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ABSTRACT

This report discusses the manner in which the con-
cept of the ideal observer serves as a tool for the develop-
ment of a description model of human performance in the
detection and recognition of signals.
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THE CONCEPT OF THE IDEAL OBSERVER IN PSYCHOPHYSICS

1. INTRODUCTION

In this section, some of the factors which must be considered
by an observer in arriving at a decision will be discussed. The concept
of an ideal observer will be introduced and this model will be con-
trasted with the more typical descriptive type of model. Then the
model of the ideal observer will be considered as a tool in arriving at
descriptive models of sensory systems. Support for many of the state-
ments made in this introduction will be given in the body of the paper.

Consider any situation in which there is a noisy input to some
observer. Following this input the observer must make some decision
about the physical event which gave rise to the input. In making his
decision, the observer must consider two types of information: the
actual observed input and the decision function to be maximized.

This latter factor is illustrated by the fact that for some particular
input, the observer may be led to one decision if he is attempting to
meximize the percentage of his responses which are correct and be

led to a different decision if he is attempting to maximize the expected
value of his decisions. Thus, in studying any observer, one must take
into account not only the inputs which are being observed, but also,

all external criteria affecting the observer’s responses.

The concept of the ideal observer recognizes the fact that
there are statistical properties of the environment which limit per-
formance in situations similar to those involved in psychophysical

experiments. Though the concept of the ideal observer is a general



one, the actual mathematical specification of the ideal observer

is specific to the particular situation under study. For any par-
ticular situation, it is necessary to specify the decision function
which the observer is attempting to maximize, the a priori probabilities
of the various possible signal inputs, and all of the physical para-
meters of the signals and of the noise in the channel. Given such
specification, an ideal observer may be defined for that situation.

The performance of the ideal observer is then obtained by mathematical
computations. On the average, no physical observer, human or man-made,
may equal or surpass the performance of the ideal observer.

It is important to note that the model of the ideal observer
is a concept developed without reference to data. In this way it
differs from most models in psychology which are aimed toward describing
relations already observed. In dealing with descriptive models, one
should keep in mind that whenever there is only a finite set of
data upon which to base a description, then there are an infinite
number of descriptive models capable of handling these data. Additional
data reduce the class of models which yield satisfactory descriptions,
but as long as the data are finite, the remaining class of models is
always infinite. At best, a descriptive model can only be a mathe-
matical statement of the relations between observable events. The
mathematical parameters may have intuitive meaning permitting the
model to be extended to predict previously unobserved relations between
events. However, the fact that there are an infinite number of models
capable of accounting for the observed data should make it clear that
the mechanisms assumed by some particular descriptive model are not
necessarily the mechanisms of the entity under study.
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Although the model of the ideal observer is not a descriptive
model, it is of considerable importance to theorists who desire to
construct descriptive models. The precise mathematical definition of
an ideal observer for some given situation specifies all of the vari-
ables which are of importance in leading to a decision in the situation
under study. Also, it completely describes the manner in which these
variables affect the performance of the ideal observer. Several ad-
vantages are to be gained from this knowledge. Since the model of
the ideal observer is stated in abstract form, it is a useful frame-
work for the stating of a wide class of problems involving sensory
systems. Each specific problem statement incorporates the special
features of the particular problem into the general structure. The
model thus serves as & theoretical framework for organizing an experi-
mental program investigating the behavior of sensory systems, and
serves as a guide toward selecting the relevant measures necessary
to describe their performance. In any specific situation the mecdel
of the ideal observer not only specifies an upper and a lower bound
on the possible performance of the human observer, but specifies all
of the relevant variables which should be used in arriving at a decision
and gives the manner in which they should be utilized. Insofar as the
human observer fails to utilize all of these variables to their full
extent, or attempts to use irrelevant variables, his performance
must fall below that of the ideal observer. It is possible to study
the degradation in the performance of the ideal observer as uncertainty
concerning the values of the various parameters is introduced. Experi-

mental study of the human observer as the same uncertainties are intro-
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duced and comparison of his performance with that of the ideal may
in many instances lead us to specify exactly which aspects of the
situation are being utilized by the human observer. This is one
example (which will be expanded in the text) of the manner in which
the concept of the ideal observer serves as a tool in the study of
the real observer.

From experimental evidence it is known that the performance
of the human observer in psychophysical experiments is markedly affected
by variables not typically considered within the domain of the sensory
system under study. Also, comparisons of human performance with that
of the ideal observer suggest that human beings perform a large number
of tasks with surprising efficiency. This suggests that the parameters
of the sensory mechanism are adjusted in a nearly optimal way for
specific observation situations. This leads to the view that human
sensory mechanisms may profitably be regarded as subsystems of a
larger intelligent system. The form that the sensory mechanism
assumes is very likely dependent upon the particular experiment
being performed and the way in which this larger intelligent system
views the experiment. In order to understand the nature of the
sensory system it will be necessary to understand the way in which
these parameters might be fixed and the range of values they can
assume. Precise specification of the parameters of the sensory
system and the manner in which they are varied to meet the needs
of the larger system would constitute one possible model of the

sensory system.



2. GENERAL THEORY OF THE IDEAL OBSERVER

The concept of the ideal observer was first advanced by
Seigert in Lawson and Uhlenbeck (Ref. 1). The concept, as Seigert
advanced it, was much simpler than that which exists today; and
methods of application to psychophysics were not worked out in any
great detail. The theory was given greater generality with the
publication of two papers in 1954. One, by Peterson, Birdsall and
Fox (Ref. 2), forms the basis for the development in this section.
The second paper, which was written by Van Meter and Middleton
(Ref. 3), contributed an independent development.

It is instructive to examine a particular instance of an
ideal observer. This specific case will deal with the detection of
a known signal (some particular waveform) in a background of band-
limited white Gaussian noise. Based upon the information (observed
waveform) received during an observation interval of time T, it is
the task of the receiver to determine whether the observed input
arose from noise alone or from signal-plus-noise. The approach
followed in studying the general problem can be divided into three
steps. The first is the identification of the relevant information
leading to a decision based solely upon the a priori knowledge of the
probabilities of the various alternatives. The next stage is the
identification of the relevant information, given not only the
a_priori knowledge but also the knowledge contained in the observation
interval. The final step is the determination of the difference

between the a posteriori information and the a priori information.

This difference specifies the relevant information carried in the

observation interval.



The case in which the decision must be based upon a priori
information alone can be looked upon as a game of chance. There are
two possible strategies here: to say that the signal is present in
the background of noise, or to say that the noise alone is present.
As one is here considering an observer designed to maximize the ex-
pected value of his responses, one should be concerned with EA(V),
the expected value of a strategy of saying that a signal is present,
and with ECA(V)’ the expected value of a strategy of saying that noise
alone exists. (The symbol A, denotes the collection of points making
up the criterion for saying that the signal exists, while CA is the
collection of points making up the criterion for saying that noise

alone exists; it is the complement of é). These expected values are

given by the eguations:

EA(V) P(SN) V

sv-a - P K.y (1)

]

ECA(V) P(N) Vieca - P(SN) Kon.ca (2)

where P(SN) is the a priori probability that the signal exists, P(N) =
1 - P(SN) is the a priori probability that noise alone exists, VSN'A is
the value of saying that the signal exists when the signal is present,
KN'A is the cost of saying the signal exists when noise alone is present,
and VN~CA and KSN-CA are similarly defined. For those games of chance
for which the value of Eq. (1) is greater than the value of Eq. (2), one
should follow the strategy of always saying that the signal exists. If
the value of Eq. (2) is greater than that of Eq. (1), one would follow

the strategy of always saying the noise alone exists. If the two
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equations are equal, the choice of strategies is irrelevant. Thus, the

condition for saying that signal-plus-noise exists is given by Eq. (3).
P(SN) Von.a - P(N) Ke.p > P(N) Vy.ca - P(SN) Kan.ca (3)

By manipulation one obtains

Vv
N-CA * KN'A (4)

sn-a * Kon.ca

P(SN
BN © 7

which describes the condition for saying that signal-plus-noise exists
when the decision must be based solely on a priori information.

In the case in which the decision is based on observation, we
will designate the input to the receiver as x. We may then define
PX(SN) as the probability that the signal exists, given the observation
X, and PX(N) as the probability that noise alone exists given the
observation x. In making the decision, these conditional probabilities
now play the same role that the a priori probabilities did in the
previous case. Thus, the condition for saying that signal-plus-noise
exists when the decision is based on observation is given by the in-

equality

P (sN) Vieca * Ky.a

> (5)
P, (N) Vanea * Xsneca

If one assumes that x is a discrete variable and has associ-

ated with it a probability, then the a posteriori probabilities of the

ratio in the left hand member of the inequality, Eq. (5), are defined

by Bayes' theorem as follows

P(sN) P__(x)
P (sN) = P(SN (6)
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P(N) Py(x)

Px(N) = TR (1)

The ratio of a posteriori probabilities appearing in the left-

hand member of the inequality of Eq. (5) can now be written as

P, (SN) _P(sN) Py (*) @)
PN} ~ BN 'PN(x)

Examination of this equation will indicate that the left-hand

member is a ratio of & posteriori probabilities or an indication of an

information state of the receiver after the observation task. The right-
hand member of the equation is made up of two ratios. The first of

these is the ratio of the a priori probabilities and can be looked upon
as the information state of the receiver prior to the received input.

The second ratio is the likelihood ratio, that is, the ratio of the
likelihood of the input x given signal-plus-noise to the likelihood

of the input X given noise alone. The likelihood ratio represents the
change in the state of the receiver occurring as a result of the input x.
The inequality of Eq. (5) can now be rewritten in the following fashion:

Pan®)  pw) | Vneea ¥y

>
PN(x) P(SN) Voyea * Ksy.ca

(9)

Thus the decision variable for the ideal receiver is likeli-
hood ratio. When the likelihood ratio is greater than some value which
is defined by the right-hand member of Eq. (9), the ideal receiver de-
signed to maximize expected value must state that a signal is present
in the background of noise. If the likelihood ratio is less than this

value, then, this ideal receiver must state that noise alone is present.
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In the above development, x is considered to be a discrete
variable. If x is continuous, one need only to write the likelihood
ratio as a ratio of probability densities or likelihoods, and a similar
development can be carried through. In this case,

fan(*)

£(x) = W.

Thus far, we have made no use of the fact that this example
deals with the detection of a known signal in a background of band-
limited white Gaussian noise. The above development is far more
general than implied by any such limitation. However, when we come
to the question of how £(x) is distributed it is necessary to specify
the situation in complete detail. It will be shown in section 3 that
in the case where the ideal observer knows all of the parameters of
a signal which is presented in a background of band-limited white
Gaussian noise, a simple monotone transform of 2(x) is normally
distributed.

There are four possible outcomes to any given observation
interval. The signal may either be present or not present in the
background of noise and the observer may in either instance state
that it is or is not present. As the observer always makes a response,

his behavior is described by the following probabilities:

PSN(A) + PSN(CA) = 1.0 (10)
PN(A) + PN(CA) = 1.0 (11)

Thus the observer's performance may be specified by PSN(A)

and PN(A). A plot of PSN(A) against PN(A) is termed a receiver operating



characteristic (ROC curve).

Iet us now examine the generation of an ROC curve for the
ideal observer. In the case where some monotone transformation of
£(x) is normally distributed, we may represent the two hypotheses,
signal-plus-noise and noise alone, as normal distributions each with

unit variance and a mean difference of some value, say, d'. Thus,

p(n) . 'n-ca T %yea

P(SN) Vegen KSN.CA

any value of may be transformed appropriately

and represented by a single point, B, on the axis of Fig. 1. All points
to the right of B represent the criterion A,while all to the left repre-
sent CA. Thus, PSN(A) is given by the area which lies to the right of
B under the distribution for signal-plus-noise, while PN(A) is given
by the area which lies to the right of B under the noise distribution.
The ROC curve illustrated in Fig. 2 is generated by allowing B to vary
from negative infinity to positive infinity.

Thus far we have been dealing solely with an ideal observer
designed for a particular situation. Nonetheless, as pointed out in
the introduction, this gives us some information about the human
observer. For the particular signal energy leading to the ROC curve
of Fig. 2, we know that the performance of the human observer cannot
result in a datum point lying above this curve. Nor can the human
observer perform in such a manner as to fall below the mirror image
(about the diagonal) of this curve. Thus, we have specified upper
and lower bounds on the performance of the human observer. Further-
more, Bq. (9) specifies all of the variables which are relevant to

the performance of an ideal observer. This specification is implicit
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DECISION AXIS

Figure 1. Decision Axis.
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Figure 2. Receiver Operating Characteristic (ROC)
for the Ideal Receiver when 2E/Ng = 1.00.

P_. (x)
since all of the variables affecting the likelihood ratio, §§%§7—,
N

are not detailed in this equation. These variables will be made
explicit in section 3. Knowledge of all of the relevant information-

bearing variables thus may lead us to design experiments to determine
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which of these variables are not being utilized, or are being utilized
imperfectly by the human observer.

It may be well at this point to add one summarizing comment.
The development above is based upon probability theory. It states the
results that one might expect of behavior based on decision rules in
cases where there are a large number of events and the statistical
properties of the environment are stable. The development has been
carried on based upon the criterion which optimizes the expected value
of the outcome. This is of course an arbitrary choice. As far as any
real-life situation is concerned it may not be the prdper one. It was
chosen here because the experiments which will be based upon this
development will be designed in a way which makes the optimization of
the expected value a logical one. However, there may be many reasons
why, in any particular case, one might want to optimize some other
outcome. Peterson, Birdsall, and Fox carried their development through

merely for optimizing the number PSN(A) - wPN(A),where w is an abstract

weighting factor. This is called the weighted combination criterion.
They found that in general the decision rule which optimized this
guantity is that one which leads to a response signal-plus-noise
whenever the likelihood ratio is equal to or greater than the number w.
Otherwise the response should be noise alone. They then consider
several quantities upon which to base the optima. One of these was the
expected value. A second was the optimization of correct decisions. A
third was the optimization of correct decisions given a fixed false-
alarm rate. A fourth is the optimization of information. They then

showed that each of these criteria could be expressed as a weighted
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combination criterion,and they specified the form that w should take
for each of the cases of optima. These are discussed by Birdsall in

his chapter in Quastler's book, Information Theory and Psychology.

It should again be pointed out that the use of the model
developed by Peterson, Birdsall and Fox is not intended to represent
a theory of how the human being operates, it is, rather, used as a tool
to describe experiments in a way which will permit a study of how the
human being operates.

3. THE CASE OF A SIGNAL KNOWN EXACTLY IN
BAND-LIMITED WHITE GAUSSIAN NOISE

The theory of signal detectability is actually a theory of
the capacity of signals in noise to lead to detection. The ratio
2E/NO has been used to state this capacity in other papers. This ratio
is the result of the development of Peterson, Birdsall, and Fox stating
the difference between two statistical hypotheses when a signal is known
exactly and imbedded in a white Gaussian noise. It is assumed that both
the signal and the noise are Fourier series band limited and of finite
duration. That is, on the observation interval, both the signal wave-
form and the noise waveform can be described by a Fourier series with
a finite number of terms. These assumptions make it possible to describe
any particular voltage waveform containing either noise alone or signal
plus noise by a finite set of numbers, that is, by a single point in
a finite-dimensional space. Description of a continuous waveform
by a single point in space simplifies the statistical analysis of the
detection problem, for it is relatively easy to specify the distri-

butions of these points conditional upon various hypotheses. Peterson,
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Birdsall, and Fox also consider a number of cases in which the signal
is known statistically. More recently, Birdsall has developed a model
which can be roughly referred to as a radius model. This model treats
the case of a signal of which the statistical uncertainty is distri-
buted over N orthogonal dimensions.

In the development in this section, only the case of the
signal known exactly will be developed in detail. This analysis is
made so that the reader may have a feel for the type of development
which leads to the statement that 2E/NO is a ratio which represents the
capacity of a signal to lead to detection.

Again the problem is one of a fixed observation interval from
zero to T. A signal known exactly is one which,if it exists, is pre-
cisely placed within that observation interval. Its waveform can be
said to be a voltage function of time, this voltage function being known
exactly at every position in the observation interval. This voltage
function is referred to as s(t).

The receiver input will also be considered a voltage function
of time, x(t). This receiver input may or may not contain the signal.
It always contains the noise.

The development below will depend upon the application of a
sampling theorem which says essentially that a Fourier series band-
limited waveform extending over a finite interval O to T can be de-
scribed entirely by 2WT egually-spaced independent points in time.

The important conclusion’from the use of this theorem is the following

relation.
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1 2WT 82 i ]T
2W i=1 i 0

[s(t)]%at = E(s) .... (11)

Here, 85 represents the value of s(t) at the ith sampling point. This
states that the signal energy is T times the average value of the signal-
voltage-squared at the i sampling points where i goes from 1 to 2WT.

No attempt will be made here to justify the use of the sampling theorem.
It will merely be accepted to be satisfactory.

The development of the case of a signal known exactly will
follow these steps. First it is observed that the decision rule is
valid for any varisble which is a monotone transformation or likeli-
hood ratio. That is to say, if the decision rule is that the likeli-
hood ratio should be equal to or greater than B in order for the ideal
observer to accept the hypothesis that the signal exists, then this
rule is exactly equivalent to a rule which states that the logarithm
of the likelihood ratio should be equal to or greater than the logarithm
of B in order for the ideal observer to accept the hypothesis that the
signal exists. Having invoked this equivalent, the first step is to
study the distribution of the likelihood ratio at the ith point for the
case that noise alone exists. It is then observed that the likelihood
ratio of any input waveform is the product of the likelihood ratios
for each of the 2WT points when these points are independent and when
in any single input the signal actually exists at each of the points
or does not exist at each of the points. When the logarithmic trans-
formation is made, then this says that the logarithm of the likelihood
ratio of the input waveform is the sum of the logarithms of the likeli-

hood ratios at each of the 2WT points. The distributions giving a sum

15



of these logarithms of likelihood ratios will then be studied for the
case of signal-plus-noise and for the case of noise alone. It is found
that the ratio 2E/NO to the one-half power expresses the difference
between these two statistical hypotheses divided by their standard
deviations. The noise variance and the signal-plus-noise variance

are equal.

Let xi be the value of the voltage of the input waveform at
the ith point. Since the case being studied is the case of ideal white
Gaussian noise, the expected value of this voltage when noise alone
exists is zero. The variance of this value when noise alone exists is
N, the noise power. The X, point thus can be locked at as a random
value drawn from & normal distribution with zero mean and variance N.
The probability density of any particular value of xi is given by the

following equation.

(%;)°
ro(x,) = I . & (12)

N2xN

When signal-plus-noise exists the expected value of X, is s
The variance is still N, the noise power. The probability density of

any value of xi when signal-plus-noise exists is given as

2
-(x;-s,)
1 2N
) = e (13)
2n

)

The likelihood ratio is the ratio of Eg. (13) to Eq. (12),
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2
) (x;-s.)
_ e 2N
tx,) = — (14)
i
e 2N
The natural logarithm of the likelihood ratio is
2xisi-s§
lnl(Xi) = Xi = AN (15)

It is the distribution of this logarithm, Xi’ for the case of
the noise alone and for the case of the signal-plus-noise which is
relevant to the problem at hand. First, for the case of noise alone,

2
2s,;My(x, )-8y
N

the mean can be written as MN(Xi) = (16)

where MN(Xi) is the mean of 1ln l(xi),given that x(t) contains noise
alone. Above it was pointed out that MN(xi), the mean of X, for the
case of noise alone,is zero. Therefore the mean of the logarithm of

the likelihood ratio of X is -s?/QN. Invoking the sampling theorem
and summing over the 2WT points,the mean of the logarithm of the likeli-

hood ratio taken over the whole waveform is obtained.

2WT
M(X) = - _Z sf - - Els) (17)

Here E(s) is the energy in the signal and N, is N/W, the noise
power per unit bandwidth.
The next problem is to determine the variance of Xi when noise

alone is present. The only random variable in Eq. (15) is x;, thus

2
S,
i

i}

| w10

o (x.)

N i (18)
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As the 2WT sampling points are independent of one another, the
variance of the 1ln £(x) over the whole waveform is given by the sum of

the variances at the 2WT points.

~ 2WT
(X)) = L 2 - BEG) Qﬁgs) (19)

Thus, the variance of the 1n £(x) where noise alone is pre-
sented is eyual to twice the energy in the signal divided by the noise
pover per unit bandwidth. Although Eg. (17) and Eq. (19) describe
distribution parameters for the case of noise alone, E(s) refers to the
energy of the signal which was not presented. This is due to the fact
that the distribution under study is that of 1n £(x) and not simply the
distribution of the input waveform.

Since each of the X distributions is normal (because of
Gaussian noise), the distribution of the sums is also normal. There-
fore, the logarithm of the likelihood ratic of the input waveform X
when noise alone is presented, is a normal distribution with a mean of
-E/NO and a variance of 2E/N .

The next relevant guestion concerns the distribution of the
value of Eg. 15 for the case where the signal exists. At the Xi point
the expected value or mean of Xs is si. Thus the mean of the logarithm
of the likelihood ratio at the X, point is s?/EN for the signal-plus-
noise. This is the same value as that for noise alone except that it
has the opposite sign. Since this is true at each of the xi points the
expected value of the sum of the logarithms of the likelihood ratio when
the signal is present is the same as the sum of the expected values of

the logarithm of the likelihood ratio when noise alone is present except

that it has the opposite sign. Thus, the logarithm of the likelihood

18



ratio has a distribution with the mean of +E/Nb when signal-plus-noise
exists. For the variance, again s is a constant and consequently
contributes no variance. All the variance again comes from xi; conse-
quently, the variance of Xi when signal-plus-noise is present does not
differ from the variance of Xi when noise alone is present. The distri-
bution of the logarithm of the likelihood ratio of the input x(t) in the
case of signal-plus-noise is thus a normal distribution with mean E/NO
and variance 2E/NO. The difference between the mean of X for the case
of signal-plus-noise and the mean of X for the case of noise alone is

2E/NO. Each of these conditional distributions of X has as its standard

deviation /%E . Therefore, the difference in the means divided by the
o

)
N L4
o

standard deviation is

Since the case of the signal known exactly is the one in which
it is necessary to resolve the least uncertainty, this case will be that
which specifies the capacity of a signal of energy E for leading to
detection when imbedded in a band-limited white Gaussian noise of power N.

One of the critical points in this development is that in order
to calculate likelihood ratio it is necessary in this case to know the
signal waveform exactly. It is further necessary in this case to know
the parameters of the noise distribution. Given this knowledge it is
then possible to calculate a likelihood ratio in a manner which permits
a separation of the two statistical distributions as described above.

Thus, if the human observer were to perform as an ideal observer
the following would be necessary: (1) he would have no source of internal
noise. That is, the input signal would have to be transformed to a

different type of energy by the end organ and transmitted by the nervous
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system, all with perfect fidelity. (2) He would have perfect memory
for the signal parameters and the noise parameters. At any time t
within the observation interval he must know the exact amplitude of
the signal wavetorm. (3) He would be capable of calculating likeli-
hood ratio or some monotonic transformation of likelihood ratio.

These are some of the requirements which must be met by the
human observer it he is to perform as well as the ideal observer.
Clearly, the human observer does not meet these specifications. However,
it is possible to determine experimentally the manner and degree to
which the human observer tails to meet these requirements and thus

obtain a better understanding of the human observer.

4, THE MODEL OF THE IDEAL OBSERVER

The discussion in the two proceeding sections, that covering
the general theory of signal detectability and that covering the case of
the signal known exactly, is the basis for the block diagram in Fig. 3.
This block diagram, is a diagram of the ideal observer. Again it is
pointed out that the diagram is not intended to summarize a model based
upon psychophysical data. It is rather a description of a mathematical
observer designed to perform in the best possible way in an experiment
based upon carefully stated assumptions. These assumptions include the
assumptions underlying the probability theory, that is, that the environ-
ment in which this observer is operating is one in which the statistical
parameters are fixed and remain constant. It also assumes that this
observer is designed particularly to operate on the ensemble of signals
being transmitted and to operate under the particular conditions of the
channel. Being so designed this observer can make use of the knowledge

of the statistical properties both of the signal and of the noise.
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Figure 3. The Ideal Observer.

The three blocks enclosed in the dotted lines are actually
the description of this observer. The transducer is included only to
point out that at times we are dealing with systems in which there must
be a transformation of the type of energy involved. The second box com-
putes the likelihood ratio, and the third box matches this likelihood
ratio to a point in a criterion space. It is assumed that the matching
at this point specifies completely the response of the receiver.

The development in Section 2 described the basis for decisions
in terms of some external criterion. In this case the decision computer
requires information from a criterion computer. This criterion computer

in turn requires the information or knowledge of the a priori probabilities
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of the signals and a knowledge of the utilities of the various decisions.

It should further be noted that the lieklihood ratio computer,
in order to perform its task, needs a knowledge of the statistical distri-
butions associated with the signal and with the noise alone. For this
reason a distribution computer has been included to feed this information
to the likelihood ratic computer. In turn this distribution computer
needs a knowledge of the signal parameters and of the noise parameters.

Both the distribution computer and the decision computer
perform the function of molding the sensory system into a form which
best serves the purpose of the larger intelligent system. These com-
puters receive as instructions from the larger system estimates of the
environment in the form of statements of the parameters of the signal
and of the noise as well as estimates of a priori probabilities and the
utilities of the possible decisions. 1In this way the sensory system is
actually a subsystem of a larger system and its form depends upon the
commands of the larger system.

Study of the operations which take part in the components
included in the dotted line will aid in understanding the operation of
this ideal observer. Each of the components can be viewed as having
an input-output relation,and this relation takes the form of a mapping.
The input to the transducer is a point in a multi-dimensional space.

In the case considered in the previous section this is a point in a
space which has 2WT dimensions. Ideally the mapping from the input of
the transducer to the output of transducer is isomorphic; that is, for
each point in the input there is a unigue point in the output and vice-~
versa. In other words no information processing takes place in the

transducer.
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The input to the likelihood ratio computer is the output of
the transducer,and this again is a point in the 2WT-dimensional space.
The likelihood ratio computer transforms the information in the input
to information which is relevant to the particular hypotheses of the
test. In doing this it reduces the dimensionality of the space.

Since in the case discussed in the previous section the likelihood
ratio is a single number, this number can be mapped on a unidimensional
space., Thus the mapping from the input of likelihood ratio computer

to the output of this computer is homomorphic; that is, there are
several points at the input, each of which can be mapped into the same
roint at the output. If one wants to generalize the operation of

this ideal receiver to the case where there are more than two possible
alternatives, the dimensionality of the output of the lieklihood ratio
computer has M-l dimensions, where M is the number of possible alterna-
tives. Three possible alternatives can be described by the output of
the likelihood ratio computer in terms of two dimensions, four in terms
of three, and so forth. Again the input to the decision computer is
the output of the likelihood ratio computer. The mapping again is
homomorphic. All of the points in the likelihood ratio computer

which match the points in any given criterion space are mapped into

a8 single point at the output of the decision computer. In general

the output of the decision computer is a space which consists of

M discrete points, again where M is the number of possible alternatives.

The general functions of the ideal receiver can be looked
at as a processing of the receiver input. The first step is to get
that information in the form of likelihood ratio, that is, the form
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which contains the information in that input relevant to the particular
question asked. The next step is to match that information to a point
in a criterion space which determines the response again in a way which
is relevant to a particular situation. This specificity of the ideal

receiver is exceedingly important to recognize when one uses the concept.

5.  BASIC DEFINITIONS OF d' AND n*

The fundamental problem considered in the theory of signal
detectability is illustrated in the block diagram of Fig. L. A signal
from an ensemble of signals is transmitted with a fixed probability
over a channel in which noise is added. The receiver is permitted
to observe during a fixed observation interval in time, at the end of
which it must state whether the observation was one of noise alone or
signal plus noise.

The particular case upon which this discussion is based is
that of an ensemble containing only one signal. That one is a signal
known exactly; its voltage, point-for-point in time during the obser-
vation interval, is known to the receiver. It is not known that the
signal exists during the interval. The signal is transmitted over a
channel in which band-limited white Gaussian noise is added. It was
shown in Section 3 that the detectability of this signal in this
channel can be described by the ratio (2E/No)l/2, in which E is the

signal energy and No is the noise power per unit bandwidth.

* Taken with minor changes from Tanner and Birdsall, "Definitions of
d' and n as Psychophysical Measures," JASA, Vol. 30, No. 10,
pp. 922-928, October, 1958.
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Figure 4. Basic Psychophysical Experiment in Block-Diagram Form.
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Figure 5 Composite Block Diagram of Channels for
Psychophysical Experiment.
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Fig. 6 Individual block diagram of channels for
psychophysical experiment.
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Consider now the experimental arrangement illustrated in
Fig. 5. The particular experiment being performed is defined by the
positions of switches 1 and 2.

A channel includes the transmitter and the receiver. The
block diagrams of Figs. 5 and 6 illustrate this use. In Fig. 5 there
are two possible types of transmitters and two possible types of re-
ceivers. The positions of the two switches determine those which are
actually in the channel. The switch positions are used as subscripts
to specify the channel.

Cll is the channel in which the signal transmitted is one
specified exactly and the receiver is an ideal receiver designed to
operate on the particular signal specified (Fig. 6(a)).

C12 is the channel in which the signal transmitted is one
specified exactly and the receiver is the one under study (Fig. 6 (b)).

021 is the channel in which the signal transmitted is one
specified statistically and the receiver is an ideal receiver designed
to operate on a particular ensemble of signals. The receiver is
designed only with reference to a particular statistical ensemble
(Fig. 6 (c)).

C.. is the channel in which the signal transmitted is one

e2

specified statistically and the receiver is the one under study
(Fig. 6 (a)).

In each of these channels Fourier-series, band-limited white
Gaussian noise is added.

The following symbols are also defined:
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. is the efficiency of the receiver in the channel 012

Since all other components in that channel are ideal, the difference
between the performance of channels Cl2 and Cll is attributable

entirely to the receiver.

is the efficiency of the transmitter in channel C.., since

Ny 21

all other components in that channel are ideal.

is the efficiency of channel C

Mgy op°

Eij is the energy required of channel Ci to achieve a given

J
level of performance. The subscript i refers to the position of the
first switch and the subscript j to the position of the second switch.
First, an experiment is performed in which a signal known
exactly of energy ElQ is transmitted over the channel 012 with band-
limited white Gaussian noise, of noise power per cycle No’ added. The
output is presented to the receiver under study, either a human observer
or "black box". The task of the receiver is to observe a specified
waveform and to determine whether or not that waveform contains a
signal. If the guestion is asked a large number of times, both when
the signal is present and when the signal is not present, the data
necessary for estimating the false alarm probability PN(A) and the
detection probability PSN(A) are obtained.
The next experiment (a mathematical calculation) performed
is the same, except that the ideal receiver is substituted for the
receiver under study. In this experiment the energy of the signal
is "attenuated" at the transmitter (NO is the same as in the previous
experiment) until the performance obtained in the previous experiment

is matched. The energy (Ell) leading to the matched performance
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is then determined. The efficiency of the receiver is defined as

and the measure d' is defined by the eguation
2 ,
' - - .
(@) = n.(E /N) 2B, /N (21)
Thus (d')° is that value of 2E/NO required to lead to the

receiver's performance if an ideal receiver were employed in its place.
This second experiment is not performed in the laboratory,
since the problem has a mathematical solution. One takes the performance
of the receiver under study and plots the point on the graph paper of
Fig. 2(b). The coordinates of this point are read on the axis to the
right and the axis above. The difference of the distances in standard

value units is (EEll/NO)l/g. The value 2E12/NO is measured physically.

Since NO is assumed constant:

x 2E, o/ N, E1o

The measure d' is illustrated in Fig. 7. Figure 7(a) contains
the probability distributions of Fig. 1. Figure 7(b) is a transformation

of the variable to a new variable

log_t(x) + (E/N)
- ge X +:L/2 o (23)
(2E/N)

This new variable is distributed normally. The mean of the probability

density distribution for noise alone is O and the variance, unity. The
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mean of the signal-plus-noise distribution is (2E/N'o)l/2 and the
variance, unity.

Figure 7 (c) is the distribution of the variable upon which
an ideal receiver would be operating if it were to match the performance
of the receiver under study. The mean of the noise distribution is O,
and the mean of the signal-plus-noise distribution is d' = (nEE/'NO)l/2 .
The variances are again unity.

Both the measure of d' and 7 are specific to a particular
performance in terms of false-alarm rate and detection rate. If a
different experiment were performed employing the same signal and
noise conditions, and permitting a different false alarm rate and,
consequently, a different detection rate, both d' and 1 may assume
different values. This would be the case if something happened in
the receiver to upset the equal-variance condition for noise alone
and signal-plus-noise. However, an examination of the specific cases
studied in the theory of signal detectability suggests that there are
a large number of cases in which this departure, while it exists, is
not important. That is, the departure over the range likely to be
investigated experimentally is not sufficient to lead to significant
changes in d4' and 7.

Next, consider a mathematical experiment in which a signal
specified statistically (SSS) is transmitted over the channel to an
ideal receiver for that statistical ensemble. Again, the energy Ezl
is employed, and performance is measured. Furthermore, a second

mathematical experiment is performed transmitting a signal spceified

exactly (SSE) to the ideal receiver, determining the Ell necessary
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to give the same performance. This permits calculation of Ny the
efficiency of a transmitter with that statistical ensemble. Both of
these experiments are mathematical calculations.

When Ny = My each being referred to the case of the signal
known exactly, it can be said that the amount of uncertainty represented
by the statistical parameters of the transmitter ensemble SSS is re-
flected to the receiver when SSE is transmitted. This is the same thing
as saying that knowledge which the receiver cannot use might as well
not be available. If the receiver under study has no provisions built
into it for the use of phase information, but all other knowledge can

be utilized optimally, then the channel C is expected to lead to the

12

same performance as the channel C.. when the signal is known except

21
for phase.

Actually, it is not the specific uncertainty which is matched
when Ny = Ny A signal known except for phase is one in which all
phases are ejually likely. Measurement is required in two orthogonal
dimensions. If the uncertainty were one of frequency such that any
frequency within a band were equally likely, and if this band is such
that again measurement in two orthogonal dimensions is sufficient, then
this leads to the same change in performance as does the uncertainty
of phase. The parameter, m, is defined as the number of orthogonal
dimensions over which the statistical uncertainty exists. It is now
possible to state a theorem leading to inference about the receiver

based on the measurement of 7.

If Np = Mo then the receiver, through its inability to

use knowledge contained in SSE, introduces an eyual
statistical uncertainty, m, to that of the transmitter,
8SS. If the channel SSS to the receiver under study is
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then established and the condition Mep = Np = Mo then

r
the receiver with SSE has introduced exactly that un-

certainty existing in SSS.
The first part of the theorem states that, if

Ny = Bp/Bip = oMy S E12/Bpy

then the receiver has introduced the same amount of uncertainty in the
channel C12 as the transmitter in the channel C21 for that statistical
ensemble. Essentially, this means that if the efficiency is less than
one, there is uncertainty due to something other than white Gaussian
noise which was added in the channel. Since in one case the transmitter
is ideal, this uncertainty must be introduced by the receiver. In the
other case, the receiver is ideal, and the uncertainty must be intro-
duced by the transmitter. The usefulness of the theorem arises from

the fact that the amount of uncertainty introduced by SSS5 can be

stated guantitatively.

The second part of the theorem states that, if

Ter = F12/Fpp e = Ey/By o= . = Epy/Ep

then the exact uncertainties are introduced in the receiver in one case,
and in the transmitter in the other case. If particular information,
such as that of phase of the signal, is not used by the receiver then
the introduction of phase uncertainty into the transmitter will not
degrade the receiver's performance. The concepts may be thought of as
a procedure for determining what aspects of the signal the receiver

cannot utilize in detection.
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If the theory of signal detectability is applicable, then n
is the variable which contains the information necessary to modify the
ideal receiver to match the receiver under study.

So far the discussion of d' has been entirely in reference to
the detectability of signals. The measure can also be applied to the
ability of two signals to lead to recognition.

First consider the two-alternative forced-choice experiment,
in which a signal known exactly is presented in one of two positions
in time. The receiver is asked to state in which of the two positions
in time the signal did, in fact, occur. This is essentially a recog-
nition experiment. The guestion asked the receiver is whether the
signal is a Ol or a 10.

An ideal receiver can test each position for the existence of
the 1. The position most likely to contain the signal is the one which
he chooses. The information upon which he bases his decision is the
difference between the two measures. The distribution of the difference
is illustrated in Fig. 8, a normal distribution with mean d' and
standard deviation*fé. If the two signals are equally likely, then
the shaded area represents the probability of a correct choice.

Another way of looking at this type of experiment is to treat
the task as one of recognition,as illustrated in Fig. 9. 1In this case,
the signal shown in line 1 can be subtracted from the observed input,
which contains either the signal of line 1 plus additive noise or the
signal of line 2 plus additive noise. The subtraction leaves noise
alone if the signal of line 1 was present, or the signal of line 3 plus

noise 1if the signal of line 2 was present. Now the receiver can test
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Fig. 8 Distribution of the difference of two variables
for the two-alternative forced-choice experiment.

k- PosTION |— k- PoOSTION 2 ——

Fig. 9 Difference signal for the two-
alternative forced-choice experiment.
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for the presence of the signal in line 3 in the noise. If the measure
is sufficient to state that the signal of line 3 was present, he chooses
the signal of line 1. This experiment is like a detection experiment
with twice the energy.

A third way of loocking at this experiment is illustrated in
Fig. 10, taken from an earlier paper. The two signals are orthogonal;

;2

that is, the angle 6 is 90°. If (2E1/NO) and (2E2/No)l/2 are eqgual,

then the recognition decision axis is (ME/NO)1/2, consistent with the
result of the previous two views.

Now, in the two-alternative forced-choice experiments in
which the alternatives have eyual energy, one could measure either

1l/2

(1) the distance (nuE/NO) , (2) the recognition d'y or (3) the

’25

distance (T]2E/No)l/2

(the detection d' for the signal which is presented
in one of the two positions in time). Since in forced-choice experi-
ments involving more than two alternatives, with each containing egual
energy, a single number permitting analysis is the detection d', the
authors and their colleagues have been using this measure. Thus, when
a d' is presented without a subscript, or with a single subscript, it
is a measure of the difference between two hypotheses, one of which is
noise alone. Whenever the d' is intended to indicate the difference
between two signals, each is indicated by a subscript. In Fig. 10,
d'l refers to the distance 0 to X, d'2 to the distance O to Y, and
a') , to the distance X to Y.

If a two-alternative forced-choice experiment is found to

lead to a percentage of correct choices, this can be used as an estimate

of the probability of a correct choice. This estimate is the data
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necessary to enter the graph in Fig. 2(b). The point to be plotted
projects on the ordinate at P(c) and on the abscissa at 1 - P(c). The

- 3 3 t 1 3 t = 1 R
sum of the standard units is d 1,2 and Jéd 17 if a 1 d 5

Now, let us consider a more general case, illustrated in
Fig. 11. In this case the angle 6 can assume any value, and the energies
of the two signals, Sl and 82, are not necessarily egual. If an
experiment is now periormed in which one or the other of the two signals
is presented at a fixed position in time, and the receiver is asked to

state which one, again the data are furnished for entering the graph of

Fig. 2(b). The estimated probabilities reguired are Pgq (Al), the proba-
1l

is presented the receiver is correct, and 1 - PS (AE)’
2

is presented the receiver is incorrect. The

bility that if S,

the probability that if 82

d' so estimated is d'Sl,Sz = (anA/l\Io)l/2 where E is the energy of
the difference signal. This can be referred to a shifted point of
origin O' with reference to which these signals are orthogonal. The
distance from 0' to each of the signals is (nEA/NO)l/e. The energy
reguired to shift the point of origin from O to O' is redundant energy.
It may be useful in phasing the receiver or bringing it on frequency.
It does not, however, contribute to the capacity of the signals to
lead to a decision.

If Sl and S2 are now presented in random order and the
receiver is asked to state the order, again the data necessary to enter

the graph of Fig. 2(b)are available. In this case, the pairs can be

considered orthogonal to each other. Thus, the measure is now d'S ’
1
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Fig. 10 Illustration of recognition space for definition of Q.

Figure 11. Recognition Space for Large Signalc
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The theory of signal detectability deals only with signals
for which the space for any set of signals in a given noise back-
ground is Euclidean. Distances in this space are linearly related to
the sguare root of ﬁhe energy of the difference signal represented by
two points. The unit of measure is the sguare root of one-half the

noise power per unit bandwidth, (NO/Q)l/g.

From the above discussion it is obvious that, in psycho-
acoustics at least, df is a voltage-type variable. Ideally, d' is
linearly related to the sgquare root of the energy of the information-
carrying component of the signal, not to its power. In studies in
which a receiver's response to an incremental stimulus is investigated,
the incremental stimulus should be stated in terms of added voltage,
not added energy. If one's measure is that gquantity leading to a
constant d', as would be the case if one measured a "difference limen,"
then this constant d' would be expected to result when there is a
constant voltage difference between the two signals, rather than a
constant energy difference. This should be the case whenever there is
enough redundant energy to remove the statistical uncertainty of the
signal.

In some cases, where there is an uncertainty which cannot be
removed, as in the case of the signal which is a sample of white
Gaussian noise, the energy of the signal is the basis for a good
approximation of the detectability.

On the other hand, n is an energy ratio, since efficiency is
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commonly measured in terms of energy. This term is useful in inferring
the properties of the receiver under study as suggested at the beginning

of this section.

6. SUMMARY

The purpose of this report was to give a general view of the
ideal observer. The discussion of the opening section was designed to
indicate the manner in which this model differs from the descriptive
type of model typically used in psychophysics, and to indicate some of
the implications of this approach for the study of the human observer.

This introduction was followed by an examination of a specific
instance of the ideal observer. Here it was seen that in order to
evaluate the performance of an observer, it is necessary to consider
the decision function which this observer is attempting to maximize.
In the particular case where the observer is attempting to maximize
the expected value of his decisions concerning the presence or absence
of a signal it was seen that the observer must utilize three types of
information. First, he must utilize the information input which occurs
in the observation interval. He must also consider the values and
costs associated with his decisions as well as the probability of a
signal occurring in the observation interval. It is not possible to
interpret meaningfully data reflecting on an observer's ability to
utilize information presented in an observation interval without
considering these additional variables. That is to say, the responses
of an observer in a psychophysical experiment must be regarded as
responses of the total organism and not simply as outputs of the

sensory system under study.
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In the third section of this report, a detailed analysis
was made of the case of a signal specified exactly presented in a
background of white Gaussian noise. It was shown that an ideal observer
could transform any input waveform to a single point on a decision
axis with no loss of information relevant to a decision between the
hypotheses "signal plus noise" and '"noise alone”. The distribution
of this transformed variable was computed conditional upon each of
these hypotheses. An optimal decision can be made by choosing a
cut-off on the decision axis in accord with the principles outlined
in section two.

Following this very specific case of the ideal observer,
a very broad model was presented. Essentially, this consisted of a
block diagram showing the major components which must be present in
an ideal receiver. The role of each of these components was discussed
in a general way.

The final section introduced measures which may be used in
the study of any less-than-ideal observers. Introduced here was a
theorem which may be used for deducing very specific properties of
the receiver under study by comparing its performance with that of
the ideal observer. This was followed by a generalization of the
detection model to indicate the menner in which the concept of the
ideal observer can be applied to the broader case of recognition of

signals.
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