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Chapter 1

Introduction

1.1 Biological Background

The cell is a very crowded environment, containing many large structures such as

organelles and actin networks and protein bound DNA. To illustrate the crowding,

consider that every human cell contains 46 chromosomes within the cells nucleus, and

that each of those chromosome has an average length of 2−3 cm, for a total length of

∼ 1 m of DNA per cell. The nucleus of the cell is on average a few microns in diam-

eter, which requires an enormous amount of compactification of DNA. The process

of compactifying DNA is further complicated by the fact that the DNA must remain

readily accessible on the local genetic level for gene expression to occur. Therefor

some form of mechanical control must exist in tandem with any biochemical controls

if DNA is to be packaged and unpackaged for genetic transactions without destroying

the genetic information contained within. The enormity of this mechanical system

compels us to study the effects of DNA curvature and twist on a smaller scale in order

to characterize their effects.

1.1.1 DNA Structure

All DNA consists only of four different nucleotide subunits, adenine (A), cytosine (C),

guanine (G) and thymine (T), which combined with the sugar-phosphate backbone

comprise the DNA bases. These bases bind together to form long polymer chains.

Two of these chains wrap around one another due to hydrophobic interactions of the

nucleotides, and produce the double helix structure, see fig. 2.1. The double helix is

held together by hydrogen bonding between the base pairs, which alway pair up in
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the same manner, (A-T) and (G-C). DNA is a fairly slender molecule with an average

diameter of 2 nm, . DNA is also very stiff on the scale of 50 nm ∼ 150 base pairs,

which is referred to as the bending persistence length. The wrapping of the DNA

base-pairs produces an uneven groove structure, with the major and minor groove

having a width of 2.2/nm and 1.2 nm respectively, see fig. 2.1. Another important

physical feature of DNA is the inhererent directionality along its backbone referred to

as 5′ to 3′, of which complementary strands of DNA must pair up in opposing order,

3′ to 5′. The 5′ end has a terminal phosphate group, and the 3′ end has a terminal

hydroxyl group. See [6] for more information on DNA structure.

1.1.2 Lac Operon of E. coli

The breadth of DNA-protein structure formation is enormous, and we will focus on

gene regulation of prokaryotic systems, which are a group of organisms which lack a

cell nucleus or other membrane bound organelles. Of these organisms, we will use the

lac operon of Escherichia coli, or E. coli for short, as our illustrative example for gene

regulation through DNA loop formation, as proteins found here are homologous i.e

they are derived from a common ancestor, to those of Archaebacteria and Eukaryotic

systems. E. coli is perhaps the best studied prokaryotic system, and serves as the

hydrogen atom for biophysics.

E. coli is capable of digesting glucose and lactose sugars. Digestion of lactose

requires a specific protein, known as β-galactosidase, which E. coli is capable of pro-

ducing through gene expression. The group of three genes which control this ability,

combined with the lac repressor (LacI) and the DNA binding operators are known as

the Lac Operon, see fig. 1.1. The DNA operator sites within the lac operon facilitate

binding of a protein known as the lactose repressor, which is independently encoded

on a gene known as LacI. We will now turn our attention to the lac repressor protein,

see [11] for more information.
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77 base pairs 305 base pairs

O3 O1 O2
LacZ, LacY, LacA

RNA Binding Site

Figure 1.1 The lac operon of E. coli contains 3 DNA binding operators, O1, O2 and O3

and 3 genes LacZ, LacY and LacA, referred to as LacZYA. There are three possible combi-
nations of binding any two of the DNA operators, O1/O2, O1/O3 and O2/O3. In addition
to what is shown here, the lac operon contains an additional gene for the lac repressor with
its own promoter site.

DNA Operators

DNA operators are specific ordered sequence of base pairs which have a high binding

affinity to a regulatory protein. Often these regulatory proteins are capable of some

binding to any sequence of DNA, although a random sequence of DNA base pairs will

typically have such a low binding affinity, that the protein will simply diffuse away

as quickly as it arrived. The wild-type lac operon contains three DNA operators, see

fig. 1.1.

1.2 Gene Expression

Gene expression occurs when a protein named RNA polymerase binds to DNA at

a specific site on the DNA backbone known as the promoter site. The RNA poly-

merase then begins to move along the DNA from the 5′ to 3′ direction, unzipping

and exposing the DNA bases inside the double helix. The RNA polymerase creates

a complementary strand of mRNA to the DNA gene sequence, which is known as

transcription. This mRNA is complementary to the DNA bases, with the exception

of uracil (U) in place of thymine (T ). The mRNA is then transported to the ribo-

some, where the Ribosome then translates the m-RNA sequence into amino acids.

The subsequent amino sequence forms the associated protein, which then diffuses or

is otherwise transported away from the ribosomes to conduct its purpose within the

cell.

Wild-type E. coli expresses three genes, LacZ, LacY and LacA (LacZYA), which
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lay in that order after the promoter site. LacZYA are expressed as β-galactosidase,

permease, β-galactosidase transacetylase, respectively. Of these three genes, only β-

galactosidase is known to participate in a metabolic pathway, and mutations of of

LacYA do not appear to affect the cells ability to digest lactose.

1.2.1 Gene Regulation

Gene regulation refers to an organisms ability to turn on and off its genes. Producing

proteins costs the cell valuable energy, which it must be able to control in order to

survive. Regulation in lac repressor-like systems results from disrupting the ability

of RNA polymerase to begin transcription, since the locating the promoter site, e.g.

such as LacZYA, is a critical first step to expressing these genes.

Over time beta-galactoside will break down naturally in the cell and constant pro-

duction is required for digesting of lactose. If no lactose is present, or if a better

fuel source is available, E.coli must turn off LacZYA. In E. coli this regulation is

accomplish by the lactose repressor, lacI. When there is no lactose present, lacI binds

to the DNA operators and inhibits the start of transcription. When lactose is added

to the cell, β-galactoside is produced.

Lactose binds to the lac repressor near the C-terminus, and causes a conforma-

tional change within the protein that reduces its ability to bind DNA, and inhibit

repression, see fig. 1.2 for more information. The binding of the lac repressor to DNA

and subsequent removal by lactose sugar is known as a genetic switch.

LacI Crystal Structure

The crystal structure of LacI was determined by Lewis et al [26]; where lac repressor

protein and DNA operator segments formed co-crystals and were then mapped by x-

ray diffraction experiments. Successful crystalization of LacI required the formation

of DNA-protein co-crystals, demonstrating that LacI can simultaneously bind to two

distant DNA operator sites, forming a loop. The wild-type E. coli DNA contains

three distinct operator regions, separated by 77 and 310 base pair, respectively. The

central operator O1, see fig. 1.1, has the strongest affinity of the three operators,

however it was shown by Oehler et al. [42] that all three operators were needed for

full repression of the Lac Operon.
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C-Terminus

DNA Operators

Headgroup

Dimer of Tetramers

Figure 1.2 The lac repressor protein (LacI) is a tetramer which is formed into two dimeric
arms, joined at the C-terminus by Van der Waals interactions. The LacI head groups are
shown here bound to DNA operators. The protein structure was determined by Lewis et
al. [26].

1.3 Gene Regulation via DNA Loop Formation

There are several types of DNA-protein loop systems [1] that can be split into two

main groups, those which use an architectural protein to help form the DNA into a

loop, and those which form a loop solely through thermal fluctuations. We focus on

the later, as it is the simplest system we can examine, allowing us to gain a physical

foothold from which we can build an intuitive understanding of this multifaceted,

complex biophysical world. We now exclusively focus on the lac repressor system on

E. coli

1.3.1 Phase Dependence of Lac Repressor Binding

Careful experiments by NAME et al. [] have shown that incremental additions of

DNA base pairs between two operator sites will dramatically affect the ability of E.
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coli to regulate LacZYA. The repression level of E. coli was measured and shown to

be periodic with a period of ∼ 10.5 base pairs, suggesting that the helical repeat of

DNA plays a role. The sharp cyclic structure of the repression curve is known as

DNA phasing, which we explore in detail in chapter 4 and chapter 5. The phasing

dependence suggests a purely physical mechanism, as nothing to do with the affinity

of DNA-protein binding is directly affected.

1.3.2 Cooperativity of DNA operators

Experiments by Oehler et al. [42] showed that all three DNA operators are required

for full repression of LacZYA. They measured the repression level after carefully re-

moving each operator in turn, and found that all three possible loops were utilized in

repression. This result was unexpected given the shortest loop 77 base pairs is one

half of a persistence length, and looping should be improbable given the stiffness of

DNA.

1.3.3 Reduction of Repression through Lac Dimers

Additional experiments by Dong et al [12] showed that if you mutate away the C-

terminus of the lac repressor, the ability of the cell to repress LacZYA is greatly

reduced, demonstrating the need for simultaneous binding to the lac repressor. This

work also demonstrates the stabilizing presence of the loop, as dimers separately

occupy binding sites were unable to effectively regulate lacZYA.

1.4 Statistical Mechanics

While some systems use Architectural proteins to prebend the DNA prior to binding

by a regulatory protein, the lac operon of E. coli does not [1]. It is a thermally driven

mechanical looping process on a scale where DNA is fairly rigid, making it a great

statistical mechanics problem. We approach the description by computing partition

functions of the open and looped state of DNA, in order to compute the Stockmayer

Jacobson J factor.

Calculating the probability that contact will occur between two distant ends of

a polymer under prescribed orientations is a long-standing question of considerable

significance in polymer physics. This problem was rigorously defined in the context of
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polyelectrolyte condensation as the ratio of equilibrium constants for cyclization and

bimolecular association by introduction of the Jacobson Stockmayer (J) factor [21].

Yamakawa and Stockmayer expanded on this work using the Kratky-Porod wormlike

chain model (WLC) to compute the J factor of angle-independent DNA ring-closure

probabilities [62]. Shimada and Yamakawa then included twist alignment of the end

points [49], known as phasing, to explain the measured oscillatory cyclization rates by

Shore and Baldwin on DNA shorter than 500 base pairs [50]. Shimada and Yamakawa

calculated the J factor for the ring and and unconstrained loop, by treating DNA as

a homo-polymer with coincident end points and parallel tangent vectors, as well as

with coincident end points with unconstrained tangent vectors, respectively.

1.5 DNA and Protein modeling

We study the mechanics of this protein-mediated loop formation and characterize the

variables which control loop formation and stability, by treating the DNA as an elas-

tic polymer. Specifically we use the elastic rod model developed by Goyal et al. [15],

which coarsely grains the DNA into a continuous approximation. This model extends

the worm-chain model (WLC) to include twist and sequence dependent elasticity and

curvature. The DNA operators occur in three forms in nature, and a fourth form

known as the palindromic operator is also used in laboratory experiments due to its

enhanced binding affinity to the lac repressor. We will only consider palindromic

operators in this work, since they allow the largest number of binding configura-

tions and modeling simplicity. Since DNA is known to have a dual groove structure

along its double helix, we construct a model which is capable of treating DNA as a

heteropolymer with two distinct bending elasticities, and a single torsional elasticity.

Our semi-analytic computation of the J factor generalizes this closure probability

to include arbitrary end-point locations, binding orientations, sequence-dependent

curvature and elasticity while reproducing the earlier results of Shimada and Ya-

makawa for the ring and unconstrained loop. As many biologically relevant cases

do not fit neatly into one of these special cases, we generalize the computation of J

factors to cover any nearly planar shape, as well as to build our intuition for protein

mediated DNA loop formation.

We numerically calculate J factors based on a semi-analytic continuous elastic

rod formulation that includes as inputs specified end point locations and orientations

of the DNA. This formulation goes beyond the homogeneous straight elastic rod of
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Balaeff et al[3, 2, 4] by allowing the inclusion of intrinsic curvature and stiffness based

upon sequence-dependent effects. We also compute thermal fluctuations, which con-

tribute non-trivially to the free energy cost of loop formation. This aspect has some

similarities to the recent work of Zhang and Crothers [63, 65] who used a discrete

model to compute thermal fluctuations, although their J factors disagreed with the

previous results of Shimada and Yamakawa [49].

Previous works by Olson et al. have modeled DNA as an elastic rod with sequence

specific properties using individual base pairs as their elements to examine normal

modes [35, 43, 44, 46, 36, 9, 45, 53]. While Monte Carlo methods have been success-

fully used to compute J factors [55, 47], they are in general computationally taxing,

making it potentially difficult to separate out the individual effects of curvature and

stiffness, or make the distinction between enthalpic and entropic contributions; by

contrast, our computation of the J factor based on a desired equilibrium shape takes

only minutes on a desktop computer.

Many DNA-binding proteins impose very specific boundary conditions on DNA

loop formation. Previous results by Swigon et al., Segall et al. and Purohit et al have

shown that boundary condition constraints on the DNA end points play a significant

role in the facilitation of loop formation [53, 41, 48]. Boundary conditions have also

been suggested by Tkachenko [54] as an explanation for the striking disagreements

between the cyclization rates measured by Du et al. [14, 13] and Cloutier et al. [61, 8].

Therefore, any useful model for these interactions must accommodate such arbitrary

boundary conditions. Thus, the J factor framework gives quantitative insights into

the mechanics of protein-mediated DNA loop formation and is important for multi-

scale models of larger DNA-protein assemblies such as chromatin and nucleosomes.

The nucleosome is DNA-protein complex which is made up of a persistence length of

DNA wrapped 1.6 times around a core histone protein.

1.6 Guide to contents

Within this thesis you will find

Chapters

• Chapter 2: Theory - In this chapter we provide a detailed calculation of the

J factor for arbitrary DNA configurations. We rigorously define the elastic rod
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model as well as provide a firm mathematical basis for the remaining chapters.

• Chapter 3: Planar Loops - In this chapter we study DNA loop formation

without a mediating protein. This work provides an initial physical founda-

tion for which can relate the results of DNA-lac binding. Here we apply the

generalized J factor methods to planar DNA conformations. This chapter the

computation of the effective torsional persistence length ℓ∗τ for nearly planar

loops. We verify the J factors for the ring and unconstrained loop by Shimada

et al. [49].

• Chapter 4: Lac Induced Loops - E. coli uses thermal fluctuations to regu-

late its DNA through loop formation which can be described with our J factor

formulation. This section deals with intrinsically straight DNA. We discuss how

to connect our formalism to experimental predictions using FRET and TPM.

Our results for straight DNA bound to Lac repressor are then compared to the

Monte Carlo results of Towles et al [55].

• Chapter 5: Intrinsically Curved DNA - Here we study the effects of intrin-

sic curvature on DNA loop formation and see that our results are consistent with

recent Gel electrophoresis results of Mehta et al. [37] and FRET measurements

of Morgan et al. [38].

• Chapter 6: Extensions - Here we discuss our ongoing study of heteroge-

neous stiffness of DNA, as well as twist-bend coupling of DNA. We also discuss

extensions to include Molecular Dynamics computations of the lac repressor,

as well as inclusion of architectural proteins. Finally we recommend several

experimental systems which can be used to validate our predictions.

• Chapter 7: Summary of Contributions - A concise summary of the specific

findings and contributions of this work.

Appendices

• Appendix A: Notation - A list of all variables, and their dimensionless prod-

ucts. We also explain how to convert the J factors to units of Molarity.

• Appendix B: Rotations - A clear and concise discussion about the choice of

finite rotations, given they do not commute.

• Appendix C: Linear Operators - An explicit list of the Linear Operators

for the displacement angle formulation of the solution to the normal modes of

the Hamiltonian using the Galerkin Method.

• Appendix D: Hamiltonian Matrix - An explicit list of Hamiltonian matrix
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operators, and detailed instructions of how to form the Hamiltonian Matrix for

the Ritz Method.

• Appendix E: Delta Function Constraints - The full details of the compu-

tation of the constraint matrix V for the looped state of DNA.
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Chapter 2

Theory

2.1 Introduction to J factor

Given many cellular regulatory functions are governed by thermally driven DNA loop

formation, we set out to calculate the Stockmayer Jacobson J factor [21], which is the

probability density of finding two properly aligned DNA end points within a given

capture volume. Loop formation is governed by two effects, enthalpy and entropy.

Short lengths of DNA are enthalpically prohibited from forming loops by the large

energetic cost of bending DNA, and long lengths of DNA are entropically prohibited

by the large conformational space open to the molecule and the unlikelihood of the

two end-points coming into contact due to thermal fluctuations.

The J factor is defined as [21, 63]

J = 8π2Zℓ
Zo

(2.1)

where Zℓ is the partition function for the subset of DNA molecules which are subject

to the looped state constraints and Z is the partition function of the unlooped or

open DNA molecules which are unconstrained. The 8π2 coefficient arises due to the

constraints of the loop formation. We want to compute the total probability of DNA

loop formation, which requires that we multiply the ratio of partition functions Zℓ
Z

by

4π to account for all orientations of the loop over solid angle. The additional factor

of 2π arrises from the torsional alignment of end-points of the helical axis. Under-

standing the role of binding conditions on DNA loop formation is one of the primary

goals of this work.
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2.1.1 Partition Functions

In order to compute the partition functions of the J factor we construct a Hamiltonian

H about the open Ho and looped Hℓ states of DNA. The looped state Hamiltonian Hℓ

includes the internal energy of the DNA, Eℓ, the enthalpic cost of loop formation with

respect to the ground state, as well as the thermal fluctuations about the equilibrium

state, βHℓ = βEℓ + 1
2

∑

i λiξ
2
i , where β = 1/kBT , kB is the Boltzmann constant and

T is the temperature. Small deformation due to thermal fluctuations about these

states can be expressed in terms of the normal mode basis. We describe deformations

to the equilibrium state by three displacements ~u and three rotation angles θ1, θ2, ψ,

see fig. 2.3 and fig. 2.1. We determine the entropic cost of DNA loop formation by

computing the change in the conformational space available to the open and looped

states. This change is directly related to the ratio of the eigenmodes which describe

thermal fluctuations about the two equilibrium states.

The looped state partition function is

Zℓ =

∫

[dξi] e
−βHℓ

δ3(|~u(L)|)δ(θ1L)δ(θ2L)δ(ψL) (2.2)

where ξi is the amplitude of the ith normal mode of the DNA and [dξi] =

∞∏

i

dξi is a

shorthand for the integration variables over the space of eigenmode amplitudes. The

six δ-functions enforce the boundary constraints on the DNA loop, and are expanded

upon later in section 2. The δ-functions contribute dimensions of inverse volume to

the J factor.

We take the open state to be the ground state of our system, and consider its en-

ergy to be only thermal excitations about the ground state, given by the open state

Hamiltonian Ho = 1
2

∑

i λiξ
2
i , with λi is the eigenvalue of the ith normal mode. The

open state partition function is

Z =

∫

[dξi] e
−βHo

(2.3)

We use the overall sequence length to make quantities dimensionless. The curva-

ture vectors ~κ carry dimension of L−1, the stiffness Matrix B(s) carries the dimensions

of L and then the integration over ds carries the dimensions of L . The arc-length

is parameterized by S = sL where 0 ≤ s ≤ 1. Dimensional scaling is key to un-

derstanding the J factor, for this reason we write the explicit units of length when

they contribute to this scaling, e.g. ℓp/L and ℓτ/L. For simplicity all other quanti-
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ties in this chapter are assumed to have been made dimensionless, unless otherwise

indicated, see Appendix A for more information.

2.1.2 Persistence Length

The length of DNA being considered affects which model is appropriate to describe

it. On longer lengths, thousands of base pairs, the worm-like chain (WLC) is em-

ployed, which is a continuum limit of the freely jointed chain [34]. The WLC does

not include torsion of the molecule and for shorter lengths we need to include this

degree of freedom. On macroscopic scales when we perturb a rod, we see the pertur-

bation affect the entire rod, or more precisely the motions are all correlated. This

concept of length of correlation of perturbations is understood through the concept

of persistence length. We can compute the bending persistence length by calculating

the correlation function of two tangent vectors t̂(s1) and t̂(s2)

〈t̂(s1) · t̂(s2)〉 ∝ exp(−|s1 − s2|/ℓp), (2.4)

where ℓp is the bending persistence length, the characteristic length scale over which

thermal fluctuations of DNA remain correlated, see fig. 2.3. We also employ the

torsional persistence length ℓτ , which sets the characteristic length scale over which

torsional deformations remain correlated. We use commonly accepted averaged values

for the bending and torsional persistence length of 50 nm and 75 nm, respectively,

[17, 52, 5, 4]. On occasion we relate the torsional persistence length to the bending

persistence length as ℓτ = σℓp.

We treat the statistical properties of DNA, such as bending ℓp and torsional per-

sistence lengths ℓτ , as intrinsic elasticity parameters for the elastic rod model of DNA.

We use a stiffness tensor, B(s) to represent the elasticity of DNA. We then use an

elastic rod model following Goyal et al. [15] to compute the equilibrium states of DNA

under various boundary conditions, which can be inferred from LacI-DNA co-crystals

in the case of gene regulation. Once these equilibria are known, we can compute their

respective normal modes and subsequently construct the J factor.
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n̂1

t̂

n̂2

Major Groove Minor Groove

Helical Repeat

Figure 2.1 The double helix structure of DNA gives rise to a major and minor groove,
which have a spacing of 2.2 nm and 1.2 nm respectively. DNA also repeats its axial orien-
tations, known as the helical repeat, on average every 10.5 base pairs. The unequal groove
spacing motives us to use a body fixed coordinate system of t̂, n̂1, n̂2, where we align the
tangent vector with the centerline of the DNA molecule, and the normal vectors with the
Major and Minor grooves. The unequal groove spacing leads to heterogeneous bending
stiffness ℓ1 and ℓ2 along the minor and major grooves, respectively.

2.2 Elastic Rod Model

In this section we explain how we use an elastic rod model to describe conforma-

tional changes to DNA based on thermal fluctuations about its various equilibrium

conformations. We compare differences of DNA curvature provided by the elastic rod

model following Goyal et al [15]. We are interested in the mechanical equilibrium

state without thermal fluctuations T = 0. The open state of DNA is taken to be a

random sequence where the non-uniform base pair stacking faults typically average

out over a helical repeat and are therefore considered straight. Other sequences, such

as A-tract bends have high specific intrinsic curvature and are considered in chapter 5.

We use a body fixed coordinate system as opposed to the Frenet-Serret formulation.

DNA requires us to make this distinction since it is not a homopolymer with isotropic

stiffness, instead it has two distinct bending elasticities corresponding to the major

and minor grooves, as explained in chapter 1. We investigate heterogeneous stiffness

in chapter 6.
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2.2.1 Body Fixed Coordinate System

A local coordinate system is then assigned to each cross section of the DNA model.

These cross sections can represent individual DNA basepairs, and are assumed to

rotate with the major and minor grooves of the DNA, the period or helical repeat is

often taken to be ∼ 10.5 base pairs, see Goyal et al. [15, 27]. Then as the DNA is

bent into a looped state which obeys the specified boundary conditions, each individ-

ual cross section is tracked, allowing us to use the same local body fixed coordinate

system to describe local deformations in the open and looped states of DNA, avoiding

the need for a Jacobian to compare the two different coordinate systems. The body

fixed basis vectors we employ are the tangent t̂ and two normal vectors n̂1 and n̂2.

The tangent is chosen to align with the sugar phosphate backbone of the DNA double

helix, the normal directions are chosen to align with the minor and major grooves of

the DNA, respectively, see fig. 2.1 and fig. 2.2. We consider two sets of basis vectors

for each state

t̂, n̂1, n̂2 (Equilibrium State Basis)

t̃, ñ1, ñ2 (Deformed State Basis)

In general the body fixed coordinate vectors do not align with the Frenet-Serret [23]

space curved defined coordinate system, e.g. the normal vectors need not be directed

inwards to the curve see fig. 2.2. The resulting skew symmetric relationship of vector

derivatives is






t̂′

n̂′1

n̂′2




 =






0 κ2 −κ1

−κ2 0 τ

κ1 −τ 0











t̂

n̂1

n̂2




 (2.5)

where the prime on t̂′ indicates a derivative with respect to the arc length parameter

s. The standard Frenet-Serret space-curve description would set κ1 = 0.
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t̂
n̂2

n̂1

t̂
n̂1

n̂2

t̂

n̂1

n̂2

ψ

θ1θ2

Figure 2.2 The deformation variables ψ, θ1, θ2 describe rotations about the body fixed
basis vectors t̂, n̂1, n̂2, respectively. The body fixed coordinate system does not match the
Serret-Frenet coordinates in general, as demonstrated by n̂1 point inwards and outwards
to the curve. The body fixed coordinates are chosen to align with the major and minor
grooves of the DNA molecule, see fig. 2.1

2.2.2 Rotation Matrices and Deformations

We are interested in modeling deformations of DNA due to thermal fluctuations about

its equilibrium state. We use three local deformation angles (ψ, θ1, θ2) to describe de-

formations about the equilibrium state, we refer to their collective deformation as

ξ = (ψ, θ1, θ2), which should not be confused with an infinitesimal rotation. Defor-

mations about the tangent vector are given by ψ, whereas deformations about the

two normal vectors n̂1 and n̂2 are given by θ1 and θ2, respectively. These deformations

also lead to position dependent displacements of the rod centroid from the equilibrium

location, referred to as ~u, see fig. 2.3.
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~u(s1)

~u(s2)
~u(s3)

~u(s4)

~u(s5)

~u(s6)

~R(s′)~R(s)

x

y

z

Figure 2.3 Thermal fluctuations cause arbitrary deformations of the DNA molecule from
the equilibrium states described by ~R to R̃ = ~R+~u. The looped state boundary conditions
require that the end-points displacements vanish ~u(s = 1) = 0 The displacement deforma-
tions ~u are about the body fixed coordinate system, see fig. 2.1 and fig. 2.2. The bending
ℓp and torsional persistence length ℓτ are the characteristic length over which the tangent

vectors at ~R(s) and ~R(s′) remain correlated due to thermal fluctuations.

While we do not use these displacements as deformation variables, we do compute

them when considering the constraints placed on our DNA molecule. We use this

choice of coordinates as opposed to those of displacements because they naturally

arise in the strain energy of the rod as dependent variables when you neglect the

contributions of kinetic energy. By contrast, we would employ displacement variables

if we were simultaneously interested in formulating the kinetic energy of the rod.

The axial stiffness of DNA is extremely high when compared to the more modest

bending and torsional stiffness. We understand this fact by recognizing the energy

to untwist the DNA double-helix is much more than that needed to bend or twist it

due to hydrophobic interactions of the base pairs [6]. Our choice of deformation vari-

ables mean that our system is inextensible, which simplifies our theory. Our choice
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of deformation angles about the equilibrium states are given by

R(ψ)R(θ1)R(θ2) =






1 0 0

0 cosψ sinψ

0 − sinψ cosψ











cos θ1 0 − sin θ1

0 1 0

sin θ1 0 cos θ1











cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1






using the small angle approximation, keeping to 2nd order terms,

∼






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)




 (2.6)

where since we are only considering small variations from the equilibrium, we use a

small angle approximation, keeping to Gaussian Order, or 2nd order.

The order of rotations needs to be carefully considered, as they do not com-

mute when working to 2nd order in deformations. The choice of order must remain

consistent with our definitions of the deformation angles, see Appendix B for more

information. The infinitesimal rotations that connect the deformed state to the equi-

librium state vectors are






t̃

ñ1

ñ2




 =






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)











t̂

n̂1

n̂2




 . (2.7)

This choice uniquely defines ψ as the angle between the perturbed state ñ1 and equi-

librium state ñ2 as well as θ1, between n̂2 and t̃, and θ2, between the tangent t̃ and

n̂1. More information is available on this choice of rotation matrices in Appendix B.

Henceforth the perturbed or deformed states are represented by tildes such as t̃ or

κ̃ and the equilibrium terms are indicated by a hat t̂ or by a vector ~κ. Equilibrium

components have no designations e.g. κ2. The deformed state basis vectors {t̃, ñ1, ñ2}
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remain orthonormal to 2nd order in deformation variables

t̃ · t̃ = (1 − θ2
1 − θ2

2)(t̂ · t̂) + (θ2
2)(n̂1 · n̂1) + (θ2

1)(n̂2 · n̂2) = 1

ñ1 · ñ1 = (θ2
2)t̂ · t̂+ (1 − θ2

2 − ψ2)n̂1 · n̂1 + (ψ2)n̂2 · n̂2 = 1

ñ2 · ñ2 = (θ2
1)t̂ · t̂+ (ψ2)n̂1 · n̂1 + (1 − θ2

1 − ψ2)n̂2 · n̂2 = 1

t̃ · ñ1 = (−θ2 + θ1ψ)t̂ · t̂+ (θ2)n̂1 · n̂1 + (−θ1ψ)n̂2 · n̂2 = 0

t̃ · ñ2 = (θ1 + θ2ψ)t̂ · t̂+ (−θ2ψ)n̂1 · n̂1 + (−θ1)n̂2 · n̂2 = 0

ñ1 · ñ2 = (−θ1θ2)t̂ · t̂+ (−ψ + θ1θ2)n̂1 · n̂1 + (ψ)n̂2 · n̂2 = 0 (2.8)

2.2.3 Basis Vectors and Curvature Components of the De-

formed State

We now use our orthonormal deformation basis to express changes to local curvature

due to thermal fluctuations about the equilibria of the open and looped state of DNA,

as in fig. 2.3. In total there are four different curvature vectors,

~κo =(κo1(s), κ
o
2(s), τ

o(s))
ξ(θ1,θ2,ψ)−−−−−→ κ̃o = (κ̃o1(s), κ̃

o
2(s), τ̃

o(s)) (Open State)

~κℓ =
(
κℓ1(s), κ

ℓ
2(s), τ

ℓ(s)
) ξ(θ1,θ2,ψ)−−−−−→ κ̃ℓ =

(
κ̃ℓ1(s), κ̃

ℓ
2(s), τ̃

ℓ(s)
)

(Looped State)

First we need to compute the derivatives of the basis vectors so that we may compute

the components of the deformation curvature vector in a manner similar to eq. (2.5).

Then differentiating the new basis vectors eq. (2.7) with respect to the arc length s,

indicated by the prime, leads to,






t̃′

ñ′1

ñ′2




 =






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)






′ 




t̂

n̂1

n̂2






+






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)











t̂

n̂1

n̂2






′
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then using eq. (2.5)

=












1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)






′

+






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)











0 κ2 −κ1

−κ2 0 τ

κ1 −τ 0

















t̂

n̂1

n̂2






(2.9)

where we use eq. (2.7) to compute the deformed basis derivatives. The final form of

the deformed state basis vectors and their derivatives of eq. (2.9) keeping to 2nd order

are,

t̃′ = (−κ1θ1 − κ2θ2 − θ1θ
′
1 − θ2θ

′
2) t̂

+

(

κ2 + θ′2 + τθ1 −
1

2
κ2(θ

2
1 + θ2

2)

)

n̂1

+

(

−κ1 − θ′1 + τθ2 +
1

2
κ1(θ

2
1 + θ2

2)

)

n̂2 (2.10)

ñ′1 =

(

−κ2 − θ′2 + κ1ψ + (θ1ψ)′ +
1

2
κ2(θ

2
2 + ψ2)

)

t̂

+ (−κ2θ2 − τψ + κ2θ1ψ − θ2θ
′
2 − ψψ′) n̂1

+

(

τ + ψ′ + κ1θ2 − κ1θ1ψ − 1

2
τ(θ2

2 + ψ2)

)

n̂2 (2.11)

ñ′2 = +

(

κ1 + θ′1 + κ2ψ + (θ2ψ)′ − κ2θ1θ2 −
1

2
κ1(θ

2
1 + ψ2)

)

t̂

+

(

−τ − ψ′ + κ2θ1 + (θ1θ2)
′ + κ2θ2ψ +

1

2
τ(θ2

1 + ψ2)

)

n̂1

+ (−τψ − κ1θ1 − θ1θ
′
1 − ψψ′ + τθ1θ2 − κ1θ2ψ) n̂2 (2.12)
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We now solve for the deformation curvature components as a function of (ψ, θ1, θ2).






t̃′

ñ′1

ñ′2




 =






0 κ̃2 −κ̃1

−κ̃2 0 τ̃

κ̃1 −τ̃ 0











t̃

ñ1

ñ2




 (2.13)

We solve for κ̃2 by computing t̃′ · ñ1. In a same manner we solve for all of the de-

formation curvature components. This procedure is the same for open κ̃o1, κ̃
o
2, τ̃

o and

looped κ̃ℓ1, κ̃
ℓ
2, τ̃

ℓ state deformation curvature components, therefor when sufficient

clarity exists, we drop the superscripts o, ℓ.

The three deformation curvature components are computed using eq. (2.13), it

can also be seen that the definitions are consistent, e.g. ñ′1 · ñ2 = −ñ′2 · ñ1. If rotations

are chosen incorrectly, then the deformed curvature components are inconsistent, e.g.

ñ′1 · ñ2 6= −ñ′2 · ñ1.

τ̃ = ñ′1 · ñ2 = −ñ′2 · ñ1

= τ + (ψ′ − κ2θ1 + κ1θ2) +

(

−θ1θ′2 −
1

2
τ(θ2

1 + θ2
2)

)

+ O(3)

κ̃1 = ñ′2 · t̃ = −t̃′ · ñ2

= κ1 + (θ′1 − τθ2 + κ2ψ) +

(

ψθ′2 + τθ1ψ − 1

2
κ1(θ

2
2 + ψ2)

)

+ O(3)

κ̃2 = t̃′ · ñ1 = −ñ′1 · t̃

= κ2 + (θ′2 + τθ1 − κ1ψ) +

(

−ψθ′1 + κ1θ1θ2 + τθ2ψ − 1

2
κ2(θ

2
1 + ψ2)

)

+ O(3)

(2.14)

These deformation curvature components, which are expanded about the two equilib-

rium states ~κo,ℓ are directly used to compute the Hamiltonian eq. (2.21). The intrinsic

curvature components of the open state ~κo are not explicitly present in this form, as

they have already been factored into the determination of the equilibrium curvature

~κ.

2.2.4 Equilibrium Boundary Conditions

We use the elastic rod model developed by Goyal et al. [15] to model DNA and to

determine the equilibrium curvature and torsion of the DNA loop state by specifying

boundary conditions in terms of end-point location and orientations. The looped
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state is treated as a clamped-clamped system, limiting the allowable deformations,

see section 2 for more details. The open state configuration requires that there be

no force or moment on the DNA end-points, which leads to straight DNA for wild-

type sequences and a super-helical structure for the A-tract bends. These A-tract

sequences induce intrinsic curvature ~κo 6= 0 to the open state, see chapter 5 for more

information.

2.2.5 Multiple Equilibrium States: Topology and Twist

For a given set of boundary conditions, there exist multiple equilibrium states, al-

though not all are equally probable. There exist multiple binding topologies of DNA

to LacI protein in the E. coli system which we explore in chapter 4. The binding

topologies for LacI are inferred from the protein crystal structures by Lewis et al

[26]. For boundary conditions, we specify locations and angles for the DNA; this

includes an angle about the tangent vector, referred to as the phase angle. For any

given topology, there two minimal energy equilibrium states, referred to as over- and

under-twisted. The classification is as such,

∆Tw =
1

2π

∫ 1

0

ds
(
τ ℓ(s) − τ o(s)

)
,where if







∆Tw < 0, Under-twisted,

∆Tw > 0, Over-twisted.
(2.15)

Often only one solution contributes to the J factor as it is considerably more energet-

ically favorable than the other state, for more informations, see fig. 4.1 in chapter 4.

2.3 Hamiltonian

We now use the deformation curvature vector κ̃ to construct a Hamiltonian which

describes thermal fluctuations about equilibrium. We then expand the Hamilto-

nian in terms of the deformation angles (θ1, θ2, ψ), keeping to 2nd order, such that

Ho,ℓ = Ho,ℓ
eq + ∆E. The in vivo and in vitro environments are extremely viscous for

DNA, which leads to over-damped thermal excitations of the DNA, for this reason

we neglect the kinetic energy contributions to the Hamiltonian. The potential en-

ergy describes the work needed to deform the open state DNA into the looped state,

as well as the change to the associated thermal fluctuations about each state. In

addition electrostatic interactions arise due to the fact that DNA has a negatively
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charged backbone, although under physiological conditions, screening occurs which

limits these interactions to a distance of only a few nanometers [20], and we neglect

them within this work; We discuss electrostatics again in chapter 6.

Now that we are able to compute the changes to curvature due to thermal fluc-

tuations, we want to understand the energetic cost of these deformations caused by

thermal fluctuations about the equilibrium state. Enthalpic contributions to the free

energy are computed by determining the work needed to bend and twist the DNA

from its reference zero strain energy open-state to the equilibrium looped-state. En-

tropic contributions to the free energy are computed by determining the change of the

normal modes available to the open and looped states. Together these contributions

to the free energy describe the relative stability and probability of loop formation of

the DNA looped state. We employ two numeric techniques to solve for the eigenmode

spectrum of the open and looped states.

All of our eigenvalues scale linearly with
ℓp
L

, and are a function of their respec-

tive boundary conditions. We relate the average value of ℓτ to average value of ℓp,

therefore we explicitly factor out the dimensional scaling as λ→ λ ℓp
L

for clarity. The

looped state Hamiltonian can be separated into two components as

βHℓ =

Enthalpy
︷ ︸︸ ︷

1

2
βEℓ +

Entropy⇒Λ
︷ ︸︸ ︷

1

2

∞∑

n=1

λℓn
ℓp
L
ξ2
n (2.16)

where Eℓ is the loop formation energy and λn is the nth eigenvalue and ξn is the

nth eigenmode amplitude. The change of eigenmodes from the open to looped state

contribute to the entropic coefficient Λ of the J factor, explained below. We divide

the J factor by Avogadro’s number NA to make the units in terms of Molarity (M),

see Appendix A for more information. The J factor is then written as

J =
8π2

NA

∫ N∏

i=1

dξie
−βHℓ

δ3(|~uL|)δ(θ1L)δ(θ2L)δ(ψL)

∫ N∏

i=1

dξie
−βHo

(2.17)

where

u(1,2,3)L ,L
3N∑

i=1

ui1,2,3(1), and ui1,2,3(1) =

∫ 1

0

t̃ids (2.18)
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The J factor is the concentration of properly aligned DNA end points within a system.

The enthalpic terms contribute to the exponential in the J factor, while the en-

tropic terms contribute to the pre-factor of the exponential of the J factor. We then

write the J factor as

J = Λ
︸︷︷︸

Entropic
Contribution

× e−βEℓ−cf
︸ ︷︷ ︸

Enthalpic
Contribution

(2.19)

where Λ includes all of the entropic contributions i.e. those from the change of

thermal fluctuations between the looped and open state, we refer to Λ as the entropic

coefficient. The loop formation energy, or enthalpic contributions to the J factor

are given by βEL. The remaining term cf ∼ L/(4ℓp) and is necessary force term

introduced by Shimada and Yamakawa [49].

In principle the spectrum of eigenmodes is infinite, although we only need to con-

sider a subset of this space up to the M th mode, as after this mode, the open state

and looped state modes yield the same contribution to the J factor, which we discuss

in depth in section 2. We want the Hamiltonian to have this form so that we can

explicitly compute eq. (2.1) in terms of Gaussian integrals as

∫ M∏

i=1

dξie
− 1

2
λi
ℓp
L
ξ2i =

M∏

i=1

√

2πL

λiℓp
(2.20)

This result is helpful as we be able to integrate over our eigenmode amplitudes ξi

once we have solved for the Hamiltonian.

2.3.1 Constructing the Hamiltonian

We explicitly construct the Hamiltonian using the deformation curvature components

that we have derived above. In practice we do this construction twice, once about

the open state Ho and once about the closed state Hℓ. The Hamiltonian is

βH =
1

2

∫ 1

0

ds
(
κ̃o,ℓ(s) − ~κo(s)

)T
B(s)

(
κ̃o,ℓ(s) − ~κo(s)

)
(2.21)
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where,

B(s) =
1

L






ℓ1(s) ℓ12(s) ℓ1τ (s)

ℓ12(s) ℓ2(s) ℓ2τ (s)

ℓ1τ (s) ℓ2τ (s) ℓτ (s)




 (2.22)

We have absorbed β and L intoB(s) so that its components are now dimensionless, see

Appendix A for more information. In writing the stiffness tensor in this manner, we

explicitly allow inhomogeneous bending and torsional stiffness as a function of DNA

sequence, as well as twist-bend and bend-bend coupling. However we assume the off

diagonals [44, 55] of B(s) are small when compared to the diagonal elements, and

we therefor treat them as zero throughout this work. We discuss non-homogeneous

bending stiffness and twist-bend coupling ℓ2τ in chapter chapter 6. In essence we

assume that the body-fixed frame coincides with the principal (eigen) directions of

the stiffness tensor, see fig. 2.1. In general for wild-type and random sequences of

DNA, we assume that there is no intrinsic curvature, ~κo = 0, while for A-tracts we

include sequence specific intrinsic curvature ~κ0 = ~κ0(s) 6= 0, see chapter 5 for more

details.

Expanding in terms of our deformation variables θ1, θ2, ψ about the equilibrium,

and keeping to 2nd order we find

ℓ1(κ̃1 − κo1)
2 =ℓ1

(
∆κ2

1 + 2∆κ1(θ
′
1 − τθ2 + κ2ψ) + θ′21 − 2τθ2θ

′
1 + 2κ2ψθ

′
1 + 2∆κ1ψθ

′
2

+θ2
2(τ

2 − κ1∆κ1) + ψ2(κ2
2 − κ1∆κ1) + 2∆κ1τθ1ψ − 2κ2τθ2ψ

)

ℓ2(κ̃2 − κo2)
2 =ℓ2

(
∆κ2

2 + 2∆κ2(θ
′
2 + τθ1 − κ1ψ) + θ′22 + 2τθ1θ

′
2 − 2κ1ψθ

′
2 − 2∆κ2ψθ

′
1

+θ2
1(τ

2 − κ2∆κ2) + ψ2(κ2
1 − κ2∆κ2) + 2κ1∆κ2θ1θ2 − 2κ1τθ1 ψ

+2τ∆κ2θ2ψ)

ℓτ (τ̃ − τ o)2 =ℓτ
(
∆τ 2 + 2∆τ(ψ′ − κ2θ1 + κ1θ2) + ψ′2− 2κ2θ1ψ

′ + 2κ1θ2ψ
′ − 2∆τθ1θ

′
2

+θ2
1(κ

2
2 − τ∆τ) + θ2

2(κ
2
1 − τ∆τ) − 2κ1κ2θ1θ2

)
(2.23)

where ∆κ1,2 = κ1,2 − κo1,2 and ∆τ = τ − τ o is the difference between the spontaneous

curvature of the intrinsic and equilibrium shapes. The equilibrium loop energy is

then given by

βEℓ =
1

2

∫ 1

0

ds

(
ℓ1
L

∆κ2
1 +

ℓ2
L

∆κ2
2 +

ℓτ
L

∆τ 2

)

(2.24)
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2.4 Solving for Normal Modes

In order to solve for the normal modes of the Hamiltonian, we employ two similar

methods using known functions to approximate the solutions to the normal modes.

The first method involves a straightforward variation of the Hamiltonian with respect

to our deformation variables (θ1, θ2, ψ), and leads to a system of coupled second-order

differential-equations. These equations are not analytically solvable, so we must em-

ploy a numerical method to approximate their solution. The method we use is known

as the Galerkin method and employs comparison functions that satisfy the boundary

conditions, although they do not individually satisfy the differential equations. The

second method uses the same comparison functions to directly construct the Hamil-

tonian and sidestep the second order problem, solving what is essentially a system

of first order differential equations. The second method can only be used when our

boundary conditions allow, as explained below. All of the normal mode contributions

factor into the entropic coefficient Λ, which we break into components, indicated as

Λy
x where x indicates which mode and constraints are being considered and y = o, ℓ

indicates the open or looped states, respectively.

Galerkin Method and Comparison Functions

The Galerkin method involves using known functions, referred to as comparison func-

tions, which satisfy the boundary conditions specified by the problem, although they

do not satisfy the differential equations. The unknown solution to the system of dif-

ferential equations is written in terms of the deformation variables, which are then

expanded in terms of these comparison functions with arbitrary coefficients. When

enough comparison functions are used, assuming the comparison function basis is

complete, an approximate solution of coefficients can be found, which then combined

with the comparison functions, satisfy the system of differential equations.

We collect our deformation variables within the Hamiltonian to construct a ma-

trix representation in terms of deformation variables (θ1, θ2, ψ). We then expand these

variables in terms of known comparison functions, φ
(a)
n and unknown coefficients α

(a)
n
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as






θ1(s)

θ2(s)

ψ(s)




 =

N∑

n=1






α
(1)
n φ

(1)
n (s)

α
(2)
n φ

(2)
n (s)

α
(3)
n φ

(3)
n (s)




 = φα

=

φ
︷ ︸︸ ︷





φ
(1)
1 0 0 φ

(1)
2 0 0 · · · φ

(1)
N 0 0

0 φ
(2)
1 0 0 φ

(2)
2 0 · · · 0 φ

(2)
N 0

0 0 φ
(3)
1 0 0 φ

(3)
2 · · · 0 0 φ

(3)
N






α
︷ ︸︸ ︷















α
(1)
1

α
(2)
1

α
(3)
1
...

α
(1)
N

α
(2)
N

α
(3)
N

















(2.25)

where a = 1, 2, 3 and indexes (θ1, θ2, ψ), and n indicates which basis function. This

expansion allows different comparison functions for each deformations variable, allow-

ing for different boundary conditions on the end points. We use the same expansion

for the Linear Operators and Hamiltonian Construction.

Boundary Conditions

We treat the DNA looped state as a rod clamped at both ends, which we refer to as

clamped-clamped. These boundary conditions mean that no displacement or angular

deformations are allowed at the ends of the DNA. The boundary conditions are

θ1(0) = θ1(1) = 0, u1(0) = u1(1) = 0

θ2(0) = θ2(1) = 0, u2(0) = u2(1) = 0

ψ(0) = ψ(1) = 0, u3(0) = u3(1) = 0. (2.26)

Modifications of these boundary conditions to allow for open-open geometries are

explained below.

2.4.1 Galerkin Method: Linear Operators

We construct our Linear Operators by taking a variation δ of our expanded Hamil-

tonian eq. (2.21) with respect to (θ1, θ2, ψ) similar to those used by Lu et al [32]. We
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start with

δ
(
βHo,ℓ

)
=

1

2

∫ 1

0

ds

{

δ(ℓ1(s)
(

κ̃o,l1 − κo1

)2

) + δ(ℓ2(s)
(

κ̃o,l2 − κo2

)2

)

+ δ(ℓτ (s)
(
τ̃ o,l − τ o

)2
)
}

(2.27)

The first order terms of
(
κ̃o,ℓ − ~κo

)2
define the equilibrium curvature ~κo,ℓ solution of

the boundary-value problem

(ℓ1∆κ1)
′ − ℓ2τ∆κ2 + ℓτκ2∆τ = 0 (2.28)

(ℓ2∆κ2)
′ + ℓ1τ∆κ1 − ℓτκ1∆τ = 0 (2.29)

(ℓτ∆τ)
′ + (ℓ2 − ℓ1)κ1κ2 + ℓ1κ

o
1κ2 = 0 (2.30)

where we have assumed there is no domain loading force along the DNA molecule, e.g

the only forces and moments which determine the equilibrium loop state are applied

at the DNA end-points.

If our stiffness tensor B(s) is constant with respect to arc length s and we assume

isotropic bending stiffness ℓ1 = ℓ2 in the absence of intrinsic curvature ~κi = 0, then

eq. (2.30) leads to τ ′ = 0 or more clearly, the twist must be constant along the DNA

molecule for all equilibrium solutions. We are interested in the 2nd order terms as

they contribute to the normal modes. Variation of the first deformation curvature

component yields,

δ(ℓ1(κ̃1 − κo1)
2) =2 (ℓ1θ

′
1 − ℓ1τθ2 + ℓ1κ2ψ) δθ′1 + 2 (ℓ1∆κ1ψ) δθ′2

+ [2ℓ1τ∆κ1ψ] δθ1

+
[
−2ℓ1τθ

′
1 + 2ℓ1(τ

2 − κ1∆κ1)θ2 + 2ℓ1κ2τψ
]
δθ2

+ [2ℓ1κ2θ
′
1 + 2ℓ1∆κ1θ

′
2 + 2ℓ1∆κ1τθ1 − 2ℓ1κ2τθ2

+2ℓ1(κ
2
2 − κ1∆κ1)ψ

]
δψ. (2.31)

Our deformation variables are θ1, θ2, ψ, so we need to remove the derivatives from

δθ′1, δθ
′
2. We integrate by parts these derivatives onto the the other terms in the
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Hamiltonian using
∫
udv = uv −

∫
vdu, which yields

∫ 1

0

ds {2 (ℓ1θ
′
1 − ℓ1τθ2 + ℓ1κ2ψ) δθ′1 + 2 (ℓ1∆κ1ψ) δθ′2}

=2 (ℓ1θ
′
1 − ℓ1τθ2 + ℓ1κ2ψ) δθ1|1o + 2 (ℓ1∆κ1ψ) δθ2|1o

−
∫ 1

0

ds
{
2 (ℓ1θ

′
1 − ℓ1τθ2 + ℓ1κ2ψ)

′
δθ1 + 2 (ℓ1∆κ1ψ)′ δθ2

}
(2.32)

whereas we hold δθ1(0) = δθ1(1) = δθ2(0) = δθ2(1) = δψ(0) = δψ(1) = 0 at

the end points as is normal with variational problems, so our boundary terms e.g.

2 (ℓ1∆κ1ψ) δθ2|1o = 0. The full list of boundary terms appears in Appendix C. Then

plugging eq. (2.32) back into eq. (2.31) we get

δ(ℓ1(κ̃1−κo1)2)

= [−2(ℓ1θ
′
1)
′ + 2(ℓ1τθ2)

′ − 2(ℓ1κ2ψ)′ + 2ℓ1τ∆κ1ψ] δθ1

+
[
−2ℓ1τθ

′
1 − 2(ℓ1∆κ1ψ)′ + 2ℓ1(τ

2 − κ1∆κ1)θ2 + 2ℓ1κ2τψ
]
δθ2

+
[
2ℓ1κ2θ

′
1 + 2ℓ1∆κ1θ

′
2 + 2ℓ1∆κ1τθ1 − 2ℓ1κ2τθ2 + 2ℓ1(κ

2
2 − κ1∆κ1)ψ

]
δψ.

(2.33)

We then take variations of the other curvature components, and collecting variables in

terms of δθ1, δθ2, δψ. The results is a system of three coupled differential equations,

(L11θ1 + L12θ2 + L13ψ) δθ1 =0

(L21θ1 + L22θ2 + L23ψ) δθ2 =0

(L31θ1 + L32θ2 + L33ψ) δψ =0. (2.34)

To illustrate the form of the linear operators L, we explicitly write L here

L11 =2(−ℓ1)
d2

ds2
+ 2(−ℓ′1)

d

ds
+ 2ℓ2(τ

2 − κ2∆κ2) + ℓτ (κ
2
2 − τ∆τ))1. (2.35)

The remaining linear operators and all boundary terms are located in Appendix C.

The above eq. (2.34) would generally be considered the equations of motion if we

also considering kinetic and hydrodynamic friction terms. We are only interested in

the effect of thermal fluctuations on the DNA, as we know due to over-dampening

of the hydrodynamic forces, any kinetic contribution will quickly dissipate. We then

consider the action of a thermal fluctuation on the elastic rod. Any fluctuation can

be decomposed into the normal modes spectrum of the elastic rod, so we then set
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eq. (2.34) equal to a generalized force λ times an angular displacement, in order to

solve for the normal modes of the system.






L11 L12 L13

L21 L22 L23

L31 L32 L33











θ1(s)

θ2(s)

ψ(s)




 =λ






θ1(s)

θ2(s)

ψ(s)




 (2.36)

where we now expand as in eq. (2.25), and left multiply by φT , and integrate over

the arc length s, which results in the following eigenvalue equation,

φTLφα =λφTφα
[∫ 1

o

ds φTLφ

]

α =λ

[∫ 1

o

ds φTφ

]

α

L̃α =λM̃α, (2.37)

where L̃ ,

[∫ 1

o

ds φTLφ

]

and M̃ ,

[∫ 1

o

ds φTφ

]

. If the basis functions are not

orthonormal, then a generalized eigenvalue problem results as M̃ 6= 1. The form of

M̃ appears in Appendix C. Our choice of basis functions is orthonormal, therefore

M̃ = 1, and therefore the eigenvalues and vectors of L̃ are the same as those of our

Hamiltonian. The structure of L̃ is a block matrix by construction

L̃ =









L(1, 1) L(1, 2) · · · L(1, 3N)

L(2, 1) L(2, 2) · · · L(2, 3N)
...

...
. . .

...

L(3N, 1) L(3N, 2) · · · L(3N, 3N)









(2.38)

where,

L(m,n) =

∫ 1

0

ds






φ1
mL11φ

1
n φ1

mL12φ
2
n φ1

mL13φ
3
n

φ2
mL21φ

1
n φ2

mL22φ
2
n φ2

mL23φ
3
n

φ3
mL31φ

1
n φ3

mL32φ
2
n φ3

mL33φ
3
n




 (2.39)

We then integrate each element over the arc length s and diagonalize the matrix to

find the eigenvalues and eigenvectors. As we increase our expansion parameter N ,

we find that the eigenvalues converge from above. Our choice of uniform bound-

ary conditions allows use of the same set of comparison functions for each of the

clamped-clamped DNA deformations and we therefore drop the m index in eq. (2.25)
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φn(s) =
√

2 sin (nπs) (2.40)

where n refers to one of the comparison functions within this basis. The compari-

son functions are normalized such that

∫ 1

0

dsφ2
m = 1. We are able to chose different

functions as needed and a further refinement of this work would be to eliminate the

boundary conditions and replace them with boundary potentials, allowing for more

accurate DNA-protein interactions, see chapter 6.

Arbitrary Boundary Conditions

In determining the space of conformations available to the open state of DNA, we

need to also consider arbitrary displacements and angular orientations of the DNA

end points. For a given end-point force or moment due to a thermal fluctuation, the

result is a displacement or angular orientation of the end point due to this boundary

loading. The response to this boundary loading is a new equilibrium shape which

has a vanishing net force and moment of the end points. We then use the Galerkin

method to solve for the response function due to the boundary value loading, and

integrate over the these positions and orientations in order to quantify the difference

from an open to clamped end. It is always possible to reorient your coordinate system

so that the displacement and angular orientation of one end-points is zero, therefore

we only consider deformations to one end of the DNA. We consider a fluctuation ξ as

ξ = ξo + ξa (2.41)

where ξo is any component of the fluctuation which leaves the end point angles un-

changed, and ξa is the remaining component which leads to an arbitrary orientation

and ultimately arbitrary location; we explore the connection of angle to location later

in subsection 2. We then expand the fluctuation ξ in terms of appropriate comparison

functions

ξ = φα(o) + γα(a) (2.42)

where φ is the same matrix of comparison functions introduced above and γ are

new functions appropriate with the new desired boundary values; the superscripts

(o) and (a) refer to no boundary angle deformation and arbitrary boundary angle
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deformation. Then using the Galerkin method

∫

dsφTLφα(o) +

∫

dsφTLγα(a) = 0

L̃α(o) + Γα(a) = 0 (2.43)

where L̃ ,

∫

dsφTLφ and Γ ,

∫

dsφTLγ. Rearrangement leads to

α(a) = −Γ−1L̃α(o) (2.44)

where Γ−1 is the inverse of matrix Γ. In many cases we chose γ = ζs, where ζ is

the scaling term which we then integrate over, e.g in the case of torsional relaxation

ζ = ψℓL and in the case of open state fluctuations ζ = θo1L, θ
o
2L or ψoL, where the

subscript L indicates the displacement of the DNA endpoint located at s = 1.

2.4.2 Ritz Method: Hamiltonian Matrix Construction

Our second approach is numerically simpler; instead of constructing a set of lin-

earized differential equations, we instead build the Hamiltonian Matrix H in terms

of our comparison function basis. We then expand the Hamiltonian in terms of our

basis functions and then reorganize the terms into a matrix form. This matrix is then

diagonalized and its eigenmodes are used to compute the change of thermal fluctu-

ations from the open to looped state, this technique is known as the Ritz method

and is equivalent to the Galerkin Method, [10]. As we increase the number of basis

function N , our eigenmodes converge to those which satisfy the boundary conditions

and the differential equations. Neglecting the cross terms of B(s), the Hamiltonian

can be grouped by order of deformation variables as

βH =
1

2

∫ 1

0

ds
(
κ̃o,ℓ(s) − ~κo(s)

)T
B(s)

(
κ̃o,ℓ(s) − ~κo(s)

)

=βH(O(0)) + βH(O(1)) + βH(O(2)) (2.45)

32



where,

βH(O(0)) =
1

2

∫ 1

0

ds
(
ℓ1∆κ

2
1 + ℓ2∆κ

2
2 + ℓτ∆τ

2
)

(Loop Formation Energy)

βH(O(1)) =
1

2

∫ 1

0

ds (2ℓ1∆κ1(θ
′
1 − τθ2 + κ2ψ) + 2ℓ2∆κ2(θ

′
2 + τθ1 − κ1ψ)

+2ℓτ∆τ(ψ
′ − κ2θ1 + κ1θ2)) (Equilibrium Terms)

βH(O(2)) =
1

2

∫ 1

0

ds
[
ℓ1(θ

′2
1 − 2τθ2θ

′
1 + 2κ2ψθ

′
1 + 2∆κ1ψθ

′
2 + θ2

2(τ
2 − κ1∆κ1)

+ψ2(κ2
2 − κ1∆κ1) + 2∆κ1τθ1ψ − 2κ2τθ2ψ)

)

+ ℓ2(θ
′2
2 + 2τθ1θ

′
2 − 2κ1ψθ

′
2 − 2∆κ2ψθ

′
1 + θ2

1(τ
2 − κ2∆κ2)

+ψ2(κ2
1 − κ2∆κ2) + 2κ1∆κ2θ1θ2 − 2κ1τθ1ψ + 2τ∆κ2θ2ψ)

)

+ ℓτ (ψ
′2 − 2κ2θ1ψ

′ + 2κ1θ2ψ
′ − 2∆τθ1θ

′
2 + θ2

1(κ
2
2 − τ∆τ)

+θ2
2(κ

2
1 − τ∆τ) − 2κ1κ2θ1θ2)

]
(Normal Mode Terms)

Where we refer to the first order terms as the equilibrium terms because their varia-

tion with respect to the deformation variables lead to our equilibrium boundary-value

problem as in eq. (2.30). We then construct the Hamiltonian Matrix out of the normal

mode terms from above.

βH =
1

2

∫ 1

0

ds
[

θ1 θ2 ψ
]






H11 H12 H13

H21 H22 H23

H31 H32 H33











θ1

θ2

ψ




 (2.46)

where the complete form of H is given in Appendix D. Then using the basis function

expansion from section H̃ is a 3N × 3N matrix exactly in the manner as eq. (2.37).

βH =
1

2

∫ 1

0

ds

(
ℓ1
L

∆κ2
1 +

ℓ2
L

∆κ2
2 +

ℓτ
L

∆τ 2

)

+
1

2
αT

(∫ 1

0

φT(s)H(s)φ(s)ds

)

α

=Eℓ +
1

2

N∑

i=1

λi
ℓp
L
ξ2
i (2.47)

where Eℓ is the cost of forming the loop as defined in eq. (2.24).
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Hamiltonian Matrix Construction

The construction of the Hamiltonian Matrix H is straightforward for terms that do

not contain derivatives on the deformation variables. In the basis of θ1, θ2, ψ we have

θ2
1

(
ℓ2(τ

2 − κ2∆κ2) + ℓτ (κ
2
2 − τ∆τ)

)

+ θ2
2

(
ℓ1(τ

2 − κ1∆κ1) + ℓτ (κ
2
1 − τ∆τ)

)

+ ψ2
(
ℓ1ψ

2(κ2
2 − κ1∆κ1) + ℓ2(κ

2
1 − κ2∆κ2)

)

⇔

[

θ1 θ2 ψ
]














ℓ2(τ
2 − κ2∆κ2)

+ℓτ (κ
2
2 − τ∆τ)

0 0

0
ℓ1(τ

2 − κ1∆κ1)

+ℓτ (κ
2
1 − τ∆τ)

0

0 0
ℓ2(κ

2
1 − κ2∆κ2)

+ℓ1(κ
2
2 − κ1∆κ1)



















θ1

θ2

ψ






(2.48)

Then off-diagonal terms are constructed to be symmetric as such,

−2ℓτκ1κ2θ1θ2

−2ℓ2κ1τθ1ψ

−2ℓ1κ2τθ2ψ

⇔
[

θ1 θ2 ψ
]






0 −ℓτκ1κ2 −ℓ2κ1τ

−ℓτκ1κ2 0 −ℓ1κ2τ

−ℓ2κ1τ −ℓ1κ2τ 0











θ1

θ2

ψ




 . (2.49)

The terms containing derivatives, e.g. −2τθ2θ
′
1 need to be carefully constructed to

be symmetric. Consider one of the contributions to H21

−2τθ2θ
′
1 ⇔

[

θ1 θ2 ψ
]






0 0 0

−2τ d
ds

0 0

0 0 0











θ1

θ2

ψ




 (2.50)

The matrix could be made symmetric by integration by parts to move the derivative,

although that construction would not necessarily be symmetric either. The solution

is to instead create a symmetric H′sym in a straightforward manner,

H′sym ,
1

2
(H′ + H′T ) (2.51)

which results in a symmetric matrix containing all the 2nd order curvature terms that

contain a single derivative on a deformation variable. We illustrate this construction
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by writing

−2τθ2θ
′
1 ⇔

[

θ1 θ2 ψ
]






0 −τ
←−
d
ds

0

−τ
−→
d
ds

0 0

0 0 0











θ1

θ2

ψ




 (2.52)

where the direction of the arrow on
d

ds
indicates the direction that the derivative

acts. The remaining terms in the Hamiltonian are (θ′1)
2, (θ′2)

2, (ψ′)2) terms which

are constructed the same was as in eq. (2.48), although the basis used is θ′1, θ
′
2, ψ

′).

The final form of the Hamiltonian is very similar to that of the linear operators in

Equation 2.38

H̃ =









H(1, 1) H(1, 2) · · · H(1, 3N)

H(2, 1) H(2, 2) · · · H(2, 3N)
...

...
. . .

...

H(3N, 1) H(3N, 2) · · · H(3N, 3N)









(2.53)

where,

H(m,n) =

∫ 1

0

ds






φmH11φn φmH12φn φmH13φn

φmH21φn φmH22φn φmH23φn

φmH31φn φmH32φn φmH33φn




 (2.54)

we have again used the fact that our boundary conditions are the same for each de-

formation variable, when they differ we use the linear operator methods. Additional

details of the Hamiltonian Matrix construction are shown in Appendix D.

2.4.3 Enforcing Constraints on the Looped State Normal
Modes with Delta Functions.

Our choice of comparison functions obey the angular constraints δ(θ1), δ(θ2), δ(ψ),

however they do not obey the end-point displacement constraints δ3(|~u|). We there-

fore need to explicitly compute the contributions of the δ-functions. The ith eigenmode
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is given by

~ξi(s) = ξi






ψi(s)

θ1i(s)

θ2i(s)




 = ξi

N∑

n=1






α
(i)
0n

α
(i)
1n

a
(i)
2n




φn(s) (2.55)

where the coefficients α are the components of the numerically computed eigenmodes.

The endpoint displacement ~ui scales with the eigenmode amplitude ξi, we then

determine the end-point displacement due to this eigenmode by integrating over the

entire length of DNA. The components of the displacement vector at the end point,

given by ~u(L) for the ith eigenmode are

~ui(L) = L

∫ 1

o

ds t̃i(s) = ξiL

∫ 1

o

ds
(
θi2(s)n̂1(s) − θi1(s)n̂2(s)

)
(2.56)

using the relationship to deformed curvature components and basis vectors eq. (2.7).

We evaluate the end point constraint in terms of x̂, ŷ, ẑ in the coordinate system of the

stress-free DNA. We therefore express our basis vectors in terms of x, y, z components,

the same coordinate system as the DNA position vector ~R,

~ui(L) =u1i(L)x̂+ u2i(L)ŷ + u3i(L)ẑ = ξiL (v1i(1)x̂+ v2i(1)ŷ + v3i(1)ẑ) (2.57)

where,

v1i =

∫ 1

o

ds
(
θi2(s)n̂1x(s) − θi1(s)n̂2x(s)

)
x̂

v2i =

∫ 1

o

ds
(
θi2(s)n̂1y(s) − θi1(s)n̂2y(s)

)
ŷ

v3i =

∫ 1

o

ds
(
θi2(s)n̂1z(s) − θi1(s)n̂2z(s)

)
ẑ (2.58)

Conjugate Variable Method

Now the displacements components uji within the δ-functions can be written in terms

of the eigenmode amplitudes ξi using a Fourier Transformation

δ(u1) = δ

(
N∑

i=1

u1i(L)

)

=
1

2π

∫

dµ1

N∏

i=1

exp(−iLµ1v1iξi) (2.59)
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then expanding all of displacement constraints we get

δ(u1(L))δ(u2(L))δ(u3(L)) =

∫
dµ1dµ2dµ3

(2π)3

N∏

i=1

exp

(

−iLξi
3∑

j=1

µjvji

)

(2.60)

We then use the expansion of the δ-functions in terms of the eigenmode amplitudes ξi

to explicitly compute the looped state partition function Zℓ. We will write Z̃ℓ to be the

looped state partition function, modulo the enthalpic contributions exp (−βEℓ − cf)

Z̃ℓ =

∫ ∞∏

i=1

dξi exp

(

−1

2
λi

(
ℓp
L

)

ξ2
i

)

δ(u1(L))δ(u2(L))δ(u3(L))

=

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi

(
ℓp
L

)

ξ2
i − iLξi

3∑

j=1

µjvij

)

. (2.61)

We now complete the square and shift the integration over ξi

Z̃ℓ =

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi

(
ℓp
L

)

ξ2
i

)

exp



−1

2

L3

ℓpλi

(
3∑

j=1

µjvij

)2




=

(
2πL

ℓp

)N/2 N∏

i=1

1√
λi

∫
dµ1dµ2dµ3

(2π)3
exp



−1

2

L3

ℓpλi

(
3∑

j=1

µjvij

)2


 . (2.62)

We write the product over the eigenvalues in terms of the determinant of the Hamil-

tonian, detH =
N∏

i=1

1√
λi

. The remaining integration over dµi is now computed by

collecting the conjugate variables into a vector as µ , [µ1, µ2, µ3],

1

λi

(
3∑

j=1

µjvij

)2

=
1

λi

[

µ1µ2µ3

]






v2
1i v1iv2i v1iv3i

v1iv2i v2
2i v2iv3i

v1iv3i v2iv3i v2
3i











µ1

µ2

µ3




 (2.63)

where we compute a constraint matrix Vi for every eigenmode ξi. We then define the

constraint matrix V as the sum over individual eigenmode constraint matrices

V ,

N∑

i

1

λi






v2
1i v1iv2i v1iv3i

v1iv2i v2
2i v2iv3i

v1iv3i v2iv3i v2
3i




 (2.64)
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then computing the integration over the conjugate variables of eq. (2.62), we compute

the looped state partition function

Z̃ℓ =

∫ ∞∏

i=1

dξi exp

(

−1

2
λi

(
ℓp
L

)

ξ2
i

)

δ(u1(L))δ(u2(L))δ(u3(L))

=

(
2πL

ℓp

)N/2
(

N∏

i=1

1√
λi

)
∫

dµ1dµ2dµ3

(2π)3
exp

(

−1

2

L3

ℓp
~µTV ~µ

)

=

(
2πL

ℓp

)N/2
1√

detHℓ

1

(2π)3

(
ℓp
L3

)3/2
√

(2π)3

detV
. (2.65)

The full details of the partition function calculation appears in Appendix E.

2.4.4 Contributions of the Looped State Normal Modes

Now that we have corrected for the δ functions, we examine other eigenmodes which

present additional challenges when computing the J factor, as well as quantify the

entropic contributions of the looped state eigenmodes Λℓ

Zero Modes

The first special case we discuss is the zero-stiffness eigenmode of the ring. When

instrinsically straight-DNA (~κo) is bent into a ring; a state with aligned end-point

tangent vectors, an eigenmode with zero stiffness arises, known as the zero mode. As

this eigenvalue approaches zero λo → 0, the integral
∫

dξo exp(−λoξ2) → ∞ appears

to diverge. However the J factor remains finite as the eigenmode causes the ring to

rotate out of the plane and back onto itself, making the deformation periodic and

hence the integral remains finite. The lowest eigenmode for planar shapes happens

to be linear λ1 ∝ Θ near Θ = 0; for this reason, we separate out the lowest looped

eigenmode in the calculation in order to make the treatment of this mode clearer.

The details of this computation appear in chapter 3.

The lowest mode contribution can be written as

Λℓ
1 =

∫

dξ1 exp(−1

2

ℓp
L
λℓ1ξ

2
1) =







√
2π
λℓ1

L
ℓp

, In general

2π , Zero mode
(2.66)

where the details of the zero mode calculation appear in chapter 3. It is also im-

portant to note that the contributions of λ1 to the delta function computations of V
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are included with the higher order modes. These modes are very straightforwardly

handled as Gaussian integrals

Λℓ
2:N =

∫ N∏

i=2

dξi exp(−1

2
λℓi
ℓp
L
ξ2
i )δ

3(|~u(L)|)δ(θ1L)δ(θ2L)

=

√
(

ℓp
2πL3

)3
1

det V

N∏

i=2

√

2π

λℓi

L

ℓp
(2.67)

where we can also write detHℓ =

N∏

i=1

λℓi
L

ℓp
. Note that the determinant formally

diverges, although as we see below, the ratio of open to looped determinants is finite.

Torsional Constraint Relaxation

Understanding the role of binding constraints on DNA loop formation is one of the

primary goals of this work. To this end we relax the torsional binding constraint

for nearly planar loops. This physical system allows the computation of an effective

torsional persistence length ℓ∗τ in a straightforward manner. We relax the torsional

constraint by considering the effect of an arbitrary moment on one of the DNA end-

points, and then relate the angular displacement to the input moment using the

Linear Operators introduced in the Galerkin Method.

The eigenmode spectrum can be split into two parts, those that have vanishing

endpoint angle ψ(1) and those that have an arbitrary angle and position ψL

N∏

i=1

λi =







ψ(1) = 0, Clamped Modes

ψ(1) = ψL, Unconstrained Mode
(2.68)

The eigenmodes which obey the torsional constraint ψ(1) = 0 are included in

eq. (2.67). In total, the angular alignment, referred to as phasing, can affect the J fac-

tor by several orders of magnitude. Relaxing the torsional constraint as described in

subsection 2 yields the relationship between moment and angular displacement, which

then allows us to quantify the contribution of the ψ(1) constraint on the looped state.

The effect of this constraint is twofold, it affects the Gaussian integral over ψL as well

as contributes to the constraint matrix V . We report the Gaussian integral results
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separately as

Λℓ
ψL

=

∫

dψL exp(−1

2
λℓψ
ℓτ
L
ψ2
L) =

√

2π

λℓψ

L

ℓτ
(2.69)

as indicated in eq. (2.68). When the torsional constraint is relaxed, the J factor no

longer scales as a function of ℓτ , which we discuss in section 2. See chapter 3 for more

details on the effective torsional persistence length ℓ∗τ .

2.4.5 Open State Normal Modes

The open state boundary conditions require that there are no forces or moments on

the end-points. These higher order boundary conditions then allow there to be ar-

bitrary positions ~u and angular orientations (ψ, θ1, θ2) of the end-points. However,

our choice of comparison functions limit the angular displacements of the end-points,

which must be corrected for properly. We complete the mode spectrum by adding

to it those modes which cause an angular displacement at the end points. The open

state normal modes can be broken down into two groups,

Eigenmodes with End Points ψ(1) = θ1(1) = θ2(1) = 0

These modes are the solutions to the open boundary conditions where the modes have

no endpoint angular deformations, and correspond to the modes we have found using

our basis functions above in eq (2.40). They are expressed in a straightforward way

as

βHo =
1

2

∞∑

n=1

λon
ℓp
L
ξ2
n (2.70)

where there is no enthalpic term as the open state is treated as the ground state.

The open state entropic contributions of the clamped modes are split up to facilitate

comparison to the looped state as

Λo
1 =

∫

dξ1 exp(−1

2
λo1
ℓp
L
ξ2
1) =

√

2π

λo1

L

ℓp
(2.71)

Λo
2:N =

∫ N∏

i=2

dξi exp(−1

2
λoi
ℓp
L
ξ2
i ) =

N∏

i=2

√

2π

λoi

L

ℓp
(2.72)
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where we can also write detHo =

N∏

i=1

λoi
L

ℓp
. The determinant formally diverges,

although as we see below, the ratio of open to looped determinants is finite.

Eigenmodes with End Point θ1(1), θ2(1), ψ(1) = arbitrary

In the open state, there are no constraints on the DNA endpoints, so we must also

consider arbitrary moments and forces on the endpoints. Using the Galerkin methods

in subsection 2 we compute the effect of fluctuations which leave θ1(1), θ2(1), ψ(1) 6= 0.

The entropic contributions simplify for an intrinsically straight rod as

Λo
ψ =

∫

dψL exp(−1

2

ℓτ
L
ψ2
L) =

√

2πL

ℓτ
(2.73)

Λo
θ1

=

∫

dθ1L exp(−1

2

ℓp
L
θ2
1L) =

√

2πL

ℓp
(2.74)

Λo
θ2 =

∫

dθ2L exp(−1

2

ℓp
L
θ2
2L) =

√

2πL

ℓp
(2.75)

although in the case of intrinsic curvature, as we see in chapter 5, the general form

is a matrix determinant as we can not easily separate out the effects of forces and

moments at the boundary.

2.5 Assembling the J factor Calculation

We now collect all of the enthalpic and entropic contributions to the J factor

J =
8π2

NA

Λℓ
1

Λo
1

Λℓ
2:N

Λo
2:N

Λℓ
ψL

Λo
ψL

1

Λo
θ1L

Λo
θ2L

e−βEℓ−cf . (2.76)

The enthalpic contributions to loop formation enter in the exponential as

βEℓ =
1

2

∫ 1

0

ds (~κ(s) − ~κo(s))T B(s) (~κ(s) − ~κo(s)) . (Enthalpy)
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The entropic contributions from the lowest eigenmodes from eq. (2.66) and eq. (2.71)

enter as

Λℓ
1

Λo
1

=







√
λo1
λℓ1
, In General

√
λo1
2π

ℓp
L
, Zero Mode.

(2.77)

The entropic contributions of eq. (2.67) and eq. (2.72) , which are the modes which

cause no angular displacement at the endpoints are given by

Λℓ
2:N

Λo
2:N

=
1

ℓ3p

(
ℓp
L

)9/2
√

1

(2π)3 detV

N∏

i=2

√

λoi
λℓi

(2.78)

where we have purposely altered the length scaling terms to be in terms ℓ3p. Then

the torsional constraint term of the looped mode in eq. (2.69) as well as the torsional

constraint correction from the open state in eq. (2.73) yield

Λℓ
ψL

Λo
ψL

=







√
ℓτ

2πL
, In general

√
1
λℓ
ψ

, No ψL constraint
(2.79)

we use the form the J factor without a torsional constrain ψL to derive an effective

torsional stiffness ℓ∗τ in chapter 3. The final contributions to the J factor come from

correcting for arbitrary displacement and orientations of θ1(L) and θ2(L) in eq. (2.74)

and eq. (2.75), for the open state equilibrium due to thermal fluctuations

1

Λo
θ1L

Λo
θ2L

=
1

2π

ℓp
L
. (2.80)

Carefully combining all of the contributions to the J factor, we arrive at the following

form for the general case J factor in terms of eigenvalues

J =
1

NAℓ3p

√

2

π

(
ℓp
L

)11/2
√

ℓτ
2πL

√

1

detV

N∏

i=1

√

λoi
λℓi
e−βEℓ−cf . (2.81)

Then writing the general case J factor in terms of determinants

J =
1

NAℓ3p

√

2

π

(
ℓp
L

)11/2
√

ℓτ
2πL

√

1

detV

detHo

detHℓ
e−βEℓ−cf . (2.82)
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Note that when bending stiffness is non-isotropic, the overall length scaling (ℓp/L)11/2

remains the same. The units of the J factor are inverse volume, it is customary to

convert this to molarity M. Then for the an equilibrium configuration with a zero

mode e.g. the ring

J =
1

NAπ

1

ℓ3p

(
ℓp
L

)6
√

ℓτ
2πL

√

λo1
detV

N∏

i=2

√

λoi
λℓi
e−βEℓ−cf (Torsionally Fixed Ring)

when we relax the torsional constraint subsection 2, we then recover the the J factor

for the torsionally free ring

J =
1

NAπ

1

ℓ3p

(
ℓp
L

)6
√

λo1
λℓψ detV

N∏

i=2

√

λoi
λℓi
e−βEℓ−cf (Torsionally Free Ring)

=32π3 1

NAℓ3p

(
ℓp
L

)6

e
−2π2 ℓp

L
− L

4ℓp (2.83)

as found by Shimada and Yamakawa [49]. The J factor also allows us to determine

the free energy cost of DNA loop formation, see chapter 4, as well as the ratio of

looping lifetimes, see chapter 5 for more information.

Truncation of Determinants

While the product of eigenvalues in eq. (2.67) and eq. (2.72) do not converge, the

ratio of determinants of the Hamiltonians for the open and looped state are finite. In

the limit of large N , the differences between the open and looped eigenmodes vanish,

as the spatial resolution of the eigenmodes is below the curvature of the states, and

only sees a straight segment. This fact allows us to truncate the ratio of modes after

the mth eigenmode as λom+1/λ
ℓ
m+1 → 1. In practice, m ∼ 20, which for DNA of the

order of ℓp corresponds to spatial node distances of 7.5 base pairs, which can safely

be regarded as continuous. The ratio of eigenvalues is

detHo

detHℓ
=
λo1 · · ·λom
λo1 · · ·λom

λom+1 · · ·λoN
λℓm+1 · · ·λℓN

=
λo1 · · ·λom
λℓ1 · · ·λℓm

. (2.84)
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2.6 Scaling

Understanding scaling allows us to fully characterize the systems at hand. The

eigenvalues scale as ℓp/L which accounts for the different scalings based on DNA

conformation.

J = Λ (Θ,Φ,Ψ)
1

NAℓ3p

(
ℓp
L

)11/2

exp

(

−1

2

ℓp
L

∫

ds (~κ− ~κo)2 − L

4ℓp

)

(2.85)

where angles Θ,Φ,Ψ represent arbitrary orientation angles of the DNA end-points,

e.g. see fig. 3.2 of chapter 3. Shimada and Yamakawa [49] provided two fundamental

examples, the ring and the averaged loop, which we discuss in depth in chapter 3. The

torsionally unconstrained ψL = arb. ring consists of DNA without a binding protein.

The DNA has aligned endpoint tangents, and the J factor is

J = 32π3 1

NAℓ3p

(
ℓp
L

)6

e
−2π2 ℓp

L
− L

4ℓp (Ring)

(2.86)

here we see that the scaling is (ℓp/L)6, as opposed to (ℓp/L)11/2 as presented in

eq. (2.85) above. The reason for this deviation is the presence of the zero mode, and

its associated entropic contribution presented in eq. (2.66). The next case is that

of the unconstrained loop, in which all orientations of Θ such that the end-points

are coincident, averaged over solid angle, see chapter 3 for more information. The J

factor is

Junc. = 110
1

NAℓ3p

(
ℓp
L

)5

e
−14.054

ℓp
L
− L

4ℓp . (Unconstrained)

(2.87)

again the scaling dimension differ from (ℓp/L)6, as the enthalpy is expressed as

E = E(Θ) ∝ Θ2 and when this angle is integrated over, an additional factor of
√
L/ℓp is introduced. These results are shown in more detail in chapter 3.
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Chapter 3

Planar Loops

3.1 Introduction

Calculating the probability that contact will occur between two distant ends of a

polymer under prescribed orientations is a long-standing question of considerable

significance in polymer physics. Yamakawa and Stockmayer expanded the Jacobson

Stockmayer (J) factor [21] using the Kratky-Porod wormlike chain (WLC) to compute

the angle-independent DNA ring-closure probabilities, otherwise known as cyclization

of DNA [62]. Cyclization is the process of forming loops of DNA without using a DNA

binding protein. Shimada and Yamakawa then included twist alignment of the end

points [49], which we refer to as phase angle Ψ, to explain the oscillatory with respect

to length, cyclization rates, measured by Shore and Baldwin on DNA shorter than

500 base pairs [50]. This phase dependence Ψ is based upon the DNA sequence length

and average helical repeat of 10.5 base pairs. If the DNA end-points are not properly

aligned when they come into contact, a large amount of twist will be required for

binding, reducing the probability of cyclization.

Shimada and Yamakawa calculated the J factor for the ring and unconstrained

loop averaged over solid angle [49], by treating DNA as a homo-polymer with coinci-

dent end points and parallel tangent vectors, as well as with coincident end points with

unconstrained tangent vectors, respectively, see fig. 3.2. Our semi-analytic computa-

tion of the J factor generalizes this closure probability to include arbitrary end-point

locations, binding orientations, sequence-dependent curvature and elasticity while

reproducing the earlier results of Shimada and Yamakawa for the ring and uncon-

strained loop. As many biologically relevant cases do not fit neatly into one of these

special cases, we generalize the computation of J factors to cover any nearly planar
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shape, as well as to build our intuition for protein mediated DNA loop formation.

3.1.1 DNA Cyclization

Our work can be used to predict DNA cyclization rates based upon sequence de-

pendent curvature and stiffness, as well as a function of DNA loop shapes. DNA

cyclization begins by purposely placing unpaired bases at the ends of a segment of

double stranded DNA, see fig. 3.1. These unpaired bases are referred to as overhangs

and are chosen to be complimentary to each other e.g. one end may be A−T −G−C
and the other would be G − C − A − T . Then when thermal fluctuations bring the

overhangs into contact with one another, the bases pair up and a loop of double

stranded DNA is formed. This loop is however transient as they bases are only held

together by Van der Waal interactions; the same fluctuations that form the loop are

able to break it. To stabilize the loop, a protein called ligase is used to fuse together

the sugar-phosphate backbone by forming a covalent bond. Although the details of

this enzyme are not relevant to our work, it is important to note that the concentra-

tion of ligase must be carefully regulated [14, 13], or the measured J factor will be

incorrect. Ligase can non-specifically bind to DNA, inducing local curvature, and if

the concentration of ligase is too high, the reaction kinetics will also be disrupted,

causing the measured J factor to be too large. If not enough ligase is present, then

loops of DNA will form and break down before the ligase can stabilize them, causing

the measured cyclization rate to be too low.

DNA	Overhangs‐

unpaired	bases

DNA	Overhangs‐

unpaired	bases

Figure 3.1 An example of unpaired DNA overhangs. The overhangs are chosen to be
complementary to each other, such that 3′ to 5′ of one strand pairs up with 5′ to 3′ of the
complementary overhang. This image was made using [19].

In experiments, the DNA overhangs must also be chosen carefully. Ideally they

would consist of equal number of AT and GC pairs, as all GC will give an overesti-

mate of the cyclization rate, and all AT will give an underestimate [14, 13, 8]. The
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reason too many AT yield a lower J factor is that the binding of these base pairs is

weak when compared to GC and it is likely that loops will break down before the

ligase can repair the backbone. The reason too many GC yield a larger J factor is

due to this stronger binding, as the experiment is intended to measure equilibrium

rates, and depends on the loop break down being fast, which is not the case with all

GC. The length of these overhangs is another critical component, as if they are too

short, they will have a harder time staying stable until the ligase can bind the DNA.

If the overhangs are too long, then the cyclization rate will be too high as the single

stranded DNA will be able to explore a larger than intended volume by the cyclized

sequence length. The J factor is measured through using Gel electrophoresis experi-

ments to separate DNA based on its radius of gyration, and the relative percentages

of cyclized to open state DNA is measured. The study of DNA cyclization is useful

way to characterize the physical properties of DNA, such as phase angle dependence,

sequence dependent stiffness and curvature. In this chapter we treat DNA as a ho-

mopolymer for the purposed of benchmarking the results of Shimada and Yamakawa

[49]. In chapter 6 we explore planar results with ℓ1 6= ℓ2.

3.1.2 Equilibrium States

In this chapter we study planar DNA loops in mechanical equilibrium with coinci-

dent end-points. The open state is intrinsically straight ~κ0 DNA with homogeneous

bending stiffness ℓ1 = ℓ2 = ℓp. The loops can by specifying three angle of relative

orientation Θ,Φ,Ψ, which are defined as the angles between the end-point tangent

vectors t̂(0) and t̂(1), as seen in fig. 3.2. We focus on planar loops (Φ = 0) with

clamped-clamped boundary conditions, whose curvatures can be analytically com-

puted using elliptical integrals [24]. In practice, however since we consider all values

of Θ, we instead use the rod model [15] to determine the equilibrium curvatures. In

addition, we study these loops without the torsional constraint δ(ψL), free rotation

of the overhangs is allowed even after the bases pair.
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Figure 3.2 We specify the coincident end-point equilibrium loops with by three angles
Θ,Φ,Ψ, which are functionally equivalent to Euler angles. Planar loops are a subset of
these, given by Φ = Ψ = 0. The left figure is an arbitrary open state with with boundary
conditions requiring no force or moment on the end-points. A set of body-fixed coordinate
vectors are displayed for reference. The right figure is the looped state with the same body-
fixed coordinate vectors from the open state shown for reference. We consider more general
loop shapes in chapter 4.

Loop Examples

The ring is defined by Θ = Φ = 0, where Ψ = 0, . . . , 2π. We refer to Ψ as the

phase angle and it should not be confused with ψ the phase angle deformation in-

duced by a thermal fluctuations. The teardrop Θ ∼ 0.54π ∼ 97o and Φ = 0. The

teardrop in interesting because it has vanishing end-point curvatures, so no moments

are required to hold it in place. The teardrop is the minimum energy planar loop

with Eℓ/kBT = 14.054 ℓp/L, this results from vanishing end-point curvatures, which

greatly reduce the looping energy. The final specific shape we note is the hairpin

Θ = π, φ = 0. These three shapes are plotted below in fig. 3.3.
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Θ

Θ

Figure 3.3 Two examples of planar loops, which are defined by Ψ = Φ = 0 and arbitrary
Θ. The loop on the left is the teardrop, which is defined by the vanishing curvature of the
end-points. The loop on the right is the hairpin, defined by anti-parallel tangent vectors
Θ = π, the large curvature of the end-points make this loop difficult to form, see fig. 3.6.

3.2 Planar Hamiltonian

The equilibrium curvature ~κℓ(s) state of the ring is given by

~κℓ(s) =(2π sin(ωs/2), 2π cos(ωs/2), ω) (3.1)

where ω is the native twist of DNA defined by the helical repeat, which on average

is 10.5 base pairs or ∼ 34.3◦ per base pair. However in this chapter we only consider

DNA with homogeneous bending stiffness, which means that we can set ω = 0 and

instead of using the body-fixed coordinates, we can use the Frenet-Serret coordinates

instead. In essence due to the lack of twist, the space-curve of the equilibrium shape

is sufficient to compute the needed equilibrium curvatures ~κℓ = (0, κ2(s), 0) . We will

examine many loop shapes from the ring, to the teardrop to the hairpin, see fig. 3.3.

We can derive the planar equilibria and curvatures by considering a straight rod with
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an axial force placed up on, as in [24], although in practice it is more convenient to

use the rod model [15] to compute the range of loop formation angle Θ = 0 the ring,

to Θ = π, the hairpin. A few examples of curvatures κℓ2(s) found using the rod model

are present in fig. 3.4.
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Curvatures found using the rod model.
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Θ = 0.15π
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Hairpin

Figure 3.4 The planar loops without twist can be described with a single curvature com-
ponent κ2, which is computed using the rod model [15]. The curvature of the ring is constant
κ2 = 2π ∀s, while the teardrop is no constant with vanishing end-point curvature.

3.2.1 Deformation Curvatures

We allow deformations due to thermal fluctuations to the planar loops κ1 = τ = 0,

which are formed from intrinsically straight DNA κo1 = κo2 = τ o = 0. The deformation

Hamiltonian (2.21) simplifies to

ℓ1κ̃
2
1 + ℓ2κ̃

2
2 =ℓ2κ

2
2 + 2ℓ2κ2θ

′
2 + ℓ1θ

′2
1 + ℓ2θ

′2
2 + 2(ℓ1 − ℓ2)κ2ψθ

′
1

+ (ℓ1 − ℓ2)κ
2
2ψ

2 − ℓ2κ
2
2θ

2
1. (3.2)

ℓτ τ̃
2 =ℓτ (ψ

′ − κ2θ1)
2. (3.3)
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The assumption of homogeneous stiffness ℓ1 = ℓ2 = ℓp, further reduces ℓ1κ̃1
2 + ℓ2κ̃2

2

to

ℓp(κ̃
2
1 + κ̃2

2) =ℓpκ
2
2 + 2ℓpκ2θ

′
2 + ℓp(θ

′2
1 − κ2

2θ
2
1) + ℓpθ

′2
2 (3.4)

Then the planar Hamiltonian decouples into planar and out of plane deformations as

βH(O(0)) =
1

2

ℓp
L

∫ 1

0

ds κ2
2 (Loop Formation Energy)

βH(O(1)) =
ℓp
L

∫ 1

0

ds κ2θ
′
2 (Equilibrium Term)

βH(O(2)) =
1

2

ℓp
L

∫ 1

0

ds θ′22
︸ ︷︷ ︸

In Plane

+
1

2

ℓp
L

∫ 1

0

ds
(
θ′21 − κ2

2θ
2
1

)
+

1

2

ℓτ
L

∫ 1

0

ds (ψ′ − κ2θ1)
2

︸ ︷︷ ︸

Out of Plane

(3.5)

(Normal Modes Terms)

The planar Hamiltonian contributes the same eigenmodes as does the open state θo2

modes which do not cause angular displacement at the end points. The contribution

of these modes do not strictly cancel out, as there are displacement constraints on the

looped state modes e.g. the looped state modes contribute to the constraint matrix.

3.3 Normal Modes

The open and looped state eigenmodes which cause no angular displacement at the

end-points are computed using the Hamiltonian Matrix method from subsection 2.

The contribution of the open state modes which cause angular displacements of the

end-point are found using the Linear Operator methods of subsection 2. The numer-

ics of the ring reveal a zero eigenmode, which we will verify the analytically. The

linear operators for the planar loop are

(δθ2) :θ′′2(s) = 0 (3.6)

(δθ1) :θ′′1(s) + κ2(s)θ1(s) +
ℓτ
ℓp
κ2(s)(ψ

′(s) − κ2(s)θ1(s)) = 0 (3.7)

(δψ) : (ψ′(s) − κ2(s)θ1(s))
′
= 0. (3.8)

51



We see from eq. (3.8) that ψ′(s)−κ2(s)θ1(s) = φ = constant. The torsional component

of the out of plane Hamiltonian is then simplified as

1

2

ℓτ
L

∫ 1

0

ds (ψ′ − κ2θ1)
2 =

1

2

ℓτ
L
φ2 (3.9)

Then substituting ψ′(s) − κ2(s)θ1(s) = φ into (3.7) we arrive at

θ′′1(s) + κ2
2(s)θ1(s) +

ℓτ
ℓp
κ2(s)φ = 0

then for the ring κ2(s) = 2π,

θ′′1(s) + 4π2θ1(s) + 2π
ℓτ
ℓp
φ = 0. (3.10)

3.3.1 The zero eigenvalue normal mode of the ring.

The ring offers a distinct challenge when computing the normal modes of the loop,

as it contains a zero eigenvalue. This eigenmode causes the entire ring to rotate

about the clamped end-points and is consistent with the boundary constraints im-

posed by δ3(~u), δ(θ1), δ(θ2). We remove the zero mode from the numeric computation

and compute its contribution to the J factor by hand.

If we consider the minimal torsion solution φ = 0 of eq. (3.10), subject the the

boundary conditions θ1(0) = θ1(1) = 0 and ψ0 = 0 and ψ(1) = ψL, we obtain the

zero mode

θ
(1)
1 = ξ1 sin(2πs)

ψ(1) = ξ1 (1 − cos(2πs)) . (3.11)

By inspection we see that eq. (3.11) satisfies δ(θ1), δ(ψ) as well as trivially satisfies

δ(θ2). The end-point displacement ~u1(1) of this mode

~u(1) = −L
∫ 1

0

dsθ1(s)n̂2(s) = −ξ1L
∫ 1

0

ds sin(2πs) n̂2 = 0 (3.12)

satisfies δ3(~u), and is therefore allowed by our boundary conditions and must be con-

sidered. We then substitute the zero mode into the deformation Hamiltonian eq. (3.5),
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and find

βH =
1

2
(4π2)

ℓp
L

∫ 1

0

ds(sin2 2πs− cos2 2πs) +
1

2

ℓτ
L
φ = 0, (3.13)

that this mode does not deform the equilibrium shape, or increase the energy of the

ring, hence it is properly referred to as the zero (eigen) value mode.

Zero Mode Contribution to the J factor

When we examine the contribution of the zero mode to the entropic coefficient Λℓ
1

Λℓ
1 =

∫ ∞

−∞

dξ1 exp(−1

2
λ̃1ξ

2
1) =

∫ ∞

−∞

dξ1(1), diverges (3.14)

it appears that the J factor diverges, although a more carefully consideration of this

mode reveals that it yields a finite contribution to the J factor.

Resolution of the zero mode

Consider now a clamped ring which lies within the xy plane as in fig. 3.5. The

end-points which are clamped, are located at the origin. The displacement of any

cross-section of the rod is then given by

~u(s) = −ξ1L
∫

ds sin(2πs)n̂2 =
ξ1L

2π
(cos 2πs− 1) n̂2 = −ξ1L

2π
(cos 2θ + 1)n̂2

= −2ξ1L

2π
cos2 θ ẑ (3.15)

where n̂2 = ẑ, ∀s, since only u3 6= 0, we refer to the displacement as u3. The distance

to any cross section element from the y-axis is given by

x =
2L

2π
cos2 θ. (3.16)
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Figure 3.5 Zero Mode of ring - (a) The deformation is different at each point along the
ring, depending on the distance from the y-axis. (b) The deformation cause the ring to
rigidly rotate about the clamped end-points located at (0, 0).

Our choice of deformation variables occludes the fact that the zero mode is actu-

ally a rigid body rotation since the rotation angle φR is the same for all points off the

y axis

φR ,
u3

x
= ξ1

−2L
2π

cos2 θ
2L
2π

cos2 θ
= −ξ1 = constant ∀ s, (3.17)

where we treat u3 ≈ φRx, see fig. 3.5. We now see that ξ1 can be related to the rota-

tion angle φR, and is therefore periodic and bounded. Then returning to eq. (3.14),

we see that Λℓ
1 is finite and yields

Λℓ
1 =

∫ ∞

−∞

dξ1 exp(−1

2
λ1
ℓp
L
ξ2
1) =

∫ 2π

−∞

dφR = 2π (3.18)

The zero mode influences the scaling dimensions of the J factor by not canceling out

the corresponding
√

L/ℓp from the open state, resulting in a scaling factor of
(
ℓp
L

)6

instead of
(
ℓp
L

)11/2

.
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3.3.2 Relaxing the torsional constraint for the ring.

We will now use eq. (3.10) to relax the torsional constraint δ(ψL) for the planar loop

and compute the torsionally unconstrained J factor. We must first however consider

the case in which φ = 0, with the torsional constraint ψL = 0, which we will see is

the zero eigenvalue normal mode.

We relax the torsional constraint by removing δ(ψL) from the J factor calculation

in order to compute an effective torsional persistence length ℓ∗τ , the computation of

ℓ∗τ is shown in section 3. The removal of the torsional constraint requires that we

integrate over any arbitrary orientations of ψL, as we did for the open state modes in

subsection 2.

We now solve for the torsional displacement allowed by removing of δ(ψL). The

solution of the differential equations of eq. (3.10) subject to the boundary conditions

θ1(0) = θ1(1) = 0 and ψ0 = 0 and ψ(1) = ψL is

θ1 =
1

2π

ℓτ
ℓp − ℓτ

ψL(cos(2πs) − 1)

ψ =
1

2π

ℓτ
ℓp − ℓτ

ψL sin(2πs) + ψLs. (3.19)

This contribution of this solution to the Hamiltonian is

∫

dψL exp(−βH) =

∫

dψL exp(−1

2

ℓp
L

ℓτ
ℓp − ℓτ

ψ2
L) =

√

2πL

ℓp

ℓp − ℓτ
ℓτ

. (3.20)

At first glance this solution appears unusual, as in general ℓτ > ℓp, and the result of

(3.20) is therefore negative. This calculation is however incomplete, as this torsionally

unconstrained solution also contributes to the δ3(|~u|) constraints, which will result in

an overall positive contribution. Then computing the contribution of the torsional

mode to the constraint matrix we see that

~uτ = −L
∫ 1

0

ds

[
1

2π

ℓτ
ℓp − ℓτ

ψL(cos(2πs) − 1)

]

ẑ = −ψLL
1

2π

(
ℓp

ℓp − ℓτ

)

(3.21)

where we compute the contribution to the total constraint matrix from this mode as

Vτ =
1

λτ






0 0 0

0 0 0

0 0 v2
3




 =

1

(2π)2

ℓp
(ℓp − ℓτ )






0 0 0

0 0 0

0 0 1




 (3.22)
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The constraint matrix without the contribution of the this torsional mode is

Vsub =






0.0127 0 0

0 0.0127 0

0 0 0.0507




 (3.23)

using the isotropic stiffness values of ℓτ = 1.5ℓp = 75. Then the total constraint

matrix is

V =






0.0127 0 0

0 0.0127 0

0 0 −0.0253




 (3.24)

which has a negative determinant. Then combining this result with eq. (3.20) to

compute Λ, we obtain a real result for the J factor. The total J factor without the

torsional constraint is independent of ℓτ for ℓτ > ℓp. An instability exists for ℓτ ≤ ℓp,

e.g. nicked DNA, which requires an alternative treatment of the problem.

3.4 Contributions to the J factor

The J factors for nearly planar loops are shown for a range of loop formation an-

gles Θ. We compute the J factors with the torsional constraint J(ψL=0) and without

the torsional constraint J(ψL 6=0) in order to compute an effective torsional persistence

length ℓ∗τ as outlined in section 3. We say nearly planar, because as we will see, bend-

ing and twist become coupled due to the loop formation. This coupling affords easier

out of plane thermal deformations, so our equilibrium shapes should be thought of as

nearly planar loops.

3.4.1 Enthalpic Contributions

The loop formation energy as a function of angle Θ and its associated enthalpic con-

tribution to the J factor is seen in fig. 3.6. The Teardrop shape has the lowest strain

(enthalpic) energy, 14.4 ℓp
L
kBT , of any of the in-plane shapes, and is where the end-

point curvatures of the loop vanish. The loop formation energy E(Θ) can be well fit

to quadratic, yielding a Gaussian contribution to the J factor. The loop formation
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energy is

βE(Θ) =
1

2

∫

κ2
pds = 2.02(Θ − 0.54π)2 + 14.054, (3.25)

In order to recover the unconstrained J factor averaged over solid angle of Shimada

and Yamakawa [49], we use eq. (3.25) in the limit of ℓp → 0. This limit is necessary

because the J factor is integrated over loop formation angle Θ, which does not scale

as a function of length.
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Figure 3.6 (a) The loop formation energy Eℓ is strongly dependent on loop formation
angle Θ. The rod model [15] computations are given by the solid circles, the numeric fit
βEℓ(Θ) is given by the dashed lines. (b) A demonstration that the quadratic fit of βEℓ is a
good approximation. The enthalpic contributions vary strongly with loop formation energy.
The length in (a) and (b) is one persistence length ℓp.
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3.4.2 Entropic Coefficient

The entropic coefficient Λ(Θ) is computed for torsionally constrained and uncon-

strained DNA loops of sequence length L = ℓp. The loop formation angle is swept

out from the Ring Θ = 0, to a Teardrop Θ ∼ 0.54π and finally to the Hairpin

Θ = π, as seen in fig. 3.8. The lowest eigenvalue of the in-plane loops can be well

approximated as λℓ1 = 2πΘ for relatively small angles Θ, see fig. 3.7.
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Figure 3.7 The three lowest looped eigenvalues as a function of Θ. The lowest mode λ1

can be approximated using 2πΘ for relatively small angles. The lowest mode at Θ = 0 is
symmetric, and the second lowest mode is antisymmetric, they swap positions where the
eigenvalues meet, at which time the antisymmetric mode begins to dominate the J factor.

Factoring out the contribution of λ1 from Λ(Θ) reveals a slowly varying component

with respect to Θ, which we call γ(Θ), see fig. 3.8. The slowly varying component is

γ(Θ) = 21.66Θ2 − 21.10Θ + 147.82. (3.26)

We will alter γ(Θ) when we numerically fit the J factor with analytic functions in

section 3.
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Figure 3.8 The entropic coefficient Λ(Θ) is largely dominated by contributions from the
lowest eigenmode of the loop, λℓ1(Θ). To illustrate this dependence, we write Λ(Θ) =
f(λℓ1(Θ))γ(Θ), where f(λℓ1) contains only the contributions of the lowest eigenmode λℓ1.
The function f(λℓ1) is given by Λℓ2:N/Λ

o
2:N , and γ(Θ) is given in eq. (3.26). It is then clear

that γ(Θ) is a slowly varying function on the interval (Θ = 0) to (Θ = 0.54π), and then
steadily increases on the interval from Θ = 0.54π to Hairpin (Θ = π). The shift in behavior
of γ(Θ) occurs after the lowest eigenmode changes from symmetric to antisymmetric. Even
for relatively short DNA Λ(Θ) is shown to effect the J factor by an order of magnitude in
fig. 3.11. The units are in terms of Molarity, although this plot is not intended to represent
a physical quantity, rather it shows the dependence of Λ and subsequently J to the lowest
eigenmode.

3.4.3 The J factor dependence on Θ and Length

The J factor is strongly dependent on Θ as seen in fig. 3.9. The sensitivity near

the ring is due largely to entropic effects Λ, while the teardrop and the hairpin have

nearly the same entropic contribution, the enthapy dominates and results in a large

difference in their J factors.
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Figure 3.9 The J factor computed with the torsional constraint JψL=0(Θ) is shown by
the darker circles, and without the torsional constraint J(ψ 6=0)(Θ) is shown by the lighter
circles. The DNA length was chosen to be L = ℓp to sidestep scaling concerns and to clearly
show the dependence of loop formation angle Θ.

The J factor for the ring, teardrop and hairpin as a functions of length are

Jring = 32π3 1

ℓ3p

(
ℓp
L

)6

exp

(

−2π2 lp
L

− L

4lp

)

Jteardrop = 151
1

ℓ3p

(
ℓp
L

)11/2

exp

(

−14.054
ℓp
L

− L

4ℓp

)

(3.27)

Jhairpin = 140
1

ℓ3p

(
ℓp
L

)11/2

exp

(

−18.165
ℓp
L

− L

4ℓp

)

. (3.28)
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Figure 3.10 The J factor for three planar loop shapes as a function of length.

3.5 Demonstration of the Importance of Entropic

Effects on Short Length Scales

It is clear that for short lengths of DNA, enthalpy is the major contribution to the

J factor, so naturally one is inclined to consider whether or not variations of the

entropic coefficient are even needed for these short lengths. We demonstrate that

entropy is essential to computing the J factor for all lengths by plotting our numeric

calculation of the J factor against two J factors created by only considering enthalpic

variations due to Θ coupled with constant entropic coefficients . We use the entropic

coefficient for the ring Λ(Θ0), and that of the unconstrained loop averaged over solid

angle 〈Λ(Θ)〉. We then treat Λ 6= Λ(Θ), or more precisely, ignore any variations due

to changing entropic contributions. The results are quite striking for DNA of L = ℓp,

as this DNA is quite stiff and enthalpy dominates the J factor, although it is unable

to set the absolute scale of the looping probability, as seen in fig. 3.11. There are

regions of J = J(Θ) where entropic variations due to Θ have a small effect, as shown

by the teardrop region of Θ = 0.54π, although near the ring, Θ = 0, the variations of

Λ are quite pronounced. In summary, the enthalpic contributions can tell us which
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of two equilibrium loops is worth considering, although it can not provide us with a

sense of scale in terms of end point concentrations of properly aligned end-points.
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Figure 3.11 - A comparison of three J factors with the identical enthalpic contributions
exp(−βEℓ(Θ) − cf ), and different entropic contributions Λ. The entropic coefficient com-
puted for each value of Θ considered is represented by solid circles. We compare this result
to that of an approximation using the ring Λ0 and unconstrained 〈Λ(Θ)〉 loop by assuming
these contributions are constant for all values of Θ, given by the dotted circles and dotted
triangles, respectively. In this way we demonstrate via several orders of magnitude differ-
ence that the entropic changes are vital to the calculation of the J factor. Small angles and
Hairpin structures are poorly described by the enthalpic only unconstrained loop extrapo-
lations of the J factor. These results are for DNA of length 50 nm and increase in difference
as length is increased.

3.6 Effective Torsional Persistence Length

For planar loops we computed the J factor with the torsional constraint J(ψL=0) and

without the torsional constraint J(ψL 6=0). The main difference between these two re-

sults is the torsional stiffness to length scaling. The torsionally constrained rod has

an additional scaling term
√

ℓτ/L, while J(ψL 6=0) is independent of the torsional per-

sistence length ℓτ , which we have confirmed numerically. We relaxed the torsional

62



constraint by considering arbitrary rotations of ψL in addition to the other normal

modes. The change to the J factor is similar to that of the correction to the open

state modes which cause angular displacement of the end-points. The J factors can

then related by an effective torsional persistence length ℓ∗τ as

J(ψL 6=0) =

∫ ∞

−∞

dψL exp(−1

2
λψ
ℓτ
L
ψ2
L)J(ψL=0) =

√

2π

ℓ∗τ
JψL=0 (3.29)

where the deformation of the rod cause by the angular displacement ψL is still con-

strained by δ(θ1), δ(θ2), δ
3(|~u|). It is also important to note that λψ is not strictly

an eigenvalue, as the differential equation constructed using the linear operators is

a boundary value problem; it is however equivalent to the torsional stiffness of any

arbitrary moment about the end-point tangent which results in an angular displace-

ment ψL subject to the boundary constraints of the looped rod. We then solve for ℓτ

as

ℓ∗τ = 2π

(
J(Θ)ψ=0

J(Θ)ψ 6=0

)2

. (3.30)

The effective torsional persistence length is in essence the torsional softening which

occurs due to equilibrium loop shape leading to coupling of the bending and torsional

degrees of freedom within the out of plane deformation Hamiltonian. The effective

torsional persistence length can be written as a torsional and bending spring in series

1

ℓ∗τ
=

1

ℓτ
+ α(Θ)

1

ℓp
, (3.31)

ℓ∗τ = ℓτ
1

1 + α(Θ)σ
(3.32)

where σ , ℓτ/ℓp. The function α(Θ) contains all of the angular dependence of ℓ∗τ ,

which we plot ℓ∗τ and α(Θ) in fig. 3.12. As the geometry of the loop changes with

angle Θ, the torsional stiffness ℓτ of the rod couples more strongly with the bending

stiffness ℓp, which results in decrease of the effective torsional stiffness of the system.

To illustrate this point, one may consider a straight rod that is bent into a ring of

constant curvature, if one of the end points is twisted, the ring will initially remain

planar. By contrast, if one considers twisting one end of a teardrop shape, the loop

will immediately leave the plane, demonstrating the coupling of torsion and bending.

The effective torsional persistence length represents the conversion between twist and

writhe.
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Figure 3.12 (a) The effective torsional persistence length, ℓ∗τ in units of ℓp as a function
of loop formation angle, Θ. The Ring has pure torsional modes with stiffness λi

ℓτ
L and as

Θ increase the bending and torsional modes become coupled, reducing the effective tor-
sional persistence length. (b) The torsion-bending coupling α(Θ) shown as open circles, is
quadratic from the Ring to the Teardrop as seen by the dashed line. From the Teardrop to
the Hairpin, α(Θ) is cubic in Θ.
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In fig. 3.12, it is clear that α(Θ) has as simple quadratic dependence up until the

Teardrop shape and afterwards becomes cubic in Θ

α(Θ) =
1

2π2
Θ2 − 1

6π3
Θ, 0 ≤ Θ ≤ 0.55π, (3.33)

α(Θ) = 0.42Θ3 − 2.55Θ2 + 5.46Θ − 3.87, 0.55π ≤ Θ ≤ π (3.34)

3.7 Numerical Fit for Planar J factors

In this section we will fit entropic coefficient Λ(Θ) to analytic functions for ease of

use. The J factor for the planar loops can be written as

J(Θ) = Λ(Θ) exp

(

−ℓp
L
βE(Θ) − L

4ℓp

)

(3.35)

(3.36)

where Λ(Θ) can be split into two pieces, one which dominates the variations of

Λ(θ) and another slowly varying component γ(Θ)

Λ(Θ) =

[
Λℓ

1

Λo
1

]

︸ ︷︷ ︸

Dominant variation
with Θ

×
[ √

2
√
πλψ detV

(
N∏

i=2

√

λoi
λli

)(
ℓp
L

)11/2
]

︸ ︷︷ ︸

γ(Θ), Slowly varying with Θ

(3.37)

The dominant variations are due to the lowest looped eigenmode λℓ1, which sug-

gests that we base our numeric fit on the influence of Λℓ
1/Λ

o
1. We begin by redefining

ξ1 to extract the scaling dimensions, ξ1 =
√

L
ℓp
ξ̃1, which leads to

Λℓ
1

Λo
1

=

√

λo1ℓp
2πL

∫ +∞

−∞

dξ1 exp(−1

2

ℓp
L
λl1ξ

2
1) =

√

λo1
2π

∫ +∞

−∞

dξ̃1 exp(−1

2
λl1ξ̃

2
1). (3.38)

Now we consider λ1(1−cos ξ1) because when the normal mode amplitude is small,

when compared to 1, λ1(1−cos ξ1) ∼ λ1ξ
2
1 . This substitution for the lowest eigenmode

allows us to introduce a Bessel function into the numeric fit for J . The Hyperbolic

Bessel Function, I0(z) is defined as
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I0(z) =
1

2π

∫ π

−π

dx exp(±z cosx). (3.39)

Then recalling the zero mode change of limits of integration, we shift to −π to π

and substitute the Hyperbolic Bessel Function into eq. (3.38). The ratio of entropic

coefficients is now

Λℓ
1

Λo
1

=

√

λo1
2π

∫ +∞

−∞

dξ̃1 exp(−1

2
λl1ξ̃

2
1) ≈

√

λo1
2π

∫ π

−π

dξ1 exp(λl1(1 − cos ξ1)

=
√

2πλo1 exp(−λl1)I0(λl1) =
√

2πλo1 exp(−2πΘ)I0(2πΘ) (3.40)

It is important to keep in mind that there is no inherent meaning to using the

Hyperbolic Bessel Function, it simply serves as a good fitting function, and these de-

tails are provided to motivate why it was used. We showed in fig. 3.7 that the lowest

looped eigenmode could be approximated as λℓ1 = 2πΘ for small Θ. We will use this

fit for then entire range of Θ in this numeric fit. The total entropic coefficient is then

give by

Λ(Θ) = I0(2πΘ)e−2πΘγ(Θ)
1

ℓ3p

(
ℓp
L

)11/2

(3.41)

where the slowly varying component γ(Θ) is now given by

γ(Θ) =365Θ2 − 525Θ + 32π3, (3.42)

where the ordinate intersection has been chosen to align with the torsionally un-

constrained ring. The slowly varying component is different from eq. (3.26) as it

now contains the corrections of using the Hyperbolic Bessel Function, the ordinate

intersection, as well as the lowest looped eigenvalue approximation. The total planar

J factor is then given by
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J(Θ) = I0(2πΘ)e−2πΘγ(Θ)
1

ℓ3p

(
ℓp
L

)11/2

exp

(

−ℓp
L
βE(Θ) − L

4ℓp

)

(3.43)

βE(Θ) =
1

2

∫

κ2
pds = 2.02(Θ − 0.54π)2 + 14.054, (3.44)

where Θ is the loop tangent angle in radians and units of Molarity. This numeric

fit is excellent, with a maximum error of less than 1%, for all Θ. The length scaling

of the fit must be slight modified from (ℓp/L)11/2 to (ℓp/L)6 for the ring (Θ = 0) due

to the presence of the zero mode.

3.8 Comparison to Known Results

Shimada and Yamakawa provided two special cases for the in-plane J factors [49]:

the Ring defined by aligned tangents, Θ = 0, and the unconstrained loop. Zhang

and Crothers [63] arrived at different results for these J factors using their base pair

harmonic mode computations, although the reason for the difference remains unclear.

We have reproduced the ring and unconstrained loop results to within 0.01% using

our continuum rod model in agreement with Shimada and Yamakawa. The two mod-

els should not yield significantly differ results since the radius of curvature is much

greater than the DNA bond length. We also compute nearly the same ring and loop

energy as Zhang and Crothers, and they computation of normal modes should be

comparable, although they do not mention the zero eigenvalue for the ring, which

may indicate that they did not treat it properly. Finally Zhang and Crothers con-

structed their delta functions constraint matrix differently than our method, which

could yield a different determinant. These factors may be the lead to the discrepancy

in their results.

3.9 Conclusions

The results presented here are for near planar DNA loops with coincident end points

and arbitrary loop tangent angle Θ. In this paper we present results for DNA of the

length 50nm or approximately 14 helical repeats, so we will assume ℓ1 = ℓ2. We treat

the DNA as a homogeneous polymer with bending and torsional persistence lengths

of 50 nm and 75 nm, respectively.[52, 17, 5]. While DNA is a heteropolymer with
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anisotropic bending persistence lengths ℓ1(s) 6= ℓ2(s), this anisotropy largely averages

out after a few helical repeats (∼ 10.5 base pairs) as demonstrated by Kehrbaum and

Maddocks [22].

We have developed a generalized approach for computing J factors of arbitrary

loop shapes, which may include sequence-dependent stiffness and curvature and re-

produces the results of Shimada and Yamakawa for the ring and unconstrained loop.

We have shown that the J factor varies strongly for near planar loop shapes as a

function of loop tangent angle Θ for intrinsically straight DNA with isotropic bend-

ing stiffness. The in-plane J factors can be well fit with analytic functions for all Θ.

We have defined an effective torsional persistence length ℓ∗τ and subsequence torsion-

bending coupling α(Θ) which are shown to vary significantly as a function of loop

formation angle, Θ. Finally, our calculation is computationally very quick, taking

only a few minutes per J factor for any set of input boundary conditions.
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Chapter 4

LacI Induced Loops

4.1 Protein Mediated Loop Formation

DNA loop formation can occur in many ways, with multiple binding and architectural

proteins, as well as several binding sites on the DNA molecule itself. We begin with

the simplest protein mediated loop formation, which involves binding of two DNA

operators to a single protein. The canonical example of this type of looping is the Lac

Operon in E. coli, as there is only one binding protein known as the Lac Repressor,

and three DNA binding sites, known as operators. Binding of the lac Repressor to

any two of these sites will constitute the loops which we focus on within this chapter.

In many ways, E. coli serves as the Hydrogen Atom for biophysics, as it is a relatively

simple and very well characterized system. Experiments by Müeller-Hill, et al. [39]

have demonstrated that the ability of DNA to form loops and repressor the LacZYA

genes were affected strongly by small changes in the DNA length. This effect was

semi-periodic which correlated with the 10.5 base pair helical repeat of DNA, which

was similar to the phasing cyclization data of Shore et al [50]. Subsequent crystaliza-

tion of the lac repressor and DNA operator segments into co-crystal by Lewis et al.

[26], confirmed that the observed phasing was due to specific end-point orientation

requirements for binding to the Lac Repressor. This phasing is due to the fact that

every base base pair rotates the end-point orientation of DNA by about 34◦.

4.1.1 Lac Repressor

The Lac Repressor is a homotetramer bound into two dimeric arms, adjoined at the

C-terminus, which two DNA binding head groups, see fig. 4.1. The orientation of the
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DNA at the operator regions is also highly specific, as the head groups of the LacI

protein will only bind to properly oriented DNA, requiring us to consider the helical

repeat of DNA, and determine the phase angle Ψ at the DNA end point relative

to the protein. Several distinct loops are possible, which we refer to as binding or

loop topologies since they can not be converted into another of these loop topology

without first breaking the LacI-DNA binding. This general DNA-protein complex

has spatially separated end-points as well as prescribed angles (Θ,Φ,Ψ) which are

obtained from DNA-protein co-crystals with LacI protein serving as the canonical

example [26].

4.2 Binding Topologies

We classify the DNA loop topologies by the dot product of the two end point tan-

gent vectors. When the dot product is positive, we say it is a parallel (P ) topology,

and when the dot product is negative, we say it is anti-parallel (A) topology. The

inter-operator DNA also has a directionality defined by the 5′ to 3′ direction, so the

direction which the DNA binds to the LacI protein also serves to define two topo-

logical distinctions, forward and reverse. The inter-operator length does not include

the 21 base pair DNA operators bound to the LacI head groups. If the DNA enters

the LacI head group with the 5′ to 3′ direction facing into the protein, we refer to

that as the forward direction, and the opposite as the reverse direction. In total

these variation account for 8 topologies. The orientation of DNA to LacI requires a

specific angular alignment which requires the DNA major groove to have a specific

orientation relative to the LacI head group, therefore we need to consider the DNA

phase angle Ψ, which is determined by the helical repeat. We consider the two lowest

energy bound state solutions, referred to as the under- and over-twisted states, as

mentioned in chapter 2. There are many different twist states corresponding to Ψ

e.g Ψ = 3π, 4π, 5π, although the energetic cost is so large as to prohibit their consid-

eration. The addition of phase angle Ψ brings our total number of possible binding

topologies to 16. We find however that after making some simplifications that in

general we only need to consider the two topologies, P1 and A1, see fig. 4.1.

The wild type E. coli system has three operators separated by 77 and 305 base

pairs. The central operator O1 has the strongest binding of the three. The strength

of this binding is partially do to the nearly palindromic nature of the DNA sequence.

The lack of palindromic DNA operators means that all binding topologies of DNA do
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not bind with equal strength, and some may not be physically possible, e.g the P1

loop may have a high J factor, although the operator may not be able to bind under

this orientation, therefore the loop will not form. In this work however, we treat all

operators as palindromic, or Osym and therefore consider the most probable binding

topologies. There are several reasons loop topologies are important. In this work we

have assumed ideal operators, although in wild type systems this is not typically the

case. It is possible for the binding strength of the DNA to an operator to be strong

in one direction and then weak in the other direction for non-palindromic operators.

The implication of this fact is that while one loop topology may be very probable, the

likelihood that the DNA will actually bind to the protein or even remain stably bound

is very low. It is not possible to crystalize DNA loops which are bound to the lac

repressor, and therefore unable to determine their structure using X-ray diffraction.

Therefore, another method to determine the structure, and our model predicts which

topologies should form and be stable.

Figure 4.1 The two main topologies we consider are characterized by the manner with
which their end-point tangent vectors, shown above, bind to the lac repressor, a roughly
v-like structure, shown in blue. The plot on the left is the parallel topology P1 and the
plot on the right is the anti-parallel topology A1. Each of these two binding topologies have
two twist states. In general there are 8 distinct topologies with two twist solutions each,
bringing the total number of topologies to be considered to 16. Twisting and bending the
DNA will not change the binding topology.

4.2.1 Twist

After considering the bending required to get the DNA end point near the lacI head

group, the end point must also be twisted to align with the phase angle Ψ required by

the helical repeat. The helical repeat determines the orientation of the second DNA
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operator relative to the first DNA operator when forming a loop. For example, it may

be easy to form a loop when bound to one operator, but the second operator could be

180◦ rotated from the required boundary conditions. Meeting this requirement leads

to an overall change to the DNA twist, ∆Tw.

Figure 4.2 There are two rotations of the DNA end points which align the DNA with the
LacI head groups and allow binding to the Lac protein. One rotation increases the twist
of the DNA and the other decreases the twist of the DNA. The state shown here without
additional twisting is referred to as the minimal twist state as it generally has the lowest
twist energy.

As mentioned in chapter 2 these two solutions are classified by how they change

the twist of the DNA

∆Tw =
1

2π

∫ 1

0

ds
(
τ ℓ(s) − τ o(s)

)
,where







∆Tw < 0, Under-twisted,

∆Tw > 0, Over-twisted.
(4.1)

In practice we find two solutions for each phase angle as we sweep through all possibili-

ties of Ψ, although we do not necessarily determine if the loop is over- or under-twisted

as we are generally interested in if a loop forms of a given topology, rather than its

twist state.

4.2.2 Topological Simplifications

While the exact in-vivo structure of LacI is not known, LacI was crystalized by Lewis

et al. [26] and subsequent molecular dynamics computations have shown the crystal

structure to be a good approximation of the equilibrium shape [58, 57]. The LacI

protein is not perfectly symmetric about the central axis, and given the limitations
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of the structural knowledge of LacI, we neglect this difference and treat LacI as if

it were symmetric. We are able to capture this lack of asymmetry by altering our

boundary conditions, although without knowing for certain the in vivo structure, and

considering we treat the protein as perfectly rigid, we neglect the difference for now.

We also consider the DNA operators to be palindromic Osym, therefore the forward

and reverse direction of the DNA can also be neglected. These simplifications leave

us with two parallel P1 and P2 and one antiparallel A1 solution along with the over-

and under-twisted solutions, reducing the total number of possible binding topologies

with two twist states that we need to consider to 6, although we also find that P2 is

much higher in energy and therefore we do not consider it here.

Figure 4.3 Since the Lac Repressor is a homotetramer, we expect the protein to be sym-
metric about the central axis. We demonstrate the small asymmetry of Lac Repressor by
rotating the right half of the Lac Repressor protein by 180◦ about the central axis shown
above. We treat the protein as if it were perfectly symmetric [30], which results in a de-
viation of the crystal structure of less than 10 Angstroms and a rotation of less than 10
degrees from those found using X-ray crystallography by Lewis et al. [26]

4.3 Loop formation energy as a function of length

In this chapter we consider intrinsically straight DNA ~κo = 0 with isotropic bending

stiffness ℓp = ℓ1 = ℓ2. We consider DNA equilibrium states with inter-operator DNA

lengths from 50 to 650 base pairs. These equilibrium states are found using the rod
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model of Goyal et al. [15]. The enthalpic cost of loop formation with minimal twist

energy as a function of length is given in fig. 4.8. In practice, the rod model is used

to compute all angles of twist by slowly rotating one of the end points through 4π,

while finding an equilibrium at each angle, as demonstrated by Lillian et al. [27].
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Figure 4.4 (a) The loop formation energy as a function of length for the minimum twist
state, which does not take into account the helical repeat when angularly aligning Ψ for the
loop binding. The teardrop has also been plotted for comparison of loop formation energy,
and it is clear that the separation of end-points due to the lac repressor has a large effect
on the required loop formation energy. (b) The loop formation energy has a strong phase
dependence Ψ, which caries over to the J factor computation. The phasing allows P1 to
be comparable to A1, as opposed to the minimal twist state. We assume a helical repeat
of 10.5 base pairs.

We see that the Anti-parallel loops A1 have the lowest loop formation energy

for short lengths of DNA, and then as length is increased, the P1 and A1 loops be-

come comparable. The energetic cost of P2 loops are so much higher that we do not
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consider them until longer lengths of DNA.

4.4 Normal Modes

We proceed with computing the normal modes as outlined in chapter 2. For a given

length and topology, we compute the normal modes for each equilibrium state value

of ψ. In chapter 3 we found that the eigenmodes were decoupled into planar and

out-of-plane modes. The lac mediated loops are strongly coupled, involving all three

deformation variables θ1, θ2, ψ, over the space of modes, until the modes become in-

sensitive to the loop curvature, as described in section 2. In general a few more modes

are needed for lac mediated loops than for the planar self-contact loops. An example

of a normal mode for A1 and P1 are given in fig. 4.5 and fig. 4.6, respectively.
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Figure 4.5 The lowest positive eigenmode for DNA of length L = 150 basepairs for the A1
topology. In contrast to the planar loops where θ2 was decoupled from θ1 and ψ, the normal
modes of the DNA-lacI system typically include all three deformation variables θ1, θ2, ψ.
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Figure 4.6 The lowest positive eigenmode for DNA of length L = 150 basepairs for the
P1 topology. The mode is highly coupled in θ1, θ2, ψ. This mode is nearly the same stiffness
as the A1 loop above, although its behavior in terms of θ1 and θ2 is quite different.

The normal modes are very sensitive to phase angle. We see that the lowest mode

remains the most sensitive compared to the other modes. The negative eigenmode

does not cause concern because the constraint matrix corrects for this value. The

interpretation is that the loop can relax to a lower energy state if we allow displace-

ments of the end-points, which is to be true if it were not for the presence of δ3(|~u),
see fig. 4.7.
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Figure 4.7 The three lowest eigenvalues for both twist states of the A1 binding topology
as a function of Ψ for three lengths, L = 50, 100, 150 base pairs. The eigenvalues have a
strong phase angle dependence, although we will see below that when combined with the δ
functions to form Λ, does not lead to a large phase dependence in the entropic coefficient.

4.5 J factor Computations

We compute the J factor as a function of length L and Phase Angle Ψ and topology

A1 and P1. We find that in general, the A1 loop topology is the most probable

topology for DNA loops of less than ∼ 200 base pairs. For loops longer than 300

base pairs, the effect of phasing on preferred topology is greatly diminished. For a

given length we compute the J factor for for Ψ = 0, . . . , 2π, for both over- and under-

twisted DNA loops for the two topologies we consider. From these computations,

we initially consider the most probable loop formation state, previously referred to

as the minimum twist state. We begin by considering DNA loops which satisfy the

boundary conditions required for DNA-lac co-crystals [26], although we do enforce the

phase angle requirement specified by the helical repeat. We instead consider the most
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probable loop formed, irrespective of the phase angle. Typically this loop requires

little twist, so we refer to it as the minimum twist state. We then find that in terms

of length alone, the A1 topology is preferred for DNA less than 200 base pairs. We

also find that after 300 base pairs, the P1 loop begins to become more probable than

the A1, though the difference in their probabilities is small. These loops in general

are highly non-planar, and have comparably probable binding topologies. The role

of enthalpy is to prohibit short loops from forming due to the amount of curvature

per base pair required, and then at longer lengths, enthalpy becomes less dominant

as entropic effects take over. The role of entropy starts out small, and then becomes

dominant at longer lengths. The entropic contributions set the physical scale of the

J factor in terms of inverse volume, which we then convert to Molarity.

4.5.1 Preferred Topologies as a function of Length for Mini-
mum Twist State

We begin by considering the two equilibrium states with minimum twist energy. The

enthalpic contributions strongly affect the J factor at lengths under a persistence

length, and then after nearly two persistence lengths, the loop formation energy

becomes a small effect on the J factor, see fig. 4.8.
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Figure 4.8 The enthalpic contributions to the J factor decrease with length, as the loop
formation energy decreases. In general it is easier to form the A1 loop for DNA less than
200 base pairs in length. When we consider phasing, this plot will show A1 and P1 getting
closer at shorter lengths, although in general A1 requires less bending per base pair to form
a loop and therefore remains easier to form.

The entropic contribution to the J factor for P1 and A1 loops with minimal twist

are given in fig. 4.9, when loop formation energy decreases, entropic effects begin to

dominate the J factor. The effect of the entropic coefficient increases with length,

the pure dimensional scaling , given by ρ is

ρ =
1

ℓ3p

(
ℓp
L

)11/2
√

ℓτ
2πL

(4.2)

where the contribution of
√

ℓτ
2πL

did not appear for the planar loops since we consid-

ered them to be torsionally free at the end-points.
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Figure 4.9 The entropic contributions span 5 orders of magnitude over this length range.
The scaling term ρ is shown for clarity. While the units are technically that of Molarity,
this plot is intended to show only the minimum twist entropic contribution and should not
be considered separately.

The entropic contributions to the J factor span 5 orders of magnitude over the

length range of 50 − 650 base pair, or roughly 16 − 220 nm. The length scaling is as

expected in chapter 2. The entropic coefficient slightly favors the A1 binding topol-

ogy, although the numeric difference between the entropic coefficient for these two

topologies is very small overall for intrinsically straight DNA bound in the minimum

twist state.

The J factor for DNA under 200 base pairs is larger for the A1 binding topology.

On longer length scales, the difference in the required curvature per base pair is low

enough that the A1 and P1 loops become comparable without considering the effects

of phasing. The reason for the preferred topologies is the end-point curvatures for

P1 remain much larger than those of A1 resulting in a suppression of P1 binding

topologies. We now have a measure of large and small probabilities for DNA loop

formation from 50 − 650 base pairs. These results for the J factor will serve as our

basis of comparison for intrinsically curved states, as seen in chapter 5.
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Figure 4.10 The J factor for the minimal twist states as a function of length show a
clear preference for A1 over P1 for lengths under 200 base pairs. The separation of DNA
end-points required for looping due to the distance between the LacR head groups makes
the looping more probable, as seen by comparison with the teardrop, which is the lowest
energy loop for planar shapes. Also shown here is the ring, which remains the least probable
loop throughout due to the difficulty of aligning the end-point tangents. The bending and
torsional persistence lengths are 50 and 75 nm, respectively.

4.5.2 The Preferred Topology is a function of Phase Angle
Ψ

The computation of the J factor for the minimal torsion loop revealed that for lengths

under 200 base pairs, the A1 topology was preferred. We now examine how phase an-

gle affects this preferred topology. For a given length of DNA we compute all potential

phase angles and then use the proper helical repeat to determine which J factor is

needed. On average DNA has a helical repeat of 10.5 base pairs although since each

base pair difference changes the phase angle by roughly 34 degrees, sequence effects

can alter this repeat, even if only locally while leaving the overall sequence with a

helical repeat of 10.5 base pairs on average. While the J factor for each of the two

twist states for each DNA binding topology are different, the question we are seeking
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to answer is what is the probability that a loop of a given topology will form, not

what is the probability of the over-twisted state, so we sum the two J factors for each

length. In general only one of the two twist states contribute meaningfully, as is seen

in fig. 4.11. We see that after a certain angle Ψ it if easier to loop if instead the DNA

twisted in the other direction. In general, only one solution meaningfully contributes

to the J factor, except in regions where the two states are comparable.
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Figure 4.11 We present the two J factor solutions for every possible phase angle. In gen-
eral only one of the solutions contributes meaningfully to the J factor, as seen by the dotted
line. In principle one is over-twisted, and the other is under-twisted, although both would
be equally capable of gene regulation where they meet near Ψ ∼ 3π/2, so their combined
contribution is used to compute the total J factor. The actual twist of each state would
need to be determined by integrating the torsion τ ℓ. Note that there normally appears to
be a cusp in the J factor, which is due to this summation and not some inherent numerical
instability.

Now we turn our attention to the effect of twist as a function of length. We see in

fig. 4.12 that P1 retains a large phase sensitivity from 50 − 200 base pairs, whereas

A1 becomes less sensitive to phase. We see that as DNA approaches 200 base pairs

that the difference in binding topologies becomes less important as phasing can bring

the two loops close enough to be roughly equally probable. At least two methods can

be used to test these predictions. The first method is Tethered Particle Microscopy

(TPM) by computing ratios of looped lifetimes for different lengths. The ratio of
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open τ o to looped τ ℓ lifetimes is given by

τ ℓ

τ o
=
J

co
exp

(
ǫ

kBT

)

(4.3)

where ǫ is the binding strength of the LacI protein and DNA operators, and co is a

reference concentration, normally take to be 1M. While we do not know the precise

value of ǫ, it is the same for each topology.

The second method is Fluroescense Resonance Energy Transfer (FRET) by plac-

ing markers ahead of and behind the DNA operator segments. Then by measuring

the FRET efficiency, a determination of which loop topology was present would be

possible, and for regions where both topologies are equally probable, an equal mixture

of the two states should be seen, see chapter 6 for more information.
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Figure 4.12 The J factor for A1 and P1 become comparable as length is increased due to
phasing effects of the DNA operators. The wild type helical repeat phase angle determined
by 10.5 base pairs, has been indicated on each plot by ΨWT These computations could be
used to determine FRET efficiency.

4.5.3 The Dependence of Length on Phase Angle

We now examine the effect of the phase angle Ψ on the J factor as a function of

length. We assume that DNA has a helical repeat of 10.5 base pairs, although the

exact number does not change the qualitative results, only the relative location of the

peaks and valleys within the J factor. The value of the phase angle is determined by
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dividing the length by the helical repeat and then using the remainder to determine

the proper orientation to determine the proper angle for the A1 and P1 loops. In

fig. 4.13 we separately plot the enthalpic and entropic contributions, as well as the

total J factor over a range of 30 base pairs in order to demonstrate the effect of phas-

ing. The amount of phase dependence within the enthalpic contributions dominate

the phasing of the J factor. The entropic contributions do not in general show a

strong phasing effect, although this fact is not surprising when you consider the ex-

ponential nature of the enthalpic contributions versus the multiplicative nature of the

entropic terms within the J factor. The entropic contributions of the normal modes

also enter in through a square root, further suppressing any variations for a short

length. We will see however that when intrinsic curvature is added to the DNA, that

this is not always the case in chapter 5. The introduction of phasing shows that while

the minimal torsion loop shows a clear preference for the A1 topology for DNA under

200 base pairs, that phasing can change this picture and allow P1 to be competitive

when A1 is difficult to form.
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Figure 4.13 The top plot shows the enthalpic contributions to the J factor for a helical
repeat of 10.5 base pairs. Both loop topologies show a strong phase dependence, although
P1 has a greater variation. The middle plot shows the entropic contributions for the J
factor to be relatively phase independent, and while not shown here, continue to behave
this way ever at longer lengths of DNA. The bottom plot shows the J factor for A1 and
P1, and demonstrates that variations in the enthalpic contributions as a function of length
tend to dominate the J factor.

The J factor exhibits a strong phase angle dependence over a great range of loop

lengths. In fig. 4.14 we assume a helical repeat of 10.5 base pairs then examine its

effect for a large range of lengths. We find, as expected, that for shorter lengths, the

phase dependence has a large effect on the J factor, up to several orders of magni-
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tude. Then for longer lengths of DNA we see that the effect of phasing is diminished,

having less than an order of magnitude effect on the J factor. We also see that the

P1 loop has a stronger dependence on the phase angle than the A1 loop. This strong

dependence is due to the difficulty of forming the DNA loop in a smaller volume and

requiring more curvature per base pair for poorly phased DNA loops.
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Figure 4.14 The J factor as a function of length and phase angle Ψ for a helical repeat
of 10.5 base pairs. The top plot shows that for short lengths of DNA ∼ 115 base pairs, the
operator phasing can have a 5 orders of magnitude effect on the J factor. We see in the
middle plot that near the peak of the J factor, ∼ 275 base pairs, the operator phasing has
about an order of magnitude effect on the J factor. Finally in the bottom plot, we see that
for very long lengths of DNA ∼ 650 base pairs that phasing has a considerably diminished
effect of less that an order of magnitude. Throughout however P1 continues to have the
strongest phasing dependence for intrinsically straight DNA.
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4.6 J factor Components

Our independent computation of enthalpic and entropic contributions to the J fac-

tor allows a greater qualitative understanding of the overall behavior with respect

to length. In fig. 4.15 we present the minimal torsion J factor for the A1 binding

topology. On this plot, we overlay the enthalpic and entropic contributions in order to

illustrate their effect on the J factor. From the perspective of increasing loop length,

the J factor is initially constrained by the enormous amount of energy needed for

such short loop formation, as seen by the solid line. then as entropic contributions

become larger, they begin to suppress the J factor as the enthalpic contributions

yield. The net result is peak in the J factor near 300 base pairs, and then entropic

effects begin to dominate, bringing the J factor down again. This entropic dominance

can be understood by recognizing that there is a larger conformational space available

to the longer DNA molecule, and therefore it requires a larger change of entropy to

form the loop.
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Figure 4.15 Initially the J factor is dominated by the loop formation energy Eℓ, although
Eℓ scales as ℓp/L, so as length increases, the enthalpic contribution exp(−βEℓ) tends to-
wards 1. The entropic terms scale as (ℓp/L)11/2, so as length increases, Λ dominates as it
tends towards 0, and pulls the J factor peak down with length. There is a region where
the enthalpic resistance to looping is lessening as quickly as the conformational space is
increasing for the entropic terms and pulls down the looping probability. Within this region
the J factor plateaus for a period, and then as enthalpy can lessen no more, the J factor
then begins decreasing again.
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4.7 Free Energy versus Length

The J factor can also be related to the change of free energy ∆G cost of loop formation

J = coe
−β∆G (4.4)

and co is a reference concentration, normally take to be 1 M. The free energy cost

of loop formation was recently computed using Monte Carlo methods by Towles et

al. [55] for DNA mediate loop formation. These results are in good agreement with

our minimal twist solutions; although we disagree as to the magnitude of phase de-

pendence on the J factor. We predict a larger torsional variation in the free energy,

although we would expect this difference as Towles et al. [55] used a different form

of the stiffness tensor B(s), where they included twist-bend coupling, which should

lessen the effect of phasing, especially for short lengths of DNA where any additional

flexibility will greatly lower enthalpic contributions, see fig. 4.8. Towles et al. [55]

also computed the protein binding differently, considering the DNA operators as each

binding to two sub-regions of the Lac repressor head groups as well as treated the full

asymmetry of LacI. The fact that we are in agreement for the minimal twist state,

demonstrates a validation of earlier simplifications. There are also some clear dis-

agreements with Towles et al., as they find the P2 loop to remain comparable to the

P1 loop for very short lengths of DNA L 100 base pairs, which seems contradictory

to the prevailing data, as the curvature required to form P2 necessitates a very large

loop formation cost, and greatly suppresses the J factor. In addition, they show a

relative phase insensitivity for A2 and not for A1 over all lengths considered. It is

unclear to us why this would be the case at this time.
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Figure 4.16 The free energy for the minimum twist states for A1 and P1 as a function
of length. We find larger torsional variation than Towles et al. [55].

Figure 4.17 Monte Carlo results by Towles and Nelson, the light blue/green are A1 loops,
and the red/dark blue are P1 and P2 loops.

The loop formation energy for P2 at short length scales is much higher than those

of A1 and P1, so it is unlikely these Monte Carlo results are correctly interpreted at

those lengths.
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4.8 Conclusions

We have computed J factors for Protein mediated DNA loop formation which focus

on the Lac Repressor system. We have shown that DNA looping depends strongly

on length, phase angle and allowable binding topology using our J factor computa-

tion. We independently compute the enthalpic and entropic contributions to the J

factor for arbitrary boundary conditions. We have also computed the J factor for the

A1 and P1 binding topologies and discussed the implications of a preferred binding

topologies for wild type systems, as well as for modeling more general systems for

structural biologists. We have shown that the operator phase angle Ψ is critical for

determining the most probable binding topology for intrinsically straight DNA bound

to the lac repressor for DNA lengths under ∼ 225 base pairs. Over the length scales of

50− 650 base pairs, the P1 binding topology continues to have the strongest phasing

dependence for intrinsically straight DNA.

We are also able to make some predictions about the wild type system. All things

being equal, that is without considering proteins such as HU which induce non-specific

curvature into DNA, we would expect the wild type system to have A1 as its 77 base

pair loop topology, and A1 and P1 in roughly equal proportions for the 305 and 382

base pair loops. We are also able to indicate a regime of inter-operator DNA lengths

could be used to test the predictions of our model using Tethered Particle Microscopy

and bulk FRET measurements. We quantitatively agree with Towles et al. [55] when

looking at the Gibbs free energy for the minimal torsion state of the A1 and P1

topologies. Our computation of any topology for a given length and full range of Ψ

from 0 to 4π takes under 5 minutes, making this model extremely computationally

efficient.
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Chapter 5

Intrinsic Curvatures

5.1 Introduction

In this chapter we study the effect of intrinsic curvature ~κo 6= 0 on DNA loop for-

mation. This intrinsic curvature typically results from sequence-dependent base pair

stacking. Each set of base pairs tilt the centerline of the DNA helix away from a

straight line, e.g. imagine building a tower with wedges rather than square blocks.

On average however this tilting and twisting of a random DNA sequence will average

out, resulting in a linear molecule, see fig. 5.1. Intrinsic curvature can also be induced

by architectural proteins which we will discuss further in chapter 6. In the case of

architectural proteins, bending and torsional stiffness of the DNA-protein complex

would have to be carefully considered. In this chapter we study DNA sequences with

intrinsic curvature resulting from Adenine tracts (A-tracts), which have be shown to

dramatically increase loop stability [37] in lac repressor mediated DNA loop forma-

tion. Previous works by Goyal, Lillian et al. have shown that in principle, intrinsic

curvature due to A-tracts can greatly reduce loop formation energy Eℓ and preferred

looping topology [16, 29].

A major hinderance to DNA loop formation of relatively short DNA is the large

energetic barrier required to surpass in order to form the loop. However, if the DNA

has an intrinsic curvature which is aligned with the desired loop curvature, then the

overall loop formation energy Eℓ will be greatly lowered as

βEℓ =
1

2

∫ 1

0

ds (~κ(s) − ~κo(s))T B(s) (~κ(s) − ~κo(s)) . (5.1)

In this chapter we continue to treat the stiffness tensor B(s) as diagonal with homo-
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geneous bending stiffness, ℓ1 = ℓ2 = ℓp.

The intrinsic curvature of an A-tract is due to the repeated placement of AT base

pairs on the length scale of a helical repeat. The individual twist and tilt effects due

to this ordering are cumulative as a result. Coordinated placement of each A-tract

leads to the A-tract bends. This cumulative affect of this coordinated tilting and

twisting is to induce super-helical curvature and torsion of the DNA molecule in ad-

dition to the normal double stranded helix, see fig. 5.1. We will consider A-tracts that

are approximately 80 base pairs in length [29]. According to the SHS model [29], the

principle curvature and torsion of the helical domain is 0.0098 rad/A◦ ∼ 2.81 deg/nm

and 0.0074 rad/A◦ ∼ 2.12 deg/nm, respectively. This SHS structure is a close ap-

proximation, varying by less than 1nm along the DNA sequence, of the structure

provided by the model.it tool which uses the tri-nucleotide model to predict DNA

structure [40].

5.2 Experimental Studies of A-tract Bends

A series of DNA constructs containing A-tracts and two DNA operators were de-

signed by Mehta et al [37] to test the hypothesis that intrinsic curvature should make

loop formation easier. In order their constructs contained a DNA operator, then a

region of straight DNA, referred to as a linker region, then their A-tract sequence,

followed by another linker region, then finally terminated by a DNA operator. They

varied the length of the two linker regions in order to rotate the DNA binding op-

erator orientation relative to the A-tract bend, and modify the phase angles ψ1 and

ψ2, see fig. 5.1. In this manner they could sweep out both phase angles with only a

modest change to overall sequence length. They found that their constructs formed

loops with the lac repressor and remained looped for a significant amount of time

when compared to intrinsically straight DNA. In general, wild-type or intrinsically

straight DNA loops are found to last for nearly 30 minutes, while these designed

A-tracts sequences lasted for over 24 hours. The primary difference between the two

sequences is the intrinsic curvature, which suggests that eq. (5.1) leads to the proper

intuition when considering intrinsic curvature. In addition to the Gel electrophoresis

experiments, Morgan et al. [38] were also able to measure the loop binding topology

for these constructs using FRET methods.

These designed sequences are interesting because they allow us to carefully con-

sider the effects of intrinsic curvature in a controlled manner. Since DNA is highly
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compactified within cells, we know that it must exist in a highly bend or curved

state, understanding the effects of curvature on DNA loop formation is essential to

understanding DNA within a cellular environment.

95



Tilted Forward

Ψ1

Ψ2

Tilted Backwards

Linker Regions

Figure 5.1 The top figure shows that a random sequence of base pairs is on average
straight, or lacks intrinsic curvature ~κo = 0. We see that some base pairs tilt forward, while
other base pairs tilt backwards. The bottom figure shows the Straight Helical Straight ap-
proximation (SHS) of Lillian et al. [29], for the zero temperature A-tract design sequences
of Mehta et al. [37]. There are two straight linker regions (light gray/yellow) are flanked
by DNA operators (not shown). These linker regions border the central curved A-tract
region (dark gray/red). The intrinsic curvature of the A-tract is due to carefully repeating
AT base pairs along the DNA length such that their collective tilt is complementary and
the result is super-helical intrinsic curvature. Imagine pulling out blocks from a Jenga(tm)
tower from the same side and then gently twisting the structure. The length of the linker
regions control the two phase angles Ψ1 and Ψ2, two phase angles are now required due to
the intrinsic curvature. By adding and subtracting a base pair from the left and right hand
side, respectively, these phase angles can be changed. According to the SHS model [29],
the principle curvature and torsion of the helical domain is 0.0098rad/Å and 0.0074rad/Å,
respectively.
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5.3 Modeling the A-tract Structure

These constructs were numerically studied by Goyal et al. [16] and shown to be much

more energetically favorable than straight DNA. Continuing this work, Lillian et al

[30] theoretically investigated the A-tracts bends design space spanned by two phase

angles Ψ1 and Ψ2, see fig. 5.1.

The A-tract sequences we examine are flanked by two idealized LacI operators.

They have an inter-operator DNA length of 142 base pairs, which is of the order

of ℓp, so we do not encounter any length scaling difficulties when comparing differ-

ent sequences. The typical linker region lengths are on the order of 30 base pairs

each, and the A-tract length is on the order of 80 base pairs. The collective struc-

ture of the linker-A-tract-linker DNA sequence is referred to as the Straight Helical

Straight (SHS) approximation [30]. While the initial binding angle was not required

for straight symmetry due to rotation symmetry about the end-point tangents, the

A-tracts require two phase angles Ψ1 and Ψ2 to describe the binding properly. It

is important to remember that while the topologies are referred to as parallel and

antiparallel, the binding domains on the lac repressor are not parallel.

The total DNA length of 142 base pairs is kept fixed by adding and subtract-

ing one base pair from the two linker regions. The exploration of this design space

revealed that parallel binding topologies were now possible, while the same length

of straight DNA strongly favors antiparallel binding for all orientations of the phase

angle Ψ.

5.4 Results

We compute J factor over the design space of the A-tract sequences to determine

how intrinsic curvature affects DNA loop formation as well as the preferred binding

topology. The lac repressor mediated loop formation is now dependent on two phase

angles Ψ1 and Ψ2 due to the addition of intrinsic curvature. We also examine how

much of a change relative to straight DNA exists. We also compare how our predic-

tions of loop lifetimes compare to the results of Mehta et al. [37] Finally we compare

our J factor topology predictions to those computed by Morgan et al. [38].
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5.4.1 The effect of curvature on loop formation

The intrinsic curvature of the A − tracts greatly reduce the cost of DNA loop for-

mation, some loops are as low as 4.8kBT , in contrast on this length scale, the lowest

minimal torsion A1 loop for straight DNA is approximately 12 kBT . Overall the

loop formation energy is in general much less for at least one A-tracts bend binding

topology, even in regimes where the twist energy is very high, as we see in fig. 5.2.
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Figure 5.2 The energy required to form a loop with pre-bent DNA is generally less than
straight DNA for at least one of the DNA binding topologies. Exceptions occur in regions
where phasing is in extreme opposition to the loop forming. In contrast to straight DNA,
we see that for this 142 base pair DNA that both A1 and P1 binding are allowed and
comparable over a large range of Ψ1 and Ψ2. As Ψ1 is rotated, the most probable loop
changes quickly from A1 to P1 and back, based on Ψ2.

The exponential suppression to the J factor loop formation energy exponentially
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suppresses DNA loop formation as exp(−βEℓ, although as we say in chapter 4, increas-

ing DNA length lowered this barrier and greatly enhanced the J factor, analogously

the intrinsic curvature generally lowers the loop formation barrier.

5.4.2 Binding Topologies

As with the intrinsically straight DNA, the A-tracts have two preferred topologies

A1 and P1, with P2 being so much higher energetically that we do not consider it

here. In contrast to the intrinsically straight DNA, the A-tracts sequences do not

show a clear preference to parallel or antiparallel binding topologies. We begin by

examining how the energetics of the topologies change with respect to the new phase

angle Ψ1 and the previous Ψ2. These angles are determined by the straight DNA

linker regions. Adding a base pari before or after the A-tract shifts the phase angle

by ∼ 34◦. We see a much larger contrast in terms of enthalpic contribution to the J

factor for the A-tract sequences, we even see that for some cases, the straight DNA

is preferred, although for the vast majority of cases, the A-tracts have a much lower

energy and therefore higher J factor. We understand the regions where the straight

DNA is preferred by considering the prebent sequence being oriented such that the

bending required for loop formation is such that it needs to bend against its intrinsic

curvatures, thus raising the loop formation energy dramatically.

Antiparallel Binding Topologies

For straight DNA in chapter 4 we observed that the A1 binding topology was rela-

tively insensitive to this phase angle in terms of order of magnitude difference of the

J factor, this fact is no longer generally true for these A-tract sequences. We do see

that for Ψ = 6.21 rad a region of relative phase insensitivity, see fig. 5.3.
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Figure 5.3 The J factor for the Antiparallel A-tract loops for various phase angles Ψ1 are
always higher than the best Antiparallel straight DNA of the same length (solid line). Here
we see a strong dependence on Ψ2, compared to the same length of straight DNA shown
by the solid line. We also see that the J factor is 105 times larger for some configurations
of Ψ1 and Ψ2. As we rotate through Ψ1 we see a hill and valley structure, beginning with
Ψ1 = 1.19 rad. (triangles), we rise with Ψ = 3.70 rad. (squares) and then fall with Ψ = 4.96
rad. (circles) and then reach the valley near Ψ1 = 6.21 rad. (asterisks).

Parallel Binding Topologies

The Parallel loops show a very similar phase dependence as the straight rod, although

the magnitude of the difference in J factor is much larger for the pre-sequences, al-

though in general for all values of Ψ1 and Ψ2, the pre-bending increases the likelihood

of DNA loop formation, see fig. 5.4. This consistency of looping probability for the

parallel loops make these topologies competitive with antiparallel topologies, as op-

posed to the straight rod where the antiparallel was preferred on this length scale for

nearly all phase angles.

5.5 Preferred Looping Topologies

We now compare the two binding topologies for several combinations of Ψ1 and Ψ2

We find that we agree with the FRET determination of the loop binding topologies

measured by Morgan et al. [38], see fig. 5.5
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Figure 5.4 The J factor for the Parallel A-tract loops for various phase angles Ψ1 are
generally higher than the best Antiparallel straight DNA of the same length (solid line).
Here we continue to see a strong dependence on Ψ2. This dependence is larger in magni-
tude than for straight DNA P1 loops. We also see that the J factor is 106 times larger
for some configurations of Ψ1 and Ψ2. As we rotate through Ψ1 we see a hill and valley
structure, beginning with Ψ1 = 1.19 rad. (triangles), we fall with Ψ = 3.70 rad. (squares)
and then fall further with Ψ = 4.96 rad. (circles) and then climb back up near Ψ1 = 6.21
rad. (asterisks). We have not yet found any regions of phase insensitivity for P1 loops.

The FRET data of Morgan et al. [38] and Loop Formation Energy consideration

of Lillian [29] indicate that 9C14 is a P1 loop, although the J factor calculation

reveals that there may also be a very probable A1 loop as well. The reason for

this dual binding topology comes from considering the over- and under-twisted DNA

binding topologies for A1. Neither of the states are as probable as P1, although their

combined probability is comparable, see fig. 5.6

5.5.1 Loop Lifetimes

The Gel electrophoresis experiments of Mehta et al. [37] shows that the loop stability

of these A-tract sequences is much higher than that of straight DNA. We can use the

J factor to compute the ratio of open τ o to looped τ ℓ lifetimes by

τ ℓ

τ o
=
J

co
exp

(
ǫ

kBT

)

(5.2)

101



10
−10

10
−8

10
−6

10
−4

 

 

10
−10

10
−8

10
−6

10
−4

 

 

10
−10

10
−8

10
−6

10
−4

 

 

10
−10

10
−8

10
−6

10
−4

 

 

00

00

1

2
π1

2
π

1

2
π1

2
π

ππ

ππ

3

2
π3

2
π

3

2
π3

2
π

2π2π

2π2π

Ψ1 = 1.19 rad. Ψ1 = 3.70 rad.

Ψ1 = 4.96 rad. Ψ1 = 6.21 rad.

Ψ2Ψ2

Ψ2Ψ2
J
(M

)

J
(M

)

J
(M

)

J
(M

)

A1A1

A1A1

P1P1

P1P1

7C16

11C12∗

11C12†
9C14

Figure 5.5 Comparing the J factors for several values of Ψ1 and Ψ2 we are able to indi-
cate the expected topologies for the A-tract constructs of Mehta et al. [37]. We verify the
FRET results of Morgan et al. [38]. We find taht 7C16, on the top left plot is A1 binding,
and that 11C12 is most probably A1 binding as well. The 11C12 sequence lies between
Ψ = 3.70 rad. and the Ψ = 4.96 rad. plots, at Ψ1 = 4.5 rad. and Ψ2 = 1.7 rad. The
third sequence, 9C14 is seen on the bottom right plot as P1 binding, although the difference
between A1 and P1 is small. We will look closer at 9C14 in fig. 5.6.
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Figure 5.6 The J factor for the 9C14 sequence indicated the most probable loop topol-
ogy as being P1, however careful consideration of the two possible A1 states, for over- and

under-twisted DNA binding reveals that the
∑
A1i states roughly

1

2
as probable as P1 mak-

ing it more competitive than either of the two individual states as previously considered.
One of the strengths of our model is locating the regions where two topologies can coexist.

where ǫ is the binding strength of the LacI protein and DNA operators, and co is a

reference concentration, normally take to be 1 M. While we do not know the precise

value of ǫ, it is only a function of operator strength and not binding topology. There-

fore we can write a ratio of looped lifetimes for the A-tracts to Intrinsically Straight

DNA using their respective J factors

τ ℓA
τ oA

=
JA
JS

τ ℓS
τ oS

∼ 105 τ
ℓ
S

τ oS
(5.3)

where τ ℓA/τ
ℓ
A is the ratio of looped to open lifetimes for the A-tract sequences, and

τ ℓS/τ
ℓ
S is the ratio of looped to open lifetimes for the straight sequences. The mea-

surements by Mehta et al. indicate that the A-tracts bound to lac repressor are

stable for at least 24 hours, while the straight DNA was stable for about 30 minutes.

These results could be further tested through TPM measurements of different A-tract

sequences and then comparing the ratio of their lifetimes.
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5.6 Conclusions

We present the the first semi-analyitc computations of J factors for sequences con-

taining intrinsic curvatures. It is important to remind the reader that we have not

taken into account the spatial location of the lac repressor protein, therefore some

of these topologies may be physically unavailable due to steric blocking by the lac

repressor. However, throughout the design space, the protein mediated A-tract loops

show a greatly enhanced J factor, on the order of 105 higher than equivalent straight

sequences of the best binding conditions. In general, the A-tract induced curvature

facilitates DNA loop formation, even in cases where phasing effects are quite large.

It appears that the worst phased A-tract has at least one binding topology which is

comparable in J factor as the best equivalent straight DNA for DNA of the order of

1 persistence length. The methods introduced here could also be used to compute

looping for systems which contain architectural proteins e.g. Hu or IHF, by asking

how probably is loop formation after the architectural protein binds to the DNA,

assuming the bending and torsional stiffness is the bound region were reasonably well

known.
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Chapter 6

Extensions

6.1 Future Extensions

We propose a few ways that the our model can be extended. These topics are roughly

listed in order of increasing challenge. We begin by discussing Heterogeneous elas-

ticity, which we are able to capture in the rod model as well as the normal mode

analysis, although our current results are very preliminary.

6.1.1 Heterogeneous Elasticity

We have modeled DNA as a homogeneous molecule with uniform bending stiffness,

while in reality, DNA has a major and minor groove that have different bending stiff-

ness values. Experimentally it is very challenging to measure the two stiffness values

separately, so bulk or averaged effective persistence lengths ℓp are measured instead.

Kehrbaum et al. [22] have shown through computational results that the difference

from heterogeneous stiffness quickly averages out quickly past a few helical repeats.

Others have challenged this assumption in the presence of off-diagonal coupling terms

in the stiffness tensor [53, 55]. A clear experimental system which shows the difference

in these two assumptions, or the necessity of a more complicated structure for the

stiffness tensor B(s) has not yet emerged.

We should be able to provide clear predictions for experimental systems, based on

small variations in stiffness values, or helical phasing in a computationally efficient

manner. To this end we have begun computing equilibrium configurations for planar

loops as well as lac repressor loops. Our computations thus far find that for loops as

short as 42 base pairs, there is no significant loop formation energy difference from
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those with homogeneous stiffness for a diagonal stiffness tensor B(s). Computations

of normal modes have shown similar phase dependence, however a full computation

of these effects is still in progress.

Approach

The typical effective bending stiffness is 50 nm. Monte Carlo results by Towles et

al [55] have incorporated heterogeneous stiffness values based on the di-nucleotide

model of Coleman et al [9], given our good agreement with the Monte Carlo torsion-

ally minimum solutions, we have chosen ℓ1 = 67 nm, ℓ2 = 37 nm, which yield an

effective sequence stiffness of 50 nm. We compute the effective bending stiffness by

1

ℓ∗p
=

1

2

(
1

ℓ1
+

1

ℓ2

)

(6.1)

where the form resembled a parallel circuit, although for ℓ1 = ℓ2, the stiffness should

be ℓp, therefore the factor of 1/2 is added. These computations are currently ongoing

and results are expected shortly. In the future, we will also add off-diagonal terms

to B(s), such as twist-bend coupling ℓ1τ , and characterize their influence to DNA

looping.

6.1.2 Sequence Dependent Elasticity

Sequence dependence elasticity can be spatially localized as regions with many AT

base pairs tend to be softer than those with many GC base pairs. The reason for this

difference is AT pairs only have two hydrogen bonds, while GC have three hydrogen

bonds. As mentioned in chapter 1 DNA in eukaryotic systems is compactified using

histone binding proteins, which form nucleosomes. It has been suggested [31, 60] that

these sequences of DNA which bind to the histones are more flexible than wild-type

DNA. The rod model can be used to compute the equilibrium shapes under pre-

scribed boundary conditions of these systems with local or overall softening of the

persistence lengths, and our J factor computation is readily capable of this computa-

tion. In chapter 5 we saw that sequence dependent curvature was able to dramatically

increase the J factor and its variations based on phase angles. The parameters for

these local stiffness values have been proposed by several models [33, 25, 9, 59].
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6.1.3 Protein Binding Potentials

Currently the J factor computation assumes the protein-DNA binding is very rigid,

and should be extended to include a full treatment of the binding protein. This change

could be accomplished by replacing the delta functions which hold the DNA rigidly

to the protein with more realistic binding potentials of the head groups which bind

the DNA operator segments. This addition should be relatively straightforward, pro-

vided the binding potentials are known and easily expressed into angular coordinates.

The extension of this work to include proteins would necessitate a more complete de-

scription of the DNA-protein binding regions which would involve modifying our δ(~u)

functions above in eq. (2.2) of chapter 2 as was done in previous Monte Carlo works

[65, 53, 48].

6.1.4 Architectural Proteins

We learned in chapter 5 that intrinsic curvature can greatly lower the energetic bar-

rier required for looping and dramatically increase the J factor. There are many

proteins which bind specifically and non-specifically to DNA and induce curvature

to the molecule. E. colihas several of these proteins, e.g. HU, IHF and CAP-cAMP

to name a few. It is known that CAP-cAMP directly influences production of β-

galactosidase, as it participates in the selective digestion of Glucose over Lactose [11].

It should be possible to model the influence of these proteins as intrinsic curvature

and stiffness of the DNA, if self-contact is also taken into account with the protein.

These types of systems are a natural extension of the J factor computation.

6.1.5 Multi-scale model

Once the protein binding potentials are incorporated, the rod model could be inter-

faced with a molecular dynamics simulation of the LacI protein. Then updates of

the protein location and orientation could affect the rod model equilibria and provide

a more accurate measure of the available thermal modes of the system, leading to

a more complete computation of the entropic cost of DNA-protein loop formation.

Multi-scale computations of this form have done by Baeleff et al. [3, 2, 58, 57, 4],

however, they only treated the DNA as a simple elastic rod, without sequence depen-

dent elasticity or stiffness, and similarly neglected entropic effects, and were therefor

unable to compute J factors.
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6.1.6 Self-Contact and Electrostatics

The rod model [16] has been extended by Lillian et al. [28] to include self-contact of

DNA as well as electrostatic interactions of the DNA molecule. We have not however

included these effects in the equilibria that are presented here, as they increase the

computational cost. When sweeping out phase angles, one DNA end-point is rotated

through 4π, turning off self-contact allows the rod to pass through itself, without get-

ting tangled and twisted. If an equilibrium required self contact, the normal modes

as computed here would be insufficient to handle this self-contact, as they change

behavior dramatically. The contribution from electrostatics would affect the various

equilibrium topologies differently, as P1 tend to have the DNA strands in close prox-

imity, and they would therefor experience more repulsion and higher loop formation

energies. Electrostatic coupling for thermal excitations is likely very small, and the

normal modes would not be greatly affected.

6.2 Experimental Systems

We propose a few experimental methods which can test our predictions.

6.2.1 Cyclization

There is a lot of interest in measuring and understanding J factors for DNA on short

length scales ∼ 100 base pairs [61, 14, 8, 13]. It has been suggested that end-point

constraints play a role in these differing results [54]. It is also possible that sequence-

dependent elasticity plays a role as well. Our computation can, with the appropriate

inputs, quickly map out the J factor landscape for DNA on this length as a function

of sequence-dependent elasticity and be used to predict cyclization rates, which can

be measured in a straightforward manner.

6.2.2 TPM measurements of Ratios of Loop Lifetimes.

Tethered Particle Microscopy (TPM) can be used to measure the looped and un-

looped lifetimes of DNA tethered to a microsphere in the presence of lac repressor

[51, 56, 41, 18, 7]. We can predict the ratio of looped lifetimes for different sequences

and predict their relative ratios. While we do not know the exact binding affinity of
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DNA operators and lac repressor, we can form a ratio of the looped lifetimes as

τ ℓA
τ oA

=
JA
JS

τ ℓS
τ oS

∼ 105 τ
ℓ
S

τ oS
(6.2)

see chapter 5 for more information.

6.2.3 FRET Measurements of Topology

We are able to predict the preferred binding topologies based on our J factor compu-

tations. These predictions can be tested using Fluorescent Energy Resonance Transfer

(FRET) by attaching Fluorescent markers Cy3-Cy5, which are appropriate for typical

separation distances on this length scale, before and after the DNA operators. The

FRET efficiency measured in bulk systems would then be compared to our computa-

tion of the preferred topology. We are also able to identify lengths of DNA where A1

and P1 should occur in relatively equal proportions, which can also be demonstrated

using FRET.

6.2.4 Inverse Rod Modeling and Extraction of physical DNA
parameters

The largest barrier between model results and experimental comparison is the lack of

precise biophysical parameters for DNA. It is unknown precisely how much stiffer a

region of GC is to AT , or how much twist and tilt of the DNA backbone is affected

by sequence, although there have been several models which attempt to extract these

parameters, such as the di-nucleotide [9]and tri-nucleotide models [40]. It should be

possible to alter the inputs for stiffness and curvature using the rod model to sweep

out an entire range of J factors based on different initial conditions, and then to in

tandem run Monte Carlo simulations to numerically connect the J factors and test

the reasonability of these input conditions. In this way, we can extract the effect

of variable sequence to the looping probability directly. With enough computations,

it should be possible to extract up to a few base pair resolution effects of sequence

dependence.
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Chapter 7

Summary of Contributions

In this dissertation we have made significant contributions towards the understanding

of the role of enthalpy and entropy in determining the Stockmayer Jacobson J-factor.

In chapter 3, we studied DNA looping in the absence of a DNA binding protein.

In chapter 4, we studied intrinsically straight DNA bound to LacI protein and in

chapter 5 we studied the LacI binding protein with the addition of sequence specific

DNA curvature. In chapter 6 we explored extensions and experimental tests of our

generalized J factor computation.

7.1 Major Contributions

We present a semi-analytic Generalized J factor computation that

1. computes the normal modes of the open and looped states of DNA, allowing us

to quantify the entropic cost of DNA loop formation and subsequently compute

of the J factor, see chapter 2.

2. allows arbitrary DNA end-point locations and orientations, such as protein me-

diated loop formation.

3. fully includes entropic effects and allows a prediction of physical quantities

without the use of tuning parameters, see chapter 2 and chapter 4.

4. independently computes the enthalpic and entropic cost of DNA loop formation.

5. verifies the results of Shimada and Yamakawa [49] for the ring and unconstrained

loop, settling the debate raised by Zhang et al. [64] as to whether or not the

original paper was in error.

6. is capable of incorporating sequence-dependent curvature ~κo, e.g. A-tract se-

quences of Mehta et al. [37].
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7. is able to predict ratios of loop lifetimes for straight DNA as well as A-tract

sequences.

8. is capable of incorporating sequence dependent and heterogeneous stiffness

ℓ1(s) 6= ℓ2(s).

9. is very computationally efficient. For a given set of boundary conditions, elas-

ticity and/or curvature our computation requires only a few minutes.

7.2 Specific Findings

1. We have predicted J factors for A1 and P1 binding topologies for intrinsically

straight DNA for lengths 50 to 650 base pairs in length based on experimen-

tal measurements of DNA persistence length, which does not rely on any free

parameters, see chapter 4.

2. We have shown our results for intrinsically straight DNA are consistent with

previous Monte Carlo work by Towles et al [55], see chapter 4

3. We confirmed the preference for A1 binding topology for DNA loops under 200

base pairs for intrinsically straight DNA, which contradicts the popular image

of the P1 loop as shown on the Science cover in 1996 by Lewis et al. [26], see

chapter 4.

4. Predicted J factors for A-tracts which are up to 105 times greater than equiva-

lent straight DNA, which supports the Gel electrophoresis data of Mehta et al.

[37], see chapter 5.

5. We have made specific predictions about the relative looping probabilities be-

tween A1 and P1 loops which may be measured using FRET, see chapter 4 and

chapter 5.

6. We have predicted that the 9C14 sequence of Morgan et al. [38] has 2 compara-

ble topologies, when an argument based on loop formation energy alone would

typically indicate only one, see chapter 5.

7. We have shown that P1 and A1 are allowable for DNA containing A-tract

bends near one persistence length, which is typically dominated by A1 for

straight DNA, our results agree with the measurements of Mehta et al. [37], see

chapter 5.

8. We have reproduced with our semi-analytic approach the ring and unconstrained

loop results of Shimada and Yamakawa [49], in contrast to the recent Monte

Carlo work of Zhang and Crothers [63], see chapter 3.
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9. We generalized the J factor for planar loops, covering the ring to the teardrop

and continuing on to the hairpin. We have presented a convenient numeric ap-

proximation which can be easily used to compute planar J factors, see chapter 3.

10. We have computed the effective torsional persistence length ℓτ for planar

shapes and clearly demonstrated how bending and torsional stiffness couple,

see chapter 3.

11. We have found that the enthalpic energy and trends in the J factor for DNA

with ℓ1 6= ℓ2 are consistent with ℓ1 = ℓ2 for DNA as short as 49 base pairs, val-

idating our simplification to homogeneous bending stiffness when considering

DNA beyond a few helical repeats, see chapter 6.
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Appendix A

Notation

“Consistency of notation is the Hobgoblin of a small mind.”

— Lowell Brown, University of Washington 2001.

All inputs to the model are made dimensionless by multiplying by the overall se-

quence length L and β = 1
kBT

. The dimensionless quantities we use are listed in the

variable descriptions. We use o to designate open, or unlooped state quantities. We

use ℓ to designate looped or closed state quantities.

A.1 Latin Alphabet Notation

Variable Descriptions

B(s) Stiffness Tensor, [βB(S)L−1]

cf Higher order force term of Shimada and Yamakawa, cf = L
4ℓp

Eℓ Loop formatin energy, [βEℓ]

∆E The equilibrium thermal energy of DNA.

Hmn The (m,n) Hamiltonian matrix operator.

H̃ The integrated product of the open or looped Hamiltonian matrix

operators and comparison functions as outline in the Ritz Method,

see Appendix D.

Ho,ℓ Scalar Hamiltonian for the the open and looped state, [βH ].

J The Stockmayer Jacobson J factor.

kB Boltzmann constant.

L The total inter-operator DNA length.
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Variable Dimensionless Form Descriptions

Lmn The (m,n) Linear operator.

L̃ The integrated product of Linear Operators and comparison func-

tions as outline in the Galerkin Method, see Appendix C.

ℓp The average bending persistence length of DNA, [ℓpL
−1].

ℓτ The average torsional persistence length of DNA, [ℓτL
−1].

ℓ∗τ The effective torsional persistence length of DNA due to equilibrium

state twist-bend coupling, [ℓ∗τL
−1].

ℓ1 Persistence length along the minor groove of DNA, [ℓ1L
−1].

ℓ2 Persistence length along the major groove of DNA, [ℓ2L
−1].

M Molarity = 1 mol/Liter.

N The number of basis functions considered in our approximation.

NA Avogadro’s Number.

n̂1(s) Equilibrium unit normal vector, directed along the minor groove.

ñ1(s) Deformed state unit normal vector, directed along the minor groove.

n̂2(s) Equilibrium unit normal vector, directed along the major groove.

ñ2(s) Deformed state unit normal vector, directed along the major groove.

O(0, 1, 2) Order parameter for deformation variables e.g κψ is order 1.
~R(s) Equilibrium State position vector of the DNA sugar-phosphate

backbone.

R̃(s) Deformed State position vector of the DNA sugar-phosphate back-

bone.

R(θ1) Deformation Rotation matrix about the n̂1 direction.

R(θ2) Deformation Rotation matrix about the n̂2 direction.

R(ψ) Deformation Rotation matrix about the t̂ direction.

s, S The arc length parameter for the DNA, s = (0, 1), S = (0, L).

T Temperature.

Tw Twist of the DNA molecule.

∆Tw Difference in twist from the looped to open state,
∫ 1

0

ds
(
τ ℓ(s) − τ o(s)

)

t̂ Equilibrium unit tangent vector, directed along sugar-phosphate

backbone.

t̃ Deformed state unit tangent vector, directed along sugar-phosphate

backbone.

~u Deformed state displacement vector from the equilibrium state,

R̃ = ~R + ~u.
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Variable Description

u1 Deformed state displacement along the tangent t̂.

u2 Deformed state displacement along the normal n̂1.

u3 Deformed state displacement along the normal n̂2.

V The total constraint matrix formed from our δ functions.

Vi The constraint matrix for the ξi eigenmode.

v1i The displacement along the equilibrium tangent vector t̂ modulo

the eigenmode amplitude ξi and length L.

v2i The displacement along the equilibrium normal vector n̂1 modulo

the eigenmode amplitude ξi and length L.

v3i The displacement along the equilibrium normal vector n̂2 modulo

the eigenmode amplitude ξi and length L.

Z The open state partition function.

Zℓ The looped or closed state partition function.

Z̃ℓ The looped or closed state partition function modulo exp(−βEℓ −
cf).

A.1.1 Greek Alphabet Notation

Variable Description

α, αi, α
o, αa Unknown coefficients of the comparison functions φ.

β inverse Boltzmann Constant and Temperature, β =

(kBT )−1.

Γ Arbitrary boundary condition term, Γ ,
∫

ds φTLγ,
see chapter 2.

γ Matrix of comparison functions for an arbitrary an-

gular displacement.

γ(Θ) The slowly varying function of the in plane J factor

as a function of Loop

δ(θ1) Constraint on θ1 at s = 0 and s = 1

δ(θ2) Constraint on θ2 at s = 0 and s = 1

δ(ψ) Constraint on ψ at s = 0 and s = 1

∆κ1 Difference of looped and open state curvature ∆κ1 =

κℓ1 − κo1

∆κ2 Difference of looped and open state curvature ∆κ2 =

κℓ2 − κo2
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Variable Description

δθ1 Variation of deformation variable θ1

δθ2 Variation of deformation variable θ2

δψ Variation of deformation variable ψ

ζ Scaling or Amplitude of the arbitrary displacement

mode.

Θ End-point planar component of the tangent vector

alignment angle.

θ1 Deformation angle about n̂1

θ2 Deformation angle about n̂2

θ1L End-point angular displacement about n̂1

θ2L End-point angular displacement about n̂2

κ1 First component of the equilibrium curvature vector

[~κL]

κo1 First component of the open state equilibrium curva-

ture vector [κo1L]

κℓ1 First component of the looped state equilibrium cur-

vature vector [κℓ1L]

κ2 Second component of the equilibrium curvature vec-

tor [κ2L]

κo2 Second component of the open state equilibrium cur-

vature vector [κo2L]

κℓ2 Second component of the looped state equilibrium

curvature vector [κℓ2L]

~κo Equilibrium open state curvature vector, [~κoL]

κ̃o Deformed state open state curvature vector, [κ̃oL]

~κℓ Equilibrium state looped state curvature vector, [~κℓL]

κ̃ℓ Deformed state looped state curvature vector, [κ̃ℓL]

Λ The Entropic Coefficient of the J factor.

Λo The open state component of the Entropic Coefficient

of the J factor.

Λℓ The looped state component of the Entropic Coeffi-

cient of the J factor.

λo,ℓi The eigenvalue of the eigenvector ~ξi.

λℓ0 The zero eigenvalue of the ring.

λ1 The lowest open or looped state eigenvalue.
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Variable Description

µ1 Conjugate variable of u1.

µ2 Conjugate variable of u2.

µ3 Conjugate variable of u3.

σ Ratio of torsional to bending persistence length ℓτ
ℓp

.

τ Third component of the equilibrium curvature vector

[τL]

τ o Third component of the open state equilibrium cur-

vature vector [τ oL]

τ ℓ Third component of the looped state equilibrium cur-

vature vector [τ ℓL]

τ̃ Third component of the deformed state curvature vec-

tor [τ̃L]

∆τ Difference of looped and open state torsion ∆τ =

τ ℓ − τ o

Φ Out of plane Loop formation angle.

φn The nth comparison functions.

φ Matrix of known comparison functions.

ξ Arbitrary deformation to the equilibrium state.
~ξi An eigenvector or Normal mode of the open or looped

state.

ξi Amplitude of eigenvector ~ξi.

ξo Component of an arbitrary end-point displacement

Amplitude which leaves the angular displacement

zero at the end-point.

ξa Component of an arbitrary end-point displacement

Amplitude which leaves the angular displacement

non-zero at the end-point.

Ψ Torsional Loop formation angle, referred to as a phase

angle.

Ψ1,2 The two phase angles required for A-tract loop for-

mation.

ψ Deformation angle about t̂

ψL End-point angular displacement about t̂

ω Helical frequency of DNA.

ρ Dimensional scaling of the J factor.
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A.2 J factor units

The J factor is often expressed in terms of Molarity. The units of Molarity are

moles per liter, 1 L = 1 dm3 = 103 cm3 = 1024 nm3. The conversion is then

1mole = 6.0221×1023particles. We calculate the J factor in terms of molecules/nm3.

Then so our conversion is 1024 nm3/6.0221 × 1023molecules ≈ 1.661 nm3.

J

(
1 molecule

nm3

)

× 1024nm3

1L
× 1Mole

NA
= 1.661 J

(
Moles

Liter

)

(A.1)

where NA is Avogodro’s Number.
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Appendix B

Rotations

We keep up to second order in terms of deformation variables θ1, θ2, ψ which are

induced by our rotation matrices R(θ1), R(θ2), R(ψ), and therefore the rotation ma-

trices do not commute. There are 6 possible applications for the rotation matrices to

induce our deformations of the elastic rod. The rotation matrices we use are

R(ψ) =






1 0 0

0 cosψ sinψ

0 − sinψ cosψ




 ∼






1 0 0

0 1 − 1
2
ψ2 ψ

0 −ψ 1 − 1
2
ψ2






R(θ1) =






cos θ1 0 − sin θ1

0 1 0

sin θ1 0 cos θ1




 ∼






1 − 1
2
θ2
1 0 −θ1

0 1 0

θ1 0 1 − θ2
1






R(θ2) =






cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1




 ∼






1 − 1
2
θ2
2 θ2 0

−θ2 1 − 1
2
θ2
2 0

0 0 1






keeping to second order enforces the in-extensibility constraint on the DNA. The

rotation order we have chosen is R(ψ), R(θ1), R(θ2)






t̃

ñ1

ñ2




 =






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ

θ1 + θ2ψ −ψ + θ1θ2 1 − 1
2
(θ2

1 + ψ2)











t̂

n̂1

n̂2




 . (B.1)

Which leads to the correct definition of the deformation angles, such that ψ is the

angle between ñ1 and n̂2. In addition θ2 is the angle about which n̂1 rotates to pro-

duce ñ1 and careful consideration shows for a right handed coordinate system, θ1 to

be negative. An example of a rotation which does not produce the correct definitions
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of the phase angles is

R(ψ)R(θ2)R(θ1) ∼






1 − 1
2
(θ2

1 + θ2
2) θ2 −θ1

−θ2 + θ1ψ 1 − 1
2
(θ2

2 + ψ2) ψ + θ1θ2

θ1 + θ2ψ −ψ 1 − 1
2
(θ2

1 + ψ2)




 (B.2)

where we see that ψ is incorrect.
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Appendix C

Linear Operators

C.1 Linear Operators

The variation of the Hamiltonian and subsequent collection of variables in terms

of variations of the deformation variables δθ1, δθ2, δψ leads to the following linear

operators and boundary terms.

C.1.1 Explicit form of the Linear Operators

The linear operators are

L11θ1 =2 [−ℓ1] θ′′1 + 2[−ℓ′1]θ′1 + 2[ℓ2(τ
2 − κ2∆κ2) + ℓτ (κ

2
2 − τ∆τ)]θ1

L12θ2 =2[(ℓ1 + ℓ2)τ − ℓτ∆τ ]θ
′
2 + 2[(ℓ1τ)

′ + ℓ2κ1∆κ2 − ℓτκ1κ2]θ2

L13ψ =2[ℓ2∆κ2 − ℓ1κ2 − ℓτκ2]ψ
′ + 2[−(ℓ1κ2)

′ + ℓ1τ∆κ1 + (ℓ2∆κ2)
′ − ℓ2κ1τ ]ψ

L21θ1 =2[−(ℓ1 + ℓ2)τ + ℓτ∆τ ]θ
′
1 + 2[−(ℓ2τ)

′ + ℓ2κ1∆κ2 + (ℓτ∆τ)
′ − ℓτκ1κ2]θ1

L22θ1 =2[−ℓ2]θ′′2 + 2[−ℓ′2]θ′2 + 2[ℓ1(τ
2 − κ1∆κ1) + ℓτ (κ

2
1 − τ∆τ)]θ2

L23ψ =2[−ℓ1∆κ1 + ℓ2κ1 + ℓτκ1]ψ
′ + 2[−(ℓ1∆κ1)

′ − ℓ1κ2τ + (ℓ2κ)
′ + ℓ2τ∆κ2]ψ

L31θ1 =2[ℓ1κ2 − ℓ2∆κ2 + ℓτκ2]θ
′
1 + 2[ℓ1∆κ1τ − ℓ2κ1τ + (ℓτκ2)

′]θ1

L32θ2 =2[ℓ1∆κ1 − ℓ2κ1 − ℓτκ1]θ
′
2 + 2[−ℓ1κ2τ + ℓ2τ∆κ2 − (ℓτκ1)

′]θ2

L33ψ =2[−ℓτ ]ψ′′ + 2[−ℓ′τ ]ψ′ + 2[ℓ1(κ
2
2 − κ1∆κ1) + ℓ2(κ

2
1 − κ2∆κ2)]ψ (C.1)
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The linear operators are self-adjoint,

∫ 1

0

dsφmLmnφn =

∫ 1

0

dsφnLnmφm (C.2)

which leads to a symmetric Hamiltonian, which guarantees us real eigenvalues, al-

though no positive eigenvalues, which are corrected by our delta functions.

C.1.2 Boundary Terms

In the theory chapter, we added bold text to the variations δθ to avoid confustion

with the δ3(|~u|) functions, since there is no risk of confusion here, we drop the addi-

tional bold text. We recall that for variation problems we take our end points to be

fixed, δθ1(0) = δθ1(1) = 0, δθ2(0) = δθ2(1) = 0 and δψ(0) = δψ(1) = 0 The boundary

terms are arising from δ (κ1 − κo1)
2 are

ℓ1∆κ1δθ1|10 = 0

ℓ1θ
′
1δθ1|10 = 0

ℓ1τθ2δθ1|10 = 0

ℓ1κ2ψδθ1|10 = 0

ℓ1∆κ1ψδθ2|10 = 0

which all individually vanish. The boundary terms are arising from δ (κ2 − κo2)
2 are

ℓ2∆κ2δθ2|10 = 0

ℓ2θ
′
2δθ2|10 = 0

ℓ2τθ1δθ2|10 = 0

ℓ2κ1ψδθ2|10 = 0

ℓ2∆κ2ψδθ1|10 = 0
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which all individually vanish. The boundary terms are arising from δ (τ − τ o)2 are

ℓτ∆τδψ|10 = 0

ℓτψ
′δψ|10 = 0

ℓτκ2θ1δψ|10 = 0

ℓτκ1θ2δψ|10 = 0

ℓτ∆τθ1δθ2|10 = 0

which all individually vanish. We therefore do not need to consider them further

given our boundary conditions.
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Appendix D

Hamiltonian Matrix Construction

We use the Ritz Method to discretize the Hamiltonian functional, which reduces it to

a function over the coefficient space of the comparison functions. The construction

of the Hamiltonian matrix is straightforward as outlined in chapter 2.

D.1 Ritz Method: Hamiltonian Matrix

The Hamiltonian Matrix is composed of the second order deformation variables, given

by

βH(O(2)) =
1

2

∫ 1

0

ds
[
ℓ1(θ

′2
1 − 2τθ2θ

′
1 + 2κ2ψθ

′
1 + 2∆κ1ψθ

′
2 + θ2

2(τ
2 − κ1∆κ1)

+ψ2(κ2
2 − κ1∆κ1) + 2∆κ1τθ1ψ − 2κ2τθ2ψ)

)

+ ℓ2(θ
′2
2 + 2τθ1θ

′
2 − 2κ1ψθ

′
2 − 2∆κ2ψθ

′
1 + θ2

1(τ
2 − κ2∆κ2)

+ψ2(κ2
1 − κ2∆κ2) + 2κ1∆κ2θ1θ2 − 2κ1τθ1ψ + 2τ∆κ2θ2ψ)

)

+ ℓτ (ψ
′2 − 2κ2θ1ψ

′ + 2κ1θ2ψ
′ − 2∆τθ1θ

′
2 + θ2

1(κ
2
2 − τ∆τ)

+θ2
2(κ

2
1 − τ∆τ) − 2κ1κ2θ1θ2)

]

=
1

2

∫ 1

0

ds H (D.1)

Then we construct the Hamiltonian matrix directly through

H =
[

θ1 θ2 ψ
]






H11 H12 H13

H21 H22 H23

H31 H32 H33











θ1

θ2

ψ




 (D.2)
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D.1.1 Terms with no derivatives

The components of H which do not involve derivatives of the deformation variables,

H0
ab are symmetric by construction,

H0
11 = (ℓτ − ℓ2)(κ

2
2 − τ 2) + ℓ2κ2κ

o
2 + ℓτττ

o

H0
12 = H0

21 = (ℓ2 − ℓτ )κ1κ2 − ℓ2κ1κ
o
2

H0
13 = H0

13 = (ℓ1 − ℓ2)κ1τ − ℓ1τκ
o
1

H0
22 = (ℓτ − ℓ1)(κ

2
1 − τ 2) + ℓ1κ1κ

o
1 + ℓτττ

o

H0
23 = (ℓ2 − ℓ1)κ2τ − ℓ2τκ

o
2

H0
33 = (ℓ1 − ℓ2)(κ

2
2 − κ2

1) + ℓ1κ1κ
o
1 + ℓ2κ2κ

o
2 (D.3)

D.1.2 Terms with one derivatives

then we also have terms with a single derivative of the deformation variables, H′ab
and are not symmetric in this form,

H′12 = (2(ℓ2 − ℓτ )τ + 2ℓττ
o)

d

ds

H′13 = (−2ℓτκ2)
d

ds

H′21 = (−2ℓ1τ)
d

ds

H′23 = (2ℓτκ1)
d

ds

H′31 = (2(ℓ1 − ℓ2)κ2 + 2ℓ2κ
o
2)

d

ds

H′32 = (2(ℓ1 − ℓ2)κ1 − 2ℓ1κ
o
1)

d

ds
. (D.4)

where we make the contribution symmetric by

H′sym ,
1

2

(

H′ + H′T
)

(D.5)
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D.1.3 Terms with two derivatives

The final terms are very straightforward as we write,

H′′ =
[

θ′1 θ′2 ψ′
]






ℓ1 0 0

0 ℓ2 0

0 0 ℓτ











θ′1

θ′2

ψ′




 (D.6)

D.1.4 Summary

Then putting eq. (D.3), eq. (D.4), eq. (D.6) we have

H = H0 + H′sym + H′′ (D.7)

which agrees with the results of the linear operators, although only involves first order

derivatives, which makes our numerics cleaner.
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Appendix E

Delta Function Constraints

Conjugate Variable Method

The δ-functions can be written in terms of the amplitudes of the ith eigenmode by a

Fourier Transformation

δ(u1) =δ

(
N∑

i=1

u1i(L)

)

= δ

(
N∑

i=1

ξiLv1i

)

=
1

2π

∫

dµ1 exp

(

−iµ1

N∑

i=1

Lv1iξi

)

=
1

2π

∫

dµ1

N∏

i=1

exp (−iµ1Lv1iξi) . (E.1)

The product of the δ-functions is

δ(u1(L))δ(u2(L))δ(u3(L)) =

∫
dµ1dµ2dµ3

(2π)3

N∏

i=1

exp(−iLξi
3∑

j=1

µjvji). (E.2)

We write Z̃ℓ as the looped state partition function, modulo the enthalpic contri-

butions

Z̃ℓ =
Zℓ

exp (−βEℓ − cf )
. (E.3)

We then use the Fourier Transformation of the δ-functions to explicitly compute the
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looped state partition function Zℓ.

Z̃ℓ =

∫ ∞∏

i=1

dξi exp

(

−1

2
λi

(
ℓp
L

)

ξ2
i

)

δ(u1(L))δ(u2(L))δ(u3(L))

=

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi
ℓp
L
ξ2
i − iLξi

3∑

j=1

µjvij

)

. (E.4)

Now that we have an expansion for the δ-functions in terms of the amplitudes of

the ith mode ξi, we can explicitly compute the integration over the normal modes of

our Hamiltonian,

Z̃ℓ =

∫ ∞∏

i=1

dξi exp

(

−1

2
λi
ℓp
L
ξ2
i

)

δ(u1(L))δ(u2(L))δ(u3(L))

=

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi
ℓp
L
ξ2
i − iLξi

3∑

j=1

µjvij

)

=

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi
ℓp
L

(

ξ2
i +

2iL2

λiL
ξi

3∑

j=1

µjvij

))

. (E.5)

We then complete the square in terms of ξi

Z̃ℓ =

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp



−1

2
λi
ℓp
L

(

ξi +
iL2

λiℓp

3∑

j=1

µjvij

)2

− 1

2

L3

λiℓp

(
3∑

j=1

µjvij

)2




and shift the integration over ξi +
iL2

λiℓp

3∑

j=1

µjvij → ξi,

Z̃ℓ =

∫
dµ1dµ2dµ3

(2π)3

∞∏

i=1

dξi exp

(

−1

2
λi
ℓp
L
ξ2
i

)

exp



−1

2

L3

ℓpλi

(
3∑

j=1

µjvij

)2


 (E.6)

We only keep up to the N th eigenmode ξN as modes beyond this mode cancel out

with corresponding open state modes. Modes past the N th are still constrained by

the delta functions, so we formally keep them for now

Z̃ℓ =

(
2πL

ℓp

)N/2 ∞∏

i=1

1√
λi

∫
dµ1dµ2dµ3

(2π)3
exp



−1

2

L3

ℓpλi

(
3∑

j=1

µjvij

)2


 (E.7)

We are left with the integral over conjugate variables µi. We collect conjugate vari-
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ables in terms of a vector µ , [µ1, µ2, µ3]. Now expanding,

1

λi

(
3∑

j=1

µjvij

)2

=
1

λi

(
µ2

1v
2
1i + µ2

2v
2
2i + µ2

3v
2
3i

+2µ1µ2v1iv2i + 2µ1µ3v1iv3i + 2µ2µ3v2iv3i)

=
1

λi

[

µ1µ2µ3

]






v2
1i v1iv2i v1iv3i

v1iv2i v2
2i v2iv3i

v1iv3i v2iv3i v2
3i











µ1

µ2

µ3




 (E.8)

where we get a constraint matrix Vi for every eigenmode ξi. We see that the contri-

bution of each mode is suppressed by the eigenvlaue, therefor modes beyond N , will

not contribute in a meaningful way, we then drop them and keep up to mode N for

consistency, although numerically the first few modes have a significant Vi. We then

define the constraint matrix as

V ,

N∑

i=1

1

λi






v2
1i v1iv2i v1iv3i

v1iv2i v2
2i v2iv3i

v1iv3i v2iv3i v2
3i




 (E.9)

Then plugging V back into eq. (E.7)

Z̃ℓ =

(
2πL

ℓp

)N/2
(

N∏

i=1

1√
λi

)
∫

dµ1dµ2dµ3

(2π)3
exp

(

−1

2

L3

ℓp
~µTV ~µ

)

=

(
2πL

ℓp

)N/2
1√

detHℓ

1

(2π)3

(
ℓp
L3

)3/2
√

(2π)3

detV
(E.10)

Where we have used the identity between the determinant and product of eigenvalues

detH =
N∏

i=1

1√
λi
. (E.11)
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