-vendor

problem with no financing considerations. I will show that, in our problem, the

conditions that lead to the optimal order-up-to level to be on one of the boundaries

also lead to the order-up-to level to be greater than or equal to y0. Then, I argue that

even if the optimal order-up-to level is on one or more than one of the boundaries,

then the optimal order-up-to level will still be greater than y0. Throughout the

analysis, I refer to y∗ as the optimal order-up-to level and L∗ as the optimal amount

to borrow.

Case: y∗ = ypb .

Observe that L∗ = pypb ≤ B. This leads to ∂J(L,y)
∂y

= αp [1− Φ (y)] − (1 − α)w +

[(1− α)− rB]p− αψpΦ(y) and, at y = y0, ∂J(L,y)
∂y

= αψp
[
Φ
(
L0
b

p

)
− Φ(y0)

]
. Recall,

from Proposition 3.4, that a necessary condition for y∗ = ypb is for L0
b ≥ py0. Because

100



Φ is a non-decreasing function, αψp
[
Φ
(
L0
b

p

)
− Φ (y0)

]
≥ 0 and, hence, at y = y0,

∂J(L,y)
∂y

≥ 0. The concavity of J and the definition of ypb imply that, if y∗ = ypb , then

ypb ≥ y0.

Case: y∗ = ypbs.

Observe that L∗ = pypbs ≥ B. This leads to ∂J(L,y)
∂y

= αp [1− Φ (y)]− (1−α)w+[(1−

α)−rS]p−αψpΦ(y). Because of Proposition 3.4 and Proposition 3.5, L∗ = pypbs ≥ B

implies that L0
bs ≥ py0. This is why, at y = y0, ∂J(L,y)

∂y
= αψp

[
Φ
(
L0
bs

p

)
− Φ(y0)

]
.

Because Φ is a non-decreasing function, αψp
[
Φ
(
L0
bs

p

)
− Φ (y0)

]
≥ 0 and, hence, at

y = y0, ∂J(L,y)
∂y

≥ 0. The concavity of J and the definition of ypbs imply that, if

y∗ = ypbs, then ypbs ≥ y0.

Case: y∗ = y0
fin.

Observe, from Lemma 3.9, that, if y∗ = y0
fin, then L∗ > py0

fin. This leads to ∂J(L,y)
∂y

=

αp(1 + ψ) [1− Φ (y)] − (1 − α)w and, at y = y0, ∂J(L,y)
∂y

= αpψ [1− Φ (y0)]. Recall

that Φ(.) ∈ [0, 1]. Therefore, αpψ [1− Φ (y0)] ≥ 0 and, hence, at y = y0, ∂J(L,y)
∂y

≥ 0.

The concavity of J and the definition of y0
fin imply that if y∗ = y0

fin, then y0
fin ≥ y0.

Case: y∗ = yλ.

Observe, from Lemma 3.10, that, if y∗ = yλ, then L∗ ≥ B and L∗ ≤ pyλ. This leads to

∂J(L,y)
∂y

= αp [1− Φ (y)]−(1−α)w+λ
{

[(1− α)− rS]− αψΦ
(
B+λ(y−x)

p

)}
and, at y =

y0, ∂J(L,y)
∂y

= λ
{

[(1− α)− rS]− αψΦ
(
B+λ(y0−x)

p

)}
= αψλ

[
Φ
(
L0
bs

p

)
− Φ

(
B+λ(y0−x)

p

)]
.

Recall, that Φ is a non-decreasing function and, from Proposition 3.5, that a nec-

essary condition for L∗ = B + λ(yλ − x) is for L0
bs ≥ B + λ(y0 − x). Therefore,

αψλ
[
Φ
(
L0
bs

p

)
− Φ

(
B+λ(y0−x)

p

)]
≥ 0 and, hence, at y = y0, ∂J(L,y)

∂y
≥ 0. The concav-

ity of J and the definition of yλ imply that if y∗ = yλ, then yλ ≥ y0.

Case: y∗ = yλfin.

Observe, from Lemma 3.10, that, if y∗ = yλfin, then L∗ ≥ B and L∗ > pyλfin. This
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leads to ∂J(L,y)
∂y

= αp(1 + ψ) [1− Φ (y)] − (1 − α)w + λ[(1 − α) − rS − αψ] and, at

y = y0, ∂J(L,y)
∂y

= αpψ [1− Φ (y0)] + λ[(1−α)− rS −αψ]. Observe, from Lemma 3.3,

that L∗ ≥ B and L∗ > pyλfin implies (1 − α) ≤ αψ + rS. Furthermore, recall that

Φ(.) ∈ [0, 1]. Therefore, at y = y0, ∂J(L,y)
∂y

≥ 0. The concavity of J and the definition

of yλfin imply that if y∗ = yλfin, then yλfin ≥ y0.

Case: y∗ = x.

Recall, from (3.69), that y ≥ x. Therefore, y∗ = x only if the desired order-up-to

level is less than or equal to x. Recall, from the previous cases analyzed, that ypb ,

ypbs, y
0
fin, yλ and yλfin are greater than or equal to y0. Therefore, y∗ = x implies

that either max(ypb , x) = x ≥ y0, max(ypbs, x) = x ≥ y0, max(y0
fin, x) = x ≥ y0,

max(yλ, x) = x ≥ y0, max(yλfin, x) = x ≥ y0 or max(y0, x) = x ≥ y0. This is why, if

y∗ = x, then x ≥ y0.

We have just shown that, for any optimal amount to borrow, the desired order-

up-to level is always greater than or equal to y0. Therefore, if the amount to borrow

is constrained, then the optimal order-up-to level is greater than or equal to y0.

Furthermore, if the optimal order-up-to level is at the intersection of two constraints,

then it must be that the constrained order-up-to level is greater than or equal to y0

otherwise the optimal order-up-to level would have been on none of the boundaries.

�

According to Proposition 3.7, borrowing from outside lenders at a cheaper rate

than from the shareholders leads to savings for the manufacturer that might be used

to increase the order-up-to level in order to generate a higher revenue if demand

ends up being high. Therefore, the order-up-to level in this problem is different

than the order up-to level of a traditional news-vendor problem with no financing

considerations.

102



3.4.2 Two-period problems.

Observe that the feasible region in Figure 3.1, Figure 3.2, and Figure 3.3 is not

always convex. Therefore, although G, F , g2 and f2 are concave functions, g1 and

f1 need not be concave functions. Therefore, the two-period problem is difficult to

analyze. I perform numerical analysis to gather insights and compare, for differ-

ent set of economic parameters, the solutions for the two-period Dynamic signaling

problem with the solutions for the two-period Dynamic no-signaling problem. Before

presenting numerical examples, I introduce Lemma 3.11 and Lemma 3.12 to help us

explain the results obtained in the numerical examples.

Lemma 3.11. For the no-signaling problem, denote y∗t as the optimal order-up-to

level and L∗t as the optimal amount to borrow for any period, t. Suppose the starting

inventory is x. If the optimal solution at each period is unconstrained, then y∗1 ≤ y∗2

and L∗1 = L∗2 .

Proof. Recall, from Lemma 3.1, that, for any period t, gt(.) is a non-increasing

function. Because

J2(L, y) =G(L, y), (3.131)

J1(L, y) =G(L, y) + αE [g2 (y −D)] , (3.132)

α > 0 and E [g2 (y −D)] is non-increasing in y, it must be, for the same starting

inventory, x, that y∗1 ≤ y∗2 when the solution is unconstrained. Furthermore, because

E [g2 (y −D)] is independent of L, it must be, for the same starting inventory, x,

that L∗1 = L∗2 when the solution is unconstrained. �

Lemma 3.12. Denote by L∗tNoSig the optimal amount to borrow in the no-signaling

problem for any period, t, and by L∗tSig the optimal amount to borrow in the signaling
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problem for any period, t. Then, for the same bank-loan limit, B, and starting

inventory, x, L∗1NoSig ≤ L∗1Sig.

Proof. Recall, from (3.45) and (3.48), that, for the no-signaling problem,

J1(L,M, y) =K(L,M, y) + αE [g2 (y −D)] , (3.133)

and, for the signaling problem,

J1(L,M, y) =K(L,M, y) + αE
[
f2

(
L+ min [pmin(y,D) +M, 0] , y −D

)]
. (3.134)

Moreover, recall, from Lemma 3.1, that, for any period t, ft(., .) is non-increasing in

its first argument. Because α > 0 and E
[
f2

(
L+ min [pmin(y,D) +M, 0] , y −D

)]
is non-decreasing in L and M , it must be, for the same bank-loan limit, B and

starting inventory, x, that, at optimality, L + M in the no-signaling problem is less

than or equal to L+M in the signaling problem. Therefore, for the same bank-loan

limit, B, and starting inventory, x, L∗1NoSig ≤ L∗1Sig. �

3.5 Numerical analysis.

Throughout the analysis, demand, Dt, for any period t = 1, 2, ...T is i.i.d. with

p.m.f. φm. Specifically, for any mean demand, µ, and its distance to the upper

(lower) bound of possible demands, δ, demand, Dt, for any period t = 1, 2, ...T is in

the integer set [µ−δ, µ−δ+1, µ−δ+2, ..., µ, µ+1, µ+2, ...µ+δ]. Define Dlow = µ−δ,

Dhigh = µ+ δ and φm in the following way:

If Dlow > 0, then, for any demand, d ∈ [Dlow, µ],

φm(d) =
d

Range
, (3.135)

and, for any demand, d ∈ [µ,Dhigh],

φm(d) =
(Dhigh − d) +Dlow

Range
, (3.136)
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where

Range = 2×
µ−1∑
Dlow

+µ. (3.137)

If Dlow = 0, then, for any demand, d ∈ [0, µ],

φm(d) =
d+ 1

Range
, (3.138)

and, for any demand, d ∈ [µ,Dhigh],

φm(d) =
(Dhigh − d) + 1

Range
, (3.139)

where

Range = 2×
µ∑
1

+µ+ 1. (3.140)

This demand distribution is

φm(Dlow) ≤ φm(Dlow + 1) ≤ ... ≤ φm(µ), (3.141)

φm(µ) ≥ φm(µ+ 1) ≥ ... ≥ φm(Dhigh), (3.142)

φm(µ− i) = φm(µ+ i), i = 1, 2, .., δ. (3.143)

Figure 3.4 is an example with µ = 5 and δ = 4 that illustrates the properties of the

demand distribution chosen.

Throughout the analysis, the mean of the demand distribution is µ = 100, the

distance from the mean of the demand distribution to the upper (lower) bound of

the possible demands is δ = 60, the unit retail price is p = 5, the total cost of

a good is w = 3.5, the unit wholesale price is τ = 3, the discount factor used by

the shareholders is α = 0.8, the maximum amount of capital the supplier is willing

and/or capable to lend to the manufacturer is S = 800, the order-up-to level of the

traditional newsvendor model is y0 = 133, and the starting inventory level is x = 0.

105



0

0.04

0.08

0.12

0.16

0.2

0 2 4 6 8 10

Demand

P
ro
b
ab
il
it
y

Figure 3.4: Example of triangular-uniform distribution with µ = 5 and δ = 4.

I will give the values for the interest rate on bank loans, rB, the interest rate on

the supplier loans, rS, the default penalty for every unit of currency not repaid, ψ,

the credit offered by the supplier for every unit of good lent to the manufacturer, λ,

and the bank loan limit, B, in the numerical examples that I present.

In all examples, I consider the situation where it is costly for the manufacturer to

borrow and then default on its loan obligations (i.e., I consider when (1−α) < rB +

αψ) as, otherwise, we would be focusing on the trivial case where the manufacturer

borrows as much as possible from the bank and, hence, sends a non-credible signal

about its expected repayment capability.

3.5.1 General results.

As expected (see Proposition 3.6 and Lemma 3.12), the total amount to borrow

in the signaling problem is greater than or equal to the total amount to borrow in

the no-signaling problem. In the no-signaling problem, it is suboptimal to borrow

from the supplier when cheaper sources of financing are available. In both problems,

the amount to borrow from the supplier decreases as the interest rate on the supplier
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loans increases. Furthermore, in both problems, the shareholders’ value

• is increasing in the bank loan limit and the credit offered by the supplier for

every unit of good lent to the manufacturer, and

• is decreasing in the interest rate on bank loans, the interest rate on the supplier

loans, and the default penalty for every unit of currency not repaid.

When the bank loan limit in the current period is low, the shareholders’ are

better-off in the signaling problem compared to in the no-signaling problem because,

in the signaling problem, the manufacturer can signal its credibility to the bank to

obtain a higher line of credit in the next period. Surprisingly, when the bank loan

limit in the current period is high, the shareholders are worse-off in the signaling

problem compared to in the no-signaling problem; this is because, in the signaling

problem,

• the benefit, at t = 1, to increase next period’s bank loan limit is non-increasing

in the current bank loan limit,

• a low realized demand at t = 1 reduces the next period’s bank loan limit,

• the probability, at t = 1, that the next period’s bank loan limit is higher than

the current period’s bank loan limit is non-increasing in the current bank loan

limit.

In Section 3.5.2 to Section 3.5.4, I present results obtained with various sets

of economic parameters to illustrate the results presented in Section 3.5.1. Then,

I discuss additional findings. In Section 3.5.5, with different sets of parameters

compared to the ones used in Section 3.5.1 to Section 3.5.4, I present additional
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results and argue that the properties of the results obtained in Section 3.5.1 to

Section 3.5.4 hold for all sets of parameter values that satisfy (1− α) < rB + αψ.

3.5.2 rB is low and ψ is low relative to the value of other parameters.

Table 3.1 to Table 3.3 contain results for the case where the manufacturer finds

it very cheap to borrow from the bank and the default penalty for every unit of

currency not repaid is low relative to the value of the other parameters. In Table 3.1

and Table 3.2 it is cheaper to borrow from the supplier instead of requesting money

from the shareholders (i.e., rS < (1−α)). In Table 3.3, it is cheaper to request money

from the shareholders instead of borrowing from the supplier (i.e., (1− α) < rS).

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 380 −380 140 621.250 365 133 602.725 1

200 470 −470 135 633.606 465 133 621.810 2

300 565 −565 133 641.765 555 132 635.178 3

400 580 −580 132 646.873 555 133 645.020 4

500 580 −580 132 651.873 555 133 654.082 5

600 600 −600 132 656.843 600 133 662.512 6

700 675 −675 135 658.950 675 135 665.780 7

Table 3.1: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 10%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

As expected, the desired amount to borrow from the supplier is decreasing in the

interest rate on the supplier loans (see Table 3.1 to Table 3.3). Surprisingly, the

desired amount to borrow from the bank in the signaling problem is increasing in
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Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 375 −375 138 603.097 365 133 581.225 1

200 440 −440 133 617.213 415 132 601.054 2

300 440 −440 133 627.213 415 133 619.356 3

400 440 −440 133 637.213 415 133 637.361 4

500 500 −500 133 648.287 500 133 653.097 5

600 600 −600 133 655.195 600 133 662.512 6

700 680 −675 135 657.343 675 135 665.780 7

Table 3.2: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 15%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 125 −125 133 565.477 100 133 563.727 1

200 225 −225 133 592.328 200 133 590.727 2

300 325 −325 133 615.826 300 133 616.067 3

400 400 −400 133 634.820 400 133 637.312 4

500 500 −500 133 647.922 500 133 653.097 5

600 600 −600 133 654.830 600 133 662.512 6

700 695 −675 135 657.050 675 135 665.780 7

Table 3.3: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 25%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.
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the interest rate on the supplier loans (i.e., see row 7 in Table 3.1 to Table 3.3); this

is because the benefit to over-borrow from the bank and bet on a high revenue to

signal a high credibility increases as the interest rate on the supplier loans increases

(see Table 3.1 to Table 3.3).

Unsurprisingly, the order-up-to level is higher than the order-up-to level in the

traditional newsvendor problem when the manufacturer desires to borrow a high

amount from the supplier and the benefit to relax the financing constraint L ≤

B+λ(y−x) is bigger than the cost to produce additional goods, (i.e., see rows 1 and

2 in Table 3.1 and row 1 in Table 3.2). Surprisingly, as the amount to borrow from

the supplier decreases, the order-up-to level may be lower than the order-up-to level

in the traditional newsvendor problem (e.g., see rows 4, 5 and 6 in Table 3.1 and

row 2 in Table 3.2). This is because, by under-ordering, the manufacturer reduces

the probability and the consequence to not be able to borrow the desired amount in

the next period if the demand for goods in the current period turns out to be low;

a low demand leads to a high starting inventory in the next period and, hence, to a

low supplier loan limit and, in the signaling problem, to a low bank limit in the next

period.

Recall that it is cheaper to borrow from the bank instead of borrowing from the

shareholders (i.e., rB < (1− α)). This is why, when the benefit to borrow from the

bank is high and the manufacturer is able to borrow a high amount from the bank,

the order-up-to level might be greater than the order-up-to level in the traditional

newsvendor model (see row 7 in Table 3.1 to Table 3.3).
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3.5.3 rB is high and ψ is low relative to the value of other parameters.

Table 3.4 to Table 3.6 contain results for the case where the manufacturer finds

it a little expensive to borrow from the bank and the default penalty for every unit

of currency not repaid is low relative to the value of other parameters.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 370 −370 135 584.003 365 133 572.225 1

200 440 −440 133 591.164 415 132 583.054 2

300 440 −440 133 596.164 415 133 592.356 3

400 440 −440 133 601.164 425 133 601.361 4

500 500 −500 133 605.874 500 133 608.097 5

600 555 −555 133 606.622 555 133 609.082 6

Table 3.4: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 10%, rS = 15%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

The results in Section 3.5.3 have the same properties as the results in Section 3.5.2.

The main difference is that the benefit of the manufacturer to signal its credibility

is smaller in Section 3.5.3 than in Section 3.5.2 because borrowing from the bank in

Section 3.5.3 is more expensive than in Section 3.5.2.

3.5.4 Effect of λ on the decisions of the manufacturer.

I compare the decisions of the manufacturer for different pairs of λ and B. I use

the same parameter values as in Section 3.5.2 but the properties of my results apply

to all sets of parameters. The results obtained are found in Table 3.7.

As expected, the desired amount to borrow from the supplier is non-decreasing
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Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 125 −125 133 555.477 100 133 554.727 1

200 225 −225 133 573.342 200 133 572.727 2

300 300 −300 133 588.663 300 133 589.067 3

400 400 −400 133 599.850 400 133 601.312 4

500 500 −500 133 605.509 500 133 608.097 5

600 555 −555 133 606.257 555 133 609.082 6

Table 3.5: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 10%, rS = 25%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 100 −100 133 545.727 100 133 545.727 1

200 200 −200 133 554.727 200 133 554.727 2

300 300 −300 133 561.894 300 133 561.894 3

400 400 −400 133 564.880 400 133 564.880 4

500 415 −415 133 564.923 415 133 564.923 5

Table 3.6: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 15%, rS = 25%, ψ = 0.2,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

in λ. Furthermore, because the amount to borrow is low and the unconstrained

target-capital position is very negative, the constraint L + M ≥ 0 makes it optimal

to maintain a zero target-capital position before the realization of the demand.
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Signaling No-signaling

Bank Limit λ L∗ M∗ y∗ f L∗ y∗ g Row

50

1 185 −185 135 587.161 185 135 571.580 1

2 330 −330 140 613.621 320 135 591.419 2

3 460 −460 137 625.721 445 132 605.181 3

100

1 235 −235 135 599.587 235 135 584.932 4

2 380 −380 140 621.250 365 133 602.725 5

3 505 −505 135 630.617 495 132 613.370 6

150

1 285 −285 135 610.801 285 135 597.664 7

2 420 −420 135 627.879 415 133 612.922 8

3 555 −555 135 634.432 540 130 620.141 9

200

1 335 −335 135 620.626 335 135 609.500 10

2 470 −470 135 633.606 465 133 621.810 11

3 585 −585 132 637.284 555 131 625.780 12

Table 3.7: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; credit
limit λ, µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 10%,
ψ = 0.2, S = 800 and the row column is added to conveniently refer to rows;
the row column is added to conveniently refer to specific rows.

Surprisingly, the order-up-to level is non-monotone in λ. Recall that the desired

amount to borrow from the supplier decreases as the bank loan limit increases. This

is why, for a given order-up-to level, the benefit to relax the financing constraint

decreases as the bank loan limit increases and it increases as λ increases. Because

it is expensive to produce goods, the manufacturer sets a high order-up-to level

only when the expected benefit to obtain additional financing is high relative to the

additional production costs (e.g., see rows 1 to 11 in the Signaling columns of Table

3.7 and see rows 1, 2, 4, 7, and 10 in the No-signaling columns of Table 3.7). Similarly,
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the manufacturer never sets a high order-up-to level when the expected benefit to

obtain additional financing is low relative to the additional production costs (e.g.,

see rows 5, 8, and 11 in the No-signaling columns of Table 3.7). A similar discussion

as the one in Section 3.5.2 provides the reason for order-up-to levels that are lower

than the order-up-to level in the traditional newsvendor problem (e.g., see row 12

in the Signaling columns of Table 3.7 and rows 3, 6, 9 and 12 in the No-signaling

columns of Table 3.7).

3.5.5 Discussion.

I considered various sets of examples that satisfy (1− α) < rB + αψ. But, I did

not present all the examples analyzed because the properties of the results obtained

in Section 3.5.1 to Section 3.5.4 hold for all set of economic parameters that satisfy

(1−α) < rB +αψ. The main difference between the results of the examples studied

is the change in the magnitude of the behaviors observed (see Table 3.8 to Table 3.13

in Section 3.7 for additional results)

3.6 Conclusions, limitations and extensions.

I find that the benefit to signal a high repayment capability to banks is high when

it is inexpensive to borrow from banks compared to using other financing sources.

But, when the benefit to signal their repayment capability is high, manufacturers

might borrow from suppliers instead of requesting capital from shareholders even if

borrowing from suppliers is very expensive.

Although the decisions of banks and suppliers were not considered, I study the

effect of manufacturers’ decisions on the interest rates at which manufacturers borrow

and the results and insights gathered help us grasp the effect of banks using loan

repayments of manufacturers as an indication of the credibility of manufacturers.
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My problem is a more general problem than the traditional newsvendor problem. I

consider the possibility of both internal and external financing and account for the

relationship between operational and financing decisions. I find, when manufacturers

relax financing constraints and/or want to signal their credibility to banks, that

manufacturers might order up to a level greater than the order-up-to level in the

traditional news-vendor problem. However, when the line of credit offered by lenders

is low and the opportunity cost of capital of manufacturers is high relative to other

sources of financing, manufacturers might order up to a level less than the order-up-

to level in the traditional news-vendor problem in order to allocate their precious

capital to projects with higher expected returns.

My analysis contributes to the finance literature because I explicitly model op-

erational decisions in a dynamic framework, and, simultaneously focus on the use

of trade credit to update the bank loan limit instead of using trade credit to adjust

the interest rate on the bank loan terms. My analysis contributes to the operations

literature because I consider the effect of trade credit on the bank loan limit and,

simultaneously focus on the effect of indirect financial costs on operational decisions.

Future studies should simultaneously include the effect of manufacturers’ decisions

on the interest rates at which manufacturers borrow, incorporate multiple decision-

makers to the framework used in this chapter, and study the choice of the loan terms

offered by the lenders. Also, although it would be challenging to study a problem

in which the credit signal is a function of loan repayments observed over multiple

periods, adding such feature to my model would be an interesting problem to analyze.
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3.7 Appendix.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 370 −370 135 615.953 365 133 600.771 1

200 470 −470 135 625.777 460 131 616.054 2

300 490 −490 133 631.056 465 133 626.311 3

400 490 −490 133 636.056 465 133 635.430 4

500 500 −500 133 641.019 500 133 643.782 5

600 555 −555 133 642.140 555 133 645.140 6

Table 3.8: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 10%, ψ = 0.3,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 370 −370 135 600.333 355 132 579.408 1

200 380 −380 133 610.893 355 133 598.260 2

300 300 −300 133 620.893 355 133 616.330 3

400 425 −425 133 632.034 400 133 633.604 4

500 500 −500 133 640.099 500 133 643.782 5

600 555 −555 133 641.220 555 133 645.260 6

Table 3.9: Borrowed amount L, target-capital level M , order-up-to level y, objective values
f , g in signaling and no-signaling problems as functions of the bank limit; µ =
100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 15%, ψ = 0.3,
λ = 2, S = 800 and the row column is added to conveniently refer to specific
rows.
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Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 125 −125 133 565.477 100 133 563.727 1

200 225 −225 133 592.275 200 133 590.727 2

300 310 −310 133 614.656 300 133 615.237 3

400 400 −400 133 631.412 400 133 633.604 4

500 500 −500 133 639.901 500 133 643.782 5

600 555 −555 133 641.022 555 133 645.260 6

Table 3.10: Borrowed amount L, target-capital level M , order-up-to level y, objective val-
ues f , g in signaling and no-signaling problems as functions of the bank limit;
µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 5%, rS = 25%,
ψ = 0.3, λ = 2, S = 800 and the row column is added to conveniently refer to
specific rows.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 370 −370 135 581.252 355 132 570.408 1

200 380 −380 133 586.508 355 133 580.260 2

300 380 −380 133 591.508 355 133 589.330 3

400 400 −400 133 596.640 400 133 597.604 4

500 465 −465 133 598.198 465 133 599.430 5

Table 3.11: Borrowed amount L, target-capital level M , order-up-to level y, objective val-
ues f , g in signaling and no-signaling problems as functions of the bank limit;
µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 10%, rS = 15%,
ψ = 0.3, λ = 2, S = 800 and the row column is added to conveniently refer to
specific rows.
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Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 125 −125 133 565.477 100 133 554.727 1

200 225 −225 133 573.290 200 133 572.727 2

300 300 −300 133 587.862 300 133 586.237 3

400 400 −400 133 596.441 400 133 597.604 4

500 465 −465 133 598.00 465 133 599.430 5

Table 3.12: Borrowed amount L, target-capital level M , order-up-to level y, objective val-
ues f , g in signaling and no-signaling problems as functions of the bank limit;
µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 10%, rS = 25%,
ψ = 0.3, λ = 2, S = 800 and the row column is added to conveniently refer to
specific rows.

Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 100 −100 133 545.727 100 133 545.727 1

200 200 −200 133 554.727 200 133 554.727 2

300 300 −300 133 561.092 300 133 561.237 3

400 355 −355 133 562.113 355 133 562.330 4

Table 3.13: Borrowed amount L, target-capital level M , order-up-to level y, objective val-
ues f , g in signaling and no-signaling problems as functions of the bank limit;
µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 15%, rS = 25%,
ψ = 0.3, λ = 2, S = 800 and the row column is added to conveniently refer to
specific rows.
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Signaling No-signaling

Bank Limit L∗ M∗ y∗ f L∗ y∗ g Row

100 100 −100 133 545.727 100 133 545.727 1

200 200 −200 133 554.727 200 132 554.727 2

300 300 −300 133 562.695 300 133 562.897 3

400 400 −400 133 568.288 400 133 569.019 4

500 500 −500 133 571.118 500 133 572.412 5

600 555 −555 133 571.492 555 133 572.905 6

700 555 −555 133 571.492 555 133 572.905 7

Table 3.14: Borrowed amount L, target-capital level M , order-up-to level y, objective val-
ues f , g in signaling and no-signaling problems as functions of the bank limit;
µ = 100, δ = 60, p = 5, w = 3.5, τ = 3, y0 = 133, rB = 15%, rS = 25%,
ψ = 0.1, λ = 2, S = 800 and the row column is added to conveniently refer to
specific rows.
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CHAPTER IV

Signaling Manufacturers’ Private Information Through
Operational Decisions and Trade Credit

4.1 Introduction.

Companies in a broad range of industries and economies rely heavily on external

sources to finance their operations. But, external financing could be expensive and/or

difficult to obtain due to asymmetric information between lenders and borrowers,

high cost of capital of lenders, high cost of lenders to monitor the credibility of

potential borrowers, credit rationing by lenders, and expensive loan terms sometimes

extended by lenders with power advantage over manufacturers.

Banks often have lower costs of capital and easier access to capital than suppliers.

Therefore, banks can offer loans at cheaper rates than suppliers if they can assess

how likely manufacturers are to repay. Unfortunately, asymmetric information that

often exists between banks and manufacturers causes banks to offer unfavorable loan

terms or even deny loans to manufacturers. However, suppliers, being in the same

industry as manufacturers, can sometimes better estimate the distribution of the

demand for manufacturers’ goods than banks. This is why, even when suppliers offer

credit terms that come at high costs, the relatively easy access to supplier financing

enables manufacturers to signal their credit quality to banks, which facilitates access

to bank loans.
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In this chapter, I focus on cash-constrained manufacturers that rely on bank loans

and trade credit1 to finance their costs of production in expectation of the demand

for final goods. The emphasis of my analysis is to answer the following questions:

when should manufacturers use trade credit to finance their operations?; how does

information asymmetry between banks and manufacturers affect the operational and

financial decisions of manufacturers?; how does the availability of trade credit affect

the operational and financial decisions of manufacturers?; who benefits from the

availability of trade credit (manufacturers, end-customers, overall economy)?

To understand the effect of asymmetric information and trade credit financing on

the supply chain, I analyze and compare results of three problems: a problem with

symmetric information between banks and manufacturers; a problem with asymmet-

ric information between banks and manufacturers in which trade credit is unavailable;

a problem with asymmetric information between banks and manufacturers in which

trade credit is available. Then, I determine the winners and losers when trade credit

is available to manufacturers. Finally, I analyze the effect of the economic environ-

ment and the cost structure of each type of manufacturer on the benefit to have

trade credit financing available in the supply-chain.

My analysis suggests that manufacturers can often signal their credit quality

to banks through their ordering decisions. As long as their is a risk of default on

the loans extended by the suppliers, the use of trade credit financing allows banks to

update their own beliefs about manufacturers credibility because suppliers offer terms

that signal manufacturers risk to banks. Also, I find that high-risk manufacturers

suffer from trade credit because they obtain expensive loans which prevents them

from ordering high quantities. However, low-risk manufacturers benefit from trade

1See Chapters I and II to obtain a more detailed explanation of trade credit financing.
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credit because they obtain cheap loans and do not need to over-order and/or over-

borrow to signal their credibility to banks.

4.2 Literature review.

Many implications of trade credit financing have been analyzed in the operations

literature. For example, Haley and Higgins (1973), and Rachamandugu (1989) inves-

tigate trade credit’s impact on the Economic Order Quantity model. Recently, Gupta

and Wang (2009) show the order-up-to-inventory remains optimal for a discrete time

combined inventory-financing model when trade credit is used. They prescribe an

algorithm for computing the optimal stock level for a continuous time model.

Trade credit financing has also been analyzed in the finance literature. For exam-

ple, Petersen and Rajan (1997) observe that suppliers appear to have an advantage

over traditional financial institutions in lending to growing firms, especially if those

firms’ credit quality is suspect. According to Petersen and Rajan (1997), there

are three main reasons why suppliers appear to have an advantage over traditional

financial institutions in lending to growing firms: the suppliers are more capable

than banks to repossess the goods from manufacturers in case of insolvency and sell

them; the buyers are a possible source of future business for suppliers; and there is

a low cost of obtaining information from product market transactions, and perhaps

from other suppliers. Fisman (2001) discovers a correlation between the availability

of trade credit financing and a firm’s operational performance. Using a sample of

African firms, Fisman (2001) finds that manufacturers with access to trade credit

financing are less likely to experience stock-outs, and are more likely to have higher

production-capacity utilization.

The previous studies provide interesting insights and arrive at important conclu-
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sions. However, when there is asymmetric information between banks and manufac-

turers, the previous studies do not simultaneously capture the effect of trade credit

financing on the operational decisions of manufacturers and the ability of manufac-

turers to receive cheap loans from banks.

This study is not the first one to simultaneously analyze bank financing and

trade credit financing when there is asymmetric information between lenders and

borrowers. Cook (1999), using data from a survey of 352 firms in Russia in 1995,

empirically concludes that trade credit can incorporate the private information held

by suppliers about their customers in the lending relation. The author argues that

trade credit financing sends a positive signal to financial institutions which, without

that signal, might be reluctant to lend to buyers. Cook’s empirical findings are

consistent with Alphonse et al. (2006) who use US small business data (NSSBF

1998) to show that trade credit can signal firm’s quality and thus facilitates access to

bank debt. Biais and Gollier (1997) consider a static model in which a supplier has

private information about the manufacturers while a bank does not. In Biais and

Gollier (1997), manufacturers’ revenues do not depend on the operational decisions

made by manufacturers and the decision to finance projects is solely dictated by

exogenous signals received from banks and suppliers. Furthermore, in Biais and

Gollier (1997), credit rationing occurs when the bank cannot assess the quality of a

firm with enough precision. As a result, many firms with positive net present value

projects are denied credit from the bank. However, suppliers might find it profitable

to extend credit to some of these firms.

Similar to Biais and Gollier (1997), I consider a model with banks, suppliers and

manufacturers where suppliers have information advantages over banks. However,

in my model, manufacturers determine their level of investment through their oper-

123



ational decisions, the banks’ belief about manufacturers’ type depends on exogenous

signals but also on the financial and operational decisions made by manufacturers,

the revenue generated by manufacturers depends on the investment decisions, and

the interest rates offered by lenders determines which project the manufacturer will

choose to implement.

This chapter not only captures the effect of trade credit and asymmetric infor-

mation on the return of manufacturers’ investments but it also captures the effect of

asymmetric information along with trade credit on operational decisions of manufac-

turers which is a major contribution of this chapter. Contributions to the operations

literature are made by considering the effect of asymmetric information and loan

terms on manufacturers’ operational policies. I also contribute to the finance litera-

ture because I consider and analyze the impact of operational policies on trade credit

terms and bank loan terms when there is asymmetric information between banks and

manufacturers.

4.3 Model and assumptions.

I solve a Bayesian game among three risk-neutral players: a cash-constrained

manufacturer, a cash-constrained supplier, and a bank. There are two types of

manufacturers in the economy (θ = 1, 2) and the cost structure of each type is

the same and known by every player. The only difference between each type of

manufacturer is that, demand, Dθ, for each type, θ = 1, 2, of manufacturer is a

random variable whose values are Dθ = H with probability πHθ and Dθ = L with

probability πLθ where θ ∈ {1, 2}, E (D1) ≥ E (D2), and H > L.

It is a common knowledge that a fraction α of the manufacturer population is

of the type 1 and a fraction 1 − α of the manufacturer population is of the type
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2. The manufacturer and the supplier know the manufacturer’s type but the bank

is unable to determine, a priori, the type of the manufacturer that is requesting a

loan. Therefore, the bank relies on trade credit terms and/or the manufacturer’s

operational decisions to determine the type of the manufacturer that is requesting a

loan.

4.3.1 The problem of the manufacturer.

The objective of the manufacturer is to maximize its value at the end of the

planning horizon.

At the beginning of the planning horizon, the manufacturer has no capital and its

decisions are: the production quantity, y; trade credit amount, Lsm; and bank loan

amount, Lbm. The manufacturer can order an unlimited number of goods but cannot

sell to the supplier: 0 ≤ y. We assume that goods last one period, the supplier always

delivers the number of goods requested by the manufacturer, and unsold goods have

no scrap value. The manufacturer cannot lend money to the bank or the supplier

but it can borrow as much as it desires from the bank: 0 ≤ Lbm; and the amount

it can borrow from the supplier is proportionally bounded by the order quantity:

0 ≤ Lsm ≤ λy.

The manufacturer uses the loan received to cover its total procurement cost, τy,

and its cost to manufacturer goods, my. The total manufacturing cost is wy where

w = τ + m. Because the manufacturer has no initial capital, it borrows more than

the total production cost: Lbm + Lsm ≥ wy.

At the end of the planning horizon, the manufacturer receives revenue, pmin (D, y),

where p is exogenously given. Then, if possible, the manufacturer repays RsmLsm

and RbmLbm where Rsm is the gross interest on the trade credit and Rbm is the gross
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interest on the bank loans to the manufacturer. The manufacturer produces goods

immediately after receiving loans and the manufacturer can lend money to outside

investors at the gross interest rate of Rm.

The problem of any manufacturer of type θ = 1, 2 is summarized below:

Mθ = max
y,Lbm,Lsm

Eθ [Rm(Lbm + Lsm − wy) + pmin (D, y)−RbmLbm −RsmLsm]+

(4.1)

subject to:

0 ≤ y, (4.2)

0 ≤ Lsm ≤ λy, (4.3)

0 ≤ Lbm, (4.4)

wy ≤ Lbm + Lsm. (4.5)

4.3.2 The problem of the supplier.

The objective of the supplier is to maximize its value at the end of the planning

horizon.

At the beginning of the planning horizon, the supplier has no capital and borrows

Lbs from the bank to cover its production cost, κy, and the trade credit to provide

to the manufacturer, Lsm. The supplier sells goods to the manufacturer immediately

after receiving loans. There is no lead-time between the time the supplier requests

the loan from the bank and the time the supplier sells the goods to the manufacturer.

Bank loan to the supplier, Lbs, and revenue from selling goods to the manufacturer,

τy, must cover the supplier’s production cost, κy, and the trade credit loan to the

manufacturer, Lsm: Lsm + κy ≤ Lbs + τy. The payment for the goods, τy, is always

greater or equal to the production cost of the goods, κy: κ ≤ τ . Furthermore, the
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trade credit amount cannot be greater than the wholesale cost: λ ≤ τ . The supplier

controls the wholesale price of the good, τ , and the trade credit limit, λ2.

I assume that the bank gets repaid before the supplier. Therefore, at the end of the

planning horizon, the supplier waits for the bank to collect a loan repayment from the

manufacturer. Then, the supplier collects a loan repayment from the manufacturer.

For any demand, D, the capital position of the manufacturer after making a loan

repayment to the bank is given by [(Lbm +Lsm−wy)Rm + pmin(D, y)−RbmLbm]+.

Therefore, for any demand, D, the supplier receives from the manufacturer the mini-

mum of RsmLsm and the capital position of the manufacturer, [(Lbm+Lsm−wy)Rm+

pmin(D, y)−RbmLbm]+.

The supplier can lend money to outside investors at the gross interest rate of Rs.

The problem of the supplier is summarized below:

Sθ = max
τ,λ,Lbs,Rsm

Eθ

{
min

[
RsmLsm, [Rm (Lbm + Lsm − wy) + pmin(D, y)−RbmLbm]+

]
+Rs (Lbs + τy − Lsm − κy)−RbsLbs

}+

(4.6)

subject to:

κy ≤ τy, (4.7)

Lsm + κy ≤ Lbs + τy, (4.8)

Lsm ≤ λy ≤ τy. (4.9)

The supplier, being in the same industry as the manufacturer, is assumed to have

perfect information about the manufacturer’s type. Therefore, the expectation in

the supplier’s problem is based on the manufacturer’s type.

2See Chapter II to obtain a more detailed explanation for the choice of supplier loan limit used.
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4.3.3 The problem of the bank.

The objective of the bank is to maximize its value at the end of the planning

horizon.

At the beginning of the planning horizon, the bank borrows externally at a cost

of capital R (gross interest rate) to satisfy the loan requests of the supplier and the

bank, Lbm + Lsm.

At the end of the planning horizon, the bank collects loan repayments from the

supplier and the manufacturer. For any demand, D, the capital position of the

manufacturer before making a loan repayment to the bank is Rm(Lbm +Lsm−wy) +

pmin(D, y) and the capital position of the supplier after receiving a loan repayment

from the manufacturer and before making a loan repayment to the bank is Rs(Lbs +

τy − Lsm − κy) + min{RsmLsm, [Rm(Lbm + Lsm − wy) + pmin(D, y) − RbmLbm]+}.

Therefore, for any demand, D, the bank receives from the manufacturer the minimum

of RbmLbm and the capital position of the manufacturer, Rm(Lbm + Lsm − wy) +

pmin(D, y) and it receives from the supplier the minimum of RbsLbs and the capital

position of the supplier, Rs(Lbs + τy − Lsm − κy) + min{RsmLsm, Rm[(Lbm + Lsm −

wy) + pmin(D, y) − RbmLbm]+}. Then, the bank repays to its outside investors,

R(Lbs+Lbm) from the loan repayments received and/or from other assets. To ensure

the bank does not always lose money, the gross interest rate on the trade credit,

Rsm, and the gross interest rate on the bank loan, Rbm, are both greater than or

equal to the cost of capital of the bank, R. Furthermore, the bank only lends if, in

expectation, it does not lose money on the loan extended.

The problem of the bank is summarized below:

B = max
Rbs,Rbm

{E [Bs (D)] + E [Bm (D)]} (4.10)
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subject to:

0 ≤ E [Bs (D)] , (4.11)

0 ≤ E [Bm (D)] , (4.12)

R ≤ Rbs, (4.13)

R ≤ Rbm. (4.14)

where,

Bm(D) = min
[
Rm (Lbm + Lsm − wy) + pmin(D, y), RbmLbm

]
−RLbm, (4.15)

Bs(D) = min
{

min
[
(Rm (Lbm + Lsm − wy) + pmin(D, y)−RbmLbm)+ , RsmLsm

]
,

+Rs (Lbs + τy − Lsm − κy) , RbsLbs

}
−RLbs.

(4.16)

The expectations in the bank’s problem are based on the bank’s belief about the

manufacturer’s type, which depends on the actions taken by the manufacturer and

the actions taken by the supplier. I make the following assumption.

I assume that the bank always observe the quantity, y, ordered by the manufac-

turer, the trade credit amount, Lsm, obtained by the manufacturer and the terms,

Rsm and λ, offered to the manufacturer. This is why the expectations in the bank’s

problem are based on the bank’s belief about the manufacturer’s type, which depends

on the actions taken by the manufacturer and the actions taken by the supplier.

The bank will not lend more than is needed to finance the manufacturer’s pro-

duction (i. e., Lbm ≤ wy − Lsm). But, recall that the total amount borrowed by the

manufacturer should be high enough for the manufacturer to finance its production

cost (i. e., Lbm + Lsm ≥ wy). Therefore, at optimality,

Lbm =wy − Lsm, (4.17)
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Let µθ be the probability the bank believes the manufacturer is of type θ. By

Bayes rule,

µ1 (y, Lsm, Rsm, λ) =
Pr[y, Lsm, Rsm, λ|θ = 1]α

Pr[y, Lsm, Rsm, λ|θ = 1]α + Pr[y, Lsm, Rsm, λ|θ = 2](1− α)

(4.18)

and

µ2 (y, Lsm, Rsm, λ) =
Pr[y, Lsm, Rsm, λ|θ = 2]α

Pr[y, Lsm, Rsm, λ|θ = 1]α + Pr[y, Lsm, Rsm, λ|θ = 2](1− α)

(4.19)

where Pr[y, Lsm, Rsm, λ|θ = 1] is the probability that given the manufacturer of type

θ = 1, the supplier and the manufacturer would, at optimality, simultaneously choose

actions y, Lsm, Rsm, λ. Similarly, Pr[y, Lsm, Rsm, λ|θ = 2] is the probability that

given the manufacturer of type θ = 2, the supplier and the manufacturer would, at

optimality, simultaneously choose actions y, Lsm, Rsm, λ.

From the bank’s point of view, the probability, for any Bayesian belief of the

bank regarding a manufacturer’s type, that the high demand occurs is π̃H and

the probability the low demand occurs is π̃L where: π̃H = µ1 (y, Lsm, Rsm, λ) πH1 +

µ2 (y, Lsm, Rsm, λ) πH2 , and π̃L = µ1 (y, Lsm, Rsm, λ) πL1 + µ2 (y, Lsm, Rsm, λ) πL2 .

When the bank believes, for given y, Lsm, Rsm and λ, the manufacturer is a

type-1 manufacturer: µ1 (y, Lsm, Rsm, λ) = 1 and µ2 (y, Lsm, Rsm, λ) = 0. This leads

to π̃H = 1πH1 + 0πH2 = πH1 and π̃L = 1πL1 + 0πL2 = πL1 .

When the bank believes, for given y, Lsm, Rsm and λ, the manufacturer is a

type-2 manufacturer: µ1 (y, Lsm, Rsm, λ) = 0 and µ2 (y, Lsm, Rsm, λ) = 1. This leads

to π̃H = 0πH1 + 1πH2 = πH2 and π̃L = 0πL1 + 1πL2 = πL2 .

When the bank, for given y, Lsm, Rsm and λ, is unsure of the manufacturer’s

type: µ1 (y, Lsm, Rsm, λ) = 1×α
1×α+1×(1−α)

= α and µ2 (y, Lsm, Rsm, λ) = 1×(1−α)
1×α+1×(1−α)

=
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(1− α). This leads to π̃H = απH1 + (1− α)πH2 and π̃L = απL1 + (1− α)πL2 .

In the rest of the analysis, I use πHP = απH1 +(1−α)πH2 to refer to the probability

the demand will be H when the bank pools type-1 and type-2 manufacturers together

because it cannot determine the manufacturer’s type. Similarly, I use πLP = απL1 +

(1−α)πL2 to refer to the probability the demand will be L when the bank pools type-1

and type-2 manufacturers together because it cannot determine the manufacturer’s

type.

4.4 Analysis.

Throughout the analysis, I consider the case in which the supplier competes

with other suppliers for the business with manufacturers and the bank competes

with other banks for the business with manufacturers and suppliers. Thus, the

supplier earns zero profit on the goods sold to the manufacturer, τ = κ, has no

positive cash flow at the beginning of the planning horizon, Lsm + κy = Lbs + τy,

and makes zero expected profit on the trade credit extended to the manufacturer,

Eθ

{
min

[
RsmLsm, [pmin(D, y)−RbmLbm]+

]
−RbsLbs

}+

= 0.

Similarly, the bank makes zero expected profit on the loan extended to the sup-

plier, E [Bs (D)] = 0, and on the loan extended to the manufacturer, E [Bm (D)] = 0.

The fierce competition between suppliers and banks for the business with manufac-

turers makes all the profit realized by the supply chain to go to the manufacturer.

One way to model this is to think that the decisions of the supplier and the decisions

of the bank are dictated by the manufacturer, as long as the bank and the supplier

make zero expected profit.

Recall that the bank is not always able to determine the manufacturer’s type.

However, the supplier knows the manufacturer’s type and always offers break-even

131



interest rates designed for the manufacturer’s type. This is why, I refer to the objec-

tive value of a type-θ manufacturer as

Kθρ =Eθ [pmin (D, y)−RbmLbm −RsmLsm]+ (4.20)

where ρ = 1 when the bank offers to the manufacturer an interest rate designed

for type-1 manufacturers (type-1 rate), ρ = 2 when the bank offers to the manufac-

turer an interest rate designed for type-2 manufacturers (type-2 rate), ρ = P when

the bank pools type-1 and type-2 manufacturers together and offers to the manu-

facturer a pooling interest rate (pooling rate), and the expectation depends on the

manufacturers type.

To avoid analyzing a situation where the manufacturer can make money by bor-

rowing as much as possible from the bank to lend to outside investors, the interest

rate at which the manufacturer can lend to investors, Rm, is less than or equal to the

opportunity cost of capital of the bank, R: Rm ≤ R. Similarly, Rs ≤ R. Also, I have

assumed Rm and Rs to be small relative to R. For simplicity, Rm = 1 and Rs = 1,

but the structure of the results would not change if 1 < Rm < R and 1 < Rs < R.

To understand the effect of asymmetric information and trade credit on manufac-

turers’ operational and financial policies I first determine the menu of interest rates

the bank and the supplier simultaneously offer to the manufacturer based on the

decisions of the manufacturer. Second, I determine the symmetric information equi-

libria. Third, I determine the asymmetric information equilibria when trade credit

is unavailable to the manufacturer. Then, I determine the asymmetric information

equilibria when trade credit is available to the manufacturer. Afterwards, I determine

who benefits and who suffers when there is asymmetric between banks and manu-

facturers and trade credit is available to manufacturers. Finally, I analyze the effect

of the economic environment and the cost structure of each type of manufacturer on
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the benefit of having trade credit financing available in the supply-chain.

Observe in (4.3) that, for any λ and Lsm ∈ [0, λy], the supplier can adjust its

exposure to lending to the manufacturer by the choice of Rsm. Therefore, to simplify

the exposition of the results I assume the manufacturer can borrow from the supplier

as much as the wholesale price of the goods: λ = τ . In other words, Lsm ≤ τy.

4.4.1 Menus of interest rates offered by the lenders.

Lemma 4.1. Suppose the system is in equilibrium where the bank and the supplier

are breaking even and Lbm + Lsm = wy:

Eθ{min[RsmLsm, (pmin(D, y)−RbmLbm)+]−RbsLbs}+ =0, (4.21)

E{min[pmin(D, y), RbmLbm]−RLbm} =0, (4.22)

E{min[(pmin(D, y)−RbmLbm)+, RsmLsm, RbsLbs]−RLbs} =0. (4.23)

Then, the equilibrium quantities satisfy the following relationships:

RsmLsm = RbsLbs, (4.24)

Rbm =



R when RLbm ≤ pmin(L, y),

RLbm−πLρ pmin(L,y)

πHρ Lbm
when



pmin(L, y) < RLbm, and

Lsm = 0, and

RLbm ≤ πHρ pmin(H, y) + πLρ pmin(L, y),

RLbm−πLθ pmin(L,y)

πHθ Lbm
when



pmin(L, y) < RLbm, and

Lsm > 0, and

Rwy ≤ πHθ pmin(H, y) + πLθ pmin(L, y),

No solution otherwise,

(4.25)
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Rsm =



R when Rwy ≤ pmin(L, y),

RLsm−πLθ [pmin(L,y)−RLbm]

πHθ Lsm
when


RLbm ≤ pmin(L, y) ≤ Rwy, and

Rwy ≤ πHθ pmin(H, y) + πLθ pmin(L, y),

R
πHθ

when


pmin(L, y) < RLbm, and

Rwy ≤ πHθ pmin(H, y) + πLθ pmin(L, y),

No solution otherwise.

(4.26)

Proof. Let us split the proof into multiple parts.

Proof of equation (4.24).

The break-even condition for the supplier,

0 =Eθ
{

min
[
RsmLsm, (pmin(D, y)−RbmLbm)+

]
−RbsLsm

}+
(4.27)

can be written as

0 =πHθ
{

min
[
RsmLsm, (pmin(H, y)−RbmLbm)+]−RbsLbs

}+

+ πLθ
{

min
[
RsmLsm, (pmin(L, y)−RbmLbm)+]−RbsLbs

}+
.

(4.28)

As discussed at the beginning of Section 4.4, τ = κ and Lsm + κy = Lbs + τy.

Therefore, Lbs = Lsm. Replacing Lbs by Lsm in equation (4.28) we obtain:

0 =πHθ
{

min
[
RsmLsm, (pmin(H, y)−RbmLbm)+]−RbsLsm

}+

+ πLθ
{

min
[
RsmLsm, (pmin(L, y)−RbmLbm)+]−RbsLsm

}+
.

(4.29)

Observe that Rsm depends on the choice of Lsm, Lbm, Rbs and Rbm. Therefore, to

prove equation (4.24), I consider different ranges of values of Lsm, Lbm, Rbs and Rbm

and determine the corresponding value of Rsm.

If Lsm = 0, then equation (4.29) is automatically satisfied.
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Suppose Lsm > 0, I study the choice of Rsm that ensures the equation (4.29) is

satisfied.

There are three possible ranges of values for RsmLsm and we do not know, a

priori, which one holds in equilibrium:

(i) RsmLsm ≤ [pmin(L, y)−RbmLbm]+,

(ii) [pmin(L, y)−RbmLbm]+ ≤ RsmLsm ≤ [pmin(H, y)−RbmLbm]+,

(iii) [pmin(H, y)−RbmLbm]+ ≤ RsmLsm.

The last condition: [pmin(H, y)−RbmLbm]+ ≤ RsmLsm cannot be true in equilibrium,

because the manufacturer is guaranteed to earn negative profit. Therefore, I do not

need to analyze this condition in equilibrium.

With condition (i), then equation (4.29) becomes

0 =πHθ (RsmLsm −RbsLsm)+ + πLθ (RsmLsm −RbsLsm)+

=(πHθ + πLθ ) (RsmLsm −RbsLsm)+

= (RsmLsm −RbsLsm)+ .

(4.30)

Observe that it must be true that RsmLsm ≥ RbsLsm, for, otherwise, the supplier is

guaranteed to lose money on the trade credit loan. Hence, from equation (4.30) I

conclude that Rsm = Rbs.

With condition (ii), equation (4.29) becomes

0 =πHθ (RsmLsm −RbsLsm)+ + πLθ
{

[pmin(L, y)−RbmLbm]+ −RbsLsm
}+

. (4.31)

As we already observed, RsmLsm ≥ RbsLsm. Therefore, equation (4.31) is equivalent

to

0 =πHθ (RsmLsm −RbsLsm) + πLθ
{

[pmin(L, y)−RbmLbm]+ −RbsLsm
}+

. (4.32)
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In equation (4.32), if [pmin(L, y)−RbmLbm]+−RbsLsm ≤ 0 then, as before, I conclude

that Rsm = Rbs.

The only non-trivial case is [pmin(L, y)−RbmLbm]+ − RbsLsm > 0, which can

happen if pmin(L, y) − RbmLbm > 0. Thus, if pmin(L, y) − RbmLbm > 0 and

[pmin(L, y)−RbmLbm]+ −RbsLsm > 0 then equation (4.32) is equivalent to

0 =πHθ {RsmLsm −RbsLsm}+ πLθ {pmin(L, y)−RbmLbm −RbsLsm} . (4.33)

Because both terms of the summation on the right hand side of equation (4.33) are

non-negative, each of them must be equal to 0. In particular, Rsm = Rbs.

Proof of equation (4.25) and equation (4.26).

Let us start by determining the bank’s equilibrium values for RbmLbm.

The break-even condition for the bank on the loan given to the manufacturer,

0 =E{min[pmin(D, y), RbmLbm]−RLbm} (4.34)

can be written as

0 =πHρ min[pmin(H, y), RbmLbm] + πLρ min[pmin(L, y), RbmLbm]−RLbm. (4.35)

Observe that Rbm depends on the choice of Lbm. Therefore, to prove equation (4.25),

I consider different ranges of values of Lbm and determine the corresponding value of

Rbm.

If Lbm = 0, then equation (4.35) is automatically satisfied.

Suppose Lbm > 0, I study the choice of Rbm that ensures the equation (4.35) is

satisfied.

Equation (4.35) has the following form f (RbmLbm) = RLbm where

f(x) =πHρ min[pmin(H, y), x] + πLρ min[pmin(L, y), x]. (4.36)
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f(x) is piecewise linear with three segments. The segments are x < pmin(L, y),

x ∈ [pmin(L, y), pmin(H, y)], x > pmin(H, y). The values on these segments

are, correspondingly, f(x) ∈ [0, pmin(L, y)], f(x) ∈ [pmin(L, y), πHρ pmin(H, y) +

πLρ pmin(L, y)] and f(x) = πHρ pmin(H, y) + πLρ pmin(L, y).

Therefore, there are three possible ranges of values for RLbm I need to analyze

and we do not know, a priori, which one holds in equilibrium:

(i) RLbm ∈ [0, pmin(L, y)],

(ii) RLbm ∈
[
pmin(L, y), πHρ pmin(H, y) + πLρ pmin(L, y)

]
,

(iii) RLbm ∈
[
πHρ pmin(H, y) + πLρ pmin(L, y),∞

)
.

The last condition: RLbm ∈
[
πHρ pmin(H, y) + πLρ ηmin(L, y),∞

)
cannot be true

in equilibrium, because the bank is guaranteed to earn negative profit. Therefore, I

do not need to analyze this condition in equilibrium.

With condition (i), equation (4.35) becomes

0 =RbmLbm −RLbm. (4.37)

We conclude that:

Rbm =R. (4.38)

With condition (ii), equation (4.35) becomes

0 =πHρ RbmLbm + πLρ pmin(L, y)−RLbm. (4.39)

We conclude that:

Rbm =
RLbm − πLρ pmin(L, y)

πHρ Lbm
. (4.40)
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Let us determine the supplier equilibrium values for RbmLbm.

The break-even condition for the bank on the loan given to the supplier is given by

the following equation

0 =E{min[(pmin(D, y)−RbmLbm)+, RsmLsm, RbsLbs]−RLsm}. (4.41)

Recall, from equation (4.24), that RbsLbs = RsmLsm. Therefore, because the supplier

knows the manufacturer’s type (i. e., πDρ = πDθ for θ = 1 or 2 and D = L or H),

equation (4.41) can be written as

0 =E{min[(pmin(D, y)−RbmLbm)+, RsmLsm]} −RLsm

=πHθ min{[pmin(H, y)−RbmLbm]+, RsmLsm}

+ πLθ min{[pmin(L, y)−RbmLbm]+, RsmLsm} −RLsm.

(4.42)

Observe that Rsm depends on the choice of Rbm, Lbm and Lsm. Therefore, to prove

equation (4.26), I consider different ranges of values of Rbm, Lbm and Lsm and deter-

mine the corresponding value of Rsm.

If Lsm = 0, then equation (4.42) is automatically satisfied.

Suppose Lsm > 0, I study the choice of Rbm that ensures the equation (4.42) is

satisfied.

Equation (4.42) has the form f(RsmLsm) = RLsm where

f(x) =πHθ min{[pmin(H, y)−RbmLbm]+, x}+ πLθ min{[pmin(L, y)−RbmLbm]+, x}

(4.43)

and equation (4.25) has the supplier equilibrium values for RbmLbm which depend on

the value of RLbm.

Suppose RLbm ∈ [0, pmin(L, y)] holds. Then, from equation (4.25), RbmLbm = RLbm

and the expressions in equation (4.43) have the following form f (RsmLsm) = RLsm
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where

f(x) =πHθ min [pmin(H, y)−RLbm, x] + πLθ min [pmin(L, y)−RLbm, x] . (4.44)

f(x) is piecewise linear with three segments. The segments are x < pmin(L, y)−

RLbm, x ∈ [pmin(L, y) − RLbm, pmin(H, y) − RLbm], x > pmin(H, y) − RLbm.

The values on these segments are, correspondingly, f(x) ∈ [0, pmin(L, y) − RLbm],

f(x) ∈ [pmin(L, y) − RLbm, π
H
θ pmin(H, y) + πLθ pmin(L, y) − RLbm] and f(x) =

πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm.

Let us solve for x in f(x) = RLsm.

If RLsm ∈ [0, pmin(L, y)−RLbm], then

x =RLsm. (4.45)

Thus,

Rsm =R. (4.46)

If RLsm ∈
[
pmin(L, y)−RLbm, πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm

]
, then

πHθ x+ πLθ [pmin(L, y)−RLbm] =RLsm. (4.47)

Equivalently,

x =
RLsm − πLθ [pmin(L, y)−RLbm]

πHθ
. (4.48)

Thus,

Rsm =
RLsm − πLθ [pmin(L, y)−RLbm]

πHθ Lsm
. (4.49)

If RLsm ∈
[
πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm,∞

)
, there is no solution to

f(x) = RLsm.
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Suppose RLbm ∈
[
pmin(L, y), πHθ pmin(H, y) + πLθ pmin(L, y)

]
. From (4.25), Rbm =

RLbm−πLθ pmin(L,y)

πHθ Lbm
. Note that,

pmin(L, y)− RLbm − πLθ pmin(L, y)

πHθ
=
pmin(L, y)−RLbm

πHθ
<0 (4.50)

and

pmin(H, y)− RLbm − πLθ pmin(L, y)

πHθ
=
πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm

πHθ
≥0.

(4.51)

Therefore, expression (4.43) becomes

f(x) =πHθ min

[
πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm

πHθ
, x

]
. (4.52)

f(x) is piecewise linear, with two segments, for x ≤ πHθ pmin(H,y)+πLθ pmin(L,y)−RLbm
πHθ

and

x >
πHθ pmin(H,y)+πLθ pmin(L,y)−RLbm

πHθ
. The values on these segments are, correspondingly,

f(x) ∈ [0, πHθ pmin(H, y) + πLθ pmin(L, y) − RLbm] and f(x) = πHθ pmin(H, y) +

πLθ pmin(L, y)−RLbm.

Let us solve for x in f(x) = RLsm.

If RLsm ∈
[
0,

πHθ pmin(H,y)+πLθ pmin(L,y)−RLbm
πHθ

]
, then

πHθ x = RLsm. (4.53)

Equivalently,

x =
RLsm
πHθ

. (4.54)

Thus,

Rsm =
R

πHθ
. (4.55)

If RLsm ∈
[
πHθ pmin(H,y)+πLθ pmin(L,y)−RLbm

πHθ
,∞
)

, there is no solution to f(x) =

RLsm. Observe from condition (i), equation (4.49), condition (ii) and equation

140



that, when RLsm ∈
[
pmin(L, y)−RLbm, πHθ pmin(H, y) + πLθ pmin(L, y)−RLbm

]
,

the bank always knows the manufacturer’s type. Recall from equation (4.17) that

Lbm +Lsm = wy. Therefore, this leads to the bank knowing the manufacturer’s type

when Rwy ∈
[
pmin(L, y), πHθ pmin(H, y) + πLθ pmin(L, y)

]
and concludes the proof

for equation (4.26). Furthermore, because Lsm > 0, and the bank knows the manu-

facturer’s type when Rwy ∈
[
pmin(L, y), πHθ pmin(H, y) + πLθ pmin(L, y)

]
, equation

(4.40) becomes:

Rbm =
RLbm − πLθ pmin(L, y)

πHθ Lbm
. (4.56)

when Lsm > 0 and RLbm ∈
[
pmin(L, y), πHθ pmin(H, y) + πLθ pmin(L, y)

]
. �

Lemma 4.1 states that, in equilibrium, the supplier promises to pay the bank

the same amount the manufacturer promises to pay the supplier: RbsLbs = RsmLsm.

Lemma 4.1 also gives the break-even interest rates the bank and the supplier offer

to a manufacturer of type θ when the manufacturer places an order equal to y from

the supplier, borrows Lsm from the supplier and borrows Lbm from the bank. Recall

the optimization problem of a manufacturer of the type θ presented in equation

(4.1) to equation (4.5). Lemma 4.1 provides the menu of interest rates offered, in

equilibrium, by the bank and the supplier. Substituting the interest rates in the

objective value, Kθρ, with their break-even expressions in Lemma 4.1, we obtain the
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following expressions for the objective value of a type-θ manufacturer:

Kθρ =



Eθ [pmin (D, y)−Rwy]+ when Rwy ≤ pmin(L, y),

Eθ

[
πHρ pmin(D,y)+πLρ pmin(L,y)−Rwy

πHρ

]+

when


pmin(L, y) < Rwy, and

Lsm = 0,

Eθ

[
πHθ pmin(D,y)+πLθ pmin(L,y)−Rwy

πHθ

]+

when


pmin(L, y) < Rwy, and

Lsm > 0.

(4.57)

To avoid analyzing the situation where the objective function of all manufacturers

is 0, I make the following assumption.

Assumption 4.1. The unit revenue is greater than the unit financing cost of a

manufacturer: p > Rw.

Lemma 4.2. In equilibrium, the order quantity, y, of any manufacturer is always

greater than or equal to lowest demand value, L: y ≥ L.

Proof. I consider when 0 ≤ y < L and show that it is suboptimal for the manufacturer

to order a quantity less than L.

Because the two possible demand values are never less than L, when 0 ≤ y < L,

the expressions for the objective function, Kθρ, in equation (4.57) become

Kθρ =Eθ (py −Rwy)+ . (4.58)

The bank’s belief about a manufacturer’s type depends on decisions made by all

manufacturers. But, observe that, when 0 ≤ y < L, all manufacturers receive

the same interest rate regardless of the bank’s belief about a manufacturer’s type.

This is why, when 0 ≤ y < L, each type of manufacturer optimizes its objective
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value without the need to anticipate the decisions of other manufacturers and the

corresponding interest rate that it will receive from the lenders.

Recall, from Assumption 4.1, that p > Rw. Therefore, the expression for y ∈

[0, y] in (4.58) along with Assumption 4.1 lead to y ≥ L as the optimal action of

manufacturers. �

According to Lemma 4.2 it is suboptimal for manufacturers to order a quantity

that is less than the smallest demand that can be observed. Thus, combining As-

sumption 4.1 and Lemma 4.2 with the expressions for the interest rates received by

the manufacturer we get:

Rbm =



R when RLbm ≤ pL,

RLbm−πLρ pL
πHρ Lbm

when



pL < RLbm, and

Lsm = 0, and

RLbm ≤ πHρ pmin(H, y) + πLρ pL,

RLbm−πLθ pL
πHθ Lbm

when



pL < RLbm, and

Lsm > 0, and

Rwy ≤ πHθ pmin(H, y) + πLθ pL,

No solution otherwise.

(4.59)
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Rsm =



R when Rwy ≤ pL,

RLsm−πLθ [pL−RLbm]

πHθ Lsm
when


RLbm ≤ pL ≤ Rwy, and

Rwy ≤ πHθ pmin(H, y) + πLθ pL,

R
πHθ

when


pL < RLbm, and

Rwy ≤ πHθ pmin(H, y) + πLθ pL,

No solution otherwise.

(4.60)

Similarly, combining Assumption 4.1 and Lemma 4.2 with the expressions for the

objective value of any manufacturer, Kθρ, in equation (4.57) we get:

Kθρ =



Eθ [pmin (D, y)−Rwy]+ when L ≤ y ≤ pL
Rw
,

Eθ

[
πHρ pmin(D,y)+πLρ pL−Rwy

πHρ

]+

when pL
Rw

< y and Lsm = 0,

Eθ

[
πHθ pmin(D,y)+πLθ pL−Rwy

πHθ

]+

when pL
Rw

< y and Lsm > 0.

(4.61)

Before investigating for various equilibria, let us introduce the notation that we use

throughout the analysis:

• yBθρ is, for any ρ = {1, 2, P}, the best-response order quantity of a type-θ man-

ufacturer.

• RB
bmθρ is, for any ρ = {1, 2, P}, the interest rate that a manufacturer of the

type-θ receives from the bank when it orders its best-response order quantity.

• RB
smθρ is, for any ρ = {1, 2, P}, the interest rate that a manufacturer of the type-

θ receives from the supplier when it orders its best-response order quantity.

• KB
θρ is, for any ρ = {1, 2, P}, the objective value of a type-θ manufacturer that

orders yBθρ.
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4.4.2 Symmetric information equilibria between the bank and the manufac-
turer.

When there is symmetric information between the bank and the manufacturer,

the bank offers to the manufacturer a menu of interest rates based on the manufac-

turer’s type (i.e., ρ = θ), the manufacturer’s order quantity, the loan amount the

manufacturer desires from the bank, and the loan amount the manufacturer desires

from the supplier. Also, because the bank knows the manufacturer’s type, the manu-

facturer does not benefit from signaling its type to the bank nor can the manufacturer

pretend to be of the other type. Therefore, in equilibrium, the optimal operational

decision of the manufacturer is to order its best-response order quantity to the menu

of interest rates offered by the bank.

Proposition 4.1. In a symmetric information equilibrium, the order quantity, y, of

a manufacturer of the type θ is:

yBθθ =


H when Rw ≤ πHθ p,

L when πHθ p ≤ Rw.

(4.62)

and the objective value of the manufacturer is:

KB
θθ =


πHθ pH + πLθ pL−RwH if y = H,

(p−Rw)L if y = L.

(4.63)

Proof. Recall that the realized demand is either L or H where L ≤ H. Therefore,

because L < pL
Rw

, L < H, and H can be greater than or equal to pL
Rw

, we need to

analyze two cases: H ≤ pL
Rw

and pL
Rw

< H.
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If H ≤ pL
Rw

, the objective value in equation (4.61) becomes:

Kθθ =



Eθ [pmin (D, y)−Rwy]+ when L ≤ y ≤ H,

Eθ (pD −Rwy)+ when H ≤ y ≤ pL
Rw
,

Eθ

(
πHθ pD+πLθ pL−Rwy

πHθ

)+

when pL
Rw

< y.

(4.64)

where Kθθ is continuous in y.

Observe that, when y ≥ H, Kθθ is non-increasing in y.

When y ∈ [L,H],

Kθθ =Eθ [pmin (D, y)−Rwy]+ (4.65)

=πHθ (py −Rwy)+ + πLθ (pL−Rwy)+ (4.66)

=πHθ (py −Rwy) + πLθ (pL−Rwy) (4.67)

=πHθ py + πLθ pL−Rwy. (4.68)

For all y ∈ [L,H], this leads to Kθθ increasing in y when Rw ≤ πHθ p and decreasing

in y when πHθ p ≤ Rw. Therefore, if H ≤ pL
Rw

, yBθθ = H when Rw ≤ πHθ p and yBθθ = L

when πHθ p ≤ Rw.

If pL
Rw

< H, the objective value in equation (4.61) becomes:

Kθθ =



Eθ [pmin (D, y)−Rwy]+ when L ≤ y ≤ pL
Rw
,

Eθ

(
πHθ pmin(D,y)+πLθ pL−Rwy

πHθ

)+

when pL
Rw

< y ≤ H,

Eθ

(
πHθ pD+πLθ pL−Rwy

πHθ

)+

when H ≤ y.

(4.69)

where Kθθ is continuous in y.

Observe that, when y ≥ H, Kθθ is non-increasing in y.

When y ∈
[
L, pL

Rw

]
,

Kθθ =Eθ [pmin (D, y)−Rwy]+ (4.70)
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=πHθ (py −Rwy)+ + πLθ (pL−Rwy)+ (4.71)

=πHθ (py −Rwy) + πLθ (pL−Rwy) (4.72)

=πHθ py + πLθ pL−Rwy. (4.73)

and, when y ∈
(
pL
Rw
, H
]
,

Kθθ =Eθ

[
πHθ pmin(D, y) + πLθ pL−Rwy

πHθ

]+

(4.74)

=πHθ

(
πHθ py + πLθ pL−Rwy

πHθ

)+

+ πLθ

(
pL−Rwy

πHθ

)+

(4.75)

=πHθ

(
πHθ py + πLθ pL−Rwy

πHθ

)+

(4.76)

=
(
πHθ py + πLθ pL−Rwy

)+
. (4.77)

For all y ∈ [L,H], this leads to Kθθ increasing in y when Rw ≤ πHθ p and non-

increasing in y when πHθ p ≤ Rw. Therefore, if pL
Rw

< H, yBθθ = H when Rw ≤ πHθ p

and yBθθ = L when πHθ p ≤ Rw.

Combining the results obtained for H ≤ pL
Rw

and pL
Rw

< H gives us the optimal

order quantities of all manufacturers. We can now compute the objective value that

corresponds to each optimal order quantity.

The objective value of a type-θ manufacturer if it orders H is

KB
θθ =

(
πHθ pH + πLθ pL−RwH

)+
. (4.78)

Observe that if y = H then Rw ≤ πHθ p. Because πHθ pH ≤ πHθ pH +πLθ pL, we get:

KB
θθ =πHθ pH + πLθ pL−RwH. (4.79)

If a type-θ manufacturer orders L the objective value is

KB
θθ =(p−Rw)L. (4.80)

�
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Proposition 4.1 states the optimal order quantities with the corresponding objec-

tive value of the manufacturer when there is symmetric information between the bank

and the manufacturer. Equation (4.17), equation (4.59), and equation (4.60) provide

the optimal amounts borrowed by manufacturers and the break-even interest rates of

the bank and supplier for any quantity ordered by the manufacturer. Therefore, com-

bining Proposition 4.1, equation (4.17) with the expressions in equation (4.59), and

equation (4.60) gives us the equilibria when there is symmetric information between

the bank and the manufacturer.

4.4.2.1 Equilibria.

The optimal decisions of the bank and each type of manufacturer are summarized

in Table 4.1 and Table 4.2. In each table, column 1 and column 2 describe the con-

ditions for the equilibria presented. I add column 3 to conveniently refer to specific

rows. Column 4 and column 5 specify, for a type-1 manufacturer, the equilibrium or-

der quantities and interest rates on loans from the bank to the manufacturer. Column

6 and column 7 specify, for a type-2 manufacturer, the equilibrium order quantities

and interest rates on loans from the bank to the manufacturer. The expressions

in equation (4.61) for the objective function, Kθρ, of any type of manufacturer are

independent of the borrowing source. Therefore, to simplify the exposition, I assume

the manufacturer only borrows from the bank. Furthermore, I use RB
bmθ

def
=

RwH−πLθ pL
πHθ wH

to refer to the interest rate the bank offers to a manufacturer of the type θ when

pL ≤ RwH and the manufacturer orders H.

4.4.2.2 Discussion.

In equilibrium, the manufacturer orders H or L. But, because type-1 manufac-

turers have a higher expected demand for final goods than type-2 manufacturers it
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RwH ≤ pL
Symmetric

Type 1 Type 2

Subcase y∗ R∗bm y∗ R∗bm

πH1 H ≤ L

RwH ≤ πH2 pH 1 H R H R

πH2 pH ≤ RwH ≤ πH1 pH 2 H R L R

πH1 pH ≤ RwH ≤ pL 3 L R L R

Subcase

πH2 H ≤ L ≤ πH1 H
RwH ≤ πH2 pH 4 H R H R

πH2 pH ≤ RwH ≤ pL 5 H R L R

Subcase

L ≤ πH2 H RwH ≤ pL 6 H R H R

Table 4.1: Symmetric information equilibria between the bank and the manufacturer when
RwH ≤ pL.

is optimal for type-1 manufacturers to order H and type-2 manufacturers order L

when πH2 p ≤ Rw ≤ πH1 p.

When, for a high order quantity, the smallest possible revenue that can be gener-

ated by the manufacturer is greater than or equal to its loan repayment obligations

(i. e., pL ≥ RwH), the manufacturer is always able to repay its loan repayment

obligations. This leads to the bank and the supplier offering the lowest interest rate

possible to the manufacturer because the loans given to either type of manufacturer

are always riskless.

When, for a high order quantity, the smallest possible revenue that can be gen-

erated by the manufacturer is less than its loan repayment obligations (i. e., pL ≤

RwH), there is a risk that the manufacturer will default on its loan repayment obli-

gations. Due to this risk, the interest rate on the total loan amount received by the
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pL < RwH
Symmetric

Type 1 Type 2

Subcase y∗ R∗bm y∗ R∗bm

πH1 H ≤ L pL ≤ RwH 1 L R L R

Subcase

πH2 H ≤ L ≤ πH1 H
pL ≤ RwH ≤ πH1 pH 2 H RB1 L R

πH1 pH ≤ RwH 3 L R L R

Subcase

L ≤ πH2 H

pL ≤ RwH ≤ πH2 pH 4 H RB1 H RB1

πH2 pH ≤ RwH ≤ πH1 pH 5 H RB1 L R

πH1 pH ≤ RwH 6 L R L R

Table 4.2: Symmetric information equilibria between the bank and the manufacturer when
pL < RwH. Recall RBbmθ = RwH−πLθ pL

πHθ wH
.

manufacturer is higher than the opportunity cost of capital of the bank.

4.4.3 Asymmetric information equilibria between the bank and the manufac-
turer when trade credit is unavailable.

I classify the equilibria solutions into two types: separating equilibria and pooling

equilibria.

When the bank offers a menu of type-1 and type-2 rates to the manufacturer, a

separating equilibrium exists if

• a type-θ manufacturer chooses the menu of type-θ rates,

• the quantity ordered by a type-1 manufacturer is different from the quantity

ordered by a type-2 manufacturer,

• the bank offers a type-θ rate to a type-θ manufacturer.
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When the bank offers a menu of type-1 and type-2 rates to the manufacturer, a

pooling equilibrium exists if

• each manufacturer orders the same quantity,

• each manufacturer receives the same rate.

Lemma 4.3. For a given order quantity, y, Kθ1(y) ≥ KθP (y) ≥ Kθ2(y) and, for a

given ρ and order quantity, y, K1ρ(y) ≥ K2ρ(y).

Proof. I first show that Kθρ(y) is non-decreasing in the value of πHρ . Because πH2 ≤

πHP ≤ πH1 , this leads to Kθ1(y) ≥ KθP (y) ≥ Kθ2(y). Then I show that Kθρ(y) is

non-decreasing in πHθ . Because πH2 ≤ πH1 , this leads to K1ρ(y) ≥ K2ρ(y).

If y ∈
[
L, pL

Rw

]
, then Kθρ is independent of ρ. Therefore, Kθ1(y) = KθP (y) = Kθ2(y).

If y ∈
(
pL
Rw
,∞
)

,

Kθρ =Eθ

[
πHρ pmin (D, y) + πLρ pL−Rwy

πHρ

]+

(4.81)

=πHθ

[
πHρ pmin (H, y) + πLρ pL−Rwy

πHρ

]+

+ πLθ

(
pL−Rwy

πHρ

)+

. (4.82)

Recall that y ∈
(
pL
Rw
,∞
)

. Therefore,

Kθρ =πHθ

[
πHρ pmin (H, y) + πLρ pL−Rwy

πHρ

]+

(4.83)

=πHθ

[
(pmin (H, y)− pL) +

pL−Rwy
πHρ

]+

. (4.84)

Because y ∈
(
pL
Rw
,∞
)

and πHρ ≥ 0, this causes Kθρ to be non-decreasing in πHρ .

Recall that πH2 ≤ πHP ≤ πH1 . Therefore, Kθ1(y) ≥ KθP (y) ≥ Kθ2(y).

If y ∈
[
L, pL

Rw

]
,

Kθρ =Eθ [pmin (D, y)−Rwy]+ , (4.85)
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=πHθ [pmin (H, y)−Rwy]+ + πLθ (pL−Rwy) , (4.86)

=πHθ
{

[pmin (H, y)−Rwy]+ − (pL−Rwy)
}

+ (pL−Rwy) . (4.87)

Recall that y ≥ L and H > L. Therefore, pmin (H, y) ≥ pL. Because, y ≤ pL
Rw

,

we can rewrite equation (4.87) in the following way:

Kθρ =πHθ [pmin (H, y)− pL] + (pL−Rwy) . (4.88)

Recall that πHθ ≥ 0 and pmin (H, y) ≥ pL. This causes Kθρ to be non-decreasing

in πHθ . Because πH1 ≥ πH2 , for any given ρ, this leads to K1ρ(y) ≥ K2ρ(y).

If y ∈
(
pL
Rw
,∞
)
,

Kθρ =πHθ

[
(pmin (H, y)− pL) +

pL−Rwy
πHρ

]+

. (4.89)

Recall that πHθ ≥ 0. This causes Kθρ to be non-decreasing in πHθ . Because πH1 ≥ πH2 ,

for any given ρ, this leads to K1ρ(y) ≥ K2ρ(y). �

Lemma 4.3 says that type-1 rates are preferred by all manufacturers. Lemma 4.3

also says that the objective value of a type-1 manufacturer is greater than or equal

to the objective value of a type-2 manufacturer if both types of manufacturer order

the same quantity and receive the same interest rate from the bank. This implies

that, if both types receive the same rates, then a type-1 manufacturer is able to

signal its type and receive type-1 rates by ordering order quantities that a type-2

manufacturer will find suboptimal to order.

For a given order quantity threshold imposed by the bank, a separating equilib-

rium exists if

• a type-2 manufacturer orders a quantity less than the threshold order quantity

and, hence, receives a type-2 rate;
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• a type-1 manufacturer orders a quantity greater than or equal to the threshold

order quantity and, hence, receives a type-1 rate;

• no manufacturer in the economy prefers to choose an order quantity that will

make it receive an interest rate that is intended for the other type of manufac-

turer.

When the bank anticipates not being able to determine the manufacturer’s type

by the manufacturer’s order quantity, a pooling equilibrium exists if

• the bank offers the menu of pooling rates to the manufacturer,

• a type-2 manufacturer orders the same quantity as a type-1 manufacturer,

• a type-1 manufacturer prefers to receive a pooling rate instead of signaling its

type to the bank to obtain a type-1 rate.

To prevent having more than one equilibrium for a given set of economic param-

eters, I make the following assumptions.

Assumption 4.2. A type-2 manufacturer chooses an interest rate designed for its

type instead of choosing other rates if the maximum value of its objective function

when it chooses the set of rates designed for its type is equal the maximum value of

its objective function when it chooses another set of rates,

Assumption 4.3. If, in equilibrium, a type-θ manufacturer chooses the rate designed

for its type when the bank offers a menu of type-1 and type-2 rates to the manufac-

turer, the bank will never offer a single set of rates for which type-1 rates are offered

for order quantities greater than or equal to a threshold order quantity and type-2

rates are offered for order quantities less than the threshold order quantity.
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Before summarizing the equilibria that I am investigating, let us introduce the

notation that I use throughout the analysis:

• yT is, in a separating equilibrium, the smallest threshold order quantity that

can be set by the bank to discourage a type-2 manufacturer from pretending

to be a type-1 manufacturer.

• yTθ1 is the quantity
(
yTθ1 ≥ yT

)
that maximizes the objective value of a type-θ

manufacturer when the bank expects to be able to determine a manufacturer’s

type by setting a threshold order quantity, yT ; yB11 ≤ yT = yT11.

• yTθ2 is the quantity
(
yTθ2 < yT

)
that maximizes the objective value of a type-θ

manufacturer when the bank expects to be able to determine a manufacturer’s

type by setting a threshold order quantity, yT ; yBθ2 = yTθ2 < yT .

• LTbmθρ is, for ρ = 1 and 2, the loan amount that a manufacturer of the type-θ

requests from the bank when the bank sets a threshold order quantity and the

manufacturer orders yTθρ.

• LTsmθρ is, for ρ = 1 and 2, the loan amount that a manufacturer of the type-θ

requests from the supplier when the bank sets a threshold order quantity and

the manufacturer orders yTθρ.

• RT
bmθρ is, for ρ = 1 and 2, the interest rate that a manufacturer of the type-θ

receives from the bank when the bank sets a threshold order quantity and the

manufacturer orders yTθρ .

• RT
smθρ is, for ρ = 1 and 2, the interest rate that a manufacturer of the type-θ

receives from the supplier when the bank sets a threshold order quantity and

the manufacturer orders yTθρ.
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• KT
θ1 is the objective value of a type-θ manufacturer when the bank sets a thresh-

old order quantity and the manufacturer orders yTθ1; KT
θ1 ≤ KB

θ1.

• KT
θ2 is the objective value of a type-θ manufacturer when the bank sets a thresh-

old order quantity and the manufacturer orders yTθ2; KT
θ2 = KB

θ2.

Below are the equilibria we investigate for.

Separating equilibria when the bank offers a menu of type-1 and type-2

rates. 

KB
22 ≥ KB

21,

KB
11 ≥ KB

12,

yB22 6= yB11.

(4.90)

Pooling equilibria when the bank offers a menu of type-1 and type-2 rates.

KB
22 ≥ KB

21,

KB
11 ≥ KB

12,

yB22 = yB11,

RB
bm22 = RB

bm11.

(4.91)

Separating equilibria when the bank offers a single set of rates.

KB
21 > KB

22,

KT
22 > KT

21,

KT
11 ≥ KT

12,

KT
11 ≥ KT

1P ,

L ≤ yB22 = yT22 ≤ yB11 < yT = yT11.

(4.92)
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Pooling equilibria when the bank offers a single set of rates.

KB
21 > KB

22,

KT
11 ≥ KT

12,

KB
1P ≥ KT

11,

K2P ≥ KB
22,

y2P = yB1P .

(4.93)

To obtain the equilibria, I determine the best-response order quantities of each

type of manufacturer to the set of interest rates designed for the other type. Then,

I determine the best-response order quantities of type-1 manufacturers when all

manufacturers are offered the set of pooling interest rates. Observe that pooling

equilibria only exist when type-2 manufacturers do not suffer from pretending to be

type-1 manufacturers and type-1 manufacturers prefer to use pooling rates instead

of signaling their type. This is why, in pooling equilibria, the quantity ordered

by all manufacturers in the economy is the best-response order quantity of type-1

manufacturers when all manufacturers are offered the set of pooling interest rates.

Therefore, when all manufacturers are offered the set of pooling interest rates, I

determine the order quantities of type-2 manufacturers based on the best-response

quantities obtained for type-1 manufacturers. Afterwards, I provide conditions for

• equilibria when manufacturers of both types order their best-response order

quantities and receive type-specific rates,

• equilibria when type-1 manufacturers signal their type with order quantities

that are not their best-response order quantities to type-1 rates, and

• equilibria when all manufacturers order the same quantity and receive pooling
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rates from banks.

Then, I present all the equilibria.

4.4.3.1 Best-responses of manufacturers.

Lemma 4.4. If a type-1 manufacturer receives the set of type-2 interest rates pre-

sented in equation (4.59) where Lbm = 0 and ρ = 2, then its best-response order

quantity is the following:

yB12 =



H when L ≤ πH2 H and RwH ≤ πH2 pH,

pL
Rw

when L ≤ πH2 H and πH2 pH ≤ RwH ≤ πH1 pH,

L when L ≤ πH2 H and πH1 pH ≤ RwH,

H when πH2 H ≤ L ≤ πH1 H and RwH ≤ pL,

pL
Rw

when πH2 H ≤ L ≤ πH1 H and pL ≤ RwH ≤ πH1 pH,

L when πH2 H ≤ L ≤ πH1 H and πH1 pH ≤ RwH,

H when πH1 H ≤ L and RwH ≤ πH1 pH,

L when πH1 H ≤ L and πH1 pH ≤ RwH.

(4.94)

and the objective value of the manufacturer is:

KB
12 =



πH1 pH + πL1 pL−RwH if RwH ≤ pL and yB12 = H,

πH1

(
πH2 pH+πL2 pL−RwH

πH2

)
if pL < RwH and yB12 = H,

πH1 (p−Rw) pL
Rw

if yB12 = pL
Rw
,

(p−Rw)L if yB12 = L.

(4.95)

Proof. The expressions for the objective value of a type-1 manufacturer that receives
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pooling rates are obtained by setting ρ to P in equation (4.61). If H ≤ pL
Rw

, then for

any y ∈ [L,∞), either L ≤ y < H, H ≤ y ≤ pL
Rw

or pL
Rw

< y. If pL
Rw

< H, then for

any y ∈ [L,∞), either L ≤ y ≤ pL
Rw

, pL
Rw

< y ≤ H or H ≤ y. I consider these cases

separately to study the best-response order quantities of type-1 manufacturers when

they receive the set of type-2 rates. Then, I provide the corresponding objective

value to the best-response order quantities of type-1 manufacturers.

If H ≤ pL
Rw

, then the objective value in equation (4.61) becomes:

K12 =



E1 [pmin (D, y)−Rwy]+ when L ≤ y ≤ H,

E1 (pD −Rwy)+ when H ≤ y ≤ pL
Rw
,

E1

(
πH2 pD+πL2 pL−Rwy

πH2

)+

when pL
Rw

< y.

(4.96)

where K12 is continuous in y.

Observe that, when y ≥ H, K12 is non-increasing in y.

When y ∈ [L,H],

K12 =E1 [pmin (D, y)−Rwy]+ (4.97)

=πH1 (py −Rwy)+ + πL1 (pL−Rwy)+ (4.98)

=πH1 (py −Rwy) + πL1 (pL−Rwy) (4.99)

=πH1 py + πL1 pL−Rwy. (4.100)

For all y ∈ [L,H], this leads to K12 increasing in y when Rw ≤ πH1 p and K12

decreasing in y when πH1 p ≤ Rw. Therefore, if H ≤ pL
Rw

, y = H when Rw ≤ πH1 p

and y = L when πH1 p ≤ Rw.
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If pL
Rw

< H, then the objective value in equation (4.61) becomes:

K12 =



E1 [pmin (D, y)−Rwy]+ when L ≤ y ≤ pL
Rw
,

E1

[
πH2 pmin(D,y)+πL2 pL−Rwy

πH2

]+

when pL
Rw

< y ≤ H,

E1

(
πH2 pD+πL2 pL−Rwy

πH2

)+

when H ≤ y.

(4.101)

where K12 is continuous in y.

Observe that, when y ≥ H, K12 is non-increasing in y.

When y ∈
[
L, pL

Rw

]
,

K12 =E1 [pmin (D, y)−Rwy]+ (4.102)

=πH1 py + πL1 pL−Rwy. (4.103)

K12 is increasing in y when Rw ≤ πH1 p and K12 is decreasing in y when πH1 p ≤ Rw.

When y ∈
(
pL
Rw
, H
]
,

K12 =E1

[
πH2 pmin(D, y) + πL2 pL−Rwy

πH2

]+

(4.104)

=πH1

(
πH2 py + πL2 pL−Rwy

πH2

)+

+ πL1

(
pL−Rwy

πH2

)+

(4.105)

=πH1

(
πH2 py + πL2 pL−Rwy

πH2

)+

. (4.106)

K12 is increasing in y when Rw ≤ πH2 p and K12 is decreasing in y when πH2 p ≤ Rw.

Recall that we are analyzing when pL
Rw
≤ H and, by definition, πH1 is greater than

or equal to πH2 . Therefore, we have to consider L ≤ πH2 H, πH2 H ≤ L ≤ πH1 H and

πH1 H ≤ L when considering conditions on RwH. By combining the results obtained
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for y ∈
[
L, pL

Rw

]
, y ∈

(
pL
Rw
, H
]

and y ≥ H we derive:

yB12 =



H when L ≤ πH2 H and pL ≤ RwH ≤ πH2 pH,

pL
Rw

when L ≤ πH2 H and πH2 pH ≤ RwH ≤ πH1 pH,

L when L ≤ πH2 H and πH1 pH ≤ RwH,

pL
Rw

when πH2 H ≤ L ≤ πH1 H and pL ≤ RwH ≤ πH1 pH,

L when πH2 H ≤ L ≤ πH1 H and πH1 pH ≤ RwH,

L when πH1 H ≤ L and pL ≤ RwH.

(4.107)

Combining the results obtained for H ≤ pL
Rw

and pL
Rw

< H gives us the best-response

order quantities of type-1 manufacturers when they receive the set of type-2 rates.

We can now compute the objective value that corresponds to each best-response of

a type-1 manufacturer that receives the set of type-2 rates.

When a type-1 manufacturer receives the set of type-2 rates, its objective value

if H ≤ pL
Rw

and it orders H is:

KB
12 =πH1 pH + πL1 pL−RwH. (4.108)

If pL
Rw

< H and it orders H, then the objective value is:

KB
12 =πH1

(
πH2 pH + πL2 pL−RwH

πH2

)+

. (4.109)

Observe from equation (4.107) that, if pL
Rw

< H and yB21 = H, then Rw ≤ πH2 p.

Because πH2 pH ≤ πH2 pH + πL2 pL, we get:

KB
12 =πH1

(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.110)

If a type-1 manufacturer orders pL
Rw

, then the objective value is:

KB
12 =πH1

(
p
pL

Rw
−Rw pL

Rw

)
+ πL1

(
pL−Rw pL

Rw

)
(4.111)
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=πH1 (p−Rw)
pL

Rw
. (4.112)

If it orders L, then the objective value is:

KB
12 =(p−Rw)L. (4.113)

�

Lemma 4.5. If a type-1 manufacturer receives the set of pooling interest rates given

by equation (4.59) where Lbm = 0 and ρ = P , then its best-response order quantity

is the following:

yB1P =



H when L ≤ πHP H and RwH ≤ πHP pH,

pL
Rw

when L ≤ πHP H and πHP pH ≤ RwH ≤ πH1 pH,

L when L ≤ πHP H and πH1 pH ≤ RwH,

H when πHP H ≤ L ≤ πH1 H and RwH ≤ pL,

pL
Rw

when πHP H ≤ L ≤ πH1 H and pL ≤ RwH ≤ πH1 pH,

L when πHP H ≤ L ≤ πH1 H and πH1 pH ≤ RwH,

H when πH1 H ≤ L and RwH ≤ πH1 pH,

L when πH1 H ≤ L and πH1 pH ≤ RwH.

(4.114)

and the objective value of the manufacturer is:

KB
1P =



πH1 pH + πL1 pL−RwH if RwH ≤ pL and yB1P = H,

πH1

(
πHP pH+πLpL−RwH

πHP

)+

if pL < RwH and yB1P = H,

πH1 (p−Rw) pL
Rw

if yB1P = pL
Rw
,

(p−Rw)L if yB1P = L.

(4.115)
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Proof. The expressions for the objective value of a type-1 manufacturer that receives

pooling rates are obtained by setting ρ to P in equation (4.61). If H ≤ pL
Rw

, then for

any y ∈ [L,∞), either L ≤ y ≤ H, H ≤ y ≤ pL
Rw

or pL
Rw

< y. If pL
Rw

< H, then for

any y ∈ [L,∞), either L ≤ y ≤ pL
Rw

, pL
Rw

< y ≤ H or H ≤ y. I consider these cases

separately to study the best-response order quantities of type-1 manufacturers when

they receive the set of pooling rates. Then, I provide the corresponding objective

value to the best-response order quantities of type-1 manufacturers.

If H ≤ pL
Rw

, the objective value in equation (4.61) becomes:

K1P =



E1 [pmin (D, y)−Rwy]+ when L ≤ y ≤ H,

E1 (pD −Rwy)+ when H ≤ y ≤ pL
Rw
,

E1

(
πHP pD+πLP pL−Rwy

πHP

)+

when pL
Rw

< y.

(4.116)

where K1P is continuous in y.

Observe that, when y ≥ H, K1P is non-increasing in y.

When y ∈ [L,H],

K1P =E1 [pmin (D, y)−Rwy]+ (4.117)

=πH1 py + πL1 pL−Rwy. (4.118)

For all y ∈ [L,H], this leads to K1P increasing in y when Rw ≤ πH1 p and K1P

decreasing in y when πH1 p ≤ Rw. Therefore, if H ≤ pL
Rw

, y = H when Rw ≤ πH1 p

and y = L when πH1 p ≤ Rw.

If pL
Rw

< H, the objective value in equation (4.61) becomes:

K1P =



E1 [pmin (D, y)−Rwy]+ when L ≤ y ≤ pL
Rw
,

E1

[
πHP pmin(D,y)+πLP pL−Rwy

πHP

]+

when pL
Rw

< y ≤ H,

E1

(
πHP pD+πLP pL−Rwy

πHP

)+

when H ≤ y.

(4.119)
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where K1P is continuous in y.

Observe that, when y ≥ H, K1P is non-increasing in y.

When y ∈
[
L, pL

Rw

]
,

K1P =E1 [pmin (D, y)−Rwy]+ (4.120)

=πH1 py + πL1 pL−Rwy. (4.121)

K1P is increasing in y when Rw ≤ πH1 p and K1P is decreasing in y when πH1 p ≤ Rw.

When y ∈
(
pL
Rw
, H
]
,

K1P =E1

[
πHP pmin(D, y) + πLPpL−Rwy

πHP

]+

(4.122)

=πH1

(
πHP py + πLPpL−Rwy

πHP

)+

+ πL1

(
pL−Rwy

πHP

)+

(4.123)

=πH1

(
πHP py + πLPpL−Rwy

πHP

)+

. (4.124)

K1P is increasing in y when Rw ≤ πHP p and K1P is decreasing in y when πHP p ≤ Rw.

Recall that we are analyzing when pL
Rw

< H and, by definition, πH1 is greater

than or equal to πHP . Therefore, when considering conditions on RwH we have to

consider when L ≤ πHP H, πHP H ≤ L ≤ πH1 H and πH1 H ≤ L. By combining the

results obtained for y ∈
[
L, pL

Rw

]
, y ∈

(
pL
Rw
, H
]

and y ≥ H we derive:

yB1P =



H when L ≤ πHP H and pL ≤ RwH ≤ πHP pH,

pL
Rw

when L ≤ πHP H and πHP pH ≤ RwH ≤ πH1 pH,

L when L ≤ πHP H and πH1 pH ≤ RwH,

pL
Rw

when πHP H ≤ L ≤ πH1 H and pL ≤ RwH ≤ πH1 pH,

L when πHP H ≤ L ≤ πH1 H and πH1 pH ≤ RwH,

L when πH1 H ≤ L and pL ≤ RwH.

(4.125)
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Combining the results obtained for H ≤ pL
Rw

and pL
Rw

< H gives us the best-response

order quantities of type-1 manufacturers when they receive the set of pooling rates.

We can now compute the objective value that corresponds to each best-response

order quantities of a type-1 manufacturer that receives the set of pooling rates.

When a type-1 manufacturer receives the set of pooling rates, its objective value

if H ≤ pL
Rw

and it orders H is:

KB
1P =πH1 pH + πL1 pL−RwH. (4.126)

If pL
Rw

< H and it orders H the objective value is:

KB
1P =πH1

(
πHP pH + πLPpL−RwH

πHP

)+

. (4.127)

Observe from equation (4.125) that, if pL
Rw

< H and yB2P = H, then Rw ≤ πHP p.

Because πHP pH ≤ πHP pH + πLPpL, we get:

KB
1P =πH1

(
πHP pH + πLPpL−RwH

πHP

)
. (4.128)

If a type-1 manufacturer orders pL
Rw

the objective value is:

KB
1P =πH1 (p−Rw)

pL

Rw
. (4.129)

If it orders L the objective value is:

KB
1P =(p−Rw)L. (4.130)

�

Corollary 4.1. In equilibrium, if the type-1 and type-2 manufacturers are pooled
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together, then the optimal order quantity of type-2 manufacturers is the following:

y2P =



H when L ≤ πHP H and RwH ≤ πHP pH,

pL
Rw

when L ≤ πHP H and πHP pH ≤ RwH ≤ πH1 pH,

L when L ≤ πHP H and πH1 pH ≤ RwH,

H when πHP H ≤ L ≤ πH1 H and RwH ≤ pL,

pL
Rw

when πHP H ≤ L ≤ πH1 H and pL ≤ RwH ≤ πH1 pH,

L when πHP H ≤ L ≤ πH1 H and πH1 pH ≤ RwH,

H when πH1 H ≤ L and RwH ≤ πH1 pH,

L when πH1 H ≤ L and πH1 pH ≤ RwH.

(4.131)

and the objective value of the manufacturer is:

K2P =



πH2 pH + πL2 pL−RwH if RwH ≤ pL and y2P = H,

πH2

(
πHP pH+πLP pL−RwH

πHP

)+

if pL < RwH and y2P = H,

πH2 (p−Rw) pL
Rw

if y2P = pL
Rw
,

(p−Rw)L if y2P = L.

(4.132)

Proof. In equilibrium, if the bank offers the set of pooling interest rates to manu-

facturers, y2P = yB1p. Lemma 4.5 states the best-response order quantities and the

corresponding objective value of type-1 manufacturers if the bank offers the set of

pooling rates. Therefore, equaling y2P to the values obtained for yB1P in Lemma

4.5, setting ρ to P , and using the conditions in Lemma 4.5, gives us conditions for

different values of y2P and K2P . �
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We have just described the best-response order quantities and their corresponding

objective value for type-1 manufacturers when they receive the set of type-2 rates

and the set of pooling rates. We have also described the order quantities of type-2

manufacturers and their corresponding objective value when type-2 manufacturers

receive the set of pooling rates. Now, we will describe the best-response order quan-

tities and their corresponding objective value for type-2 manufacturers when they

receive the set of type-1 rates. Before analyzing the best-response order quantities

and their corresponding value for type-2 manufacturers when type-2 manufacturers

receive the set of type-1 rates, I denote πT :=
πH2 (πH1 H+πL1 L)−πH1 L

πH2 H−πH1 L
and introduce the

following lemma.

Lemma 4.6. If L ≤ πH2 H, then πH2 ≤ πT ≤ πH1 .

Proof. Recall that πT =
πH2 (πH1 H+πL1 L)−πH1 L

πH2 H−πH1 L
. Therefore, I need to show that, if L ≤

πH2 H,

πH2 ≤
πH2
(
πH1 H + πL1 L

)
− πH1 L

πH2 H − πH1 L
(4.133)

and

πH2
(
πH1 H + πL1 L

)
− πH1 L

πH2 H − πH1 L
≤πH1 . (4.134)

Recall that πH1 ≤ 1. Therefore, if L ≤ πH2 H, πH2 H − πH1 L ≥ 0. This is why, if

L ≤ πH2 H, equation (4.133) and equation (4.134) are equivalent to

πH2 (πH2 H − πH1 L) ≤πH2
(
πH1 H + πL1 L

)
− πH1 L (4.135)

and

πH2
(
πH1 H + πL1 L

)
− πH1 L ≤πH1 (πH2 H − πH1 L). (4.136)
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Recall that, for any θ, πLθ = 1 − πHθ . Therefore, observe with a little algebra that

equation (4.135) and equation (4.136) are satisfied if

(πH1 − πH2 )L ≤(πH1 − πH2 )πH2 H (4.137)

and

πH1 (πH1 − πH2 ) ≤πH1 − πH2 . (4.138)

Recall that πH2 ≤ πH1 . Therefore, (πH1 −πH2 ) ≥ 0. This leads to equation (4.137) and

equation (4.138) being equivalent to

L ≤πH2 H (4.139)

and

πH1 ≤1. (4.140)

πH1 is always less than or equal to 1. Therefore, equation (4.140) is always satisfied

and equation (4.139) is satisfied if L ≤ πH2 H. �

Lemma 4.7. If a type-2 manufacturer receives the set of type-1 interest rates given

by equation (4.59) where Lbm = 0 and ρ = 1, then its best-response order quantity is

the following:

yB21 =



H when L ≤ πH2 H and RwH ≤ πTpH,

L when L ≤ πH2 H and πTpH ≤ RwH,

H when πH2 H ≤ L and RwH ≤ πH2 pH,

L when πH2 H ≤ L and πH2 pH ≤ RwH.

(4.141)
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and the objective value of the manufacturer is:

KB
21 =



πH2 pH + πL2 pL−RwH if RwH ≤ pL and yB21 = H,

πH2

(
πH1 pH+πL1 pL−RwH

πH1

)+

if pL < RwH and yB21 = H,

(p−Rw)L if yB21 = L.

(4.142)

Proof. The expressions for the objective value of a type-2 manufacturer that receives

type-1 rates are obtained by setting ρ to 1 in equation (4.61). If H ≤ pL
Rw

, then for

any y ∈ [L,∞), either L ≤ y ≤ H, H ≤ y ≤ pL
Rw

or pL
Rw

< y. If pL
Rw

< H, then for

any y ∈ [L,∞), either L ≤ y ≤ pL
Rw

, pL
Rw

< y ≤ H or H ≤ y. I consider these cases

separately to study the best-response order quantities of type-1 manufacturers when

they receive the set of pooling rates. Then, I provide the corresponding objective

value to the best-response order quantities of type-1 manufacturers.

If H ≤ pL
Rw

, then the objective value in equation (4.61) becomes:

K21 =



E2 [pmin (D, y)−Rwy]+ when L ≤ y ≤ H,

E2 (pD −Rwy)+ when H ≤ y ≤ pL
Rw
,

E2

(
πH1 pD+πL1 pL−Rwy

πH1

)+

when pL
Rw

< y.

(4.143)

where K21 is continuous in y.

Observe that, when y ≥ H, K21 is non-increasing in y.

When y ∈ [L,H],

K21 =E2 [pmin (D, y)−Rwy]+ (4.144)

=πH2 py + πL2 pL−Rwy. (4.145)

For all y ∈ [L,H], this leads to K21 increasing in y when Rw ≤ πH2 p and K21

decreasing in y when πH2 p ≤ Rw. Therefore, if H ≤ pL
Rw

, y = H when Rw ≤ πH2 p
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and y = L when πH2 p ≤ Rw.

If pL
Rw

< H, then the objective value in equation (4.61) becomes:

K21 =



E2 [pmin (D, y)−Rwy]+ when L ≤ y ≤ pL
Rw
,

E2

[
πH1 pmin(D,y)+πL1 pL−Rwy

πH1

]+

when pL
Rw

< y ≤ H,

E2

(
πH1 pD+πL1 pL−Rwy

πH1

)+

when H ≤ y.

(4.146)

where K21 is continuous in y.

Observe that, when y ≥ H, K21 is non-increasing in y.

When y ∈
[
L, pL

Rw

]
,

K21 =E2 [pmin (D, y)−Rwy]+ (4.147)

=πH2 py + πL2 pL−Rwy. (4.148)

K21 is increasing in y when Rw ≤ πH2 p and K21 is decreasing in y when πH2 p ≤ Rw.

When y ∈
(
pL
Rw
, H
]
,

K21 =E2

[
πH1 pmin(D, y) + πL1 pL−Rwy

πH1

]+

(4.149)

=πH2

(
πH1 py + πL1 pL−Rwy

πH1

)+

+ πL2

(
pL−Rwy

πH1

)+

(4.150)

=πH2

(
πH1 py + πL1 pL−Rwy

πH1

)+

. (4.151)

K21 is increasing in y when Rw ≤ πH1 p and K21 is decreasing in y when πH1 p ≤ Rw.

Recall that we are analyzing when pL
Rw

< H and, by definition, πH1 is greater

than or equal to πH2 . Therefore, when considering conditions on RwH we have to

consider when L ≤ πH2 H, πH2 H ≤ L ≤ πH1 H and πH1 H ≤ L. By combining the
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results obtained for y ∈
[
L, pL

Rw

]
, y ∈

(
pL
Rw
, H
]

and y ≥ H we derive:

yB21 =



H when L ≤ πH2 H and pL ≤ RwH ≤ πH2 pH,

H or L when L ≤ πH2 H and πH2 pH ≤ RwH ≤ πH1 pH,

L when L ≤ πH2 H and πH1 pH ≤ RwH,

L when πH2 H ≤ L and pL ≤ RwH.

(4.152)

A type-2 manufacturer orders L instead of H if its objective value when it orders L

is greater than or equal to its objective value when it orders H. Therefore, based on

the expressions for the objective value of type-2 manufacturers, when L ≤ πH2 H and

πH2 p ≤ Rw ≤ πH1 p, a type-2 manufacturer orders L instead of H iff

πH2 pL+ πL2 pL−RwL ≥πH2
(
πH1 pH + πL1 pL−RwH

πH1

)+

(4.153)

and orders H otherwise.

Because πH1 pH ≤ πH1 pH + πL1 pL,

πH2

(
πH1 pH + πL1 pL−RwH

πH1

)+

=πH2

(
πH1 pH + πL1 pL−RwH

πH1

)
. (4.154)

Hence, when L ≤ πH2 H and πH2 p ≤ Rw ≤ πH1 p, a manufacturer orders L instead

of H if

πH2 pL+ πL2 pL−RwL ≥πH2
(
πH1 pH + πL1 pL−RwH

πH1

)
. (4.155)

Recall that, for any θ, πLθ = 1− πHθ . Therefore, observe with a little algebra that

equation (4.155) is satisfied if

(
πH2 H − πH1 L

)
Rw ≥

[
πH2
(
πH1 H + πL1 L

)
− πH1 L

]
p (4.156)

Recall that πT =
πH2 (πH1 H+πL1 L)−πH1 L

πH2 H−πH1 L
and πH1 ≤ 1. Because πH1 ≤ 1 and we are in

the case when L ≤ πH2 H, πH2 H−πH1 L is always greater than or equal to 0. Therefore,
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equation (4.156) is equivalent to

Rw ≥πTp. (4.157)

Recall from Lemma 4.6 that πH2 ≤ πT ≤ πH1 . Therefore, equation (4.157) holds when

L ≤ πH2 H and πTp ≤ Rw ≤ πH1 p. This leads to

yB21 =


H when L ≤ πH2 H and pL ≤ RwH ≤ πTpH,

L when L ≤ πH2 H and πTpH ≤ RwH ≤ πH1 pH.

(4.158)

Combining the results obtained for H ≤ pL
Rw

and pL
Rw

< H gives us the best-response

order quantities of type-2 manufacturers to when they receive the set of type-1 rates

designed for type-1 manufacturers. We can now compute the objective value that

corresponds to each best-response of a type-2 manufacturer that receives the set of

type-1 rates.

When a type-2 manufacturer receives the set of type-1 rates, its objective value

if H ≤ pL
Rw

and it orders H is:

KB
21 =πH2 pH + πL2 pL−RwH. (4.159)

If pL
Rw

< H and it orders H the objective value is:

KB
21 =πH2

(
πH1 pH + πL1 pL−RwH

πH1

)+

. (4.160)

Observe from equation (4.152) that, if pL
Rw

< H and yB21 = H, then Rw ≤ πH1 p.

Because πH1 pH ≤ πH1 pH + πL1 pL, we get:

KB
21 =πH2

(
πH1 pH + πL1 pL−RwH

πH1

)
. (4.161)

If it orders L the objective value is:

KB
21 =(p−Rw)L. (4.162)

�
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4.4.3.2 Equilibria.

Lemma 4.8. A type-1 manufacturer does not have to consider signaling its type

with order quantities that are not its best-response order quantities to the set of type-

1 rates:

if



H ≤ pL
Rw
, or

pL
Rw

< H and L ≤ πH2 H and πTpH ≤ RwH, or

pL
Rw

< H and πH2 H ≤ L.

(4.163)

Proof. I show that, if (4.163) holds, then type-2 manufacturers do not benefit by

pretending to be type-1 manufacturers and, hence, type-1 manufacturers do not

have to consider signaling their type with order quantities that are not their best-

response order quantities to the set of type-1 rates.

Case: H ≤ pL
Rw

.

Proposition 4.1 and Lemma 4.7 state that, if H ≤ pL
Rw

and Rw ≤ πH2 p, then KB
22 =

KB
21 = πH2 pH + πL2 pL − RwH. Also, Proposition 4.1 and Lemma 4.7 state that,

if H ≤ pL
Rw

and πH2 p ≤ Rw, then KB
22 = KB

21 = (p − Rw)L. Therefore, type-2

manufacturers do not benefit by pretending to be type-1 manufacturers.

Case: pL
Rw

< H, L ≤ πH2 H and πTpH ≤ RwH.

Proposition 4.1 and Lemma 4.7 state that, if pL
Rw

< H, L ≤ πH2 H and πTpH ≤ RwH,

then KB
22 = KB

21 = (p − Rw)L. Therefore, type-2 manufacturers do not benefit by

pretending to be type-1 manufacturers.

Case: pL
Rw

< H and πH2 H ≤ L.

According to Proposition 4.1 and Lemma 4.7, if pL
Rw

< H, πH2 H ≤ L and πH2 pH ≤

RwH, then KB
22 = KB

21 = (p−Rw)L. Therefore, type-2 manufacturers do not benefit

by pretending to be type-1 manufacturers. �
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Proposition 4.2. If H ≤ pL
Rw

and Rw ≤ πH2 p, then there are pooling equilibria

where all manufacturers in the economy order H, and the interest rate on the loan

repayment of each manufacturer is the bank’s cost of capital, R.

Proof. I show that, if H ≤ pL
Rw

and Rw ≤ πH2 p, there are pooling equilibria where all

manufacturers in the economy order H, and the interest rate on the loan repayment

of each manufacturer is the bank’s cost of capital, R, because all the conditions in

equation (4.91) are satisfied.

According to Lemma 4.8, if H ≤ pL
Rw

, a type-1 manufacturer does not have to

consider signaling its type to the bank with order quantities that are not its best-

response order quantities to type-1 rates because, if H ≤ pL
Rw

, type-2 manufacturers

do not benefit by pretendingto be type-1 manufacturers. This leads to equilibria

where the bank offers a menu of type-1 and type-2 rates to the manufacturer, the

manufacturer chooses the set of rates designed for its type, and the manufacturer

orders its best-response order quantity to the set of interest rates it receives from the

bank.

According to Proposition 4.1, if H ≤ pL
Rw

and Rw ≤ πH2 p, then yB11 = H, KB
11 =

πH1 pH + πL1 pL − RwH, yB22 = H, and KB
22 = πH2 pH + πL2 pL − RwH. Recall from

Lemma 4.4 and Lemma 4.7 that, if H ≤ pL
Rw

and Rw ≤ πH2 p, then yB12 = H, KB
12 =

πH1 pH + πL1 pL−RwH, y21 = H, and K21 = πH2 pH + πL2 pL−RwH.

Observe that KB
22 = KB

21 and yB22 = yB11. Therefore, the only equilibria that can

exist, if H ≤ pL
Rw

, Rw ≤ πH2 p, are pooling equilibria that satisfy equation (4.91).

Observe from equation (4.59) that the interest rate on the loan repayment of each

manufacturer is the bank’s cost of capital, R, because when H ≤ pL
Rw

, there is no risk

of default when manufacturers order H. Because KB
11 = KB

12 and RB
bm22 = RB

bm11,

then all the conditions in equation (4.91) are satisfied. Therefore, there are pooling
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equilibria where all manufacturers in the economy order H, and the interest rate on

the loan repayment of each manufacturer is the bank’s cost of capital, R. �

Proposition 4.3. If H ≤ pL
Rw

and πH2 p ≤ Rw ≤ πH1 p, then there are separating

equilibria where type-1 manufacturers order H, type-2 manufacturers order L, and

the interest rate on the loan repayment of each manufacturer is the bank’s cost of

capital, R.

Proof. I show that, if H ≤ pL
Rw

and πH2 p ≤ Rw ≤ πH1 p, then there are separating

equilibria where type-1 manufacturers order H, type-2 manufacturers order L, and

the interest rate on the loan repayment of each manufacturer is the bank’s cost of

capital, R, because all the conditions in equation (4.90) are satisfied.

According to Lemma 4.8, if H ≤ pL
Rw

, a type-1 manufacturer does not have to

consider signaling its type to the bank with order quantities that are not its best-

response order quantities to type-1 rates because, if H ≤ pL
Rw

, type-2 manufacturers

do not benefit by pretendingto be type-1 manufacturers. This leads to equilibria

where the bank offers a menu of type-1 and type-2 rates to the manufacturer, the

manufacturer choses the set of rates designed for its type, and the best-response order

quantity of a type-1 manufacturer is different than the best-response order quantity

of a type-2 manufacturer.

According to Proposition 4.1, if H ≤ pL
Rw

and πH2 p ≤ Rw ≤ πH1 p, then yB11 = H,

KB
11 = πH1 pH + πL1 pL − RwH, yB22 = L and KB

22 = (p − Rw)L. Recall from Lemma

4.4 and Lemma 4.7 that, if H ≤ pL
Rw

and πH2 p ≤ Rw ≤ πH1 p, then yB1P = H,

KB
12 = πH1 pH + πL1 pL−RwH, yB21 = L, and KB

21 = (p−Rw)L.

Observe that KB
22 = KB

21 and yB22 6= yB11. Therefore, the only equilibria that can

exist, if H ≤ pL
Rw

, πH2 p ≤ Rw ≤ πH1 p, are separating equilibria that satisfy equation

174



(4.90). Because KB
11 = KB

12, then all the conditions in equation (4.90) are satisfied.

Observe from equation (4.59) that the interest rate on the loan repayment of each

manufacturer is the bank’s cost of capital, R, because when H ≤ pL
Rw

, there is no risk

of default when manufacturers order H. This leads to separating equilibria where

type-1 manufacturers order H, type-2 manufacturers order L, and the interest rate

on the loan repayment of each manufacturer is the bank’s cost of capital, R. �

Proposition 4.4. If πH1 p ≤ Rw, then there are pooling equilibria where all manu-

facturers in the economy order L, and the interest rate on the loan repayment of each

manufacturer is the bank’s cost of capital, R.

Proof. I show that, if πH1 p ≤ Rw, then there are pooling equilibria where all man-

ufacturers in the economy order H, and the interest rate on the loan repayment

of each manufacturer is the bank’s cost of capital, R, because all the conditions in

(4.91) are satisfied.

According to Lemma 4.8,

if



H ≤ pL
Rw
, or

pL
Rw

< H and L ≤ πH2 H and πTpH ≤ RwH, or

pL
Rw

< H and πH2 H ≤ L.

(4.164)

a type-1 manufacturers does not have to consider signaling its type to the bank

with order quantities that are not its best-response order quantities to type-1 rates

because, under the conditions in Lemma 4.8, type-2 manufacturers do not benefit by

pretendingto be type-1 manufacturers. This leads to equilibria where the bank offers

a menu of type-1 and type-2 rates to the manufacturer, the manufacturer chooses

the set of rates designed for its type, and the manufacturer orders its best-response

order quantity to the set of interest rates it receives from the bank.
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According to Proposition 4.1 and Lemma 4.4, if πH1 p ≤ Rw, then yB11 = yB22 =

yB12 = L and KB
11 = KB

22 = KB
12 = (p−Rw)L.

Recall from Lemma 4.7 that,

yB21 =


L when L ≤ πH2 H and πTpH ≤ RwH,

L when πH2 H ≤ L and πH2 pH ≤ RwH.

(4.165)

Recall that πH2 ≤ πH1 and from Lemma 4.6 that if L ≤ πH2 H, then πH2 ≤ πT ≤ πH1 .

Therefore, if πH1 p ≤ Rw, then yB21 = L and KB
21 = (p−Rw)L.

Observe that KB
22 = KB

21 and yB22 = yB11. Therefore, the only equilibria that can

exist, if πH1 p ≤ Rw, are pooling equilibria that satisfy equation (4.91). Observe from

equation (4.59) that the interest rate on the loan repayment of each manufacturer

is the bank’s cost of capital, R, because when a manufacturer orders L, there is

no risk of default. Because KB
11 = KB

12 and RB
bm22 = RB

bm11, then all the conditions

in equation (4.91) are satisfied. Therefore, there are pooling equilibria where all

manufacturers in the economy order L, and the interest rate on the loan repayment

of each manufacturer is the bank’s cost of capital, R. �

Proposition 4.5. There are separating equilibria where a type-1 manufacturer orders

H, a type-2 manufacturer orders L, the interest rate on the loan repayment of a type-

1 manufacturer is
RwH−πL1 pL
πH1 wH

, and the interest rate on the loan repayment of a type-2

manufacturer is the bank’s cost of capital, R,

if


pL
Rw

< H and L ≤ πH2 H and πTpH ≤ RwH ≤ πH1 pH, or

pL
Rw

< H and πH2 H ≤ L and RwH ≤ πH1 pH.

(4.166)

Proof. I show that, if (4.166) holds, then there are separating equilibria where a

type-1 manufacturer orders H, a type-2 manufacturer orders L, the interest rate on
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the loan repayment of a type-1 manufacturer is
RwH−πL1 pL
πH1 wH

, and the interest rate on

the loan repayment of a type-2 manufacturer is the bank’s cost of capital, R, because

all the conditions in equation (4.90) are satisfied.

According to Lemma 4.8, if (4.166) holds, then a type-1 manufacturer does not

have to consider signaling its type to the bank with order quantities that are not its

best-response order quantities to type-1 rates because, if (4.166) holds, then type-

2 manufacturers do not benefit by pretending to be type-1 manufacturers. This

leads to equilibria where the bank offers a menu of type-1 and type-2 rates to the

manufacturer, the manufacturer chooses the set of rates designed for its type, and

the best-response order quantity of a type-1 manufacturer is different than the best-

response order quantity of a type-2 manufacturer.

According to Proposition 4.1, if pL
Rw

< H and πH2 p ≤ Rw ≤ πH1 p, then yB11 = H,

KB
11 = πH1 pH + πL1 pL− RwH, yB22 = L and KB

22 = (p− Rw)L. Recall, from Lemma

4.4 and Lemma 4.7, that

yB12 =


pL
Rw

when L ≤ πH2 H and πH2 pH ≤ RwH ≤ πH1 pH,

pL
Rw

when πH2 H ≤ L and pL ≤ RwH ≤ πH1 pH,

(4.167)

and

yB21 =


L when L ≤ πH2 H and πTpH ≤ RwH,

L when πH2 H ≤ L and πH2 pH ≤ RwH.

(4.168)

Recall that πH2 ≤ πH1 and from Lemma 4.6 that, if L ≤ πH2 H, then πH2 ≤ πT ≤ πH1 .

Therefore, if (4.166) holds, then yB12 = pL
Rw

, KB
12 = πH1 (p − Rw) pL

Rw
, yB21 = L, and

KB
21 = (p − Rw)L. Observe that KB

22 = KB
21 and yB22 6= yB11. Therefore, the only

equilibria that can exist if (4.166) holds are separating equilibria that satisfy the

conditions in (4.90). Let us verify if the conditions in (4.90) are satisfied.
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Substituting KB
11, KB

12, KB
22, KB

21, yB11 and yB22 in the conditions in (4.90) by their

values gives

(p−Rw)L ≥ (p−Rw)L and (4.169)

πH1 pH + πL1 pL−RwH ≥ πH1 (p−Rw)
pL

Rw
and (4.170)

L 6= H. (4.171)

It is obvious that the first and third conditions in (4.169) are satisfied. Let us

determine if and when the second condition in equation (4.169) is satisfied. Recall

that, for any θ, πLθ = 1−πHθ . Therefore, observe with a little algebra that the second

condition in equation (4.169) is satisfied if

(πH1 p−Rw)H ≥(πH1 p−Rw)
pL

Rw
. (4.172)

Recall that Rw ≤ πH1 p. Therefore, πH1 p− Rw ≥ 0. This leads to the inequalities in

(4.172) being equivalent to

H ≥ pL
Rw

. (4.173)

Recall that pL
Rw

< H. Therefore, equation (4.173) is satisfied.

Observe from equation (4.59) that the interest rate on the loan repayment of a

type-1 manufacturer is
RwH−πL1 pL
πH1 wH

and the interest rate on the loan repayment of

a type-2 manufacturer is the bank’s cost of capital, R. This leads to separating

equilibria where type-1 manufacturers order H, type-2 manufacturers order L, the

interest rate on the loan repayment of a type-1 manufacturer is
RwH−πL1 pL
πH1 wH

, and the

interest rate on the loan repayment of a type-2 manufacturer is the bank’s cost of

capital, R. �

We have presented in Proposition 4.2, Proposition 4.3, Proposition 4.4 and Propo-

sition 4.5 all the equilibria when it is optimal, if presented with a menu of type-1
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rates and type-2 rates, for type-2 manufacturers to choose the set of type-2 rates. To

simplify the analysis of when it is optimal, if presented with a menu of type-1 rates

and a menu of type-2 rates, for type-2 manufacturers to choose the set of type-1 rates

it is convenient to denote πP :=
πH2 (πHP H+πLPL)−πHP L

πH2 H−πHP L
, yT :=

πH2 (πH1 pH+πL1 pL)−πH1 (p−Rw)L

πH2 Rw
,

R
T

:=
R[πH2 pH−(p−Rw)L]

πH2 (πH1 pH+πL1 pL)−πH1 (p−Rw)L
because these expressions appear more than once in

the analysis. Similarly, I introduce Lemma 4.9, Lemma 4.10, Lemma 4.11, Lemma

4.12 and Lemma 4.13 to facilitate the exposition of the results.

Lemma 4.9. If L ≤ πH2 H, then πH2 ≤ πP ≤ min
(
πHP , π

T
)
.

Proof. Recall that πP =
πH2 (πHP H+πLPL)−πHP L

πH2 H−πHP L
and πT =

πH2 (πH1 H+πL1 L)−πH1 L
πH2 H−πH1 L

. Therefore,

we need to show that, if L ≤ πH2 H,

πH2 ≤
πH2
(
πHP H + πLPL

)
− πHP L

πH2 H − πHP L
, (4.174)

πH2
(
πHP H + πLPL

)
− πHP L

πH2 H − πHP L
≤ πHP , (4.175)

and

πH2
(
πHP H + πLPL

)
− πHP L

πH2 H − πHP L
≤
πH2
(
πH1 H + πL1 L

)
− πH1 L

πH2 H − πH1 L
. (4.176)

Recall that πHP ≤ πH1 ≤ 1. Therefore, if L ≤ πH2 H, πH2 H − πHP L ≥ 0. This leads to

πH2 H − πH1 L ≥ 0. This is why, if L ≤ πH2 H, then equation (4.174), equation (4.175)

and equation (4.176) are equivalent to

πH2 (πH2 H − πHP L) ≤πH2
(
πHP H + πLPL

)
− πHP L, (4.177)

πH2
(
πHP H + πLPL

)
− πHP L ≤ πHP (πH2 H − πHP L), (4.178)
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and

(πH2 H − πH1 L)[πH2
(
πHP H + πLPL

)
− πHP L] ≤(πH2 H − πHP L)[πH2

(
πH1 H + πL1 L

)
− πH1 L]

(4.179)

respectively. Recall that, for any θ, πLθ = 1 − πHθ . Therefore, observe with a little

algebra that equation (4.177), equation (4.178) and equation (4.179) are satisfied if

(πHP − πH2 )L ≤(πHP − πH2 )H, (4.180)

(πHP − πH2 )πHP ≤(πHP − πH2 ), (4.181)

and

(H − L)L ≤πH2 H(H − L). (4.182)

Recall that L ≤ H and πH2 ≤ πHP . Therefore, (πHP − πH2 ) ≥ 0. This leads to equation

(4.180), equation (4.181) and equation (4.182) being equivalent to

L ≤H, (4.183)

πHP ≤1, (4.184)

and

L ≤πH2 H. (4.185)

L is always less than or equal to H and πHP is always less than or equal to 1. There-

fore, equation (4.183), equation (4.184) are always satisfied and equation (4.185) is

satisfied if L ≤ πH2 H. �

Lemma 4.10. If pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then a type-1 manufacturer

has to consider signaling its type with order quantities that are not its best-response

order quantities to the set of type-1 rates.
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Proof. I show that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then KB
21 > KB

21.

From Lemma 4.6, if L ≤ πH2 H, then πT ≥ πH2 . Therefore, I show that,

if


pL
Rw

< H and L ≤ πH2 H and RwH ≤ πH2 pH, or

pL
Rw

< H and L ≤ πH2 H and πH2 pH ≤ RwH ≤ πTpH,

(4.186)

then KB
21 > KB

21.

Case: pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH.

Proposition 4.1 and Lemma 4.7 state that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH,

yB22 = yB21 = H, KB
22 = πH2 pH + πL2 pL − RwH and KB

21 = πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
.

Therefore, KB
21 > KB

22 if

πH2

(
πH1 pH + πL1 pL−RwH

πH1

)
>πH2 pH + πL2 pL−RwH. (4.187)

Recall that, for any θ, πLθ = 1− πHθ . Therefore, observe with a little algebra that

equation (4.187) is satisfied if

πH2 (pL−RwH) >πH1 (pL−RwH). (4.188)

Recall that pL
Rw

< H. Therefore, pL−RwH < 0 and equation (4.188) is satisfied if

πH2 <πH1 . (4.189)

πH2 is always less than πH1 . Therefore, equation (4.189) is always satisfied. Hence, if

pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH, type-2 manufacturers would always prefer

to order H and receive a type-1 rate instead of ordering H and receiving the type-2

rate.

Case: pL
Rw

< H, L ≤ πH2 H and πH2 pH ≤ RwH ≤ πTpH.

Proposition 4.1 and Lemma 4.7 state that, if pL
Rw

< H, L ≤ πH2 H and πH2 pH ≤

RwH ≤ πTpH, KB
22 = (p − Rw)L and KB

21 = πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
. Observe
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that we have already compared (p − Rw)L and πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
in equation

(4.153) to equation (4.157). Furthermore, recall from Lemma 4.6 that, if L ≤ πH2 H,

πH2 ≤ πT . Therefore, from equation (4.158), we conclude that, if pL
Rw

< H, L ≤ πH2 H

and πH2 pH ≤ RwH ≤ πTpH, KB
22 > KB

21. Hence, if pL
Rw

< H, L ≤ πH2 H and

πH2 pH ≤ RwH ≤ πTpH, type-2 manufacturers would always prefer to order H and

receive type-1 rates instead of ordering L and receiving type-2 rates. �

Lemma 4.11. If pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH, then a type-1 manufac-

turer is unable to signal its type to the bank with order quantities that are not its

best-response order quantities to type-1 rates.

Proof. According to Lemma 4.10, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH, a type-2

manufacturer always prefers to order H and receive a type-1 rate instead of ordering

H and receive a type-2 rate. But, if the bank sets a threshold order quantity yT for

which no type-2 manufacturer finds it optimal to order a quantity greater than or

equal to yT and receive a type-1 rate, a type-1 manufacturers might be able to signal

its type to the bank by ordering a quantity y ≥ yT .

I show that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πH2 pH, then KB
21 > KB

22 and there

exist no yT for which KT
22 > KT

21 and KT
11 ≥ KT

12 are simultaneously satisfied. This

leads to a type-2 manufacturer to pretend to be a type-1 manufacturer and prevents

a type-1 manufacturer from being able to signal its type with order quantities that

are not its best-response order quantities to type-1 rates.

Recall, from Proposition 4.1 and Lemma 4.7, that, if pL
Rw

< H, L ≤ πH2 H and
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RwH ≤ πH2 pH, then 

yB22 = H,

yB21 = H,

KB
22 = πH2 pH + πL2 pL−RwH,

KB
21 = πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
.

(4.190)

Lemma 4.3 states that, for a given order quantity, y, Kθ1(y) > Kθ2(y). Observe

that yB22 = yB21 = H. This leads to KB
21 > KB

22 which implies that, if presented with

a menu of type-1 and type-2 rates, a type-2 manufacturer will always choose the set

of type-1 rates.

Observe, from equation (4.61), that, if pL
Rw

< H, L ≤ πH2 H, and RwH ≤ πH2 pH,

then 

K21 = πH2

[
πH1 pmin(H,y)+πL1 pL−Rwy

πH1

]+

,

K11 =
[
πH1 pmin(H, y) + πL1 pL−Rwy

]+
,

K12 = πH1

[
πH2 pmin(H,y)+πL2 pL−Rwy

πH2

]+

.

(4.191)

Recall that yB11 = H, this leads to us having to consider order quantity thresholds

above H when comparing KT
22 with KT

21 and when comparing KT
11 with KT

12 because

no yT ≤ H can ensure a separating equilibria. Therefore, a manufacturer has to

order a quantity greater than H in order to receive type-1 rates from the bank. This

leads to 
K21 = πH2

[
πH1 pH+πL1 pL−Rwy

πH1

]+

,

K11 =
[
πH1 pH + πL1 pL−Rwy

]+
.

(4.192)

Recall, from Lemma 4.4, that, if pL
Rw

< H, L ≤ πH2 H, and RwH ≤ πH2 pH, then

yB12 = H and KB
12 = πH1

(
πH2 pH+πL2 pL−RwH

πH2

)
. Observe that yB12 = H < yT . This leads
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to yT12 = yB12 = H and

KT
12 = πH1

(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.193)

Recall, by the definition of yT , that the bank is able to impose a threshold quan-

tity, yT , to the manufacturer if there exists at least one order threshold quantity, yT ,

for which the following conditions are satisfied:
KT

22 ≥ K21,

K11 ≥ KT
12.

(4.194)

KT
22 > K21 if

πH2 pH + πL2 pL−RwH >πH2

(
πH1 pH + πL1 pL−Rwy

πH1

)+

(4.195)

and K11 ≥ KT
12 if

(
πH1 pH + πL1 pL−Rwy

)+ ≥πH1
(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.196)

Recall that πH1

(
πH2 pH+πL2 pL−RwH

πH2

)
> 0. Therefore, equation (4.196) is never sat-

isfied when y ∈
[
πH1 pH+πL1 pL

Rw
,∞
)

because y ∈
[
πH1 pH+πL1 pL

Rw
,∞
)

leads to πH1 pH +

πL1 pL−Rwy ≤ 0.

When y ∈
[
0,

πH1 pH+πL1 pL

Rw

)
, equation (4.195) becomes

πH2 pH + πL2 pL−RwH >πH2

(
πH1 pH + πL1 pL−Rwy

πH1

)
(4.197)

and equation (4.196) becomes

πH1 pH + πL1 pL−Rwy ≥πH1
(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.198)

Recall that, for any θ, πLθ = 1− πHθ . Therefore, observe with a little algebra that

equation (4.197) and equation (4.198) are satisfied if

y >
πH1 RwH − (πH1 − πH2 )pL

πH2 Rw
(4.199)
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and

πH1 RwH − (πH1 − πH2 )pL

πH2 Rw
≥y. (4.200)

Observe that there is no order quantity, y, for which equation (4.199) and equa-

tion (4.200) are simultaneously satisfied. Therefore, if pL
Rw

< H, L ≤ πH2 H and

RwH ≤ πH2 pH, the bank is unable to set a threshold order quantity for which type-2

manufacturers prefer to order a quantity below that threshold and for which type-1

manufacturers prefer to order a quantity equal or above that threshold order quantity.

�

Lemma 4.12. If pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πTp and type-1 manufacturers

in the economy signal their type to the bank with order quantities that are not their

best-response order quantities to type-1 rates, then

yT11 = yT = yT , (4.201)

yT22 = yB22 = L, (4.202)

KT
11 =

πH1 (p−Rw)L

πH2
, (4.203)

KT
22 = KB

22 = (p−Rw)L. (4.204)

Proof. According to Lemma 4.10, if pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πTp a

type-2 manufacturer benefits if it gets access to the set of type-1 rates and orders

a quantity equal to the best response order quantity of type-1 manufacturers to the

set of type-1 rates. Therefore, if pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp, a type-1

manufacturer has to consider signaling its type to the bank with order quantities

that are not its best-response order quantities in order to avoid being pooled with

type-2 manufacturers and getting more expensive rates than type-1 rates. .
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I show that, if pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp, then KB
21 > KB

22

and there exist a yT for which KT
22 > KT

21 and KT
11 ≥ KT

12 are simultaneously satis-

fied. Afterwards, I determine, for when the bank sets a threshold order quantity to

determine the type of the manufacturer, the value of yT , yT11, yT22, KT
11, and KT

22.

Recall, from Proposition 4.1 and Lemma 4.7, that, if pL
Rw

< H, L ≤ πH2 H and

πH2 p ≤ Rw ≤ πTp, then 

yB22 = L,

yB21 = H,

KB
22 = (p−Rw)L,

KB
21 = πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
.

(4.205)

Observe that, KB
21 > KB

22, if

πH2

(
πH1 pH + πL1 pL−RwH

πH1

)
>(p−Rw)L. (4.206)

Observe with a little algebra that equation (4.206) is satisfied if

[
πH2
(
πH1 H + πL1 L

)
− πH1 L

]
p >

(
πH2 H − πH1 L

)
Rw. (4.207)

Recall that πT =
πH2 (πH1 H+πL1 L)−πH1 L

πH2 H−πH1 L
and πH1 ≤ 1. Because πH1 ≤ 1 and we are

in the case when L ≤ πH2 H, then πH2 H − πH1 L is always greater than or equal to 0.

Therefore, equation (4.207) is equivalent to

πTp >Rw. (4.208)

Recall that we are in the case when Rw < πTp. Therefore, equation (4.208) is satis-

fied and, if presented with a menu of type-1 and type-2 rates, a type-2 manufacturer

will always choose the set of type-1 rates.
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Observe, from equation (4.61), that, if pL
Rw

< H, L ≤ πH2 H, and πH2 p ≤ Rw ≤ πTp,

then, 

K21 = πH2

[
πH1 pmin(H,y)+πL1 pL−Rwy

πH1

]+

,

K11 =
[
πH1 pmin(H, y) + πL1 pL−Rwy

]+
,

K12 = πH1

[
πH2 pmin(H,y)+πL2 pL−Rwy

πH2

]+

.

(4.209)

Recall that yB11 = H, this leads to us having to consider order quantity thresholds

above H when comparing KT
22 with KT

21 and when comparing KT
11 with KT

12 because

no yT ≤ H can ensure a separating equilibria. Therefore, a manufacturer has to

order a quantity greater than H in order to receive type-1 rates from the bank. This

leads to 
K21 = πH2

[
πH1 pH+πL1 pL−Rwy

πH1

]+

,

K11 =
[
πH1 pH + πL1 pL−Rwy

]+
.

(4.210)

Recall from Lemma 4.4 that, if pL
Rw

< H, L ≤ πH2 H, and RwH ≤ πH2 pH, then

yB12 = pL
Rw

and KB
12 = πH1 (p−−Rw) pL

Rw
. Observe that yB12 = pL

Rw
< H < yT . This leads

to yT12 = yB12 = H and

KT
12 = πH1

(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.211)

Recall, by the definition of yT , that the bank is able to impose a threshold order

quantity, yT , to the manufacturer if there exists at least one order threshold quantity,

yT , for which the following conditions are satisfied:
KT

22 ≥ K21,

K11 ≥ KT
12.

(4.212)

KT
22 > K21 if

(p−Rw)L >πH2

(
πH1 pH + πL1 pL−Rwy

πH1

)+

. (4.213)
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and K11 ≥ KT
12 if

(
πH1 pH + πL1 pL−Rwy

)+ ≥πH1
(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.214)

Recall that πH1

(
πH2 pH+πL2 pL−RwH

πH2

)
> 0. Therefore, equation (4.213) is never sat-

isfied when y ∈
[
πH1 pH+πL1 pL

Rw
,∞
)

because y ∈
[
πH1 pH+πL1 pL

Rw
,∞
)

leads to πH1 pH +

πL1 pL−Rwy ≤ 0.

When y ∈
[
0,

πH1 pH+πL1 pL

Rw

)
, equation (4.213) becomes

(p−Rw)L >πH2

(
πH1 pH + πL1 pL−Rwy

πH1

)
(4.215)

and equation (4.214) becomes

(
πH1 pH + πL1 pL−Rwy

)
≥πH1

(
πH2 pH + πL2 pL−RwH

πH2

)
. (4.216)

Recall that, for any θ, πLθ = 1 − πHθ . Therefore, observe with a little algebra that

equation (4.215) and equation (4.216) are satisfied if

y >
πH2
(
πH1 pH + πL1 pL

)
− πH1 (p−Rw)L

πH2 Rw
(4.217)

and

πH1 RwH − (πH1 − πH2 )pL

πH2 Rw
≥y (4.218)

equation (4.217) and equation (4.218) can be simultaneously satisfied if

πH2
(
πH1 pH + πL1 pL

)
− πH1 (p−Rw)L

πH2 Rw
<
πH1 pH + πL1 pL

Rw
, (4.219)

πH2
(
πH1 pH + πL1 pL

)
− πH1 (p−Rw)L

πH2 Rw
<
πH1 RwH − (πH1 − πH2 )pL

πH2 Rw
, (4.220)

and

H <
πH2
(
πH1 pH + πL1 pL

)
− πH1 (p−Rw)L

πH2 Rw
. (4.221)
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Observe with a little algebra that equation (4.219), equation (4.220) and equation

(4.221) are satisfied if

−πH1 (p−Rw)L <0, (4.222)

πH2 π
H
1 p(H − L) <πH1 Rw(H − L), (4.223)

and

Rw(πH2 H − πH1 L) <πH2
(
πH1 H + πL1 L

)
− πH1 L. (4.224)

Recall that L < H, L ≤ πH2 H, 0 ≤ πH1 ≤ 1 and, from Assumption 4.1, that p > Rw.

Therefore, p−Rw > 0, H −L > 0 and πH2 H − πH1 L. This leads to equation (4.222),

equation (4.223) and equation (4.224) being satisfied if

−L <0, (4.225)

πH2 p <Rw, (4.226)

and

Rw <
πH2
(
πH1 H + πL1 L

)
− πH1 L

πH2 H − πH1 L
. (4.227)

Recall that L ≥ 0, πT =
πH2 (πH1 H+πL1 L)−πH1 L

πH2 H−πH1 L
and πH2 p ≤ Rw ≤ πTp. Therefore, if

pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp, equation (4.225), equation (4.226) and

equation (4.227) are satisfied.

The bank will set yT to be the smallest order quantity for which equation (4.215)

is satisfied. Recall that yT =
πH2 (πH1 pH+πL1 pL)−πH1 (p−Rw)L

πH2 Rw
. To have a tractable analysis

I set yT as the threshold order quantity and assume that this threshold order quantity
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discourages type-2 manufacturers from pretending to be type-1 manufacturers. We

get:

yT11 = yT = yT , (4.228)

yT22 = yB22 = L, (4.229)

KT
11 =

πH1 (p−Rw)L

πH2
, (4.230)

KT
22 = KB

22 = (p−Rw)L. (4.231)

�

Lemma 4.13. If pL
Rw

< H, L ≤ πH2 H, πPp ≤ Rw ≤ πTp, then a type-1 manufacturer

signals its type with order quantities that are not its best-response order quantities

to type-1 rates. However, if pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πPp, a type-1

manufacturer prefers receiving pooling rates instead of signaling its type with order

quantities that are not its best-response order quantities to type-1 rates.

Proof. Lemma 4.10 states that, if pL
Rw

< H, L ≤ πH2 H and Rw ≤ πTp, then a type-1

manufacturer has to consider signaling its type to the bank. Lemma 4.11 states that,

if pL
Rw

< H, L ≤ πH2 H and Rw ≤ πH2 p, then a type-1 manufacturer cannot signal

its type to the bank. However, Lemma 4.12 states that, if pL
Rw

< H, L ≤ πH2 H and

πH2 p ≤ Rw ≤ πTp, then a type-1 manufacturer can signal its type to the bank.

I show that, if pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp, then KB
21 > KB

22 and

KT
11 > KT

12. Afterwards, I compare KT
11 with KB

1P to provide conditions under which

a type-1 manufacturers signals its type with order quantities that are not its best-

response order quantity to the set of type-1 rates. Then, I compare KT
11 with KB

1P

to provide conditions under which a type-1 manufacturer prefers to be pooled with

type-2 manufacturers instead of signaling its type to the bank with order quantities
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that are not its best-response order quantity to the set of type-1 rates.

Recall, from Proposition 4.1 and Lemma 4.7, that, if pL
Rw

< H, L ≤ πH2 H and

πH2 p ≤ Rw ≤ πTp, then 

yB22 = L,

yB21 = H,

KB
22 = (p−Rw)L,

KB
21 = πH2

(
πH1 pH+πL1 pL−RwH

πH1

)
.

(4.232)

Therefore, KB
22 > KB

21 if

(p−Rw)L >πH2

(
πH1 pH + πL1 pL−RwH

πH1

)
. (4.233)

From the analysis performed in Lemma 4.7, I conclude that, if pL
Rw

< H, L ≤ πH2 H

and πH2 p ≤ Rw ≤ πTp, then (4.235) is satisfied. This implies that, if presented with

a menu of type-1 and type-2 rates, a type-2 manufacturer will always choose the set

of type-1 rates.

Recall from Lemma 4.12 that, if pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp

and yT = yT , then the bank is able to separate manufacturers. This implies that a

type-1 manufacturer prefers to order a quantity greater than or equal to yT instead

of ordering a quantity below the threshold order quantity (i. e., KT
11 > KT

12).

Recall from (4.92) that a necessary condition for a type-1 manufacturer to signal

its type with order quantities that are not its best-response order quantity to the

set of type-1 rates is KT
11 ≥ KB

1P . Also, recall from (4.93) that a necessary condition

for a type-1 manufacturer to prefer to be pooled with type-2 manufacturers instead

of signaling its type to the bank with order quantities that are not its best-response

order quantity to the set of type-1 rates. Let us compare KT
11 with KB

1P .
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Lemma 4.12 states that, if pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πTp, then KT
11 =

πH1 (p−Rw)L

πH2
. Lemma 4.5 states that, if pL

Rw
< H, L ≤ πH2 H, Rw ≤ πHP p, then KB

1P =

πH1

(
πHP pH+πLPL−RwH

πHP

)
and, if pL

Rw
< H, L ≤ πH2 H, πHP p ≤ Rw ≤ πH1 p, then KB

1P =

πH1 (p − Rw) pL
Rw

. Lemma 4.6 states that πH2 ≤ πT ≤ πH1 . Therefore, because πH2 ≤

πHP ≤ πH1 , we need to compare KT
11 with KB

1P when pL
Rw

< H, L ≤ πH2 H, πH2 p ≤

Rw ≤ min(πHP p, π
Tp) and when pL

Rw
< H, L ≤ πH2 H, min(πHP p, π

Tp) ≤ Rw ≤ πTp.

Case: pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ min(πHP p, π
Tp).

Observe from Lemma 4.12 and Lemma 4.5 that KT
11 ≥ KB

1P if

πH1 (p−Rw)L

πH2
≥πH1

(
πHP pH + πLPL−RwH

πHP

)
. (4.234)

Observe with a little algebra that equation (4.235) is satisfied if

(πH2 H − πHP L)Rw ≥πH2 (πHP pH + πLPL)− πHP pL. (4.235)

Recall that πP =
πH2 (πHP H+πLPL)−πHP L

πH2 H−πHP L
and πH1 ≤ 1. Because πHP ≤ 1 and we are in the

case when L ≤ πH2 H, πH2 H − πHP L is always greater than or equal to 0. Therefore,

equation (4.235) is equivalent to

Rw ≥πPp. (4.236)

Lemma 4.9 states that πP ≤ min(πHP , π
T ). Therefore, equation (4.236) is satisfied

and type-1 manufacturers signal their type with order quantities that are not their

best-response order quantities if pL
Rw

< H, L ≤ πH2 H, πPp ≤ Rw ≤ min(πHP p, π
Tp).

However, if pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πPp, type-1 manufacturers prefer to

be pooled with type-2 manufacturers instead of signaling their type to the bank with

order quantities that are not their best-response order quantities to type-1 rates.

Case: pL
Rw

< H, L ≤ πH2 H, min(πHP p, π
Tp) ≤ Rw ≤ πTp.
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Observe from Lemma 4.12 and Lemma 4.5 that KT
11 ≥ KB

1P if

πH1 (p−Rw)L

πH2
≥πH1 (p−Rw)

pL

Rw
. (4.237)

Recall from Assumption 4.1 that p > Rw. Therefore, p − Rw > 0. Furthermore,

recall that πH1 ≥ 0, R ≥ 0, w ≥ 0 and L ≥ 0. Therefore, equation (4.237) is satisfied

if

Rw ≥πH2 p. (4.238)

Because πH2 ≤ πHP , equation (4.238) is satisfied and type-1 manufacturers signal

their type to the bank with order quantities that are not their best-response order

quantities if pL
Rw

< H, L ≤ πH2 H, min(πHP p, π
Tp) ≤ Rw ≤ πTp. �

Proposition 4.6. If pL
Rw

< H, L ≤ πH2 H and Rw ≤ πPp, then there are pooling

equilibria where all manufacturers in the economy order H, and the interest rate on

the loan repayment of each manufacturer is
RwH−πLP pL
πHP wH

.

Proof. I show that, if pL
Rw

< H, L ≤ πH2 H and Rw ≤ πPp, then there are pooling

equilibria where all manufacturers in the economy order H, and the interest rate on

the loan repayment of each manufacturer is
RwH−πLP pL
πHP wH

because all the conditions in

equation (4.93) are satisfied.

Lemma 4.10 states that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, type-2

manufacturers want to pretend to be type-1 manufacturers (i. e., KB
21 > KB

22).

Lemma 4.12 states that, if pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πTp, type-1

manufacturers are able to signal their type to the bank with order quantities that

are not their best-response order quantities to type-1 rates (i. e., KT
11 > KT

22).

Furthermore, Lemma 4.13, if pL
Rw

< H, L ≤ πH2 H, πH2 p ≤ Rw ≤ πPp, type-1

manufacturers prefer to be pooled with type-2 manufacturers instead of signaling
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their type to the bank with order quantities that are not their best-response order

quantities to type-1 rates (i. e., KB
1P ≥ KT

11).

Recall from Lemma 4.9 that, if L ≤ πH2 H, πH2 ≤ πP ≤ πT . Therefore, according

to equation (4.93), Lemma 4.10, Lemma 4.11 and Lemma 4.13, if pL
Rw
≤ H, L ≤ πH2 H

and RwH ≤ πPpH, then there are pooling equilibria if K2P ≥ KB
22 or no equilibria

if KB
22 > K2P .

If pL
Rw

< H, L ≤ πH2 H and Rw ≤ πH2 p, Proposition 4.1 states that KB
22 =

πH2 pH + πL2 pL− RwH and yB22 = H. If pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πPp,

Proposition 4.1 states that KB
22 = (p−Rw)L and yB22 = L. If pL

Rw
< H, L ≤ πH2 H and

Rw ≤ πHP p, Corollary 4.1, states that K2P = πH2

(
πHP pH+πLP pL−RwH

πHP

)
and y2P = H.

Recall that, if L ≤ πH2 H, πH2 ≤ πP ≤ πHP . Therefore, I compare KB
22 with K2P

under pL
Rw

< H, L ≤ πH2 H and Rw ≤ πH2 p and under pL
Rw

< H, L ≤ πH2 H and

πH2 p ≤ Rw ≤ πPp.

Case: pL
Rw

< H, L ≤ πH2 H and Rw ≤ πH2 p.

According to Lemma 4.3, for a given order quantity, y, KθP ≥ Kθ2. Because yB22 =

y2P = H and πHP ≥ πH2 , Lemma 4.3 leads to K2P ≥ KB
22.

Case: pL
Rw

< H, L ≤ πH2 H and πH2 p ≤ Rw ≤ πPp.

K2P ≥ KB
22 if

πH2

(
πHP pH + πLPpL−RwH

πHP

)
=(p−Rw)L. (4.239)

Observe with a little algebra that equation (4.239) is satisfied if

(πH2 H − πHP L)Rw ≥πH2 (πHP pH + πLPL)− πHP pL. (4.240)

We have already shown in the analysis in Lemma 4.13 that, if pL
Rw

< H, L ≤ πH2 H,

πPp ≤ Rw ≤ πTp, then equation (4.240) is satisfied.
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Observe from equation (4.59) that the interest rate on the loan repayment of all

manufacturers in the economy is
RwH−πLP pL
πHP wH

. Therefore, if pL
Rw

< H, L ≤ πH2 H and

Rw ≤ πPp, there are pooling equilibria where all manufacturers in the economy order

H, and the interest rate on the loan repayment of each manufacturer is
RwH−πLP pL
πHP wH

. �

Proposition 4.7. If pL
Rw

< H, L ≤ πH2 H, πPp ≤ Rw ≤ πTp and yT = yT , then there

are separating equilibria where type-1 manufacturers order yT , type-2 manufacturers

order L, the interest rate on the loan repayment of type-1 manufacturer is R
T

, and

the interest rate on the loan repayment of type-2 manufacturers is the bank’s cost of

capital, R.

Proof. I show that, if pL
Rw

< H, L ≤ πH2 H, πPp ≤ Rw ≤ πTp and yT = yT , then there

are separating equilibria where type-1 manufacturers order yT , type-2 manufacturers

order L, the interest rate on the loan repayment of type-1 manufacturer is R
T

, and

the interest rate on the loan repayment of type-2 manufacturers is the bank’s cost of

capital, R because all the conditions in equation (4.92) are satisfied.

Lemma 4.10 states that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then type-

2 manufacturers want to pretend to be type-1 manufacturers (i. e., KB
21 > KB

22).

Lemma 4.13 states that, if pL
Rw

< H, L ≤ πH2 H, πPp ≤ Rw ≤ πTp, then a type-1

manufacturer prefers to signal its type with order quantities that are not its best-

response order quantities to type-1 rates instead of receiving pooling rates (i. e.,

KT
11 ≥ KT

12 and KT
11 ≥ KT

1P ). But, recall that, when the bank sets a threshold order

quantity to separate manufacturers by their type, a type-2 manufacturer always

prefers to order below the threshold order quantity. Therefore, if pL
Rw

< H, L ≤ πH2 H,

πPp ≤ Rw ≤ πTp, then KT
22 > KT

21 and L ≤ yB22 = yT22 ≤ yB11 < yT = yT11.

Observe that, if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then all the conditions
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in equation (4.93) are satisfied. Furthermore, observe, from equation (4.59), that

the interest rate on the loan repayment of a type-1 manufacturer is R
T

bm and the

interest rate on the loan repayment of a type-2 manufacturer is the bank’s cost of

capital, R, because there is no risk of default when manufacturers order L. This leads

to separating equilibria where type-1 manufacturers order yT , type-2 manufacturers

order L, the interest rate on the loan repayment of type-1 manufacturer is R
T

, and

the interest rate on the loan repayment of type-2 manufacturers is the bank’s cost of

capital, R. �

4.4.4 Asymmetric information equilibria between the bank and the manufac-
turer when trade credit is available to the manufacturer.

Similar to 4.4.3, if pL
Rw

< H, L ≤ πH2 H, RwH ≤ πTpH, then a type-1 manufac-

turer must consider signaling its type to the bank. In order for a type-1 manufacturer

to signal its type and obtain type-1 rates from the bank,

• there must exist a threshold order quantity, yT , set by the bank for which the

bank expects order quantities greater than or equal to the threshold to come

from a type-1 manufacturer and order quantities below the threshold to come

from a type-2 manufacturer, or

• there must exist a threshold loan amount, LTsm, set by the bank for which the

bank expects to determine the manufacturer’s type when the manufacturer

borrows any amount from the supplier above that threshold loan amount.

Observe, from equation (4.61) that, if
y > pL

Rw
,

Lsm > 0,

(4.241)

then the trade credit terms signal the manufacturer’s type to the bank.
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Recall from equation (4.17) that Lbm + Lsm = wy. Therefore equation (4.241) is

equivalent to 
Lsm > pL

R
− Lbm,

Lsm > 0.

(4.242)

Because the interest rate received by manufacturers only reveals their type when

the manufacturers borrow from the supplier an amount greater than pL
R
− Lbm, in

equilibrium, LTsm is the smallest amount above
(
pL
R
− Lbm

)+
. In order to be able to

have a tractable analysis we make the following assumptions.

Assumption 4.4. All manufacturers prefer to borrow from the bank.

Assumption 4.5. A type-1 manufacturer prefers to borrow from the bank and only

borrows just enough from the supplier to signal its type to the bank.

Assumption 4.6. It is enough for a type-1 manufacturer to signal its type to the

bank by borrowing an amount equal to
(
pL
R
− Lbm

)+
from the supplier.

If we denote
(
pL
R
− Lbm

)+
by L

T

sm, (4.242), Assumption 4.4, Assumption 4.5 and

Assumption 4.6 lead to LTsm = L
T

sm. Recall that the manufacturer cannot borrow

from the supplier more than τy. Therefore, a type-1 manufacturer can only signal

its type to the bank when L
T

sm ≤ τy.

Observe in equation (4.61) that, when a manufacturer borrows from the supplier

any amount greater than L
T

sm, its objective value is the same as its objective value

in 4.4.2. Because type-1 rates are preferred by all manufacturers, a type-1 manufac-

turer uses trade credit and order its best-response quantities to receive type-1 rates

whenever it needs to signal its type to the bank. Recall from Proposition 4.1 that,

if pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then yB11 = H which leads to equation

(4.241) being satisfied for any Lsm > 0. Furthermore, recall from the definition of
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τ that τ > 0 and, from Lemma 4.2, that, at optimlaity, y ≥ L > 0. Therefore, if

pL
Rw

< H, L ≤ πH2 H and RwH ≤ πTpH, then LTsm = 0 < τy. This is why, if pL
Rw

< H,

L ≤ πH2 H and RwH ≤ πTpH, then a type-1 manufacturer can always signal its type

to the bank with trade credit and the optimal decisions of manufacturers, banks and

suppliers in the economy in Section 4.4.4 are the same as the optimal decisions in

Section 4.4.2.

4.4.5 Compilation of all the equilibria.

Observe from (4.60) and (4.59) that, regardless of the bank’s belief about the

manufacturer’s type, the interest on the manufacturer’s loan is the opportunity cost

of capital of the bank, R, if H ≤ pL
Rw

and a manufacturer orders a quantity less than

or equal to H. According to Proposition 4.1, (4.60) and (4.59), if H ≤ pL
Rw

, then

manufacturers never order a quantity greater than H. Therefore, if H ≤ pL
Rw

, then

the results obtained in Section 4.4.2, Section 4.4.3 and Section 4.4.4 are identical.

This is why, I will not discuss the results of the case when H ≤ pL
Rw

.

Table 4.3 is a compilation of the equilibria for the case pL
Rw

< H. Columns 1 and

2 provide the conditions for each equilibrium found. I add column 3 to conveniently

refer to specific rows. Columns 4 to 8 specify the equilibrium threshold trade credit

levels, loans from the supplier to the manufacturer, order quantities, interest rates

on loans from the supplier to the manufacturer, and interest rates on loans from the

bank to the manufacturer when there is asymmetric information between banks and

manufacturers and trade credit is available. Columns 9 to 11 specify the equilibrium

threshold order quantities, order quantities, and interest rates on loans from the bank

to the manufacturer when there is asymmetric information between banks and man-

ufacturers and trade credit is unavailable. Columns 12 and 13 specify the equilibrium
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order quantities and interest rates on loans from the bank to the manufacturer when

there is asymmetric information between banks and manufacturers.

To simplify the exposition of the results, trade credit is never used when there

is asymmetric information between the bank and the manufacturer and if a type-1

manufacturer, by ordering its best-response order quantity to type-1 rates, can signal

its type to the bank without using trade credit; trade credit is never used when there

is symmetric information between the bank and the manufacturer because, for any

order quantity y, the total loan repayment per amount borrowed under symmetric

information is independent of a manufacturer’s choice of financing; I use “−” to refer

to when, in equilibrium, no threshold trade credit level or threshold order quantity

is set by the bank to determine the manufacturer’s type; Rθ
sm

def
=

RLsm−πLθ (pL−RLbm)

πHθ Lsm

and Rρ
bm

def
=

RLbm−πLρ pL
πHρ Lbm

.

4.4.6 Effect of asymmetric information.

Let us compare columns Symmetric Information with Asymmetric Information,

No Trade Credit in Table 4.3.

When the probability of a high demand for type-2 manufacturers is low relative

to the spread between the two possible demand values (subcase rows 6, 7, 13 and

14), equilibrium order quantities and interest rates on the loans from the bank to

manufacturers are unaffected by asymmetric information between the bank and the

manufacturer. The reason for this is that the expected revenue of type-2 manu-

facturers are too low for them to pretend to be type-1 manufacturers when type-1

manufacturers order a high quantity.

When the probability of a high demand for type-2 manufacturers is high relative to

the spread between the two possible demand values and the opportunity cost of capital
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pL < RwH

Asymmetric Sym.

T. C. No T. C. T. C.

LTsm L∗sm y∗ R∗sm R∗bm yT y∗ R∗bm y∗ R∗bm

Subcase Type 1

L
H ≤ π

H
2

Rw ≤ πH2 p 1 L
T
sm L

T
sm H R1

sm
R
π1

− H RPbm H R1
bm

πH2 p ≤ Rw ≤ πP p 2 L
T
sm L

T
sm H R1

sm
R
π1

− H RPbm H R1
bm

πP p ≤ Rw ≤ πT p 3 L
T
sm L

T
sm H R1

sm
R
π1

yT yT R
T

H R1
bm

πT p ≤ Rw ≤ πH1 p 4 − 0 H 0 R1
bm − H R1

bm H R1
bm

πH1 p ≤ Rw 5 − 0 L 0 R − L R L R

πH2 ≤ L
H

Rw ≤ πH1 p 6 − 0 H 0 R1
bm − H R1

bm H R1
bm

πH1 p ≤ Rw ≤ p 7 − 0 L 0 R − L R L R

Subcase Type 2

L
H ≤ π

H
2

Rw ≤ πH2 p 8 L
T
sm 0 H 0 R2

bm − H RPbm H R2
bm

πH2 p ≤ Rw ≤ πP p 9 L
T
sm 0 L 0 R − H RPbm L R

πP p ≤ Rw ≤ πT p 10 L
T
sm 0 L 0 R yT L R L R

πT p ≤ Rw ≤ πH1 p 11 − 0 L 0 R − L R L R

πH1 p ≤ Rw 12 − 0 L 0 R − R L L R

πH2 ≤ L
H

Rw ≤ πH1 p 13 − 0 L 0 R − L R L R

πH1 p ≤ Rw ≤ p 14 − 0 L 0 R − L R L R

Table 4.3: Equilibria when pL < RwH. Recall that πP =
πH2 (πHP H+πLPL)−πHP L

πH2 H−πHP L
, πT =

πH2 (πH1 H+πL1 L)−πH1 L
πH2 H−πH1 L

, yT =
πH2 (πH1 pH+πL1 pL)−πH1 (p−Rw)L

πH2 Rw
, LTsm =

(
pL
R − Lbm

)+
,

R
T = R[πH2 pH−(p−Rw)L]

πH2 (πH1 pH+πL1 pL)−πH1 (p−Rw)L
, Rθsm = RLsm−πLθ (pL−RLbm)

πHθ Lsm
and Rρbm =

RLbm−πLρ pL
πHρ Lbm

.

of the bank is not too high, asymmetric information increases the order quantities

placed by manufacturers (subcase rows 3 and 9), increases the interest rates received
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by type-1 manufacturers (subcase rows 1, 2, 3), and decreases the interest rates

received by type-2 manufacturers (subcase rows 8 and 9). The reason for this is that

the expected revenue of type-2 manufacturers is high enough for them to pretend

to be type-1 manufacturers (subcase rows 1, 2, 3, 8, 9 and 10). If the opportunity

cost of capital of the bank is low, type-2 manufacturers are capable of ordering high

quantities and type-1 manufacturers find it suboptimal to signal their type by over-

ordering (subcase rows 1, 2, 8 and 9). As a result, when the opportunity cost of

capital, R, of the bank is low, type-2 manufacturers order the same quantity as type-

1 manufacturers and the bank offers pooling rates to both types of manufacturers.

As the opportunity cost of capital of the bank increases, type-2 manufacturers find

it more difficult to pretend to be type-1 manufacturers (subcase rows 3, 4, 10 and

11). This allows type-1 manufacturers to signal their type either by over-ordering or

ordering their best-response quantities to type-1 rates when it is too costly for type-2

manufacturers to mimic the best-response order quantity of type-1 manufacturers.

As a result, type-2 manufacturers order a lower quantity than type-1 manufacturers

and banks offer type-specific rates to all manufacturers for medium values of the

opportunity cost of capital of the bank.

4.4.7 Effect of the availability of trade credit.

Let us compare columns Asymmetric Information, No Trade Credit with Asym-

metric Information, Trade Credit in Table 4.3.

When a manufacturer borrows from the supplier and there is a risk the manu-

facturer will default on its loan obligation with the supplier, the interest rate on the

loan offered by the supplier reveals the manufacturer’s type (subcase rows 1, 2 and

3). This is why type-1 manufacturers borrow just enough from the supplier when,
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without the trade credit signal, type-1 manufacturers are unable to credibly signal

their type to banks through their ordering decisions (rows 1 and 2).

The objective value of all manufacturers under Symmetric Information are the

same as under Asymmetric Information, Trade Credit. Therefore, trade credit can

eliminate asymmetric information without adding additional costs to manufacturers.

4.4.8 Winners and losers of the availability of trade credit when there is asym-
metric information between the bank and the manufacturer.

I consider when pL < RwH, L ≤ πH2 H and Rw ≤ πTp because that is when the

operational and financial decisions of manufacturers are affected by the availability

of trade credit.

4.4.8.1 Type-1 manufacturers.

Expected profit of a type-1 manufacturer when trade credit is available.

KT
11 = πH1 pH + πL1 pL−RwH. (4.243)

Expected profit of a type-1 manufacturer when trade credit is unavailable.

Case: Rw ≤ πPp.

KB
1P = πH1

(
πHP pH + πLPpL−RwH

πHP

)
. (4.244)

Case: πPp ≤ Rw ≤ πTp.

KT
11 =

πH1 (p−Rw)L

πH2
. (4.245)

Expected benefit of having trade credit available for a type-1 manufac-

turer.

Case: Rw ≤ πPp.

Benefit1 = πH1 pH + πL1 pL−RwH − πH1
(
πHP pH + πLPpL−RwH

πHP

)
(4.246)
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=
(πL1 π

H
P − πH1 πLP )pL− (πHP − πH1 )RwH

πHP
(4.247)

=
[(1− πH1 )πHP − πH1 (1− πHP )]pL− (πHP − πH1 )RwH

πHP
(4.248)

=
(πHP − πH1 )(pL−RwH)

πHP
. (4.249)

We have a positive benefit because πHP ≤ πH1 and RwH ≥ pL.

Case: πPp ≤ Rw ≤ πTp.

Benefit1 = πH1 pH + πL1 pL−RwH −
πH1 (p−Rw)L

πH2
(4.250)

=
πH2 (πH1 pH + πL1 pL)− πH1 pL−Rw(πH2 H − πH1 L)

πH2
(4.251)

=
(πTp−Rw)(πH2 H − πH1 L)

πH2
. (4.252)

We have a positive benefit because L ≤ πH2 H, πH1 ≤ 1 and Rw ≤ πTp.

4.4.8.2 Type-2 manufacturers.

Expected profit of a type-2 manufacturer when trade credit is available.

Case: Rw ≤ πH2 p.

KB
22 = πH2 pH + πL2 pL−RwH. (4.253)

Case: πH2 p ≤ Rw ≤ πTp.

KB
22 = (p−Rw)L. (4.254)

Expected profit of a type-2 manufacturer when trade credit is unavailable.

Case: Rw ≤ πPp.

KP
22 = πH2

(
πHP pH + πLPpL−RwH

πHP

)
. (4.255)

Case: πPp ≤ Rw ≤ πTp.

KB
22 = (p−Rw)L. (4.256)
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Expected benefit of having trade credit available for a type-2 manufac-

turer.

Case: Rw ≤ πH2 p.

Benefit2 = πH2 pH + πL2 pL−RwH − πH2
(
πHP pH + πLPpL−RwH

πHP

)
(4.257)

=
(πL2 π

H
P − πH2 πLP )pL− (πHP − πH2 )RwH

πHP
(4.258)

=
[(1− πH2 )πHP − πH2 (1− πHP )]pL− (πHP − πH2 )RwH

πHP
(4.259)

=
(πHP − πH2 )(pL−RwH)

πHP
. (4.260)

We have a negative benefit because πHP > πH2 and RwH > pL.

Case: πH2 p ≤ Rw ≤ πPp.

Benefit2 = (p−Rw)L− πH2
(
πHP pH + πLPpL−RwH

πHP

)
(4.261)

=
πHP pL− πH2 (πHP pH + πLPpL) +Rw(πH2 H − πHP L)

πHP
(4.262)

=
(πHP L− πH2 H)(πPp− wR)

πHP
. (4.263)

We have a negative benefit because L ≤ πH2 H, πHP ≤ 1 and Rw ≤ πPp.

Case: πPp ≤ Rw ≤ πTp.

Benefit2 = (p−Rw)L− (p−Rw)L (4.264)

= 0. (4.265)

Therefore, if πPp ≤ Rw ≤ πTp, then a type-2 manufacturer does not benefit from

having trade credit available.

4.4.8.3 Overall economy.

In expectation, the competition among banks and among suppliers make the bank

and the supplier make zero profit and the system profit to be equal to the manufactur-

ers’ profits. Therefore, when there is asymmetric information between the bank and
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the manufacturer, the expected benefit of making trade credit available for the system

is equal to Pr[θ = 1]E[System Benefit|θ = 1] + Pr[θ = 2]E[System Benefit|θ = 2]

where Pr[θ = 1] = α and Pr[θ = 1] = 1− α.

Case: pL < Rw ≤ πH2 p.

Expected System Benefit =α
(πHP − πH1 )(pL−RwH)

πHP

+ (1− α)
(πHP − πH2 )(pL−RwH)

πHP

=
πHP (pL−RwH)− πHP (pL−RwH)

πHP

=0.

(4.266)

Case: πH2 p ≤ Rw ≤ πPp.

Expected System Benefit =α
(πHP − πH1 )(pL−RwH)

πHP

+ (1− α)

[
(p−Rw)L− πH2

(
πHP pH + πLPpL−RwH

πHP

)]
=

(1− α)πHP RwH − (1− α)πHP RwL

πHP

+
(1− α)πH2 π

H
P pL− (1− α)πH2 π

H
P pH

πHP

=(1− α)(H − L)(Rw − πH2 p).

(4.267)

We have a positive benefit because 0 < L < H, 0 ≤ α ≤ 1 and we are analyzing

when Rw ≥ πH2 p.

Case: πPp ≤ Rw ≤ πTp.

Expected System Benefit =α

[
(πTp−Rw)(πH2 H − πH1 L)

πH2

]
. (4.268)

We have a positive benefit because 0 ≤ α ≤ 1, πH2 ≥ 0, and we are analyzing when

L ≤ πH2 H and Rw ≤ πTp.
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4.4.8.4 End-customers.

To determine the effect of trade credit to the end-customers we measure the

expected number of stock-outs at the end of the planning horizon in the overall

economy while assuming that a lost sale for a manufacturer does not result in an

increase in the demand for the final goods of other manufacturers. For a manufacturer

of type-θ, the expected number of stock-outs at the end of the planning horizon when

the manufacturer orders y units is equal to πHθ (H − y)+ + πLθ (L − y)+. Therefore,

at the end of the planning horizon, the expected number of stock-outs in the overall

economy (ENSO) is equal to Pr[θ = 1]E[Number of stock-outs|θ = 1] + Pr[θ =

2]E[Number of stock-outs|θ = 2].

Case: pL < Rw ≤ πH2 p.

When trade credit is unavailable,

ENSO =α
[
πH1 (H −H)+ + πL1 (L−H)+

]
+ (1− α)

[
πH2 (H −H)+ + πL2 (L−H)+

]
=0.

(4.269)

When trade credit is available,

ENSO =α
[
πH1 (H −H)+ + πL1 (L−H)+

]
+ (1− α)

[
πH2 (H −H)+ + πL2 (L−H)+

]
=0.

(4.270)

Case: πH2 p ≤ Rw ≤ πPp.

When trade credit is unavailable,

ENSO =α
[
πH1 (H −H)+ + πL1 (L−H)+

]
+ (1− α)

[
πH2 (H − L)+ + πL2 (L−H)+

]
=0.

(4.271)
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When trade credit is available,

ENSO =α
[
πH1 (H −H)+ + πL1 (L−H)+

]
+ (1− α)

[
πH2 (H − L)+ + πL2 (L− L)+

]
=(1− α)πH2 (H − L).

(4.272)

Case: πPp ≤ Rw ≤ πTp.

When trade credit is unavailable,

ENSO =α
[
πH1 (H − yT )+ + πL1 (L− yT )+

]
+ (1− α)

[
πH2 (H − L)+ + πL2 (L− L)+

]
=(1− α)πH2 (H − L).

(4.273)

When trade credit is available,

ENSO =α
[
πH1 (H −H)+ + πL1 (L−H)+

]
+ (1− α)

[
πH2 (H − L)+ + πL2 (L− L)+

]
=(1− α)πH2 (H − L).

(4.274)

4.4.8.5 Discussion.

Unsurprisingly, type-1 manufacturers, the most credible manufacturers, prefer to

have trade credit available while type-2 manufacturers prefer not to have trade credit

available. Surprisingly, end-customers suffer from trade credit because, when type-

1 manufacturers use trade credit to signal their type, fewer goods are ordered by

manufacturers which increases the expected number of stock-outs in the economy.

The availability of trade credit discourages manufacturers from over-ordering but

it does not affect the demand distribution of manufacturers. Therefore, the overall

economy benefits from trade credit because trade credit decreases overall production

costs.
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4.4.9 Effect of the economic parameters on the expected benefit of having
trade credit available.

I consider when pL < RwH, L ≤ πH2 H and Rw ≤ πTp because that is when the

operational and financial decisions of manufacturers are affected by the availability

of trade credit.

4.4.9.1 Type-1 manufacturers.

Case: Rw ≤ πPp.

∂Benefit1

∂πH1
=
−(1− α)πH2 (pL−RwH)

(πHP )2
≥ 0 (4.275)

∂Benefit1

∂πH2
=

(1− α)πH1 (pL−RwH)

(πHP )2
≤ 0 (4.276)

∂Benefit1

∂H
=

(πH1 − πHP )Rw

πHP
≥ 0 (4.277)

∂Benefit1

∂L
=
−(πH1 − πHP )p

πHP
≤ 0 (4.278)

∂Benefit1

∂p
=
−(πH1 − πHP )L

πHP
≤ 0 (4.279)

∂Benefit1

∂R
=

(πH1 − πHP )wH

πHP
≥ 0 (4.280)

∂Benefit1

∂w
=

(πH1 − πHP )RH

πHP
≥ 0 (4.281)

∂Benefit1

∂α
=
πH1 (πH1 − πH2 )(pL−RwH)

(πHP )2
≤ 0. (4.282)

When trade credit is unavailable, the interest rate received by type-1 manufac-

turers become more expensive as the riskiness of type-2 manufacturers increases.

Recall that the objective value of a manufacturer is non-increasing in the interest

rate received. This is why, when trade credit is unavailable, the expected profit of

type-1 manufacturers is non-decreasing in the expected profit of type-2 manufactur-

ers. Recall that the benefit that type-1 manufacturers obtain when trade credit is

available depends on the difference between the objective value when trade credit

208



is available and the objective value when trade credit is unavailable. This explains

why the benefit that type-1 manufacturers obtain when trade credit is available is

non-decreasing in πH2 , p, and non-increasing in R, and w.

As the proportion of type-1 manufacturers in the economy increases, the rates

received by manufacturers when trade credit is unavailable decreases. This is why

the benefit that type-1 manufacturers obtain when trade credit is available is non-

increasing in α. However, because type-2 manufacturers become less risky as the

smallest demand value that can be generated increases, the benefit that type-1 man-

ufacturers obtain when trade credit is available is non-increasing in L. Also, the

decrease in interest rates received by type-1 manufacturers as πH1 increases leads to

the benefit that type-1 manufacturers obtain when trade credit is available to be

non-decreasing in πH1 .

Case: πPp ≤ Rw ≤ πTp.

∂Benefit1

∂πH1
=

(πH2 H − L)p+ (Rw − πH2 p)L
πH2

≥ 0 (4.283)

∂Benefit1

∂πH2
=
πH1 (p−Rw)

(πH2 )2
≥ 0 (4.284)

∂Benefit1

∂H
= πH1 p−Rw ≥ 0 (4.285)

∂Benefit1

∂L
=

(πH2 − πH2 πH1 − πH1 )p+RwπH1
πH2

≤ 0 (4.286)

∂Benefit1

∂p
=
πT (πH2 H − πH1 L)

πH2
≥ 0 (4.287)

∂Benefit1

∂R
=
−w(πH2 H − πH1 L)

πH2
≤ 0 (4.288)

∂Benefit1

∂w
=
−R(πH2 H − πH1 L)

πH2
≤ 0 (4.289)

∂Benefit1

∂α
= 0. (4.290)

When trade credit is unavailable, the higher the expected profit that can be

generated by type-2 manufacturers, the higher the order quantities of type-1 manu-
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facturers have to be in order to discourage type-2 manufacturers from pretending to

be type-1 manufacturers. This is why, when trade credit is unavailable, the objective

value of type-1 manufacturers is non-increasing in the expected revenue of type-2

manufacturers and non-decreasing in the expected costs of type-2 manufacturers.

Hence, the reason the benefit that type-1 manufacturers obtain when trade credit is

available is non-decreasing in πH2 , H, p, and non-increasing in R, and w. However,

type-2 manufacturers become less risky as L, the smallest demand value that can be

generated, increases. This is why the benefit that type-1 manufacturers obtain when

trade credit is available is non-increasing in L.

Observe that the benefit that type-1 manufacturers obtain when trade credit is

available is independent of α. Also, a similar discussion as the one provided for πH1

in the case when Rw ≤ πPp gives that the benefit type-1 manufacturers obtain when

trade credit is available is non-decreasing in πH1 .

4.4.9.2 Type-2 manufacturers.

Case: Rw ≤ πH2 p.

∂Benefit2

∂πH1
=
απH2 (pL−RwH)

(πHP )2
≤ 0 (4.291)

∂Benefit2

∂πH2
=
−απH1 (pL−RwH)

(πHP )2
≥ 0 (4.292)

∂Benefit2

∂H
=
−(πHP − πH2 )Rw

πHP
≤ 0 (4.293)

∂Benefit2

∂L
=

(πH − πH2 )p

πHP
≥ 0 (4.294)

∂Benefit2

∂p
=

(πHP − πH2 )L

πHP
≥ 0 (4.295)

∂Benefit2

∂R
=
−(πHP − πH2 )wH

πHP
≤ 0 (4.296)

∂Benefit2

∂w
=
−(πHP − πH2 )RH

πHP
≤ 0 (4.297)
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∂Benefit2

∂α
=
πH2 (πH1 − πH2 )(pL−RwH)

(πHP )2
≤ 0. (4.298)

A similar discussion as the one provided for type-1 manufacturers explains the

sensitivity of the benefit of type-2 manufacturers to have trade credit available when

there is asymmetric information between the bank and the manufacturers.

Case: πH2 p ≤ Rw ≤ πPp.

∂Benefit2

∂πH1
=
απH2 (pL−RwH)

(πHP )2
≤ 0 (4.299)

∂Benefit2

∂πH2
=
−πH2 p(H − L)− απH1 (pL−RwH)

(πHP )2
≤ 0 (4.300)

∂Benefit2

∂H
=
−πH2 (pπHP −Rw)

πHP
≤ 0 (4.301)

∂Benefit2

∂L
=
p(πHP + πHP π

H
2 − πH2 )−RwπHP
πHP

≥ 0 (4.302)

∂Benefit2

∂p
=
πHP (L− πH2 H)− πH2 L(1− πHP )

πHP
≤ 0 (4.303)

∂Benefit2

∂R
=
−w(πHP L− πH2 H)

πHP
≥ 0 (4.304)

∂Benefit2

∂w
=
−R(πHP L− πH2 H)

πHP
≥ 0 (4.305)

∂Benefit2

∂α
=
πH2 (πH1 − πH2 )(pL−RwH)

(πHP )2
≤ 0. (4.306)

A similar discussion as the one provided for type-1 manufacturers explains the

sensitivity of the benefit of type-2 manufacturers to have trade credit available when

there is asymmetric information between the bank and the manufacturers.

Case: πPp ≤ Rw ≤ πTp.

The objective value of type-2 manufacturers is the same when trade credit is available

and when trade credit is unavailable. Therefore, the availability of trade credit does

not affect type-2 manufacturers.
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4.4.9.3 Overall economy.

Case: Rw ≤ πH2 p.

Recall that lenders are always breaking-even on the loans extended to manufacturers.

Because the total number of goods produced in the economy is the same when trade

credit is available and when trade credit is unavailable, the overall repayment risk in

the economy does not change with trade credit. This is why the availability of trade

credit does not affect the overall economy.

Case: πH2 p ≤ Rw ≤ πPp.

∂System

∂πH1
= 0 (4.307)

∂System

∂πH2
= −(1− α)p(H − L) ≤ 0 (4.308)

∂System

∂H
= (1− α)(Rw − πH2 ) ≥ 0 (4.309)

∂System

∂L
= −(1− α)(Rw − πH2 ) ≤ 0 (4.310)

∂System

∂p
= −(1− α)πH2 (H − L) ≤ 0 (4.311)

∂System

∂R
= (1− α)w(H − L) ≥ 0 (4.312)

∂System

∂w
= (1− α)R(H − L) ≥ 0 (4.313)

∂System

∂α
= −(H − L)(Rw − πH2 p) ≤ 0. (4.314)

A similar discussion as the one provided for type-1 and type-2 manufacturers

explains the sensitivity of the benefit of type-2 manufacturers to have trade credit

available when there is asymmetric information between the bank and the manufac-

turers.

Case: πPp ≤ Rw ≤ πTp.

∂System

∂πH1
= α

(πH2 H − L)p− (πH2 p−Rw)L

πH2
≥ 0 (4.315)
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∂System

∂πH2
= α

πH1 (p−Rw)

(πH2 )2
≥ 0 (4.316)

∂System

∂H
= α(πH1 p−Rw) ≥ 0 (4.317)

∂System

∂L
= α

(πH2 − πH2 πH1 − πH1 )p+RwπH1
πH2

≤ 0 (4.318)

∂System

∂p
= α

πT (πH2 H − πH1 L)

πH2
≥ 0 (4.319)

∂System

∂R
= α
−w(πH2 H − πH1 L)

πH2
≤ 0 (4.320)

∂System

∂w
= α
−R(πH2 H − πH1 L)

πH2
≤ 0 (4.321)

∂System

∂α
= 0. (4.322)

A similar discussion as the one provided for type-1 and type-2 manufacturers

explains the sensitivity of the benefit of type-2 manufacturers to have trade credit

available when there is asymmetric information between the bank and the manufac-

turers.

4.5 Conclusions, limitations and extensions.

I focus on the operational and financial decisions of cash-constrained manufactur-

ers when there is asymmetric information between banks and manufacturers about

the distribution of the demand for final goods of manufacturers. When there is asym-

metric information between banks and manufacturers, a high-risk manufacturer never

suffers if the bank confuses it for a low-risk manufacturer and, hence, offers cheap

rates to this manufacturer. This can lead to high-risk manufacturers being able to

pass for low-risk manufacturers and order high quantities when it is not too expensive

for them to do so. Asymmetric information between banks and manufacturers can

also lead to a decrease in the objective value of low-risk manufacturers because low-

risk manufacturers might have to over-order in order to signal their type to banks.

213



Consequently, the default risk of manufacturers in the economy increases significantly

with asymmetric information. This is why asymmetric information negatively affects

the business of lenders and low-risk manufacturers. However, the end-customers and

the high-risk manufacturers benefit from asymmetric information.

Similar to the results obtained from empirical studies, my analysis suggests that

trade credit financing does not only reduce financial constraints but its use by man-

ufacturers allows them to obtain loan terms from banks that more accurately reflect

their credibility. The use of trade credit itself does not alleviate the asymmetric infor-

mation that exists between banks and manufacturers: manufacturers can only send

credit signals to banks with trade credit when there is a risk that manufacturers will

default on loans obtained from suppliers. This is why, although I presented results

for the case when banks have higher priority on loan repayments than suppliers, the

insights gathered for the case when suppliers have higher priority on loan repayments

than banks are similar.

This study not only captures the effect of trade credit and asymmetric information

on the return of manufacturers’ projects but it also captures the effect of asymmetric

information along with trade credit on the operational decisions of manufacturers

which is a major contribution. For example, in contrast to Biais and Gollier (1997),

the break-even interest rates offered by lenders determine the operational investment

of each type of manufacturer.

Although the results obtained are primarily driven by pure competition among

banks and suppliers, the insights gathered from my analysis would have remained

the same if I had considered a more complicated model in which manufacturers are

more powerful than banks and suppliers. Furthermore, considering a model with

more than two types of manufacturers would not have changed the insights gathered
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from this model because manufacturers can always signal their type by borrowing a

risky amount from the supplier. Therefore, considering a model with more than two

types of manufacturers would have just made the analysis more complicated without

justifying the complexity in deriving the incremental results obtained.

My model, albeit simple, provides qualitative insights that can help foster future

research on the effect asymmetric information between lenders and manufacturers

and the effect of trade credit financing on the operational and financial decisions

of manufacturers. For example, it would be interesting to study collusion possi-

bilities between suppliers and manufacturers against other suppliers and banks. It

would also be interesting to determine, when more than two demand possibilities

can occur, if there are situations when manufacturers with higher expected number

of end-customers receive higher interest rates for placing the same order quantity as

manufacturers with lower expected number of end-customers.
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CHAPTER V

Conclusion

The theoretical and numerical analysis generated several testable hypotheses.

Some of these hypotheses have already been confirmed in prior empirical studies.

Others can be verified in future empirical work. I derived both anticipated and

surprising results.

Concerning how supply risk, financing constraints, and the dual role served by

suppliers affect supplier selection, the analysis suggests that, as the availability of ei-

ther internal financing or supplier loans diminishes, the optimal number of suppliers

may increase. To understand this, consider that manufacturers, by paying the extra

cost to work with additional suppliers, benefit by relaxing their financing constraints

and increasing their order quantities, to earn higher expected revenues. More sur-

prising are the observations that an increase in the cost to work with a supplier or

the wholesale price may result in an increase in the optimal number of suppliers.

Also surprising is that, as the standard deviation of a supplier yield’s increases, the

optimal number of suppliers could either increase or decrease.

A significant part of the research was to address if one expects to observe em-

pirically that manufacturers in developing economies work with more suppliers, The

answer to this question is “it depends.” For example, everything being equal, my
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analysis suggests that manufacturers in developing economies will have more suppli-

ers than comparable manufacturers in developed economies. But if, in a developing

economy, the cost to work with a supplier is very high or the manufacturer is close

to bankruptcy, then that manufacturer may actually have fewer suppliers than its

counterpart in a developed economy. In this case, the analysis suggests that man-

ufacturers in developing economies will place lower order quantities and will have

higher stock-out probabilities, which matches perfectly the observations of the ear-

lier empirical studies.

Thus, to answer the question: “Should one expect to observe empirically that

manufacturers in developing economies work with more suppliers?” one needs a so-

phisticated empirical analysis, which carefully accounts for the factors that we con-

sidered. One of the main contributions of this research is to provide a set of testable

hypotheses for future empirical studies.

Concerning when should manufacturers use trade-credit, the analysis indicates

that cash-constrained manufacturers should only use trade-credit to finance their

operations when borrowing from suppliers is cheap, and when manufacturers are

trying to signal their credibility to banks. Although financing operations with trade

credit can be more expensive than financing operations with other sources, manufac-

turers, especially when they receive a relatively small line of credit from banks and/or

there is asymmetric information between banks and manufacturers, may benefit in

the long-run by using trade credit to finance their operations. The analysis suggests

that, similar to the results obtained from empirical studies, trade credit financing

does not only reduce financing constraints but its use by manufacturers allows them

to obtain loan terms from banks that more accurately reflect their credibility.

My analysis contributes to the finance literature because I explicitly model op-
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erational decisions in a dynamic framework, and, simultaneously focus on the use

of trade credit to update the bank loan limit instead of using trade credit to adjust

the interest rate on the bank loan terms. My analysis contributes to the operations

literature because I consider the effect of trade credit on the bank loan limit and,

simultaneously focus on the effect of indirect financing costs on operational decisions.

The models analyzed, albeit simple, provide qualitative results that ought to be

considered in practice. Better understanding of the effect of trade credit on opera-

tional policies and on the relationship between banks, suppliers, and manufacturers

can add great value to the shareholders of cash-constrained manufacturers.
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