Theoretical and experimental studies of neuronal
network dynamics: Relating topology to function

by

Xiaojing Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Applied Physics)
in The University of Michigan
2010

Doctoral Committee:

Associate Professor Michal R. Zochowski, Chair
Professor Mark E. Newman

Professor Leonard M. Sander

Associate Professor Jennifer P. Ogilvie
Assistant Professor Victoria Booth






(© Xiaojing Wang 2010
All Rights Reserved




To my mom, who was with me every step of the way.

1



ACKNOWLEDGEMENTS

The last five years have been among the most formative of my life, and I truly
would not have been able to get through them or to take these last few steps on the
path to my doctoral degree without the help of a lot of important people. First, I
would like to thank my mom for being one of the few constants in my life, and for
always being there to listen through the various rough spots that graduate school
entails. My dad also deserves acknowledgement for reminding me that there is life
after graduate school, after all.

I was fortunate to meet a group of great friends, who made this challenging path
a whole lot more fun — in particular Niki, Ed, Jeannie, Vanessa, Brieta, Andres, and
Andre. You made it all worth it. And a special thanks to Dave, who always knew
how to make me laugh, even when I didn’t necessarily feel like it.

I would also like to thank my research group, and in particular my advisor Michal
Zochowski for his guidance and invaluable support. You made me the scientist I
am today. And thank you to my fellow lab members Troy Lau, Tony Smith, Liz
Shtrahman, and Chris Fink for great discussions.

My research involved collaborations with and contributions from many other sci-
entists, and I'd like to briefly acknowledge their help here. Chapter II is from a paper
written with Michal Zochowski and Gina Poe, who provided the experimental data
and some analysis. It was published in Physical Review E in 2008 [183]. Chapters II
and III involve analyses done with the help of computing resources from the Center

for the Study of Complex Systems and the Center for Advanced Computing at the

1l



University of Michigan.

Chapter IV contains images taken at the Microscopy and Image-analysis Lab-
oratory (MIL) at the University of Michigan, Department of Cell & Developmental
Biology, and in particular I would like to acknowledge the assistance of Chris Edwards
for his help in the use of these microscopes. This chapter was also a collaboration be-
tween myself and a previous graduate student of the lab, Sarah Feldt, who conducted
the electrical recordings and functional clustering analyses.

Funding for my research was generously provided through the Applied Physics
Rackham Regents’ Fellowship (2005-2007), the NIH Molecular Biophysics Training
Grant (2007-2009), and the Rackham Pre-doctoral Fellowship (2009-2010).

v



DEDICATION . . ..

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . ... ... . . ...

LIST OF FIGURES

LIST OF ABBREVIATIONS . . . . . ... ... .. .. . ... ...

CHAPTER

I. Introduction

1.1 Neurophysiology . . . . . . . . . .. .. .. ... ... ...,
1.2 Plasticity and neuromodulation . . . . . . ... ... ..
1.3 Network mechanisms of learning and memory consolidation
1.4 Memory storage and retrieval . . . . . .. ...
1.5 Methodological tools: Networks, modeling, and reduced exper-
imental systems . . . ... ... Lo

1.5.1
1.5.2
1.5.3
1.5.4

Network dynamics underlie information processing .
The role of modeling . . . . ... ... ... ... ..
Neuronal models . . . . . . . ... .. ... ... ..
Experimental networks: wn vitro cell cultures . . . .

II. Memory consolidation . . . . ... .. .. ... ... .......

2.1 Introduction . . . . . . . . . . ..
2.2 Model Structure and Methods . . . . . . . . . .. ... ...

2.2.1
2.2.2
2.2.3
224

2.3 Results

Intra-hippocampal /cortical network . . . . . . . ..
Inter-hippocampal-cortical feedback . . . . . . . ..
Activity-dependent synaptic modifications . . . . .
Experimental procedures for biological recording and
data analysis . . . . . .. ..o

11

111

11
19

22
22
25
27
29



2.3.1 Single network mechanism can underlie novelty de-
tection and memory reactivation . . . . . ... . .. 42

2.3.2  Modulation of hippocampal activation and reactiva-
tion by cortical feedback . . . . . ... ... ... 46
2.3.3  Cortical modulation of hippocampal memory replay 47
2.3.4 Cortical-hippocampal memory management sequence 50
2.4 Discussion . . . . ... 53
III. Memory storage and recall . . . . . ... ... ... ... .... o7
3.1 Imtroduction . . . . .. ... ..o o7
3.2 Methods . . .. .. ... .. 59
3.2.1 Network structure and dynamics . . . . . . ... .. 59
3.2.2  Topology of inhibitory-to-excitatory connectivity . . 64
3.2.3 Self-modulated excitability . . . . . ... ... ... 66
3.24 Measures . . . . ... 67
3.3 Results . . ... .. 69

3.3.1 Interplay between memory storage and inhibitory feed-

back topology . . . . ... ..o 72
3.3.2  Varying size of memories . . . . . ... ... .. .. 76

3.3.3 Self-modulated excitability as a mechanism for en-
hancing single memory replay . . . . .. .. .. .. 80
3.4 Discussion . . . ... 81

IV. Network morphology and dynamics in experimental cell cul-
tures . . .. 85
4.1 Introduction . . . .. .. ... ... 85
4.2 Experimental methods and protocols . . . . . . .. ... ... 88
4.2.1 Cell culture preparation . . . . . . .. ... ... .. 89
4.2.2  Cell fixation and fluorescence imaging . . . . . . . . 89
4.2.3 Fluorescent image analysis . . . . . .. .. ... .. 91
4.2.4 MEA recordings and spike detection . . . . . . . .. 91
4.2.5 Functional clustering algorithm . . . . . . ... .. 92
4.3 Results . . . ... 94
4.3.1 Global neuronal and glial morphology . . . . . . .. 95
4.3.2 Single neuron structure and connectivity . . . . . . 99
4.3.3 Dynamics and functional connectivity . . . . . . .. 101
4.4 Discussion . . . ... 110
V. Summary and significance . . . . . ... ..o 0L 113
BIBLIOGRAPHY . . . . . .. 117

vi



Figure

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

LIST OF FIGURES

Diagram of a neuron. . . . . . . .. ... 6
Plot of a typical action potential. . . . . . . . ... ... ... ... 7
Anatomy of hippocampus and neocortex. . . . . . . . ... ... .. 15
Circuit organization of hippocampal-neocortical memory pathway. . 16
Stages of sleep. . . . . . ..o 17
Creation of a small-world network. . . . . . . . ... ... ... ... 24
Diagrams of network structure. . . . . . .. .. ... .00 36

Network response modulated by localized increases in connectivity
density. . . . . . L 43

Changes of the hippocampal response as a function of structural prop-
erties of cortical network. . . . . . . . ... ... 45

Selective autonomous memory reactivation in the hippocampal-cortical

structure — simulations and experimental data. . . . . . . ... . .. 49
Memory management through hippocampal/cortical feedback. . . . 52
Schematic of excitatory-inhibitory network. . . . . . . . ... .. .. 60
Depiction of overlapped memory structures. . . . . . ... ... .. 62
Local and targeted inhibitory feedback. . . . . . . .. ... ... .. 65
Excitability and 3 network regimes. . . . . . .. ... ..o 70

vil



3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Activity overlap as a function of excitability. . . . . . .. ... ... 71
Activity overlap for driving and reactivation (no driving). . . . . . . 72

Comparison of network performance between local inhibitory-excitatory
topology and random, long-range inhibitory-excitatory topology. . . 74

Activity overlap plotted versus excitability for different amounts of
memory overlap. . . . . . . ... 75

Comparison of network performance for four different inhibitory-
excitatory connectivity patterns. . . . . . ... .00 7

Dependence of regime 2 robustness on memory overlap, targeted in-
hibition, and amount of driving current. . . . . . . . . ... ... .. 78

Effects of different memory sizes and ratio of memory to total network
size on network performance and single memory activation due to
partial stimulation. . . . . . .. ... .o 79

Network performance with global self-modulation of excitability. . . 82

Multi-electrode array used to record electrical activity of in wvitro
dissociated neuronal cell culture. . . . . . . .. ... .00 88

Hippocampal neurons in increasing days in vitro (DIV) and different

glial conditions. . . . . . .. ... Lo 95
Glial cells in increasing DIV and different glial conditions. . . . . . . 96
Zoomed image of glial cells. . . . . .. .. ... ... ... ... 97

Difference in glial cell layer coverage between the high glial group and

the low glial group. . . . . . .. ... oo o 98
Fluorescent overlay of glial and neuronal layers. . . . . . .. .. .. 100
Single neuron morphology and Sholl analysis. . . . . . . .. ... .. 102

Visualization of single neurons in increasing DIV and different glial
conditions. . . . . . ... 103

Sholl analysis characterizing neuronal process complexity and mor-
phology. . . . . . . 104



4.10

4.11

4.12

4.13

4.14

4.15

Simultaneous imaging of synapses and single neurons to characterize
synaptic density. . . . . ... oL 105

Analysis of spiking dynamics over time and glial conditions. . . . . 107
Distribution of spiking dynamics over multi-electrode array (MEA). 108

Examples of functional groupings obtained from the application of
the FCA to culturedata. . . . . . . ... ... ... . ... ..... 109

Percentage of electrodes participating in the largest functional cluster
as a function of DIV. . . . . . . ..o 110

Scaled significance during joining steps of the FCA. . . . . . . . .. 111

1X



LIST OF ABBREVIATIONS

DIV days in vitro

EEG electroencephalogram

FCA functional clustering algorithm
fMRI functional magnetic resonance imaging
GFAP glial fibrillary acidic protein

ISI interspike interval

LTD long-term depression

LTP long-term potentiation

MEA multi-electrode array

PBS phosphate buffered saline

REM rapid eye movement

STDP spike timing-dependent plasticity
SWN small-world network

SWS slow-wave sleep



CHAPTER I

Introduction

The brain is simultaneously one of the most familiar and yet the least understood
entities known. Sensory processing, consciousness, and planning comprise the bedrock
of our everyday existence, and yet the functional mechanisms of almost all aspects
of cognition continue to resist elucidation. Perhaps one of the major reasons for
this difficulty lies in the brain’s sheer complexity, both in numbers and in structure.
With the human brain containing roughly 10 neurons each making thousands of
connections to other cells, any tractable method of study necessitates vast amounts
of approximation to the system. As a result, there exists a multitude of scales of
study and corresponding observational methods, ranging from full brain imaging to
probing single proteins or molecules of a neuron. Additionally, these different scales
are not independent of each other, but rather interact in complex and unpredictable
ways characteristic of a complex network, in contrast to systems in which internal
dynamics either average out (as with statistical mechanical systems) or completely
correlate (as with rigid bodies). Such network effects can be seen as due to the
internal dynamics between constituent units manifesting on multiple scales and are
widely believed to be the functional bases for cognition and information processing
[31, 23, 107].

Networks exist at virtually every scale in the study of neuroscience. At the cellular



level, differences in local potential due to the spiking activities of separate neurons
converging at different points of the dendritic branch of a postsynaptic neuron interact
within the cell to determine if an action potential is generated. Single neurons in turn
form complicated circuits, the connectivity pattern of which heavily influence their
spiking patterns. It is also possible to examine the interactions between entire brain
regions, as it has been shown through neuroimaging processes such as functional
magnetic resonance imaging (fMRI) that different cognitive functions are correlated
with activation of localized areas of the brain [24, 28]. Each component acts as a
dynamical unit which behaves as a function of the way it’s connected within the
network. Although the physiological details differ at each scale, the mathematics and
analyses used to examine the networks of interactions remain the same. By focusing
on the networks rather than details of the components, we can elucidate mechanisms
of interaction which can be true at every scale and which are not observed when
studying single isolated components.

The tools we can use in this endeavor have been developed for centuries, begin-
ning with the mathematics of graph theory introduced by Leonhard Euler in 1736.
However, with the advent of the computer, recent decades have witnessed a resur-
gence in the science of network phenomena. Network science in general focuses on
the interactions between constituent elements when representing, characterizing, or
analyzing a system and draws considerably from the mathematics of graph theory. A
network is a representation of a given system highlighting the interactions between its
constituent elements. In the language of network science, the interactions are called
“connections” or “links,” and the elements are called “nodes.” For a more compli-
cated system, there may be more than one network representation because multiple
interactions can exist between elements. For instance, in a social network in which
people are the nodes, a variety of networks can be created depending on the types of

interactions studied, such as how often people speak on the phone, who they consider



to be friends, and so on. Ecological food webs are another type of network which
have been extensively studied, in which the nodes are the animals and a directed
connection exists if one eats the other. The details of network science are beyond the
scope of this dissertation; for a good review please refer to [121].

These studies have typically focused on characterizing the structure of the network
at one or discrete points in time, especially if information about the network is not
continuously available or time-stamped. The growth of citation networks, in which
connections form if one journal article cites another, can be readily studied because
articles are dated, but in general it’s difficult to characterize changes in links over
time. Additionally, network elements do not usually display dynamics, or a temporally
evolving internal state, and thus they are considered “static networks.”

Brain systems can be represented as both a static and a dynamic network. A static
network representation only takes into account anatomical connectivity, such as the
existence of a synapse between two neurons. A neuron which is synaptically connected
to another neuron would thus exhibit a link to the other neuron, and the strength of
the synapse would define the weight of the link. A dynamic network representation
of the brain takes into account the time-varying internal states of the neuron, such
as action potentials or membrane voltages. Connections between two neurons then
can be characterized by rates of firing and temporal similarities or other correlational
relationships between their evolving states. The dynamic network specified in this
fashion can also be considered “functional” structure or connectivity because it is the
dynamics of the brain which underlies its function.

An important distinction between anatomical structure and functional structure
is that the former is relatively stable over time, even as the connections are able to
undergo experience-dependent plasticity. Functional structure, on the other hand,
can rapidly fluctuate due to transient changes in dynamics, possibly as a result of

external perturbation or task-driven information processing. The effects of anatomical



structure on functional structure are far from clear, because the same anatomical
substrate can give rise to different functional connectivities depending on various
factors such as neuromodulatory factors or sensory input. Extensive research to
determine both types of networks — as well as how the two are related — is ongoing
and vital to making further progress in decoding the language of the brain.

One of the main drives of this dissertation is to relate anatomical connectivity to
functional structure and spatiotemporal patterns of neuronal dynamics in order to
understand cognitive functions such as memory, attention, and even consciousness,
which represent interactions across multiple temporal and spatial scales. Often it
is observed that how functional connectivity arises from anatomical structure is de-
pendent on instantaneous states of the system due to local and global modulatory
mechanisms which define different modes of function. In addition, correlated activity
is able to affect anatomical structure through plasticity and learning, completing a
feedback loop of information processing and interaction with external environments.

Utilizing theoretical, modeling, and experimental methods, I focus on exploring
the roles of these modulatory and plasticity systems in addressing the relation be-
tween functional and anatomical networks of learning and memory. In Chapter II, I
examine how global modulation of excitability can give rise to functional structure re-
flecting underlying heterogeneous connectivity associated with stored memory. This
mechanism, coupled with two different timescales of plasticity and inhibitory feed-
back, can mediate information transfer and memory consolidation. These dynamics
are matched with experimental data observed during behavioral learning. This work
has been published in Physical Review E with Gina Poe and Michal Zochowski [183].

In Chapter III, I further characterize how spatially varying topologies affect mem-
ory activation and retrieval. In particular, I focus on the importance of heterogeneous
inhibitory connectivity in increasing competition between linked memories as well as

the role of global modulation in optimizing memory retrieval. Such findings point to



the importance of inhibitory-excitatory current balance on both a local and global
scale to information processing in neuronal networks. This was work done under the
advisement of Michal Zochowski and is currently under review for publication.

Having examined the theoretical underpinnings of network interactions, I sought
to explore how anatomical connectivity relates to functional structure in a real bi-
ological network. Chapter IV presents an investigation into the morphological and
dynamical characteristics of cultured networks of hippocampal cells. 1 relate the
growth of anatomical neuronal networks as well as the modulatory effects of a conflu-
ent glial network to changes in spiking activity, and find that all three are non-trivially
connected. This work is in review for publication with Sarah Feldt, Liz Shtrahman,
Rhonda Dzakpasu, Eva Olariu, and Michal Zochowski.

The rest of this introduction provides general background of neurobiology, learning

and memory, and the methodological tools utilized in this research.

1.1 Neurophysiology

Neurons are electrically excitable cells which act as the functional core components
of the brain and are the basis for information processing. Though they all share
the same basic structure, there exist hundreds of types of neurons, which can be
connected in any of a number of ways, allowing them to form anatomical circuits of
endless complexity. They are in general composed of a soma (cell body) and extruding
processes which can be categorized into dendrites (signal inputs) and one axon (signal
output) (see Figure 1.1). While neuron bodies usually range in the tens of microns in
diameter, the processes which extend from them vary greatly in size, especially axons,
of which the longest are meters in length. Neurons usually exhibit many dendrites
branching off the main body, forming a complex dendritic arbor which can extend in
many directions, but they only have one axon which extrudes directly from the soma,

although it can branch multiple times before synapsing onto other cells. Their unique



cellular physiology allows neurons to both spatially and temporally integrate input
signal from other cells and then, based on numerous intrinsic and extrinsic factors,

transduct their own output signal to other neurons.

\ Soma (cell body)
Action potential
(spike) Synapse
\1—( (connection)
N —
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\\,/{\7 A
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Dendrites (input) Axon (output)

Figure 1.1:
& Diagram of a neuron. Soma are the cell bodies of neurons, and their

processes include dendrites, which receive signals from other cells and
therefore function as input, and axons, which are capable of generating
and carrying action potentials. The propagation speed of action potentials
can be considerably increased if axons are further encased in dielectric
membranes called myelin sheaths. The connections between neurons are
called synapses, and they are the primary sites of neuromodulatory and
plasticity processes.

Neurons maintain a resting potential, or voltage, of around -65 mV with respect to
the extracellular environment. Ion channels allow for the passive and active transport
of various ions, the most prominent being sodium (Na™), potassium (K ), chloride
(Cl7), and calcium (Ca*"). Passive channels work to maintain the potential at
the baseline level, while active channels are gated and open in response to certain
voltage ranges (voltage-gated) or binding events (ligand-gated). Influx of sodium ions
across the cellular membrane causes depolarization, or an increase in the intracellular
potential. If this depolarization is larger than a specific threshold value, roughly —45
mV, a series of chain reaction events occur involving opening of additional voltage-
dependent sodium as well as calcium and potassium channels, which results in the
generation of an action potential [86].

Action potentials have a very distinct time trace, with a fast rising and falling



phase followed by a short duration of roughly 5-10 ms, called the refractory period,
of hyperpolarization in which the voltage is lower than the resting potential and the
neuron is not excitable (Figure 1.2). They are typically generated in the axon hillock,
or the portion of the axon closest to the cell body, and are actively propagated via
the opening of additional ion channels (mainly Na™ and K*) down the length of the
axon to communicate with connected cells. Action potentials, which are also known as
spikes, tend to be stereotyped (similar in form) and all-or-nothing (boolean), and thus
they act as the primary mode of information coding, processing, and transmission.
One of the major drives in neuroscience is to understand this neural code and how
it translates raw sensory information into internal representations and further is able

to manipulate those representations in the act of thinking.
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Figure 1.2:
& Plot of a typical action potential. Neurons typically have an intracellular

resting potential of around -65 to -70 mV. Depolarization, or an increase
in this potential, occurs due to flow of charged ions into or out of the
cell. If this depolarization crosses a threshold value, roughly -45mV, a
positive feedback process is initiated resulting in the rapid increase (due
to the influx of Nat across Na't voltage-gated channels) and then rapid
decrease (due to the efflux of KT across K voltage-gated channels) of
the membrane potential by about 100 mV and lasting for 1-2 ms. Action
potentials are actively propagated down the length of the axon to cause
the release of neurotransmitters into the synaptic cleft, or a small region of
space adjacent to another neuron’s input processes, typically its dendrites.



Action potentials are transmitted from one neuron to the next via connections or
junctions called synapses, defined as a small region of space in which the one neuron
is in close proximity and can communicate information to the dendrite (or in some
cases the soma) of another neuron. Synapses can be either chemical or electrical.
Chemical synapses are defined as the small (20-40 nm) cleft of space between two
neurons within which neurotransmitters, or chemical messengers, can be released by
one neuron and bound to specific receptors located within the cellular membrane of
the other neuron. The receptors mediate the opening of ligand-gated ion channels
which affect the neuronal intracellular potential and can trigger a dendritic signal,
which is propagated to the cell body and integrated with other signals. If the net effect
of this input causes the soma membrane potential to rise above the threshold level,
an action potential is generated. Because of the leak current due to passive channels,
generation of an action potential is sensitive to the timing between dendritic inputs;
coincident inputs tend to result in a higher probability of postsynaptic firing.

Chemical synapses are by definition unidirectional since one only cell can release
neurotransmitters (presynaptic neuron) and only one can receive (postsynaptic neu-
ron), meaning that impulses can only be transmitted one way. However, in the case

)

of electrical synapses, also called “gap junctions,” connections are bidirectional since
neurons can directly affect each others’ intracellular potentials because they are elec-
trically connected through gap junction channels spanning the membranes of both
cells [86]. For the purposes of this dissertation, I will focus on chemical synapses
since they are much more numerous and involved in memory and plasticity processes;

therefore, from here on “synapse” will be understood to refer to only a “chemical

synapse.”



1.2 Plasticity and neuromodulation

Synapses can be either excitatory, meaning that presynaptic firing causes depo-
larization of the postsynaptic neuron’s membrane potential and thus increases its
chance of firing, or they can be inhibitory, meaning that postsynaptic neurons are
hyperpolarized and less likely to fire as a result of a presynaptic signal. Excitatory
synapses are in general mediated by the neurotransmitter glutamate, while inhibitory
synapses are primarily mediated by y-aminobutyric acid (GABA). Neurons can and
do receive a mixture of both excitatory and inhibitory input signals depending on the
types of receptors they exhibit, but their outputs are purely excitatory or purely in-

" also known as principle neurons,

hibitory. We can thus refer to “excitatory neurons,’
or “inhibitory neurons,” also known as interneurons.

An important aspect of synapses is that they are not constant, but instead are able
to be strengthened or weakened through activity-dependent or other processes, a phe-
nomenon known as “synaptic plasticity.” The strength of a synapse can be measured
as the amount of postsynaptic response to a presynaptic signal, typically an action po-
tential. The idea of activity-dependent plasticity was first explored by Donald Hebb,
who theorized that simultaneous activation of neurons tended to strengthen their con-
nection [77]. Since then, much experimental work has focused on the mechanisms of
plasticity, the most notable being long-term potentiation (LTP), or synaptic strength-
ening, and the closely associated long-term depression (LTD), or synaptic weakening.
This form of plasticity involves long-lasting changes to synaptic strength as a result
of paired activation of synaptically connected neurons [20, 19, 17], and experimental
evidence exists which point to it as the physiological basis for some forms of learning
and memory, especially within the hippocampus and amygdala [108, 26, 127].

Further investigations have shown that temporal ordering and precise timing re-
lationships of pre- and postsynaptic activity impact ensuing plasticity, a concept

termed spike timing-dependent plasticity (STDP) [101, 13, 52, 153]. In STDP, firing



of the presynaptic neuron before the postsynaptic neuron leads to strengthening of
the synapse, while the reverse ordering leads to weakening. Additionally, the extent
of the change increases as the timings of the two spikes decreases, so that there is an
effective window within which plasticity can occur [1]. An important aspect of STDP
is that it allows for stabilization of firing rates by instituting a balance between LTD
and LTP, thereby preventing a runaway positive feedback loop between activity and
synaptic potentiation. Another form of plasticity which addresses this issue is home-
ostatic plasticity, in which neurons are able to regulate their synapses in response
to sustained changes in activity in order to maintain firing rates within an optimal
range [125, 169, 170]. This is achieved through processes such as synaptic scaling
[172, 140, 29], where all synapses convergent on a postsynaptic neuron are scaled by
a constant factor which is dependent on neuronal activity.

In addition to local modification of synapses, neuronal responses can also be al-
tered or modulated on a more global level by neuromodulators, acting in contrast
to neurotransmitters which directly mediate neuronal signaling. Neuromodulators
are a class of chemicals defined by their mode of influence on dynamics, and thus
many neurotransmitters are also considered neuromodulators, such as acetylcholine,
norepinephrine, serotonin, and dopamine. They are able to regulate spiking activity
of neurons by either altering synaptic efficacy or modulating excitability and intrin-
sic membrane properties, in both a more spatially diffuse as well as longer lasting
fashion than neurotransmitters [70, 100]. This allows for far more complex network
interactions than would exist with neurotransmitters alone. More importantly, due to
neuromodulators’ spatially and temporally extended range of action, they are ideally
suited for controlling transitions between different brain region states, since identical
anatomical circuitry can yield vastly different dynamics depending on the strength
and combination of different neuromodulators. For this reason, they have been linked

to various cognitive functions such as attention [193], cortical reorganization of sensory
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fields [110, 87], and — most relevant to this dissertation — memory in the hippocampus
and neocortex [71, 72, 27].

Neuronal signaling can additionally be modulated by other types of cells within
the brain, because they are intimately surrounded by a host of satellite cells called
glial cells, which outnumber neurons by at least 10 to 1. Glial cells act to support
neuronal growth and survival in a variety of ways, including providing nutrients,
structural support, neuronal repair, and axonal guidance during development [122].
More recently, it’s been shown that astrocytes, the most common type of macroglial
cells, also interact extensively with neurons to modulate synaptic transmission and
signaling [15, 16, 175]. Due to their close proximity with neurons, they are able
to uptake or release neurotransmitters within chemical synapses, thereby modulating
signal transmission between two neurons. Although they can’t generate action poten-
tials, astrocytes are capable of displaying sustained intracellular calcium oscillations
which propagate via gap junctions and are sometimes invoked by neuronal activity.
These oscillations can in turn elicit calcium changes in neurons, indicating a bidirec-
tional mode of communication with possible repercussions on information processing

128, 119).

1.3 Network mechanisms of learning and memory consolida-

tion

Neuronal dynamics are clearly highly dependent on both global states as well as
local synaptic properties. Further, in attempting to understand the neural code un-
derlying behavior and cognition, it’s necessary to quantify relationships in activity
between neurons as a function of their placement within a complex network of inter-
actions. Because of the intricate nature and highly complex structure of the brain,

network analysis utilizing math and concepts from the field of graph theory seems
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particularly appropriate in the exploration of the functional bases of behavior. This
framework is especially suitable in examining learning and memory, which have been
shown to be particularly difficult to localize to specific and isolated brain regions and
are thus likely to be primarily network phenomena.

Memory and the act of remembering form the basis for our everyday life and even
our sense of self, as memory is the cumulative effect of the external environment
interacting with our internal states throughout our entire lives. We routinely engage
in multiple acts of remembering in even the simplest of tasks, such as dialing a phone
number, retelling a story, or even driving. Although no one clear classification scheme
exists, memory can be most intuitively divided up based on time of retention.

The shortest retention time belongs to sensory memory, which lasts hundreds of
milliseconds for visual stimuli and up to a second for auditory stimuli. An example
of sensory memory might be hearing a particular sound and maintaining it in sensory
memory for several seconds. It is by definition not contextual or processed, and is
unable to be rehearsed [37].

Short-term memory lasts on the order of minutes to hours, and is often used inter-
changeably or in close association with working memory, although the two concepts
emphasize different cognitive aspects — the former highlights retention capabilities
while the latter highlights attentional faculties. Short-term memory is limited in
capacity as well as duration, as was famously observed by Miller in his 1956 psycho-
logical study which showed that humans can retain “seven plus or minus two” distinct
items or concepts at a time in working memory [112].

Long-term memory refers to both facts and events we can actively recall, termed
“explicit” or “declarative” memory, and learned skills and reflexes which are not con-
sciously remembered, termed “implicit” or “procedural” memory. Explicit long-term
memory can further be divided into episodic, or memory of specific events located in

time and place, and semantic memory, which is knowledge of general facts and events.
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Episodic memories involve temporally coincident knowledge gleaned from many senses
so that it’s contextual, whereas semantic memories are context-free, general knowl-
edge gradually created over time from many different integrated experiences [167].
Long-term memory can persist indefinitely, and it’s capacity for storage is unknown.

Although the psychological aspects of memory have been explored since the 19t
century, it wasn’t until the landmark case of Henry Molaison, better known as Pa-
tient H.M., in the 1950s that the field saw extensive progress on the neurological
underpinnings of memory and the functional processes involved. Henry Molaison had
suffered from intractable epilepsy due to brain trauma suffered as a child; his condi-
tion was so serious as to be life-threatening. Not responding to standard medication
or treatment, his doctors proceeded to surgically remove extensive brain tissue from
both of his temporal lobes, including most of the hippocampus, the entorhinal cor-
tex, portions of the associational neocortex, and the amygdala [150] (see Figures 1.3
and 1.4).

Afterwards, though his epilepsy was significantly contained, he was left with severe
amnesia of two kinds: 1) retrograde amnesia, in which he lost significant portions of
his memory from the most recent years before his surgery, and 2) anterograde amnesia,
in which he was unable to form new long-term memories. Although he still maintained
the same general level of intelligence and had the ability to form short-term memories
lasting on the order of minutes, he was unable to retain anything beyond that. For
the last 5 decades of his life, he was unable to remember anything new. Further,
H.M.’s memory loss was different for different types of memory. For instance, he was
able to gain new skills and improve at solving puzzles at the same rate as controls,
even though he didn’t remember actually doing any of these tasks. This suggested
that the removed brain structures were important to the management of declarative
memories, especially in turning short-term memory into long-term memory, a process

known as “consolidation” [4].
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In order to understand this process, some general neurobiological background
must be given. On a cellular level, short-term memory has been linked to two sepa-
rate processes: 1) transient spatiotemporal dynamics such as persistent self-sustained
reverberating activity [185] or synchronization of oscillations among and between var-
ious neurologically significant frequency bands [166, 9], and 2) temporary changes in
synaptic efficacy due to facilitation and depression processes [59] or early phase pro-
tein synthesis-independent LTP [174]. The former is more closely associated with

Y

the idea of “working memory,” or memory lasting on the order of minutes which is
being actively kept in consciousness, while the latter refers to reflex habituation or
the very first stages of long-term potentiation which involve synaptically “tagging”
neural circuits for later consolidation and can last for hours [58]. The primary brain
regions associated with short-term memory are the hippocampus, amygdala, entorhi-
nal cortex, and the prefrontal cortex. Because of the transient nature of short-term
memories, they’re quickly forgotten unless encoded into long-term memory stores via
gene expression, protein synthesis, and possibly axonal or dendritic growth in the pro-
cess of consolidation. The final storage site for long-term memory is the neocortex,
which is also the same region that first processes incoming stimuli.

This is no coincidence, because as H.M.’s case clearly shows, the hippocampus and
entorhinal cortex are vital to stabilizing and transferring short-term memory to long-
term memory and are therefore intimately connected to the neocortex. The neocortex
is the outermost layer of the cerebrum and is linked to higher cognitive functions such
as language, sensory perception, reasoning, and even consciousness (see Figure 1.3).

The hippocampus is a seahorse-shaped structure located deep in the medial tem-
poral lobe which supports spatial mapping and declarative, contextual memory. It
displays a very layered organization and as a result its connectivity pattern is one of

the most studied and well-known. The hippocampus consists of the dentate gyrus,

the cornu ammonis (CA) subregions, and subiculum. Its primary inputs are from

14



Neocortex

Hippocampus

Figure 1.3:
& Anatomy of hippocampus and neocortex. Adapted from

www.macalester.edu/psychology /whathap/UBNRP /ltp04  (left) and
pubs.niaaa.nih.gov/publications/arh284 (right).
the entorhinal cortex, which receives sensory information from the parahippocampal
and perirhinal cortices as well as the olfactory bulb. The entorhinal cortex projects
via the perforant path to the dentate gyrus and region 3 of the CA, or CA3, and to
CA1 via the temporoammonic path. The dentate gyrus passes signals to CA3, via
mossy fibers and is believed to be responsible for orthogonalizing and separating pat-
tern representation within that region [103, 92, 117]. CA3 is notable for containing
many recurrent connections, making it an attractive candidate for an autoassocia-
tive content-addressable memory store. It projects to area CA1 via a pathway called
Schaffer collaterals, which itself feeds into the subiculum. From there, the informa-
tion leaves the hippocampus and re-enters the entorhinal cortex, to be passed back
to the higher associational cortices of the neocortex.
Sensory information therefore converges and travels in a bidirectional feedback
loop from the neocortex to the hippocampus for processing and encoding and back
again via the entorhinal cortex, which gates both pathways (see Figure 1.4) [49, 89].

It’s believed that the hippocampus and neocortex function in a highly interactive
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Figure 1.4:
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Circuit organization of hippocampal-neocortical memory pathway. a)
Depiction of a coronal, cross-sectional slice of the hippocampus. Image
adapted from groups.northwestern/edu/pruston. b) Sensory input is ini-
tially processed by various regions of the neocortex associated with the
different senses, which then transfers information to the entorhinal cortex
via the parahippocampal and perirhinal cortices. From there, the en-
torhinal cortex communicates with the dentate gyrus and the CA3 of the
hippocampus via the perforant path from its superficial layers, and also
projects into CA1 via the temporoammonic path. The dentate gyrus also
synapses into the CA3 via mossy fibers, which itself projects into the CA1
via Schaffer collaterals but also has extensive recurrent connections with
itself. CA1 feeds into the subiculum which subsequently feeds back into
the deep layers of the entorhinal cortex, which then relays information
back to the neocortex again. There is therefore a bidirectional feedback
loop between the neocortex and hippocampus via the entorhinal cortex.

16



manner to both quickly encode declarative memory traces within the former and
slowly transferring these traces to associational long-term stores in the latter [106].
This mechanism is not well understood, but there is strong evidence to support that
it depends highly on sleep. Specifically, the type of memory which is consolidation
depends on the amount of time spent in each stage of sleep. The typical sleeping
person will cycle fully through all the stages in about 90 minutes, starting in non-
REM stages 1 and 2 and rapidly descending into slow-wave sleep (SWS), also known
as non-REM stages 3 and 4, before rising back through the stages. Instead of waking,
however, the sleeper begins rapid eye movement (REM) sleep, which is when most of

us tend to experience dreams (see Figure 1.5).
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Figure 1.5:

The stages of sleep. The typical full night’s sleep for a human involves
roughly 5 90-minute cycles of non-REM sleep stages 1-4 followed by REM
sleep. Throughout the course of the night, the sleeper spends progres-
sively more time in REM and less in non-REM. Non-REM sleep stages
3-4 are also known as SWS, characterized by large, slow (0.5-4 Hz) oscil-
lations seen during EEG recording. REM sleep is characterized by rapid
eye movement, theta oscillations (4-10 Hz), and dreams. Adapted from
[161].

In declarative memory tasks, subjects generally experience enhanced memory re-
call as the amount of SWS increases, while procedural tasks are benefited from in-
creased REM sleep [42, 63, 161]. Consolidation has been shown to occur over the

span of hours, days, and even up to years [88, 106, 155]. There is still much contro-

versy over the neurobiological underpinnings of consolidation and the role of sleep;
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see [182] for a good review. Nevertheless, the general consensus is that sleep, and
particularly memory reactivation, are important to the stabilization of new memory.
Memory reactivation is the replay during sleep of previously activated neuronal cell
assemblies seen during awake learning. In declarative memory experiments with rats,
certain hippocampal cells which mark specific places with selectively high levels of
firing (“place cells”) are capable of firing in the same sequential order during REM as
during previous novel learning tasks [96, 191]. It is hypothesized that sleep plays an
important role in consolidation by allowing the memory traces to reactivate long after
the initial sensory stimuli to give enough time for long-term potentiation processes to
stabilize and encode the new memory into the neocortex [162].

Studies examining the time course of consolidation have shown experience-dependent
reactivation of hippocampal cells and, in particular, that the reactivation of a given
experience during sleep is greatest when the experience is novel and diminishes with
repeated exposure [129, 134]. They have also indicated a progressive shift of the phase
of place cell firing in CA1 during REM sleep as memories become gradually more fa-
miliar [134, 22]. This phase is relative to an overall hippocampal theta rhythm (4-10
Hz) in the population activity often observed during sleep and activity exploration
and which is thought to be crucial to mnemonic coding [40, 10]. Such a phase shift
could be due to a change in input driving from being dominated by intrahippocampal
CA3 excitation to extrahippocampal driving from the entorhinal cortex, resulting in
CA1 neurons switching from firing at the peak of hippocampal theta to firing at the
peak of cortical theta, which is 180° out of phase [22]. Firing at the hippocampal
trough could provide a possible mechanism for the erasure of old memories from the
hippocampus which have been consolidated into long-term neocortical stores.

In a later chapter, I examine the dynamical underpinnings of time-dependent
memory transfer from the hippocampus to the neocortex and classify how this dynam-

ics is modulated by stimulus novelty and especially inhibitory feedback from the neo-
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cortical input pathway which signals progressive familiarity. 1 hypothesize that net-
work structural heterogeneities are capable of mediating this novelty detection and the
eventual consolidation of memories, rendering them hippocampus-independent. Spe-
cific patterns of neural activation can also modify the network connectivity through
plasticity mechanisms to allow this pattern to be retrieved at a later time, completing

a feedback cycle between spatiotemporal dynamics and network architecture.

1.4 Memory storage and retrieval

As discussed in Section 1.2, synaptic plasticity and LTP are believed to be the
neurophysiological substrates of learning and memory. Therefore memory represen-
tations can be encoded through the patterns of synaptic weights within a network
which result in the increasingly associative activation of a subpopulation of neurons
as learning progresses. Recall of distinct memories consists of activation of distinct
patterns of neuronal activity which is in turn based on underlying connectivity.

Whether memories are encoded within the firing rates (rate coding) or the pre-
cise temporal timings (temporal coding) of neuronal spikes is still unknown, as evi-
dence exists for both. Working memory in particular is thought to function through
persistent activity of subpopulations of neurons which are either topographically or
functionally associated with each other [45, 184]. The hippocampal CA3 subregion is
known to be highly recurrent and is therefore thought to be an associative memory
store, capable of completing activity patterns when presented with an incomplete
input cue [102, 167, 118]. However, more recently, it’s been proposed that temporal
sequences of events making up episodic memory are encoded in the precise ordering
of neuronal spikes [48, 74].

In general, it seems reasonable to assume that a subset of neurons which are more
highly connected to each other would result in the stable persistent firing of the en-

tire ensemble, corresponding to the activation of a memory concept which cannot be
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temporally decomposed. In this way, memories and information are encoded through
inducing local variations in the densities of synapses and synaptic strengths, resulting
in a heterogeneous network topology which can exhibit subcommunity and hierarchi-
cal structure [43]. Such heterogeneities introduce spatially varying yet temporally
stable patterns of firing reflecting the underlying connectivity and which represent
attractor states of the network [167].

The entorhinal cortex receives input (either directly or indirectly, via the parahip-
pocampal and perirhinal cortices) from widely distributed higher sensory cortices and
projects back to nearly the same areas, leading to the idea that long-term memories
are encoded in the same areas they are first processed [4]. This is most likely so
that different aspects of a memory are associated with similar previously encoded
concepts, promoting a gradual integration of new knowledge with the old as well as
hierarchically organized experience and memory. Various models of the consolida-
tion process have theorized that memory encoding within the hippocampus serves to
bind together these disparate neocortical areas until they have formed strong enough
synaptic connections through LTP processes that they can activate independently of
the hippocampus [113, 105, 104].

It’s not too difficult to see how the progressive storage of experiential episodic
memory can lead to the formation of semantic memory (knowledge) because as various
experiences are encoded, overlapping concepts and commonalities eventually become
independent of their temporal and associated context as they become linked with so
many episodic experiences that they cease to offer information about the context.
Experimental evidence has linked episodic and semantic memory activation to the
same memory system and underlying anatomical circuitry [136, 30], with the two
representing different modes of functioning. Theoretical models have also been posed
suggesting that the hippocampus is responsible for relating distinct episodic memory

sequences and extracting common features for semantic representation [48].
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More complex concepts or memories will tend to share common features, which
would be encoded by the same sets of cell assemblies. For example, “green ball” and
“red ball” share the concept “ball,” while green ball and green grass share “green.”
With standard autoassociative memory models such as those of Hopfield [80] or Hebb
[77], this poses a problem because activation of one representation also activates all
associated representations simultaneously, resulting in the retrieval of an amalgam
of many memories instead of only one. Recurrent networks also frequently suffer
runaway synaptic modification as well as (and as a consequence of) uncontrolled
activity because novel inputs tend to also activate old memories and become encoded
as a part of them. Therefore additional inhibitory or competitive feedback drives
must be in place to facilitate single memory recall or completion.

Experimental evidence exists which shows that excitation is frequently balanced
on both a global and local level by inhibition, such as in the local dendritic branches of
hippocampal neurons [95] and in neocortical dynamics [68]. Theoretical models have
implemented inhibitory feedback as a mechanism of threshold control and stabiliza-
tion of activity [75], and have shown detailed excitatory-inhibitory current balance
to be vital to signal gating [177]. Inhibitory feedback therefore increases the dy-
namic range of the responsiveness of the network and allows for optimal information
processing under a variety of sensory input levels.

Uniformly global inhibitory feedback does not, however, address the issues of run-
away activity or learning in recurrent networks. Neuromodulation has been suggested
as a method of preventing runaway learning by separating the encoding phase from
the retrieval phase during consolidation [71]. Theoretical and experimental investiga-
tions have supported the notion of differential input drives throughout consolidation
[22, 134]. In the encoding phase, the hippocampus must encode new memory rapidly,
and thus its activity should be dominated by extra-regional input from the entorhi-

nal cortex. However, in the reactivation phase, the hippocampus must replay this
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previously stored activity and thus must be primarily governed by internal dynamics.
This neuromodulation is thought to be mediated by differential levels of acetylcholine
present during different sleep stages and wake-vs-sleep behavior [76, 72].

Physiologically, lateral inhibition in the visual [116, 18] and auditory [190] cor-
tices allows for selective tuning of receptor cells. It’s also been shown that pattern
separation within the CA3 can be achieved through inhibitory input or suppression
of excitatory input from the dentate gyrus (DG) [103, 92, 117]. However, little is
known about the actual pattern of this feedback inhibition, although it is clearly not
uniform.

In Chapter III, T focus on how overlapping concepts or semantic memories can
be optimally stored within a neural network and examine the role of topologically
structured inhibition in mediating competitive memory retrieval and activation. I also
investigate the role of a global excitability level corresponding to neuromodulatory

effects on the performance of the model in retrieving and replaying stored memories.

1.5 Methodological tools: Networks, modeling, and reduced

experimental systems

1.5.1 Network dynamics underlie information processing

Multiple statistical properties can be defined and calculated given a specific net-
work. For nodes distributed in a Euclidean space, such as with neuronal networks, we
can define a physical distance between two elements in addition to the link distance,
or the shortest route between any two elements in the graph counted in terms of how
many links separate them. Within the brain, there exist both short-range (spatially
close in a Euclidean sense) connections between neurons as well as long-distance con-
nections, where two neurons are connected synaptically despite being separated by

large distances. Networks with both short-range and long-range connections were
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first introduced as “small-world networks” (SWN) by Watts and Strogatz, who char-
acterized them as having both high clustering, or likelihood that the spatial neighbors
of a vertex are connected to each other, as well as a short path length, or average
number of links it takes to travel from any one element to another [188].

The dynamics of a network is heavily determined by its network properties because
these properties govern the effects which elements have on each other. A random
network exhibits connections between random pairs of elements regardless of their
physical separation and therefore shows the shortest path length; this allows for
maximum transmission of information across a neuronal network, but a weak ability
to form dynamically coherent clusters of neurons. A completely regular network,
where elements are only connected to their k£ nearest neighbors would display slow
information transfer but a high propensity for coherent cluster formation.

A small-world network is one in which random connections are added to or replace
links in a local network with a probability p, and varying this value allows for careful
tuning between the two extremes as well as quantitative representation of the network
topology, as shown in Figure 1.6. It has been shown that in small-world networks,
addition of relatively few shortcuts allows formation of coherent dynamics from local
synchronized clusters [56, 159]. Scale-free networks are another type of topology which
have been identified as having real-world relevance and practical importance. These
networks are characterized by a power law distribution in the number of connections
each node is likely to have. That is, the probability of a node having k£ connections is
given by P(k) o< k=7, where  usually ranges from 2 to 3. Such a structure necessarily
entails the existence of “hub nodes,” or nodes with very large numbers of connections,
alongside the vast majority of nodes which have few connections [11, 21].

Both small-world and scale-free networks have been identified in the brain. Small-
world networks have been discovered in the anatomical networks of in vitro neuronal

cultures [151] as well as in functional networks between entire brain regions using
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1B Creation of a small-world network. Left-most graph shows a fully local,

regular 1-D lattice with periodic boundary conditions and k£ = 4 near-
est neighbor connections per neuron. By breaking a few of these local
connections and then randomly rewiring them, we’ve introduced some
long-range connections which link spatially distant portions of the net-
work. As the fraction of links rewired increases, denoted by the rewiring
parameter p, the network becomes increasingly random.
fMRI [149] and EEG [111] data. This could be an attempt by the brain to maximize
information flow across distances while minimizing the energetic costs of building
and maintaining connections [28]. FMRI has also been able to identify scale-free
correlations between different brain areas during task performance [47].

Small-world networks of oscillators are found to synchronize more easily than ran-
dom or local networks [12], while a largely heterogeneous distribution in number of
connections of each node tends to desynchronize systems [123]. Synchronization is a
uniquely network effect, defined by the existence of functional temporal correlations
in trajectory between two or more dynamic elements. Within the brain, synchroniza-
tion is theorized to serve as a mechanism of integrating distributed neural activity to
form coherent thought and organized cognitive processes [173]. Small-world networks
of integrate-and-fire neurons (a simplistic neuronal model with built-in refractory be-
havior, described in Chapters IT and IIT) can exhibit bistable dynamic behavior which

switches between a quiescent state and persistent self-sustained activity depending

on the stimulation [148]. Persistence is due to re-injection of activity into distant
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and recovered (i.e. no longer in a refractory period) areas of the network via a few
long-range connections, while most activity propagates locally via short-range con-
nections. This allows for the formation of reverberating loops and sustained high
activity levels. As the network moves closer to random topology, a higher probability
of failure occurs due to inability of the neurons to recover before being re-injected.
This self-sustained persistent elevation of selective neural firing is widely accepted
to be a neural correlate of working memory [184, 35, 36]. It has been theorized
that neurons and networks within memory structures form dynamical systems that
can exhibit bistable (or multi-stable) states of activity where high activation states

correspond to activation of a specific memory [44].

1.5.2 The role of modeling

Large-scale dynamics of the brain are not generally obvious or deducible from
the micro-interactions, so that they are emergent properties of the system. This
behavior is characteristic of a complex system, a relatively new term which has come
to (vaguely) define any collection of elements which interact in a nonlinear way to
result in macroscopic properties which can be self-organized or unpredictable. It is
this unpredictability which has necessitated exploration of new ways of thinking and
investigation.

For centuries, immense advances in our understanding of nature have come from
combining inspired theories with carefully conducted experiments. If measurements
matched with those predicted, then confidence in our mentally constructed concept
of the system grows. However, when a system grows complex enough, it becomes
necessary to augment natural human intuition with computational modeling power
in constructing sensible theories. This is true for two reasons: 1) The interrelated
nature of complex dynamic networks such as those in the brain make it difficult to

isolate, control for, and sometimes even identify single parameters in experiment and
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analysis, and 2) These networks often behave in counterintuitive and unexpected ways
due to the existence of multiple interacting forces and features, necessitating the use
of reduced models in comprehending distinct driving forces.

The bulk of experimental work in the sciences have operated under what is now
considered “reductionist” principles, or the practice of breaking a system up into
smaller and smaller components in order to understand its function. In some cases,
such as with high energy physics, characterization of the smallest components such
as quarks and gluons is the end goal. However, with the more applied sciences which
target function on the macroscale, implicit in this reductionist method is the idea that
properties of the constituent elements manifest on the macroscopic scale in a mostly
linear, superpositional way. This has brought forth great advances as it’s often the
case that interaction forces are either negligible in comparison to bulk behavior or can
be averaged in some manner to yield statistical information. Neither of these apply to
complex dynamic networks, in which multiple spatial and temporal scales interact to
create highly nonlinear interactions so that neither pure randomness nor pure order
is able to dominate. This makes it quite difficult to identify or experimentally alter
one physical feature of the system which would not affect others.

To be sure, this same weakness can exist in models of complex dynamic networks
as well. If a model of a system were designed which incorporated all the complexities
and nonlinear interactions of the real-life system, it’s unclear what can be learned
about its function by adjusting various parameters, despite immensely better control
over conditions and rules of interaction. Therefore the real power of creating a net-
work model lies in its ability to reduce and condense complex systems into something
already understood with the exception of one added component which we are inter-
ested in exploring. This can be seen as a different but analogous type of reduction as
compared to classical reductionism; instead of eliminating interaction effects between

components, we eliminate various layers of detail in the components themselves. The
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general strategy is then to elucidate and test individual theories of function which
can be incomprehensible if present all at once within a system.

Modeling can also offer insight into network effects gleaned through the process
of thinking through its construction. Along with the ability to examine the data in
arbitrarily close detail, constructing networks from the ground up instills and to an
extent requires intuition into workings of networks. Similar to how thermodynamics
can be understood most palpably if one has an intuition of how microscopic properties
of single molecules affect macroscopic properties of bulk matter, it’s important to
form an intuition of how complex micro-interactions at the single unit level affect
large-scale dynamics.

Of course, the major drawback of models is that they're inherently decoupled from
reality. Therefore it’s vital to choose and construct models carefully and interpret
the results within the proper scope. Paired with data analysis and experiment, this
can yield great insight into the complex workings of neural coding and network in-
teractions underlying brain functions. It is within this framework that I explore the
neural correlates of learning and memory, making meaningfully chosen simplifications

in order to probe network functioning.

1.5.3 Neuronal models

The advent of the computer has allowed us to pose theories of much more complex-
ity than before. With models, we can test hypotheses of function with ease. However,
it is critical to determine the optimum amount of detail to incorporate into a model,
as this decision can drastically affect the way the results should be interpreted. Mod-
els range from the abstractly simple to the realistically detailed. Simplicity tends to
promote understanding, and thus the simpler models are useful for elucidating princi-
ples of function. Complex and detailed models risk inheriting the complications and

ambiguity of the objects they’re modeled after, but are useful for testing parameters
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and ranges of function. There is thus a trade-off between understanding and realism,
and the aim is always to maximize the amount of understanding given the sacrifice
in realism.

The simplest models of neural functioning are mathematical abstractions which
approximate the internal voltage of a neuron as a direct function of its summed
inputs, which is then usually thresholded to yield boolean values representing active or
nonactive states. The most famous memory model which made use of these artificial
neurons was implemented by Hopfield who connected them into a recurrent network
with weights that with proper training allowed the recovery of low-energy attractor
states as the units evolved over many iterative steps [80].

Biological neuronal models account for the explicit time dependence of input cur-
rents and membrane potentials. The simplest model incorporating these features is
known as the integrate-and-fire neuron, which evolves according to a single linear
differential equation linking the rate of change of the membrane voltage to input cur-
rent. There are several artificialities generally incorporated into this model to account
for the nonlinear nature of real neurons which cannot be captured by a single equa-
tion, such as a refractory period and the synaptic output current. The advantages of
integrate-and-fire neurons include their light computational requirements as well as
the ease of linking them into very large networks.

The most famous biological model explicitly accounting for voltage-gated ion chan-
nels is the Hodgkin-Huxley neuron, which is a set of four nonlinear differential equa-
tions describing the membrane potential, a voltage-gated Na' channel conductance,
a voltage-gated K+ channel conductance, and a passive leak conductance [79]. The
biological realism of the Hodgkin-Huxley neuron allows for the exploration of a wide
range of complex ion channel-dependent neuronal dynamics, but its many coupled
equations make it difficult to implement into large-scale networks. Several simpli-

fications to this model have been developed which take advantage of the different
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timescales of the various ion channels and reduce the number of differential equations
to three [78] and two [54].

The most realistic neuronal models are concerned with the propagation of elec-
trical current across the spatial extent of a neuron, and incorporate features such as
dendritic branching or cross-sectional area and the active propagation of action poten-
tials down the length of the axon. Such systems are usually referred to as cable theory
or multi-compartmental neurons and are useful for examining the electrophysiological
properties of single neuron functioning.

The more detailed a model is, the more difficult it is to model neurons within a
network since the computational requirements increase exponentially as interactions
between neurons are incorporated. Since learning and memory are primarily functions
of the network interactions between neurons, the networks involved can be quite large.
Therefore, I implement the leaky integrate-and-fire model to highlight the effects of
network properties and topologies on the neuronal activity and to limit the number

of free parameters to manageable levels.

1.5.4 Experimental networks: in wvitro cell cultures

As mentioned previously, complex networks are difficult to experimentally test
due to their interdependent nature, but a few biologically reduced systems can be
tractably studied to gain insight into the networks of the brain. One of these which
we study in our lab is the dissociated hippocampal cell culture, composed of neurons
and glial cells. These cultures are created by plating and growing rat hippocampal
cells which have been dissociated from each other to break all synaptic connections.
After plating, they are able to regrow processes and thus form biological networks as
well as exhibit spiking dynamics.

Dissociated cultures offer the advantage of clear unobstructed imaging, relatively

easy pharmacological and mechanical manipulation, and the ability to be grown on
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MEAs which allows for spatially extended electrical recording. Thus, anatomical
connectivity can be connected to firing dynamics to assess for the relationship between
network structure and dynamics.

Cultures are analyzed over various days of growth and in two conditions: high glial
and low glial growth levels. Glial cells are known to be vital to neuronal growth and
survival [122] in addition to modulating neurotransmission [15, 16, 175]. Glial cells
are connected to each other via gap junctions and can directly connect to neurons via
either gap junctions or chemical synapses [16]. However, they much more commonly
indirectly modulate neuronal activity. Morphological investigations show that astro-
cytes tend to surround the synapses of neurons, forming a ”tripartite synapse” [7] in
which they engage in bidirectional interaction with pre- and postsynaptic neurons via
Ca?T-dependent release of gliotransmitters such as glutamate and ATP. This allows
them to function as an active third partner in neuronal communication [131, 120].

I closely characterize various aspects of the anatomical structure with immuno-
cytochemistry and fluorescence labeling, including the density of synapses along the
neuronal processes, the extent of neuronal process growth, the extent of glial cell
growth, and the length and complexity of the processes of individual neurons. Im-
munocytochemistry involves the use of antibodies and antigens to label for specific
proteins in a cell. T utilize an indirect two-step labeling process which involves first
labeling with a primary antibody which binds to the target protein, followed by a
secondary antibody which binds to the primary antibody and is conjugated with a
fluorescence marker. Such a procedure allows for increased sensitivity over direct
labeling methods. I also use a diffusive carbocyanine membrane dye to individually
stain neurons so that entire processes can be visualized. Carbocyanine dyes are use-
ful because they are extremely bright and stable with low photobleaching. They are
lipophilic and so are able to diffuse through the entire cell membrane, staining all

processes while avoiding staining surrounding neurons, even synaptically connected
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ones.

These results are compared with analyses of their functional structure derived from
spiking dynamics, provided by Sarah Feldt. It is found that changes in the anatomical
structure of the neuronal network is linked to changes in functional connectivity, and,
further, the morphological characteristics of the glial network impacts the range of

neuronal signaling.
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CHAPTER II

Memory consolidation

2.1 Introduction

The memory formation process is founded upon synaptic reorganization and modi-
fication regulated by neural activity. When associative memories are first formed, cor-
tical sensory areas which project to the hippocampal associative network activate the
hippocampus and rapidly (within seconds) form a new network of synaptic weights en-
coding that memory. Over the span of days and weeks, rapidly formed novel memory
networks in the hippocampus are consolidated to the cortex in a time- and activity-
dependent fashion [88, 134, 22], eventually allowing memories to be independent of
the hippocampus altogether [106]. Recent studies [168] have shown that storage and
recall of spatial memory can occur independently of the hippocampus once schemas
have been formed. Moreover, studies investigating brain metabolism and activity-
related genes in mice suggest the decreasing importance of the hippocampus as time
passes after learning and the increasing importance of several cortical regions [57].
These and other findings [158] suggest that the hippocampus is a general-purpose
learner of new facts and events, both spatial and non-spatial [157], but that the cor-
tex handles long-term storage of memory. Electrophysiological [191, 135, 134, 139]
and genetic [142] studies have combined with behavioral and neurological case studies

[156, 181] to build a coherent cellular and behavioral theory of how the consolida-
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tion process occurs off-line (e.g. during sleep) through the reactivation of patterns of
neuronal activity observed during awake learning [96, 22, 55, 141].

From a dynamical perspective it is generally assumed that an enhanced spiking
activity in the form of persistent reverberation for several seconds is the neural cor-
relate of working memory [60, 61, 66]. The formation of these persistent activity
patterns has been studied extensively [64, 163, 164]. Some of this work concentrated
on investigating what intrinsic neuronal properties can support such activity patterns
[114, 178], while others focused on defining the exact activity matrix that would sup-
port attractors exhibiting localized, memory-specific, persistent activity [147, 34]. We
have shown recently that selective persistent activity during reactivation is an intrinsic
property of an inhomogeneous dynamic memory structure [83] and is due to recur-
rent excitation supported by the networks with Small-World (SW) topology [148].
Biologically, such heterogeneities are shown to exist [187]. Moreover, we showed the
network can regulate the stability of the persistent activity regime through change of
global parameter, namely excitation. This allows the networks to undergo a seamless
transition between activity regimes.

It remains unclear, however, what the dynamical underpinnings of time-dependent
memory transfer from the hippocampus to the cortex are and how this dynamics is
modulated by stimulus novelty. Experimental work has shown that the reactivation of
a given experience during sleep is greatest when the experience is novel and diminishes
with increased exposure [129, 134]. Moreover, hippocampal recordings indicate that
there is a significant phase shift of neural activity with respect to the hippocampal
theta rhythm during the consolidation process [134], which could indicate a difference
in input drives through the two hippocampal excitatory input pathways as consol-
idation progresses [22], as the firing of neurons in the hippocampal subfield CAl
switches from being aligned with the peaks of hippocampal theta oscillation to being

aligned with the peaks of cortical theta rhythm. However, basic questions remain
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concerning 1) how the stimulus novelty is assessed from changes in localized activ-
ity patterns, 2) how these changes are related to structural network modifications,
3) how the hippocampal-cortical interaction regulates memory storage and erasure
within hippocampus, and finally 4) how all these processes come together to generate
the experimentally observed, complex and novelty dependent memory management
scheme.

Here we show that this phenomenon can be easily explained through generic mod-
ifications of network structure which in turn evokes dynamical changes in network re-
sponse. Namely, our results indicate that the dynamic formation of localized network
inhomogeneities, coupled with basic anatomy of hippocampal-cortical structure, can
underlie both novelty detection within hippocampal and cortical networks, as well
as memory management processes based on this novelty assessment. To be able to
concentrate solely on the structural network underpinnings of the observed dynamics,
we use integrate-and-fire neurons; however the results apply to biologically detailed
neuronal models.

In order to more closely examine the network structural and dynamical underpin-
nings of these phenomena, we present each component of our model separately and
discuss their implications on the novelty detection and the memory management.
Both the hippocampus and the cortex were each modeled as a reduced assembly of
excitatory and inhibitory networks [Figure 2.1b] having periodic Small-World topol-
ogy per the Watts-Strogatz formulation [189]. This general topology was found to be
present in local and global brain networks [2, 154]. Dynamic Small-World topology
allows for simultaneous local propagation of activity as well as long-range re-injection
of current, promoting formation of "on” states of persistent activity [148].

First, we show that a relatively small increase of connectivity in a discrete (i.e.
well-defined) network region can play two distinctly different roles, depending on the

network dynamical regime. When the network is in the low excitation regime, the
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changes of local network response to incoming sensory stimuli can act as familiar-
ity /novelty detection mechanism. However when the global network excitation is
increased, the same region will exhibit a persistent self-activation in the absence of
external input. Our results indicate that the evolution of these two dynamical states
correspond to observed neurobiological responses to a presentation of increasingly
familiar stimulus during animal wake state and to memory reactivation experienced
during sleep, respectively.

Further, we show that structural network inhomogeneities provide at the same
time a dynamical mechanism of intra-network novelty detection and inter-network
signaling of the level of discrete memory consolidation within the cortical network.
This last mechanism subsequently provides a self-regulated means for the hippocam-
pus to clear already consolidated memory traces. When implemented in conjunc-
tion with a simple learning rule, as well as the assumption of fast plasticity in the
hippocampus coupled with slow plasticity in the cortex, we can reproduce complex

memory management processes similar to that observed in behavioral data.

2.2 Model Structure and Methods

2.2.1 Intra-hippocampal/cortical network

The two brain structures were composed of a population of 500 excitatory neu-
rons coupled with a smaller population of 100 inhibitory neurons. The network size
ratios and connection densities used were chosen to grossly reflect biological distri-
butions and connectivity patterns in the hippocampus (Figure 2.1a); however, these
parameters are easily modifiable without loss of observed dynamical response.

We used leaky-integrate-and-fire neurons given by

avy, A
de—t/ = —Oéj‘/,ij/e + Ii/e + ijk’[fyn (21)
k
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Diagrams of network structure. (a) Circuit diagram of anatomical con-
nectivity between hippocampal and cortical structures. Entorhinal cortex
layers II, IIT and IV-VI project through the perforant path (PP) to the
Dentate Gyrus (DG) and CA3, through the temporoammonic (TA) path
to the Subiculum (Sub) and CA1, and from the CA1l and Sub to the
deeper layers of the entorhinal cortex, respectively. MF=Mossy Fibers
and SC=Shaffer’s Collaterals. (b) Diagram of model used in simulations.
Single network (Hippocampus or Cortex): the network is composed of a
larger population of excitatory neurons and a smaller population of in-
hibitory neurons. Both inhibitory and excitatory networks comprise Small
World network having periodic boundary conditions. Feedback between
hippocampus and cortex: the excitatory hippocampal neurons locally in-
nervate the excitatory cortical network (e.g. the entorhinal cortex). The
cortical excitatory network suppresses the hippocampal excitatory net-
work through random inhibitory pathways.
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to represent the reduced dynamics of the network elements. The i/e denotes either
an inhibitory or excitatory neuron; V;j/e is the membrane voltage of the j’th neuron;
«; is the membrane leak rate constant randomly distributed such that o; € [1,1.3];
Tm = 30ms is the membrane time constant; / fyn is the incoming current to the j’th
neuron from the £’th neuron; and w’* is the connection strength between neurons
j and k. For the global excitatory network the local connections are established
between cells such that the relative distance from one to another lies within the radius
R. =5, p; = 0.15 is the rewiring parameter defining the fraction of the number of
local connections to the number of random, long-range ones, and the connections
are of strength w,, = 2. Similarly, the global inhibitory interneuron subnetwork has
R, =1, pg = 1, and w;, = 10, forming a random graph network. Every inhibitory
cell receives input from ne; = 5 neighboring excitatory neurons with strength we; = 4,
and every excitatory neuron receives input from n;. = 10 random inhibitory ones with
strength w;. = 2. Locality and relative distance were determined by considering a one-
dimensional lattice with periodic boundary conditions, done for graph visualization
purposes. Synaptic strengths were chosen to balance number of incoming connections
so that total possible input to all cells remains the same. The external current I;/,
is uniform over the entire inhibitory/excitatory network and functions as a global
modulatory mechanism (control parameter) that mediates response transitions from
low-frequency random activity, to spontaneous activation of discrete network regions,
and finally to global bursting. This network architecture promotes global inhibition
driven by focal excitation that creates selective, persistent reactivation patterns. For
a detailed description, refer to [83].

When the membrane potential of a given cell assumes a maximum value of V,..qor =
1, the neuron emits an action potential, its membrane potential is reset to V,.s = 0,

and the neuron enters a refractory period for 7,.s = 10ms. The synaptic current
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emitted by spiking neuron (k) is of the form

) e )l ) 0

syn

where (t — t*

opike) 18 the time since neuron £ last spiked, 7, = 1.5ms is the slow time

constant, and 7y = 0.15ms is the fast time constant. Aside from the deterministic
input drive received from other cells, all neurons have a p.. = 1072 probability of
firing spontaneously at any time step, defined as 0.5ms.

In this reduced model, the network heterogeneities are built into the excitatory
subnetworks of both the hippocampal network and the cortical network by adding
random connections to distinct non-overlapping subgroups of excitatory neurons, i.e.
neuron [Ds 1-100, 101-200, 201-300, 301-400, and 401-500. The additional connections
increase the density of interconnectivity within these regions beyond the average
global connectivity density, allowing subgroups of neurons to recurrently innervate
and effectively increasing regional excitability. These subgroups can be thought of as
memory structures formed through long term potentiation (LTP) processes which are

known to occur readily during exploration of a novel environment [109, 50, 39, 124].

2.2.2 Inter-hippocampal-cortical feedback

In the brain, the cortex and hippocampus are connected via two main input
pathways: 1) the perforant path (PP) from layer II of the entorhinal cortex to the
dentate gyrus, to CA3, and then to CA1l (Figure 2.1a and modeled as ”input” in
Figure 2.1b); and 2) the TA pathway directly from layer III of the entorhinal cortex
to the inhibitory interneurons in the lacunosum-moleculare layer of the CA1 region
and on to the subiculum (represented as Higher Association Cortex excitatory to
Hippocampus inhibitory cell connections in Figure 2.1b) [6]. These two PP and TA

input pathways function separately to encode novel memories and serve as a con-
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solidation index for familiar memories, respectively [176]. It is the slowly building
familiarity index of the TA pathway that is the first step in memory consolidation
which is modeled herein. To model this neurophysiology, the model network hip-
pocampus and cortex were coupled through localized excitatory connections from the
hippocampus to the cortex, and also with diffuse feedback inhibition from the cortex
to the hippocampus (Figure 2.1b). This connectivity grossly reproduces the anatomic
connectivity (Figure 2.1a) between the two structures [6]. The one-to-one excitatory
mapping from the hippocampus to the cortex is instituted for visualization purposes
only; the qualitative results of this model would remain the same as long as the corti-
cal structures, representing the long-term consolidated memories, can effectively and

selectively affect hippocampal memory reactivation.

2.2.3 Activity-dependent synaptic modifications

In the last stage of our modeling, we introduce self-regulated formation of new
connections within the excitatory networks to show the progression of sequential
memory management: rapid memory formation in the hippocampus, its reactiva-
tion in hippocampus and consolidation in the cortex, and subsequent erasure in the
hippocampus. Hippocampal and cortical excitatory subnetworks are allowed to un-
dergo synaptic modification based on spiking activity of these cells. Subnetworks are
of Small-World topology, with a local radius of R, = 10 and a rewiring parameter
p; = 0.15, and are composed of 50% non-modifiable, homogeneous, active connections
with weight w,., = 2 as well as 50% of modifiable, initially silent synapses, which are
connections initially with weight 0 but can modulate their strength between 0 and
We; = 2 as a function of neuronal activity [82].

The changes in synaptic strength are implemented based on a simplified neurobio-

logical rule of spike-timing dependent plasticity [13, 101, 17, 91]. The synapse strength

is incrementally increased when the pre and postsynaptic neurons fire together within
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a set interspike interval (ISI) of 77, = 7.5ms, and, conversely, synaptic efficacy in the
modifiable group is decreased when the two cells do not activate congruously and

their ISI is above the set threshold TF = 15ms:

% if ty — 1 < Ty ;
learn
Awj =4 — Mz ift; —t), > Tp ; (2.3)
7—fo'rget
0 ifTL<tj—tk<TF.

The w3, indicates the weight of modifiable synapses between neurons j and F,
Wep = 2 is the strength of non-silent synapses in the excitatory network, ¢; —t; is the

ISI between neurons j and k, and 7,/

and T}LO/: get are the time constants of learning
and forgetting in the networks, where h/c denotes the hippocampal/cortical network,
respectively. The time constants of learning and forgetting are much larger in the
cortical network, reflecting slower learning (LTP) in the cortex [46, 137, 138]. We
have used 1%, = 7.5ms, T;Lorget = 10ms, 724y, = 25ms, and 75, = 200ms.

In this simplified model we concentrate on memory formation only within hip-
pocampal and cortical structures. In the brain, LTP occurs both within the hip-
pocampus, within the cortex, and between the two structures during learning. LTP
occurs readily in the trisynaptic pathway from layer IT of the entorhinal cortex (EC)
to the dentate gyrus (DG). LTP is also easily produced in the Schaffer collateral (SC)
fibers from CA3 to CAl as noted in vitro and in vivo [176, 81]. LTP in the direct
temporoammonic (TA) inputs to CA1 have not been well described, indeed it is only
recently that attention has been paid to this input pathway in models of hippocam-
pal function, mostly in reference to memory consolidation as we are considering here.

As was noted earlier, LTP in the TA pathway is more difficult to induce and would

therefore probably occur more slowly than LTP in the trisynaptic pathway [46, 138].
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2.2.4 Experimental procedures for biological recording and data analysis

The experimental procedures are thoroughly described in [134]. Briefly, rats were
anesthetized and implanted with a 14-tetrode drive above the hippocampus CA1l
region in the brain. After surgical recovery, rats were food restricted to maintain 80-
95% of their free feeding weight, and were trained to run on a raised rectangular track
for food morsel rewards placed in food cups around the edges of the track. Rats ran
laps on this same track for 45 min each day to familiarize them with the environment,
procedure, and recording setup.

REM sleep was characterized by lack of movement and sustained large theta (5-
10 Hz) frequencies in the field potential following at least 3 min of non-REM sleep.
Cell spike, field potential and position data were recorded while the rat traversed
the familiar training track for 20 min, then traversed a similar track located in a
previously hidden area of the room for another 20 min, then returned for a final
20 min run on the familiar track. The same procedure of Familiar-Novel-Familiar
maze running followed by sleep recording was followed every day for a week while the
initially novel maze became familiar to the animal.

The relative amplitude of the spike peak and trough, and other waveform charac-
teristics were used to identify nearly 100 recorded pyramidal cells and interneurons
from the CA1 cell body layer. The spike times of each cell were then listed and
compared with the position of the animal at the time of firing, the state of the ani-
mal, and the phase of the field potential filtered for theta. Thirty-one of the recorded
CA1 pyramidal cells were selected for further analysis because they showed consistent
place-specific firing (place fields) on either the familiar maze only (n=12), or formed
a stable new place field on the novel maze (n=19). The firing rate of the familiar and
novel place cells during the exploration phase and during the subsequent 4 h sleep
period was calculated. The reactivation rate and theta pattern of cell firing during

REM sleep was compared with the activity rates and patterns of the same cells during
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the prior exploration period.
Theta phase and firing rate changes during running and REM sleep were first

reported in Poe et al [133].

2.3 Results

We show below that formation of structural network heterogeneities defined as
local variations of synaptic density can lead to dramatic changes in network dynam-
ics which may underlie stimulus novelty detection and regulate memory management
between the hippocampus and the neocortex. We ultimately show that this simple
mechanism modulating hippocampal activation through cortical feedback reproduces
the experimental data presented and, further, replicates the full process of hippocam-
pal memory management (i.e. hippocampal storage — hippocampal reactivation —
cortical storage — hippocampal deactivation). For clarity, in the sections below, we

discuss each dynamical component of the phenomena separately.

2.3.1 Single network mechanism can underlie novelty detection and mem-

ory reactivation

We have shown earlier [83] that network heterogeneity may underlie selective
network reactivation. Here we want to show that the structural network modifications
may play a twofold role during network dynamics. Random addition of relatively
few synapses (1-2% of total possible connections) to a selected network region can
dramatically change activity response of this region to stimulation when the network
is in its low global excitation state (i.e. low I.), and at the same time it can lead to
formation of persistent activity state within the same region when the network is in
its high global excitation state (i.e. high ).

To illustrate these effects we first measured network responses to a focal external

drive (Figures 2.2a-c). The network shows preferential activation of the region with
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Figure 2.2:

Time [s] Time [s]

Network response modulated by localized increases in connectivity den-
sity. (a) Activation of a network region, measured as a mean firing fre-
quency of neurons in the subnetwork (neuron IDs 300-400), in response to
stimulation of 6 cells (neuron IDs 315-320; global excitation I, = 0.6; stim-
ulation current Iy, = 0.7) as a function of number of added connections
to the subnetwork. Activation is averaged over 20 runs and over time.
Inset: sample time course of activation for 4 different connectivity densi-
ties (dashed line denotes onset of the stimulation). (b), (¢) Sample raster
plots of the network response during alternating stimulation to illustrate
locality of response; neurons 315-320 are stimulated between the dashed
line and first dotted line, neurons 115-120 between the first dotted and
second dotted lines, and neurons 315-320 are finally stimulated between
second dotted line and end of run. (b) No heterogeneities are present. (c)
N = 400 connections are added to the neuron IDs 300-400 region of the
network. (d)-(f) Reactivation as a function of local connectivity density.
(d) Mean firing frequency as a function of added connections for different
values of global excitation . (e),(f) Sample raster plots depicting net-
work reactivation when (e) no heterogeneities are present, and f) N=400
connections are added to the region encompassing neuron IDs 300-400.
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added connections directly related to the magnitude of the structural network het-
erogeneity. Since the formation of the heterogeneity is the outcome of LTP processes
incurred during learning [109, 50, 39, 124], the changes in the intrinsic response of
the network to the stimulation can be directly linked to the novelty /familiarity of the
presented stimulus.

Furthermore, as we have shown before, these regions of network inhomogeneities
can be spontaneously activated when network’s global excitation level (I.) is in-
creased. Figures 2.2d-f depict examples of spontaneous reactivation as a function of
connectivity density within the heterogeneous region. One can observe clear reactiva-
tion exemplified in the persistent activation of the neurons within the heterogeneous
network region. The reactivation itself is due to reciprocal feedback activity which
is mediated by the fact that SW topology provides a structurally random yet stable
re-injection mechanism supporting prolonged activation of neurons in spite of their
refractory time [148]. The discrete localization of the reactivating region is, on the
other hand, due to lowered threshold within the inhomogeneity for such dynamics to
occur as well as increased inhibition spreading randomly to other network regions.

Thus, we show that network structural inhomogeneity provides a dynamical mech-
anism mediating and modulating local, discrete network responses to stimulation,
while also able to self-activate under conditions of increased global excitation of the
network. Here, the network dynamics can be viewed during wake behavior as an un-
stable attractor that becomes activated only by stimuli of appropriate characteristics,
and yet during off-line consolidation becomes a stable attractor which can activate

spontaneously.
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Figure 2.3:

Changes of the hippocampal response as a function of structural proper-
ties of cortical network. The hippocampus has one stored memory (neu-
ron IDs 300-400), in the form of 400 additional network connections. (a)
Cortex is a homogenous network (i.e. no stored memory). Six neurons
in the hippocampus, IDs 315-320, are stimulated with input Iy, = 4
and show strong activation, whereas the activation of the homogeneous
cortex due to input from hippocampus is limited. (b) The cortex has
a single network heterogeneity (memory) stored in the form of 400 ad-
ditional connections. The hippocampus, with the same memory stored,
is stimulated by the same input current, and subsequently triggers the
cortical memory, which activates strongly and depresses activation of the
hippocampus. (c¢) Mean activation of hippocampal and cortical networks
as a function of added connections. As the memory is progressively stored
in the cortex (i.e. becomes more familiar), cortical activation increases
while hippocampal activation is depressed.
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2.3.2 Modulation of hippocampal activation and reactivation by cortical

feedback

Having established a common mechanism modulating both network response to
stimulus based on its novelty as well as spontaneous reactivation during off-line pro-
cessing, we will proceed to apply this concept within an experimentally established
framework of hippocampal and cortical interactions. The underlying assumption that
we are making is that progressive storage (i.e. memory formation) of the presented
stimulus is achieved by the formation of network inhomogeneity first in the hippocam-
pus (i.e., fast, short-term storage) and then in the cortex (i.e., slower, long-term
storage). In order to highlight the effects that cortical storage has on hippocam-
pal activation and eliminate transient effects, we disallow synaptic modifications (i.e.
learning) and examine the network dynamics at various static points of cortical mem-
ory storage.

We investigated the changes in cortical and hippocampal activation patterns as a
function of the degree of regional inhomogeneity in the cortex (representing long-term
memory storage) when the external stimulus is present. The hippocampal network
(Figure 2.3) had a single structural heterogeneity, located at neuron IDs 300-400
and created by the addition of 400 random connections within this region, and was
driven by focal external stimulation applied as an additional input current (g, = 4)
driving 6 cells (IDs 315-320). One can observe that when the cortex was homogeneous,
with no added connections, the stimulated region in the hippocampus was highly
activated (Figure 2.3a). However, in the presence of cortical structural inhomogeneity,
hippocampal activation was attenuated through diffuse inhibitory feedback stemming
from cortical feedback excitation of hippocampal interneurons (Figures 2.1a, 2.1b and
2.3b). In general, we see that hippocampal activation systematically decreased as
additional connections were added to the cortex, while cortical activity increased at

the same time (Figure 2.3c). Therefore, the level of long-term memory consolidation
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in the cortex is able to control activation of the same memory in the hippocampus,
serving as a novelty detection mechanism which can be utilized by the hippocampus

in the consolidation process.

2.3.3 Cortical modulation of hippocampal memory replay

As noted before, it is thought that memory reactivation observed during sleep
plays an important role in long-term memory storage as a possible memory replay
mechanism mediating memory consolidation into the cortex. In such a system, it is
important that consolidation, and thus reactivation, is regulated by stimulus novelty
(i.e. over-consolidation of a given memory may lead to disruption of other memories,
while lack of consolidation of novel memory will inhibit its storage). We postulate
that, toward this end, the cortex has a novelty-dependent and memory-specific regu-
lation of memory reactivation. We will show below that this mechanism becomes an

intrinsic property within the modeled cortical-hippocampal interactions.

2.3.3.1 Simulation Results

We demonstrate this mechanism in our hippocampal-cortical network, again in
the absence of learning in order to eliminate transient, time-dependent effects. Three
network regional inhomogeneities (neuron IDs 0-100, 200-300, 400-500) representing
memory structures were created in the hippocampal network and kept unchanged
during the simulation. At the same time, the cortical network was initially set to be
homogeneous, and then new connections were progressively added to a region match-
ing one of the hippocampal network heterogeneities (neuron IDs 200-300), to represent
the progressive consolidation of that cortical memory. Figure 2.4a depicts the regional
hippocampal activity in the three network regions of interest, normalized to their ac-
tivity when there are no additional connections present in the cortex. One can observe

a significant decrease of reactivation of the hippocampal network region (Figure 2.4a;
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"familiar” line), linked to the cortical region where structural inhomogeneity was
progressively formed. The reactivation ratios of the other two hippocampal regions
remained virtually unchanged (Figure 2.4a; "novel 1”7 and "novel 27). This indicates
that, the cortex can selectively deactivate reactivation of a particular network region,
representing a single familiar memory, within the hippocampus while keeping the
reactivation of others virtually unchanged. Figures 2.4b-c depict an example of local-
ized hippocampal deactivation by the cortex. As soon as the ”familiar” hippocampal
region (IDs 200-300) started to reactivate, the linked cortical region immediately ac-
tivated, during which activity of the whole hippocampus was inhibited. After the
reactivation in the ”familiar memory” region was abolished in the hippocampus, the
cortex subsequently deactivated and other hippocampal regions (representing novel,

as yet cortically unconsolidated memory) were able to again reactivate.

2.3.3.2 Experimental Confirmation

To validate our results, we compared them with experimental findings [134]. Here
we concentrate on two basic aspects: the progressive cortical involvement in hip-
pocampal processing during memory consolidation, and changes in the off-line, au-
tonomous (i.e. not stimulus driven) hippocampal processing (i.e. reactivation).

We measure the progressive cortical involvement in hippocampal processing by
monitoring the phase shift in hippocampal neurons firing in relation to field potential
theta oscillation phase. The phases of theta oscillations in the hippocampus and
in the cortex are shifted with respect to each other by 180 degrees [22, 85]. In
addition, according to previous research [134, 22, 133], the firing pattern will be
aligned with the field potential theta oscillation phase of the dominant input structure
(i.e. hippocampal or cortical). The activity of hippocampal neurons in relation to
field potential theta oscillation phase over the time course of memory consolidation

is shown in Figure 2.4d. The strong progressive shift in the activity of hippocampal
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Figure 2.4:

Selective autonomous memory reactivation in the hippocampal-cortical
structure — simulations and experimental data. The hippocampus has
3 regions of network heterogeneities (IDs 1-100, 200-300, 400-500). One
memory structure (IDs 200-300) is stored in the corresponding region in
the cortex. (a) Average reactivation activity of familiar (neuron IDs 200-
300) versus novel (neuron IDs 1-100 and 400-500) memories as a function
of additional cortical connections. Activity was measured by normaliz-
ing total spike counts within a memory region for the total duration of
the run to total spike counts for the homogenous cortex run. Sample
raster plots for (b) hippocampus and (c) cortex. (d), (e) Experimental
data: (d) Phase locking of hippocampal neurons activity to local theta
oscillations as a function of days of exposure to the stimulus (i.e., stim-
ulus novelty). Solid black line ("Track”) denotes phase locking to CA1
layer theta peaks during active exploration; dashed gray line denotes the
same phase relation observed during REM sleep reactivation ("REM”).
(e) Frequency of hippocampal activity in novel and familiar environments
during exploration (left) and sleep reactivation (right).
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neurons to fire in the trough of the hippocampal theta cycle, i.e. in phase with
theta at the site of direct cortical inputs through the TA pathway, indicates that as
the reactivated memory becomes increasing familiar, the cortex plays a progressively
larger role in the hippocampal reactivation pattern. This supports directly our results
which show that as familiarity is increased, the cortical involvement in hippocampal
firing dynamics also increases.

We measure the progressive change in hippocampal off-line processing by moni-
toring the spiking frequency of the reactivating place cells. Once the consolidated cor-
tical TA pathway began to directly drive hippocampal reactivation (Figure 2.4d), the
spiking frequency of neurons encoding the (cortically) familiar environment decreased
significantly (Figure 2.4e, right), just as predicted by the simulations. The switch in
both theta phase and frequency of firing during reactivation can be explained by
the consolidated cortical memory network effectively suppressing hippocampal CA1
reactivation, possibly through projections to the opioid-sensitive inhibitory neurons

[46, 98, 180], just as we observed in our simulations.

2.3.4 Cortical-hippocampal memory management sequence

The hippocampus, being a short-term memory storage location [88], is thought
to perform three primary memory management tasks: store novel memory traces,
react