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Abstract

We study the thermodynamic and kinetic pathways by which liquids transform into solids,
and their relation to the metastable states that commonly arise in self-assembly applications.
As a case study in the formation of ordered metastable solids, we investigate the atomistic
mechanism by which quasicrystals form. We show that the aperiodic growth of quasicrystals
is controlled by the ability of the growing quasicrystal “nucleus” to incorporate kinetically
trapped atoms into the solid phase with minimal rearrangement. In a related study, we
propose a two-part mechanism for forming 3d dodecagonal quasicrystals by self-assembly.
Our mechanism involves (1) attaching small mobile particles to the surface of spherical
particles to encourage icosahedral packing and (2) allowing a subset of particles to devi-
ate from the ideal spherical shape, to discourage close-packing. In addition to studying
metastable ordered solids, we investigate the phenomenology and mechanism of the glass
transition. We report measurements of spatially heterogeneous dynamics in a system of
air-driven granular beads approaching a jamming transition, and show that the dynamics in
our granular system are quantitatively indistinguishable from those for a supercooled liquid
approaching a glass transition. In a second study of the glass transition, we use transition
path sampling to study the structure, statistics and dynamics of localized excitations for
several model glass formers. We show that the excitations are sparse and localized, and
their size is temperature-independent. We show that their equilibrium concentration is
proportional to exp[−Ja(1/T −1/To)], where Ja is the energy scale for irreversible particle
displacements of length a, and To is an onset temperature. We show that excitation dynamics
is facilitated by the presence of other excitations, causing dynamics to slow in a hierarchical
way as temperature is lowered. To supplement our studies of liquid-solid transitions, we
introduce a shape matching framework for characterizing structural transitions in systems
with complex particle shapes or morphologies. We provide an overview of shape matching
methods, explore a particular class of metrics known as “harmonic descriptors,” and show
that shape matching methods can be applied to a wide range of nanoscale and microscale
assembly applications.

xviii



Chapter 1

Introduction

Throughout human history, the advent of new materials and manufacturing techniques has
driven technology and innovation. It is no coincidence that different epochs of human
civilization are often classified by the materials used to construct tools and weaponry during
those time periods, such as the Stone Age, Bronze Age, and Iron Age. Historically, inventing
new materials and manufacturing techniques was as much an art as it was a science; innova-
tions occurred either by accident or through trial and error, and trades were passed down
through generations. For example, Iron-Age blacksmiths learned that by rapidly quenching
the hot surface of steel blades they could greatly increase their hardness, which could then
be adjusted by tempering [1]. Glassworkers learned that by mixing sand with “natron,” they
could obtain glasses that were rigid even when partially molten, which gave rise to a new
technique known as “glass blowing” for molding glass into unique shapes [2]. In recent
centuries, through the scientific and industrial revolutions these types of trades have evolved
into sciences; by harnessing a fundamental understanding of physics and materials, scientific
breakthroughs have engendered a huge influx of new materials and devices, as well as new
technologies for manufacturing them.

The newest frontiers in materials and manufacturing technology, known as “microtech-
nology” and “nanotechnology,” involve the construction of tiny devices on the microscale or
nanoscale (∼ 10−6m and ∼ 10−9m, respectively). To put this into perspective, the atomic
radius of a single atom is on the order of 10−10m. Micro and nanoscale devices have the
potential to impact a variety of disciplines. They might, serve as medical devices for drug
delivery or administering chemotherapy [3, 4], tiny transistors that can be used to construct
computers [5,6], or photonic circuits that control the flow of light rather than electricity [7,8].
Creating such tiny devices poses a unique problem. In contrast to macroscopic devices that
can be assembled by traditional top-down approaches, such tiny devices are impractical
to manipulate. One potentially powerful solution to this problem is to use the method of
“self-assembly” to manufacture materials and devices from the bottom-up.

Self-assembly involves devising systems with particular characteristics such that they
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will naturally evolve towards desired target structures [9]. One way to accomplish this is to
design specialized particle “building-blocks” that tend to assemble into particular favorable
structures due to thermodynamic driving forces [10,11]. Advances in synthetic chemistry
have made it possible to create micro or nanoscale particles with a wide variety of shapes,
functional groups, and interparticle interactions that can be used to such ends [11, 12, 13].
Understanding the rules by which these particles assemble requires a great deal of scientific
intuition; now more than ever, we must rely on scientific knowledge rather than trial and
error to invent new materials and manufacture new devices.

Predicting which structures will spontaneously assemble from a given system of nanopar-
ticles requires a fundamental understanding of thermodynamics [14], which drives the
assembly process. One of the most fundamental principles of thermodynamics is that sys-
tems evolve toward equilibrium; that is, any finite-temperature system, given sufficient time,
will evolve to a state that minimizes free energy. Perhaps counterintuitively, however, direct
knowledge of the minimum free energy state is insufficient for predicting the structure a
given system will assemble. For applications involving condensed matter (i.e., liquids and
solids), one must account for the possibility that systems can fall into “metastable states,”
physically-stable intermediates that form on the way to the stable state. Because liquids
and solids evolve slowly, condensed systems often do not reach the minimum free energy
state on a timescale that is physically relevant to the intended application. For example, the
tempered steel mentioned above contains a particularly hard, metastable crystal structure
known as “martensite” that forms when the steel is rapidly quenched. Over sufficiently long
timescales, the atoms in the crystal rearrange into the equilibrium structure, and the hardness
of the steel is lost; however, this timescale often greatly exceeds the intended lifespan of,
say, Iron-Age swords or contemporary cutlery or tools for which the material is intended.
Glasses, also mentioned above, are also metastable materials. On timescales on the order of
1032 years (much longer than the age of the universe, ∼ 1010 years), ordinary silica-based
window glass will flow like liquid [15]. This, however, has little bearing on its usefulness in
our everyday lives.

Because systems might form metastable states, when designing systems for self-
assembly, we must consider the full thermodynamic pathway by which systems transform
into their assembled states. In this work, we focus on one common pathway by which struc-
tures can self-assemble, which involves starting in a disordered liquid state and transforming
into a solid state, which may be either ordered or amorphous. Typically, this type of solidi-
fication pathway might involve cooling or compressing a system of particles, or growing
the particles from solution. There are two common mechanisms by which solid phases
form: nucleation and growth, and vitrification. The former leads to an ordered solid (crystal-
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lization) whereas the latter leads to an amorphous solid (glass formation). Although these
transitions have been studied extensively in the past, many important questions regarding
both remain unanswered. In the case of nucleation and growth, the fundamental thermo-
dynamic mechanism underlying the transition has been known for some time [16,17,18];
however the detailed microscopic picture of how nucleation and growth occurs is elusive.
This is exemplified by recent simulation studies [19, 20, 21, 22] that demonstrate that the
standard classical nucleation theory (CNT [17, 18]) is insufficient for describing nucleation
on a detailed particle-based level. In the case of vitrification, the fundamental nature of
the transition itself is unknown. Thus, gaining insight into this mechanism is of utmost
importance, and remains the cornerstone of supercooled liquids research [23, 24, 25, 26].
Here, we investigate both transitions to elucidate an microscopic picture of phase transitions
that will guide researchers in solving complex problems in self-assembly.

This thesis is organized as follows: In chapter 2, we provide a theoretical overview
of both the thermodynamics and dynamics of liquid-solid transitions. In chapters 3 and 4
we review the model systems and computational techniques that we use to study these
transitions. In chapter 5, we study the formation of metastable ordered solids in the con-
text of dodecagonal quasicrystals. Quasicrystals have useful photonic properties on the
micro/nanoscale [27,28], and serve as a useful case study for our investigations. In chapter 6,
we investigate the mechanism underlying the glass transition. To do so, we characterize
the dynamics of several model glass formers, as well as an experimental granular system
of macroscopic ball bearings that exhibits many of the same dynamical characteristics. In
chapter 7, we introduce a new class of computer algorithms for characterizing assembled
structures, which can be applied to studying thermodynamic transitions in assembled sys-
tems. We conclude by providing possible avenues for future study in chapter 8, and some
closing remarks in chapter 9. While the work presented here is largely focused on the
fundamental aspects of liquid-solid transitions, we have applied our knowledge of these
topics to several novel self-assembly applications, which we briefly review in Appendix A.
The simulation and analysis codes that we have developed to study liquid-solid transitions
are reviewed in Appendix B.

The research presented in this dissertation has been published or is currently being
prepared for publication. Published articles include [Z. Zhang, A.S. Keys, T. Chen, and S.C.
Glotzer, “Self-Assembly of Patchy Particles into Diamond Structures Through Molecular
Mimicry,” Langmuir (2005)] [29], [A.S. Keys and S.C. Glotzer, “How Do Quasicrystals
Grow?” Physical Review Letters (2007)] [30], [A.S. Keys, A.R. Abate, S.C. Glotzer, and D.J.
Durian, “Measurement of Growing Dynamical Length Scales and Prediction of the Jamming
Transition in a Granular Material,” Nature Physics (2007)] [31], [C.R. Iacovella, A.S. Keys,
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M.A. Horsch, and S.C. Glotzer, “Icosahedral Packing of Polymer-Tethered Nanospheres
and Stabilization of the Gyroid Phase,” Physical Review E (2007)], [S.C. Glotzer and A.S.
Keys, “Materials Science: A Tale of Two Tilings,” Nature (2008)] [32], [A. Haji-Akbari et
al., “Disordered, Quasicrystalline and Crystalline Phases of Densely Packed Tetrahedra,”
Nature (2009)] [33], and [A.S. Keys, C.R. Iacovella, and S.C. Glotzer, “Characterizing
Structure Through Shape Matching and Applications to Self-Assembly,” Annual Reviews
of Condensed Matter Physics (2011)] [34]. Articles currently awaiting publication include
[C.R. Iacovella, A.S. Keys, and S.C. Glotzer, “Self-Assembly of Soft Matter Quasicrys-
tals,” (2010)] [35], [A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, and D. Chandler,
“Structure of Localized Excitations and Relaxation in Supercooled Glass-Forming Liquids,”
(2011)] [36], [A.S. Keys, C.R. Iacovella, and S.C. Glotzer, “Characterizing Complex Parti-
cle Morphologies Through Shape Matching: Descriptors, Applications, and Algorithms,”
(2011)] [37], and [A.S. Keys, C.R. Iacovella, and S.C. Glotzer, “Harmonic Order Parameters
for Characterizing Complex Particle Morphologies,” (2011)] [38].
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Chapter 2

Background

Our work on liquid-solid transitions builds on a wealth of research in the areas of both
nucleation and growth and the glass transition. In this chapter, we provide a theoretical
background, as well as a current research overview, of both transitions. We begin by dis-
cussing the thermodynamics of metastable states and how this relates to both nucleation and
growth and the glass transition. We then describe how these thermodynamics relate to local
particle packing in assembled systems, which we exemplify for the simple case of spherical
particles. We close with a relevant literature review that we will build on for our studies of
liquid-solid transitions and self-assembly.

2.1 Thermodynamics, Kinetics and Metastability

In the limit of infinite system sizes and timescales, thermodynamic systems assume a state
of minimum free energy [14]. Physically, “free energy” refers to the capacity for a system
to do work. The free energy is given by F = U −T S in the canonical (NVT) ensemble
(Helmholtz free energy), or G = U −T S +PV in the isothermal-isobaric (NPT) ensemble
(Gibbs free energy). Intuitively, this means that systems with higher energy U or enthalpy
U +PV have the ability to do more work. It also means that systems with lower entropy S
can do more work than those with higher entropy. (Or, to put it another way, work must be
put into the system to remove entropy).

The minimum free energy state is path-independent; therefore, predicting the structure
that will form in the thermodynamic limit reduces to the problem of finding the minimum
free energy state. Although this is a valid approach in some cases to predicting the outcome
of self-assembly experiments, the reality is, experimental systems are finite in space and
time; thus the thermodynamic limit is never strictly achieved. This is particularly impor-
tant when the system is driven from equilibrium, as is typical for systems that undergo
liquid-solid transitions, where systems are often cooled or compressed, or the chemical
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composition is changed, etc., causing the equilibrium state to change from a disordered
liquid state to a solid. If a thermodynamic or kinetic barrier to equilibrium exists, the
system may never reach the stable state on timescales that concern us. Such long-lived
non-equilibrium states are termed “metastable.”

In our studies of liquid-solid transitions, we encounter many metastable states. One
frequently-encountered metastable state is the supercooled liquid state, which occurs when
a liquid is rapidly cooled below its melting temperature Tm or compressed above its melting
density φm. Below Tm or above φm, the liquid is metastable with respect to the ordered
solid [25,24]. When subjected to increased supercooling, the liquid must eventually solidify,
either into an ordered solid or into an amorphous state known as a “glass.” As explained in
section 2.4, the glassy state is a liquid that has lost ergodicity (i.e., the ability for the system
to sample configuration space). Thus, glasses are inherently non-equilibrium structures
that are thermodynamically metastable with respect to other glasses that result from longer
sampling. Often, glasses are associated with an an underlying crystalline stable state; for
example most of the water in the universe exists as glassy water rather than ice [39]. As
detailed in section 2.3, ordered solids may also exhibit metastability when particular thermo-
dynamic pathways cause systems to become trapped in crystal structures that are not the
stable state. For example, diamonds, which form at high pressures in the Earth’s crust, are
thermodynamically metastable at atmospheric conditions relative to graphite [40].

2.1.1 Ising Model Analogy: Definition and Behavior

The basic thermodynamics and kinetics underlying liquid-solid transitions can by idealized
by a straightforward model known as the “Ising Model [41, 14],” which (roughly) represents
a simple model magnet. The 2d square lattice Ising model consists of cells occupied by up
or down spins. The energy function for the Ising model is given by [14]:

E = −µB∑
i

si −∑
i $= j

Ji jsis j. (2.1)

Here, µ is the dipole moment (either -1 or 1, but taken here to be 1), B is the field strength,
Si is the value of the spin (either -1 or 1) at each lattice site i, and J is a coupling parameter
between spins. If J is positive (i.e, the system is ferromagnetic), the pairwise energy is lower
if adjacent cells contain the same spins. In the absence of an external field both phases (up or
down spins) are equally likely. However, if an external field is applied one phase is favored
over the other. From the laws of statistical mechanics, the probability of observing a given
microstate ν with energy Eν in equilibrium is Pν ∝ exp(−βEν), where β is the inverse
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temperature. This distribution can be sampled using a Metropolis Monte Carlo simulation
(see section 4.1.2).

This simple model can be used to model the basic thermodynamics and kinetics of
liquids-solid transitions for systems with local interactions. In the context of liquid-solid
transitions in systems of particles, the spins (-1 and 1) are analogous to the two phases:
liquid (L) and solid (S). The external field B is the thermodynamic driving force, which,
in physical systems, is set by adjusting the temperature, pressure, etc. such that a given
phase, either L or S, has a lower free energy. The coupling parameter J is an interfacial
tension between the phases. As explained in detail in section 2.2, due to a packing mismatch
between particles in the liquid and solid phases, the interfacial tension is positive. Thus, to
model such systems we take J > 0.

Consider now a system with negative value of the external field B that favors down spins
(i.e., the liquid phase L). Fig. 2.1a depicts a schematic of the free energy F(M) (i.e., the
reversible work of magnetization) for this system as a function of the total magnetization
M = ∑si. The system tends to sample configurations in the thermodynamically stable L
state. Now consider what happens when we quickly change B to a positive value such that
the system favors up spins (the solid phase S). In order to change from the current L state
to the more stable S state, the system must form many adjacent up/down spin pairs, which
increases the value of E. The ability for the system to overcome the barrier depends on
the value of the interfacial tension J between the phases; for low values of J, the transition
state M∗ forms readily due to minor fluctuations, and the barrier E∗ is easily surmounted
(Fig. 2.1b). In the context of liquid-solid transitions, this scenario results in a process is
known as “spinodal decomposition [42],” which we do not consider in much detail here.
For larger values of J, there is an energy barrier to transforming the system to the stable S
state, and the system remains metastable in L until this barrier is overcome (Fig. 2.1b). The
mechanism by which the system surmounts the barrier is known as “nucleation and growth.”
For very high values of J, forming the transition state requires a particularly improbably
configuration of spins and the system will remain metastable in L indefinitely (Fig. 2.1d).

2.1.2 Ising Model Analogy: Nucleation and Growth

Now, let us consider how the transition state M∗ in Fig. 2.1c comes about in more detail.
The process involves two competing effects: on one hand, there is the external field B, which
favors up spins (S); on the other there is the interfacial tension, set by the coupling parameter
J, which disfavors interactions between unlike spins (L-S neighbors). To minimize the
energy barrier E∗, the system should maximize the number of up spins, while at the same
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Figure 2.1 Thermodynamics and kinetics of transitions in the Ising Model. All free energy curves
are very rough schematics and are not meant to be quantitative. (a) Free energy for a system as a
function of the overall magnetization M, with field B < 0, such that the L phase, depicted in green,
is favored. The system configuration, depicted by a black sphere, tends to sample the stable state,
L. (b) Depiction of the transition that occurs when the field B is changed from negative to positive,
such that the S phase, depicted in red, is favored. For low values of the coupling energy J, which
is related to the interfacial energy, the transition resembles spinodal decomposition. (c) Depiction
of the transition that occurs when the field B is changed from negative to positive, with a moderate
value of J. For this moderate value of the coupling parameter, the transition occurs via a nucleation
and growth mechanism. (d) Depiction of a system for which the field B is changed from negative to
positive, with a very high value of J. In this case, the high interfacial tension poses an insurmountable
energy barrier for the transition, and the system remains metastable in L indefinitely.
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time minimizing the up/down spin neighbors. This is best accomplished by configurations
that, through random fluctuations, containing a single disk-like droplet of S spins in an
otherwise L system. In this case, the perimeter-to-area ratio of the droplet, and hence the
interfacial tension, is minimized. As the droplet grows, its internal energy, which in 2d
scales with the droplet area πr2, grows faster than the interfacial tension, which scales with
the droplet perimeter 2πr. At a given critical size r∗, the two terms balance and the droplet
has an equal probability to either grow or shrink. This is the transition state M∗, and the
droplet is known as the “critical nucleus.” Droplets smaller than the critical nucleus tend to
shrink, while larger droplets tend to grow. Eventually, the droplet will grow large enough to
convert the entire system to the stable S phase. This nucleation and growth mechanism is
the most common pathway by which liquids transform into ordered solids. We note that, in
our simplified discussion here, we assume that nucleus size r is the only important reaction
coordinate for the system; however, even for idealized systems such as the Ising model, this
is not strictly true [20,43]. In section 2.3, we discuss nucleation and growth in the context
of less idealized systems with explicit particles.

2.1.3 Ising Model Analogy: Ergodicity Breaking

A metastable system in L subjected to a field B > 0 will remain metastable until a critical
nucleus forms. Let us now consider a scenario in which a system in L with a high barrier
E∗ (for example, the system depicted in Fig 2.1d) is subjected to a rapid quench by quickly
increasing β . In this case, the critical nucleus does not have time to form, and because
the temperature is low the system no longer undergoes thermal fluctuations, and becomes
effectively frozen in a local energy minimizing spin configuration. In other words, the
system becomes non-ergodic, as it no longer samples configuration space. The configu-
ration of spins in which the system becomes trapped inevitably retains character of the
higher temperature equilibrium L state from which the system was quenched; thus, the
non-ergodic system is thermodynamically metastable with respect to both the equilibrium
low-temperature L phase, which would occur over infinite timescales, as well as the ground
state S phase. In particle systems, this non-ergodic phase is known as the glass, and the
process by which dynamical arrest occurs is known as the glass transition. In this respect,
the distinction between a metastable liquid and a glass is simply a matter of perception;
the glass transition occurs when the relaxation time of the system exceeds experimental
timescales. However, in practice, the process by which dynamical arrest occurs in fully
atomistic systems is much more complicated than our simple discussion would imply, and is
reviewed in detail in section 2.4.
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2.2 Particle Packing and Thermodynamics

In the section 2.1, we discussed the thermodynamics of liquid-solid phase transitions in
the context of the coarse-grained Ising model. In this section, we provide a more detailed,
particle-based overview of the same topics. We begin by asserting that the free energy of
condensed systems is dominated by the packing of their constituent particles [44, 45, 46, 47].
Systems with interparticle potential interactions tend to assumes packings with interatomic
spacings that minimize the potential energy. Systems with excluded volume interactions
tend to assume dense arrangements that maximize the accessible space for particles to jostle,
thus maximizing the entropy, as well as the PV contribution to the Gibbs free energy in the
NPT ensemble. These basic principles apply to condensed systems in general, regardless of
the complexity of the particle shape or the interparticle interactions.

2.2.1 Case Study: Disks and Spheres

We can obtain fundamental insight into relationship between packing and thermodynamics
by studying two simple models: systems of circular and spherical particles in 2d and 3d,
respectively. Despite their apparent similarity, as we will describe below, these two systems
represent opposite ends of the spectrum regarding how their constituent particles pack. The
intuitive picture that we gain from these simple models will aide us in understanding systems
involving more complex particle shapes and interparticle interactions.

Spheres and Disks: Solid Structures

We first consider the trivial case of packing disks in flat, 2d space. Assume, for the time
being, that the particles are hard (i.e. they do not overlap) and monodisperse (i.e., they have
the same diameter σ ). Also, assume that the system is dense such that particle diffusion
cannot occur. At such high system densities, the disks tend to assume dense local packings,
since this maximizes the volume available for vibrational motion. This vibrational motion
dominates the entropy S in the absence of particle diffusion. The densest packing locally
is the hexagon [48, 47], where each disk is surrounded by 6 equidistant neighbors (see
Figure 2.2). Hexagonal packing is also the densest structure globally, with a packing fraction
φmax ≈ 0.91. By connecting the centers of each disk in the hexagonal lattice, we divide
space evenly into equilateral triangles. It is perhaps counterintuitive that this crystal structure
maximizes entropy, since entropy is often associated with disorder. However, the formal
definition of entropy is S = kbT lnΩ, where Ω is the total number of states accessible to the
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Figure 2.2 Packing disks in 2d. (a) The 7 particle hexagon, which divides space into equilateral
triangles. The hexagon maximizes the packing density locally. (b) The hexagonal lattice, composed
of particles in hexagons locally. The hexagonal crystal maximizes packing density globally.

system [14]. Thus, since the crystal allows for the most vibrational states, it minimizes the
free energy through entropic stabilization. For systems with interparticle interactions, this
entropic effect is sometimes augmented by a potential energy effect. For example, since all
interparticle distances in a hexagonal crystal are equivalent, particles can lie at the minimum
of spherically symmetric attractive pair potentials, such as the Lennard-Jones potential (see
section 3.1), thus minimizing the potential energy U as well. In other cases, potentials can be
contrived to override the entropic effect, a topic that we explore in more detail in Chapter 3.

Now consider the same problem as above, except in three dimensions. Whereas packing
disks in 2d is relatively straightforward, packing spheres in 3d is much more complex [44,47].
The closest analogue to the 2d hexagon in 3d is the icosahedron, which consists of a central
sphere is surrounded by 12 roughly equidistant neighbors (see Fig. 2.3a). Like the hexagon,
the icosahedron is a dense local packing that allows particles to lie near the minimum of the
potential well of spherically symmetric attractive potentials [49]. Just as hexagons divide
space into equilateral triangles, icosahedra divide space into tetrahedra, the 3d analogue of
the equilateral triangle. However, whereas the equilateral triangles formed by hexagons are
ideal, the tetrahedra formed by icosahedra are slightly distorted. As depicted in Fig. 2.3b,
the tetrahedra must stretch along their outer edge to fill the 7◦ gap left between undistorted
tetrahedra. As a result, icosahedra do not tile 3d space, resulting in packing frustration for
long-range icosahedral structures.

Due to the inherent packing defects associated with long-ranged icosahedral structures,
crystalline structures in 3d take on an altogether different packing paradigm. The densest
global packing for 3d spheres is achieved by stacking 2d hexagonal layers. The layers may
be stacked in an infinite number of ways to give rise to “close-packed” arrangements, all
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Figure 2.3 Packing spheres in 3d. (a) The image depicts the 13-particle icosahedron, which divides
space into tetrahedra. Like its 2d analogue the hexagon, the icosahedron maximizes the packing
density locally. (b) Packing tetrahedra. Whereas equilateral triangles tile 2d space, tetrahedra must
distort to fill 3d space, as exemplified by the ∼ 7◦ gap that appears when attempting to pack five
ideal tetrahedra into a pentagonal dipyramid. (c) Close-packed crystals. Due to the inherent packing
frustration for icosahedral structures, the densest packings in 3d are layered hexagonal structures,
such as the fcc and hcp crystals. The structures differ in the stacking sequence; whereas the fcc
structure has an ABC layering pattern, the hcp structure has an alternating AB pattern.
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of which have a packing fraction of φ = pi√
18

≈ 0.74048 [50]. Two simple close-packed
arrangements are the fcc structure (also known as cubic-close packed) and the hcp structure,
which involve AB stacking, and ABC stacking, respectively. Although these structures
do not divide space entirely into tetrahedra, they minimize free energy for many systems
because of their high density. Another common crystal is the bcc structure with a packing
fraction of φ ≈ 0.681. Although the packing fraction is lower for bcc than for fcc/hcp,
the bcc structure is sometimes more energetically favorable for some specific interparticle
interaction potentials [51, 52].

Spheres and Disks: Liquid Structures

In general, liquid structure can be understood in terms of random deviations from the ideal
local packing [47]. Due to thermal fluctuations, liquid systems of 2d disks will contain some
particles with more than six neighbors, and some with fewer, in addition to ideal hexagons.
Local configurations with packing defects tend to be less stable than defect-free hexagonal
configurations. Thus, as the temperature is lowered or the density is increased, the number
of defects decreases as well.

Liquid structure in 3d systems of spheres can be understood in terms of local devia-
tions from the ideal icosahedral packing [47]. Icosahedra can be decomposed entirely into
pentagonal dipyramids (Fig. 2.3b), where five tetrahedra share a common fivefold edge.
Thermal fluctuations give rise to defects, where more than or fewer than five tetrahedra share
a common edge. In contrast to the case of disks, where defect pairs of opposite “sign” are
equally stable, in the case of spheres, higher-order (e.g., sixfold, sevenfold) defects are more
stable than lower-order (e.g, fourfold, threefold) defects. This is due to the fact that pen-
tagonal dipyramids consist of tetrahedra that are slightly stretched rather than compressed
(see Fig. 2.3b). As the temperature decreases or the density increases, defects annihilate
to form more icosahedra locally. However, since icosahedra do not tile 3d space, some
defects inevitably remain, even as the system approaches very low temperatures and/or high
pressures.

Spheres and Disks: Liquid-Solid Transitions

Now let us consider how particle packing changes when the thermodynamic driving force
(e.g., the temperature, pressure, etc.) is changed such that the system favors the solid phase
over the liquid phase. Recall, from section 2.1.1 that the thermodynamic behavior of a
changing system is strongly tied to the interfacial tension between the phases, which, in
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the case of the Ising model, is dictated by the coupling parameter J. For systems of disks,
hexagonal packing is favored both locally and globally; thus the interfacial tension between
the liquid and solid phases is negligible. When the solid phase becomes more stable, all of
the local defects disappear, resulting in a hexagonal crystal. Since the interfacial tension
between the phases is small, the transition from a liquid to a hexagonal crystal is reminiscent
of critical behavior, similar to Fig. 2.1b. Crystallization is characterized by a growing “hex-
atic” (i.e., hexagonal) lengthscale, that eventually diverges as the system forms a hexagonal
crystal [53, 48, 54].

In systems of spheres, the inherent structural mismatch between locally-favored icosa-
hedral packing and globally-favored crystal structures, such as fcc, hcp, and bcc packings
results in a high interfacial tension. Thus when the thermodynamic driving force is changed
such that the system favors the solid phase over the liquid phase, there is a free energy barrier
to transitioning from a liquid to a solid, similar to the scenario depicted in Fig. 2.1b. In this
case, the transition for spheres resembles typical nucleation and growth behavior. Notice
that despite their outward similarity, our two example cases, disks and spheres, present two
limits of packing and thermodynamic behavior; we can gain general insight from these
systems that can be applied to more complex systems with analogous local/global packing
scenarios, regardless of the shape of the underlying particles.

2.3 Nucleation and Growth

With a solid understanding of sphere packing, we can now revisit the concept of “nucle-
ation and growth” in particle-level detail. Analogously to the Ising model, a system of
liquid particles must form a large crystalline droplet known as the “critical nucleus” be-
fore the barrier posed by the interfacial tension between the phases can be overcome, and
the system can transform from liquid to solid. This process is known as “homogeneous
nucleation [16, 55, 56, 57],” and occurs due to random fluctuations within the local liquid
structure. Another mechanism by which nucleation and growth can occur is through the
introduction of a disturbance, such as a speck of dust, an artificial boundary, or a seed crystal
into the system. This process, known as “heterogeneous nucleation,” allows the nucleation
barrier to be surmounted more easily because disturbances to the liquid structure typically
increase the probability of forming a critical droplet [58]. Although heterogenous nucleation
is more likely in experimental systems, we focus primarily on homogeneous nucleation
since the unpredictable nature of the disturbance makes heterogenous nucleation difficult to
characterize.
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Figure 2.4 The schematic depicts the free energy G as a function of the reaction coordinate λ for
two nucleation pathways. Although pathway 2 (green line) results in more stable solid than pathway
1 (red line), the system tends to follow pathway 1 since the free energy barrier to nucleation is lower
(i.e., ∆G∗

1 < ∆G∗
2).

Nucleation is an activated process since most nuclei are unstable and tend to revert
back to the liquid. The formation of a stable nucleus requires that the free energy lost by
converting particles from the liquid to the solid outweigh the free energy gained due to the
interfacial tension at the nucleus surface. Thus, like a chemical reaction, nucleation is a
fluctuation-driven process that requires activation energy to overcome a free energy barrier
(see Figure 2.4).

A particularly important result of the free energy barrier to nucleation is that the system
evolves along the reaction coordinate that poses the lowest free energy barrier [16, 55, 59].
Therefore, the ordered solid that forms need not be the stable state (i.e., the structure with
the lowest free energy), only the structure with the lowest free energy barrier to formation.
As a result, many systems form metastable ordered solids that minimize the free energy
barrier to nucleation.

2.3.1 The Critical Nucleus

The nucleus configuration that sits atop the free energy barrier is known as the “critical
nucleus.” Once the critical nucleus forms, there is no free energy barrier to further growth
and the system can freely solidify. The critical nucleus represents a transition state; there-
fore, it has an equal probability of evolving either backward or forward along the reaction
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coordinate (i.e., of “committing [60]” to either the liquid or the solid phase). As the crit-
ical nucleus is essential for understanding how crystallization occurs for a given system,
many studies focus on identifying critical nuclei and understanding the reasons for their
stability [57, 61, 62, 21, 22].

2.3.2 Classical Nucleation Theory

A mathematical framework for modeling the formation of the critical nucleus is given by
classical nucleation theory (CNT) [17,18]. CNT models the excess free energy of nucleation
∆G as a function of nucleus radius r for a spherical, incompressible nucleus:

∆G(r) =
4
3

πr3ρs∆µ +4πr2γ (2.2)

Here, we have assumed that we have a 3d system, where 4
3πr3 is the nucleus volume,

ρs is the solid density, ∆µ is the chemical potential difference between liquid and solid,
4πr2 is the surface area, and γ is the interfacial tension. The nucleus is approximated as
being perfectly spherical, since this maximizes the volume-to-surface area ratio and thus
minimizes ∆G. At the critical size r∗, ∆G goes through a maximum, indicating the transition
state. Taking the derivative of ∆G(r) an equating to zero gives

r∗ =
−2γ
ρs∆µ

. (2.3)

Inserting this value for r into our expression for ∆G(r) gives

∆G∗ =
16π

3
γ

(ρs∆µ)2. (2.4)

Although CNT provides a rough picture of the free energy barrier to nucleation, in
reality, it is highly idealized, since nuclei are not, in general, perfectly spherical and the
factors ρs, ∆µ , γ are not constants, but rather complex functions of nucleus structure and
the local topology of the surrounding liquid [20, 19]. In general, the nucleus may change
shape, structure, etc. as they grow in order to minimize free energy along the reaction
coordinate [20, 59]. Thus, for many systems, the free energy curve depicted in Figure 2.4
may be more accurately represented by a multidimensional free-energy surface. Recently
methodology has been developed to accurately measure the true reaction coordinate for
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Figure 2.5 Free energy ∆G plotted as a function of nucleus radius r for a perfectly spherical
nucleus. The number of particles in the nucleus core (yellow) scales with r3 while the number of
particles on the nucleus surface (red) scales with r2. The nucleus with a radius that maximizes ∆G is
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Figure 2.6 Nucleation Kinetics. (a) Schematic depiction of the nucleation rate as a function of T .
At high temperatures, nucleation is thermodynamically-limited. At low temperatures, nucleation is
diffusion-limited. At an intermediate temperature Tmax, the nucleation rate is at a maximum Imax. (b)
Schematic depiction of overall liquid-solid transformation rate as a function of temperature. The
overall rate is a product of the nucleation rate and the crystal growth rate.

nucleation (and other rare events) via computer simulations (see section 4.4).

2.3.3 Nucleation Rate and Growth Rate

Now that we have established the thermodynamics of nucleation and growth, we can con-
sider the kinetics of crystal formation. In analogy with a standard chemical reaction, we can
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associate a “rate” with nucleation, which is modeled by [25]:

I = ρ∗b. (2.5)

Here, ρ∗ is the population density of critical nuclei, and b is the rate of particle attachment
to the nucleus surface. From Boltzmann statistics, we can write

ρ∗ = ρ0 exp
(
−∆G∗

kbT

)
. (2.6)

The term ρ0 is the density of particles in the system. Substituting our approximate expression
for ∆G∗ from equation 2.4 above, we obtain:

ρ∗ = ρ0 exp

[
16π

3
γ

kbT (ρs∆µ)2

]
. (2.7)

Similarly, we can write an expression for b according to:

b ∝ exp
(
−∆Gd

kbT

)
. (2.8)

Here, ∆Gd is the activation energy for bulk diffusion. While b, decreases with temperature,
we can see from equation 2.7 that ρ∗ increases with T . This is depicted in Fig. 2.6a, which
shows that the nucleation rate goes through a maximum Imax at particular Tmax. For T < Tmax,
critical nuclei form easily, but I is limited by slow diffusion. For Tmax < T < Tm, I is limited
by the thermodynamic driving force.

The overall transformation rate for particles from the liquid phase to solids phase K is
given by the product of the nucleation rate I and the growth rate g:

K = Ig (2.9)

The growth rate to a critical nucleus is again driven by diffusion, modeled by an Arrhenius
expression similar to equation 2.8. The overall transformation rate is depicted in Fig. 2.6b.

2.4 The Glass Transition

It is clear from Fig. 2.6b that if a liquid is supercooled sufficiently far below Tm, the rate of
transformation from the liquid to solid becomes negligible and the system stays trapped in
the mestastable liquid state indefinitely. At some point, the temperature becomes sufficiently
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Figure 2.7 Schematic depicting the specific volume as a function of temperature for a typical
supercooled liquid. Here, “glass 2” is cooled more slowly than “glass 1” and falls out of equilibrium
at a lower lower glass transition temperature Tg.

low that the particles in the metastable liquid can no longer relax over the timescale of a
typical experiment, and the system becomes kinetically trapped and effectively solid. The
temperature at which the relaxation time crosses the experimental timescale is known as
Tg, the glass transition temperature [26]. In this sense, vitrification is a purely dynamical
phenomenon, since the glass and the liquid and their corresponding thermodynamics are
interchangeable based on an arbitrary definition of the experimental timescale. For example,
the familiar silica-based window glass, with relaxation time τ = 1032 years, would be defined
as a liquid for experiments spanning, say, 1033 years [15]. However, for most supercooled
liquids, the temperature dependence of the relaxation time is sufficiently strong that Tg is
a well-defined material property (to within a few degrees Centigrade) and is essentially
independent of any reasonable definition of the experimental timescale. Aside from the
experimental timescale, Tg also has a weak dependence on the cooling rate. A liquid that
is cooled more slowly has more opportunity to rearrange structurally and will fall out of
(metastable) equilibrium and form a glass at a slightly lower Tg than a rapidly quenched
melt with a structure more reminiscent of the high temperature equilibrium liquid (see
Figure 2.7).
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Figure 2.8 Spatially heterogenous dynamics in a 2d supercooled liquid. Particles are colored
based on their displacement |ri(t)− ri(0)| over a time window t ∼ τα . Notice that as temperature
decreases, particle mobility becomes increasingly spatially correlated.

2.4.1 Supercooled Liquid Phenomenology

The argument outlined above implies that the glassy state is simply a supercooled liquid
that has lost ergodicity. However, this overly-simplified picture fails to tell the whole story;
in practice, supercooled liquids exhibit several highly unusual and mostly unexplained
dynamical and thermodynamic properties. In this section, we provide a cursory review these
unique properties of supercooled liquids.

Spatially Heterogeneous Dynamics

Based on the arguments above, a glass can be considered a very slow supercooled liquid.
That is, on long enough timescales, glasses will relax structurally and flow like liquids.
Thus, we might expect that if we watched the particles in a glass in “fast-forward,” they
would move just like those in a liquid. Interestingly, molecular simulations [63] and, more
recently, experiments [64, 65, 66] have shown that this is not the case. As liquids become
increasingly supercooled, particle dynamics become increasingly correlated, or “spatially
heterogeneous [67,68].” More specifically, systems exhibit spatially heterogenous dynamics
(SHD) if (1) it is possible to select a dynamically distinguishable subset of particles and (2)
these dynamics are spatially correlated. Fig. 2.8 depicts SHD for a 2d supercooled liquid
over a timescale of about one α relaxation time.
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Figure 2.9 Depiction of the Angell plot [78], showing strong versus fragile relaxation behavior.

SHD has been extensively characterized in a variety of systems, including simulated
atomistic and molecular glass formers [69, 70, 71, 72], and experimental systems such as
colloidal suspensions [64], and, as we will show in Chapter 6, granular matter [65, 66, 31].
Hallmark features of SHD include the cooperative motion of highly mobile particles in
strings [73], which aggregate into clusters [74], and the cooperative motion of relatively
immobile particles as they break free from their cages [75,76]. These features are defined in
more quantitative detail in Chapter 4.

Decoupling

Another interesting property of supercooled liquids is a decoupling that occurs between the
translational and the rotational diffusion coefficients and the viscosity. For relatively high
temperatures, both the translational and the rotational diffusion coefficients in supercooled
liquids are inversely proportional to the viscosity. For temperatures below approximately
1.2Tg, a decoupling occurs between translational diffusion and viscosity, and between the
rotational and translational diffusion [77, 25]. However, the relationship between rotational
diffusion and viscosity remains intact. As a result, near the glass transition temperature
particles translate much faster than expected based on their viscosity.
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Super-Arrhenius Relxation

Another important phenomenon observed for some supercooled liquids is the breakdown
of the Arrhenius temperature dependence of viscosity at low temperatures [26, 25]. While
the viscosity of certain liquids (SiO2, GeO2, etc.) exhibits Arrhenius behavior for a full
range of T , the viscosity of other liquids (ortho-Terphenyl, Chlorobenzene, etc.) undergoes
a crossover at low T where the viscosity begins to diverge much more rapidly than an
exponential function (see Fig. 2.9). Such liquids have been characterized as “strong” and
“fragile,” respectively in reference to how closely they adhere to an Arrhenius temperature
dependence [78]. Mathematically, the relaxation behavior of strong liquids can be char-
acterized by τ = Aexp(E/kbT ), where A and E are constants and τ is the relaxation time.
One relationship that has been shown empirically to fit transport properties reasonably over
2-4 orders of magnitude for a range of fragile liquids is the Vogel-Tamman-Fulcher (VTF)
equation [79, 80, 81]:

τ = Aexp[B/(T −T0)] (2.10)

Here A and B are constants and T0 is the glass transition temperature. In addition to the VTF
equation, several alternate fits are possible for fragile glass formers [82, 83, 84, 85, 86].

Thermodynamic Singularity

It follows from our discussion at the beginning of this section that, theoretically, if a liquid
is quenched slowly enough over long enough times, it will never fall out of equilibrium.
That is, the system will follow the thermodynamic pathway traced out by the red dashed
line in Fig. 2.7. As pointed out by Kauzmann [87], the decrease in entropy with temperature
occurs at a much higher rate for a supercooled liquid following such a path than for either
the glass or for the ground state crystal (see Fig. 2.10). (Notice that this can be qualitatively
inferred from Fig. 2.7 as well; as explained in section 2.2, the entropy is directly related to
the accessible volume per particle, which is inversely related to vsp = 1/ρ). When extrapo-
lated to a temperature TK , the entropy of the supercooled liquid equals that of the crystal.
This poses a paradox, since, as Kauzmann states: “certainly the entropy of the liquid can
never be very much less than that of the solid [87].” When extrapolated further, the liquid
entropy becomes negative at some T > 0, which is physically impossible since entropy is
inherently non-negative. Kauzmann theorized that at some point, the derivative δS/δT (i.e.,
the temperature times the heat capacity TC must change sharply in order to avoid such an
“entropy crisis.” Indeed this is precisely what occurs at the glass transition (see Fig. 2.10).
Kauzmann hypothesized that such a transition must occur at or above TK , since the glass
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Figure 2.10 Depiction of the entropy S as a function of temperature T , similar to the plot shown
in reference [24]. When the supercooled liquid falls out of equilibrium at Tg, the heat capacity, given
by the derivative 1/T (δS/δT ) changes rapidly. If the liquid could be cooled infinitely slowly such
that Tg was avoided, the entropy would become negative at some finite T (dashed lines).

and crystal have approximately the same heat capacity.
Thus, it would seem that the glass transition is a thermodynamic inevitability. However,

in practice, this scenario of a thermodynamic glass transition is always avoided since, in
practice, supercooled liquids always either crystallize or vitrify before the Kauzmann temper-
ature is reached. The true nature of the glass transition and the importance of the Kauzmann
paradox remains a matter of intense debate within the scientific community [78, 24].

2.4.2 Theories of the Glass Transition

The unique properties of supercooled liquids outlined above have inspired many theories to
explain their behavior. A full review of the theories of the glass transition, which span over
50 years of research, is beyond the scope of the current discussion. Instead, we very briefly
review the theories that are most relevant to the work that we will present in the following
chapters.
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Potential Energy Landscape

The potential energy landscape (PEL) abstraction, originally introduced by Goldstein [88],
gives an intuitive topographic picture of supercooled liquids. The PEL is not a theory of the
glass transition per se, but rather a convenient description of liquids from which theories
can be constructed. In the PEL picture, deeply supercooled liquids become temporarily
trapped in local potential energy minima known as “inherent structures [89, 90].” At high
temperatures, the liquid can escape energy minima easily and structural relaxation is rapid.
At lower temperatures, the system becomes trapped in energy minima for longer periods
of time and structural relaxation is more sluggish. The point at which the system becomes
completely trapped in the same inherent structure corresponds to the “dynamical” glass
transition [24].

Because inherent structures do not account for thermal vibrations, the PEL itself is
independent of temperature. However, the space of minima sampled becomes constricted
as temperature decreases. This idea has lead to various thermodynamic and statistic de-
scriptions of the PEL, which have informed speculation on the nature of the mode-coupling
crossover (see next section) and the Kauzmann paradox [90, 24]. The PEL picture is suc-
cessful in describing the cooling rate dependence on Tg in that rapidly-cooled liquids visit
regions of the PEL that are not accessible in equilibrium at lower temperatures and become
kinetically trapped. The PEL picture can also explain the strong-fragile distinction, in
terms of the topography of the potential energy landscape. Fragile liquids have particularly
heterogeneous landscapes with large “metabasins” containing many inherent structures,
whereas strong liquids do not [89, 91].

Mode Coupling Theory

A well known theory of the glass transition is given by mode-coupling theory (MCT) [92].
MCT is a first-principles approach starting only with the structure of the liquid, measured by
the structure factor S(q) (see section 4.5.2). The main physical effect that MCT is thought to
describe properly is “caging,” whereby particles in a dense system must move cooperatively
to escape from their cage created by neighboring particles. At some critical temperature T0

(or density φ0), particles can no longer escape from their cage, and the system undergoes a
glass transition. This is modeled by

τ ∝ exp
[

E
T −T0

]
. (2.11)
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The variable τ is the relaxation time. Clearly, equation 2.11 exhibits a singularity at T0, and
the relaxation time diverges. In this respect MCT is successful in that it predicts a glass
transition at a nonzero temperature. Moreover, the functional form for τ vs T predicted by
equation 2.11 gives reasonable agreement for many simulated liquids and colloidal suspen-
sions, provided they are not significantly supercooled. However, in practice the predicted
value of Tc always falls above the true glass transition temperature Tc > Tg [93]. This is
thought to result from a crossover in the relaxation mechanism of in deeply supercooled
liquids, that is not accounted for in the theory. Debennedetti, Stillinger and coworkers
have hypothesized that this crossover corresponds to a crossover from diffusion-dominated
dynamics to energy-landscape-dominated dynamics [89, 24]. An additional drawback of
MCT, in its original form, is that it fails to clearly predict SHD, or decoupling [93]. However,
more recent studies have shown that a diverging dynamical lengthscale, analogous to a
dynamical critical point, can be obtained within the mode coupling formalism, which is
consistent with the observation of a growing lengthscale for SHD as the glass transition is
approached [94, 95].

Cooperatively Rearranging Regions

More than 40 years ago, Adam and Gibbs proposed a theory of the glass transition based on
the premise that supercooled liquids relax structurally through cooperatively rearranging
regions (CRRs), which grow larger in size as temperature decreases [96]. The subsequent
discovery of SHD is seemingly a verification of this idea [97]. The idea of CRRs has
also been related to metabasin transitions within the PEL [98, 99]. The main result of the
Adam-Gibbs theory is that the structural relaxation time is related to the configurational
entropy, defined as the contribution to the entropy from changing configurations, but not
vibrations; Sc = S−Svib:

τ ∝ exp(A/T Sc). (2.12)

Here, A is a constant given by A = ∆µS∗c/kb, where µ is the barrier hindering rearrangement,
S∗c is the configuration entropy of the minimal CRR, which can be related to the integrated
excess heat capacity. When plugging in this expression for S∗c , the Vogel-Fulcher temperature
dependence is obtained.

Several theories in the spirit of Adam and Gibbs have since been proposed. For example,
the random first order theory of the glass transition (RFOT) of Wolynes and coworkers
improves on Adam and Gibbs by providing a microscopic definition of the CRRs activation
energy, and predicts structural relaxation fits that correspond closely to physical relaxation
data [100, 101]. An alternate viewpoint is given by Langer, where the strings of mobile
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particles observed in many supercooled liquids may serve as CRRs [102].

Kinetically Constrained Models

In recent years, a great deal of insight into glassy systems has been attained from kinetically
constrained models (KCMs). These types of models were first introduced by Fredrickson
and Andersen in the 1980s [103, 104, 105]. KCMs are simple coarse-grained lattice models
of particle dynamics in glassy liquids that attempt to capture the fundamental elements
of glass transition phenomenology. The models typically begin with the assumptions that
particle dynamics are sparse, and that dynamics are facilitated [106]. The latter assumption
follows directly from spatial constraints present in dense glassy systems; particle motion
creates structural defects or empty space locally, and thus “facilitates” the subsequent motion
of nearby particles. Particular successes of KCMs include the prediction of a universal fit
for relaxation behavior to a parabolic law [106, 107]:

τ
τo

∝ exp



J2

(
1
T
−

1
To

)2

 , T < To (2.13)

Here, J is an energy scale for a fundamental unit of particle motion within the system, and
To is an onset temperature below which the assumptions of sparse, facilitated dynamics hold.
This theoretical fit has been shown to hold for a vast range of experimental and simulated
glass formers [107]. Another recent success of KCMs is the prediction of a unique first-order
transition in “space-time,” which is suspected to provide the thermodynamic driving force
behind SHD [108, 109]. In this picture, the growing size of heterogeneous regions near the
glass transition is a manifestation of the underlying first order transition. This has since been
verified for a fully atomistic system [109]. Another notable success of KCMs is their ability
to explain decoupling [110, 111]. In Chapter 6, we further explore that relationship between
fully atomistic glass formers to KCMs.

Other Theories

Several other theories of the glass transition have been proposed that we will not explore
in detail. One famous theory is the “free volume approach” formulated by Turnbull and
Cohen in the 1960s [112, 113, 86]. Here, it is theorized that the glass transition results from
a disappearance of excess volume, or volume that can be redistributed within the system
without a significant energy change. Another interesting theory is given by the frustration
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limited domains (FLD) picture of Kivelson, Tarjus and coworkers [114, 115, 116]. This
theory stipulates that super-Arrhenius relaxation behavior can be related to the tendency for
deeply supercooled liquids to form locally stable domains that are frustrated due to struc-
tural constrains that prevent them from spanning space. The crossover to super-Arrhenius
behavior is thought to occur at the point that the liquid composed of individual particles
begins to resemble a hierarchy of interacting FLDs. In addition to these theories, several
other theories have been developed over the 50+ years of glass transition research that we
do not have time to mention here, in the interest of brevity. However, it is important to bear
these ideas in mind when studying supercooled liquids so that we can to draw connections
wherever possible.
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Chapter 3

Model Systems

In our study of liquid-solid transition, we employ several different model systems. In this
chapter, we introduce our model systems and the basic physical characteristics that they are
meant to capture. We begin by introducing some standard condensed systems, consisting of
spherical particles with hard or van der Waals interactions. We then consider slightly more
complex models that form polytetrahedral ordered structures, which serve as a convenient
prototype for our study of metastable ordered phases in Chapter 5. Finally, we introduce
some model supercooled liquids, which are used for our study in Chapter 6. Although we
use several other more complex models in our studies of structural metrics in Chapter 7, we
forgo a discussion of those models here.

3.1 Simple Models of Condensed Matter

Since we are interested in studying general phenomena rather than modeling specific sys-
tems, we require models that capture the basic physical behavior of interest, but minimize
computational effort and complexity. For our study of liquid-solid transitions, we are par-
ticularly interested in systems that solidify via nucleation and growth, since they are more
likely to form metastable crystals and deeply supercooled liquids than those that solidify
by spinodal-decomposition (see section 2.1.1). Per our discussion of section 2.2.1, it is
clear that 3d systems of spherical particles can be supercooled and form ordered solids via
nucleation and growth. We briefly outline some standard models of 3d spherical particles
below.

Hard Sphere Potential

Perhaps the simplest model of a condensed system is given by the hard-sphere model. The
hard potential accounts for excluded-volume interactions between particles [117]. For
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spherical particles with diameter σ , the potential is defined as

UHS(r) =





∞ r < σ

0 r ≥ σ
. (3.1)

If the distance between particles r is less than or equal to the particle diameter σ , the
potential is infinite, and zero otherwise. The hard-sphere potential is depicted in Fig. 3.1a.
Although many condensed systems involve particles with some interactions, such as van der
Waals, bonded, electrostatic, depletion interactions, etc., hard spheres are often used as a
minimal model for condensed systems, and, in many cases, capture a large amount of the
relevant behavior [118] (see section 2.2). Because the hard-sphere potential is discontinuous,
it is typically implemented in Monte-Carlo simulations rather than molecular dynamics
simulations (see section 4.1.2).

Lennard-Jones Potential

The Lennard-Jones (LJ) potential accounts for both excluded-volume interactions and
van der Waals attractions between particles [117]. The “12-6” form of the potential (see
Figure 3.1) is most common:

ULJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]
. (3.2)

Here, r is the separation between two particles, σ is the particle diameter, ε is the well
depth parameter, which is proportional to the inverse of the temperature 1/kBT . The first
term, proportional to 1/r12, is chosen to give the particles a strong, yet continuous excluded
volume interaction, which is ideal for MD simulations. The second term accounts for the
van der Waals attractive interaction, which is determined theoretically to be proportional to
1/r6. The LJ potential is depicted in Fig. 3.1b.

Weeks-Chandler-Andersen Potential

In many cases, we require a soft-sphere potential similar to the LJ potential, but with no attrac-
tive interaction. One way to accomplish this is to simply remove the 1/r6 term from the LJ
potential. Another common soft-sphere potential is given by the Weeks-Chandler-Andersen
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Figure 3.1 Condensed matter pair potentials. (a) The hard sphere (HS) potential. (b) The
Lennard-Jones (LJ) potential. (c) The Weeks-Chandler-Andersen (WCA) potential.

(WCA) potential [118]:

UWCA(r) =





ULJ(r)−ULJ(r = 21/6σ) r ≤ 21/6σ

0 otherwise.
(3.3)

The WCA potential is a truncated and shifted instance of the LJ potential, where the potential
is cutoff at the minimum of the LJ potential, 21/6σ . The WCA potential is depicted in
Fig. 3.1c.

30



3.2 Metastable Ordered Solids

As mentioned previously, one of our primary goals in this body of work is to investigate
the formation of metastable ordered solids. The models mentioned above are sufficient for
observing crystallization in supercooled liquids, and have been used in many studies of
nucleation and growth [57, 62]. However, these models tend to form thermodynamically
stable crystals from the melt. To begin to formulate a model for forming metastable crystal
structures, recall that from section 2.3 that metastable ordered solids arise when a particular
crystal structure has a lower free energy barrier to nucleation than the stable crystal. The
relative size of the nucleation barrier for different structures is dictated by the interfacial
tension between the liquid and solid phases, which arises due to a structural mismatch
between the phases. As outlined in section 2.2, the liquid structure in the 3d systems of
model spheres reviewed above is typically icosahedral, whereas the solid-phase structure is
close-packed, giving rise to a high interfacial tension. In some cases, specific interaction
potentials can be designed to stabilize solid phases that retain some icosahedral character in
the solid phase [119,120]. Since these solid phases are structurally similar to the icosahedral
liquid, they are good targets for forming metastable states. In this section, we review a
particular class of solid structures with icosahedral local ordering known as Frank-Kasper
(FK) structures [121, 47], which will serve as the basis for our studies of metastable solid
phases.

3.2.1 Frank-Kasper Phases: Formation

To understand FK structures, recall from section 2.2.1 the process that occurs when we cool
a liquid composed of 3d spherical particles. The liquid structure can be understood in terms
of local deviations from ideal icosahedral ordering [44] (Fig. 3.2a). As the liquid is cooled,
these defects disappear, but, due to packing constraints some defects inevitably remain, even
at low temperatures. As a result, the liquid consists of a mixture of icosahedra and other de-
fective coordination shells known as FK polyhedra (Fig. 3.2b). The stability of the different
FK polyhedra can be rationalized in terms of minimizing defects [44, 47]. The icosahedron
is the optimal coordination shell, since icosahedra contain no defects. The second most
stable coordination shell is the Z14 configuration, which contains two relatively favorable
six-fold defects. The third most stable packing is the Z15 configuration, which contains three
six-fold defects. The fourth most stable packing is the Z13 configuration, which contains
two six-fold defects and one unfavorable four-fold defects. Other configurations containing
more defects, and higher-order three-fold or seven-fold defects, are also possible at high
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Figure 3.2 Frank-Kasper polyhedra [44, 47]. (a) Depiction of “disclination defects [47].” The
pentagonal dipyramid is the ideal structure. The 6-fold defect is favored over the 4-fold defect. (b)
Depiction of FK polyhedra with coordination number Z, which form the coordination shell of a
particle at the center of the polyhedron. Neighboring particles sit at the vertexes. The defect network
corresponding to each shell is depicted below.

temperatures (see Fig. 3.3a), but are very improbable at lower temperatures [47].
Even at zero temperature, 3d polytetrahedral systems inherently contain a positive num-

ber of defects since icosahedra can not tile space. A given system can minimize these defects
by arranging FK coordination shells into an ordered crystal [121]. These systems minimize
energy by (1) ensuring that all defects are of the relatively favorable sixfold variety and (2)
arranging defects into an ordered network [47]. In order for the system to arrange defects
into an ordered network, the particles themselves must arrange into an ordered structure. The
defect network may exhibit either periodic or random connectivity. In the case that the defect
network is periodic, the resulting FK crystal is periodic as well. In the case that the defects
form a network with random connectivity, the system forms a quasicrystal [122,123,119],
an ordered solid with long-range orientational ordering, but no translational symmetry. The
formation of a defect network for a quasicrystalline FK structure is depicted in Fig. 3.3b.
The network is layered such that when viewed from the depicted angle, the defects form
stacks into the page. The nodes at which 3 defects meet are Z15 coordination shells. The
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Figure 3.3 Disclination defects [44, 47] in a system forming an FK quasicrystal. In the liquid,
many defects are present. Defects are colored based on their type (3-fold = yellow, 4-fold = red
6-fold = blue, 7-fold = green). After the system transforms to an ordered solid, the mostly 6-fold
defects remain. These defects form an ordered network with random connectivity, which corresponds
to a 12-fold quasicrystalline real-space structure.

nodes that appear as dots (pointing out of the page) are Z14 configurations. Notice that
almost all defects are the 6-fold variety. Other 4-fold defects occur, but only due to thermal
fluctuations – many ideal FK crystals do not contain any 4-fold defects.

3.2.2 Frank-Kasper Phases: Structure

Many different types of crystals can result from these ordered defect networks. The struc-
tures can be characterized by connecting columns of Z14 particles, which appear as dots in
Fig. 3.3b, since they are lines perpendicular to the plane. In the real-space structure, these
dots correspond to the centers of the Z14 atoms, which look like 12-fold rings when viewed
into the plane. Connecting the rings gives a tiling pattern that can be used to interpret the
long range structure of the system. Fig. 3.4a shows the tiling pattern for a dodecagonal
quasicrystal. There are several different types of tiles that can form in the system [52], as
depicted in Fig. 3.4b. FK structures with periodic arrangements of these tiles are known
as “periodic approximants” of the quasicrystal. Some simple approximants are shown in
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Figure 3.4 FK phases. (a) A dodecagonal quasicrystal [119] FK structure shown with (right) and
without (left) tiles. The tiles are formed by connecting the centers of the 12-member “rings” of
particles, which are in the Z14 configuration. (b) Valid tiles for FK structures [52]. The particles at
the centers of the 12-member rings are colored blue. (c) Quasicrystal approximants. Approximants
are simple FK crystals with periodic arrangements of the tiles. The three most simple approximants,
the A15, Z, and σ structures, are shown along with their vertex configuration, and space group.
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Figure 3.5 Dzutugutov (DZ) potential [127]. The potential is plotted along with the LJ and WCA
potentials for comparison.

Fig. 3.4c. The tilings for these structures correspond to Archimedean tilings [124, 32],
simple tilings with a single vertex configuration. Archimedean tilings have been observed in
many other systems [124, 125], and are the focus of perspective article that we review in
Appendix A.

Since quasicrystals and approximants are identical locally, they often exhibit many
similar physical, chemical, and optical properties [126]. In practice, quasicrystals and
approximants often form under the same conditions and whether one obtains a quasicrystal
or approximant may depend on minor differences in the preparation method, such as the
cooling rate [126, 123]. Quasicrystals and approximants differ only in their long range
rotational symmetry, where quasicrystals takes on forbidden crystallographic symmetries
such as 8-fold, 10-fold, or 12-fold (as is the case for the dodecagonal quasicrystal that we
have described above). In Chapter 5, we investigate the difference in the growth mechanism
that causes systems to form quasicrystals versus approximants.

3.2.3 Dzugutov Potential

We can use simple model pair potentials to study FK crystals and quasicrystals in molecular
simulations. One simple pair potential that is known to produce FK crystals is the Dzugutov
potential [127,52]. The Dzugutov potential is similar to the standard LJ potential, except
that it includes an additional repulsive interaction centered at ∼ 1.628σ (see Fig. 3.5). By
design, the repulsion coincides with the interatomic spacing for fcc, hcp, and bcc crystals,
thus increasing the energy for these structures and hindering their formation [52]. As a result
the system does not form these crystals, but rather forms FK crystals and quasicrystals at
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many statepoints [119, 52]. In addition to modeling FK phases, the Dzugutov potential has
been successfully applied to modeling metallic liquids [127,119,128,129,70]. Thus, this
simple potential provides a relatively realistic model system in which to study the formation
of a metastable solid phase.

The Dzugutov potential is given by [127]:

UDZ(r) = A
(
r−m −B

)
exp
(

c
r−a

)
θ (a− r)+Bexp

(
d

r−b

)
θ (b− r) . (3.4)

Here, Θ is the Heaviside step function, given by:

θ (x) =





1 x ≥ 0

0 otherwise
. (3.5)

The standard form of the Dzugutov potential is implemented using A = 5.82, B = 1.280,
a = 1.87, b = 1.94, c = 1.10, d = 0.27, and m = 16. Other variations of similar poten-
tials are also known to form FK structures and quasicrystals [130, 131]. For example,
reference [131] reported the formation of dodecagonal quasicrystal approximants in the
Lennard-Jones Gauss system, which is similar to the DZ system, but with purely attractive
particle interactions for r > σ .

3.2.4 Other Models

In addition to the Dzugutov potential, we explore other models that can be used to form
FK crystals and quasicrystals. These include models with more complex particle shapes
and functionality, which are specifically applicable to colloidal and nanoscale systems. A
detailed study of these models is provided in Chapter 5.

3.3 Glassy Liquids

As mentioned in section 3.1 above, several simple pair potentials can be used to model
supercooled liquids. Historically, many studies of supercooled liquids have been based on
these models [132,47,57,62]. However, systems such as the HS, LJ, and WCA systems have
the drawback that they eventually crystallize, making it impossible to study the dynamics of
these systems at high degrees of supercooling.

One solution to this problem is to introduce size polydispersity into the system, which
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Figure 3.6 Binary mixture models of glassy liquids. (a) The KA system [133]. (b) The Wahnström
system [134]. (c) The Harowell 2d soft sphere system [135].
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frustrates crystalline packing and increases the nucleation barrier [61]. A simple way to
introduce this type of polydispersity into a system is to consider binary mixtures consisting
of two different particle sizes [133,134]. This is computationally simpler to implement than,
say, systems with continuous polydispersity [61], where particle diameters are taken from
a normal distribution; in the binary case, there are only three different pair interactions to
define, for AA, AB, and BB pairs. One common binary system is given by the Kob-Andersen
(KA) binary LJ system [133], shown in Fig. 3.6a. The parameters for the KA system are
shown in the table below. Notice that this potential includes a non-geometric mixing rule
for particle diameters (that is, 1

2(σAA + σBB) $= σAB). A similar binary LJ model with a
geometric diameter mixing rule is given by the Wahnström system [134]. Notice that this
system includes two different particle masses. According to WCA theory, the attractive
portion of the LJ potential has little bearing on the overall behavior of the system [118];
thus we often construct WCA versions of these LJ systems by cutting off and shifting each
potential at 21/6σ . This saves computational effort, since it requires fewer force calculations
(see section 4.1.4). We study the KA and Wahnstrom systems, as well as their WCA coun-
terparts in the context of drawing connections between fully atomistic liquids and kinetically
constrained models in Chapter 6

d fA σAA σAB σBB εAA εAB εBB mA mB

KA [133] 3 0.8 1.0 0.8 0.88 1.0 1.5 0.5 1.0 1.0
Wahnström [134] 3 0.5 1.0 11/6 5/6 1.0 1.0 1.0 2.0 1.0

A similar method can be applied to study glassy dynamics in 2d systems, where monodis-
perse systems of disks easily form hexagonal crystals (see section 2.2.1). Binary mixtures
are often studied with particle diameter ratios 1.4:1 [136, 135, 137, 31] (see Fig. 3.6c). This
prevents the particles from forming equilateral triangles locally, and thus prevents hexagonal
ordering from persisting over long ranges. In these systems, the minimum free energy state
is typically a phase-separated structure consisting of two pure-component hexagonal crystals
with an interfacial layer between. However, the free energy barrier for forming such phases
is often sufficiently high that the system remains metastable over long timescales. The liquid
is characterized by short ranged hexagonal order, where particles form as many locally
favorable hexagonal configurations as possible [138,139]. As long as the system remains
well-mixed, larger clusters will become frustrated and tend to shrink. We explore this type
of system in the context of a granular system of air-driven ball-bearings in Chapter 6.
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Chapter 4

Methodology

Throughout this work, we use a broad range of molecular simulation and data analysis
techniques. In this chapter, we review the methodology that we will employ. We first
review the basic principles of molecular dynamics [117] (MD) and Monte-Carlo (MC)
simulations [140]. We then provide an overview of some more specialized techniques used
to study rare, activated events. Examples of rare events that we are interested in include
nucleation and growth, and particle diffusion in glassy liquids. Understanding transitions
often requires that we analyze the structure and dynamics of particle systems. Thus, we
review some standard analysis techniques used to characterize structure and dynamics in
standard condensed systems. In many cases, these techniques are too simplified for treat-
ing the complex structures encountered in studies of self-assembly; thus, we return to the
problem of characterizing structural transitions for these complex systems in Chapter 7.

4.1 Molecular Simulations

For the purposes of this study, we employ both molecular dynamics (MD) and Monte-Carlo
(MC) simulations [117, 140]. These methods represent the fundamental basis from which
more specialized molecular simulation techniques are often derived. In this section, we
review the basic principles of MD and MC simulations.

4.1.1 Molecular Dynamics

MD is an intuitive approach to simulating systems of particles. Here, particles in a computer
simulation interact according to the laws of Newtonian physics, and therefore inherently
adhere to the laws of statistical mechanics. A rudimentary MD simulation involves cal-
culating the instantaneous forces on each particle in the simulation cell according to and
then applying Newton’s equations of motion to predict the future state of the system [117].
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The force on each particle i can be computed from fi = −!∇Ei, where !∇Ei is, for example,
obtained by differentiating a pair potential defined in the previous chapter:

fi = !∇Ei =
N

∑
j=1

δU
δ r

(|xi −x j|). (4.1)

Integrating the system forward in time involves applying a numerical approximation, since
it is not feasible to solve the system of differential equations that describe the mechanics of
the many-body system analytically. The equations of motion are integrated by choosing a
discrete timestep as an integration variable and stepping piecewise throughout time. One
common numerical integration scheme is given by the Velocity-Verlet algorithm [140]:

x(t +∆t) = x(t)+v(t)∆t +
1
2

a(t)(∆t)2,

v(t +∆t) = v(t)+
1
2
[a(t)+a(t +∆t)]∆t. (4.2)

Notice that the accelerations a are computed by f/m. The Velocity-Verlet scheme uses the
average of the force at two different times to update the velocities and is more stable than,
say, standard Euler integration [140]. The pseudocode for a rudimentary MD algorithm
using a pair potential and the Velocity-Verlet integrator is given below:

//algorithm for NVE molecular dynamics:

//initialize variables:

set x = init_particle_positions()

set v = init_particle_velocities()

set m = init_particle_masses()

set dt = init_integration_timestep()

//initialize forces:

for i in num_particles

set f(i) = 0.0

for j in num_particles

if (i != j)

set f(i) += compute_fpair(i, j)

end if

end for

end for

//do timesteps:

for t in num_timesteps

for i in num_particles

set x(i) = x(i) + v(i)*dt + 0.5*f(i)/m(i)*dtˆ2

set vhalf(i) = v(i) + 0.5*f(i)/m(i)*dt

end for

for i in num_particles

set f(i) = 0.0

for j in num_particles
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if (i != j)

set f(i) += compute_fpair(i, j)

end if

end for

end for

for i in num_particles

set v(i) = vhalf(i) + 0.5*f(i)/m(i)*dt

end for

end for

The former MD algorithm samples the microcanonical (NVE) ensemble, where the number
of particles (N), the volume (V) and the total energy (E), determined by the sum of the
initial kinetic and potential energy of the particles, are all conserved. The algorithm requires
additional steps to sample different ensembles, such as the canonical (NVT) and isothermal-
isobaric (NPT) ensembles; however, we postpone this discussion until section 4.1.3.

4.1.2 Monte-Carlo Methods

An altogether different approach to simulating particle systems is given by the MC method,
which is based on applying the laws of statistical mechanics directly to sample statistical
ensembles [140]. This contrasts with MD, which assumes that the laws of Newtonian
physics hold and satisfies the laws of statistical mechanics as a natural outcome. In contrast,
MC schemes involve generating configurations at random and then accepting or rejecting
them with a weight that is proportional to an underlying statistical distribution function.
For example, we know from the Boltzmann distribution law [14] that the probability of
observing a microstate ν in the canonical (NVT) ensemble Pν = exp(−βEν)/Z, where β
is the inverse temperature and Z is the partition function Z = ∑i exp(−βEi). Thus, we can
formulate a naive MC algorithm by randomly generating configurations ν , measuring their
energy Eν and accepting them into our simulated NVT ensemble with a weight proportional
to Pν :

hν =





1 if Pν/PEν > R[0,1]

0 otherwise.
(4.3)

Here, hν is a binary number indicating whether ν is accepted into our ensemble and PEν is
the probability of generating a configuration with energy Eν at random. In this sense, MC is
not a “simulation” method, but rather a numerical sampling scheme.

The naive MC algorithm described above is not applicable in practice, since we can
not enumerate the partition function Z for any non-trivial system. (Notice that if we could
enumerate Z, this would, in many cases, preclude running a simulation in the first place).
An elegant solution to this problem is to reformulate our sampling criterion as a ratio of
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probabilities, thus eliminating Z. The relative probability of observing two microstates νi

and ν j in our ensemble is

P(νi)
P(ν j)

=
exp(−βEνi)
exp(−βEν j)

= exp[−β (Eνi −Eν j)] (4.4)

Therefore, if we start with a microstate νi and make a small perturbation such that
we generate a new microstate ν j, the probability of accepting this change is given by
P(νi → ν j) = exp[−β (Eν j −Eνi)]. In practice, this can be implemented by drawing a
random number R and accepting the move if

R[0,1] < min{1,exp [−β (Eν j −Eνi)]}. (4.5)

For our algorithm to obey detailed balance, we should perturb our microstates consistently,
such that PνiP(νi → ν j) = Pν jP(ν j → νi). This scheme is known as the Metroplis MC
(MMC) algorithm [140]. A short pseudocode for the MMC algorithm is given below.

//algorithm for Metroplis Monte Carlo (particle translations only):

set x = init_particle_positions()

set dx_max = init_max_perturbation()

for t in num_mmc_steps

for i in num_particles

set x_old = x(i)

set e_old = 0.0

//compute old energy

for j in num_particles

if (i != j)

set e_old += compute_epair(i, j)

end if

end for

//perturb particle position

x(i) += rand(-1, 1)*dx_max

//compute new energy

set e_new = 0.0

for j in num_particles

if (i != j)

set e_new += compute_epair(i, j)

end if

end for

//apply MMC acceptance criterion

if (rand(0,1) < exp(-beta*(e_new - e_old))

set x(i) = x_old

end if

end for
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Notice that whereas MD involves generating a series of configurations that are sequential in
time, MC involves generating random configurations that are non-sequential. Thus MC is
not typically applied to studying particle dynamics, although it is possible in some cases, if
proper care is taken [141], or hybrid methods are employed [142]. Aside from this difference,
the two methods yield a very comparable level of information.

4.1.3 MD and MC in Various Ensembles

When studying liquids and solids, we are typically interested in simulating the NVT or NPT
ensembles. The modifications that must be made to the schemes outlined above in order to
to simulate these ensembles are covered elsewhere [140, 143]; therefore, we will not repeat
them here. However, when using these methods, it is useful to have a basic mathematical
insight into how they are implemented, either for the sake of troubleshooting, or for invent-
ing new methods. Methods for extending MD and MMC to other ensembles, in general,
fall into one of two categories: (1) methods based on fictitious Newtonian mechanics and
(2) methods based on stochastic processes. These are the mathematical tools underlying
conventional MD and MC, respectively.

Schemes based on fictitious Newtonian dynamics involve associating fictitious New-
tonian variables (positions, velocities, masses and driving forces) with abstract objects
in the system. Examples of such abstractions include thermostast or barostats that are
coupled to measurable variables in the system, such as the temperature or pressure. Ficti-
tious Newtonian variables need not represent physical objects like particles; rather they are
purely mathematical abstractions with no physical analogue. In the context of a computer
algorithm, it makes little difference whether the variables can be mapped to physical objects
or not; in this sense Newtonian dynamics is simply a numerical sampling scheme. Since
the underlying Hamiltonian for such a system contains particles, as well as other (abstract)
objects, these methods are often called “extended system methods.”

One classical example of this type of scheme is the Nose-Hoover thermostat [144],
which rescales the particle velocities based on the thermostat position so that the system
strictly samples the NVT ensemble. When the measured temperature deviates from the
thermostat setting, this introduces a driving force that changes the thermostat position, which
in turn determines how the velocities will be rescaled. An analogous method is given by the
NPT MD scheme of Andersen-Hoover [145]. In this case, a fictitious “barostat” is coupled
to the system pressure, which is adjusted by rescaling the simulation cell. Several other
examples of schemes based on Newtonian dynamics are present throughout the literature.
One famous example is given by the Car-Parinello MD (CPMD) scheme for simulating
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quantum systems [146]. In this case, the fictitious Newtonian variables are coupled to the
error in solving for the instantaneous electronic force field via density functional theory,
which is then used to integrate the equations of motion in MD. With all of these schemes, the
main adjustable parameter is the mass of the fictitious objects; if the objects are too “light”
they will react too quickly to deviations between the ideal and measured coupled variable.
If they are too “heavy,” they will react too slowly and exhibit lag. In either situation, this
can cause erroneous sampling of the statistical ensemble; thus care must be taken to tune
the parameters such that the desired ensemble is produced [140].

An alternative method for sampling non-standard statistical ensembles is to apply stochas-
tic processes to the system to mimic the effect of a thermodynamic variable. For example,
the NVT MD scheme of Andersen involves simulating random collisions with a heat bath
by drawing velocities from the expected Gaussian distribution and assigning them to par-
ticles at random [140]. Similar schemes have been used in more specialized cases; for
example, reference [147] uses a stochastic collision scheme to control temperature and
pressure in a non-periodic system with a finite crystal grain. In MMC simulations, alternate
ensembles can be sampled by modifying the Hamiltonian used for accepting trial moves
(i.e., although we used H = Eν for the NVT ensemble, other H can be used). Several
other types of reversible trial moves can be attempted in analogy with trial particle moves
in conventional NVT MMC to sample ensembles of microstates that correspond to these
underlying Hamiltonians. For example, to sample the NPT ensemble, trial simulation cell
expansion/compression moves are attempted to constrain the average system pressure to a
set value [140].

4.1.4 Optimizing Simulations

The pseudo codes for MD and MC simulations given above make no assumptions about
the form of the intermolecular force-field, other than that it is pairwise additive. However,
for the systems that we will consider in our studies here, we can safely assume that the
force-fields are short-ranged (see section 3.1). That is, particles only interact with their
neighbors within a short cutoff range; all other interactions can be ignored. Constraining
our potentials to short-range interactions allows us to significantly optimize the force and
energy calculations for MC and MD simulations. Consider the problem of computing the
energy for a particle i:

//algorithm for computing energies or forces using O(Nˆ2) calculation:

set e_i = 0.0

for j in num_particles

if (i != j)
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set e_i += compute_epair(i, j)

end if

end for

This computation scales with the number of particles N; thus performing the same computa-
tion for all N particles is of the order O(N2). For a short ranged potential, we can grid space
into a “cell list [117].” We can then constrain our potential calculation to particles in nearby
cells:

//algorithm for computing energies using a cell list:

set e_i = 0.0

set cell_i = get_cell_containing_particle(i)

for cell_j in get_neighbors_of(cell_i)

for j in get_particle_list(cell_j)

set e_i += compute_epair(i, j)

end if

end for

In this algorithm, we include each cell in its own list of neighboring cells such that pair
interactions are computed for particles within the same cell as well as neighboring cells. In
practice, the cell size can be adjusted for computational speed. A smaller cell size results in
fewer pair calculations outside of the interaction range, since the range of positions that a
particle can occupy is narrower in a small cell than for a larger cell. Additionally, smaller
cells are advantageous in that the neighboring cells more closely represent the spherical
shape of the interaction range than do larger cells. However, if the cell size is small and the
number of cells is large, the list of neighboring cells within the interaction range for each
cell will be also large. This results in large overhead for retrieving neighboring particles
from cells. Thus, the optimal size for a given system must be tested via trial and error.

For MD simulations involving condensed systems, particles typically do not move very
far over a given timestep. Therefore, the list of particles that a given particle interacts with
changes little as well. In many cases, MD simulations can be greatly optimized by periodi-
cally constructing a “Verlet list” (also called a “neighbor list”) so that, for a given particle,
the same neighbors are looped over to compute the forces for several timesteps [117]:

//algorithm for computing forces using a neighbor list:

for t in num_timesteps

...

for i in num_particles

set r = distance(x(i), x0(i))

if r > r_cut + r_buff

call rebuildnlist(nlist)

set x0 = x

end if

end for

for i in num_particles
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set f(i) = 0.0

for j in nlist(i)

set f(i) += compute_fpair(i, j)

end for

end for

...

end for

Building a neighbor list involves constructing a list of all particles within a range rcut +rbu f f ,
where rbu f f is a small buffer. In many cases, the process of building the neighbor list may be
optimized by using a cell list to compute the distances. The neighbor list can be reused until
a particle has moved far enough to exceed the buffer; at this point the list must be rebuilt.
The choice of the buffer can be optimized for computational speed; a buffer that is too small
will require frequent rebuilds, whereas a buffer than is too large will result in extra force
computations.

In addition to using optimized software algorithms such as cell lists and neighbor
lists, another method is to optimize codes for the particular hardware that code runs on.
MD simulations with pair forces are highly data-parallel; that is each MD timestep can
easily be broken down into several smaller computations that can be carried out simultane-
ously [148, 149]. One method for parallelizing MD simulations is to split the neighbor list,
force, and integration computations over several CPUs. For example, the LAMMPS MD
package uses a powerful spatial decomposition algorithm to achieve excellent scaling with
the number of CPUs, even for very large systems [148]. MD simulations with system sizes
N on the order ∼ 1×105 to ∼ 1×107 can be greatly optimized by running simulations of
graphics processing units (GPUs) [149]. In this case, the simulation code launches thousands
of threads, each of which handle computations for only a few particles. Since particles are
independent of one another when computing the force or integrating the equations of motion,
MD lends itself to this type of algorithm and speedups on the order of 2 orders of magnitude
can be achieved. In our study of glassy dynamics in Chapter 6, we use the HOOMD-blue
code to run fast MD simulations on the GPU.

4.2 Potential Energy Minimization

In many instances during our study, we require a method for creating potential-energy-
minimized configurations, both for the purpose of making connections with the PEL (see
section 2.4.2), and also for removing thermal noise from systems in the context of data
analysis schemes. The basic goal of energy minimization is to quickly move the system to
the nearest basin of attraction in the PEL (i.e., the nearest local potential energy minimum).
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By definition, energy-minimization can be accomplished trivially by instantaneously setting
the temperature in an MC or MD simulation to ∼ T = 0 and performing simulation steps
until the energy converges. (Note that for an MD simulation, T must remain slightly above
zero; otherwise the particles will never move). While this method is straightforward, in
practice, it is also computationally expensive. Thus, several standard methods have been
developed to obtain fast convergence to local potential energy minima, including, for exam-
ple, the conjugate gradient and steepest descent methods [150]. For our studies, we use an
alternate method that utilizes an existing MD integrator for quickly converging to an energy
minimum [151].

The equations of motion for the FIRE energy minimization scheme are given by [151]:

a(t) = f(t)/m− γ(t)|v(t)|[v̂(t)− f̂(t)]. (4.6)

Here, the hat denotes a unit vector. The second term has the effect of steering the velocity
vector of the system in the direction of the force vector. The function γ(t) is scaled up along
with the timestep as long as v(t) · f(t) ≥ 0. However, if v(t) · f(t) < 0, γ(t) and the timestep
are reset and the velocity is set to zero. Physically, this means that so long as the velocity of
the system is in the direction of the force (i.e., the system is moving downhill), the system is
integrated along this direction with larger and larger steps. If the velocity is in the opposite
direction of the force (i.e., the system is moving uphill), the system is stopped by setting the
velocities to zero. The system, now at rest, is pulled along a new direction, and the process
starts again. The FIRE algorithm is presented in detail in reference [151].

4.3 Free Energy Calculations

In the thermodynamic limit, physical systems assume a minimum free energy state. Thus,
knowing the minimum free energy state is important, since it tells us whether a given
structure is thermodynamically stable or metastable. The free energy cannot be computed
directly as an ensemble average as can the internal energy or kinetic energy. Thus, special-
ized techniques must be employed. In this section, we review some standard methods for
computing free energies. Since the realm of free energy calculations is rather expansive,
we narrow our focus to the methods that we use to obtain results for the work presented in
Chapters 5.
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4.3.1 Thermodynamic Integration and Free Energy Perturbation

The free energy difference between two systems A and B is given by the work required to
change system A to system B [152]:

W = ∆F ≡ FA −FB. (4.7)

The change can be a change in pressure, volume, particle interactions, etc. Equation 4.7
assumes that the change is made infinitely slowly (i.e., it is a reversible thermodyanmic
process). If the system is changed at a finite rate, work is dissipated during the irreversible
process and the relation becomes [152]:

W ≥ ∆F. (4.8)

The overline denotes an ensemble average over all initial states in A. Jarsynski showed that
the free energy can be expressed in terms of a path ensemble average [152, 153]:

∆F = − 1
β

lne−βW . (4.9)

Here, the work for each realization of the path z from A to B is given by:

W =
∫ ts

0

δHλ
δλ

[(z(t)]λ̇dt. (4.10)

Here, λ̇ is the switching rate with units t−1
s and z(t) is a trajectory (i.e., a series of contiguous

microstates). Therefore, the free energy measurement involves computing the average work
for an ensemble of paths of length ts where we modify the switching parameter λ . When λ
is 0, the system is in state A, and when λ is 1, the system is in state B. Notice that these
paths can be highly non-equilibrium.

Now, consider what happens in the limit of the switching time ts [152]. For infinitely
slow switching (i.e., a quasi-static process), the equation becomes:

∆F =
∫ 1

0

〈δHλ
δλ

〉

λ
dλ . (4.11)

This is the famous Kirkwood equation [154], which is the basis for the thermodynamic
integration (TI) method. The equation involves computing the free energy as an ensemble
average of the derivative of the Hamiltonian with respect to the coupling parameter. In
practice, this involves running several simulations with different values of coupling param-
eter λ and numerically integrating the expression in equation 4.11. Notice that this is a
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more general form of the standard thermodynamic integration used by experimentalists to
measure ∆F from the EOS variables [140].

In the limit of infinitely fast switching time, the equation becomes:

∆F = − 1
β

ln〈e−β∆H〉0. (4.12)

In other words, the work is proportional to the difference in the Hamiltonian for state A
and state B evaluated at the initial point t = 0 (i.e., when the system is in state A). This
method is known as free energy perturbation (FEP) [155]. In practice, the states A and B
must by sufficiently close that the difference (and hence the error) is small. As a result, FEP
is typically carried out in several windows. Since the windows are independent, FEP is well
suited for an “embarrassingly parallel” computational scheme, where several completely
independent simulations are run on different processors.

When using any of the three methods above, we must parameterize the system as a
function of the switching variable λ . That is, we must modify the Hamiltonian of the
system such that for λ = 0, the system is in state A, and for λ = 1, the system is in state B.
Several examples of this are given in Chapter 5 in the context of computing free energies for
dimer-sphere mixtures.

4.3.2 Umbrella Sampling

As mentioned above in the context of the FEP method, we can obtain the free energy
difference between two states 1 and 0 by computing ∆U based on configurations sampled in
state 0:

exp(−β∆F) = 〈exp(−β∆U)〉0 . (4.13)

This equation is not applicable if 1 and 0 are too dissimilar, such that the average is domi-
nated by a few very large values of ∆U . One solution to this problem is given by the umbrella
sampling method of Torrie and Valleau [156], which involves rewriting equation 4.13 as:

〈exp(−β∆U)〉0 =
〈exp(−βU1)/π〉π
〈exp(−βU0)/π〉π

. (4.14)

Here, π is a weighting function that determines the probability at which points are sampled
in phase space. In practice, the weight function is adjusted such that there is sufficient
overlap between regions 1 and 0. Often, the free energy calculation is carried out in several
stages or windows, such that there is always sufficient overlap between neighboring windows
in phase space [140]. We apply a unique umbrella sampling scheme, originally formulated
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by Frenkel and coworkers [57, 62], to measure the free energy of a growing quasicrystalline
nucleus as a function of its size in Chapter 5.

4.4 Methods for Characterizing Rare Events

In many cases, transitions are dominated by “rare events.” Rare events are activated pro-
cesses, which require that the system overcome a free energy barrier to transform from
an initial state A to a final state B. In the context of our studies, some examples of rare
events include the formation of a critical nucleus in homogeneous nucleation and local struc-
tural transitions in glassy supercooled liquids. Other standard examples include chemical
reactions and conformal changes in macromolecules [157, 158]. Rare events are fluctuation-
driven; therefore the average waiting time between events may be orders of magnitude
longer than the timescale of the event itself. Conventional brute force molecular simulation
is therefore not an acceptable tool for studying rare events, since most of the computational
effort is dedicated to simulating the long waiting time between events.

MD simulations to calculate the rates of rare events were first carried out by Bennett in
the context of diffusion in solids [159]. Chandler generalized and extended this method to
the calculation of reaction rates [160]. Today, the most commonly used scheme to simulate
rare events is known as the Bennett-Chandler method, which involves the calculation of
the free energy along a pre-defined reaction coordinate [140]. A reaction coordinate is a
generalized one-dimensional coordinate that represents progress along a reaction pathway,
i.e. a path in phase space from the initial (reactant) to final (product) state. Sampling is
typically implemented via a biasing scheme such as constrained dynamics, multicanonical,
or umbrella sampling methods that preferentially sample regions of phase space important
to the transition [140]. Using the Bennett-Chandler method, it is possible to calculate the
reaction rate provided that the transition state (the configuration(s) at the top of the free
energy barrier) can be determined. The primary disadvantage to using the Bennett-Chandler
method for certain problems is that it requires an a priori definition of the reaction coordinate.
For complex systems, such as the nucleation of a quasicrystal from the liquid state, the
reaction coordinate may be a complicated multidimensional surface, and a poor choice for a
reaction coordinate can lead to an inefficient or incorrect rate-constant calculation.

Chandler and coworkers have since developed Transition Path Sampling (TPS) [60], a
scheme for simulating rare events that does not require the definition of a reaction coordi-
nate. TPS is actually a straightforward MMC algorithm; however, whereas a typical MC
simulation involves the perturbation of initial particle positions to converge to an equilibrium
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ensemble of configurations, TPS involves the perturbation of an initial transition pathway
(i.e., a series of phase space configurations that connects A and B) to converge to an equilib-
rium ensemble of transition pathways (the Transition Path Ensemble (TPE)). A perturbation
may be, e.g., a change in momenta for deterministic trajectories generated with molecular
dynamics (MD), or a change in the random number seed for stochastic trajectories generated
via MC. The equilibrium probability distribution of a path within the TPE is given by:

P[x(τ)] =
hA(x0)hB(xτ)

ZAB(τ)
ρ(x0)

τ/∆t−1

∏
i=0

p(xi∆t → x(i+1).∆t) (4.15)

Here, τ is the path length, ∆t is the discretization step, ρ(x0) is the probability density of an
initial point on the path, ZAB is a transition path partition function. The binary functions hA

and hB ensure that the paths satisfy the constraint of beginning in state A and ending in state
B. We apply a novel TPS scheme for studying rare structural transitions in glassy liquids in
Chapter 6.

4.5 Characterizing Structure

As outlined in chapter 2, there is a fundamental connection between particle packing and
thermodynamics. In many cases, particle structure is also related to physical, chemical and
optical properties of the system as well. Thus, it is natural to gain insight into the stability
and properties of condensed systems by characterizing the structural patterns that they
form. In this section, we review some standard structural measurements used to characterize
liquids and solids. In chapter 7, we introduce more advanced structural characterization
techniques.

4.5.1 Radial Distribution Function

Perhaps the most standard measure of structure in condensed systems is the radial distribution
function g(r):

g(r) =
V
N2

〈
N

∑
i

N

∑
j $=i

δ (r− ri + r j)

〉
. (4.16)

Physically, g(r) measures the probability of observing a particle at a radial distance r away
from a particle at the origin relative to the analogous probability in an ideal gas of the
same density. If particular particle spacings are more probable than others, g(r) will exhibit
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Figure 4.1 The radial distribution function (RDF). (a) RDF for a gas-like fluid. (b) RDF for a
dense liquid. (c) RDF for a crystal.

maxima. Thus, g(r) is a measure of translational ordering. For isotropic systems, such as
liquids and gasses, all spatial directions are equivalent and we often measure an isotropic
g(r) with scalar r in the place of vector r:

g(r) =
V
N2

〈
N

∑
i

N

∑
j $=i

δ (r−|ri − r j|)
〉

. (4.17)

Examples of the isotropic g(r) function for a gas, a liquid, and a crystal formed in the
monatomic LJ system are shown in Fig. 4.1a,b and c, respectively. Notice that, by definition,
for an ideal gas, g(r) = 1. A pseudo code for computing g(r) is given below:

//algorithm for computing g(r)

//1. compute probability of r:

for i in N

for j in N

set r = distance(x(i), x(j))

//give weight of 2, since we are looping over pairs

set rbin = numbins*floor(r/rmax)

set hist(rbin) = radial_hist(rbin) + 1

end for

end for
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//2: normalize the rdf

set binsize = rmax / nbins

set delta = binsize / 2.0

if dim == 3

set pre = 4.0/3.0*M_PI

endif

if dim == 2

set pre = M_PI

endif

for i in numbins

set r = (i+0.5)*binsize

set vol_shell = pre*pow(r+delta, dim) - pre*pow(r-delta, dim);

set np_ideal_gas = density*vol_shell;

set normalization(i) = normalization(i) + np_ideal_gas;

set probability(i) = probability(i) + hist(i)/N;

gofr(i) = probability(i)/normalization(i);

end for

There are several subtleties that should be accounted for when computing g(r). First, to
compute an ensemble average over g(r) it makes more sense to compute 〈P(r)〉/〈n(r)〉 than
〈g(r)〉. Also, for systems with periodic boundary conditions, g(r) should be truncated at a
distance Lmax ≤ L/2, since otherwise self-correlations will exist. If the desired range of g(r)
is short relative to the box size, a cell-list can be used to optimize distance computations.

4.5.2 Static Structure Factor

Another structural quantity that is commonly measured for condensed systems is the struc-
ture factor S(q). The structure factor can be considered a mathematical description of how
a system scatters light or subatomic particles. The structure factor is given by the discrete
Fourier transform (DFT) of particle positions x:

S(q) =
1
N

N

∑
j

exp(−iq · r j). (4.18)

The intensity of the signal obtained from scattering is given by the magnitude of S(q):
I(q) ∝ [ℜ(Sq)+ ℑ(S(q)]1/2. The full d-dimensional Fourier space representation of the
system can be analyze directly. One way to simplify the problem is to reduce the dimen-
sionality of the structure factor to 1d, S(q) → S(q), by taking the length of the wavevector
q = |q| = (q2

i +q2
j +q2

k)
1/2. In other words, we take the average intensity for a given shell

of radius q in the full 3d diffraction pattern. This representation is particularly useful for
isotropic structures, such as liquids, since the intensity only depends on |q| (see Fig. 4.3).
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The isotropic structure factor is given by:

S(q) =
1
N

N

∑
j

exp(−iqr j). (4.19)

Fig. 4.2 shows the isotropic structure factor for the KA binary LJ mixture [133] (see
section 3.3. A pseudo code for computing the isotropic structure factor is given below:

//algorithm for computing the isotropic structure factor:

for Li=Limin; Li<=Limax; Li+=Listep

for Lj=Ljmin; Lj<=Ljmax; Lj+=Ljstep

for Lk=Lkmin; Lk<=Lkmax; Lk+=Lkstep

set Scos = 0.0

set Ssin = 0.0

//change from box units to Fourier units (note L is the box period -> 2pi)

set q = 2.0*pi*sqrt(Li*Li*invLx*invLx + Lj*Lj*invLy*invLy + Lk*Lk*invLz*invLz)

for int i=0; i<NA; i++

for j=0; j<NB; j++

set r = distancevec(x(i), x(j))

set temp = (Li*r(0)*invLx + Lj*r(1)*invLy + Lk*r(2)*invLz)*2.0*M_PI

set Scos = Scos + cos(temp)

set Ssin = Ssin + sin(temp)

end for

end for

set S = (Scos*Scos + Ssin*Ssin)/sqrt(NA*NB)

set qbin = floor(q/qmax)*nbins

set Sq_total(qbin) = Sq_total(qbin) + S

set Sq_normalization(qbin) = Sq_normalization(qbin) + 1

end for

end for

end for

return Sq_total/Sq_normalization

Computing the full 3d structure factor and then performing radial binning in Fourier
space can be computationally expensive. An alternative, simpler way of computing the
isotropic structure factor S(q) is to compute the Fourier transform for a range of wave
vectors q and then reweight the transform according to the relative probability of observing
interparticle distance in the system corresponding to each wave vector. The latter quantity is
precisely the information contained in g(r). Specifically, S(q) is related to g(r) by [161]:

S(q)−1 =
4πρ

q

∫ ∞

0
[g(r)−1]r sin(qr)dr (4.20)

And conversely, g(r) is related to S(q) by:

g(r)−1 =
1

2π2ρr

∫ ∞

0
[S(q)−1]qsin(qr)dq (4.21)
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Figure 4.2 Isotropic structure factor for the KA binary LJ liquid [133] for a range of temperatures.

Thus, S(q) and g(r) are Fourier transform pairs. A pseudo-code for computing S(q) from
g(r) given below:

//algorithm for computing the isotropic structure factor using g(r):

for q = qmin; q<=qmax; q += qstep

set sum = 0.0;

for i in gofrnumbins

set r = (i+0.5)*dr

set gofrm1 = gofr[i] - 1.0

set sum += 4.0*M_PI*info.rho*grm1*r*r*sin(q*r)/(q*r)*dr

set s(q) = 1.0 + sum

end for

4.5.3 Diffraction Image

Another useful structural quantity to measure for crystal structures is the simulated diffrac-
tion pattern. The diffraction pattern arises in light scattering experiments where light waves
(often X-rays for atomic systems) with wavelengths comparable to the interatomic spacings
in a crystal are scattered and undergo constructive interference giving rise to maxima or
known as Bragg peaks [162]. We can simulate the diffraction pattern by computing the 2d
discrete Fourier transform (DFT) in a particular plane for system of particles. A simulated
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Figure 4.3 Simulated diffraction patterns. (a) A dodecagonal phase, formed in the Dzugutov
system [127] with N=100,000 at ρ = 0.85. (b) A binary LJ liquid [163] with N=10,000, ρ = 1.0.

diffraction image for an ordered structure is shown in Fig. 4.3a. The pattern exhibits distinct
maxima. A simulated diffraction image for a liquid is shown in Fig. 4.3b. Notice that the
liquid does not exhibit Bragg peaks, since it has no long range ordering.

The diffraction pattern contains several useful pieces of information. First, the pres-
ence of Bragg peaks indicates that the structure is ordered. Second, the symmetry of the
diffraction image reflects the rotational symmetry of the crystal structure. For example,
the diffraction image for the quasicrystal-like structure in Fig. 4.3a has pseudo 12-fold
symmetry, indicating the structure itself has pseudo 12-fold rotational symmetry. (Notice
that the 12-fold symmetry is not perfect, as indicated by slight differences in the diffraction
pattern upon applying a 12-fold rotation, and thus this particular structure is not a true
quasicrystal). The diffraction image is trivial to calculate and a pseudocode is given below:

//algorithm for computing the simulated diffraction image:

set nq = 2*qmax/qstep+1

for i=0; i<N; i++

for ii=0; ii<nq; ii++

set qi = (ii-nq/2)*qstep

for jj=0; jj<nq; jj++

set qj = (jj-nq/2)*qstep

set complex_image[ii][jj] = set complex_image[ii][jj] + ...

complex(cos(qi*x[i][0]+qj*x[i][1]), -sin(qi*x[i][0]+qj*x[i][1]))

end for

end for

end for

//Now plot the pixels; abs(complex_image[i][j]) gives the intensity of pixel[i][j]

The diffraction image is plotted by taking the absolute value of each complex component
as the pixel intensity. The code can be optimized by computing the fast Fourier transform
(FFT) rather than the DFT [164].
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Figure 4.4 Bond Order Diagrams (BODs) [163,165]. (a) BOD for a liquid system. (b) BOD for
an fcc crystal. Notice that while the BOD for the liquid shows a uniform coverage, the BOD for the
crystal shows distinct maxima.

4.5.4 Bond Order Diagram

A lesser known, but very useful quantity for studying ordered structures is the bond order
diagram (BOD) [52]. The BOD is constructed by projecting the [θ ,φ ] neighbor directions
of each particle onto the surface of a sphere. Physically, the BOD represents the probability
of observing a particle in a direction [θ ,φ ], given that a particle sits at the origin. The BOD
is depicted for a liquid and an face-centered cubic (fcc) crystal in Fig. 4.4a and Fig. 4.4b,
respectively.

The patterns detected by the BOD have been characterized mathematically in the context
of bond-order parameters (BOPs) [48, 132]. BOPs can give a quantitative measure of the
degree of ordering in the system by detecting the degree of symmetry in the bond order
diagram. Additionally, they can be used in some cases to identify structures based on their
BOD. In Chapter 7, we describe BOPs in mathematical detail, and extend their applicability
to more complex structures, such as those encountered in self-assembly studies. A pseudo
code for computing the BOD is given below:

//algorithm for computing the bond order diagram:

for i in N

for j in N

if i != j

set dx = distancevec(x(i), x(j))

set r = sqrt(dx(0)*dx(0) + dx(1)*dx(1) + dx(2)*dx(2))

if (r < cut)

set dx = dx / r

set bod(index) = dx

index = index + 1

end if
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end if

end for

end for

//now plot the BOD coordinates in your favorite visualizer

4.6 Characterizing Dynamics

In many cases, we are interested in characterizing the dynamics of particles as well as their
structure (i.e., how particles relax structurally as a function of time). This is particularly
important when studying supercooled liquids, which are known to exhibit anomalous dy-
namical properties [63]. In this section, we review some standard functions used to measure
particle dynamics, as well as some highly specialized dynamical measurements contrived
specifically for studying dynamical heterogeneity (DH) in supercooled liquids.

4.6.1 General Considerations for Dynamical Measurements

When measuring dynamical properties, we are typically interested in how a system changes
over different values of a time window t. One subtle consideration is that many mea-
surements are best observed over logarithmically spaced time intervals. Therefore, in the
interest of minimizing the computer memory required for an analysis routine, it is optimal
to save data at logarithmic intervals . A generic psuedo-code for computing a dynamical
measurement with logarithmic time intervals is given below:

//algorithm for computing a dynamical quantity with log-spaced time windows:

for p=0; p<=logmaxtime; p+=logstep

set timewindows(index) = (int)pow(10.0, p)

set index = index+1

end for

for t in timewindows

call dynamicalmeasurement(x(0), x(t))

end for

In practice, we should obtain several measurements at each time interval t for averaging.
Thus, we should choose several different statistically-independent reference times t = 0.
Since most dynamical measurements decorrelate over a timescale of about 1 α relaxation
time (see section 4.6.4 below), we should first estimate the α relaxation time, and then
ensure that the reference times t = 0 are separated by at least this timescale. The α relax-
ation time can be roughly approximated by the time window t for which the mean-squared
displacement (defined in the following section) reaches about 1 particle diameter.
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Figure 4.5 Mean-squared displacement (MSD). (a) Depiction of the MSD for a glassy supercooled
liquid. The MSD exhibits three distinct regimes as a function of time, indicated by the different
colors. (b) MSD for A and B particles for the WCA version of the Wahnström binary mixture [134]
(see section 3.3). Note that for this model, σAA = εAA = mB = 1.

4.6.2 Mean Squared Displacement

The mean squared displacement (MSD) is perhaps the most elementary measure of particle
dynamics. The MSD measures how far particles move, on average, as a function of the time
window t. Mathematically, the MSD is defined as :

〈
r(t)2〉=

〈
|r(t)− r(0)|2

〉
. (4.22)

For supercooled liquids, the mean squared displacement exhibits three distinct regimes
(Fig. 4.7)a. Over very short timescales particles move without colliding with other parti-
cles and he mean squared displacement is given trivially by

〈
r2(t)

〉
=
〈
v2〉 t2. This short

timescale region of the MSD is known as the “ballistic regime.” Over slightly longer times,
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Figure 4.6 Self contribution to the Van Hove correlation function. The panel depicts Gs(r, t) at
three different times for a typical supercooled liquid. The times t << τα , t >> τα , and t ∼ τα
corresponds to the ballistic regime, sub-diffusive regime, and the early crossover regime between
caged and diffusive behavior, respectively.

particles collide with their nearest neighbors. For deeply supercooled liquids, glasses or
solids, diffusion is rare or impossible and the MSD exhibits a caged regime where the MSD
remains constant. Fig. 4.7b shows the MSD for the binary KA supercooled liquid as a func-
tion of temperature. As T decreases, the length of the caged regime increases dramatically.
For liquids, particles eventually break out of their cages and the MSD enters a “diffusive
regime.” In this regime, the MSD is described by the Einstein relation

〈
r2(t)

〉
= 2dDt,

where D is the diffusion coefficient and d is the dimensionality of space. The algorithm
for measuring the mean squared displacement over a time window t is given below. Notice
that this pseudo code can be used as a function within the pseudocode given in the previous
section

//algorithm for computing the mean squared displacement:

rsq = 0.0;

for i in N

r = distance(xt(i), x0(i))

rsq += r*r

end for

return rsq / N;

4.6.3 Van Hove Correlation Function

The MSD is an average value of the displacement r, and thus it gives no information about
the distribution of r that contributes to this average. In some cases, it is useful to analyze this
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probability distribution (i.e., the distribution of r values that gives rise to each datapoint in
the MSD). This is given by the self-contribution to a more general density-density correlation
function known as the Van Hove correlation function G(r, t):

G(r, t) =
1
ρ
〈ρ(r, t)ρ(0,0)〉 . (4.23)

The bracketed term is proportional to the probability of finding a particle at a distance r
from the origin 0 at time t, given that a particle sits at the origin at time 0. Notice that this
is similar to a time-dependent generalization of the radial distribution function g(r). Since
we are interested in measuring the Van Hove correlation function for liquids, the system
is isotropic and thus we can replace r with r. The “self” contribution to the Van Hove
correlation function Gs(r, t) is given by exclusively considering correlations between a given
particle i at two times, rather hat than pairs of distinct particles i and j:

Gs(r, t) =
1
N

〈
N

∑
i=1

δ [r−|ri(t)− ri(0)]

〉
. (4.24)

In other words, Gs(r, t) is the probability of a particle i moving a distance r over a time
window t. In most cases, Gs(r, t) is a Gaussian distribution, given by:

G0(r, t) =
(

3
2π 〈r2(t)〉

)3/2
exp
(
− 3r2

2〈r2(t)〉

)
. (4.25)

However, if the system exhibits spatially heterogenous dynamics (SHD), then Gs(r, t) will
deviate from Gaussian behavior [166]. This is exemplified by Fig. 4.6, which depicts
Gs(r, t) for a supercooled liquid over different time windows. The window denoted t << τα

corresponds to the ballistic regime of the MSD, and the time t >> τα corresponds to the
sub-diffusive regime, where the system has begun to crossover to diffusive behavior. The
time t ∼ τα is near the cage breakout time of the MSD, where the particles begin to first
leave their cages. (A more rigorous definition of τα is given in the following section. Notice
that for t >> τα and t << τα , the self-Van Hove exhibits Gaussian behavior. However, near
t ∼ τα , the dynamics are highly non-Gaussian, indicating the presence of SHD. A pseudo
code for computing the self Van Hove is given below:

//algorithm for computing the self van hove:

nbins = rmax / rstep

for i in N

r = distance(xt(i), x0(i))

bin = (int)(r/rmax)*nbins

vanhoveself[bin] = vanhoveself[bin] + 1;

end for
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Figure 4.7 Self intermediate scattering function, Fs(q0, t). (a) Depiction of the Fs(q0, t) for a
glassy supercooled liquid for high (left) and low (right) temperatures. For low temperatures Fs(q0, t)
exhibits an initial β relaxation, followed by caged behavior, and then a primary α relaxation. (b)
Fs(q0, t) for A and B particles for the WCA version of the Wahnström binary mixture [134] (see
section 3.3. The scattering vectors qA

0 = 7.5 and qB
0 = 8.0 are determined by the peak of the structure

factors SAA(q) and SBB(q). The MSD is shown for the same system above. Note that for this model,
σAA = εAA = mB = 1.

4.6.4 Intermediate Scattering Function

In many experimental systems, obtaining the particle positions directly is not feasible.
However, as mentioned in section 4.5.2, the structure factor S(q) can often be measured.
Thus, in experimental systems we typically consider a Fourier space analogue of the Van
Hove density-density correlation function known as the intermediate (i.e., time-dependent)
scattering function F(q, t), defined by:

F(q, t) =
1
N
〈ρ(q, t)ρ(−q,0)〉 . (4.26)
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Here, q is the wave vector, proportional to the wavelength of the incident light in a scattering
experiment, and ρ(q) is the Fourier transform of the density ρ(r). Again, we are typically
interested in the self-contribution to the correlation function, and we can write q as q, since
we are interested in quantifying dynamics for isotropic systems. In practice, we typically
measure Fs(q, t) for a particular wavelength q0, which is usually chosen to be the first peak
in the structure factor S(q). The self intermediate scattering function is given by:

Fs(q, t) =
1
N

〈
N

∑
j

exp
[
−iq
∣∣r j(t)− r j(0)

∣∣]
〉

. (4.27)

Here, we have inserted the definition of the structure factor (section 4.5.2) for ρ(q). As
depicted in Fig. 4.7a, for a normal liquid, Fs(q, t) exhibits exponential decay: Fs(q, t) =
exp(−t/τ). For a deeply supercooled liquid, Fs(q, t), like the MSD, exhibits three regimes:
a regime of initial short lengthscale motion, a plateau regime in which particles are “caged”
by their neighbors, and a regime of diffusive relaxation. The initial β relaxation is due
to the vibrational motion of particles within their cages. The decay to the plateau regime
can be described by Fs(q, t) = f +At−a [93]. The decay in the α relaxation regime can be
described by the Kohlrausch-Williams-Watts (KWW) stretched exponential function [133]:

Fs(q, t) ∝ exp(−t/τ)β . (4.28)

The variable τ in this equation is the α-relaxation time that is commonly to characterize
the relaxation of glassy systems. The exponent β is bounded by 0 < β leq1. Notice that,
perhaps confusingly, the exponent β applies to the α-relaxation regime. An algorithm for
computing Fs(q, t) is given in pseudo-code below:

//algorithm for computing the self intermediate scattering function:

//note: only use real scatterers (cos)

set sum = 0.0

for i in N

set dr = distancevec(xt(i), x0(i))

for k in dim

set sum = sum + cos(q0*dr(k));

end for

end for

set sum = sum/n;

set sum = sum/dim;

return sum;
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4.6.5 Heterogeneous Dynamics

As mentioned in section 4.6.5, supercooled liquids exhibit SHD, which becomes increasingly
pronounced upon cooling towards a glass transition [67]. SHD is a universal characteristic
of glassy materials, and has been observed in atomistic [167, 76], molecular [72, 67], col-
loidal [64,168], and granular systems [31,65,66], both simulated and experimental. SHD
itself exhibits universal characteristics, observable across diverse systems, such as string-like
motion among mobile particles that grow as the glass transition is approached [73, 70].
Several measurements have been contrived to characterized SHD, and are the subject of our
review in this section.

4.6.6 Non-Gaussian Parameter

As mentioned in section 4.6.3, the self Van Hove correlation function Gs(r, t) is a simple
measurement that can detect SHD. Specifically, Gs(r, t) deviates from Gaussian behavior
for a range of relaxation times, thus indicating the presence of SHD. Although viewing
the probability histograms in Fig. 4.6 gives an intuitive sense of the degree of deviation
from Gaussian behavior, a more direct measure is given by the non-Gaussian parameter α2,
defined as [169]:

α2(t) =
3
〈
|ri(t)− ri(0)|4

〉

5
〈
|ri(t)− ri(0)|2

〉2 −1. (4.29)

Notice that the term in the denominator is the square of the standard MSD. As depicted
in Fig. 4.8, the non-Guassuan parameter α2(t) goes through a maximum α2(t∗) at a time
t∗α2

, which corresponds to the late-β / early-α relaxation regime of Fs(q, t) (i.e., the time at
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Figure 4.9 Mobile clusters and strings. (a) Depiction of particle motion showing mobile clusters
(red) and strings (red, arrows). (b) Mean string length Ls(t) for the KA system at ρ = 1.2 for a range
of temperatures. For each T , Ls(t) peaks on a time window t∗ that is similar to t∗α2

.

which the α decay begins to occur). Both α2(t∗) and t∗α2
grow with decreasing temperature.

4.6.7 Mobile Clusters and Strings

The growth of the non-Gaussian parameter with decreasing T results from an increased
degree of dynamical heterogeneity. This is depicted in Fig. 2.8; here, the regions of mobile
and immobile particles become larger as temperature decreases. When viewing the dynam-
ics in more detail (Fig. 4.9a), several dynamical quantities become apparent. One direct
measurement of the degree of SHD is given by size of the regions of high mobility (red).
This can be quantified by measuring the mean number of particles Nc within a “mobile clus-
ter [74, 170, 71, 72, 64].” This requires that we make a distinction regarding which particles
are highly mobile. To do so, we take the f N particles with the highest displacements in the
system [74], where f is a fraction f ∈ [0,1]. The value of f is chosen to maximize the ratio
Nc(t∗)/Nc(tm), where Nc(t∗) is the maximum value of Nc(t) and Nc(tm) is the minimum,
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which occurs on timescales over which the system does not exhibit SHD. Typical values of
f are 0.05 ≤ f ≤ 0.1 [74, 170, 71]. Mobile particles i and j belong to the same clusters if
they are within a cutoff range rnbr, which is typically taken to encompass the first peak of
g(r).

Particle motion within the mobile clusters, shown by the displacement vectors in
Fig. 4.9a, tends to be “string-like,” where particles follow one another in quasi-1d paths
[73, 71, 70]. Thus another intuitive measure of SHD is the mean string length, Ls(t), de-
fined by clusters of particles that, within a time interval t, replace the initial position of
a neighboring particle. In practice, quantifying replacement requires that we introduce a
threshold value for replacement rcut such that

∣∣ri(t)− r j(0)
∣∣< rcut . For spherical particles,

we typically take rcut in the range 0.3σ ≤ rcut ≤ 0.5σ , were σ is the particle diameter [73].
Mobile particles i and j belong to the same string if i replaces j over a time window t and i
and j are neighbors at t = 0 (i.e.,

∣∣ri(0)− r j(0)
∣∣< rnbr). Since particles can only replace

one another by moving in a pseudo 1d line, the string length goes as the number of particles
in the string: Ns ∝ Ls.

As shown in Fig. 4.9, the mean string length Ls grows as a function of decreasing temper-
ature. The timescale for the maximum string length is identical to t∗α2

, the peak time of the
non-Gaussian parameter [73, 71]. Although not shown here, the mean cluster size Nc shows
an identical trend [71]. It has also been shown that at the peak time t∗α2

, the string length
distribution is exponential while the cluster size distribution is a power-law [73, 71, 31].
The relationship between the mean string and cluster size, and the string and cluster size
distributions are shown for our study of glassy dynamics in a granular system in Chapter 6.

4.6.8 Space-Time Susceptibilities

The growth of strings and mobile clusters with decreasing T described in the previous section
is indicative of a growing lengthscale that is purely dynamical in nature (i.e., the domains
are constructed solely on the basis of particle mobility). Similar growing lengthscales are
observed for ‘static’ systems where the clusters are identified by an order parameter, for
example, regions of space with different densities or different particle ordering [14]. Such
growing static lengthscales are often associated with an underlying phase transition; for
example lengthscales tend to diverge near a critical point when the distinction vanishes
between the different phases [14]. Growing lengthscales are also associated with first
order transitions, where, near equilibrium, large spatial fluctuations in the order parameter
occur [14].

It has been proposed that the growing dynamical lengthscale associated with the glass
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transition may also be associated within a unique underlying thermodynamic phase tran-
sition [171, 94, 109]. Since such a dynamical transition involves heterogeneous regions
that are defined by mobility (i.e., the can only be measured by considering both space
and time), the transition is said to occur in “space-time [108, 172, 109]” As proposed by
Benneman et al. [167] and Donati, Glotzer, and Poole [173], many standard thermodynamic
measurements can be generalized to fit within a space-time thermodynamic framework.
That is, by idealizing the dynamical objects that arise in glassy systems as their analogous
static quantities, we can treat them in the same thermodynamic framework that has already
been developed for static systems.

One hallmark feature of a standard phase transition is a marked increase in a linear
response function, or susceptibility near the transition [14]. For example, returning to the
Ising model of section 2.1.1, we can write a magnetic susceptibility as:

χ =
1
N

(
δ 〈M〉
δβB

)

β
. (4.30)

Here, M is the magnetization and B is the magnetic field. Thus, the susceptibility physically
represents the degree to which the average magnetization of the system changes upon apply-
ing a small change to an external field. One way that a susceptibility can be measured is in
terms of spatial fluctuations in a local order parameter. In the case of the Ising model, the
order parameter is given by the magnetization M of a subsystem of size N:

χ =
1
N

〈
(δM)2

〉
=

1
N

(〈
M2〉−〈M〉2

)
(4.31)

The susceptibility χ diverges at either a first order phase transition or a critical point [14]. In
the case of a first-order transition, large spatial fluctuations in the order parameter will occur
when the two phases are near equilibrium. Near a second-order critical point, the distinction
between the phases disappears and the order parameter becomes correlated over very long
ranges, resulting in very large spatial fluctuations.

Analogous susceptibilities can be defined to characterize the thermodynamics of space-
time. An order parameter for a glassy liquid with SHD is given by the local values of the parti-
cle mobility (Fig. 4.10a). A susceptibility based on the total mobility U(t) = ∑i |ri(t)− ri(0)|
is given by [167, 173]:

χU(t) =
βV
N2

[〈
U(t)2〉−〈U(t)〉2

]
. (4.32)

A similar susceptibility can be defined by taking a binary value of the mobility, based on
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whether particles escape their cage over a window t:

qi(t) =





1 |ri(t)− ri(0)| < roverlap

0 |ri(t)− ri(0)| ≥ roverlap.
(4.33)

The function qi(t) is a self-overlap order parameter. The susceptibility is then given
by [76, 69]:

χSS
4 (t) =

βV
N2

[〈
Q(t)2〉−〈Q(t)〉2

]
. (4.34)

The notation “SS” indicates that we consider self-overlaps in measuring Qi, rather than
self-distinct (SD) overlaps between particles i and j. Typically, we take a value of roverlap

in the range 0.3σ ≤ roverlap ≤ 0.6σ , where σ is a particle diameter [69]. This captures
correlations in particles breaking out of their cages during the α relaxation regime [76, 69].
However, different behavior can be captured by choosing different values for roverlap [174].
As depicted in Fig. 4.10b, χSS

4 grows as the glass transition is approached. A similar trend is
observed for χU(t) [167]. It has been speculated that this growing susceptibility may indicate
proximity to a dynamical critical point [171, 94]. In contrast, a recent study indicates that
the lengthscales associated with SHD may arise due to proximity to a first order transition
in space-time [109].
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Chapter 5

Forming Ordered Solids

As mentioned in the opening chapters, a sizable proportion of the solid materials that we
interact with everyday are thermodynamically metastable. Thus, a comprehensive study of
metastable ordered solids is well beyond the scope of the present study. Rather, we narrow
our focus to a few more manageable case studies, designed to highlight some important
aspects of metastable ordered solid formation. To do so, we focus specifically on the forma-
tion of quasicrystals, which exhibit desirable optical properties on the micro and nanoscales,
and often form as metastable states. These attributes make quasicrystals ideal prototype
structures for our studies.

In this chapter, we present work from two different articles on the topic of quasicrystal
formation [30, 35]. In the first article, [A.S. Keys and S.C. Glotzer, “How Do Quasicrystals
Grow?” Physical Review Letters (2007)] [30], we explore the unique growth mechanism
that allows some systems to form quasicrystals rather than periodic approximants, which
are often more thermodynamically stable. We find that, in contrast to the usual case of
metastable solid formation, which is dictated by nucleation kinetics (see section 2.3.3),
quasicrystal formation is determined by growth kinetics. An insightful perspective regarding
the implications of this article is given in reference [175]. In the second article presented in
this chapter [C.R. Iacovella, A.S. Keys, and S.C. Glotzer, “Self-Assembly of Soft Matter
Quasicrystals,” (2010)] [35] (currently pending publication), we address the problem of
forming quasicrystals via self-assembly in diverse micro and nanoscale systems. To do so,
we apply our knowledge of the thermodynamics of metastable solids, combined with our
insights into quasicrystal growth obtained from the previous study, to design quasicrystal-
forming systems. We demonstrate that quasicrystals can be consistently assembled from
systems of micelles that exhibit shape polydispersity and have smaller mobile particles
attached to their surface. Collectively, our results highlight some of the important and unique
thermodynamic properties of quasicrystals, and present several exciting new possibilities for
forming quasicrystals in experimental systems.
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5.1 How Do Quasicrystals Grow?

Using molecular simulations, we show that the aperiodic growth of quasicrystals is con-
trolled by the ability of the growing quasicrystal ‘nucleus’ to incorporate kinetically trapped
atoms into the solid phase with minimal rearrangement. In the system under investigation,
which forms a dodecagonal quasicrystal, we show that this process occurs through the assim-
ilation of stable icosahedral clusters by the growing quasicrystal. Our results demonstrate
how local atomic interactions give rise to the long-range aperiodicity of quasicrystals.

5.1.1 Introduction

Quasicrystals [122] are a unique class of ordered solids that display long-range aperiodicity,
which distinguishes them from ordinary crystals. It is not known what ‘special’ qualities
systems must possess in order to form quasicrystals versus crystals. Quasicrystals, like
crystals, form via nucleation and growth [122], where a microscopic ‘nucleus’ of the solid
phase spontaneously arises in the supercooled liquid and spreads outward, converting the
system from liquid to solid [176]. A fundamental puzzle in quasicrystal physics is to
understand how the growth phase of nucleation and growth can lead to a structure with
long-range aperiodicity. Quasicrystals cannot grow like crystals, where the nucleus surface
acts as a template for copying a unit cell via local interactions. Rather, quasicrystals, require
specialized “growth rules” that dictate their formation [177].

Quasicrystal (QC) growth rules fall into two categories: energy-driven quasiperiodic
tiling models [178, 179] and entropy-driven random tiling models [180, 181]. While energy-
driven models rely on “matching rules” to dictate how atomic clusters or tiles attach to
the nucleus, entropic models allow tiles to attach randomly to the nucleus with some prob-
ability. Although these models provide important insight into how QCs might form, the
physical driving force underlying QC growth, and whether it is based on local interactions
or long-range correlations, is not well understood.

In this section, we elucidate the physical mechanism underlying QC growth by studying
the post-critical irreversible growth of a metastable dodecagonal QC from a simulated
supercooled liquid. We show that QC growth is facilitated by structurally persistent atoms
in low energy motifs that become kinetically trapped in their local configurations in the
region surrounding the solid nucleus. As the nucleus grows, it incorporates these atoms in a
way that minimizes expensive rearrangements and hastens solidification, allowing the QC to
form instead of the stable crystalline approximant phase. In the system under investigation,
we find that structurally persistent atoms were in icosahedral clusters prior to attaching to
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Figure 5.1 Dodecagonal QC and approximants. (a) 17,576 atom dodecagonal QC formed by the
Dzugutov system using molecular dynamics at T=0.42 and ρ=0.85, instantaneously quenched to T=0.
The image on the right shows the aperiodic tiles formed by connecting the centers of the dodecagonal
rings of atoms. (b) Unit cells of various QC approximants.

the nucleus. Our results demonstrate how the long-range aperiodicity of QCs arises from
local atomic interactions, thus providing a significant step forward in understanding the
origin of the QC state.

5.1.2 Methods

To obtain these results, we perform three distinct sets of computer simulations. First, we
use canonical (NVT) Monte Carlo (MC) to observe the growth of the QC from a static
seed nucleus. We then use isothermal-isobaric (NPT) MC to observe the growth of large
QC nuclei, generated via umbrella sampling [156]. Finally, we use umbrella sampling to
generate many configurations containing nuclei to study the relationship between QC nuclei
and icosahedral clusters. All simulations contain 3375 atoms with pair interactions modeled
via the Dzugutov potential [127]. The form of the Dzugutov potential is identical to the 12-6
Lennard-Jones potential up to a distance at which an additional repulsive term dominates,
suppressing the formation of BCC, FCC, and HCP crystals and favoring polytetrahedral
ordering, where the 13-atom icosahedron is the ideal local structure. In the Dzugutov
supercooled liquid, atoms are known to organize into local energy-minimizing icosahedral
clusters comprised of face-sharing and interpenetrating icosahedra [182, 128, 70], which
exhibit lower mobility than the bulk [128, 70]. The number of atoms that participate in
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icosahedral clusters at any time increases with the degree of supercooling [129, 70]. At
certain state points, the system forms a dodecagonal QC from the melt, which exhibits
long-range polytetrahedral ordering [183, 52] (see Fig. 5.1a). Although the QC is physically
stable over the timescale of a typical simulation, it is thermodynamically metastable with
respect to the σ -phase periodic approximant [52] (see Fig. 5.1b). Here, we run simulations
at temperature T=0.55, pressure P=3.5 and density ρ=0.85, which is slightly below the
degree of supercooling (T/Tm ∼ 0.7) at which the system forms a QC in the absence of a
seed nucleus or specialized simulation techniques. At this state point, the growth of the solid
phase occurs from a single nucleus, although under deeper supercooling many nuclei may
grow simultaneously [184].

To observe the growing nucleus in our simulations, we define an order parameter to
detect QC local ordering. Our order parameter is a modification of the q6(i) ·q6( j) scheme
of reference [57]. There, the nearest-neighbor directions of an atom i are expanded in
spherical harmonics Y"(θ ,φ) (with " = 6) to construct a 2"+1 dimensional complex vector
q6(i), which can be thought of as a cluster “shape-descriptor” containing information re-
garding the shape and orientation of the cluster. An atom i forms a solid-like connection
with neighbor j if the vector dot product q6(i) ·q6( j) exceeds a certain value, and atoms
with many solid-like connections are defined as being solid-like, reflecting the fact that in
simple crystals all atoms have identical coordination shells. This scheme must be modified
for QCs and approximants, since neighboring atoms have non-identical coordination shells
corresponding to different Frank-Kasper polyhedra [44]. For dodecagonal QCs, we increase
the range of the neighbor cutoff to rcut = 2.31σ , corresponding to the first ∼2.5 neighbor
shells. Also, we modify the set of harmonics from " = 6 to " = 12, since we find that q12 is
sensitive to the symmetry of the dodecagonal QC, whereas q6 produces no signal. Pairs of
atoms form a solid-like connection if q12(i) ·q12( j) ≥ 0.45, with q12(i) ·q12( j) normalized
on the interval [0,1]. Atoms with ≥ 50% solid-like connections are solid-like, otherwise they
are liquid-like. These cutoffs are chosen so as to maximize the distinction between liquid
and QC; however, we note that the distinction becomes ambiguous near the liquid-solid
interface where atoms exhibit properties that are intermediate between liquid and solid.
Therefore, for a diffuse nucleus, the solid-like atoms identified using this scheme represent
only the nucleus core.

We next define q6(t) ≡ q6(i; t0) ·q6(i; t), autocorrelation function that measures how
correlated atomic configurations are at time t to their configurations at an earlier or later
time t0. We base our scheme on q6 rather than q12, since our goal is to quantify how
closely clusters match in terms of shape orientation, rather than to detect quasicrystalline
correlations between non-identical neighbor shells. We define rcut = 1.65 to include the first
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Figure 5.2 Dependence of QC tiling arrangement on liquid structure. The images show char-
acteristic results from MC runs with the same quasicrystalline seed (blue) but with a different
random number sequence. At certain points in space, highlighted in yellow in the overlay, the tiling
arrangements differ.

neighbor shell in our analysis. We normalize q6(t) such that 1 is the maximum value and 0
represents the value for random correlations. Configurations that are less correlated than the
average random value have q6(t) < 0.

5.1.3 Effect of Randomness

We begin by considering the growth of the solid phase from a small static seed nucleus in
the form of a periodic approximant [126] that is inserted into the MC simulation cell (see
Fig. 5.2). Approximants are crystals with identical local ordering to QCs; therefore, for
small nuclei, QCs and approximants are identical and the difference in long-range ordering
results from a different growth mechanism. Constraining the seed in the form of an approxi-
mant allows us to determine whether the system requires a seed with a ‘special’ structure
to grow a QC. We randomize our MC simulations at high temperature starting at time tr
before quenching to T=0.55 at tq, at which point atoms begin to attach to the seed, causing
rapid solidification. We observe that the system consistently forms a QC for all seed sizes,
positions, and approximant structures, indicating that the system does not copy the seed, but
rather incorporates atoms into the solid via a different paradigm.

Energy-driven QC growth models suggest that atomic attachment to the nucleus is
deterministic, whereas entropy-driven models suggest that it is stochastic. We test the
applicability of these models for our system by modifying the random number sequence
(RNS) used during the simulation, holding all else constant. As depicted in Fig. 5.2, for the
same seed nucleus (blue), we consistently obtain distinguishable QC tiling arrangements,
indicating that QC growth has a stochastic element. It is clear that the growth is energetically

74



constrained as well, since most of the tiling discrepancies (yellow) represent “phasons [185],”
tiling arrangements with nearly identical local energy. Thus elements of both growth models
appear relevant to QC growth.

Although the growth of the QC is affected by the RNS, the attachment of tiles to the
nucleus is not random. For random attachment, a change to the RNS causes an immediate
change in the growth pathway, resulting in different tiling arrangements. In contrast, our
system exhibits an appreciable lag time between changes to the RNS and the appearance
of tiling discrepancies. For example, if we change the RNS at tq, we observe fewer tiling
discrepancies in the area immediately surrounding the nucleus than if we make a change at
tr. (Note that in both cases, the nucleus is identical since the solid does not begin to grow
until tq). This implies that QC growth is affected by stochasticity only insofar as it engenders
differences in the local arrangement of atoms around the nucleus.

5.1.4 Effect of Liquid Structure

We can test this idea quantitatively by using q6(t) to detect structural correlations between
atoms surrounding the nucleus and the QC tiles that they subsequently form. First, we
generate many independent nucleation events in which the system grows a QC. Previously,
we used a seed to initiate nucleation; here we use umbrella sampling to generate many
configurations with growing nuclei. Our NPT MC runs are biased according to the harmonic
weight function w = 1

2k (N −N0)2 [57, 62]. Here, k = 0.075, N is the number of atoms
comprising the nucleus (measured by q12(i) ·q12( j)), and N0 is specified such that nucleus
sizes near N0 are sampled selectively. We slowly increase the bias from N0 = 10,20, ...90 so
that nuclei reach N = 80−100. We then use these microstates as starting points for unbiased
NPT MC runs. We observe that nuclei with N > 75 atoms tend to grow, although factors
other than size (e.g., shape, structure, etc.) may affect nucleus stability as well [19]. We run
MC simulations of growing nuclei for 75,000 MC cycles, the time it takes for nuclei to grow
from N ∼100 to N ∼500.

We measure 〈q6(t)〉 versus t in the non-equilibrium nucleating system described above
for atoms that attach to the growing QC nucleus at t0 = 0, which we refer to hereafter as
“attaching atoms.” For t < 0, attaching atoms are in the region surrounding the nucleus, and
for t ≥ 0, attaching atoms are in the solid nucleus (see Fig. 5.3a, middle curve). We include
only the atoms that attach permanently to the nucleus in our analysis, to ensure that we
measure correlations between atoms in the QC and their former (non-solid) configurations
rather than correlated reattachments of solid atoms. Specifically, we exclude atoms that
recross the 50% threshold for solid-like connections (defined above) after fluctuations are
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Figure 5.3 Structural correlations. (a) Average value of q6(t) versus t (MC steps). From top to
bottom: atoms in the dodecagonal QC, atoms in the non-equilibrium nucleating system that attach
to the nucleus at t = 0, atoms in the liquid. For all runs, the reference time t0 = 0. (b) Average
value of q6(t) versus t for attaching atoms. Top: attaching atoms in icosahedral configurations.
Bottom: all attaching atoms. (c) Probability distribution of q6(t) at < q6(t) = 0.35 >. Dotted line:
the typical distribution for < q6(t) = 0.35 >, calculated from atoms in the supercooled liquid. Solid
line: attaching atoms in icosahedral configurations.

averaged out. Roughly 60% to 70% of the atoms attach without ever detaching.
We compare 〈q6(t)〉 for attaching atoms to atoms in the bulk QC and the bulk super-

cooled liquid at the same state point (Fig. 5.3a). The value of 〈q6(t)〉 is proportional to the
degree of correlation to the reference structure at t = 0. This is exemplified by the high,
constant value of 〈q6(t)〉 observed for attaching atoms (t > 0) and bulk QC atoms, which
indicates a solid-like environment. (The initial drop is due to thermal fluctuations). For t < 0,
attaching atoms exhibit relatively high 〈q6(t)〉, indicating that atoms joining the nucleus at
t = 0 are highly correlated to their former (pre-solidification) configurations.

We can dissect the 〈q6(t)〉 curve for attaching atoms into components based on local
structure. Overall, the dodecagonal QC consists of atoms in four different types of coor-
dination shells: icosahedral, Z13 , Z14, and Z15 configurations, where, ‘Zn’ stands for
the Frank-Kasper polyhedron [44] with coordination number ‘n.’ We find that icosahedral
atoms exhibit high 〈q6(t)〉 (Fig. 5.3b), whereas other motifs do not deviate significantly from
the average. We rationalize the high value of 〈q6(t)〉 for icosahedral atoms by considering
the probability distribution of q6(t) at each point on the 〈q6(t)〉 curve (Fig. 5.3c). We find
that atoms in icosahedra, and, to a lesser extent, atoms in Z13 configurations (not shown),
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Figure 5.4 Icosahedral environment. (a) Simulation snapshot showing a QC nucleus (red) together
with icosahedral clusters (yellow for icosahedral centers, white for surface atoms) in the liquid (blue).
(b) The average probability of observing an atom at the center of an icosahedron versus r, the distance
from the nucleus surface.

exhibit an unusually high proportion of strong correlations. This indicates that as the nucleus
grows, it incorporates a certain subset of icosahedral and Z13 atoms with minimal structural
rearrangement. Interestingly, Z14 atoms do not exhibit either high 〈q6(t)〉 or a skewed q6(t)
distribution, which indicates that although the icosahedral glass formed by the Dzugutov
system has vibrational modes similar to the thermodynamically stable σ -phase [186] (25%
icosahedra and 75% Z14), the most correlated atoms do not exhibit σ -like character. Rather,
the high degree of icosahedrality and the presence of correlated Z13 atoms (which do
not appear in the approximants but are highly present in the supercooled liquid) indicate
that atoms in liquid-like icosahedral clusters surrounding the nucleus tend to retain their
configurations during incorporation into the nucleus.

5.1.5 Icosahedral Wetting Layer

We can obtain a more intuitive picture of the role of icosahedral clusters by considering their
spatial arrangement in relation to the growing QC nucleus. We generate a large number
of nuclei using the umbrella sampling scheme outlined above. To expedite sampling, we
allow configuration swapping between simulations via parallel tempering [62]. In all, we
run 10 simultaneous MC simulations for 3.5 million MC steps, where each simulation has
a unique biasing potential minimum N0 = 10,20, . . .100 for a given simulation. We save
configurations every 100 MC steps, giving us 35,000 total microstates containing nuclei of
sizes N=10-110 for analysis. We identify icosahedral clusters in our microstates using the
method of reference [187], an extension of the method of reference [188].
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As depicted in Fig. 5.4a, we find that icosahedral clusters (yellow, white) “wet” the core
of the QC nucleus (red), a mechanism that may reduce interfacial tension [176]. We quantify
the tendency for icosahedral clusters to aggregate around the nucleus by calculating Pico(r),
the average probability of observing an atom at the center of an icosahedron a distance r
away from the nucleus surface (see Fig. 5.4b). For nuclei of all sizes, we observe that Pico(r)
starts with a value of 0.15 near the nucleus surface and decreases to the liquid value of 0.06
over a range of about three particle diameters, indicating that there is an increased presence
of icosahedral clusters in the region surrounding the nucleus. As the nucleus grows, it must
change the connectivity of these clusters from liquid-like local-energy minimizing arrange-
ments to ordered quasicrystalline arrangements. The tendency to retain the configurations
of some of the clusters rather than copying the nucleus surface template is the “growth rule”
underlying the formation of the QC.

5.1.6 Conclusions

Our results demonstrate how QCs provide a ‘path of least resistance’ for solid phase growth
versus crystals. In this case, whereas the stable σ -phase approximant must rearrange kineti-
cally trapped atoms into a crystal lattice, the less constrained QC is able to reach a ‘structural
compromise’ with the surrounding atoms to grow more rapidly. Our results explain why QCs
often form in rapidly quenched metallic alloys, as these systems produce rapidly growing
nuclei as well as low-energy icosahedral clusters. In terms of QC growth models, our results
give physical insight into how the nucleus ‘decides’ to form a particular tile as it grows. We
note that although icosahedral clusters are not the energy-minimizing structural motif for all
QCs, the basic mechanism at hand − the tendency for certain atoms to retain their liquid
configuration when incorporated into the growing solid nucleus − should hold generally for
QC-forming systems.

5.1.7 Supplementary Information: Order Parameters

The q12(i) · q12( j) order parameter that we employ for distinguishing particles in
quasicrystal-like and liquid-like local configurations is largely based on the q6(i) ·q6( j)
method for detecting fcc, bcc, and hcp crystal grains of reference [57]. To adapt the scheme
for dodecagonal quasicrystals, we require several modifications. Our methods are best
described within the context of the shape matching framework outlined in section 7, where
we provide the quasicrystal order parameter as an example problem (see section 7.2.15).
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Figure 5.5 Average Gibbs free energy as a function of the nucleus size N, computed via umbrella
sampling [57]. The nucleus size is not the only reaction coordinate for this system, which is evidenced
by the spread in the committer PB as a function of N [60] (not shown).

The q6(t) autocorrelation function that we employ is a relatively straightforward ap-
plication of the shape matching framework to a time correlation function. Several similar
examples are given in section 7.3.5. We use the q6 shape descriptor because it sufficient for
detecting structural changes in the types of local clusters that arise in our system.

5.1.8 Supplementary Information: Free Energy Calculation

In the main text, we state that nuclei of a given size tend to grow on average, whereas
smaller nuclei tend to shrink. This tendency is quantified by the average Gibbs free energy
as a function of the nucleus size N, computed using the umbrella sampling [156] scheme
of reference [57] (Fig. 5.5). We see that, on average, nuclei of size N ≥∼ 60 become
increasingly stable with N and therefore tend to grow, whereas smaller nuclei are unstable
and tend to shrink. The curve shown in Fig. 5.5 considers N exclusively, and thus only
represents an averaged free energy measurement; reaction coordinates other than N may be
important for determining the stability of a given nucleus. Nonetheless, N is a sufficiently
important reaction coordinate that the larger nuclei that we choose for our runs of size
N ∼ 75 tend to grow for the runs that we perform.
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5.2 Self-Assembly of Soft Matter Quasicrystals

We propose a two-part mechanism for forming 3d dodecagonal quasicrystals and their
approximants by self-assembly. First, we attach small mobile particles to the surface of
spherical particles to encourage icosahedral packing. Second, we allow a subset of parti-
cles to deviate from the spherical shape, to discourage close-packing. We find that model
soft-matter systems with both of these properties consistently assemble dodecagonal qua-
sicrystals and/or approximants. We predict that many systems may assemble quasicrystals
by this mechanism, including micelle-forming and nano-satellite systems.

5.2.1 Introduction

Quasicrystals are a class of ordered solids with long-range orientational ordering but no
long-range periodicity [189]. Their unique structure gives rise to favorable properties such as
low surface tension and high wear resistance on the atomic scale and a full photonic bandgap
on the micron and nanometer scales [190, 191, 28, 27]. Despite their useful properties, their
potential applications are limited by their scarcity. Only recently have quascrystals and their
approximants been observed in non-atomistic systems. Examples include holographically
trapped [192] and laser-field induced [193] quasicrystals made of micron sized spheres,
as well as self-assembled quasicrystals and approximants formed by binary nanoparticle
superlattices [125], phase-separated star-triblock copolymers [194], spherical micelles of
phase-separated diblock copoylymers [195], and spherical dendrimer micelles [191, 196].
Computer simulations predict that quasicrystals can be assembled from systems of spherical
particles with unusual pair potentials [183, 52, 131], however, such potentials have not
been realized experimentally, even for highly tunable systems such as colloidal suspen-
sions. Recent simulations have shown that quasicrystals can form in systems with solely
excluded-volume interactions for tetrahedrally-shaped particles [33].

Here, we propose and test a method for self-assembling dodecagonal quasicrystals
(DQCs) and their periodic approximants [126] in bulk 3d systems of (roughly) spherical
particles, that, we predict, is both widely applicable and experimentally feasible. Our
mechanism is inspired by the basic ideas underlying the Dzugutov (DZ) [183] and Lennard-
Jones-Gauss (LJG) [131] potentials that are both known to form DQCs in systems of point
particles. These potentials, like the standard Lennard-Jones (LJ) potential, promote icosa-
hedral packing locally, but, unlike the LJ potential, include a relative energy penalty for
long-ranged fcc and hcp packing, causing DQCs to form instead. We exploit relatively
common features of soft-matter-like systems to achieve the same effect without turning to
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Figure 5.6 Using packing constraints alone to mimic the effect of a complex pair potential. (a)
A dodecagonal quasicrystal formed in the Dzugutov system at T = 0.42, ρ = 0.85. The particles
are energy minimized to remove thermal vibrations. (b) Diffraction pattern for the structure shown
in (a). (c) Valid tiles for the dodecagonal quasicrystal model. Left to right, top to bottom: square,
triangle, rhomb, shield and hexagon. (d) Three simple quasicrystal approximants, formed by periodic
arrangement of the tiles. Left to right: A15 (squares), Z (triangles), σ (squares and triangles). (e)
Important characteristics of the Dzugutov potential and their packing counterparts. The potential
well, which favors local icosahedral ordering, is replaced by attaching mobile particles to the surface
of the larger particles. The potential repulsion, which hinders the formation of fcc, hcp, and bcc
crystals, is replaced by adding particle shape polydispersity to the system.

complex potentials (see Fig. 5.6). Instead, the promotion of local icosahedral ordering is
achieved by functionalizing particles with mobile entities connected to their surface. We
show that, as predicted by Ziherl and Kamien [197] for spherical dendrimers, this creates
an entropic driving force that promotes local polytetrahedral ordering. The suppression of
crystalline ordering is accomplished by introducing shape polydispersity (in the form of
asphericity) into the system. We show that DQCs and their approximants are better able to
incorporate aspherical particles than standard fcc, hcp, and bcc crystals. Using molecular
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simulations, we show that three different model systems that exhibit both of these properties
reproducibly assemble DQCs and/or their approximants. These models, given by a minimal
model micelle and two micelle-forming systems composed of tethered nanosphere building
blocks [198, 199], represent the only simulated soft matter systems currently known to form
3d DQCs or approximants. The minimal micelle model is one of only two model systems
that form quasicrystals or appoximants without attractive interparticle interactions [33]. Due
to their similarities, the models and mechanism that we study may provide additional insight
into how DQCs and/or approximants form for systems composed of spherical dendrimers,
as reported by Zeng, et al. [191], and spherical block copolymer micelles, as reported by
Lee, et al. [195]. Finally, our study serves as a representative example of how complex
model potentials can be effectively achieved through particle packing and highlights the
importance of studying these models.

5.2.2 Minimal Micelle Model

We begin by exploring an explicit minimal model of a spherical micelle (MSM) that only
considers excluded volume interactions between terminal groups on the micelle surface
(Fig. 5.7a). The MSM consists of a non-interacting rigid scaffolding with 42 lattice points
on the surface of a sphere, given by the vertex points of a 2-frequency icosahedral geodesic
with diameter = 5σ . Each lattice point anchors a small spherical particle with diameter
σ attached by a harmonic spring (defined as U(r) = kr2) with spring constant k, which
controls the degree of surface particle mobility. Excluded volume interactions for the
surface spheres are modeled by the purely-repulsive Weeks-Chandler-Andersen (WCA)
potential [118]. We perform NVT MD simulations using LAMMPS [148] at T = 1.0 and
effective volume fraction, φ ≈ 0.8 (computed assuming a micelle radius of 3σ ). Roughly
speaking, the MSM can represent many different nanoscopic objects, including core-satellite
nanoparticles [200,201], or spherical micelles composed of dendrimers [197,191], block
copolymers [195], or tethered nanoparticles [198, 199].

In the absence of shape polydispersity, the MSMs tends to form close-packed (fcc or hcp)
arrangements for k > 5, and bcc structures for higher surface particle mobility, i.e., k ≤ 5. A
bcc ordered structure of 60 MSMs is shown in Fig. 5.7b for k=5. We find a dramatic change
in the structural arrangement of the MSMs when shape polydispersity is incorporated into
the system in the form of aspherical “dimer” micelles (see Fig 5.7c). We allow dimers to
form naturally by taken advantage of the fact that at low k some of the MSMs will overlap
and become locked together if k is increased. By starting from k = 2 and slowly increasing
k, we create systems with dimer fraction 0.20 ≤ fdimer < 0.40 and an average aspect ratio
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Figure 5.7 Minimal spherical micelle (MSM) model with mobile surface particles. (a) MSM
monomer (white) extracted from a simulation. (b) 60 MSMs at k = 5 with no dimers in a bcc
configuration. (c) MSM dimer (cyan) extracted from a simulation. (d) 60 MSMs with k = 5 and
fdimer ≈ 0.24 in a sigma structure. (e-g) Systems with 360 MSMs and: (e) k =4 and fdimer ≈ 0.39,
(f) k =4.75 and fdimer ≈ 0.37, and (g) k =5 and fdimer ≈ 0.36. In all cases, we plot time-averaged
isosurfaces of the centers of mass of the micelles/dimers, rather than micelles themselves. Systems
are viewed along the axis with 12-fold symmetry, as calculated using the diffraction pattern, shown
to the right. Note, (e) only appears as a parallelogram due to the projection.

of 1.45.
Three representative independent simulations, each composed of 360 MSMs in rectan-

gular boxes with aspect ratio 1.28:1.28:1.00, are plotted in Figs. 5.7e-g. Figs. 5.7e,f, and g
show systems at k =4, 4.75, and 5, with fdimer =0.39, 0.37, and 0.36, respectively. In all
cases, we observe DQC-like FK structures, which are viewed by orienting the systems along
the pseudo 12-fold axis. While the number of MSMs used here is small compared to the
number of atoms in typical atomistic simulations [183, 131], the structures in Fig. 5.7e-g
exhibit the hallmarks of quasicrystalline ordering. The systems form unique “tilings” with
different configurations rather than any particular approximant structure. We note that
we are limited to smaller systems than typical point-particle models due to the fact that
we must resolve the timescale on the motion of the surface particles that comprise the
MSM, rather than the centroid. Since DQCs grow more easily than approximants [30], it
is possible that the DQC-like tilings are thermodynamically metastable relative to a more
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Figure 5.8 Tethered nano sphere (TNS) systems. (a) Schematic of a mono-TNS building block,
where the 8 tether beads (blue) of size σ aggregate, that self-assemble spherical micelles with a soft
core surrounded by relatively hard “satellite” nanoparticles (white) of size 2.5σ that act as mobile
surface entities. (b)∼60 micelles formed by mono-TNS that arrange into a sigma approximant, and
(c) ∼120 mono-TNS micelles that form a DQC-like arrangement; both systems at φ = 0.275 and
T=1.1. (d) Histogram of asphericity, as, of the mono-TNS micelles shown in (b); representative
micelles are overlaid on the figure. (e) Schematic of the di-TNS building block where the 4 tether
beads (green) of size σ aggregate and nanoparticles (white) of size 2σ are also attractive; 4 tether
beads (blue) of size σ that do not aggregate coat the outside of the micelle. (f) ∼60 di-TNS micelles
arrange into a sigma approximant at φ = 0.2 and T = 1.2. (g) Representative di-TNS micelles at with
different as. All results were simulated using an in-house Brownian dynamics code [198, 199] and in
all cases we show density isosurfaces of the aggregating polymer tethers.

stable approximant structure; however, the relative stability of DQC versus approximants
is difficult to determine even for trivial point-particle models and we note that spherical
dendrimers have been reported to form both DQCs [191] and sigma approximants [196] in
experiment.

5.2.3 Tethered Sphere Model

We can further test the mechanism for a system where we do not have explicit control
over surface particle mobility or shape polydispersity. We consider two model tethered
nanosphere (TNS) systems, mono-TNS [198] and di-TNS [199], both of which form roughly
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spherical micelles with mobile surface entities. Schematics of the building blocks are shown
in Figs. 5.8a,e respectively, and micelles they form are shown in Figs. 5.8d,g respectively.
The mono-TNS micelles have an outer shell of mobile nanospheres that closely match
the MSM model, while the di-TNS micelles have a shell of short polymers, similar to
spherical micelles formed by block copolymers [195] and dendrimers [191, 197] . Details of
the models and methods are given in Refs. [198,199]. These models are computationally
expensive, and thus only relatively small systems are explored. Fig. 5.8b depicts density
isosurfaces of the aggregating tethers for a system of 2500 mono-TNS building blocks that
assemble into ∼60 spherical micelles arranged in a sigma appoximant and Fig. 5.8c depicts
isosurfaces for a system of 5000 mono-TNS that self-assemble into ∼120 spherical micelles
that form a DQC-like arrangement of tiles. The mono-TNS micelles naturally exhibit
shape polydispersity. Fig. 5.8d shows a histogram of the asphericity, as, computed from
the principle radii of gyration [202] of the micelles, with representative micelles at various
values of as inset ; for reference, the MSM dimer shown in Fig. 5.7c has as = 0.02. Fig. 5.8f
shows a sigma structure formed from 2000 di-TNS building blocks that self-assemble into
∼60 micelles. The distribution of as for the di-TNS is similar to the mono-TNS. Two repre-
sentative di-TNS micelles at low and high as are depicted in Fig. 5.8g. Overall, DQC-like
structures assembled from TNS micelles were observed in 20 independent simulations.

5.2.4 Stabilization Mechanism

We now explore the thermodynamic basis underlying both aspects of our mechanism. The
first aspect, the functionalization of particles with mobile surface entities, is inspired by
the theoretical work of Ziherl and Kamien [197]. The authors argue that the stability of
the A15 structure, a low order DQC approximant, in systems of dendrimeric micelles can
be traced to the tendency for neighboring micelles to minimize surface contact area [197].
This mechanism states that entropy is maximized when steric interactions between terminal
polymers on the micelle surface are minimized [197]. The space-filling arrangement of cells
that best minimizes surface contact area is the Weaire-Phelan structure, which corresponds
to the A15 structure [203], and serves as a counter-example to the famous conjecture by
Kelvin that the bcc lattice minimizes surface area [203]. A similar mechanism is thought to
stabilize the related dendrimer DQC observed in experiments [191]; however it is not clear
why this mechanism alone might stabilize a DQC or a higher-order approximant rather than
the A15 structure.

We calculate the Helmholtz free energy F as a function of k for a system of monodisperse
MSMs (i.e., without dimers), described previously, relative to the hcp crystal, taken as a
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convenient reference state. Here, we calculate the relative free energy for a given structure
using free energy perturbation [204] (FEP), where the reversible work required to change k is
given by F(k j)−F(ki) =−kBT ln〈exp

[
−(Uk j −Uki)/kBT

]
〉ki . The calculation is performed

in multiple stages (8 total) to avoid asymmetric bias [204]. The offset between the curves for
different structures is computed using an FEP variant of the standard Frenkel-Ladd method
for molecular systems [205] for systems with k = 5. FEP is used to adapt the method for
our complex molecules; although this method is non-standard, it gives a reasonable estimate
of F consistent with our simulation results. This only effects the vertical offset of the curves
and not how F changes as a function of k. Details of this scheme are given in the SI below.

In Fig. 5.9a we see that as k decreases (i.e. surface particle mobility increases), F
decreases more rapidly for the A15, dod, and bcc structures than for the fcc and hcp struc-
tures (note, the “dod” phase is the average value calculated from several higher-order DQC
approximants [206]). For low k, bcc appears to be the stable state, similar to our simulations
results. The change in F is the strongest for the A15 structure, which minimizes surface
contact area, followed by the dod and bcc structures respectively. This change in F is
entropically driven, since the difference in average potential energy 〈U〉 changes little with
k, and does not decrease with F (Fig. 5.9a, inset); this serves as a direct verification of the
predictions of Ziherl and Kamien [197].

We explore the second aspect of our mechanism, the addition of shape polydispersity,
by simulating binary mixtures of soft spheres and short, pill-shaped dimers, modeled by
the WCA potential (see Fig. 5.9b). The dimers are modeled by a short rigid body of length
1.5σ consisting of two overlapping soft spheres 0.5σ apart. Fig 5.9b shows the Helmholtz
free energy F as a function of the dimer fraction fdimer for several structures at a statepoint
ρ = 0.9, T = 0.25. The free energy is computed based on the standard Einstein crystal
thermodynamic integration (TI) method [140], with an additional TI step to compute the free
energy required to transform a given fraction of spheres into dimers. Details of this scheme
are given in the SI below. As fdimer increases, A15 and dod structures become increasingly
stable relative to close packed crystals, and, to a lesser extent, bcc. This difference in stability
can be traced to the tendency for dimers to adopt larger, more aspherical neighbor shells,
which are present in FK structures but not fcc, hcp or bcc. For example, in the dod phase,
dimers tend to sit at large Z15 FK coordination shells [44] in a ∼ 7 : 1 ratio over smaller
Z14 shells.
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5.2.5 Conclusions

For fdimer > 0.4, the FK phases (A15 and dod) are more stable than close-packed and
bcc crystals. This implies that mixtures of spherical and pill-shaped colloids or nanopar-
ticles [207,208] might produce DQCs or approximants. However, since many dimers are
required to destabilize crystal structures, in practice such mixtures may remain liquid-like
or form other structures not considered here. Along this same line, it is possible that,
in specific cases, systems may form DQCs based on mobile surface particles alone; the
entropic effect may be stronger for terminal polymers that are longer than the one-bead
model tested here. However, since asphericity is common in many micellar systems that
also have mobile surface entities, it is likely that, as our results suggest, both effects play
a role in the formation DQCs and approximants [191, 196, 195]. Overall, we find that the
combination surface particle mobility and asphericity tends to result in DQC-like phases for
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a broad range of systems.

5.2.6 Supplementary Information: Simulation Methods

In this section, we provide a detailed description of the methods used to produce the results
reported in this study. These methods can be used to exactly reproduce our results, which
may aid in future studies of these systems. Note in all cases, we use Lennard-Jones reduced
units [140].

Self-Assembly Simulations of Model Micelles

As previously described in the main text, spherical micelles are modeled as mobile spheres
tethered to the surface a large spherical surface. The spherical surface is modeled as a rigid
scaffolding of 42 lattice points, described by the vertex points of a 2-frequency icosahedral
geodesic with diameter = 5σ . Each lattice point anchors a small spherical particle with
diameter=σ , attached by a harmonic spring. The energy of the harmonic spring is defined
following the convention in LAMMPS [148],

Uharmonic = k(r− r0)2 (5.1)

where k is the spring constant, r is the separation between the particle and its attachment
point, and r0 is the equilibrium separation, set to 0 in this case. The rigid lattices are
non-interacting and are used simply to provide attachment points for the mobile surface par-
ticles. Surface particles interactions are modeled using the Weeks-Chandler-Andersen [118]
potential,

UWCA =






4ε
(

σ12

r12 − σ6

r6

)
+ ε , r < rcutoff

0 , r ≥ rcutoff

(5.2)

where ε = 1.0, σ = 1.0, and rcutoff = 21/6. The model micelles were simulated using NVT
molecular dynamics (MD) with the LAMMPS software package [148]. The Nose-Hoover
thermostat was used with T=1.0 and timestep = 0.005. The volume fraction, φ ≈ 0.8,
assuming a characteristic diameter of 6σ of the micelles.

The following general simulation procedure was employed. The systems were started as
a disordered arrangement of micelles at k = 2. The spring constant was then incrementally
increased by 0.25 until the final value was reached, typically k = 4 - 5. At each value of k,

88



0 5 10 15 20
 r

com

0

0.5

1

1.5

2

2.5

3

3.5

g
(r

)

Figure 5.10 g(r) calculated for the centers of mass of the model micelles in a FK structure at
k = 4. The formation of dimers is evidenced by the first peak at r∼ 2.6 which corresponds to overlap
between the micelles.

the systems were typically run for between 10 to 50 million timesteps, depending on the
system size (i.e. larger systems were run for longer).

As previously discussed in the main text, simulations performed at low k have a natural
tendency to overlap. Incrementally increasing k results in the formation of dimer micelles.
The formation of dimers is evidenced in plotting the radial distribution function, g(r), of
the centers of mass of the micelles, as shown in Fig. 5.10. The first peak in g(r) occurs at
approximately 2.6σ and corresponds to the overlap of micelles. Assuming a characteristic
diameter of micelles of 6σ , the average dimer-to-monomer size ratio is 1.44. We note that
the first peak in g(r) is relatively symmetric, indicating a narrow distribution of dimer sizes
around the average.

Self-Assembly Simulations of Tethered Nanospheres

The coarse-grained simulation model and methodology used to study the self-assembly
of tethered nanospheres (TNS) (both mono- and di-TNS) is discussed briefly below and
in greater detail in references [198, 209, 210]. Our general model consists of bead spring
representations of the TNS, similar to what is typically used to study block copolymers and
surfactants.
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Mono-TNS

The mono-TNS building block consists of a chain composed of 8 spherical beads of diameter
σ , connected via finitely extensible non-linear elastic (FENE) springs. Each chain is in turn
attached via a FENE spring to a nanosphere of diameter D = 2.5σ . The potential energy of
the FENE spring is given by:

UFENE(r) = −1
2

kR2
o ln

[
1−
(

r
Ro

)2
]

(5.3)

where k is the spring constant, r is the separation between the points, and Ro is the maximum
allowable separation. Here k=30 and Ro= 1.5. Tethers are treated as “solvent-phobic” and
thus aggregate at sufficiently low T. To model this aggregation, the attractive Lennard-Jones
(LJ) potential is used:

ULJ =






4ε
(

σ12

r12 − σ6

r6

)
−Ushi f t , r < rcutoff

0 , r ≥ rcutoff

(5.4)

where Ushi f t is the energy at the r = rcutoff and rcutoff = 2.5. All other interactions are treated
with the purely repulsive WCA potential (Eqn. 5.2), appropriately radially-shifted to account
for excluded volume. Simulations were performed using Brownian dynamics, where the
volume fraction of individual beads was varied between 0.25 ≤ φ ≥ 0.30. Systems were
found to order at approximately T ≤ 1.

The general simulation procedure used is as follows. We start with a disordered mixture
of mono-TNS above the order-disorder temperature, where little-to-no aggregation occurs.
We then incrementally cool the system, allowing our simulations to run for several million
timesteps at each temperature, monitoring system potential energy to ensure we have reached
a steady state before subsequent cooling.

Simulations were typically run for approximately 40 million timesteps. Multiple indepen-
dent cooling sequences (i.e. different cooling rates) were performed to ensure reproducibility
of results. Simulations were performed in systems of 2500 building blocks in cubic boxes
(22500 total beads) and 5000 building blocks in boxes with aspect ratio 2:2:1 (45000 total
beads). While still relatively coarse-grained in their detail level, the mono-TNS model is
more computationally expensive than the model micelle system; the model micelle system
only considers the outermost surface layer of the micelles, whereas the mono-TNS model
additionally incorporates the particles that make up the micelle core.
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Di-TNS

Di-TNS are modeled in much the same way as mono-TNS described above. Chains com-
posed of 4 beads of diameter σ are connected via FENE springs (Eqn. 5.3). Two chains are
connected to a single nanosphere of diameter D = 2.0σ , diametrically opposed. This planar
angle of 180 degrees between the chains is maintained by the use of a standard harmonic
spring (Eqn. 5.1) between the first beads of the two polymers. The two polymer chains are
chemically distinct. One chain is considered to be solvent-phobic (i.e. attractive), and thus
is treated with the LJ potential (Eqn. 5.4). The other chain is considered to be solvent-philic
(i.e non-attractive) and treated with the WCA potential (Eqn. 5.2). Nanosphere-nanosphere
interactions are modeled with the LJ potential, appropriately radially-shifted to account for
excluded volume. All other interactions are modeled by the WCA potential, appropriately
radially-shifted. Simulations were performed using Brownian dynamics, where the volume
fraction of the individual beads was set to φ = 0.20. The systems were found to order at T ≈
1.2. The general di-TNS simulation procedure matches the mono-TNS procedure described
above.
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Figure 5.11 Histogram of asphericity, as, of the di-TNS micelles. Two representative micelles at
different levels of as are inset in figure, along with a schematic of the sigma tiling, formed by the
di-TNS.

The micelles formed by the di-TNS are roughly spherical in nature, however a subset of
micelles possess distinct shape polydispersity. A representative histogram of the asphericity
of the di-TNS micelles is plotted in Fig. 5.11, closely matching the mono-TNS histogram
plotted in the main text.
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Lattice Potential Energy Calculations

Some simple insight into the effect of shape polydispersity can be obtained by computing
the lattice potential energies for several different crystal structures as a function of the
fraction of dimer particles, fdimer. For our study we use the A15, bcc, fcc, hcp, σ , and Z
structures, as well as the two higher order quasicrystal approximants discussed below. Our
calculations involve running a short canonical (NVT) MC simulation at constant density,
where particles are allowed to rotate about their lattice positions, and dimers are allowed to
swap with monomers. Particles are not permitted to translate. The system temperature is
held constant at T=1.0 for all runs. For each calculation, we perform a long equilibration
run to slowly step down the density from an initially sparse state of ρ = 0.1. This allows the
dimers to rearrange to their equilibrium lattice positions and rotations so that the system
does not become trapped in a metastable state.

Free Energy Calculations for Model Micelles

To study the effect of surface particle mobility, we compute the relative change in Helmholtz
free energy F as a function of the strength of the harmonic springs k that tether particles
to the surface of the model micelles, as defined in Eqn. 5.1. To do so, we use free energy
perturbation with changing parameter k. For each crystal structure, we run 8 separate stages
k = [3,4, ...10] where we calculate the ensemble average:

Fk j −Fki = −kBT ln
〈

exp
(
−

Uk j −Uki

kBT

)〉

k=ki

. (5.5)

Here, the per molecule potential energy difference Uk j −Uki is computed by evaluating the
energy with different k using configurations in the ensemble k = ki. The total free energy
change is reported with respect to a reference point at kref = 10 chosen because all crystals
remain physically stable up to this point. The free energy change for a given value of the
spring strength k is then given by:

∆Ffw(k) =
kref−1

∑
ki=k

Fki −Fki+1 (5.6)

Equivalently, we can compute the free energy change by:

∆Fbw(k) =
kref

∑
ki=k+1

−(Fki −Fki−1) (5.7)
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In practice, we ensure that both the forward and reverse calculations are equivalent to rule
out the possibility of asymmetric bias [204]:

∆F(k) = ∆Ffw(k) = ∆Fbw(k) (5.8)

The calculations are carried out for NVT MD trajectories created using LAMMPS [148],
as outlined above. For each lattice structure, independent MD simulations are carried out
for each stage, all of which have a different value of k. The lattice positions are given
by the A15, bcc, fcc, hcp, σ , and Z lattices, as well as the two higher order quasicrystal
approximants discussed above. All lattices contain between 1000 and 2000 particles. For
each simulation, a sparse system is slowly compressed to a target density with particles fixed
to their lattice positions with strong springs. The springs are then released, and the system is
equilibrated for 2.5 million MD steps, followed by a production run of length 5 million MD
steps. For each window we compute 10,000 values of the energy difference

Uk j−Uki
kBT .

Free Energy Calculations for Sphere-Dimer Mixtures

To study the effect of mixing dimers with spherical particles, we calculate the Helmholtz
free energy F as a function of dimer fraction fdimer. How we compute F depends on the
particular system under investigation. For systems that are relatively stable in FK structures
without any dimers, such as the Dzugutov (DZ) system, we use a two-step thermodynamic
integration (TI) scheme.

In step I, we compute the free energy difference between a non-interacting harmonic
(Einstein) crystal and a system of spherical particles interacting with the chosen pair poten-
tial using the standard Frenkel-Ladd method [140]. To do so, we simulate a system with a
potential energy function given by:

U(λ )I = U0 +(1−λ )(U −U0)+λ
N

∑
i=1

α(ri − r0,i)2 (5.9)

Here, λ is a switching parameter λ ∈ [0,1] that changes the system between the Einstein
crystal and the system with pair interactions. The Einstein crystal spring constant is given by
α . The variable U is the system energy evaluated for the pair potential, U0 is the potential
energy of the system when all particles sit at their lattice positions, given by r0,i. The lattice
positions are given by the A15, bcc, fcc, hcp, σ , and Z lattices, as well as the two higher
order quasicrystal approximants. All lattices contain between 1000 and 2000 atoms. We
perform thermodynamic integration by integrating over the derivative of the energy function:
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∆FI =
∫ λ=0

λ=1
dλ
〈

δU(λ )
δλ

〉

λ
=

〈

∑
i

α(ri − ri,0)2 − (U −U0)

〉

λ

(5.10)

Here, we run a series of NVT MC simulation with the energy functions U(λ ), with λ incre-
menting from 0 to 1, and at each point evaluate the derivative given in equation 5.10. Each
simulation is started from an ideal lattice and then equilibrated before collecting statistics.
The derivative is evaluated for 20 independent simulations total, with small increments dλ
at the interval endpoints 0, 1 where the derivative changes the fastest.

In the second step of our TI scheme, we compute the work required to change a given
fraction, fd of the spherical particles in the system into dimers. We consider a system with
the energy function:

U(λ )II = (1−λ )Upure +λUmix (5.11)

The free energy required to change the pure system to the binary mixture is the integral over
the derivative with respect to the switching parameter λ :

∆FII =
∫ λ=0

λ=1
dλ
〈

δU(λ )
δλ

〉

λ
=
〈
Umix −Upure

〉
λ (5.12)

Again we run 20 independent MC simulations for different values of λ . For each simulation,
we slowly compress systems to their target density while allowing particle rotations and
swaps, similar to our lattice energy calculations above, to avoid falling into metastable traps.
Each simulation is then equilibrated at the target density, and statistics are collected. Our
total free energy for the binary mixture is the given by the free energy sum of the two stages,
plus the reference Einstein crystal:

∆F = ∆FEin +∆FI +∆FII (5.13)

This method is accurate when the pure component system (i.e., all spherical particles)
acts approximately as an Einstein crystal, but fails otherwise. In the latter case, the values of
the derivative in step I become exorbitantly high, leading to significant numerical error in
evaluating the derivative. This is indeed the case for the WCA and LJ systems; the lattices
for the FK structures are highly distorted, and do not exhibit harmonic vibrations about the
ideal lattice positions. To address this, we add an additional step to our TI scheme. We first
carry out steps I and II as before, for an interaction potential that gives harmonic behavior,
such as the DZ system. Then, we compute the work required to change the potential from
DZ to the target potential, such as the WCA potential. This involves computing the energy
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function:
U(λ )III = (1−λ )UDZ +λUWCA (5.14)

The free energy difference for changing potential is given by integrating over the derivative
with respect to the switching parameter λ :

∆FIII =
∫ λ=0

λ=1
dλ
〈

δU(λ )
δλ

〉

λ
= 〈UWCA −UDZ〉λ (5.15)

Again we run 20 independent MC simulations for different values of λ . Since each simula-
tion starts with a given fraction of dimers added during step II, we again slowly compress
each system with particles constrained to their lattice positions allowing rotations and swaps
before equilibrating at constant density. The total free energy for the binary mixture for
which the pure system exhibits anharmonic behavior is given by:

∆F = ∆FEin +∆FI +∆FII +∆FIII (5.16)

This formula is used to evaluate F for the WCA system, shown in Fig. 3 in the main text.

5.2.7 Supplementary Information: Finite Size Scaling For the Do-
decagonal Quasicrystal

Quasicrystals cannot be explicitly simulated in finite molecular simulations, since structures
with periodic boundaries inevitably repeat and are therefore technically crystalline. Some
insight can be gained into properties of the quasicrystal, such as the free energy, by consid-
ering how properties change when we incrementally approach a quasicrystalline structure.
This can be accomplished by constructing increasingly higher order approximants. This
can be accomplished for the dodecagonal quasicrystal, for example, by the method of [206].
Fig. 5.12 shows a series of four approximants of increasing order used in this study, along
with a dodecagonal quasicrystal formed by the Dzugutov system. Each subsequent inflation
gives a structure closer to a quasicrystal. That is, each higher order approximant more
closely approximates 12-fold rotational symmetry, as shown by the diffraction patterns.

In our studies of the lattice energy and free energy for different structures, we note how
the quantities change as we increase the approximant order. All of the quantities that we
study tend to converge to very similar values for the sigma structure and the two higher order
approximants. We label these values the “dod” phase in the text, because we estimate that
their values are close to what we would obtain for an infinite square-triangle quasicrystal. Of
course, quasicrystals can have many different types of local isomorphism (LI) groups, and
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Figure 5.12 Dodecagonal quasicrystal approximants of increasing order, with associated diffrac-
tion patterns shown to the right. (a) A15 structure, (b) σ structure, (c) a higher order approximant,
(d) an increasingly higher order approximant, and (e) a dodecagonal quasicrystal structure formed by
the Dzugutov potential.

the quasicrystal-like structures obtained from assembly simulation contain different tiles,
such as rhombs, shields and asymmetric hexagons, as shown in Fig. 5.12e. The investigation
of such structures is beyond the scope of this study, but future studies could implement a
similar methods as those described here to estimate their properties.

5.2.8 Supplementary Information: Stabilization of FK Phases in the
Sphere-Dimer Mixture

For our primary analysis, we chose a particular system and set of conditions for studying
the sphere/dimer binary mixture. We used the WCA system with T = 0.25, ρ = 0.9, and
dimer size 1.5σ , where monomers making up the dimer are separated by rsep = 0.5σ . These
choices are largely arbitrary; T = 0.25 and ρ = 0.9 provide a reasonable statepoint where
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the structures are stable for all dimer fractions 0 < fdimer < 0.5, and rsep = 0.5σ is chosen
to make the model intuitive; other parameter choices and systems can also be studied. In
this section, we study the effect of changing parameters on the results of our analysis, and
see that the main result that we obtain, that adding aspherical particles to systems of spheres
greatly enhances the stability of FK phases, is highly general.

Effect of Particle Interactions
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Figure 5.13 Effect of particle interactions. The graphs show the Helmholtz free energy F compared
the hcp crystal for three systems with three different sets of particle interactions. Notice that the
addition of dimers stabilizes FK structures relative to the fcc,hcp and bcc structures for all of the
systems.

The first parameter that we consider is the effect of the pair potential used to model
the particle interactions. In our representative test system from the main text, we used the
WCA soft-sphere potential, and showed that adding dimers enhances the stability of FK
structures relative to the more usual fcc, hcp, and bcc crystal structures. Fig. 5.13 shows
that we obtain similar results for two other potentials: the Dzugutov system, for which FK
phases are already stable without dimers, and the LJ system, for which FK phases have
never been observed in the monatomic system.

These results support out conclusion in the main text that the mechanism by which
dimers stabilize FK phases over ordinary crystals is based on packing and excluded volume
interactions, since our results are not impacted by longer-range differences in the interaction
potential. Short range differences, such as the hardness or softness of the excluded volume
component of the potential, may indeed play a role. For the three potentials shown, the
excluded volume term is equal to or similar to a r−12 repulsive interaction.
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Figure 5.14 Effect of dimer size. The graphs show the Helmholtz free energy F compared the hcp
crystal for the WCA system at T = 0.25, ρ = 0.9 with three different dimer sizes: 1.4σ , 1.5σ , 1.6σ .
Notice that although all dimer sizes stabilize FK structures relative to ordinary crystals, the size of
the dimer does effect the relative stability between different FK structures.

Effect of Dimer Size

Another parameter that we consider is the effect of the aspect ratio of the dimers. In our
representative test system from the main text, we use a dimer-to-sphere aspect ratio of 1.5 : 1.
Thus, the dimer length rdimer is 1.5σ . Fig. 5.14 shows the Helmholtz free energy F as a
function of the dimer fraction for three different values of the dimer size rdimer for the WCA
system at T = 0.25, ρ = 0.9. We observe that all dimer sizes stabilize FK structures relative
to ordinary crystals; however, the larger dimers tend to favor the Z structure and, to a lesser
extent the A15 structure.

The stabilization of the Z structure for larger dimers can be explained by the structural
composition of the different FK crystals shown in Fig. 3 of the main text. For larger dimer
aspect ratios, the dimers have a strong preference for the larger Z15 coordination polyhedra,
which are only present in systems with triangle tiles, such as the Z and σ structures. For
smaller aspect ratios, dimers don’t have a strong preference between Z14 and Z15 polyhedra,
and the relative energy of square and triangle tiles depends on other factors. There is not
an obvious explanation for why the A15 structure increases slightly in stability relative to
the σ structure for larger dimer sizes, since the σ structure contains more triangle tiles, and
therefore more Z15 polyhedra. The answer may require an analysis of second-order packing
effects of the dimers, spanning over multiple neighbor shells and is beyond the scope of our
study. Our results imply that it may be possible to control the formation of different FK
structures by adding dimers of different sizes in particular ratios. We leave this topic for
future investigation.
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Figure 5.15 Effect of temperature. The graphs show the Helmholtz free energy F compared the
hcp crystal for the Dzugutov system for ρ = 0.9 and rdimer = 1.4 at a low T , T = 0.25 and a moderate
T , T = 0.5. Notice that the σ and Z structures become increasingly stable at higher T , indicating
that they are more entropically favorable than the A15 structure.

Effect of Changing Temperature

Another parameter that we consider is the effect of the temperature. Fig. 5.15 shows the
free energy F as a function of the dimer fraction for the Dzugutov system at ρ = 0.9 for
two different temperatures. The plots shows similar trends at both temperatures, but the σ
and Z structures become relatively more stable than the bcc and A15 structures at higher T .

Our results indicate that the σ and Z structures may be more entropically favorable
than the A15 structure, which may be relatively favorable energetically. This can again be
explained by the structural composition of the different FK crystals shown in Fig. 3 of the
main text. For the σ and Z structures with large Z15 coordination polyhedra, dimers may
have more room to sample configuration space thus increasing the entropy relative to the
A15 structure.

Dzugutov Stability Range

In our study of the model micelle system, the mobile surface particles on the spherical
micelles lower the stability gap between FK phases and the more usual fcc,hcp and bcc
crystals. However, this effect is not sufficient to stabilize FK structures outright for the
statepoints that we considered. We can create a similar situation for the Dzugutov system by
increasing the density above the point at which FK structures are typically stable. Fig. 5.16a
shows the potential energy U as a function of density for the Dzugutov system without
dimers. In terms of energy, the ideal density for FK structures is around ρ = 0.7− 0.8.
For higher densities, the bcc structure becomes more stable, followed by close-packed
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Figure 5.16 Extending the FK stability range by adding dimers for the Dzugutov system. (a) The
potential energy as a function of density for the Dzugutov system without dimers for different crystal
structures. (b) The Helmholtz free energy F compared the hcp crystal for the Dzugutov system at
T = 0.5, ρ = 0.95 and rdimer = 1.5 as a function of dimer fraction. Notice that the dimers stabilize
FK structures, even though they increase the packing fraction, which, as shown in part (a), tends to
destabilize FK structures if no dimers are present.

fcc/hcp structures at even higher densities. Fig. 5.16b shows the Helmholtz free energy F
compared the hcp crystal for the Dzugutov system at T = 0.5, ρ = 0.95 and rdimer = 1.5 as
a function of dimer fraction. We observe that the dimers stabilize FK structures, even though
they increase the packing fraction, which, as shown in Fig. 5.16a, tends to destabilize FK
structures if no dimers are present.
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Chapter 6

Forming Amorphous Solids

The glass transition has been studied for over 50 years; however, exciting new findings
regarding glassy supercooled liquids are presented each year. In this chapter, we present two
case studies that contribute to the vast body of research on this topic. In the first study, [A.S.
Keys, A.R. Abate, S.C. Glotzer, and D.J. Durian, “Measurement of Growing Dynamical
Length Scales and Prediction of the Jamming Transition in a Granular Material,” Nature
Physics (2007)] [31], we investigate the interesting connection between SHD in supercooled
liquids, and heterogeneous dynamics observed in dense granular materials near the onset of
“jamming.” Our study demonstrates that in both a qualitative and quantitative sense, particle
dynamics in granular systems are indistinguishable from particle dynamics in supercooled
liquids approaching a glass transition. A perspective on this study is given in reference [211].
Our second study, [A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, and D. Chandler,
“Structure of Localized Excitations and Relaxation in Supercooled Glass-Forming Liquids”
(2011)] [36] (pending publication), addresses the problem of extracting the elementary
particle motions from atomistic systems. In doing so, we find a detailed physical connection
between atomistic systems and the theory of kinetically constrained models (KCMs) (see
section 2.4.2). We find that theoretical arguments developed by studying (KCMs) can
be accurately applied to describe the particle dynamics and bulk relaxation properties of
fully-atomistic model glass formers. We note that this study is still evolving, and the work
that we present in section 6.2 is not yet finalized.

6.1 Measurement of Growing Dynamical Lengthscales
and Prediction of the Jamming Transition in a Granu-
lar Material

Supercooled liquids and dense colloids exhibit anomalous behaviour known as “spatially
heterogeneous dynamics” (SHD), which becomes increasingly pronounced with approach
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to the glass transition [67, 212, 64]. Recently, SHD has been observed in confined granular
packings under slow shear near the onset of jamming, bolstering speculation that the two
transitions are related [213,66,65]. Here, we report measurements of SHD in a system of air-
driven granular beads, as a function of both density and effective temperature. On approach
to jamming, the dynamics become progressively slower and more spatially heterogeneous.
The rapid growth of dynamical time and length scales characterizing the heterogeneities can
be described both by mode-coupling theory [92] and the Vogel-Tammann-Fulcher (VTF)
equation [79], in analogy with glass-forming liquids. The value of the control variable at
the VTF transition coincides with point-J [214, 215] the random close-packed jamming
density at which all motion ceases, indicating analogy with a zero temperature ideal glass
transition. Our findings demonstrate further universality of the jamming concept and provide
a significant step forward in the quest for a unified theory of “jamming” in disparate systems.

6.1.1 Introduction and Motivation

At low temperature, high density, and low driving, the constituent particles in supercooled
liquids [67], dense colloids [212,64], and granular packings [213,66,65], respectively, are
nearly locked into a single disordered configuration in which motion is heterogeneous in
space and time. Dynamics in these systems may be governed by proximity to a generic
“jamming transition [216]”, beyond which rearrangements cease and the viscosity diverges.
Key features of SHD on approach to the transition include unusual correlations [167] in
which particles move in one-dimensional paths (“strings [73]”) that aggregate into clus-
ters [74], and dynamical correlations as measured by a dynamic four-point susceptibility
χ4 [75, 76,174]. Clusters of strings arise naturally in dynamic facilitation [105,106] theory
and the random first-order theory of glasses [101]; their shape reflects the fractal nature of
dynamical motion in these systems [217]. Strings are also a crucial ingredient in a recent
theory of liquid dynamics near the glass transition [102].

Recent studies demonstrate that close-packed granular systems under slow shear exhibit
SHD as well [213, 66, 65], bolstering speculation that liquids and granular matter share
dynamical similarities on approach to the jammed state. However, the universality of the
jamming hypothesis has not yet been tested in terms of variation in the hallmark dynamical
heterogeneities as a function of the control parameter. Here, we present the first simultaneous
measurements in any experimental system of the growth of the cluster correlation length,
string length, four-point correlation length, and their characteristic timescales by varying
the control parameter. We show that the SHD observed in a far-from-equilibrium, athermal
system of air-fluidized granular beads is essentially indistinguishable from that observed in
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thermal systems like supercooled liquids and dense colloidal suspensions. Moreover, we
show that theoretical models developed for the glass transition can be used to describe our
granular system, and predict a mode-coupling like transition and, more importantly, the jam-
ming transition packing fraction, known as point-J [214, 215] from quantities characterizing
SHD.

6.1.2 Experimental Setup

We characterize the spatiotemporally heterogeneous nature of dynamics in an athermal,
far-from-equilibrium system of air-driven steel spheres on approach to jamming. Compared
to sheared or shaken granular systems, in which energy is injected at the boundaries, in
air-driven systems the energy input is uniform in space and time. Our granular system con-
sists of a 1:1 bidisperse mixture of steel beads of diameters ds = 0.318 cm and dl = 0.397
cm, with respective masses of 0.130 gm and 0.266 gm, confined to a circular region of
diameter 17.7 cm. The packing density is varied from an area fraction of φ = 0.597 to
φ = 0.773 by changing the total number of beads from 1470 to 1904. Bead motion is
restricted to rolling within a horizontal plane, and is excited by an upward flow of air at a
fixed superficial flow speed of 545 cm/s. Bead positions are identified by reflecting light
from their chrome surface to a camera three feet above. The duration of experimental runs
is 20 minutes. By contrast with the molecules in a supercooled liquid, here the particles
are macroscopic objects driven at random by a continuous input of energy. Consequently
the speed distributions are non-Maxwellian, and the average kinetic energies of the two
bead species are unequal. Nevertheless, as reported previously [218], the system mimics a
simple liquid for low φ and exhibits tell-tale changes in the average structure and dynamics
at increasing packing densities.

6.1.3 Spatially Heterogeneous Dynamics

Dynamical characteristics for an example case, φ = 0.773, are displayed in Fig. 6.1a-d.
The mean-squared displacement versus time interval (delay time), Fig. 6.1a, averaged over
all start times and all beads, is perhaps the most familiar quantity. It shows ballistic mo-
tion at short times, diffusive motion at late times, and a plateau of sub-diffusive motion
at intermediate times that is indicative of caging. While informative, the mean-squared
displacement cannot distinguish uniform from heterogeneous dynamics. For this, we per-
form three measurements developed for supercooled liquids. The first involves clusters
of beads that are “mobile,” i.e. which have displacements ranking among the top 10% of
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all bead displacements in a given delay time [166] (in this system, 10% gives the largest
distinction between mobile and immobile beads at all packing densities). The configuration
displayed in Fig. 6.1e, where beads are colour-coded according to mobility, demonstrates
that the mobile beads are not distributed at random; rather, mobile and immobile beads are
clustered and spatially separated, indicating spatially heterogeneous dynamics. One measure
of SHD is thus the average size of mobile clusters, Sc(t), defined as the average number of
neighbouring mobile beads for a given time interval t. The motion within a mobile cluster,
shown by the displacement vectors in Fig. 6.1e, tends to be correlated into quasi-1d paths
called “strings [73].” Thus a second measure of SHD is the average string length, Ls(t),
defined in terms of the number of beads that, within a time interval t, replace the initial
positions of neighbouring beads to within a tolerance of 0.3ds [73]. Yet a third measure of
SHD may be constructed from a four-point susceptibility χ4(t), which measures the extent
to which the dynamics at any two points in space are correlated within a time interval [75].
The self-contribution χSS

4 (t) dominates the general result [76] and is computed from the
variance of the self overlap order parameter qS(t), which decays from one to zero:

χSS
4 (t) = N

[〈
qS(t)2〉−

〈
qS(t)2〉] . (6.1)

Here, N is the total number of beads, and qS(t) is defined as:

qS(t) =
1
N

N

∑
i=1

w(|ri(t)− ri(0)|) . (6.2)

The overlap parameter w is defined by:

w =





1 |ri(t)− ri(0)| < 0.5ds

0 |ri(t)− ri(0)| ≥ 0.5ds.
(6.3)

Here, ri(t) is the position of bead i at time t; averages are taken over all beads and over all
start times.

The example results in Fig. 6.1b-d for the cluster size Sc(t), the string length Ls(t),
and the four-point susceptibility χ4

ss(t), all exhibit well-defined peaks as a function of time
interval, as found in glass-forming liquids. The locations of the peaks indicate the time
interval over which the dynamics are most heterogeneous, and the heights of the peaks
indicate the spatial extent or “strength” of the heterogeneities. As with glass-forming liq-
uids [74, 170, 71, 72] and colloids [64], the cluster size and string length are largest at the
crossover between caged and diffusive motion, while χ4

ss(t) (and χ4(t)) peaks later, in the
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Figure 6.1 (a) Mean square displacement. (b) Number average mobile bead cluster size Sc(t). c)
Number average string length Ls(t). (d) Self contribution to the four point susceptibility χ4

ss(t). (e)
An instantaneous bead configuration where the colouring of beads indicates the mobility over a time
interval of 12s (the timescale for both maximum cluster size and string length). The 10% most mobile
beads are red; note that they form clusters. Beads moving in strings have vectors superimposed to
indicate their directional motion. Note that the dynamics are spatially heterogeneous.

so-called alpha or structural relaxation regime [76, 69]. The athermal air-fluidized beads
therefore exhibit spatially heterogeneous dynamics that is identical to thermal glass-forming
systems with respect to these three measures.

6.1.4 Dynamics as a Function of the Control Parameter

Now that spatially heterogeneous dynamics are established for gas-fluidized beads, we turn
to their variation as a function of control parameter. The distribution of cluster sizes at the
peak time interval, shown in Fig. 6.2a for three different packing densities φ , approaches a
power-law as φ is increased. This is consistent with the percolation of mobile bead clusters;
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Figure 6.2 (a), (b) Distribution of (a) cluster sizes and (b) string lengths for three values of control
variable φ . The cluster size distribution approaches a power law with increasing φ (solid lines
indicate fit by power law multiplied by an exponential cutoff), while the string length distribution is
exponential.

similar power-laws have been observed in colloids [64] and in simulations of supercooled
liquids [74, 170, 71] near the mode-coupling temperature. Furthermore, the distribution of
string lengths at the peak time interval, shown in Fig. 6.2b, is exponential, , at all values of
φ , where l0 is set by the average string length. This is consistent with behaviour reported in
simulations of several supercooled liquids [73, 71, 219]. We note the average cluster size is
not much larger than the average string length, although the largest clusters observed ( 100
particles) are substantially larger than the largest string observed ( 30 particles) (not shown).

Results for Sc(t), Ls(t), and χ4
s s(t) vs t are displayed in Fig.6.3a-c for a sequence of

different packing densities φ . When beads are added to the system, the average effective
temperature also decreases, resulting in a trajectory in the (φ ,Teff ) phase diagram that heads
towards point-J, the zero-temperature jamming transition previously found for this system
at φ = 0.83, which is coincident with the packing density at which the system is random
close-packed. As the motion becomes more restricted, the peaks in all three measures
of SHD grow and move to later times. Therefore, the dynamics not only slow down but
also become more heterogeneous on approach to point-J. Since the SHD functions have
approximately the same shape when viewed on a log-log plot (see data collapse in insets of
Fig. 6.3a,b), this behaviour is fully characterized by the φ -dependence of the characteristic
or peak time scales {t∗Sc, t

∗
Ls and t∗χ4} and length scales {ζSc(t∗Sc),ζLs(t∗Ls) and ζχ4(t∗χ4)}. The

length ζLs(t∗Ls) ∝ Ls is a correlation length for stringlike motion, ζSc(t∗Sc) ∝ Sc is a correlation
length of mobile particle clusters, and is a correlation length [65] of clusters of caged
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Figure 6.3 (a) Cluster size, (b) string length, and (c) self contribution to the four-point susceptibil-
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collapse of all data sets upon scaling by the peak heights and peak times.

particles. On approach to point-J, both the characteristic times and the correlation lengths
appear from Fig. 6.3 to grow without bound. This is reminiscent of behavior for supercooled
liquids as temperature is lowered. Though very different, both types of systems appear to
approach an unusual critical point where the growing length scale is purely dynamical, such
that there is no macroscopic change in instantaneous structure [67, 220, 221, 222].

6.1.5 Analogies with the Supercooled Liquids

To further quantify this analogy, the growth of the characteristic timescales and dynamical
length scales is shown in Fig. 6.4a-d as a function of packing density. Motivated by recent
studies [171, 94, 95] predicting a power law divergence of dynamical lengthscales from
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mode coupling theory [92] (MCT), as well as earlier applications of MCT to liquids and
colloids, we fit all data to a power-law of the form 1/ |φ/φc|x, where both φc and x are
adjustable parameters. As seen in Fig. 6.4a,b, excellent fits are obtained to all data for a
single value φC = 0.79±0.02. This value of φ lies well above the onset of caging and is
less than the jamming packing fraction, in analogy with well-established findings that the
mode-coupling temperature is below the caging transition but above the glass transition
temperature [92, 93], and demonstrates for the first time a mode-coupling-like transition in
a granular system. In addition to MCT, the glass transition can also be well-described by
the Vogel-Tammann-Fulcher (VTF) equation [79]; therefore, we also fit the characteristic
time and length scales to the form exp(E/ |φ/φ0 −1|) , where E and φ0 are adjustable
parameters. As seen in Fig. 6.4c,d, excellent fits are obtained to all data for a single value
φ0 = 0.84±0.02, consistent with the value of random-close packing for the bead system
and the value of point-J. Since random close packing is the densest random packing possible
and the point at which all motion ceases, a VTF packing fraction of φRCP is analogous
to an effectively zero-temperature ideal glass transition, consistent with the definition of
point-J. This is the first prediction of point-J in a granular system from analysis of spatially
heterogeneous dynamics.

6.1.6 Results and Conclusions

Our study implies that the behaviour of jammed systems, both thermal and athermal alike,
may be understood using the theoretical tools developed for liquids. This, in turn, highlights
the importance of packing in the underlying physics of the glass transition and jamming.
Our results open the door to future theoretical insight into the relationship between granular
materials and supercooled liquids, which might be united by a unified theory of jamming.

6.2 Structure of Localized Excitations and Relaxation in
Supercooled Glass-Forming Liquids

For several atomistic models of glass formers, at conditions below the glassy dynamics
onset temperatures, To, we use importance sampling of trajectory space to study the struc-
ture, statistics and dynamics of localized excitations, all of which we relate to dynamic
heterogeneity. We define excitations in terms of irreversible particle displacements. At
super-cooled conditions, we find that these excitations are associated with correlated particle
motions that are sparse and localized, with an average radius that is temperature independent
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and no larger than a few molecular diameters. As a function of temperature, T < To, the
equilibrium concentration of these excitations is proportional to exp[−Ja(1/T − 1/To)],
where a is the lengthscale of the irreversible displacement. The energy scale Ja grows
logarithmically with a, in a way that is consistent with a scenario of hierarchical dynamics.
In the low-temperature regime, excitation dynamics is facilitated by the presence of other
excitations, causing dynamics to slow in a hierarchical way as temperature is lowered. The
resulting mean equilibrium relaxation time is proportional to exp[J2(1/T −1/To)2]. The
quantities J and To are material properties that depend upon molecular density
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6.2.1 Introduction

Supercooled glass-forming liquids exhibit an assortment of behaviors indicative of highly
correlated and complex microscopic dynamics [223, 224, 225]. These include spatial het-
erogeneity and super-Arrhenius growth of relaxation times with lowering temperature.
Theoretical treatments fall largely into two classes. In one, originating with Adam and
Gibbs [96], a super-cooled liquid is a mosaic of structured domains, and relaxation follows
from reorganizing these domains [226]. In the other, the material contains a gas of point-like
defects [103], and relaxation follows from hierarchical dynamics [227], where defects facili-
tate [228] the creation and destruction of neighboring defects. In the former case, dynamics
slows because mosaic domains grow, while in the latter, dynamics slows because defect
separations grow. While there is significant support for both perspectives, the most basic
underlying features – the mosaic in the former and localized excitations in the latter – have
yet to be demonstrated. Here, we use computer simulation and importance sampling to
address this shortcoming in our understanding.

We have considered the molecular dynamics of three different atomistic models. For
each, we ask the question: How does an atom move between distinct neighboring positions?
We are able to answer this question with the method of transition path sampling [60]. In
particular, molecular reorganization in a super-cooled liquid is a rare event, and transition
path sampling harvests ensembles of trajectories exhibiting such events. It is an importance
sampling that preserves an equilibrium distribution of trajectories, and it is free of pre-
conceived notions of mechanisms. Applying this technique, we find three important results:
(1) Irreversible particle movements – what we call “excitations” – are associated with the
correlated displacements of only a handful of neighboring particles. These displacements are
closely related to the micro-strings [229] discovered in earlier computer modeling studies
of dynamic heterogeneity. (2) At super-cooled conditions, i.e., at temperatures below that
of the onset temperature, To, excitations are sparse. They arise in localized regions of
relatively high mobility whose size is largely independent of temperature, and whose spatial
distribution is that of an ideal gas. (3) For a given displacement length a, the concentration
of excitations, ca, has a Boltzmann temperature dependence

ca ∝ exp

[
−Ja

(
1
T
−

1
To

)]
, T < To (6.4)

where Ja, like To, is a material property depending upon the model and the density of the
model. The energy scale Ja varies logarithmically with a, in a way that is consistent with
a scenario of hierarchical dynamics [227], where excitations on smaller lengthscales and
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timescales facilitate excitations on larger lengthscales and timescales. For a given material,
these constants Ja and To are directly related to those used to fit super-Arrhenius relaxation
times according to a parabolic law [107]

τ
τo

≈ exp



J2

(
1
T
−

1
To

)2

 , T < To (6.5)

where τo is the relaxation time at the onset temperature.
These results support the picture of facilitating localized defects or excitations [230]. In

addition, by providing a microscopic recipe for computing c and thereby predicting τ , the
results demonstrate a microscopic procedure for deriving the local excitation picture from
atomistic models. These findings do not exclude the possibility of a correct mosaic model,
but a link between mosaics and localized excitations is currently unknown. Our results show
that the principal growing length associated with growing time scales is the mean distance
between excitations, l = c−1/d , where d is the system dimensionality. Relaxation slows as
the scarcity of excitations grows. A connection between the local excitations and mosaics
would need to relate l to the size of mosaic elements.

6.2.2 Definition of Excitations

The excitations that we consider are the dynamical events associated with microscopic
particle displacements maintained for a significant period of time. These displacements
coincide with transitions between two adjacent basins of a potential energy landscape, and
they are distinct from fleeting intra-basin vibrations. Inherent structures [231] provide one
way to distinguishing the former from the latter. The inherent structure of a configuration of
an N-particle system at time t is obtained by steepest descent to the nearest minimum in the
potential energy landscape [151]. The inherent structure evolves as dynamics progresses,
but intra-basin vibrations are not apparent in that evolution. Excitations are present when
the dynamics produces significant change in particle positions in the inherent structure.

We detect these motions from the behavior of the functional of path hEx[x(t)], where

hEx[x(t)] =






1 if |r̄1(t)− r̄1(0)| ≈ 0, 0 < t < ts

and |r̄1(t)− r̄1(0)| ≥ a, ∆t + ts < t < ∆t +2ts

0 otherwise.

(6.6)

Here, x(t) = [r1(t),r2(t), . . . ,rN(t)] refers to the net configuration of the system at time t,
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the corresponding inherent structure is x̄ = [r̄1(t), r̄2(t), . . . , r̄N(t)], and r̄1(t) refers to the
position of a tagged particle, particle 1, in the inherent structure of x(t) Employing hEx[x(t)]
presumes that a trajectory has run for at least the time frame from t = 0 to t = ∆t +2ts . The
functional is 1 when an excitation appears during this time, and it is zero otherwise. An
excitation is thereby characterized by three periods: During the first, 0 < t < ts , the inherent
structure of the tagged particle remains at its initial point; following this sojourn, the system
undergoes a transition that lasts up to a time ∆t, after which the tagged particle is found in a
distinctly different position for another relatively quiescent period.

This definition of an excitation introduces a displacement length, a, a transition time, ∆t,
and a sojourn time, ts (see Fig. 6.5a). The length a is set to facilitate reasonable statistics
and to ensure that excitations are associated with no more than one inter-basin crossing,
and should be small enough so as to not exclude too many examples of excitations. At the
same time, if a is too large trajectories leaving one basin will be captured for long periods
of time in intermediate basins; separations in time scales will be obscured, and the average
of hEx[x(t)] will fail to exhibit linear growth with time after a transient time [232]. For the
systems that we consider here, taking a to be on the order of one particle diameter σ proves
to be a satisfactory choice.

The transition time ∆t is allowed to vary in transition path sampling [233] so that dy-
namics determines a distribution of these times without pre-conceived notions of how it
should behave. In the parlance of rare-event dynamics, ∆t is the plateau or commitment
time [234, 235] – its mean being the average time scale for committing to one basin or the
other when traversing the transition state separating two basins. The sojourn time ts is set
to a reasonable timescale over which the particle can be determined to be in a quiescent
state. To properly enforce this criterion, this timescale must be at least of the order of the
commitment time; thus a reasonable value for ts is given by the mean commitment time
ts ≈ 〈∆t〉. Since 〈∆t〉 is not typically known, a priori, ts is determined by trial and error. For
the systems we have studied for this paper, at super cooled conditions, the typical mean and
variation of ∆t is very much smaller than structural relaxation times. Therefore, over these
timescales the time-coarse grained dynamics differs little from that of inherent structure
dynamics,

x̄(t) ≈ 1
ts

∫ 1
2 ts

− 1
2 ts

dt ′x(t + t ′). (6.7)
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6.2.3 Transition Path Sampling

With excitations defined, we have used the methods of transition path sampling to harvest
trajectories with the probability

P[x(t)] ∝ P0[x(t)]hEx[x(t)] (6.8)

where P0[x(t)] is the equilibrium probability for a trajectory, and hEx[x(t)] is the non-
equilibrium factor that limits the ensemble to trajectories that exhibit an excitation. In
practice, this is done by first equilibrating the system with a trajectory that runs for many
structural relaxation times. A few short sections of this trajectory are then chosen to provide
first examples of a transition or excitation associated with the tagged particle. Tagged
particles are chosen randomly from the distribution of particles that move a distance a
earliest along a given trajectory. In this way, the excitations that we sample involve particles,
initially at rest, that undergo continuous displacements of length a without long-lived inter-
mediates. A typical trajectory for a displacement length a = σ is shown in Fig. 6.5a for a 2d
WCA system [236]. From those first trajectories, a series of shooting and shifting moves
are then performed [60] generating an ensemble of thousands of independent examples of
excitations. Fig. 6.5b illustrates trajectories found from transition path sampling at different
temperatures.

Because we do not, a priori, know how the timescale for excitations changes with
temperature, we employ the variable-path-length shooting algorithm of reference [233]. In
practice, we find that the commitment time ∆t varies little with temperature. Fig. 6.6a shows
a few typical examples of P(∆t) over a temperature range To ≤ T ≤ Tmin, where Tmin is
the lowest temperature that we can equilibrate in MD simulations. The distributions tend
to exhibit a slightly higher proportion of shorter trajectories at lower temperatures, which
implies that higher-temperature trajectories sometimes involve short-lived intermediates.
The commitment time ∆t is dependent on a, with longer timescales being required to sample
longer particle displacements, as shown in Fig. 6.6b. When sampling excitations on different
lengthscales a, the sojourn time ts must be adjusted accordingly.

The temperature-independence of the commitment time allows us to, in some cases,
sample excitations in very cold systems out of equilibrium. These systems are created
from configurations of a warmer equilibrated system, but with temperatures chosen from
a Maxwell-Boltzmann distribution at a significantly lower temperature. One such case is
shown in the left-most panel of Fig. 6.5b. Whether modestly super-cooled or deeply super-
cooled at non-equilibrium conditions, the motions associated with excitations appear to be
localized. This impression can be quantified by computing the average of the displacement
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Figure 6.5 Localized excitations in a two-dimensional glass former harvested by transition path
sampling. The particular system considered here is a a two-dimensional mixture of WCA potentials
(WCA2D-1, defined in materials and methods), and the density ρ = 0.75. The onset temperature
for this model at this density is To = 2.6. Temperatures at which the trajectories are harvested
are indicated by the value of T . (a) The panel depicts a series of snapshots from a transition path
sampling trajectory over which the tagged particle (center) undergoes a displacement that is slightly
greater than 1 particle diameter. The functional of path hEx[x(t)] is set with a = σ . The plot of µ1
versus r tracks the distance that the tagged particle has moved from its initial position at t = 0 as a
function of time. The displacement is measured in terms of inherent structure coordinates. (b) The
panels depict inherent structures at a time ∆t +2ts ≈ 15, with particles colored with reference to their
inherent structure positions at time t = 0. Particles that overlap with their initial positions are blue;
those that are displaced by at least one particle diameter are red. Intermediate displacements are
depicted with a linear interpolation of this color code. The tagged particle, which necessarily moves
at least one particle diameter, is near the center of the panel. Illustrated trajectories are representative.

field,
µ(r) = ∑

i>1
|ri(t)− ri(0)|δ [r− ri(0)] (6.9)

subject to the constraint that the tagged particle, particle 1, is at the origin at time t = 0.
The behavior of this averaged displacement field for t = ∆t + 2ts is shown in Fig. 6.6c-f
for trajectories sampled with a = σ for three different standard 3d glass formers. For all
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temperatures, the displacement field is similar to the radial distribution function of an gas,
with no observable character outside of a few particle diameters from the exciting particle
at the origin. The typical correlation length of about 2-5 particle diameters is the mean
lengthscale of the motions associated with the excitations, which is dependent on the particle
interactions and density, but not the temperature. Fig. 6.6c-f shows that the lengthscale
for a given system is unchanging over the range of temperatures accessible to equilibrium
molecular dynamics simulations, as well as lower temperature non-equilibrium simulations
accessed via transition path sampling (Fig. 6.6f). As shown in the SI, we obtain equivalent
results for displacements in the range σ/4 ≤ a ≤ σ . Our collective results give no indication
of a growing dynamical lengthscale with decreasing temperature for irreversible particle
displacements, in agreement with the localized excitations picture of glass-forming liquids.

6.2.4 Excitation Energy Scale

Although the timescales and cooperativity lengthscales of the excitations do not change with
temperature, the probability with which they occur changes drastically. This is depicted in
Fig. 6.5 and quantified in Fig. 6.6, which shows a decrease in the average of the mobility
field µ(r) far from the tagged particle at the origin. The rate at which excitations disappear
with decreasing T is related to the energy scale required to create excitations within the
system. In glassy systems, particle rearrangements are rare thermally activated events; thus
their probability p should follow an Arrhenius temperature dependence: pa ∝ exp(−Ja/T ),
where Ja is an activation energy for an excitation characterized by an irreversible particle
displacement of length a. This physical feature of glass-forming liquids is captured by
kinetically constrained models (KCMs), and is described by equation 6.4, which relates the
concentration of excitations to their energy scale J.

Given an approximate timescale for particle motion on a lengthscale a, which we have
already obtained from transition path sampling (see Fig 6.6e,f), the concentration exciting
particles that have moved a length a, ca = paN/V can be measured in equilibrium MD
simulations according to:

ca =

〈
1
V

N

∑
i

hi,Ex[x(t)]

〉
. (6.10)

The path functional hi,Ex[x(t)] can be defined as in equation 6.8 above, where i identifies
the tagged particle. In practice, for the purposes of estimating Ja we can apply a simpler
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Figure 6.6 Localized excitations. (a) The probability distribution of commitment times ∆t for
type A particles in the LJ3D system as a function of temperature for a fixed displacement length
a = σ . (f) The probability distribution of commitment times ∆t for type A particles in the LJ3D
system at the lowest temperature T = 0.535 as a function of the displacement length a. (c-f) Average
displacement field, µ for t = ∆t +2ts at a distance r from the tagged (exciting) particle for (c), (d),
(e), the KA, LJ3D and WCA3D systems under equilibrium conditions. (f) The average displacement
field a distance r from the tagged (exciting) particle at very cold non-equilibrium conditions for the
KA system.

functional that does not explicitly enforce irreversibility:

hi,a[x(t)] =





1 and |r̄i(t)− r̄i(0)| ≥ a, t = ta

0 otherwise.
(6.11)

Although the value of ca is sensitive to the choice of h[x(t)], the value of Ja (which depends
on the relative rate at which ca changes with temperature) is not noticeably affected. The
advantage of employing ha[x(t)] is that we obtain very similar results for Ja and To from pairs
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Figure 6.7 Excitation energy scale. (a) Concentration of exciting particles c that move a distance a
for the KA system. Below an onset temperature To, the concentration obeys Boltzmann statistics
(equation 6.4). (b) Data collapse demonstrating that J varies logarithmically with the lengthscale for
particle motion; Ja = γ ln(a), where γ is a constant that depends on the model. Fit parameters are
given in table 6.1.
.

Table 6.1 Fitting parameters for data collapse in Fig. 6.7b.

Model ρ γ Ja=σ 1-R2
1.15 1.85 4.4 8e-4

KA 1.2 2.16 5.8 5e-3
1.25 2.90 7.7 9e-3
1.3 3.04 9.8 2e-3
1.2 1.92 4.8 1e-2

LJ3D 1.25 1.87 7.0 2e-2
1.296 3.68 9.7 1e-2
1.2 1.01 2.3 9e-3

WCA3D 1.25 1.58 3.8 3e-2
1.296 1.73 4.6 5e-3

of snapshots ta apart, rather than the detailed trajectories required for path sampling (see SI
for further details). This type of calculation may be more applicable to experimental systems,
such as granular matter or colloids. The timescale ta should be greater than the typical
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commitment time ∆t to allow exciting particles sufficient time to move, but not so long
that particles can excite multiple times. We find that ta on the order of ta ∼ 1−3max(∆t)
is typically sufficient, where max(∆t) is the maximum of the P(∆t) distribution obtained
from path sampling. In practice, we find that any timescale ta ∼ O[max(∆t)] gives similar
results for Ja, when computed according to equation 6.4. Plots of ca versus the reduced
inverse temperature for several different displacement lengths a are shown in Fig. 6.7a for
the KA binary LJ mixture [133]. Below an onset temperature To,a, the curves exhibit a
nearly perfect Boltzmann temperature dependence. Above To,a the Boltzmann dependence
breaks down as the separation of timescales (between the excitation timescales and structural
relaxation times) disappears, causing some particles to participate in multiple excitations on
the timescale ta. The value of To,a is independent of the lengthscale for particle motion a for
the range of a studied.

The energy scale Ja is given by the slope of the lines in Fig. 6.7a. We see that the energy
scale is not constant, but rather grows with the displacement length a. This is reminiscent
of the picture of hierarchical dynamics proposed by Palmer et al. [227], where excitations
on smaller timescales and lengthscales give rise to higher-energy excitations on larger
timescales and lengthscales. The East model, used to arrive at the universal fit (equation 6.5),
is a simple KCM that displays hierarchical dynamics [237], for which the energy scale for
structural relaxation obeys Ja ∝ ln(a/a0). The parameter a0 is the lengthscale associated
with an “elementary” excitation, the minimal building block of particle motion. As shown
in Fig. 6.7b, Ja goes as the natural logarithm of a, Ja ∝ ln(a) for the 10 3d model atomistic
glass-formers studied here. This relationship holds closely for a > σ/4, which implies
that displacements on the order of σ/4 might represent the smallest meaningful particle
motions, or “elementary excitations.” Such small displacements might correspond to, for
example, cage escapes [238, 236] or neighborship changes [239]. It is also possible that the
elementary excitations correspond to even smaller motions that we can not resolve using
our methodology, and displacements on the order of σ/4 belong to a higher “energy level”
within the hierarchy. In either scenario, a short flurry of elementary excitations occurring in
rapid succession would give rise to the displacements on the order of a = σ studied previ-
ously. This does not negate our earlier result that localized excitations are not associated
with a growing dynamical lengthscale, but rather implies that the correlated motions that we
observe for particle displacements of the order a = σ represent the time-superposition of
several elementary excitations correlated in space and time through dynamical facilitation.
The distinction between elementary excitations and these larger excitations that occur on
longer timescales is mostly inconsequential; within the hierarchical paradigm, dynamics on
different scales are self-similar, and should exhibit the same overall behavior.
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Table 6.2 Fitting parameters for Fig. 6.8.

Model ρ species To J log(τo) stdev To,aα Jaα caα ,To
c(To)

c(Tmin) 1−R2

KA

1.15 A 0.619 1.319 0.782 0.0035 0.55 5.9 0.07 67 2e-4
B 0.615 1.306 0.829 0.0035 0.55 3.8 0.02 39 1e-5

1.2 A 0.690 1.875 0.993 0.0106 0.69 7.8 0.02 46 1e-4
B 0.715 1.747 0.969 0.0235 0.69 4.9 0.05 74 3e-4

1.25 A 0.817 2.463 1.078 0.0120 0.78 10.4 0.08 122 3e-4
B 0.841 2.315 1.029 0.0103 0.78 6.7 0.03 39 1e-4

1.3 A 1.145 2.546 0.634 0.0036 0.96 13.0 0.03 73 4e-4
B 1.131 2.506 0.745 0.0050 0.96 8.2 0.03 38 2e-4

LJ3D

1.2 A 0.503 2.205 0.935 0.0349 0.49 4.8 0.23 49 1e-3
B 0.517 2.125 0.614 0.1087 0.49 4.3 0.21 35 6e-4

1.25 A 0.591 3.040 1.057 0.0085 0.55 7.0 0.04 14 5e-4
B 0.586 3.180 0.880 0.0086 0.55 6.2 0.11 10 5e-4

1.296 A 0.709 3.723 1.004 0.0141 0.67 9.2 0.05 29 2e-4
B 0.712 3.754 0.756 0.0117 0.67 7.9 0.12 18 1e-3

WCA3D

1.2 A 0.305 0.650 1.200 0.0284 0.35 2.2 0.13 624 2e-4
B 0.310 0.637 0.866 0.0251 0.27 1.7 0.05 43 3e-5

1.25 A 0.402 1.176 1.241 0.0113 0.38 3.6 0.03 69 1e-4
B 0.425 1.096 0.820 0.0060 0.38 2.8 0.10 28 2e-4

1.296 A 0.531 1.739 1.160 0.0452 0.51 5.2 0.04 113 2e-4
B 0.564 1.607 0.655 0.0495 0.51 4.1 0.12 40 4e-4

6.2.5 Excitations and Transport

As excitations occur throughout the system, the particles undergo structural relaxation. The
energy scale of the microscopic excitations is related to the bulk relaxation behavior of
the system through the “universal fit,” given by equation 6.5. This quadratic relationship
between the relaxation time τ and the inverse temperature arises as a theoretical predic-
tion based on kinetically constrained models, and has been verified for a wide range of
experimental and simulated glass-forming liquids [107]. The parameter J in equation 6.5
is proportional to the energy scale for excitations of the type that produce bulk relaxation
within the system. In analogy with the definition of the standard α-relaxation time τα ,
we define a relaxing particle as having moved a distance aα = 2π/S(q0), where q0 is the
wavevector for which the isotropic structure factor S(q) is at a maximum [240]. Boltzmann
fits for Jaα computed from the concentration of excitations caα are shown in Fig 6.8a for the
10 3d systems studied.

The relationship between J and Jaα depends on specific factors of the model, but should
roughly correspond for a given class of models (i.e., Jaα /J, is a constant > 1 ) [241]. The
values of J and To are measured by fitting structural relaxation data to equation 6.5 as out-
lined in reference [107] (see also, SI). Fig. 6.8b and table 6.2 show the fits to the structural
relaxation data for the 10 3d systems studied.

Fig. 6.9a,b shows a comparison of energy scales J and onset temperatures To obtained
from fitting the transport and excitation data. We observe that the onset temperatures To

typically correspond well for the two independent measurements. The large error bars in
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Figure 6.8 Comparison between excitation and transport energy scale J. (a) Data collapse to
equation 6.4 for 3 different models at 10 different statepoints for excitations on a lengthscale aα . (b)
The transport data collapse to a quadratic master curve given by equation 6.5. The fit parameter J is
physically related to the excitation energy scale Jaα . Fit parameters are given in table 6.2

Fig. 6.9b reflect the fact that the onset of facilitated dynamics (i.e., the crossover to the
regime in which dynamics are rare and activated) is smooth rather than abrupt. As predicted,
the energy scales J for excitation and transport data have a consistent relationship, with
α = Jaα /J ≈ 12/5, as shown in Fig. 6.9a. An exception is posed by the type A (larger)
particles in the KA system (not shown in Fig. 6.9, but shown in table 6.2), which have
a much larger energy scale for excitations than than the transport data suggests. These
particles rarely undergo excitations at low T , but rather tend to relax mostly as a secondary
effect of excitations involving smaller B particles. Thus J corresponds much more closely
to Jaα for the type B particles (see SI for a further discussion of this topic). For the other
systems with more comparable particle sizes, the effect is not as pronounced. Our collective
results demonstrate a direct quantitative connection between the microscopic excitations
and the bulk relaxation dynamics.

6.2.6 Dynamical Facilitation and Dynamical Lengthscales

At any particular time, localized excitations are distributed randomly throughout the sys-
tem, as evidenced by Fig. 6.6. However, excitations do not appear randomly; rather their
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Figure 6.9 Comparison between the energy scale and onset temperature obtained from excitation
and transport data. (a) Comparison of energy scales J. The excitation energy scale Ja is measured for
a lengthscale aα , but we obtain equivalent qualitative results for other values of a with a different
average value of Ja/J. As described in detail in the main text, the J values for the type A particles for
the KA system are outliers and are not shown. (b) Comparison between To obtained from excitation
and transport data.

occurrence is correlated with other excitations in space and time. Excitations “facilitate”
the formation of nearby excitations at a later time through a process known as dynamical
facilitation [103, 230, 242, 243]. Fig. 6.10 depicts a simulation trajectory for the 2d WCA-1
system and gives some insight into how dynamical facilitation occurs on an atomistic scale.
The top panel Fig. 6.10a depicts the time evolution of particle displacements. The bottom
panel depicts a related quantity ∆nbrs, that represents the fraction of a particle’s initial
nearest neighbors that are lost. Initially, localized excitations appear randomly throughout
the system with concentration that depends on temperature. The occurrence of an excitation
gives rise to “surges” of high-frequency, low-amplitude motion in the surrounding regions.
These stringy surges are characterized by correlated displacements of less than a cage size
in magnitude (depicted by light blue particles in Fig. 6.10a). These back and forth surges
are ubiquitous and reversible, and their lengthscale is governed by the distance between the
initial excitations lsurge ∼ c−1/3. In some cases, rare fluctuations produce strong surges that
cannot easily be reversed, which gives rise to new excitations. These new excitations tend
to fill the unrelaxed regions between the initial excitations, such that the initial excitations
“connect” on timescales on the order of τα .

A small subset of the exciting particles exhibit large displacements a, on the order of
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Figure 6.10 Excitations, dynamical facilitation and dynamical heterogeneity. (a) Time evolution
of particle displacements for subsection of a 10,000 particle WCA2D-1 system at T=1.1, ρ = 0.75.
(b) Time evolution of ∆nbrs, the fraction of initial neighbors lost, for the same system as in (a). The
timescales shown are approximately (left to right): τα/10, τα/2, τα , 3τα/2. Movies corresponding
to these trajectories are given in the SI.

about 1 to 1.5 particle diameters σ and thus tend to fully replace the initial position of their
neighbors. These particles represent the “microstrings” described in reference [229] that
make up the fundamental building blocks of string-like motion. String-like motion is a
standard feature of glassy systems that has been observed in model atomistic [244, 229]
and molecular [242] liquids, colloids [245] and granular systems [31]. String-like motion is
characterized by highly-mobile particles that follow one another in quasi-1d paths [244].
The length of the strings grows with increased supercooling [244, 229, 245, 31]; however, as
described in detail by Glotzer and coworkers [229, 246, 70] particles within strings do not
jump simultaneously. Rather, the strings are made up of smaller microstrings that move at
different times [229]. Although the mean string length grows with supercooling, the length
of the microstrings remains constant [229], in direct analogy with the excitations described
here. That is, the microstings are mobile subset of the hierarchy of excitations characterized
here; for large excitations of the order a = σ , the excitations and the microstrings are
equivalent.

The growth of strings of mobile particles (red) is depicted in Fig. 6.11a for a small
subsection of a 10,000 particle WCA2D-1 system. The panel depicts a “space-time” repre-
sentation, where time is depicted as a spatial dimension [108]. Fig. 6.11a shows the mobility
field in the xy plane, with time perpendicular to the page. Facilitated particle motions
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Figure 6.11 Excitations and string-like motion. (a) Space-time plot depicting the formation of
strings. Notice that the strings grow piecewise from an initial excitation. (b) Average string length ls
versus the mean distance between excitations c−1/3. Excitations are measured based on a lengthscale
a = σ .

on a lengthscale a = σ trace out ”excitations lines” in space-time [108], highlighting the
connectedness of the localized excitations through dynamical facilitation. This phenomenon
can also be observed in Fig. 6.10 and from conventional movies of particle motion provided
in the SI.

As the initial excitations become increasingly sparse at lower temperatures, the mean
string length tends to grow. Since strings are defined by particles that strictly replace the
initial position of a neighboring particle (see SI), they are often broken by pairs of particles
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Table 6.3 Fitting parameters for data collapse in Fig. 6.11b.

Model ρ ζ ls,To 1-R2
1.15 0.047 2.23 4e-3

KA 1.2 0.052 2.19 6e-3
1.25 0.046 2.32 5e-3
1.3 0.054 2.28 2e-3
1.2 0.15 2.13 2e-3

LJ3D 1.25 0.15 2.19 4e-3
1.296 0.10 2.51 5e-3
1.2 0.08 2.26 9e-3

WCA3D 1.25 0.09 2.26 5e-3
1.296 0.09 2.30 1e-2

that do not precisely satisfy the overlap criterion. As a result, the mean string length is
always less than the mean distance between excitations. Nonetheless, as shown in Fig. 6.11b
there is a direct relationship between the average string length ls and the mean distance
between initial excitations, ls = ζ c−1/3

a=σ . The constant ζ depends on several factors, in-
cluding the tendency for mobile particles to engage in broken strings, the size of groups
of simultaneously exciting particles (Fig. 6.6), and the system density, all of which are
independent of temperature. As shown in Fig. 6.11b, the direct relationship holds for the
full range of T < To for the 10 different 3d systems studied. The relationship between the
ls and c lends a possible explanation to the previously unexplained observation that the
strings obey an exponential probability distribution [244, 31]. Because the excitations are
distributed randomly in space, the separation l is described by a Poisson random variable,
which may provide the physical basis for the observed exponential distribution.

6.2.7 Conclusions

Our collective results support a picture of glassy systems in which particle dynamics are
governed by facilitating localized excitations [230]. Our results imply that the mechanism
of this facilitation is hierarchical in nature, as originally proposed by Palmer et al. [227]. We
have demonstrated, for several atomistic systems, a direct connection between the concen-
tration of excitations, bulk transport properties, and a growing dynamical length scale for
dynamical heterogeneity. In the future, the microscopic procedure that we have introduced
for detecting local excitations in atomistic liquids can be extended to study excitations
in more complex simulated systems, such as molecular liquids, or experimental systems,
such as colloidal suspensions or granular matter. Our results imply a possible connection
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Table 6.4 Model LJ and WCA systems used in this study.

abbreviation d fA σAA σAB σBB εAA εAB εBB rcut,AA rcut,AB rcut,BB mA mB
KA [133] 3 0.8 1.0 0.8 0.88 1.0 1.5 0.5 2.5σAA 2.5σAA 2.5σAA 1.0 1.0

LJ3D [134] 3 0.5 1.0 11/6 5/6 1.0 1.0 1.0 2.5σAA 2.5σAA 2.5σAA 2.0 1.0
WCA3D [251] 3 0.5 1.0 11/6 5/6 1.0 1.0 1.0 21/6σAA 21/6σAB 21/6σBB 2.0 1.0

WCA2D-1 [252] 2 0.5 1.0 1.2 1.4 1.0 1.0 1.0 21/6σAA 21/6σAB 21/6σBB 1.0 1.0
WCA2D-2 [236] 2 0.3167 1.0 1.1 1.4 1.0 1.0 1.0 21/6σAA 21/6σAB 21/6σBB 1.0 1.0

between excitations and local structure; this relationship can be explored using the exist-
ing framework for relating structure to dynamics that has already been applied to particle
motions spanning much longer timescales than the excitations considered here [247, 248].
The picture of facilitating excitations does not necessarily preclude alternate descriptions
of glassy supercooled liquids, and connections between our results and other theories and
scenarios of the glass transition should be explored.

6.2.8 Materials And Methods

The results that we present are based on five different models of atomistic glass form-
ers, including two 2d systems and three 3d systems. All of the systems consist of binary
mixtures of 10,000 particles with interactions given by either the Lennard-Jones (LJ), or
Weeks-Chandler-Andersen (WCA) potential [249]. The parameters for the models are listed
in the table below. Molecular dynamics simulations are carried out in HOOMD-blue [250]
on the graphics processing unite (GPU). Further details regarding our simulation methods
and transition path sampling scheme are given in the SI.

6.2.9 Supplementary Information: Transition Path Sampling Scheme

The basic goal of our transition path sampling (TPS) scheme is to measure the timescales
and cooperativity lengthscales associated with irreversible particle displacements in our
systems. To do so, we tag a particle in the system, and sample trajectories over which the
particle moves a particular distance a. We are interested in trajectories for which the tagged
particle undergoes a discrete displacement of length a over a short period of time rather than
a series of smaller intermittent displacements adding up to a over long periods of time. To
restrict our sampling to these types of trajectories, we choose our tagged particles from a
random distribution of particles that jump at the earliest point along a trajectory. Specifically,
we run a trajectory with increments δ t, where δ t is about two orders of magnitude shorter
than the commitment time ∆t. For each trajectory x(t), we determine whether the tagged
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particle “1” satisfies the path functional:

hEx[x(t)] =






1 if |r̄1(t)− r̄1(0)| ≈ 0, 0 < t < ts

and |r̄1(t)− r̄1(0)| ≥ a, ∆t + ts < t < ∆t +2ts

0 otherwise.

(6.12)

This functional is impractical to implement directly in computer simulations, since (1) it
requires a somewhat arbitrary definition of what constitutes a displacement of approximately
zero, and (2) it requires that we check every snapshot along a trajectory, which may consist
of hundreds of points. In practice, the functional can be implemented by checking four
points along the trajectory:

hEx,simple[x(t)] =






1 if |r̄1(∆t +2ts)− r̄1(0)| ≥ a

and |r̄1(∆t + ts)− r̄1(ts)| ≥ a

0 otherwise.

(6.13)

In words, the functional determines whether the tagged particle has undergone a displace-
ment of length a over a trajectory of length ∆t, which is allowed to float according to the
variable path length transition path shooting algorithm of reference [233]. Additionally, the
functional checks whether the tagged particle has still undergone a displacement of length a
when the trajectory is extended by the sojourn time ts forward and backward in time. This
ensures that the particle has not moved back to its original position during the sojourn time.
To reduce the possibility for errors, the functional can be checked at intermediate points by
extending the trajectory incrementally until ts is reached. For the results that we report in
this article, we use one intermediate interval ts/2.

Each initial transition path is created by choosing a short trajectory from the equilibrium
system that satisfies the criterion described above. For each initial path, we perform 100
equilibration trajectories and then 100 production trajectories for which we collect excitation
statistics. Typically, 100-500 initial paths are chosen in total.

6.2.10 Supplementary Information: Excitation Characteristics

Previously, we reported representative results for excitations of size a = σ where we made
no distinction between the different particle types (A or B) when tagging particles. In this
section, we explore the effect of the type of the tagged particle and the size of the displace-
ment a on our results. We show that, although the excitations are affected the particle type
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Figure 6.12 Effect of tagged particle type on excitation timescale and cooperativity lengthscale. (a)
Mobility field µ(r) for type A particles in the KA system. (b) Mobility field µ(r) for type B particles
in the KA system. (c) Probability distribution of commitment times ∆t for type A particles in the KA
system. (d) Probability distribution of commitment times ∆t for type B particles in the KA system.

and displacement length, our fundamental results, that the lengthscales and timescales asso-
ciated with the excitations do not change noticeably with decreasing temperature, remain
unchanged.

Supplementary Information: Effect of Tagged Particle Type

Earlier, we reported that the timescales and cooperativity lengthscales associated with the
excitations do not change noticeably with temperature, below on onset temperature To.
Our results were based on randomly choosing exciting particles from the system without
considering their type. Here, we show that we obtain the same results when restricting our
sampling to tagged particles of a particular type. Fig. 6.12a shows the mobility field µ(r)
for tagged particles of type A and B as a function of temperature for the KA system. We
observe that the cooperativity lengthscale remains unchanged for exciting particles of either
type, despite the relatively large disparity in particle sizes (see Materials and Methods) and
excitation energy scales (see main text) for this system.
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Figure 6.13 Effect of displacement size a on excitation timescale and cooperativity lengthscale.
The displacement size is doubled for each panel, left to right. Notice that the cooperativity lengthscale
does not change with temperature.

Effect of Tagged Particle Displacement Length a

In the main text, we reported a correlation distance of about 2-5 particle diameters for
excitations on a lengthscale a = σ . Here, we show that this result does not change for
smaller displacement distances on the order of a cage size. Fig. 6.13 shows the mobility field
µ(r) for trajectories over which a tagged exciting particle at the origin moves a distance
a = σ/4, a = σ/2, and a = σ , respectively from left to right. The cooperativity lengthscale
does not change appreciably with the displacement size, and does not appear to grow with
decreasing temperature.

6.2.11 Supplementary Information: Measuring the Excitation Energy
Scale and Onset Temperature From Excitations

In this section, we describe the detailed method that we use to obtain the values of the
excitation energy scales and the onset temperatures reported in this study. We demonstrate
that these quantities are fairly robust, and different methods for measuring them yield statis-
tically equivalent results. In the main text, we presented a formula for measuring Ja and To

from the concentration of excitations ca. In this section, we expound upon our methodology,
and the sensitivity of our results to particular parameters. As outlined in the main text, we
determine Ja and To by first computing the concentration of exciting particles according to

ca =

〈
1
V

N

∑
i

hi,a[x(t)]

〉
. (6.14)
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Figure 6.14 Effect of path functional on quantities derived from excitations. The panel depicts
plots of the concentration of excitations c versus the temperature T for three different path functionals
defined in the text. In words, the functional ha[x(t)] is the standard functional used for this study,
where we check whether a particles has undergone a displacement of a or greater over a time window
ta using energy-minimized coordinates. The second functional hy[x(t)] is similar to ha[x(t)], except
that we require that the displacement is irreversible (i.e., the particle does not move back towards its
original position over at least a sojourn time ts). The third functional hz[x(t)] is similar to hy[x(t)],
except that we require that the exciting particle is quiescent for a set period ts before undergoing a
displacement.

where hi,a[x(t)] is given by

hi,a[x(t)] =





1 and |r̄i(t)− r̄i(0)| ≥ a, t = ta

0 otherwise.
(6.15)

The timescale ta is chosen to be greater than the commitment time ∆t to allow exciting
particles sufficient time to move, but not so long that particles can excite multiple times.
We typically choose max(∆t) ≤ ta ≤ 3max(∆t), where max(∆t) is the maximum of the
P(∆t) distribution obtained from path sampling. Values of ca are obtained by running
1000 trajectories of length ta at each temperature, and computing the ensemble average in
equation 6.14. The values of Ja and To are obtained by constructing plots of − ln(ca) versus
1/T −1/To (see main text). The value of To,a is determined by temperature at which the
linear relationship in − ln(ca) versus 1/T −1/To breaks down. The value of Ja is determined
by the slope of the line for T < To.
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Effect of Strictly Enforcing Irreversibility

The energy scale Ja simply quantifies the relative rate at which the concentration of ex-
citations ca changes with temperature. Thus, it is not surprising that we can obtain the
same value of Ja for several different methods of estimating ca; even if a given method
misestimates ca, so long as it does so consistently as a function of temperature, Ja will
remain unchanged. Fig. 6.14 shows plots of − ln(ca) versus 1/T −T/To for three different
path functionals h[x(t)]. For the first path functional, we apply the usual criterion ha[x(t)],
described in equation 6.15. For the second functional hy[x(t)], we apply a similar criterion
as for ha, except that we require that the displacement is irreversible. That is, we require that
an exciting particle does not move back towards its original position over at least a sojourn
time ts. This is enforced numerically by:

hy[x(t)] =






1 and |r̄1(ta + ts)− r̄1(ts)| ≥ a

and |r̄1(ta +2ts)− r̄1(0)| ≥ a

0 otherwise.

(6.16)

Notice that this functional is similar to the definition of hEx, simple[x(t)] defined above for
TPS, except that the commitment time ∆t, which is allowed to float in path sampling, is set
to a constant value ta here. As shown in Fig. 6.14, ha[x(t)] and hy[x(t)] give very similar
results, except that − ln(ca) is slightly larger for hy[x(t)], indicating that slightly fewer exci-
tations are detected than for ha[x(t)] Nevertheless, both T o (the point at which the curves
begin to deviate from Boltzmann behavior) and Ja (the slope of the lines for T < T o) are
indistinguishable for the two measurements.

While hy[x(t)] ensures that the exciting particle does not quickly return to its initial
position, it does not enforce that the particle is “quiescent” for a given period before exciting.
For the third functional hz[x(t)], we strictly require that the tagged particle does not move
for a sojourn time ts before undergoing a displacement of length a = σ . In practice, this is
enforced by requiring that the particle move no farther than a (somewhat arbitrary) threshold
σ/4 during the initial sojourn time ts, beyond which the particle is no longer considered
stationary:

hz[x(t)] =






1 and |r̄1(ts)− r̄1(0)| ≤ a/4

and |r̄1(ta + ts)− r̄1(ts)| ≥ a

and |r̄1(ta +2ts)− r̄1(0)| ≥ a

0 otherwise.

(6.17)

As shown in Fig. 6.14, hz[x(t)] exhibits a pseudo-parabolic behavior for − ln(ca) versus
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Figure 6.15 Effect of the observation time window on quantities derived from excitations. The
panel shows plots of − ln(ca) versus 1/T −T/To for three different values of the time window ta.
For this system, the max commitment time ∆t is approximately 6, max[∆t] ≈ 6. We typically obtain
the best results for Ja and To for max[∆t] ≤ ta ≤ 3max[∆t].

1/T −1/To. This reflects the fact that for higher temperatures, the probability of observing
a quiescent particle is relatively small, and thus ca above To is not indicative of the true
concentration of excitations. Below To, the curve based on hz[x(t)] is similar to that obtained
from the other path functionals, except that the parabolic effect mentioned previously persists
somewhat, and results in a slightly low measurement of the slope Ja. In practice, any of
these measurements give similar results for Ja and To.

Effect of Time Window

The Boltzmann-like temperature dependence of ca on T can only be obtained for timescales
on the order of the commitment time, ∆t. Fig. 6.15 shows plots of − ln(ca) versus
1/T − T/To for three different values of the time window ta. For this system, the max
commitment time ∆t is approximately 6. As shown in Fig. 6.15, for ta slightly greater
than max[∆t], we obtain the expected behavior for plots of − ln(ca) versus 1/T −1/To (i.e.,
the curve exhibits Boltzmann behavior, which breaks down for T > To). For ta shorter
than max[∆t], the Boltzmann behavior never clearly breaks down, since over such short
time windows, the breakdown of the separation of timescales between commitment times
and waiting times is never observed, even well above To. Thus, the measurement of To is
obscured for very short ta, although the value of J is largely unchanged. For ta much longer
than max[∆t], multiple excitations can occur for the same particle over the same interval
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Figure 6.16 Effect of energy minimization on quantities derived from excitations. The panel
shows plots of − ln(ca) versus 1/T −T/To, measured using both energy-minimized and unprocessed
coordinates, for two different values of the displacements length a. Notice that, although the values
of ca are affected by energy minimization, the values of Ja and To (the slopes of the lines and the
temperatures at which the Boltzmann fit breaks down) are largely unchanged.

even below To, causing a breakdown in Boltzmann behavior, which obscures the value of Ja.
The fact that the mean waiting times between excitations are shorter for lower temperatures
results in the observed upward concavity of the curve. In summary, although particularly
bad choices for ta can give slightly incorrect results, even in the extreme cases ta too large or
too small described here, we still obtain reasonable estimates of Ja.

Effect of Energy-Minimization / Coarse-Graining

In our study, we used energy-minimized coordinates to rule out the possibility that the
observed particle displacements arise due to transient vibrations. Over the short timescales
on which excitations occur, time coarse-graining can be applied to obtain identical results. In
practice, we find that neither coarse-graining nor energy-minimization is strictly necessary
for measuring Ja and To from the concentration of excitations. Fig. 6.16 shows plots of
− ln(ca) versus 1/T −T/To, where ca is measured using both energy-minimized coordinates
(denoted by an overbar) and unprocessed coordinates. The values of ca are affected by the
different methods, with fewer excitations being recognized for energy-minimized coordi-
nates. Unsurprisingly, this effect is more pronounced for smaller values of the displacement
length a. However, the relative rate at which ca changes with temperature is not dependent
on whether or not the coordinates are energy-minimized, and the values of Ja and To are
largely unchanged. This implies that, provided a is large enough, a very simple procedure
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can be applied to measure Ja and To in simulations and experiments based on pairs of
snapshots, separated by ta, requiring no time coarse-graining or energy minimization.

6.2.12 Supplementary Information: Measuring the excitation energy
scale and onset temperature from transport quantities

Computing J and To from transport data requires that we compute the structural relaxation
time τα as a function of temperature for all of the systems studied. This involves first
determining 15-20 statepoints that span the range of accessible temperatures for a given
system and density. For each statepoint, the system is quenched from the previous (higher)
temperature and equilibrated for a time period 25τσ , where τσ is the time required for the
mean squared displacement to exceed 1 particle diameter σ . One hundred long trajectories
of length 100τσ are then used to measure the self-intermediate scattering function Fs(q0, t),
where q0 is the wavevector corresponding to the first peak in the isotropic structure factor
S(q) [133]. The alpha relaxation time τα is obtained by fitting Fs(q0, t) in the α relaxation
regime to an exponential function. The parameters J and To are obtained by optimizing
the universal quadratic fit for these τα , as outlined in reference [107]. All of the systems
under consideration contain 10,000 atoms total (see materials and methods). To sample
these systems efficiently, we use HOOMD-blue [250] to run MD simulations on the graphics
processing unit (GPU).

6.2.13 Supplementary Information: Measuring Strings

For our study, we have used the average string length ls to obtain a measure of the character-
istic dynamical lengthscale for our systems. Strings are defined by clusters of particles that,
within a time interval t, replace the initial position of a neighboring particle. In practice,
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quantifying replacement requires that we introduce a threshold value for replacement rcut

such that
∣∣r̄i(t)− r̄ j(0)

∣∣ < rcut , where the overbar denotes energy-minimized coordinates.
For our systems, we take rcut in the range 0.5σ for all systems. Mobile particles i and j
belong to the same string if i replaces j over a time window t and i and j are neighbors
at t = 0 (i.e.,

∣∣r̄i(0)− r̄ j(0)
∣∣ < rnbr, where rnbr encompasses the first peak of the radial

distribution function g(r)). Since particles can only replace one another by moving in a
pseudo-one-dimensional line, the string length goes as the number of particles in the string:

ns ∝ ls. As shown in Fig. 6.17, the average string length ls(t) ≡
〈l2(t)〉
〈l(t)〉 grows as a function

of decreasing temperature. We define ls as ls(t∗), the maximum average string length for
a given temperature. The timescale for the maximum string length is identical to t∗α2

, the
peak time of the non-Gaussian parameter [73, 71]. At the peak time t∗α2

, the string length
distribution is exponential while the cluster size distribution is a power-law [73, 71, 31].
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Chapter 7

Characterizing Transitions

Structural quantities such as order parameters and correlation functions are often employed
to gain insight into structural transitions in traditional condensed matter systems, such as
systems of rod-like or spherical particles. Since these methods were designed with specific,
simple systemes in mind, they can not be directly applied to systems of complex particles
encountered in the field of nano and microscale self-assembly. In this chapter, we develop
methods for creating robust structural metrics for complex particle structures. We present
three articles [34, 38, 37] authored by A.S. Keys, C.R. Iacovella, and S.C. Glotzer that deal
with the problem of applying “shape matching” methods from computer science to charac-
terizing particle structures in complex assembled systems. In addition to studying structural
transitions, these methods can be used for quantifying structural perfection, identifying
unknown structures, and other more abstract applications. In our first article (section 7.1),
we provide a broad overview of shape matching methods, and their potential applications
in characterizing assembled systems. In our second article (section 7.2), we focus on a
particular class of structural metrics known as “harmonic descriptors,” and describe how
their unique properties can be applied to solve particular problems involving rotational sym-
metries. In our third article (section 7.3), we provide a more detailed overview of the specific
shape matching schemes that can be implemented to solve different types of problems.
For all three studies, we provide proof-of-concept examples to demonstrate our methods.
Although our examples focus primarily on the field of computational self-assembly, where
we predict these methods will be most applicable, we also provide examples from the fields
of experimental self-assembly, computational biology, and traditional condensed matter.
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7.1 Characterizing Structure Through Shape Matching
and Applications to Self Assembly

Structural quantities such as order parameters and correlation functions are often employed
to gain insight into the physical behavior and properties of condensed matter systems. While
standard quantities for characterizing structure exist, often they are insufficient for treating
problems in the emerging field of nano and microscale self-assembly, where the structures
encountered may be complex and unusual. The computer science field of “shape match-
ing” offers a robust solution to this problem by defining diverse methods for quantifying
the similarity between arbitrarily complex shapes. Most order parameters and correlation
functions used in condensed matter apply a specific measure of structural similarity within
the context of a broader scheme. By substituting shape matching quantities for traditional
quantities, we retain the essence of the broader scheme, but extend its applicability to more
complex structures. Here we review some standard shape matching techniques and discuss
how they might be used to create highly flexible structural metrics for diverse systems such
as self-assembled matter. We provide three proof-of-concept example problems applying
shape matching methods to identifying local and global structures, and tracking structural
transitions in complex assembled systems. The shape matching methods reviewed here are
applicable to a wide range of condensed matter systems, both simulated and experimental,
provided particle positions are known or can be accurately imaged.

The preponderance of new nanometer- and micron-sized colloidal particles of nearly ar-
bitrary shape, composition and interaction has made possible the self-assembly of exquisitely
complex structures with potential uses in a variety of technologies [12,13,11, 253]. Because
material properties and behavior are determined by both the global and local shapes, or
patterns, within the self-assembled structure [12, 254, 255, 256, 257, 258], methods and
tools are needed to characterize the salient structural features of the assemblies. The field
of condensed matter physics has traditionally led the way in developing algorithms for
characterizing crystal structures and constructing theories to connect these structures to
thermodynamics and to overall system properties [259,260,261]. These approaches typi-
cally involve constructing structural order parameters and/or correlation functions that can
discriminate between different building block arrangements and are well developed for
systems of point-like, rod-like and spherical particles [262, 53, 57, 263, 264]. Examples
include nematic and smectic order parameters for systems of rods citenematic, smectic,
liquidcrystals and bond order parameters [53, 265, 132, 57] for 2d and 3d systems of spheres.

However, these functions fail, in many cases, to fully describe the structural complex-
ity of assemblies of more unusual nanocolloids, including those formed from spherical
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particles [256, 266], rod-like particles [267, 257], polyhedral particles [33, 268, 269, 210,
270, 271, 272, 273], colloidal molecules [274, 275, 276, 277, 278, 11], patchy spheres
[279,280,29,281,282,283], arbitrarily-shaped objects [12,11], polymer-tethered nanopar-
ticles [253, 210, 284, 285, 286, 287, 288], and terminal assemblies resembling biological
structures [289, 290]. For example, it is easy to envision that order parameters defined for
spherical or rod shaped particles may fail when applied to more complex shaped particles,
such as “Y” particles or triangular plates [11]. As a result of the increased complexity of
nano building blocks, there are few “model problems” in nano and microscale self-assembly
for which generally applicable order parameters can be defined. The dearth of structural
metrics has lead many recent experimental and computational studies of assembled systems
to rely heavily on visual inspection or ad hoc analysis for characterizing structures, rather
than well established schemes. This approach is not optimal, since visual inspection can
be time consuming and typically less accurate than mathematical analysis, and ad hoc
analysis can be idiosyncratic, making it difficult to compare structures across independent
studies. The impetus for new structural metrics is also driven by advances in microscopy
techniques that allow for the direct imaging of nano and microscale systems, which have
greatly extended the range of systems for which detailed structural analysis can potentially
be performed. For example, the tracking of micron-sized colloidal particles in 2d and 3d
is now routine [291, 64, 292, 293, 294], and high-fidelity imaging of nanoparticles [295]
and their assemblies [268, 296, 297] is steadily improving. Combined with proper image
processing techniques, one can extract much information about structure, such as the particle
positions [294, 291] and other key features, providing detailed structural information on par
with simulations. Assuming one can construct order parameters sensitive to these unique
building blocks and their assemblies, similar routines can be applied to both experimental
and simulated systems, allowing for direct comparison [277, 268].

Analysis techniques from the computer science field of “shape matching” offer a po-
tentially powerful solution to the problem of creating general structural metrics for these
systems. Shape matching involves defining general structural metrics that can be used to
measure the degree of similarity between diverse shapes. Such similarity measures can
be applied within the context of traditional condensed matter order parameter and corre-
lation function schemes to obtain analogous quantities for more complex structures. This
is possible because, in practice, most standard structural characterization schemes include
an implicit concept of matching or shape similarity; that is, the schemes typically measure
the degree to which a structure of interest matches another (often ideal) structure. As a
familiar example, consider the standard nematic order parameter which gives an optimal
value of 1 when the rod-like particles within the system are perfectly aligned, and 0 if the
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rods have random orientations. In this case, the order parameter measures the degree to
which the local arrangement of rods in the system, described mathematically by the angles
between neighboring rods, matches with an ideal reference system with perfect alignment
(see Fig. 7.1). Other structural characterization schemes and spatial or temporal correlation
functions involve similar underlying concepts of matching. As we will discuss, by modifying
these schemes to use shape matching methods, we retain their overall physical insight, but
gain the ability to apply them to complex structures. Although we focus exclusively on
simulated assembled systems here, these types of methods are general enough that they
can be applied to particle systems in general, provided that the particle positions and or
orientations can be determined or imaged. Examples of systems, both experimental and
simulated, to which shape matching methods can potentially be applied include but are not
limited to nanoparticle superlattices created from mixtures of spherical and/or non-spherical
nanoparticles [297, 296], microphase separated systems, such as tethered nanoparticles and
block copolymers that form crystalline and quasicrystalline domains [298,194], colloidal
ionic crystals [299], dense colloids [64] and granular matter [216, 218].
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Figure 7.1 Example of an implicit shape matching scheme within the context of a standard order
parameter. The panel depicts the process of computing the nematic order parameter P̄2 for a system
of rod-like colloidal ellipsoids that assemble into an aligned ordered phase [300]. In the language of
a shape matching scheme (see section 7.1.1), the colloidal system acts as a “query structure” that we
wish to characterize. An ideal system for which the rods are all oriented along the average global
director acts as an implicit “reference structure.” The local values of the angles θ between rods in the
query structure and reference structure act as “shape descriptors.” The Legendre polynomial P2 acts
as a “similarity metric.” The global nematic order parameter P̄2 is computed by averaging over local
values of P2[cos(θ)].

This review is organized as follows. In section 7.1.1, we review shape matching methods
from the literature, restricting our scope to methods that we believe are most immediately
applicable to assembled systems. We describe how representative shapes can be extracted
from particle systems, review the shape descriptors that are best suited to describe these
shapes numerically, and show how they can be compared quantitatively. In section 7.3.5,
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we apply a prototype shape matching scheme to three representative example problems
from simulations of self-assembly. Our examples include identifying global structures in
a microphase-separating system of polymer-tethered nanospheres [298], detecting local
icosahedral clusters in a fluid of hard tetrahedral particles [33], and tracking the twisting of
a helical sheet formed from polymer-tethered nanorods [301]. In section 7.1.3, we suggest
new applications for shape matching methods, including constructing correlation functions,
measuring local crystal grains and crystal defects, devising guided computer algorithms
to map parameter spaces and search for target structures, and grouping and classifying
structures based on particular structural features. To aid in the development and dissemina-
tion of new structural analysis methods based on shape matching techniques, we provide
accompanying software and examples via the web [302].

7.1.1 Shape Matching

Quantifying how well structures match has been generalized in the context of shape
matching [303] (see Fig. 7.2). Familiar applications include matching fingerprints and
signatures [303], facial recognition [304] and medical imaging [305]. Shape matching de-
fines the concept of the shape descriptor, a numerical “fingerprint” that describes a pattern or
shape. Shape descriptors are associated with query structures and compared with reference
structures. The degree of matching between query and reference structures is quantified by
a similarity metric.

Matching information can be used to create order parameters and correlation functions,
identify structures, and perform many other types of structural analysis. Since we can choose
virtually any structure as a reference for comparison, shape matching facilitates the creation
of highly specific structural metrics. In the following sections, we review the process of
constructing a customized structural metric which involves choosing interesting structures
to characterize, computing shape descriptors, and using similarity metrics to compare them.

Representative Structural Patterns

Before we can compute a shape descriptor, we must extract a representative structural pattern
from the system. This step relies largely on physical intuition; often redundant or unimpor-
tant structural information can be discarded out-of-hand to ensure that the matching scheme
is only sensitive to important structural features. One standard type of coarse-graining that is
often employed, particularly to the case of small clusters of roughly spherical particles, is to
consider particle positions exclusively, discarding information regarding particle sizes and
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Figure 7.2 Data flow diagram for shape matching. (a) A structural pattern is extracted for a given
query structure and then indexed into a shape descriptor, which represents a numerical fingerprint for
the structure. (b) The shape descriptor is then compared with shape descriptors for reference struc-
tures to give a measure of similarity between shapes. Depending on how we choose the query and
reference structures, the similarity value obtained may be applied to constructing order parameters,
correlation functions, or other applications.

shapes which may be nearly identical (see Fig. 7.3). This type of coarse-graining can also
be applied to more complex morphologies, such as structures assembled from polyhedral
building-blocks [33], or hierarchical assemblies such as micellar systems [187, 306, 307] or
virus capsids [289,290], wherein the building blocks assemble into larger structural sub-units
that arrange into superstructures. In such cases, the representative structural pattern is given
by the positions of assembled sub-units, rather than the individual building blocks (detailed
in Example 1 in section 7.3.5, below).

Many complex structures cannot be described by positions alone, and require infor-
mation regarding building block sizes, shapes and orientations. Such structures can be
described by “volumetric data,” or “voxel data” (i.e., d-dimensional pixel data), which is
represented numerically by a collection of weights or pixel intensities for cells in a grid that
spans space. This representation is particularly apt for describing the microphase-separated
morphologies assembled from systems of tethered nanoparticles and block copolymers,
where spatial density maps for the aggregating species may resemble sheet-like or network
domains [307, 308, 306, 309] (see Fig. 7.4). Voxel data captures the essential structural
features of these systems, whereas a pattern based on the positions of individual particles
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within the superstructure does not. The same rule applies to many other types of structures
for which the bulk shape is more important than the underlying particle positions, including
all types of phase-separated structures, many complex biological structures such as proteins
and macromolecules [310,311], and large but finite (aka “terminal”) nanoparticle assemblies.
Shape descriptors are typically sufficiently flexible to use either voxel data or point cloud
data as an input.

Crystals, crystalline 
superstructures, simple 
phase separated structures

1) Combine local patterns into 
a global pattern by the 
superposition method

2) Compute shape 
descriptor based on 
the global pattern

Sglobal

(Global structure) (Local structures) (global pattern) (global descriptor)

...
(etc.)

Figure 7.3 Extracting global patterns using the superposition method. For structures with long-
range orientational ordering, such as the diamond structure formed by tetragonally patterned patchy
spheres depicted in the panel [29], a global pattern is extracted by translating all local clusters [312]
or density maps to a common origin. Here, the local structures are represented by particle positions,
but more complex representations are possible. A global shape descriptor is then computed for the
resulting finite structure.

Shape descriptors are typically constructed to describe finite objects. Thus, when de-
scribing global structures such as crystals or bulk disordered systems, local shapes must first
be extracted from the infinite system and then combined into finite local patterns that reflect
the “global pattern” for indexing. The types of global patterns that we create depends on the
structural properties of the system. For structures with long-range orientational ordering,
such as crystals and quasicrystals [313], the shape and spatial orientation of local clusters
within the system are highly correlated. Thus, a global structural pattern can be obtained
by translating all local shapes to a common origin [132], a scheme that we denote as the
“superposition method.” The visual depiction of the superimposed structures is known as
a “bond order diagram [312],” an example of which is depicted for the diamond structure
formed by patchy particles [29] in Fig. 7.3. For crystals with multiple particle types, in-
dependent global descriptors can be created for each type independently, and a combined

141



descriptor can be created. Global descriptors based on orientational ordering are applicable
to crystalline structures in general, including phase-separated systems arranged in crystalline
superstructures [298, 314], where the neighbor directions are computed for the centers
of the micelles, cylinders, etc. rather than the individual particles. Some non-crystalline
globally-ordered microphase-separated structures, such as layered or network structures,
can be described by superposition as well, where global patterns are built up from local
density maps, rather than from local point clusters. This reflects the fact that the probability
density of observing particles in particular spatial directions within these morphologies is
often non-uniform.

... 
(etc.)
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"
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superstructures, complex 
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Figure 7.4 Extracting global patterns using the probability distributions method. For structures
without long-range orientational ordering, or complex global structures with many different charac-
teristic directions, a global pattern can be built up from the probability distribution of local patterns.
The double gyroid formed from tethered nanorods [309], which falls into the latter category, is
characterized by computing the distribution of local nanoparticle density maps sampled throughout
the structure. The red/blue color scheme emphasizes the bicontinuous nature of the interpenetrating
network.

For systems without long-range orientational ordering such as liquids, glasses and amor-
phous solids, a different strategy must be employed, since, in such cases, the superposition
of local structures inherently yields a uniform pattern. In such cases, rather than combining
neighbor directions or density maps by superposition, we compute a probability distribution
of local patterns. The probability histograms for different structures can then be compared to
obtain a measure of similarity between global structures (Fig. 7.4). Computing probability
distributions is also useful for certain complex orientationally-ordered structures, for which
the superposition of local density maps becomes non-distinguishing due to the presence of
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many different characteristic directions within the structure. An example of such a structure
is given by the double gyroid structure composed of tethered nanorods [309] shown in
Fig. 7.4.

Shape Descriptors

Once we have extracted a representative structural pattern from our particle system, we can
compute a shape descriptor to represent the pattern numerically. Depending on the intended
application, different shape descriptors may be best suited to describe a particular structural
pattern, and this information should be considered when deciding which shape descriptor to
compute. Below is a short list of desirable shape descriptor properties within the context of
assembled systems:

• Robustness: the degree of sensitivity to structural defects or random thermal noise.
Some shape descriptors have an inherent data-smoothing mechanism, whereas others
require preprocessing to effectively process thermal data.

• Invariance: the ability for shape descriptors to remain invariant (i.e., unchanged)
under certain mathematical transformations. Invariance under scaling and translations
is typically desirable. Additionally, descriptors may be invariant under rotations,
mirroring operations, or similarity transformations. Rotation invariance is the most
important of these properties for particle systems. For descriptors without rotation
invariance, we often must align or “register [315, 316]” objects prior to matching.

• Efficiency: the computational effort required to calculate the descriptor. For certain
applications, CPU time and memory costs may be a limiting factor for choosing a
shape descriptor. For example, efficiency may be an important factor for on-the-fly
order parameter calculations that occur during a molecular simulation, whereas for
offline data analysis it may be irrelevant. Often, there is a direct tradeoff between
computational cost and accuracy.

• Comparability: the ease of matching. Shape descriptors should yield similar results
for similar structures and different results for different structures. Shape descriptors
should be constructed such that similarity is easy to quantify. The numerical similarity
should directly reflect the physical similarity between the shapes used to construct the
descriptors.

Below, we review some shape descriptors from the computer science shape matching
literature. Since shape matching is a broad field, we focus on the subset of methods that are
best suited for assembled systems. For a general review of some relevant shape matching
methods, see references [317, 318, 319].

Point-Matching Descriptor: For relatively simple structures such as small clusters of
atoms, molecules, or nanoparticle/colloidal building-blocks, we can use the particle positions
themselves (or a corresponding density map) as a shape descriptor (Fig. 7.5a). Matching
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Figure 7.5 Depiction of six different shape descriptors applied to self-assembled systems. (a)
The point matching descriptor [320, 315]. Descriptor components are given trivially by particle
positions or density maps. (b) The shape histogram descriptor [321]. The structure is indexed into
a spatial histogram consisting of shells and sectors. (c) Shape distribution descriptors [322]. The
probability distribution is computed for various local measurements, such as the distance or angle
between surface points. (d) Harmonic descriptors [323, 324, 325, 326]. The shape histogram is
decomposed into a convenient harmonic representation, which can be used for rotation-invariant
matching. (e) The shape contexts descriptor [327]. A coarse histogram is created for each point on
the structure. The descriptor is given by the collection of sub-descriptors for each point. (f ) The
lightfield descriptor [328]. Images or projections are constructed from several different vantage
points and indexed into individual shape descriptors. The overall descriptor is given by the collection
of sub-descriptors for each image.

for this scheme is often based on the root-mean-square (RMS) difference between points,
and thus the scheme itself is sometimes referred to as “RMS matching.” Point matching
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schemes were applied to early attempts at shape matching for macromolecules [329], and
more complex variations have since been implemented for proteins [330]. Point matching
schemes have the advantage of being conceptually trivial; however, there are many subtleties
associated with these schemes that should be considered. First, the descriptor requires
an assignment step to determine the optimal correspondence between points in compared
structures, which is used to re-order the coordinates in the shape descriptors accordingly.
Also, since the descriptors are sensitive to scale, position, and orientation, structures must
first be normalized and registered unless the orientations are known beforehand, or rotation-
dependent matching is desired. Depending on the application, shapes may be registered
based on rigid alignment, or other constraints. Since both assignment and registration
are computationally expensive (i.e. they scale poorly with the number of points, n) point
matching descriptors should be avoided unless (1) the number of atoms, molecules, or
building blocks that make up the structure is small, (2) matching is required for only a few
structures, or (3) registration is not required.

Shape Histogram: Another conceptually simple shape descriptor that has been applied
to molecular database searches is known as the “shape histogram” [321] (Fig. 7.5b). This
descriptor is based on a density map of the structure on a polar or spherical grid. Shape
histograms are best suited for describing structural patterns that can be broken down into
concentric shells, such as nanoparticle clusters, proteins and macromolecules. Shape his-
tograms are also well suited for indexing global patterns created by the superposition method,
as outline above, and can index structures with orientational ordering such as crystals or
quasicrystals, and simple microphase separated structures such as layered phases or network
structures. The shape histogram has the advantage over the point matching method that no
assignment step is required, since the ordering of points is lost during binning. Additionally,
the grid resolution can be adjusted to provide a variable degree of coarse-graining. Like
the point matching method, the shape histogram requires registration to match non-aligned
objects, unless only radial bins are used (i.e., the angular grid resolution is set to zero). How-
ever, shape histograms may lose their discerning capabilities without an angular component.
If n is large, the cost of registration can be significantly reduced by aligning the histograms
themselves rather than the underlying structures.

Shape Distributions: For many applications, registration is too costly and we require
rotation-invariant descriptors. A simple, yet powerful method for creating invariants, known
as the “shape distributions” scheme [322](Fig. 7.5c), involves computing distribution func-
tions for simple rotationally-invariant local metrics. Such local metrics are defined based
on object surfaces; thus this method is best applied to structures with clearly defined, yet
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distinguishable, surfaces, such as microphase-separated structures formed by block copoly-
mers [194, 285] or tethered nanoparticles [253, 210, 331, 306] (see, for example, Fig. 7.4).
The shape distribution “D2” is defined as the probability distribution of the distance between
pairs of surface points. Another similar distribution “A3” is defined by the probability distri-
bution of angles formed by triples of surface points. Similar distributions are defined for
higher numbers of points. The distributions D2 and A3 are similar to the radial distribution
function g(r) and angular distribution function a(θ), respectively, although usually only
surface particles are considered. Like g(r) and a(θ), shape distributions are too coarse to
distinguish between similar shapes, such as small polyhedral clusters.

Harmonic / Invariant Moment Descriptors: A more complex, but more powerful method
for computing invariant descriptors is to compute the harmonic transform of the shape his-
togram. By disregarding the phase information, we obtain descriptors that are invariant under
rotations (Fig. 7.5d). Like the shape histogram, harmonic descriptors are versatile and can be
applied to a wide range of structures including complex nanoparticle clusters, proteins and
macromolecules, and crystalline or microphase-separated structures. The method by which
we compute the harmonic transform of the shape histogram depends on the underlying basis.
Invariants can be obtained for shapes on the circle [323](θ -dependence), sphere [324](θ ,φ -
dependence), disk [325] (r,θ -dependence) and ball [326](r,θ ,φ -dependence). On the unit
circle or sphere, the harmonic descriptors are called “Fourier descriptors,” whereas on the
disk or ball, the descriptors are known as “Zernike descriptors.” The implementation of these
methods for complex assembled systems is described in detail elsewhere [332]. Harmonic
descriptors exhibit an inherent data smoothing mechanism that leaves them better-suited
for describing small polygonal or polyhedral clusters than the shape histogram, which is
prone to error without sufficient averaging. This property, combined with the property
of rotational-invariance, makes harmonic descriptors ideal for describing orientationally-
disordered global structures, such as liquids, glasses and certain microphase-separated
structures, via the probability distributions method. Harmonic descriptors also contain
additional frequency-dependent information regarding the symmetries of the structure.
These unique properties of harmonic descriptors have already been successfully applied to
constructing orientational order parameters for small clusters and simple crystals [265, 132].

Shape Contexts: It is fairly common in the context of self-assembly experiments and
simulations to encounter nearly-ideal assembled structures with localized defects. Thus,
it is often desirable to distinguish between local structural dissimilarities that arise due to
defects, and “overall” differences in the structure. A brute-force solution to this problem
is to explicitly include defective structures in the library of reference structures such that

146



they may be identified directly [187]; however, his requires a priori knowledge of the entire
space of potential defective structures. Obtaining such knowledge may be intractable for
complex assemblies with many degrees of structural freedom, or unmapped systems whose
local motifs have not yet been thoroughly studied. A more general solution is to apply a
“partial matching” scheme, such as the “shape contexts” method [327,333], which is capable
of matching structures independently of local defects, as well as identifying such defects
(Fig. 7.5e). The shape contexts method combines elements of the point matching scheme
with the shape histogram descriptor. Here, a separate shape histogram is computed for each
sample point in the structure, where the coordinate system is centered at that point. The
points in the query structure are then assigned to their corresponding points in the reference
structure by optimizing the match between shape histograms. Outlier points that don’t
correspond well (i.e., local defects) can be excluded to obtain a partial match, or used to
identify the defects. Shape contexts can be applied to any system where local defects might
arise, such as atomic or molecular clusters, micro or nanoscale assemblies, or biological
structures. Since shape contexts are based on the shape histogram, they have the same
limitations when indexing structures with a small number of sample points locally.

Lightfield Descriptor: The shape contexts descriptor is just one example of the more
general method for creating new powerful descriptors by combining simpler sub-descriptors
. A similar method based on combining sub-descriptors is given by the light-field descrip-
tor [328], which involves projecting 3D structures onto 2D images from 20 vantage points at
the vertices of a dodecahedron. This process effectively simulates the act of viewing a struc-
ture from different angles by eye, giving the lightfield descriptor its name (Fig. 7.5f). The
lightfield descriptor can thus be applied to microphase-separated structures, nano/colloidal
scale assemblies, or other structures that can be effectively identified by the trained eye.
Each of the 20 2d images is indexed by a 2d descriptor, and assignment is performed for
pairs of these descriptors for compared structures to optimize correspondence. In practice,
many initial rotations of the dodecahedron are attempted to minimize error due to small
offsets in the spatial orientation.

Other Possible Descriptors: In addition to the shape descriptors outlined above, the shape
matching literature defines numerous potentially useful descriptors that we have not men-
tioned here. Some intriguing possibilities include graph based descriptors [334, 335, 336],
descriptors based on reflective symmetries [337], and methods based on the similarity of
slices of objects [338]. Several structural metrics from the condensed matter literature might
also serve as useful shape descriptors for some applications. For example, in the realm of
global structures, diffraction patterns, radial distribution functions, or orientation tensors
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(e.g. the radius of gyration tensor or the nematic order tensor [339]) could be indexed into
shape descriptors. For local structures, analysis schemes such as the common neighbor
analysis scheme of reference [263] could be easily incorporated. Although many of the
structural metrics from the literature may not be independently distinguishing for a wide
range of problems, they may still yield useful information as part of a more general scheme
through a combination of descriptors.

Similarity Metrics

The degree to which two shape descriptors match [340] is quantified by a similarity metric.
Computing a similarity metric involves reducing the complex information contained in shape
descriptors into a single scalar value that indicates the degree of matching. The similarity
metric that best suits a particular application depends on both the shape descriptor and the
intended physical application. Some desirable properties of similarity metrics are listed
below:

• Metric Behavior: the ability for a similarity metric to give a value that is proportional
to the physical match between the structures. Some similarity metrics satisfy the
triangle inequality [340] (i.e., M(SA,SB) + M(SA,SC) ≥ M(SB,SC), where M is a
similarity metric, and SA, SB, SC are shape descriptors) and are thus truly metrics,
whereas others do not and can be considered pseudo-metrics. It is typically desirable
for similarity metrics to range smoothly with the difference between structures.

• Normalization: the range of possible matching values for a given matching scheme.
For many condensed matter physics applications, we desire similarity metrics that
range from 0 to 1 for use as pseudo-order parameters. While many similarity metrics
do not vary naturally from 0 to 1, they can often be changed by simply shifting and
scaling the interval that defines an ideal and worst-case match. In practice, there is
little difference between this type of pseudo order parameter and a standard order
parameter in terms of the underlying physics.

• Specificity: the degree to which a similarity metric highlights specific differences
between shape descriptors. For some applications it is desirable to give more weight
to specific important differences between the descriptors.

Often, similarity metrics are based on simple geometric functions, such as the Euclidean
distance or vector projection between shape descriptors, which are typically represented
as long vectors. Whereas similarity metrics based on the Euclidean distance are par-
ticularly common in the shape matching literature [303], schemes based on the vector
projection are more commonly (implicitly) applied throughout the condensed matter litera-
ture [265, 132, 57]. In practice, the mathematical form of the similarity metric is typically of
little consequence; virtually any function can be chosen, provided it ranges smoothly as the
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shapes become physically different. In some specific cases, specialized similarity metrics are
designed to be used in conjunction with particular shape descriptors. The shape histogram
scheme described in section 7.3.3 above utilizes a specialized quadratic form distance func-
tion for matching [321], which accounts for mismatches arising from near-misses that occur
due to the discrete nature of the histogram bins. The P2 Legendre polynomial shown in
Fig 7.1 is an implicit example of a specialized similarity metric, specifically designed to
match the angles of rod-like particles with the ideal angle given by the global director [341].

7.1.2 Example Applications

In this section, we demonstrate the application of shape matching techniques to a few repre-
sentative problems from our studies of self-assembly. For simplicity, we use the same shape
descriptor and similarity metric for all of the examples. Since our goal here is to demonstrate
the basic usage of shape matching techniques, our examples should be considered proofs-of-
concept rather than optimal solutions to the problems. Additional examples of applications
of other shape descriptors to self-assembly may be found in References [342, 332].

Prototype Shape Matching Scheme

For our example problems, we use the 3d Fourier shape descriptor [324], which is the
harmonic descriptor defined for patterns on the sphere, [θ ,φ ]. We choose this descriptor
because it is closely related to the spherical harmonics bond order parameters introduced by
Nelson and coworkers [265,132], and thus many readers will already be partially familiar
with them. The basic idea behind the 3d Fourier descriptor is to decompose a 3d structure
into one or more patterns on the 2d surface of a sphere, and represent these patterns mathe-
matically by computing the discrete spherical hamonics transform (DSHT). This method
of representing a pattern as its harmonic transform is analogous to the way that 1d signals
along the perimeter of the circle can be described by their discrete Fourier transform (DFT).

How we extract the patterns on the sphere depends on how data is represented. For
simplicity, we use a minimal data representation based solely on particle positions (i.e., point
cloud data) for all of our examples; however other types of data, such as volumetric data,
can also be easily treated by Fourier descriptors. For our examples, we describe particle
structures as patterns on the sphere by (1) translating the structure to the origin, (2) grouping
all positions within a radial shell rs and (3) converting each position x into its angular
direction relative to the origin [θ(x),φ(x)]. This is repeated for all ns radial shells required
to describe the full 3d structure, giving ns patterns on the sphere for each structure.
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For each pattern on the sphere, the Fourier coefficients of the DSHT are given by:

q" =
1
n

n

∑
i=1

Y m∗
" [θ(xi),φ(xi)] m = −",−"+1, ...". (7.1)

The term Y m
" is a set of spherical harmonics with angular frequency ". The coefficients q"

are vectors with 2"+ 1 complex components. Although the Fourier coefficients in their
complex number form are rotationally-dependent (i.e., their value depends on the spatial
orientation of the underlying pattern), we can convert them to their rotationally-invariant
form by computing the magnitude of each coefficient. The invariant circular coefficients are
given by:

|q"| =

√√√√ 4π
2"+1

"

∑
m=−"

|qm
" |2. (7.2)

The Fourier invariants are positive real numbers. Although the coefficient magnitudes
themselves can be used directly as order parameters [132], incorporating them into a shape
descriptor is often more powerful, since we can compare shapes based on a variety of
frequencies and lengthscales. To create a descriptor from the Fourier coefficients, we simply
combine the desired q" or |q"| into a long vector. For example, a general rotation-invariant
shape descriptor that is applicable to patterns on the sphere over a range of symmetries is
given by:

SF3
shelli =< |q"min|, |q"min+1|, ...|q"max | > . (7.3)

The range of frequencies can be adjusted to obtain a desired level of resolution. For our
examples below, we use "min = 4 and "max = 12. Since each Fourier descriptor describes the
pattern for a given shell, we must combine the Fourier descriptors for each shell to describe
the overall shape:

SF3 =< SF3
shell1,S

F3
shell2, . . . ,S

F3
shellns

> . (7.4)

For our example applications, we will use a simple similarity metric based on the
Euclidean distance |Si −S j| between harmonic shape descriptors:

M(Si,S j) = 1−2
(
|Si −S j|/|Si|+ |S j|

)
. (7.5)

This similarity metric is proportional to the Euclidean distance between shape descriptor
vectors, but is normalized such that vectors that match perfectly give a value of 1, while
vectors that are perfectly anticorrelated give a value of −1. Vectors with no directional
correlation (i.e., that are orthogonal) give a value of 0. This normalization allows us to make
a clearer analogy between our matching scheme with a typical order parameter; however,
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only the relative value of the similarity metric is relevant and the normalization is merely a
matter of convenience.

Example 1: Micellar Crystal Structures

reference Mdiff(SF3, SF3)

FCC 0.65

HCP 0.56

BCC 0.62

SC 0.81

Diamond 0.72

reference Mdiff(SF3, SF3)

FCC 0.57

HCP 0.50

BCC 0.58

SC 0.52

Diamond 0.63
micelle COMbulk structure

a

b ref

ref

superposition

Figure 7.6 Identification of global crystalline structures for a system of ditethered spheres
[298, 314]. (a) A crystal formed in the ditethered nanosphere system where the planar angle between
tether attachment is 30 degrees. Ignoring chemical specificity of the tether micelles, the structure best
matches the ideal diamond lattice. (b) A crystal formed by the ditethered nanosphere system with
planar angle between tether attachment of 60 degrees. Ignoring chemical specificity of the micelles,
the structure best matches an ideal simple cubic structure. In both cases, the micelle centers are
extracted using a Gaussian filter, and matching is based on the global superposition of local patterns
(section 7.3.3).

A straightforward application of shape matching techniques to particle systems is to
identify unknown structures by searching a database of known reference structures. Struc-
tures are identified by the known structure that gives the best match. Structure identification
can be performed for either local structures or for global samples. As a simple example of
structure identification for a global sample, consider the ditethered nanosphere system of
references [298, 314], which microphase separates into spherical micelles. The micelles
themselves pack into an ordered binary crystalline superstructure. Depending on the state
point, the system forms different crystals, as shown in Fig. 7.6. The structural pattern that
represents the different crystals is obtained by identifying the micelle centers of mass, which
comprise the set of positions that describe the system. The micelle centers of mass are deter-
mined by creating a density map (i.e., a voxel representation) for the aggregating polymer
tethers and then applying a Gaussian filtering algorithm adapted from the colloidal science
literature [294,291] to identify the spheroid centers. Since the superstructure has long-range
orientational ordering, a global pattern is given by the superposition of local patterns (see
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Fig. 7.3). The pattern for the unknown crystal is compared to those for several standard
candidate crystals. For each pattern we compute the 3d Fourier descriptor SF3 described
above, with rotationally-invariant coefficients for a single shell, ns = 1. Using this method,
the patterns are compared independently of spatial orientation over a single length scale used
to construct the local clusters. The unknown crystal is identified by the reference structure
that gives the best match. The structures in Fig. 7.6a,b are identified as diamond and simple
cubic, respectively, where we do not consider the chemical specificity of the two types of
micelles. Notice that the best match does not necessarily give a value that approaches 1;
such deviations are common when comparing thermal systems to mathematically perfect
reference structures, as we have done here. The micellar system under investigation exhibits
thermal disorder as well as polydispersity in the shape and size of the micelles, and thus
particle positions deviate from the ideal lattice points. Oftentimes, comparing to reference
systems that exhibit similar levels of noise may provide clearer results.

This type of database search has already been applied to particle systems in the context
of proteins and macromolecules [329, 343, 330, 344, 345, 310, 311]. Although database
searches have only been applied in limited cases to assembled systems [187,309], many stan-
dard local structure identification schemes in the condensed matter literature bear a strong
resemblance to shape matching identification schemes. For example, the common neighbor
analysis (CNA) scheme of reference [263] involves constructing numerical fingerprints for
pairs of atoms based on their local neighbor configurations, and identifying local clusters by
matching the distribution of fingerprints with those for ideal structures. In the language of
shape matching, the collection of CNA fingerprints can be considered a shape descriptor,
and the catalogue of ideal fingerprints can be considered a database of reference structures.
A similar identification scheme is given by the bond order parameters of reference [132].
Here, particular local structures with strong symmetries, such as small ordered clusters of
spherical particles, can be identified by finding structures with bond order parameters that
exceed a particular threshold [346]. In this case, the bond order parameters represent shape
descriptors, and the threshold values act implicitly as similarity metrics, since the ideal
structures are known to have high values of the bond order parameters.

Example 2: Icosahedral Clusters of Tetrahedral Particles

As mentioned in the previous example, a common application of structural characteriza-
tion schemes is to identify local motifs within a global system. Examples include finding
locally stable clusters in liquids [263, 33], colloids and gels [347] and nanoparticle super-
structures [187, 309], and identifying structural defects in, or grain boundaries between,
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crystalline domains, such as in dense colloids [293]. Often, these local structural character-
istics can be directly related to the thermodynamic, mechanical, or other properties of the
system.

When detecting local structures in systems without long-range orientational order (i.e.
“disordered” systems), we often encounter structures that are not present in our reference
library. A structure that does not match with those in the reference library within a certain
threshold is considered “disordered,” or unimportant [187, 309]. The threshold must be cho-
sen carefully; in thermal systems, an overly-stringent cutoff value might cause a matching
scheme to miss highly-ordered structures perturbed slightly from their ideal configurations,
whereas an overly-permissive cutoff can misidentify highly disordered structures. In most
cases, a sufficiently rigorous cutoff can be defined such that its value does not affect the
qualitative results.
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Figure 7.7 Icosahedral clusters in the hard tetrahedron system [33]. As the pressure and the
corresponding density increase, icosahedra grow more prevalent until the system transforms into a
dodecagonal quasicrystal at P ≈ 62, at which point the number of icosahedra vanishes.

As an example of identifying ordered local structures in an otherwise disordered system,
consider the hard tetrahedron fluid studied in reference [33] (Fig. 7.7a). In this system, an
important local motif to both the fluid and the glass, originally identified by visual inspection,
is the icosahedron formed by 20 tetrahedra sharing a common vertex. To identify icosahedra
in the system, we first cluster all sets of 20 tetrahedra in the system that share a common
vertex. The structural pattern for each cluster is defined by the directions of vectors drawn
from the center of the cluster through the face of each of the 20 tetrahedra, which for an ideal
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icosahedral cluster results in a dodecahedron. Any local cluster i that matches the shape
of a dodecahedron with a value of Mcut(SF3

i ,SF3
dodecahedron) > 0.9 is considered to be in an

icosahedral motif. Fig. 7.7 shows the fraction of tetrahedra that participate in at least one
icosahedron as a function of pressure. Icosahedra are relatively common in the tetrahedral
fluid (below P = 62) and become more prevalent with increasing density, persisting into the
glass if the fluid is compressed too quickly. As the fluid transforms into a quasicrystal at
P ≈ 62, the fraction of tetrahedra in icosahedra decreases drastically, and vanishes for the
ideal quasicrystal without thermal fluctuations. Although the value of Mcut may affect the
absolute number of icosahedra, the same underlying physical transition is captured for any
reasonable value.

Example 3: Assembly of a Helical Ribbon

Another standard application of structural metrics is to track structural transitions, either
as a function of time or a changing reaction coordinate. This is typically accomplished by
monitoring either an order parameter or correlation function as the system goes through a
transition. Tracking structural transitions is important for a wide variety of applications,
including elucidating thermodynamic transitions [57, 348, 349, 350, 351] and assembly
pathways [29, 352, 353, 268]. Many of the advanced molecular simulation techniques used
to study transitions [156, 157, 60, 354, 158] rely on structural metrics in the context of
pseudo-reaction coordinates [157], biasing parameters [156], and collective variables [158]
to guide the statistical sampling algorithm. Standard order parameters have been devised for
various types of ordering, including bond orientational ordering [48, 54, 132, 355], liquid
crystalline ordering [341, 262] such as nematic [356] and smectic [349] phases, chiral
ordering [264], and helical ordering [357]. Time correlation functions based on these types
of order parameters have been applied to creating structural “memory” functions for glassy
liquids [138, 139] and ordered motifs attaching to a growing quasicrystal nucleus [30].

As a simple example of using shape descriptors to create an order parameter, consider
the ribbon-like bilayer composed of laterally tethered nanorods studied in reference [301],
and shown in Fig. 7.8. The initial sheet or ribbon is unstable and eventually relaxes into
a stable helical structure. We can track this structural transition by matching the shape of
the sheet at a given time t with the final, fully-equilibrated helical structure: M(SF3

t ,SF3
helix).

Since the structure is 3-dimensional and has radial dependence, we use a Fourier descriptor
with ns = 6 radial shells: rs = 10σ ,30σ ...110σ , where σ is the distance unit corresponding
to a Lennard-Jones particle diameter. Since the sheet only changes in terms of its twist in
space, we save computational effort by only considering points along the backbone of the
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Figure 7.8 Assembly of a helical sheet composed of laterally tethered nanorods [301]. The rods
form a bilayer with long attractive tethers on one side, and shorter attractive tethers on the other. As
time progresses, the sheet folds into a helix to maximize the favorable energetic interactions between
the longer tethers. The matching order parameter Mdist(St/τ ,Shelix) compares the structure at time t
with the shape of the final ideal helical structure.

sheet. Fig. 7.8a shows the helical order parameter as a function of time for a long molecular
dynamics run. We observe that the sheet begins to twist from both ends simultaneously,
which gives rise to a defect at the center of the helix, where a mismatch in the periodicity
between the two ends occurs. This results in a tendency for the structure to bend to close
the defect. The bend persists for many millions of time steps before annealing into a defect
free helix at around t/τ = 4.5×107. This behavior is well captured by matching the overall
shape of the structure, but is not captured by the more standard H4 descriptor, applied in
the original reference, which only measures the degree of helical ordering and gives an
essentially constant value for all times after the completion of twisting at t/τ ≈ 7×106 [301].
Using H4 alone, it would appear that the structure is fully formed at this early time, which
does not capture the important defect removal behavior, which can also be observed by
visual inspection.

7.1.3 Future Outlook

Beyond identifying local and global structures and tracking structural transitions, there are
many more applications of shape matching. In this section, we briefly review some areas
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in which we are currently applying shape matching for studying self assembly. Additional
details may be found in Ref. [342] and in the individual references cited below.

On-The-Fly Structure Identification: For many assembly applications, such as Bottom-
Up-Building-Block-Assembly (BUBBA) [358], we are interested in cataloguing unique
structures. When enumerating unique structures it is not typically necessary (or feasible)
to define a library of reference structures a priori, as we did for examples 1 and 2 above.
Rather, the reference library can be compiled on-the-fly as new structures are encountered
(see Fig. 7.9a). Each new structure is given a unique identifier, and structures that are
duplicates are labeled with the same identifier. In addition to cluster enumeration schemes,
this type of algorithm can potentially be applied to automatically detect regions of unique
ordering in structural phase diagrams.

Space/Time Correlation Functions: In example 3 above, we demonstrated how shape
matching could be used to track a structural transition as a function of time, or a reaction co-
ordinate. Another common application of structural metrics is to characterize how structures
change in space. In the context of shape matching, this involves choosing structures from
different points in the system, rather than ideal structures, as reference structures. Spatial
correlation functions are often used to measure structural “correlation lengths.” In the con-
densed matter literature, structural correlation functions have been defined for crystal-like
ordering in 2d [48, 54] and 3d [132, 57], nematic ordering [359], and many other more
specialized types of ordering. More specialized types of spatial correlation functions have
been widely applied as well. One example is the q6 · q6 scheme of references [57, 62],
which detects ordered crystal nuclei based on spatial correlations between local bond order
parameters. This scheme can be adapted to identify crystal nuclei in general by replacing q6,
which is only sensitive to particular crystal structures, with other shape descriptors that are
applicable to a particular crystal under investigation. Fig. 7.9b depicts the formation of a
diamond-structured crystal nucleus (yellow) in a system of patchy particles, identified by
replacing q6 with the " = 3 Fourier coefficient, q3 [29].

Structure Grouping and Classification: The field of self-assembly involves a wealth of
particle building blocks and the assemblies they form; thus it is sometimes useful to catego-
rize or classify structures based on particular structural features. For example, reference [11]
ranks different building blocks for self-assembly based on their shape anisotropy. Shape
matching methods can provide numerical metrics by which to classify structures. Structures
can be ranked based on the degree to which they exhibit a particular structural feature of
interest, or by how well they match ideal structures exhibiting a particular feature. For
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Figure 7.9 Potential uses for shape matching in assembly applications. (a) Searching parameter
spaces for unique structures. The panel depicts the Bottom-Up-Building-Block-Assembly (BUBBA)
algorithm [358]. (b) Computing spatial correlation functions. The panel depicts detecting a growing
diamond crystal nucleus in a system of patchy particles [29]. (c) Structure grouping and classification.
The panel depicts a similarity matrix (i.e., all of the pairwise similarity values) for 2d clusters of
different sizes. Groups of similar structures are identified by bright boxes about the line y=x. (d)
Abstract correlation functions. The panel depicts a structural phase diagram for the 2d Lennard-Jones
Gauss system (top), created by visual inspection [120], compared with a phase diagram for the same
system generated automatically using a shape matching algorithm (bottom).

example, structures can be ranked based on their 6-fold symmetry by computing the value
of their " = 6 Fourier descriptor, which is proportional to the degree of 6-fold symmetry.
Similarly, we can create groups of structures that exhibit a particular structural feature by
comparing shape descriptors. One example of a technique used to visually group similar
structures is given by plotting a matrix of pairwise similarity values known as a “similarity
matrix” or “heat map” [360], as depicted in Fig. 7.9c for 2d colloidal clusters [361]. Groups
of clusters with similar structural features produce bright blocks, indicating that clusters

157



within this region of parameter space match well. Grouping objects based on shape similarity
has also been applied recently to macromolecules and proteins [310, 344].

Abstract Correlation Functions: Thus far, we have either extended the applicability of
standard condensed matter order parameters and correlation functions by incorporating
shape matching, or applied standard shape matching applications directly in the context of
assembled systems. However, in addition to extending existing applications for use with
assembled systems, shape matching allows us to invent new methods that have not yet been
explored. For example, rather than creating correlation functions in space and time as we
typically do for condensed matter systems, we can create abstract correlation functions in
parameter space. Fig. 7.9d depicts a parameter space correlation function computed for the
2d Lennard-Jones Gauss system [120], which identifies structural phase boundaries (purple)
by finding points in parameter space that do not match well with their neighboring points.
This correlation function is able to reproduce the structural phase diagram produced in
reference [120] by visual inspection of over 5000 independent configurations. This scheme
is just one example of how shape matching algorithms can replace the human element
in searching for target structures, and rapidly mapping parameter spaces. The ability to
expedite self-assembly research by automating the study of unique systems may represent
one of the most important uses for shape matching moving forward.

Summary: The example applications and shape descriptors that we have provided here
represent only a small subset of the vast range of possibilities yet to be explored. In the
future, the wealth of shape descriptors from the shape matching literature should be tested
for different classes of particle systems to expand the scope of order parameters available
to the fields of experimental and computational assembly. New abstract order parameters
and correlation functions, such as the phase space correlation function of Fig. 7.9d, can be
constructed to expand the algorithms used to explore new systems. More immediately, the
relatively simple algorithms outlined here can be applied to existing assembled systems to
enhance our ability to gain insight into the underlying physics of these complex systems.

7.2 Harmonic Order Parameters for Characterizing Com-
plex Particle Morphologies

Order parameters based on spherical harmonics and Fourier coefficients already play a
significant role in condensed matter research in the context of systems of spherical particles.
Here, we extend these types of order parameter to more complex shapes, such as those
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encountered in nanostructure self-assembly applications. To do so, we build on a powerful
set of techniques that originate in the computer science field of “shape matching.” We
demonstrate how shape matching techniques can be applied to identify unknown structures
and create highly-specialized ad hoc order parameters. Additionally, we investigate the
special symmetry properties of harmonic descriptors, and demonstrate how they can be
exploited to provide optimal solutions to certain classes of problems. Our techniques can be
applied to particle system in general, both simulated and experimental, provided the particle
positions can detected, or the particles can be accurately imaged.

7.2.1 Introduction

Quantitative measures of symmetry and order, such as order parameters and correlation
functions, are often applied within the chemical sciences to study the structural properties
of particle systems. Structural quantities are particularly important in condensed systems,
including nano and colloidal scale self-assembly applications, where subtle differences in
particle ordering can greatly effect the thermodynamic, physical, chemical, electrical, and
optical properties of a material or device [362, 363, 364, 351, 297, 12, 11]. Some particularly
useful order parameters, known as “bond order parameters,” were introduced by Nelson and
co-workers in the context of 2d and 3d simulations of point-particles [48, 132]. These order
parameters have since been widely applied to both simulated and experimental systems for
quantifying crystal-like ordering amongst spherical particles. Some common applications
of bond order parameters include, but are not limited to, identifying small ordered clus-
ters [132,346,187], constructing static [365,138,366,57,62,367] and temporal [139,30]
correlation functions, identifying structural defects [293], and studying nucleation and
growth [57, 62]. Bond order parameters have the advantage that they can give a represen-
tative value for a given structure regardless of spatial orientation. Additionally, they are
robust under random perturbations due to thermal noise and highlight important rotational
symmetries.

Since bond order parameters were originally designed to quantify order in small point
clusters, they cannot be applied directly to complex structures or particle shapes. Thus,
they fail, in many cases, to fully describe the complex structures that arise in contemporary
disciplines, such as nanoscale and colloidal assembly, soft matter physics, and the biological
sciences. The field of nanoparticle assembly in particular encompasses a vast range of the
structural complexity that is possible for particle systems [11, 253, 12, 13]. Here, nanometer
and micron-sized colloidal particles with a wide range of shapes, compositions and interpar-
ticle forces self-assemble into unique structures, such as complex crystals reminiscent of
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atomistic condensed matter [33, 268, 269, 210], phase-separating structures similar to those
observed for block copolymer and surfactant systems [253,210,284,285,286,287,288], and
hierarchical assemblies that resemble certain biological structures [289, 368]. Because there
are no general structural metrics or order parameters than can be applied to these systems,
ad hoc analyses or visual inspection are often employed instead. This often yields relatively
inaccurate or incomplete results when compared to statistical analysis.

Here, we generalize and extend bond order parameters for applications involving com-
plex structures. Our primary focus is on the field of self-assembly, where we predict that
these new structural characterization schemes are most immediately required and most
readily applicable. However, the structural metrics that we introduce, known as “harmonic
descriptors,” can be applied across diverse fields, including soft matter, macromolecular and
biological sciences, and other applications where complex particle structures are encountered.
To derive general structural metrics for these systems, we draw strongly from the computer
science field of shape matching [34, 37], which aids us both in contriving mathematical
representations for describing complex structures, and in quantifying structural similarity
based on these representations. Our approach involves constructing “shape descriptors” that
are roughly based on a collection of many bond order parameters computed over a range of
lengthscales. By quantifying the similarity between pairs of these shape descriptors, we can
derive order parameters and correlation functions that are applicable to complex structures.
In this respect, the order parameters that we introduce actually represent the degree to which
two collections of “sub-order parameters” match. This pairwise comparative approach to
constructing order parameters is necessary for applications involving complex structures,
which, unlike simple clusters of spherical particles, require a range of structural metrics to
describe them completely. Shape matching techniques based on the harmonic descriptors
described here have already been applied to complex particle systems in the context of fast
database searches for retrieving macromolecules and proteins [344, 310, 345]. We have ap-
plied similar database searches in the context of characterizing local structure in nanoparticle
assemblies [187, 33]. In addition to this type of application, we demonstrate how harmonic
descriptors can be applied to the a broad range of structural characterization problems to
which bond order parameters have traditionally been applied for simpler systems.

This article is organized as follows. In section 7.2.2, we describe how to extract patterns
from complex particle systems that can be described by harmonic shape descriptors. In
section 7.2.5 we describe, in detail, how the descriptors can be computed mathematically,
and explore their unique properties, such as rotational invariance and sensitivity to rota-
tional symmetries. In section 7.2.10, we describe how the harmonic descriptors can be
used to solve representative problems from the field of computational and experimental
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self-assembly and computational biology. In section 7.2.13, we explore how the special
symmetry properties of harmonic descriptors can be applied to solve unique problems that
are not easily solved by other types of shape descriptors. The methods that we describe here
are applicable to all types of particle systems, both simulated and experimental, for which
particle positions are known or can be accurately imaged. To aid with the dissemination
of these techniques and new algorithms using harmonic shape descriptors as a basis, we
provide a software library via the web [302].

7.2.2 Pattern Extraction

The first step in the structure characterization schemes that we will employ is to extract
a representative structural pattern from the particle system that can be “indexed” (i.e., de-
scribed mathematically) by a harmonic shape descriptor. While this is relatively trivial for
small clusters of spherical point particles [132], for complex structures, some physical and
mathematical intuition is often required. As we will demonstrate in detail in section 7.2.5,
the harmonic shape descriptors that we introduce are best suited to index patterns on the
unit circle, sphere, disk or ball. Such representations are often sufficient to distinguish
between even very similar structures with a high degree of precision. The patterns may
represent the particles themselves or some interesting pattern formed by their positions or
density profile. In some cases, the raw data may be preprocessed to better extract important
structural features, for example, by spatial coarse-graining, time averaging, or potential
energy minimization.

Structural patterns in general can be described by a set of positions {x}= {x1,x2, . . . ,xn}
and corresponding weights { f}= { f1, f2, . . . , fn}. For point cloud data, or raw particle coor-
dinates, {x} represents the particle positions and the weights { f} are equivalent and usually
taken to be 1. For voxel data (i.e., volumetric data, often used to describe density maps),
{x} represents the positions of bins on a grid with weights { f}. The same representation
can be used to describe experimental images; in this case, {x} represents the positions of the
pixels and { f} represents their intensity. This notation allows us to write general equations
for shape descriptors in section 7.2.5.

7.2.3 Local Structures

As originally shown in the context of bond order parameters [48, 132], a cluster of point
particles is one simple type of structure that can be trivially represented by the projection of
the points onto the surface of a circle or sphere. The patterns for two different point clusters
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idealized as point particles to the same effect. (b) Point clusters with r-dependence or spatial density
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are shown in Fig. 7.10a. Notice that we exclude the center particle from the pattern, since it
has no specific direction. The clusters need not strictly consist of point particles; so long as
particle shape is not important, the structural pattern can be described by placing points at
the particle centroids, as depicted in Fig. 7.10b. Often, local structures are isolated from
the bulk system by applying a clustering algorithm. One standard scheme is to cluster all
particles within a cutoff range [132, 187]. More specialized schemes can be applied for
specific applications, such as particles with complex shape [33].

Projecting patterns onto the circle or sphere neglects radial information. Therefore, such
projections can lead to non-distinguishing patterns for structures with radial dependence.
One solution is to decompose structures into concentric shells, projecting each shell onto
the circle or sphere independently, as depicted in Fig. 7.10c. Structures can be compared
by matching corresponding shells. Alternatively, complex patterns can be represented on
the unit disk or unit ball. These representations account for radial dependence, as well as
angular dependence. As described in section 7.2.7, representation on the disk or ball is
optimal when decomposition into shells is inaccurate, or gives degenerate representations.

7.2.4 Global Structures

Structures with long-range ordering, such as crystals and phase-separated structures, cannot
be directly indexed on the circle, sphere, disk or ball. Rather global patterns are con-
structed by combining different pieces of local information. One such method, originally
introduced in the context of bond order parameters [132], is based on computing the su-
perposition of all local patterns in a sample [312]. Fig. 7.11a shows the superposition of
local patterns in an face centered cubic crystal, where local patterns are defined by the
projection of neighbor directions on the unit sphere. Since crystals have long range orien-
tational ordering, the neighbor directions are coincident throughout the sample. This type
of structural pattern is independent of the shape of the underlying particles, and thus can
be applied to many assembled structures, such as crystals of patchy particles [29], polyhe-
dral particles [33], or phase-separated structures that form micelles or cylinders arranged
in crystalline superlattices, such as dendrons [196], block copolymers [364], or tethered
nanoparticles [307, 306, 331, 298, 187]. This superposition scheme is also applicable to
many non-crystalline global phase-separated structures, such as layered and network struc-
tures, often formed by block copolymers or tethered nanoparticle systems [307, 306, 331].
Fig. 7.11b shows the superposition of local density maps represented on the unit ball for a
phase-separated sheet structure formed by tethered nano-spheres [331].

For structures without long range orientational ordering, the superposition of local pat-
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Figure 7.11 Extracting global patterns. (a) Superposition of local patterns for an fcc crystal.
(b) Superposition of local patterns for a phase separated lamellar structure formed by tethered
nanospheres [187]. (c) Superposition and probability distribution of local patterns for a liquid.
Since the structure has no long range orientational ordering, superposition is non-distinguishing. (d)
Superposition and probability distribution of local patterns for a double-gyroid structure formed by
tethered nano rods [307, 309]. For this complex structure, the superposition of local patterns is non
distinguishing, even though the structure has long-range ordering.
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terns results in a random pattern over long ranges. Fig. 7.11c shows the superposition of
local patterns for an atomic liquid, which results in a uniform distribution on the sphere.
Since the same pattern is inherent to all liquids, gases, gels, etc., regardless of the underly-
ing particle shape, superposition gives no structural information, other than indicating an
absence of long-range orientational order. Orientationally-disordered structures of all types
can be differentiated by considering the probability distributions function of local patterns,
rather than the superposition. The probability distribution scheme is also useful when
comparing structures with complex local patterns where superposition becomes degenerate
or non-distinguishing, such as complex network structures [309]. This is depicted for the
double-gyroid structure formed by tethered nano-rods [307, 309] in Fig. 7.11d.

7.2.5 Harmonic Descriptors

Given a pattern on the unit circle, sphere, disk or ball, the harmonic shape descriptors
reviewed in this section can be used to index the pattern into a compact vector representation.
This vector, or “shape descriptor,” can be compared with other shape descriptors to obtain
a quantitative measure of similarity between structures. In the derivation that follows, we
introduce harmonic descriptors from a perspective that draws on elements of shape matching
and signal processing. This contrasts with the physics-based perspective presented in the
original derivation of bond order parameters [132]. The alternate perspective is meant to
highlight the fundamentally different way in which the structural metrics are used; whereas
bond order parameters are often applied directly as order parameters, harmonic descriptors
represent structural fingerprints that must be matched to obtain structural information, which
can subsequently be used for constructing order parameters.

Before we introduce harmonic descriptors, it is important to understand why they are
more useful than simpler shape descriptor methods. Consider, for example, the problem of
mathematically comparing two simple structures, such as the clusters shown in Fig. 7.10a.
Perhaps the most obvious way to describe the different structural patterns is to simply use
the coordinates themselves as the shape descriptor. While this greatly simplifies the initial
step of creating a shape descriptor, it complicates matching significantly, since we do not
typically know a priori the optimal correspondence between the coordinates in different
lists. Reordering the lists is an optimization problem that can be solved, for example, by
applying the Hungarian method [369]. This type of problem scales as O(N3) and thus
quickly becomes inefficient for large N. A simple solution to the assignment problem is
to create a probability histogram on the unit circle, sphere, disk or ball, as depicted in
Fig. 7.10. Since the histogram bins are independent of the order of the particles in the list
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(and number of particles), no assignment is required. Although this representation, known
as the “shape histogram [321]” is very useful for some applications, one drawback is that to
compare patterns in a way that is rotation-invariant, the patterns (or the histograms) must be
aligned prior to matching. This “registration [315,316]” step is computationally expensive
and potentially inaccurate if applied naively. One elegant solution to these problems is
to compute the discrete Fourier transform (DFT) for each shell in the shape histogram.
The DFT transforms the pattern into its frequency-domain representation, which can be
used to obtain rotation-independent harmonic descriptors through a simple mathematical
operation as described in the following section. As an additional advantage, harmonic
descriptors have adjustable frequency parameters that can be tuned to highlight important
rotational symmetries or give a variable degree of coarse-graining. The manner in which we
compute the harmonic descriptors depends on the coordinate system best used to describe
the structure. In the following sections, we first introduce Fourier descriptors, which are
suited for indexing shapes on the unit circle (θ dependence) or sphere (θ ,φ dependence)
and then introduce Zernike moments which are suited for indexing shapes on the unit disk
(r,θ dependence) or ball (r,θ ,φ dependence).

7.2.6 Fourier Descriptors

Fourier descriptors are designed to efficiently index structural patterns on the circle or sphere.
The basic idea behind the Fourier transform is to represent a function as the sum of harmonic
components. For a pattern along the 1d perimeter of the circle, we can do this by summing
complex exponential terms:

f (θ j) =
"max

∑
"=0

ψ" exp
[
i"θ j
]

j = 1,2, ...nbin. (7.6)

Here, f (θ j) is the intensity of the pattern at a particular point along the perimeter of the
circle θ j. The terms ψ", known as “Fourier coefficients,” indicate the strength of the pattern
for a particular frequency ". Typically, we cut off the frequency " at some finite value "max,
since the information for high-frequency " becomes increasingly dominated by noise in the
structure. The " = 0 and " = 1 terms only contain information regarding the position and
center of mass of the pattern and are sometimes excluded. If the pattern consists of more
than one radial shell, we compute the Fourier transform for each shell independently.

The Fourier coefficients contain structural information that can be used to create shape
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Figure 7.12 Fourier descriptors. (a) Decomposition of the angular pattern obtained for a 2d hexag-
onal cluster into a sum of sines and cosines. Since the cluster has 6-fold symmetry, the leading
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descriptors with various properties. The coefficients are given by:

ψ" =
1

npts

npts

∑
j=1

f j exp
[
i"θ j
]∗

. (7.7)

The term θ j is the angle of an input point x j with intensity f j from our pattern {x},{ f}. The
coefficients ψ" are complex numbers. The ∗ denotes the complex conjugate. As outlined
in the previous section, the input points from our pattern can represent either the positions
of bins in the circular shape histogram or the raw data if no binning is performed. The
representations become equivalent as the bin size approaches zero and only one point can
occupy a given bin.

Since the Fourier transform is a frequency-domain representation of the pattern, it gives
the strongest signal for frequencies that reflect periodicities in the pattern around the circle.
That is, patterns with n-fold rotational symmetry yield a high values of ψ" (and, as we will
discuss later, q"). Since rotational symmetries are relatively insensitive to small changes
to the pattern, Fourier descriptors are relatively insensitive to thermal noise, particularly
for low-frequency coefficients. Although the Fourier coefficients in their complex number
form are not rotation-invariant, we can convert them to their invariant form by computing
the magnitude of each coefficient. The invariant circular coefficients are given by:

|ψ"| = ψ"ψ∗
" =
√

ℜ(ψ")2 +ℑ(ψ")2. (7.8)

The Fourier invariants are positive real numbers.
To obtain some physical understanding of the properties of Fourier coefficients, consider

the small cluster in Fig. 7.13a. If we normalize the cluster to the unit circle, the centroid
(unweighted center of mass) is given in complex coordinates by conjugate of the " = 1
coefficient ψ∗

1 . Using a frequency term other than " = 1 multiplies each angle θ by a factor,
effectively stretching or compressing the pattern along the circle. We see that choosing
" = ψn where ψn is a rotational symmetry of the cluster causes the different angles θ j to
coincide, resulting in a non-vanising centroid for the transformed cluster. Thus, the Fourier
coefficient with " $= 1 represents the centroid of the stretched or compressed pattern. Al-
though the position of the centroid is dependent on the cluster orientation, this distance from
the origin to the centroid is invariant under rotations. Thus, we obtain a rotation-invariant
descriptor by computing the magnitude of the coefficient.

These properties of Fourier coefficients have been exploited in the context of bond
order parameters [48, 132]. For example, particular coefficient magnitudes, such as ψ6

(or, analogously q4 and q6, see below) have been used directly as scalar order parame-
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ters [132, 350]. This method is often sufficient for the simple structures that we encounter in
systems of spherical particles. However, more complex structures often require a full range
of coefficients, and order parameters must be constructed by comparing sets of coefficients,
rather than evaluating particular coefficients. To create a descriptor from the Fourier coeffi-
cients, we simply combine the desired ψ" or |ψ"| into a long vector. For example, a general
rotation-invariant shape descriptor that is applicable to patterns on the circle over a range of
symmetries is given by:

SF2 =< |ψ0|, |ψ1|, ...|ψ"max | > . (7.9)

It is easy to imagine how different combinations of the Fourier descriptors can be used to cre-
ate shape descriptors with different levels of robustness, sensitivity to particular symmetries.
For many applications it is common to include only coefficients with specific symmetries,
or to use rotation-dependent coefficients.

As outlined in the previous section, many 3d structures are well represented by patterns
on the surface of the sphere. The analogy to the 1d DFT on the 2d surface of the sphere is
known as the discrete spherical harmonics transform (DSHT), given by:

f j(θ j,φ j) =
"max

∑
"=1

"

∑
m=−"

qm
" Y m

" (θ j,φ j).

j = 1,2, ...nbin (7.10)

The terms Y m
" [θ j,φ j] are spherical harmonics, defined by Y m

" (θ ,φ)= Nm
" Pm

" (cosθ)exp(imφ).
The term Nm

" is a normalization factor
√

(2"+1)("−m)!/("+m)! and Pm
" is a Legendre

polynomial. We see that the DSHT is similar to the DFT except for an additional term
depending on the polar angle θ .

The Fourier coefficients for the DSHT are given by:

q" =
1

npts

npts

∑
j=1

f jNm
" Y m∗

" (θ j,φ j).

m = −",−"+1, ..." (7.11)

Unlike the circular coefficients ψ", which are complex numbers, the spherical coefficients q"

are 2"+1 dimensional complex vectors. Like the circular coefficients, the spherical Fourier
coefficients are robust under noise, sensitive to rotational symmetries corresponding to ",
and can be used to construct invariants. Although the geometrical interpretation of these
properties is more complex than for the 1d case, the same principles apply.
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The rotation-invariant version of the spherical coefficients is given by:

|q"| =

√√√√ 4π
2"+1

"

∑
m=−"

|qm
" |2. (7.12)

Like the circular invariants |ψ"|, the spherical invariants |q"| are positive real numbers.
In analogy with our example above, we can create a rotation-invariant shape descriptor

for a pattern on the sphere by:

SF3 =< |q0|, |q1|, ...|q"max | > . (7.13)

Again, the optimal descriptor for a particular application depends on the desired properties
such as robustness, sensitivity to specific symmetries, and rotation invariance.

Notice that although we use the notation “ψ"” and “q"” to highlight the connection with
bond order parameters, we have redefined the order parameters slightly, by changing the
sign of the complex exponential (i.e., the conjugates in equations 7.7 and 7.11). This sign
change is inconsequential to the properties of the coefficients; our redefinition simply allows
us to highlight the important relationship between ψ" and q" and the DFT, which is standard
and extensively studied. An overview of the Fourier descriptors method is given in Fig. 7.13.
As a general rule of thumb, “ψ"” is used when we only wish to describe the 2d ordering of a
system (e.g., the spatial ordering within a single plane in a confined fluid [350,351] or the
crystalline arrangement of cylindrical domain [298, 314]) and “q"” is used when we wish
to describe the 3d ordering (e.g., the spatial ordering in a 3d crystal [57] or structure of a
compact 3d cluster [187]).

7.2.7 Zernike Descriptors

As mentioned in the previous section, when patterns cannot be properly represented by the
surface of a single circle or sphere, one solution is to break the pattern up into independent
radial shells, and compute the Fourier descriptor for each shell independently. We then
construct a shape descriptor by combining the Fourier descriptors for each shell into a long
vector:

SF, multishell =< SF
shell1,S

F
shell2, ...S

F
shelln > . (7.14)

Here, SF represents a Fourier descriptor, either SF2 or SF3, as defined in the previous section.
While this scheme is sufficient for many problems, it has the drawback that small per-

turbations to the particle positions can cause maxima in the pattern to shift between shells,
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Figure 7.14 Drawbacks of Fourier descriptors. Rotation-invariant Fourier descriptors for structures
with multiple shells are insensitive to the relative orientation of inner and outer shells. Using invariant
Fourier descriptors to describe the two structures shown in the schematic shown erroneously produces
identical results.

causing errors in matching, particularly when npts is small. Another drawback is that, since
the shells are treated independently, the rotation-invariant Fourier descriptors are insensitive
to relative orientations between the different shells; this is depicted in Fig. 7.14 for two
structures that would erroneously have matching descriptors.

We can solve these problems by representing our pattern in a coordinate system with
radial dependence, which allows us to properly index patterns defined on the disk or ball
rather than the unit circle or sphere. To do so, we use Zernike radial polynomials in our
expansion [325, 326].

We can express the intensity of a pattern at a given point on the unit disk as:

f (r j,θ j) = ∑
n

∑
"

an"Rn"(r j)exp
[
i"θ j
]
.

j = 1,2, . . . ,nbin (7.15)

The terms θ j and r j represent the position of a point on the unit disk. The value of " is
restricted such that " ≤ n and (n− ") is an even number. The expansion coefficients an" are
known as “Zernike moments” and can be considered analogous to Fourier coefficients for
the r,θ coordinate system. The function Rn"(r) is a radial polynomial, where r is the radial
distance from the center of the disk. Thus, the 2d Zernike expansion is very similar to the
1d Fourier expansion, but with an additional radial term.

The Zernike moments are given by [325]:

an" =
n+1
nptsπ

npts

∑
j=1

f j(r j,θ j)Rn"(r j)exp
[
−i"θ j

]
. (7.16)

The terms θ j and r j represent the position of an input point x j in polar coordinates, normal-
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ized on the unit disk. Again, we require that " ≤ n and (n− ") is even. Each moment is a
complex number. Since the radial polynomial is only dependent on r, the same invariance
relations hold for the Zernike moments as for the Fourier coefficients. To define a rotational
invariant moment on the disk, we take the complex magnitude of the moment:

|an"| = an"a∗n". (7.17)

The 2d Zernike invariants are positive real numbers. We can create a Zernike descriptor by
combining many moments in a vector. For example, we can create a 2d rotation-invariant
Zernike descriptor by:

SZ2 =< |a00|, |a11|, |a20|, |a22|, ...|a"max"max | > . (7.18)

Like the Fourier descriptors, the frequency parameter " has a straightforward relationship
with the rotational symmetry of the pattern. Thus, we can sometimes choose important mo-
ments a priori. However, we typically take all moments with " within a limiting frequency
"max.

We can express a pattern on the unit ball as the sum of 3d Zernike moments:

f (r j,θ j,φ j) = ∑
n

∑
"

∑
m

zm
n"Rn"(r j)Y m

" (θ j,φ j).

j = 1,2, ...nbin (7.19)

The terms [r j,θ j,φ j] give the position of a point on the unit sphere. Again, we require
" ≤ n and (n− ") is even. The moments are defined similarly to the Fourier coefficients on
the surface of the sphere, but again with an additional radial component. The 3d Zernike
moments are given by [326]:

zn" =
3(n+1)
4nptsπ

npts

∑
j=1

f jRn"(r j)Nm
" Y m∗

" (θ j,φ j).

m = −",−"+1, ..." (7.20)

The variables [r j,θ j,φ j] represent the position of an input point x j in spherical coordinates,
normalized on the unit sphere. Whereas the 2d Zernike moments an" are complex numbers
and the 3d Zernike moments zn" are complex vectors of length 2"+1. Analogously to the
spherical Fourier coefficients, we take the magnitude of the complex vector |zn"| to define
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invariant moments on the unit ball:

|zn"| =

√√√√ 4π
2"+1

"

∑
m=−"

|zm
n"|2. (7.21)

The 3d Zernike invariants are positive real numbers. Like the Fourier coefficients, they are
sensitive to the rotational symmetries of the pattern and are robust under small perturbations.
We can create a rotation invariant symmetry-independent 3d Zernike descriptor according
to:

SZ3 =< |z00|, |z11|, |z20|, |z22|, ...|z"max"max | > . (7.22)

When computing either multiple-shell Fourier descriptors or Zernike moments it is
essential that the patterns being compared are normalized consistently. In the case of
Zernike moments, all points in {X} must lie on the unit ball or disk. Typically, patterns are
normalized by translating the centroid to the origin and rescaling the coordinates such that
every point on the pattern has a radial distance less than 1. This scheme is sufficient for
the majority of patterns that we encounter in particle systems. An overview of the Zernike
scheme is depicted in Fig. 7.15.

7.2.8 Computational Considerations

Fourier and Zernike coefficients can be computed from either point cloud data (i.e., raw par-
ticle positions) or voxel data (i.e., volumetric data or pixel data). As mentioned previously,
the two representations are essentially equivalent; point cloud data represent the limit of zero
bin size, where each fi is equivalently 1. While this distinction does not affect the properties
or definition of the descriptors, it becomes important when considering the computational
cost of a matching application. If the input data is point cloud data, we must compute the
descriptors for each structure independently. However, for volumetric data, we can compute
the contribution to each coefficient for each point on the grid beforehand, and then simply
multiply by the intensity of each shape fi to compute the value of the coefficients. This can
greatly reduce the computational cost when npts is large or many coefficients are used.

As an additional consideration, the time required for computing the transforms them-
selves can be greatly reduced by computing the fast Fourier transform (FFT) rather than
the DFT (or the equivalent for the appropriate coordinate system). Methods for computing
the FFT and the discrete spherical harmonics transform, respectively are given in refer-
ences [164] and [370]. An efficient method for computing Zernike coefficients is given in
reference [326].
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Figure 7.15 Zernike descriptors. (a) Decomposition of the pattern obtained for a 2d pentagonal
cluster with Zernike moments. Since the cluster has 5-fold symmetry, the leading coefficients are
given by multiples of " = 6. (b) Decomposition of the pattern obtained for a 3d fcc cluster with
Zernike moments. Since the cluster has 4 and 6-fold symmetry, the leading coefficients are given by
multiples of " = 4 and " = 6. (c) Schematic of the resulting Zernike descriptors. The value of the
each component in the descriptor is proportional to the contribution of the corresponding moment to
the overall sum. Notice that rotation-invariant Zernike descriptors contain real, positive components,
while rotation-dependent descriptors contain complex components.
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7.2.9 Quantifying Similarity

The shape descriptors derived in the previous section can be considered compact mathemati-
cal representations of the underlying particle structures. The physical similarity between
different particle structures can then be quantified by the mathematical similarity between
shape descriptors. Shape descriptor similarity is quantified by a similarity metric “M,” that
gives a scalar value that is proportional to the similarity between descriptor pairs. For
convenience, we define M such that, by construction, it lies on the interval M ∈ [0,1], or
sometimes M ∈ [−1,1]. This strengthens the analogy between M and what we normally
consider to be an order parameter, since order parameters typically give a value of 1 for
perfectly ordered structures and 0 for perfectly disordered structures. Since our harmonic
shape descriptors are defined as vectors, we can define similarity metrics based on standard
vector operations. For example, one simple similarity metric is given by the Euclidean
distance between shape descriptor vectors

Mdist(S1,S2) = 1−|S1 −S2|/(|S1|+ |S2|). (7.23)

Variations of Mdist are common throughout the shape matching literature. Another simple
similarity metric is proportional to the dot product between shape descriptors:

Mdot(S1,S2) = S1 ·S2/(|S1||S2|). (7.24)

Schemes similar to Mdot have been used in applications involving standard bond order param-
eters, such as measuring correlation lengths [132, 365] and identifying crystal grains [57].

Similar information is obtained from Mdist and Mdot; the only difference is that whereas
Mdist is more sensitive to the absolute difference between vector components, Mdot is more
sensitive to the overall direction of the vector and the sign of the components. Thus, Mdot is
often superior when matching non-ideal structures from a particle system to mathematically
perfect reference structures, since thermal noise will tend to damp the frequency domain
signal, but the descriptor will retain the same basic character for a given class of structures
and hence the same direction. The Mdot metric may also be favorable when comparing
rotation-dependent harmonic descriptors, which may contain either negative or positive
components, whereas Mdist may be favorable for invariant descriptors, where all values are
inherently positive. Since compared shapes are usually at least grossly similar, matching
values are rarely 0 for either metric. As is discussed in greater detail in reference [37], it is
often necessary to determine a lower bound on M by comparing to structures that are known
to match poorly to obtain a baseline value.
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7.2.10 Example Applications

Shape similarity information obtained from evaluating the match, M, between shape de-
scriptors, can be applied to create various types of structural metrics for complex particle
systems. In this section, we provide several example applications that can be addressed by
the use of shape matching with harmonic descriptors. We provide a more extensive range of
example applications based on shape matching methods in general in reference [37]. Several
additional examples of shape matching applications based on the SF3 descriptor are given in
reference [34].

7.2.11 Order Parameters and Correlation Functions

Perhaps the most standard application of order parameters is to track structural transitions,
either as a function of time or a changing reaction coordinate. As an example, consider
the protein “Ubiquitin [371]” shown in Fig. 7.16, which unfolds as it is pulled from both
ends. This is a standard example problem from the NAMD and VMD tutorials [372,373],
both of which are available online. Since the structure is 3-dimensional and has radial
dependence, we can index it using a Zernike descriptor on the unit ball, SZ3. To match the
shape independent of the orientation of the sheet, we take rotation invariant moments with "

in the range 4 ≤ " ≤ 12. We use both the initial folded state i and the final unfolded state
f as reference states. Fig. 7.16 shows the unfolding transition as a function of time t in a
NAMD molecular dynamics simulation. The protein unfolds in three steps (blue dashed
lines), in agreement with visual inspection. The noise in the data is indicative of the thermal
fluctuations in shape observed at this temperature.

As a slightly more complex example of characterizing transitions, consider the cylindrical
phase separated structures formed by ditethered nanospheres [314] shown in Fig. 7.17. The
structure of the equilibrium system goes through two transitions as a function of the effective
inverse temperature, first from a disordered structure to a tetragonal cylinder/tetragonal-mesh
(TC/TM) phase and then to a similar tetragonal cylinder (TC/TC) phase. The abbreviations
indicate the structure of the tethers (blue, red) and nanoparticles (white), respectively. We
can quantify this behavior by matching the global patterns obtained at different tempera-
tures with ideal structures taken from within the three structural regimes: the disordered
regime, the TC/TM regime, and the TC/TC regime. The global pattern for each structure
is characterized by the probability distribution of local density maps for each particle type,
as depicted in Fig. 7.11d. To capture ordering on a range of lengthscales, density maps
are computed for 4 radial shells ranging from r = [3σ ,4.5σ , . . . ,9σ ], where σ is the charac-
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Figure 7.16 Tracking structural transitions in the protein Ubiquitin as it is pulled from both
ends [372, 373]. The protein is pulled linearly as a function of time. The black curve shows a
matching order parameter using the initial folded configuration i as a reference structure. The red
curve shows the order parameter using the final unfolded configuration f as the reference structure.
The blue lines highlight the times at which significant structural changes occur.

teristic lengthscale, given by a the diameter of the tether beads in the simulation. For each
shell, we compute the rotation-invariant Fourier descriptors SF3, where we take a range of
frequencies 4 ≤ " ≤ 12. A pseudo-order parameter for each reference structure is then given
by Mdist(SF3,SF3

ref ). Fig. 7.16 shows the order parameters for the three reference structures as
a function of inverse temperature. We observe that the structural transition between the three
phases is smooth and continuous, as verified by visual inspection. In reference [37], we
show that, for this particular problem, we can obtain a nearly identical result using a simpler
shape descriptor akin to the radial distribution function g(r). However, for more complex
phase separated structures, harmonic descriptors typically give a better representation of the
underlying shapes than such coarse measurements.

In addition to characterizing how structures change as a function of time or a reaction
coordinate, another common application of structural metrics is to characterize how struc-
tures change in space, by computing correlation functions. In this case, we choose structures
from different points in space, rather than ideal structures, as references. Several examples
of spatial correlation functions based on bond order parameters have already been defined
in the context of measuring lengthscales for crystal-like ordering [48, 54, 132, 366]. This
involves measuring quantities such as

〈
M(Si,S j)

〉
(ri, j), that give the average similarity
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Figure 7.17 Transitions in ditethered nanospheres. (a) Depiction of the three structures formed
by a ditethered nanosphere system [314] (left to right: disordered, TC/TM, TC/TC). Notice that the
cylindrical structures span the simulation box in the z-dimension, into the page. (b) Matching order
parameter for the three reference structures as a function of inverse temperature.

value as a function of the radial separation ri, j. Typically, a particular rotation-dependent
Fourier coefficient, for example ψ6 or q6, is chosen for S and Mdot is chosen for M. An
alternative, and well known, spatial correlation function based on bond order parameters is
given by the q6 ·q6 crystal grain detection scheme of reference [57], which has been applied
to studying nucleation and growth and characterizing crystalline defects in several simulation
and experimental studies involving close-packed and bcc crystals [62, 367, 292, 293]. Here,
crystal grains are identified within a bulk liquid by first noticing that, for many crystals,
local clusters within crystal grains match with their neighbors in terms of both shape and
orientation, whereas clusters in the liquid do not. Thus, pairs of particles i, j in grains
typically satisfy M(Si,S j) > Mcut , where S is a rotation-dependent harmonic descriptor and
Mcut is a sufficiently high value so as to exclude poor matches. Even in the liquid, some
pairs of particles inevitably satisfy M(Si,S j) > Mcut due to random fluctuations. Thus, a
local indicator of crystal-like ordering is given by:

fi =
1

nnbr

nnbr

∑
j

Θ[M(Si,S j)−Mcut ]. (7.25)

Here, Θ is the Heaviside function. Typically, we enforce fi >= fcut , where the value of
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fcut is chosen to distinguish liquid and crystal-like configurations [57, 62]. Although the
original scheme is based on the q6 Fourier coefficient as a shape descriptor (for identifying
fcc,hcp, and bcc crystals) and the Mdot similarity metric, other instances of S and M can
be used depending on the structure under investigation. For example, in references [29]
and [30], we used different bond order parameters as shape descriptors to identify particles
in the diamond lattice and in dodecagonal quasicrystals, respectively. Arbitrarily complex
crystal structures can be treated using this method by harmonic descriptors with a full
spectrum of Fourier coefficients or Zernike moments. We apply this scheme in the context
of two examples highlighting the special symmetry properties of harmonic descriptors in
section 7.2.13 below.

7.2.12 Database Search and Structure Identification

In addition to computing order parameters and correlation functions, another common
application of bond order parameters is to identify local structures, such as icosahedral
clusters [346, 30, 187, 309] within a bulk system. This typically involves choosing a cutoff
value for a particular Fourier coefficient (for example, |q6|) above which a cluster is iden-
tified as a the structure of interest. This is, in its essence, a rudimentary shape matching
scheme, where the Fourier coefficient provides a coarse description of the cluster shape, and
the cutoff acts as a similarity metric. This type of structure identification scheme can be
applied within a much broader context by using harmonic descriptors to perform a database
search for an unknown structure. The unknown structure is identified as the structure from
the database of known structures that gives the best match. Database searches based on
harmonic descriptors have already been applied to proteins and macromolecules [344, 310].
In an earlier publication, we applied a database search to identify local structures within a
phase separated system of tethered nanoparticles [187]. In the future, they may be applied
to more abstract problems, such as data mining for web-accessible particle structures.

Database searches based on harmonic descriptors can be applied to a wide range of
complex local and global structures. As an example, consider the tunneling electron mi-
croscopy (TEM) image depicted in Fig. 7.18, which shows nanoparticles arranged in a
binary crystalline superlattice from reference [297]. Although this structure was identified
as the AuCu crystal viewed along the 100 directions by visual inspection [297], assume
for the for the purpose of this example that the structure is unknown. The structure of the
lattice can be identified by finding a best match from a database containing the images of
known reference structures. For our proof-of-concept example, we use a minimal reference
database consisting of four different ideal binary crystal structures; however for more re-
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Figure 7.18 Structure identification using a tunneling electron microscopy (TEM) image from
reference [297]. The structure depicted in the image is identified by finding the best match from a
database of candidate structures. For this particular example, the reference structures are created by
mathematical construction. The image is correctly identified as depicting the CuAu structure viewed
along the 100 direction.

alistic problems, the database may be much more expansive. The reference structures are
created by mathematical construction and rendered by placing spheres at the lattice positions.
In practice, matching can be performed using other non-ideal images or other experimental
images. The images are indexed for comparison using the 2d Zernike descriptor SZ2. As
mentioned previously, harmonic descriptors can be used to describe images [325], where
{x} and { f} represent the positions and intensities of individual pixels. In practice, the
pixel intensities are inverted (Ii = −Ii,0), since, for the current set of images, the particles
are darker than the background. To ensure that the matching algorithm is not affected by
the different particle shades, we apply a binary thresholding criterion Ii = Θ(Ii − Icut). To
extract a global pattern from the image, we use the probability distributions method as
depicted in Fig. 7.10. (Notice that although the structures are crystalline, the superposition
method is not applicable, since the particle centers are not known). For each local structure,
we compute SZ2 descriptors with rotation-invariant moments and frequencies in the range
0 ≤ " ≤ 8. Our overall results are not impacted by the inclusion of higher frequencies. For
each image, local descriptors are computed for 100 different randomly chosen pixels. For
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each pixel, the range of neighboring pixels used to construct the local descriptor corresponds
to roughly three particle diameters. The local descriptors are then combined into an overall
probability histogram descriptor for matching. As shown in Fig. 7.18, the unknown structure
most closely resembles the CuAu lattice along the 100 direction, in agreement with visual
inspection [297]. Additional orientations of the crystalline lattices could also be considered
to better identify structures with complex ordering.

This same basic identification scheme can be used for all types of structures, either
simulated or experimental, local or global. A subtlety arises when disordered local structures
are possible, since it is typically infeasible to construct a reference database for the vast
space of “disordered” structures. As outlined in references [187, 37] this problem can
be avoided by setting a minimum value for the best match, below which structures are
considered disordered.

In addition to database searches, experimental images can be used for all of the other
applications described here or in references [34] and [37], including quantifying structural
perfection, computing order parameters and correlation functions, grouping and classifying
structures, etc. The only caveat is that, like simulation data, the images must be properly
normalized such that the particle sizes and lattice spacings (if applicable) are the same for all
compared structures. In addition to images of particles, information can be extracted from
other types of images, such as diffraction patterns. For many applications, image processing
can be applied to experimental images to simplify the data [291, 294, 300], for example, by
identifying particle centroids. We explore the combination of image processing techniques
and shape matching algorithms in a separate publication [374].

7.2.13 Special Properties of Harmonic Descriptors

In the previous section, we applied harmonic descriptors within the context of general
particle shape matching applications, similar to those outlined in reference [37]. Thus,
although the harmonic descriptors have useful properties, such as rotation invariance, we
could just as easily base our examples on other shape descriptors with similar properties. In
contrast, in this section we explore applications for which harmonic descriptors and Fourier
coefficients are specifically well-suited, due to their unique symmetry properties.

7.2.14 Matching to Within an n-Fold Rotation

One such application is the problem of matching structures that are a unique rotation of
one another. As an example, consider the problem of detecting the local crystal grains of
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Figure 7.19 Honeycomb (hc) to hexagonal (hex) Transition in the 2d Lennard-Jones Gauss (LJG)
system [120]. (a) Annealing results obtained for a LJG well-minimum position r0 = 1.57 for three
different values of the well depth parameter ε . From top to bottom: ε = 2.7,2.2,1.4. Particles in the
hc structure are colored blue, while particles in the hex structure are colored red. All other particles
are colored black. (b) Depiction of the local neighbor configurations in the hex and hc structures. (c)
Diamond lattice formed by patchy particles [29, 280]. Analogously to the hc lattice, the diamond
lattice can be characterized by the negated match of the third-order harmonic [29].
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different structures in the 2d system depicted in Fig. 7.19a, where particles interact via the
Lennard-Jones Gauss (LJG) potential [120]. For a well-position parameter r0 = 1.57, the
system forms two crystal structures: the honeycomb (hc) structure at high values of the
well-depth parameter ε and the hexagonal (hex) structure at low ε [120]. As outlined in
section 7.2.11, local crystal-like pairs are typically identified by local clusters that match
in terms of both shape and orientation. This method is easily applicable to the hex lattice;
however, in the case of the hc lattice, the triangular first neighbor shells of neighboring
particles are mirrored and rotated by 60◦ in the plane (see Fig. 7.19b). Thus, they match
in terms of shape, but not in terms of orientation. The symmetry properties of the Fourier
coefficients pose a unique solution to this problem. In the space of the " = 3 Fourier co-
efficient ψ3, the triangular neigbor shells in the hc lattice are precisely antiparallel (i.e.,
Mdot[ψ3(i), ψ( j)3] = −1, where i and j are neighbors). Thus, a matching criterion can be
constructed based on −Mdot(ψ3, ψ3) to determine whether two neighbor shells are in the
ideal hc configuration. In Fig. 7.19a, particles in the hc structure are colored blue, particles
in the hex structure are colored red, and other particles, that don’t belong to a particular
crystal grain, are colored black. The 3d analogy of this method, using q3 in the place of ψ3,
was used to measure the number of particles in local diamond lattice grains in a system of
patchy particles in reference [29] (see Fig. 7.11c).

7.2.15 Matching Based on Rotational Symmetries

A similar application for which Fourier coefficients are uniquely suited is the problem of
matching structures based on their rotational symmetries rather than their shapes. As an
example, consider the problem of matching local neighbor shells in the decagonal (i.e.,
10-fold symmetric) quasicrystal formed in the 2d LJG system [120] (Fig. 7.20a). Over
the range indicated, the neighbor shells exhibit strong 10-fold rotational symmetry with a
common direction, but the neighbor shells have different shapes. Thus, our criterion for
detecting local crystal grains outlined in section 7.2.11 fails for most shape descriptors, since
the underlying shapes don’t match. As a solution, we can describe each local cluster with
the " = 10 Fourier coefficient ψ10. Since the clusters are 10-fold symmetric, and oriented in
the same direction, the complex number ψ10 is identical regardless of whether the clusters
are missing particles. Local quasicrystalline grains can then be detected as outlined in
section 7.2.11, using Mdot(ψ10, ψ10) to identify local crystal-like pairs.

In reference [30] we use an analogous scheme to detect ordered grains in a 3d dodecago-
nal (12-fold symmetric) quasicrystal (Fig. 7.20b). In this case, the structure has hundreds of
different neighbor shell directions [312], which exhibit strong 12-fold symmetry. This is
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depicted by the superposition of local patterns over the range r < 2.31σ (i.e., ∼ 2 neighbor
shells) in Fig. 7.20c. Considering this longer range ensures that each local region con-
tains a sizable fraction of 12-fold directions. Since we are only interested in the rotational
symmetry and directionality of these local patterns, we remove the r-dependence from the
patterns prior to matching (Fig. 7.20c). To capture the 12-fold symmetry, we use a matching
criterion based on Mdot(q12, q12). Particles with a minimal fraction of solid-like matches
fcut are considered to be locally quasicrystalline. The cutoffs are determined by taking the
crossover points in the probability distributions P(Mdot(q12,q12)) and P( fsolid) (Fig. 7.20d).
Following reference [30], we take Mcut = 0.45, fcut = 0.5. As depicted in Fig. 7.20e, this
criterion is sufficient to determine a small quasicrystal nucleus in the bulk liquid.

Notice that although both of our examples here are based on quasicrystalline structures,
the method of matching dissimilar structures based on their rotational symmetries is applica-
ble to wide range of structures. As a trivial example, we return to our previous problem of
detecting crystal structures in the 2d LJG system. Suppose now that we require an order
parameter that detects crystalline grains in general, either hex or hc. In this case, we can use
a scheme based on the " = 6 Fourier descriptor ψ6, since in the space of " = 6 harmonics,
the triangle neighbor shells of the hc structure and the hexagon neighbor shells of the hex
structure are equivalent.

7.2.16 Orientation About a Symmetry Axis

As a final example of an application that exploits the symmetry properties of Fourier coef-
ficients, consider the problem of aligning a crystal structure about a particular symmetry
axis. This is useful, for example, for computer algorithms that depend on the orientational
direction of a structure, such as automatically computing the diffraction pattern or rendering
images of particle data. Suppose, for example that the desired symmetry axis is the " = "0

plane, and the desired alignment direction is the z-axis. The crystal can be iteratively rotated
to maximize the Fourier coefficient |ψ"0| where all particles are projected into the xy plane.
If the crystal consists of a single grain, a relatively small test cluster can be used to perform
the optimization, greatly enhancing computational efficiency.

As an example, consider the problem of aligning the face-centered cubic (fcc) crystal
shown in Fig. 7.21a along an 8-fold planar symmetry axis. Finding the optimal rotation that
maximizes |ψ8| in the plane is solved by applying a simple simulated annealing Metropolis
Monte-Carlo (MC) scheme. Our MC scheme involves attempting trial rotations of a small
test cluster from the center of the box, which are accepted according to the Hamiltonian
β |ψ8|, with the fictitious energy function −|ψ8|. The inverse temperature β is increased
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Figure 7.20 Matching based on rotational symmetries. (a) Decagonal (10-fold) quasicrystal formed
in the 2d LJG system [120]. The call-out depicts local structures within the system, which are 10-fold
symmetric but dissimilar in shape. (a) Dodecagonal (12-fold) quasicrystal formed in the 3d Dzugutov
system by MD simulation [119], with a simulated diffraction image (lower right). (b) superposition
of all neighbor clusters with a cutoff range 2.31σ . The images on the right disregard r-dependence.
(c) Probability distributions of bond correlations and solid-like neighbors used to determine the
criterion for local quasicrystal grains. (d) Dzugutov liquid with a single small quasicrystal nucleus of
about 50 atoms.
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Figure 7.21 Orientation about a symmetry axis. (a) Depiction of an algorithm for orienting a
face-centered cubic (fcc) crystal about an 8-fold planar symmetry axis, in this case, for the purpose
of automatically computing the diffraction image. First, the planar symmetry, measured by |ψ8|, is
maximized such that the 8-fold symmetry axis is oriented in the z-direciton (out of the plane). Then
the structure is rotated in the xy plane to zero the complex component ℑ(ψ8), such that the symmetry
axis is oriented with the xy axis. Finally, the diffraction image is computed. (b) The same process,
repeated for a structure with thermal disorder.

from 0.5 to 1000 over 100 steps. In practice, the scheme only converges to a local minimum
in the energy −|ψ8|, so many different initial orientations are attempted to find a global
minimum. As depicted in Fig. 7.21, optimizing |ψ8| aligns the 8-fold symmetry axis of
the structure along the z-axis, but the structure is misaligned with the x and y-axes. To
perform this alignment, we zero the complex component ℑ(ψ8), such that ℜ(ψ8) = |ψ8|.
As depicted in Fig. 7.21b, this scheme is quite robust, even under a large amount of thermal
noise. More complex optimization algorithms may be applied to improve computational
efficiency and accuracy over our simple MC scheme. This type of orientation algorithm is
potentially useful for matching diffraction data, since a large number of simulated diffraction
images for 3d structures can easily be computed automatically about various symmetry axes.

7.2.17 Summary and Future Outlook

In summary, we have demonstrated how bond order parameters, already defined for particle
structures on the unit circle and sphere, can be extended to index structures on the unit
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disk or ball. We have demonstrated how these bond order parameters can be used to create
harmonic shape descriptors, which can in turn be applied to create unique, highly specialized
order parameters and automatically identify unknown particle structures. In addition to the
minimal proofs of concept reviewed here, more complex matching applications are explored
in reference [37].

In the future, the ability to describe structures numerically lends itself to many novel
applications. In the short term, matching applications can be used to automate structural
analysis for large datasets. Shape descriptors can be used within the context of many of
the enhanced computational algorithms used in self-assembly and computational biology,
such as path sampling [157, 354] or metadynamics [158] in the context of pseudo order
parameters or collective variables to guide the sampling. Shape descriptors can also serve
as the basis for new optimization algorithms such as genetic algorithms [375], which often
rely on energy rather than structure as a numerical measure of fitness. In addition to abstract
computational applications, shape matching algorithms can be applied to experimental
images to obtain quantitative insight into experimental data. By combining shape matching
algorithms with new image processing schemes, much of the same information that we have
obtained for simulation data can be obtained for experimental systems as well.

7.3 Characterizing Complex Particle Morphologies Through
Shape Matching: Descriptors, Applications, and Algo-
rithms

Many standard structural quantities, such as order parameters and correlation functions, exist
for common condensed matter systems, such as spherical and rod-like particles. However,
these structural quantities are often insufficient for characterizing the unique and highly com-
plex structures often encountered the emerging field of nano and microscale self-assembly,
or other disciplines involving complex structures such as computational biology. Computer
science algorithms known as “shape matching” methods pose a unique solution to this prob-
lem by providing robust metrics for quantifying the similarity between pairs of arbitrarily
complex structures. This pairwise matching operation, either implicitly or explicitly, lies
at the heart of most standard structural characterization schemes for particle systems. By
substituting more robust “shape descriptors” into these schemes we extend their applicability
to complex particle structures. Here, we describe several structural characterization schemes
and shape descriptors that can be used to obtain various types of structural information
about particle systems. We demonstrate the application of shape matching algorithms to a
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variety of example problems, for topics including local and global structure identification
and classification, automated phase diagram mapping, and the construction of spatial and
temporal correlation functions. The methods are applicable to a wide range of systems,
both simulated and experimental, provided particle positions are known or can be accurately
imaged.

7.3.1 Introduction

It has been long recognized that in condensed matter systems there exists a strong connection
between thermodynamics and particle packing [259, 260, 261]. The spatial arrangement
of particles in a given phase determines the free energy of the system, as well as, in many
cases, the physical, chemical, electrical, and optical properties. As a result, it is natural
to attempt to gain insight into systems in general by characterizing and monitoring both
global and local structure. In standard condensed systems, this is typically achieved by
constructing order parameters or correlation functions that are sensitive to the way particles
are arranged. Several order parameters and correlation functions have been contrived for
standard classes of condensed matter, including, e.g., systems of rod-like and spherical parti-
cles [262, 53, 57, 263, 264]. Standard examples include the P̄2 nematic order parameter for
rod-like liquid crystalline systems and the bond order parameters of Nelson and coworkers
for detecting crystalline ordering in systems of spherical particles [48, 132]. These types
of standard metrics have found widespread use in both computational condensed matter
physics as well as the colloidal sciences, where standard systems of rod-like or spherical
particles are often studied.

In the emerging field of colloidal and nanoscale self-assembly, unique building blocks
can form assembled morphologies that often deviate from those expected in traditional
condensed matter systems [11,253,12,13]. Beyond the self-assembly of spherical [256,266]
and rod-like [267, 257] particles [12, 11], examples of assembled systems include ordered
structures formed from polyhedrally shaped [33, 268, 269, 210, 270, 271, 272, 273] or pat-
terned particles [279, 280, 29, 281, 282], and phase-separated domains reminiscent of those
formed by block copolymers and surfactants [253, 210, 284, 285, 286, 287, 288]. In these
systems too, system stability and properties are, in many cases, strongly linked to their global
structure and local packing [12,254,255,256,257,258]. However, constructing general order
parameters for assemblies of particles of complex shape and interaction anisotropy [11, 12]
is considerably more challenging than for traditional condensed systems, where the particle
shapes and morphologies are comparatively much more standardized. As a result of the
increased complexity and vast design space, there are few “model problems” in nanoscale
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self-assembly for which generally applicable order parameters can be defined. This dearth
of structural metrics has lead many recent studies of assembled systems to rely heavily on vi-
sual inspection or ad hoc analysis for characterizing structures. This approach is not optimal,
since visual inspection is often more time consuming and less accurate than mathematical
analysis, and ad hoc analysis can be idiosyncratic, making it difficult to compare structures
across independent studies.

In this article, we address the problem of creating general structural metrics for complex
colloidal and nanoscale assemblies, and other systems with a high degree of structural com-
plexity. To do so, we combine the physical insights underlying many standard condensed
matter order parameters with the mathematical insights provided by the computer science
field of “shape matching.” We show that virtually all of the standard structural characteriza-
tion schemes from the condensed matter literature can be broken down, fundamentally, into
the problem of quantifying the degree to which structures match. Structural similarity, in
turn, can be quantified by using robust “shape descriptors” from the field of shape matching,
which can be applied to arbitrarily complex structures. We decompose several order pa-
rameters, correlation functions, and other standard structural characterization schemes into
their core elements, such that they can be used with arbitrary shape descriptors to extend
their applicability. Additionally, we introduce new, more abstract structural characterization
schemes that can also be used with arbitrary shape descriptors, to solve novel problems that
arise in computational self-assembly. The shape matching methods that we provide will
facilitate the creation of new structural metrics that are standardized, improving accuracy
and comparability, but are also still flexible enough to be applied to the new classes of
complex structures that arise in assembly problems.

This article is organized as follows. In section 7.3.2, we provide an overview of the shape
matching framework and terminology that we will employ and describe how it connects to
some standard structural characterization schemes from the condensed matter literature. In
section 7.3.3, we review some relevant shape descriptors from the shape matching literature
that can be applied to assembled systems. In section 7.3.4, we introduce some simple
“similarity metrics” that can be used together with the shape descriptors from section 7.3.3
to measure structural similarity. Finally, in section 7.3.5, we introduce general algorithms
based on shape descriptors and similarity metrics that can be used to obtain various types
of structural information for complex particle systems. To demonstrate the usage of these
algorithms, we apply shape matching to systems in the fields of nanoscience, computational
self-assembly and condensed matter. Our examples include identifying local and global
structures, quantifying structural changes as a function of time or a control variable, con-
structing correlation functions, mapping structural phase diagrams, and grouping similar
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structures. We cover a wide range of systems including ordered phases formed from spher-
ical and point-like particles, a fluid of tetrahedrally-shaped particles with locally ordered
motifs [33], self-assembled systems of tethered nanoparticles with various nanoparticle
shapes [298, 314, 306], patchy colloidal tetrominoes [358], a helical ribbon formed from
tethered nanorods [301], a model protein [371], gold nanowires [376,377], and small clusters
of water molecules [378]. The examples that we provide are applicable to particle systems in
general, provided that the particle positions and, in some cases, orientations, can be detected.
Although not explicitly treated here, other data representations such as images or diffraction
data can also be used to obtain structural metrics within the shape matching framework.
To aid in the development and dissemination of shape matching techniques, we provide
accompanying software and examples via the web [302].

7.3.2 Shape Matching Overview

The concept of quantifying how well structures match has been generalized in the context of
computer science applications known as “shape matching” techniques [303] (see Fig. 7.22).
Familiar applications include matching fingerprints and signatures [303], facial recogni-
tion [304] and medical imaging [305]. Shape matching schemes have already been applied
to systems of particles, particularly in the realm of fast database searches for proteins and
macromolecules [329, 343, 330, 344, 345, 310, 311]. In some specific cases, shape match-
ing schemes have been explicitly applied to local structure identification in problems in
condensed matter and nanoscale self-assembly [187, 309, 30].

The basic idea of shape matching is to “index” structures into mathematical fingerprints
known as “shape descriptors,” S, and then compare them using a similarity metric M(Si,S j)
to obtain both a quantitative and qualitative measure of similarity between the structures. For
mathematical simplicity, we constrain our shape descriptors here to be vectors containing an
arbitrary number of components. Matching can then be performed using straightforward
vector operations, based on, e.g., the degree of alignment of or distance between shape
vectors. The values of similarity metrics M(Si,S j) are scalars. Matching information is used
to create order parameters and correlation functions, or to identify structures by comparing
“query” structures to “reference” structures. Since we can choose virtually any structure as
a reference, this scheme facilitates the creation of highly specific structural metrics. The
workflow for an application within the shape matching framework is shown in Fig. 7.22.

To apply these ideas to particle systems, we begin by asserting that most standard
structural metrics include an implicit concept of “matching.” That is, an order parameter
or correlation function typically tells us the degree to which a structure of interest matches
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given particle structure and then indexed into a structural fingerprint known as a shape descriptor, S.
The depicted cluster is an energy-minimized quantum Lennard-Jones cluster [379, 380]. (b) Shape
descriptors are then compared to obtain similarity information M, which can be applied to within the
context of various structural characterization schemes.

192



another (often ideal) structure. Most standard structural characterization schemes implicitly
fit within the shape matching framework, and can be decomposed into query structures,
reference structures, shape descriptors, and similarity metrics.

For example, consider the well-known order parameter P̄2 which detects nematic
(aligned) liquid crystalline ordering:

P̄2 = 〈P2(cosθ)〉 =
〈

3cos2 θ −1
2

〉
. (7.26)

The function P2 is the second Legendre polynomial [381] and θ is the angle between the
axis of the molecule and the “local director” d that indicates the preferred direction of the
overall sample [262]. As the direction deviates from the preferred direction, P2 decreases
proportionally. The global nematic order parameter P̄2 is obtained by computing the en-
semble average of P2, denoted by angle brackets. In this scheme, the query structure is the
system of particles and the reference structure is an ideal nematic liquid crystal with director
d. The shape descriptor is given by the collection of angles between the molecular axes and
d and the similarity metric is given by the Legendre polynomial P2. The order parameter
P̄2 gives an optimal value of 1 when the structure matches a perfectly aligned liquid crystal
with director d, and tends toward zero the more the structure deviates from this ideal case.

As another classical example, consider the hexatic correlation function for 2d systems of
spherical particles, or disks [48, 54]:

g6(r) =

〈

∑
i$= j

ψ6(i)ψ∗
6 ( j)δ (r−|ri − r j|)[

δ (r−|ri − r j|)
]

〉
. (7.27)

The quantity ψ6 is a “bond order” parameter, defined as [53, 48]:

ψ6(i) =
1
n

n

∑
j

exp(i6θ j). (7.28)

Here, n is the number of atoms in the first neighbor shell of an atom i, and θ is the direction
of neighboring atom j. The value of ψ6(i)ψ∗

6 ( j) approaches
√

2 when the particles i and
j are both in hexagonal local environments with the same spatial orientation, and varies
towards 0 otherwise. Thus, like the standard radial distribution function g(r), g6(r) measures
the degree of spatial ordering; however, whereas g(r) is sensitive to translational ordering
generally, g6(r) is specifically sensitive to aligned hexagonal ordering. In this scheme,
the query and reference structures are the pairs of neighbor shell clusters with for atoms
i and j, which are a distance r apart, the shape descriptors are the local values of ψ6, and
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the similarity metric is the ‘dot’ operator, which measures the coherence between two ψ6

descriptors. Thus, g6(r) measures how closely the local environment of a particle at the
origin matches with that of a particle a distance r away in terms of both hexagonal shape
and spatial orientation.

Although P̄2 and g6(r) are specific schemes, the physical insights underlying them are
general. Recasting standard schemes within the shape matching framework allows us to
obtain the same types of information, but with different shape descriptors S and similarity
metrics M that are better suited for the unique and complex structures observed in assembled
systems. The latter provides the main substance our article, but first, we introduce several
shape descriptors and similarity metrics in the following sections.

7.3.3 Shape Descriptors

The shape descriptors that we describe in this section are adapted from the computer science
field of shape matching. Since shape matching is a broad field, we focus on the small
subset of methods that are best suited for particle systems and are applicable in both two
and three dimensions. For a general review of some relevant shape matching methods, see
references [317, 318, 319].

The first step towards creating an order parameter within the shape matching framework
is to index the shapes representing the structure of interest into one or more shape descrip-
tors S. For simplicity, we consider in our framework shape descriptors to store structural
information in a vector, which may contain real or complex components. However, shape
descriptors may take other forms.

In addition to containing structural information, shape descriptors may possess other
desirable properties and contain additional data, which may determine which descriptor
is optimal for a particular application. One important property of shape descriptors is
“invariance,” defined as the ability for the descriptor to remain unchanged under certain
mathematical transformations, such as scaling, translations, or rotations. In the context of
particle systems, rotation invariance is a highly desirable property, since many applications
involve comparing structures in a way that is independent of their spatial orientation. For
descriptors without rotation-invariance, alignment or “registration [315, 316]” algorithms
must be employed prior to matching to remove orientational dependence. Since particle
systems often exhibit thermal noise, another desirable property of shape descriptors is
robustness under small perturbations. However, this property must be balanced with the
property of sensitivity, so that descriptors are still capable of detecting subtle structural
differences. Another important consideration is the amount of computational time required
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to compute and compare the descriptors, which may vary drastically for different schemes.
Often, there is a direct tradeoff between computational cost and accuracy and attention to
detail.

In the following sections, we provide a brief overview of some shape descriptors with
different combinations of these properties that are well suited for self-assembled systems of
particles. These descriptors are not representative of the full realm of possibilities, but rather
are meant to serve as demonstrative examples. It is important to note that in principle, there
are no limits on how the shape descriptor is calculated. Here, we constrain our analysis
to descriptors that can be described mathematically as a vector, since this simplifies the
process of writing general similarity metrics in section 7.3.4. However, in general, not all
descriptors can be represented in this way, and thus require different similarity metrics.

Data Representations

Particle systems are typically represented as either a set of points (point cloud data) or
solid objects (volumetric data). Both types of data can be represented by a set of position
vectors {X} = {x1,x2, ...xn} and weights { f} = { f1, f2, ... fn}. Point cloud data {X} typi-
cally represents particle positions, in which case the weights fi are all 1. For volumetric
data, the position vectors xi represent the location of voxels (n-dimensional pixels) with
intensities given by fi. There is no formal rule regarding how to best represent input data
for a given system. In general, point cloud data is optimal when particle shapes are not
important, such as is the case with point particles. Volumetric data is optimal when particle
size, shape, or orientation are important, such as with systems of rods or polyhedra, or
the system is coarse-grained in space, such as with phase-separated structures. Image
processing algorithms [294, 291, 298] can often be employed to change between the two
data representations.

Point-Matching or RMS Descriptor

For relatively simple structures, such as small clusters or macromolecules comprised of
particles (atoms, molecules, etc.), we can use the particle positions themselves (or a cor-
responding density map) as a shape descriptor (Fig. 7.23a). Mathematically, the point
matching descriptor SRMS is defined trivially by the pointset {X}:

SRMS = {x1,x2, ...xn}. (7.29)
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Figure 7.23 Depiction of five different shape descriptors. (a) The RMS descriptor [320, 315].
Descriptor components are given trivially by particle positions or density map. (b) The shape his-
togram descriptor [321]. The structure is indexed into a histogram consisting of nr shells and nθ
sectors. (c) The D2 shape distribution descriptor [322]. The probability distribution is computed for
various local measurements, such as the distance or angle between surface points. (d) The Fourier
descriptor [323, 324]. A pattern along the perimeter of the circle or on the surface of a sphere is
decomposed into a harmonic representation. (e) The Zernike descriptor [325, 326]. A pattern on the
unit disk or unit ball is decomposed into a harmonic representation.
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Here, each xi is a d-dimensional vector representing the position of the ith point in {X}. The
point-matching or SRMS shape descriptor [329, 320, 315] is a vector with n×d components.
Typically the centroid is subtracted off and the vectors in {X} are normalized, e.g. by
dividing by the average distance between points. Matching for this scheme is often based on
the root-mean-square (RMS) difference between points, and thus the scheme itself is often
referred to as “RMS matching.” Point matching schemes were applied in early attempts
at shape matching macromolecules [329], and more complex variations have since been
implemented [330]. Point matching schemes have the advantage of being conceptually
simple; however, there are many subtleties associated with these schemes that can give
rise to complications. First, point matching requires an assignment step to determine the
optimal correspondence between points in compared structures. The coordinates in the
shape descriptors are then re-ordered accordingly. As a coarse approximation, points can be
assigned based on the minimum distance or the maximum dot product between individual co-
ordinates. That is, a point i on the query structure, is assigned to the point j on the reference
structure that maximizes the fitness wi, j, which can be defined as, e.g., wi, j = fi f j|xi ·x j|.
The latter scheme has the disadvantage that it is possible to assign multiple points on the
query structure to a single point on the reference structure. A more robust method involves
creating a “fitness matrix” that records the degree of correspondence between all pairs of
points:

F =





w1,1 w1,2 . . .w1,nr

w2,1 w2,2 . . .w2,nr
...

...
...

wnq,1 wnq,2 wnq,nr




. (7.30)

The variables nq and nr represent the number of points in the query and reference structures,
respectively. We can then use a numerical technique, such as the Hungarian method [369],
to efficiently determine the optimal assignment matrix that maximizes the overall fitness
of the match. An additional subtlety arises when nq $= nr. In this case, outliers can be ex-
cluded to obtain a “partial match” between structures. This is accomplished by sequentially
removing points with the lowest total fitness wi, defined as wi = ∑n

j=1 wi, j. The number of
points excluded depends on the desired application. For partial matching, we might exclude
|nq −nr| points from whichever structure contains the fewest points. For excluding outliers,
we might exclude all points with wi below a certain threshold.

In addition to requiring assignment, the RMS descriptor also has the drawbacks that
it is sensitive to scale, position, and orientation, and structures must first be normalized
and registered unless the orientations are known beforehand, or the application utilizes
rotation-dependent matching. Depending on the application, objects may be registered based
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on rigid alignment, or other constraints [320]. Rigid registration can be achieved using
either the iterative closest point (ICP) method [315], which involves minimizing the distance
between points on compared objects by iterative rotations and translations, or the principle
components analysis (PCA) method [316], which aligns objects with common principle axes.
The ICP method has the disadvantage that it is non-trivial to implement, computationally
expensive for structures with many points, and must be performed for all pairs of compared
shapes. Moreover, it is prone to error if applied naively; the ICP method converges to a local
minimum, so many initial orientations need be attempted to ensure the quality of the local
minimum. The PCA method is only applicable to objects with distinct principle axes and
thus fails for spherical objects. Despite the simplicity of the point-matching shape descriptor,
implementation of the RMS method can often be non-trivial. Since both assignment and
registration are computationally expensive (i.e. they scale poorly with n) point matching
descriptors should be avoided unless (1) n is small, (2) matching is required for only a few
structures, or (3) registration is not required.

Shape Histogram Descriptor

Another conceptually simple shape descriptor that has been applied to molecular database
searches is known as the “shape histogram” [321] (Fig. 7.23b). This descriptor is based on a
density map of the structure on a polar or spherical grid. The shape histogram is constructed
in 2d by first generating nθ equiangular gridlines on the unit circle:

θi = 2πi/nθ i = 0, . . . ,nθ −1. (7.31)

The value of nθ is chosen so as to capture important structural features while balancing
computational efficiency. Typically, we take 2n ≤ nθ < 4n, where n is the number of data-
points. Structures with radial dependence can be divided into nr concentric shells. A given
component in the 2d shape histogram descriptor is then given by:

SH2
jnθ +k =

n

∑
i=1

fiδ
(⌊

nr|xi|
rmax

⌋
− j
)

δ
(⌊

nθ θ(xi)
2π

⌋
− k
)

. (7.32)

The SH2 descriptor then contains nθ nr real components, one for each bin in the histogram:

SH2 =
〈

SH2
1 ,SH2

2 , . . . ,SH2
nθ nr

〉
. (7.33)

The 3d version of the shape histogram is constructed in a similar way, except that in this
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case, there are many different ways to construct the grid. An equiangular grid with and nφ

azimuthal bins and 1
2nφ polar bins is given by:

θi = πi/nθ , φ j = 2πk/nφ ; (7.34)

i = 0,1, . . . ,nθ −1, j = 0,1, . . . ,nφ −1.

The total number of cells defined by the gridlines is 1
2n2

φ . The 3d equiangular grid introduces
artifacts near the poles of the sphere where the cells are small compared to the equator. Such
artifacts are inherent to 3d grids on the sphere; there is no way to create an evenly-spaced
grid on the sphere with equivalent cells. However, there are several alternatives to the equian-
gular grid, such as the rectilinear grid, icosahedral grid, etc., that give more evenly-sized
cells [382]. A given component in the 3d shape histogram descriptor for an equiangular grid
is given by:

SH3
jnθ nφ
+knφ
+l

=
n

∑
i=1

fiδ
(⌊

nr|xi|
rmax

⌋
− j
)

δ
(⌊

nθ θ(xi)
π

⌋
− k
)

δ
(⌊

nφ φ(xi)
2π

⌋
− l
)

. (7.35)

As for SH2, shapes with r-dependence are indexed by computing separate angular histograms
for each radial shell. The SH3 descriptor contains 1

2n2
φ nr real components, one for each bin

in the histogram:

SH3 =
〈

SH3
1 ,SH3

2 , . . . ,SH3
nrn2

φ /2

〉
. (7.36)

The shape histogram has several advantages over the point matching method. No assign-
ment step is required, since the ordering of points is lost during binning. Additionally, the
grid resolution can be adjusted to provide a variable degree of coarse-graining. Like the
point matching method, the shape histogram requires registration to match non-aligned
shapes, unless only radial bins are used (i.e., nθ = nφ = 1). However, shape histograms
may lose their discerning capabilities without an angular component. If n is large, the cost
of registration can be significantly reduced by aligning the histograms themselves rather
than the raw data. Shape histograms are best suited for describing structures that can be
broken down into concentric circles or spheres. Examples include nanoparticle clusters,
proteins and macromolecules. Shape histograms are also well suited for indexing global
structures with orientational ordering such as crystals or quasicrystals, wherein the bond or
neighbor directions of particles create a global pattern on the circle or sphere, as described
in section 7.3.3.
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Shape Distributions

For many applications, registration is costly and rotation-invariant descriptors are optimal.
A simple yet powerful method for creating rotation-invariant descriptors is given by the
“shape distributions” scheme [322] (Fig. 7.23c). This scheme involves creating distribution
functions for simple invariant local metrics. The shape distribution “D2” is defined as the
probability distribution of observing two surface points i and j a distance r apart. A given
component in the D2 descriptor is given by:

SD2
k = ∑

i $= j
fi f jδ

[⌊
nr

(∣∣xi −x j
∣∣− rmin

)

rmax − rmin

⌋
− k

]
. (7.37)

The D2 descriptor is the collection of nr radial components:

SD2 =
〈

SD2
1 ,SD2

2 , . . . ,SD2
nr

〉
. (7.38)

Notice that this function is similar to the standard radial distribution function g(r), except
that there is no ideal gas normalization and the function is typically computed only for
points on the surface.

A similar distribution “A3” is defined by the probability of observing an angle θ between
three surface points:

SA3
l = ∑

i$= j $=k
fi f j fkδ

(⌊
nθ x j ·xk

π
√

(|x j −xi||x j −xi|)

⌋
− l

)
. (7.39)

The A3 descriptor is the collection of nθ components:

SA3 =
〈

SA3
1 ,SA3

2 , . . . ,SA3
nθ

〉
. (7.40)

Notice that this function is similar to the angular distribution function a(θ).
Similar distributions can be contrived for sets of four, five, etc. points; however, D2

and A3 were shown to have the best discerning capabilities for the structures tested in
reference [322]. Shape distributions are best applied to structures with clearly defined,
distinguishable surfaces, such as phase-separated structures formed by block copoly-
mers [194, 285] or tethered nanoparticles [253, 210, 331, 306]. Like g(r) and a(θ), shape
distributions are too coarse to distinguish between similar shapes, such as small polyhedral
clusters.
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Fourier Descriptors

For shapes with more subtle differences, such as localized nanoparticle clusters, macro-
molecules, or global crystal structures, we can apply a more complex but more powerful
technique for creating rotation invariants based on computing the harmonic transform of
the shape histogram. By disregarding phase information from the harmonic transform,
we obtain descriptors that are invariant under rotations. The formulae for the harmonic
transform depend on the underlying basis. Invariants can be obtained for shapes on the
unit circle [323] (θ -dependence), sphere [324, 383] (θ ,φ -dependence), disk [325] (r,θ -
dependence) or ball [326] (r,θ ,φ -dependence). On the unit circle or sphere, the harmonic
descriptors are known as Fourier descriptors (Fig. 7.23d). On the unit disk or ball, the
descriptors are known as Zernike descriptors (Fig. 7.23e), which we discuss in the following
section.

The Fourier descriptors are based on the Fourier transform, which involves decomposing
a function into a sum of harmonic components. The Fourier coefficients for a 2d pattern
are obtained by computing the discrete Fourier transform for each “shell” s of the 2d shape
histogram, SH2, defined in section 7.3.3:

ψ",s =
∑nθ−1

j=0 SH2
snθ + j exp

(
−i"2π j

nθ

)

∑nθ
j=1 SH2

snθ + j
. (7.41)

Here, nθ is the number of sectors in each shell s in the shape histogram. By considering
each shell independently, we reduce a 2d problem (a function of r and θ ) to nr 1d problems
(functions of θ only). The coefficients ψ" are complex numbers.

Although the Fourier coefficients in their complex number form are not rotation-invariant
(which may be beneficial for some applications), they can be converted to an invariant form
by computing the magnitude of each coefficient. The invariant coefficients for a pattern on
the circle are given by:

|ψ"| = ψ"ψ∗
" =
[
ℜ(ψ")2 +ℑ(ψ")2]1/2

. (7.42)

Here ∗ denotes the complex conjugate. The Fourier invariants are positive real numbers. To
create a Fourier descriptor for a given shell s, we take a collection of desirable coefficients:

SF2
s =

〈
|ψ"min,s|, |ψ"min+1,s|, · · · |ψ"max,s|

〉
. (7.43)

Here, we use invariant coefficients; however, rotation-dependent coefficients are useful for
many applications [132,57,62,30]. The coefficients are sensitive to patterns with angular
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frequencies that match the parameter ". For example, ψ4 is large for 4-fold patterns, ψ6 is
large for 6-fold patterns, etc. Specific coefficients can be chosen to describe structures with
particular angular frequencies. In general, an arbitrary pattern can always be described by
a sufficiently large range of ". For the problems that we consider, we typically take " in
the range "min ∼ 2, "max ∼ 10. The overall Fourier descriptor is given by concatenating the
descriptors for each shell into a vector:

SF2 =
〈
SF2

1 ,SF2
2 , . . . ,SF2

nr

〉
. (7.44)

An analogous scheme can be used for 3d objects, where shells in the shape histogram
have [θ ,φ ] dependence. The Fourier coefficients are obtained by computing the discrete
spherical harmonics transform for each “shell” s of the 3d shape histogram, SH3:

q",s =

∑nθ−1
j=0 ∑

nφ−1
k=0 SH3

snθ nφ
+ jnφ
+k

Nm
" Pm

"

[
cos
(

π j
nθ

)]
exp
(
−im2πk

nφ

)

∑nθ
j=1 ∑

nφ
k=1 SH3

snθ nφ
+ jnφ
+k

. (7.45)

Here, Nm
" is a normalization factor

√
(2"+1)("−m)!/("+m)!, and Pm

" is a Legendre
polynomial [381]. The variable m is an integer m ∈ [−","]. Therefore, unlike the circular
coefficients ψ", which are complex numbers, the spherical coefficients q" are vectors with
2"+1 complex components. Rotation-invariant versions of the coefficients can be obtained
by computing the vector magnitude:

|q"| =
(

4π
2"+1

"

∑
m=−"

|qm
" |2
)1/2

. (7.46)

Like the Fourier invariants on the circle |ψ"|, the Fourier invariants on the sphere |q"| are
positive real numbers. To create a Fourier descriptor for a given shell s, we take a collection
of desirable coefficients:

SF3
s =

〈
|q"min,s|, |q"min+1,s|, · · · |q"max,s|

〉
. (7.47)

Again, we have chosen invariant coefficients, but rotation dependent coefficients may also
be used. The overall Fourier descriptor on the unit sphere is given by:

SF3 =
〈
SF3

1 ,SF3
2 , . . . ,SF3

nr

〉
. (7.48)
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Again, different combinations of coefficients can be used to create shape descriptors with
different levels of robustness, and sensitivity to particular symmetries.

By using harmonic descriptors we gain many of the same advantages of the shape
histogram, but without the need to register the objects or histograms. Like the shape
histogram, harmonic descriptors are well suited for describing a wide variety of shapes
including nanoparticle clusters, proteins and macromolecules, crystals composed of arbitrar-
ily shaped particles and, in some cases phase separated structures. Harmonic descriptors
exhibit an inherent data smoothing mechanism; thus they are typically better-suited for
describing small polygonal or polyhedral clusters than the shape histogram, which is prone
to error without sufficient averaging. These properties, along with the unique ability to
yield symmetry-specific information, have already been successfully applied to constructing
orientational order parameters for small clusters of point particles and simple crystals in
the context of bond order parameters [48, 54, 132, 53]. While the bond order parameters
scheme focuses primarily on the numerical values of specific coefficients (often ψ6 and
q6), the shape matching approach more closely resembles a signal processing application,
where an entire spectrum of Fourier coefficients are utilized. Additionally, while the bond
order parameters were defined for point clusters that form patterns on the circle or sphere,
the descriptors introduced here can be applied to volumetric objects and objects with r-
dependence. Notice that in the limit of infinitesimal angular bin size and a single radial bin
(nθ ,nφ → ∞, nr = 1), our definitions of ψ" and q" become nearly equivalent to the bond
order parameters, only differing by a sign in the complex exponential. This only makes the
direct mathematical connection between harmonic descriptors and the Fourier transform
more explicit; the change is otherwise inconsequential. We explore the properties of Fourier
descriptors in more detail in a separate paper [38].

Zernike Descriptors

The Fourier descriptors introduced in the previous section have pseudo r-dependence.
That is, radial information is incorporated by decomposing the structure into concentric
shells and then computing independent descriptors for each shell. This is problematic for
structures with a small number of sample points, such as small clusters, since random
perturbations move points between nearby shells. A second, more subtle drawback occurs
when attempting to distinguish between structures for which the shapes of the shells are
similar, but the relative orientation of the shells within the structure are different. Since the
descriptors are computed for each shell independently, rotation-invariant descriptors are
insensitive to relative orientations within the structure [324]. As a result, in many cases, it
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is preferable to compute harmonic descriptors with full r dependence, known as “Zernike
descriptors [325, 326]” (Fig. 7.23e).

The coefficients of the Zernike expansion, known as “Zernike moments” are computed
by adding a Zernike radial polynomial to the Fourier coefficients:

Rm
n (r) =

(n−m)/2

∑
k=0

(−1)k (n− k)!
k!((n+m)/2− k)!((n−m)/2− k)!

rn−2k. (7.49)

Here, r is the radial distance from the origin r ∈ [0,1], and m and n are integers, n ≥ m > 0.
The Zernike moments on the 2d unit disk are given by:

an" =
(n+1)∑nr−1

j=0 ∑nθ−1
k=0 SH2

jnθ +kRn"

(
j

nr

)
exp
(
−i"2πk

nθ

)

π ∑nr
j=1 ∑nθ

k=1 SH2
jnθ +k

. (7.50)

The moments are subject to the constraint that " ≤ n and (n− ") is even. Each moment is a
complex number. The rotation invariant Zernike moments on the unit disk are given by:

|an"| = an"a∗n". (7.51)

The 2d Zernike invariants are positive real numbers. A Zernike descriptor can be created by
concatenating the desired Zernike moments into a vector, for example:

SZ2 =
〈
|a11|, |a20|, |a22|, . . . , |a"max,"max |

〉
. (7.52)

Again, we have chosen invariant coefficients, but rotation dependent moments may also be
used. The Zernike moments on the 3d ball are given by:

zn" =

3(n+1)∑nr−1
j=0 ∑nθ−1

k=0 ∑
nφ−1
l=0 SH3

jnθ nφ
+nφ k
+l
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" Pm
"

[
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(

πk
nθ
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exp
(
−im2πl

nφ

)

4π ∑nr
j=1 ∑nθ

k=1 ∑
nφ
l=1 SH3

jnθ nφ
+nφ k
+l

.

(7.53)
Again, we take " ≤ n and (n− ") is even. Whereas the 2d Zernike moments an" are complex
numbers, the 3d Zernike moments zn" are complex vectors with 2"+1 components. The
invariant Zernike moments on the unit ball are given by:

|zn"| =

√√√√ 4π
2"+1

"

∑
m=−"

|zm
n"|2. (7.54)
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The 3d Zernike invariants are positive real numbers. A 3d Zernike descriptor is created by
concatenating the desired moments into a vector, for example:

SZ3 =
〈
|z11|, |z20|, |z22|, . . . , |z"max,"max |

〉
. (7.55)

Again, we have chosen invariant moments, but rotation-dependent moments and other
combinations of frequencies may also be used depending on the problem.

Zernike descriptors are best applied to shapes that cannot be described by angles alone,
such as certain clusters of nanoparticles, macromolecules, or complex crystals. When
computing Zernike moments it is essential that the patterns being compared are normalized
consistently on the unit ball or disk. Typically, normalization is performed by translating the
centroid of the structure to the origin and rescaling the coordinates such that every point on
the pattern has a radial distance less than 1. This scheme is sufficient for the majority of
patterns that we encounter in assembled systems.

Combined Descriptors

In many cases, we can create new descriptors by taking linear combinations of the descriptors
outlined above. Since the descriptors are represented as vectors, they can be concatenated
together to combine their properties. Descriptors may also be multiplied by a weighting
vector to (de)emphasize certain components. Other simple descriptor operations, such as
averaging or taking probability distributions can also be useful, particularly for describing
global structures, as outlined in the following section.

More complex combinations of descriptors can be created for specific applications. For
example, one powerful solution to the problem of “partial matching” is given by the “shape
contexts” method [327], which combines elements of the point matching descriptor with
the shape histogram descriptor. A separate shape histogram is computed for each point in
the structure, where the coordinate system is centered at that point. The points in the query
structure are then assigned to their corresponding reference structure points by optimizing
the match between shape histograms. Outlier points that do not correspond well can be
excluded to obtain a partial match. Another powerful combined method is given by the
light-field descriptor [328]. This method involves projecting 3D structures onto 2D images
from 20 vantage points at the vertexes of a dodecahedron. Each projection is then indexed by
a 2d descriptor, and assignment is performed to optimize correspondence between compared
structures. In practice, many initial rotations of the dodecahedron are attempted to minimize
error. Although the shape contexts and lightfield descriptors are specialized, the method of

205



combining descriptors to optimize properties is applicable to a wide range of problems.

Other Possible Descriptors

The shape descriptors that we have introduced above are meant to serve as representative
examples rather than a complete set. In practice, any quantitative measure of structure can
be used as a shape descriptor provided that it can be indexed into an n-dimensional vector.
Along this line, there are several structural metrics from the condensed matter literature that
could fit into the shape matching framework, and could potentially inspire useful shape de-
scriptors for various applications. For example, in the realm of global structures, diffraction
patterns, radial distribution functions, or orientation tensors (e.g. radius of gyration tensor
or nematic order tensor [339]) could be indexed into shape descriptors. For local structures,
local analysis schemes, such as the common neighbor analysis scheme of reference [263],
could be easily be incorporated. Although many of the structural metrics from the literature
may not be independently distinguishing for a wide range of problems, they may still yield
useful information as part of a more general scheme through linear combination.

Extracting Global Patterns for Shape Descriptors

With the exception of shape distributions, the descriptors defined in the preceding sections
are designed to index local structures such as small clusters of atoms or nanoparticles, macro-
molecules, or large but finite micro or nanoscale assemblies. Describing global structures is
more difficult, since local shapes must first be extracted from the infinite system and then
combined into patterns that reflect the “global shape” for indexing. The manner in which
we construct global patterns depends on the structural properties of the system. In a rough
sense, we can group global structures into two different categories: structures with long
range orientational ordering (OO), and those without.

For structures with long-range OO, such as crystals and quasicrystals [313], the neighbor
directions of all particles in the system are highly correlated. Thus, an intuitive global
shape is given by the superposition of all neighbor directions for each local structure in
the system [132], sometimes called a “bond order diagram [312].” This is depicted for the
diamond structure [29] in Fig. 7.24a, top. As detailed in the previous sections, this type
of pattern is best indexed by the shape histogram, or, for rotation-invariant matching, the
Fourier descriptors or Zernike descriptors. In the case that it is important to distinguish
between particle types, independent global descriptors should be created for each type
independently, and combined later via concatenation. An example is given for the tetragonal
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Figure 7.24 Depiction of strategies for extracting global patterns. (a) Global patterns by superpo-
sition. For structures with long range orientational ordering, a global pattern can be extracted by
translating all local clusters or density maps to a common origin. (b) For structures with no long
range orientational ordering or complex structures with many important directions, a global pattern
can be built up from the probability distribution of local patterns.

207



cylinder structure formed from tethered nanospheres [298] in Fig. 7.24a, middle. Global
descriptors based on orientational ordering are applicable to crystalline structures in general,
including phase-separated systems arranged in crystalline superstructures [298, 314]. In this
case, the neighbor directions are computed for the centers of the micelles, cylinders, etc.
rather than the individual particles.

Non-crystalline globally-ordered phase-separated structures such as layered or network
structures can be approached in a similar way. However, rather than creating a descriptor
based on the superposition of local neighbor directions, a global descriptor is built up based
on the superposition of local density maps. An example is given by the lamellar structure
formed by tethered nanospheres [331] in Fig. 7.24a, bottom. The resulting patterns can
be indexed by shape histograms, Fourier descriptors, Zernike descriptors, etc. in the same
way as for crystalline long range order. To capture ordering on a range of lengthscales,
descriptors should be created with a radial component that spans the lengthscales of interest.

For systems with no long range ordering such as liquids, gases and amorphous solids, a
different approach must be employed. Rather than combining neighbor directions or density
maps by superposition, we compute the probability distribution of these local patterns. This
method is depicted for a dense liquid [133] in Fig. 7.24b. Since this requires a separate
descriptor for every local structure, registration becomes computationally prohibitive. Thus,
rotation-invariant descriptors, such as Fourier descriptors or Zernike descriptors, are typically
optimal. Computing probability distributions is also useful for complex structures regardless
of long range ordering. For example, for the double gyroid structure shown in Fig. 7.24b,
bottom [309], the superposition of local density maps may become non-distinguishing for
the global sample since there are many different directions, and probability distributions
may present a better alternative. As mentioned in section 7.3.3, complex phase-separated
structures can often be distinguished by shape distribution descriptors. However, while
these descriptors are simple, they yield only a coarse measure of the shape, and thus can be
non-distinguishing for similar structures.

7.3.4 Similarity Metrics

The degree to which two shape descriptors match [340] is quantified by a scalar similar-
ity metric M(Si,S j). Since shape descriptors are vectors by construction, standard vector
operations such as the Euclidean distance or vector projection provide natural similarity
metrics. Along this line, two standard similarity metrics, Si−S j and Si ·S j, are defined. The
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similarity metric based on the Euclidean distance is given by:

Si −S j =

[

∑
k

(Si,k −S j,k)2

]1/2

. (7.56)

Here, k is one component of the shape vector S, which may be a real or complex number.
Similarly, a similarity metric based on the projection of one shape descriptor vector onto
another is defined by

Si ·S j =

[

∑
k

(Si,kS∗j,k)

]1/2

. (7.57)

For the sake of comparison, it is useful to define the similarity metrics on the inter-
val M ∈ [0,1], with 1(0) giving the maximum (minimum) match. Thus, we redefine the
Euclidean distance similarity metric as:

Mdist(Si,S j) = 1−
[(

Si −S j
)
/
(
|Si|+ |S j|

)]
. (7.58)

Similarity, we redefine the projection-based similarity metric as:

Mdot(Si,S j) =
1
2
[
1+
(
Si ·S j

)
/
(
|Si||S j|

)]
. (7.59)

The modified similarity metrics also have simple geometric interpretations. The Mdist

function is the ratio of the Euclidean distance between vectors and the maximal distance
between the vectors (i.e. if the vectors antiparallel). The Mdot function is proportional to the
degree of spatial alignment between descriptor vectors. If Si and S j are parallel, Mdot has
a value of 1. If Si and S j are antiparallel, Mdot has a value of 0. After normalization, the
only difference between similarity metrics is the proportional weight given to the two types
of differences. Matching functions based on projection are sensitive to differences in the
signs of components, whereas distance-based metrics are only sensitive to the magnitude of
differences regardless of the sign.

In addition to these metrics, we can define a wide variety of other metrics that are
sensitive to particular differences in shape descriptors. For existing metrics, differences
or correlations can be dampened or accentuated by applying an arbitrary power p to the
component-wise comparison. In some cases, highly specialized similarity metrics can be
applied to specific descriptors. An example of a specialized matching scheme is given by
the quadratic metric of the shape histogram method of reference [322], which takes into
account neighboring histogram bins when computing differences.
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7.3.5 Algorithms and Examples

The shape descriptors and similarity metrics described in the previous sections can be used to
create various types of order parameters, correlation functions, and other structural metrics.
In this section, we describe general algorithms that, when used with the appropriate shape
descriptors and similarity metrics, can be applied to characterizing structure for a wide range
of particle systems. In some cases, the algorithms are reformulated versions of standard
schemes from the condensed matter literature. Additionally, we explore algorithms from
the shape matching literature that have not yet been widely applied to particle systems, and
present some completely new algorithms that exemplify the future direction of the frame-
work. For all of the algorithms, we provide representative example problems to demonstrate
their application. Our examples are mostly drawn from the self-assembly literature; however,
in some cases we explore more idealized problems from the condensed matter literature for
simplicity. Since our goal is to present important elements of the shape matching framework
rather than solve specific problems, the examples should be considered proofs-of-concept
rather than optimal solutions.

Simple Structure Identification

The goal in most computer science shape matching applications is to identify unknown
structures by searching a database of known reference structures. Structures are identified
by the known structure that gives the best match. The algorithm for structure identification
is given in pseudocode below.

set match_best = 0
set id_best = ‘none’
call compute_shape_descriptor(S_i)

for each structure j in reference_database
call compute_shape_descriptor(S_j)
set match = M(S_i, S_j)
if match > match_best

match_best = match
set id_best = id_j

end if
end for
return id_best

This type of database search has already been applied to particle systems in the context
of proteins and macromolecules [329, 343, 330, 344, 345, 310, 311]. Although database
searches have been applied in limited cases for condensed matter systems [187, 309], many
standard structure identification schemes bear strong resemblance to these types of schemes.
For example, the common neighbor analysis (CNA) scheme of reference [263] involves
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constructing numerical fingerprints for pairs of atoms based on their local neighbor configu-
rations, and identifying local clusters by matching the distribution of fingerprints with those
for predetermined ideal structures. In the language of shape matching, the collection of CNA
fingerprints can be considered a shape descriptor, and the catalogue of ideal fingerprints can
be considered a database of reference structures. A similar identification scheme is given
by the bond order parameters of reference [132]. Here, local structures can be identified
by choosing cutoff values for bond order parameters [346]. In this case, the bond order
parameters represent shape descriptors, the cutoffs act as similarity metrics, and the ideal
structures used to set the cutoffs act as the reference database.

As a minimal example of a structure identification scheme, consider the problem of
identifying the small, imperfect cluster in Fig. 7.25a, where particles have been slightly
perturbed from their ideal face-centered-cubic (fcc) positions. For the purpose of the present
example, we consider a small library of reference structures consisting of fcc, hexagonal-
close-packed (hcp) and icosahedral clusters, each with 13 atoms. To differentiate between
these clusters, we use rotation invariant Fourier descriptors on the surface of the sphere SF3,
where " = 4,6. These coefficients are chosen because they are the leading coefficients for
this class of structures [132]. As shown in the table in Fig. 7.25a, the unknown structure best
matches with the fcc cluster, followed by the hcp and icosahedral clusters, thus identifying
the structure as fcc.

This simple matching scheme can be performed repeatedly to identify local structures
in a global sample. Consider the defective fcc crystal shown in Fig. 7.25b, which contains
hcp stacking faults [293]. The stacking faults can be identified by finding particles in local
hcp configurations rather than fcc. First, local structural patterns must be created for each
particle. This is done by clustering all neighboring particles within a cutoff radius rcut . Here,
the cutoff is chosen to encompass the first peak in the radial distribution function g(r); first
neighbors can alternatively be found by the Voronoi construction [384]. Since ideal fcc
and hcp clusters are the only possible structures, our reference library consists of these two
structures exclusively. Particles are identified by finding a best match, as in the previous
example, and colored based on their local configuration (light corresponds to fcc, dark to
hcp) in Fig. 7.25b, highlighting the stacking faults.

Structure identification can also be performed for global samples. Global structure iden-
tification can be useful, e.g., when mapping structural phase diagrams (see section 7.3.5).
As an example of global structure identification, consider the mono-tethered nanosphere
system similar to references [308, 210], whose tethers phase separate into spherical micelles
(see Fig. 7.26a). The micelles themselves pack into an ordered crystalline superstructure.
The structures of the crystal can be identified by identifying the micelle centers of mass,
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Figure 7.25 Identification of local structures (a) Basic identification of a slightly imperfect fcc
cluster. The table shows the matching values for the query structure compared to fcc, hcp and
icosahedral reference clusters. (b) A fcc crystal with hcp stacking faults. The particles are colored
based on their first neighbor shell configuration Light (yellow) particles are in the fcc configuration,
while dark (blue) particles are in the hcp configuration.
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Figure 7.26 Identification of global crystalline structures for a system of mono-tethered
nanospheres that aggregate into spherical micelles. (a) Bulk micelle structure. (b)The micelle
centers-of-mass are extracted using a Gaussian filter. (c) The global pattern is created by superposi-
tion of the local patterns. (d) Matching is based on a Fourier descriptor (section 7.3.3) that indexes
the global superposition of local patterns (section 7.3.3), and identifies the micelles as bcc structured.
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which make up the set of positions {X} that describe the system (see Fig. 7.26b). The
centers of mass are determined by applying a Gaussian filtering algorithm adapted from
the colloidal science literature [294, 291]. A global crystalline pattern is determined by
computing the superposition of local patterns (see Fig. 7.26c, similar to Fig. 7.24a). The
global pattern is then compared to that for several standard candidate crystals, by matching
Fourier descriptors for patterns on the surface of the sphere: Mdot(SF3,SF3

ref ). Here, the
Fourier descriptor is composed of the leading terms in the harmonic expansion for the
standard crystals: SF3 =< |q4|, |q6|, |q8|, |q10|, |q12| >. Notice that we use invariant Fourier
coefficients for rotation-independent matching. The unknown crystal is identified by the
reference structure that gives the best match, in this case BCC (see Fig. 7.26d).

The structure identification applications presented in this section are successful because
the potential reference structures are known a priori. However, the identification schemes
fail if the unknown structure is not in the reference database. It is therefore important to
carefully choose the appropriate reference structures for a given application. Often, optimal
matches are obtained by using imperfect structures from the system rather than mathemati-
cally perfect structures for reference structures. As an added consideration, it is sometimes
possible to obtain partial structures that are highly ordered, but are missing one or more
particles. This is an important factor in phase separated systems, systems with physical
boundaries, and systems with high variation in neighbor distances. For proper identification,
partial structures must be added to the reference library explicitly [187], unless a shape
descriptor capable of partial matching is used, such as a point matching descriptor or shape
contexts [327].

Identification Without Reference Structures

As the number of potential structures grows, compiling a complete reference library becomes
increasingly difficult. However, if the space of potential reference structures is finite, a
reference library can be created on-the-fly (OTF), precluding the need to define reference
structures a priori. To do so, a new reference structure is added to the library whenever no
suitable match is found. The algorithm for identification without known reference structures
is given in pseudocode below.

set match_best = 0
set id_best = ‘none’
call compute_shape_descriptor(S_i)

for each structure j in reference_database
call compute_shape_descriptor(S_j)
set match = M(S_i, S_j)
if match > match_best

match_best = match
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Figure 7.27 On-the-fly reference library with Bottom Up Building Block Assembly (BUBBA)
[358]. The BUBBA algorithm involves enumerating unique clusters of a given size N. To ensure
that clusters are unique, new clusters are added to the reference library and given a unique identifier,
while repeated clusters (yellow) are discarded.

set id_best = id_j
end if
if match_best < match_min

call add_structure_to_database(S_i, counter)
set id_best = counter
set counter = counter + 1

end if
end for
return id_best

Notice that the algorithm requires an additional step where the reference structures them-
selves, which are initially “unnamed,” are identified. This can be accomplished by using a
standard identification algorithm similar to that outlined in section 7.3.5, or in some cases
more simply by visual inspection.

The OTF algorithm is applicable to simulations or algorithms that involve enumerat-
ing unique structures. One example is given by Bottom-Up Building Block Assembly
(BUBBA) [358]. The BUBBA algorithm efficiently generates low-energy clusters by trying
different combinations of smaller low-energy clusters. To ensure that the clusters generated
are not redundant, an OTF shape matching scheme is employed (see Fig. 7.27). New clusters
are added to a reference library if no match is found, while redundant clusters are ignored.
In the end, the reference library contains a list of unique clusters. This type of scheme
may also potentially be applied to information compression for mapping structural phase
spaces. Since large portions of the parameter space are often redundant for high-resolution
mappings, an OTF scheme can be employed to quickly obtain a minimal number of unique
structures.
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Identification in Systems with Disordered Structures

Creating a comprehensive reference library is nearly impossible when local structures can
assume disordered configurations. In this case, the space of potential reference structures
is essentially infinite, since “disordered” refers to the vast space of configurations with no
particular structure. As a solution, a structure that does not match any structure in the refer-
ence library within a certain threshold is considered “disordered [187].” This requires that
we choose a cutoff value for a best match. The cutoff must be chosen carefully; in thermal
systems, an overly-stringent cutoff might cause a matching scheme to miss highly-ordered
structures perturbed slightly from their ideal configurations, whereas an overly-permissive
cutoff can misidentify highly disordered structures. In most cases, a sufficiently rigorous
cutoff can be defined such that its value does not affect the qualitative results. The algorithm
for structure identification with disordered local structures is given in pseudocode below:

set match_best = 0
set id_best = ‘none’
call compute_shape_descriptor(S_i)

for each structure j in reference_database
call compute_shape_descriptor(S_j)
set match = M(S_i, S_j)
if match > match_best

match_best = match
set id_best = id_j

end if
if match_best < disordered_cut

id_best = ‘disordered’
end if

end for
return id_best

As an example, consider the hard tetrahedron fluid studied in reference [33] (Fig. 7.28a).
In this system, an important local motif, originally identified by visual inspection, is the
“pentagonal dipyramid” (PD), formed by five tetrahedra sharing a common edge. The PDs
form a spanning network as the system goes through a liquid-liquid transition. To identify
PDs, we first cluster all sets of five tetrahedra in the system that form a closed polygon.
The shape of each cluster is defined by projecting the directions of the tetrahedra on the
surface of a sphere (Fig. 7.28b). An ideal PD gives a 2D pentagonal pattern, which is
taken as a reference structure. Although the pentagon reference structure is confined to
a plane, the query structures are not. Therefore, this pattern is well-described by Fourier
descriptors on the surface of the sphere, with matching given by Mdist(SF3

query,SF3
pentagon).

We take rotation-invariant descriptors with frequency parameter " = 5,6, ...10. For some
systems, there is a clear distinction between ordered and disordered structures. However, for
the tetrahedron system we observe a continuous spectrum of PD-like ordering. Thus, we
estimate a cutoff based on visual inspection in the range Mcut ∼ 0.9. Although this choice
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Figure 7.28 Pentagonal dipyramids (PDs) in the hard tetrahedron system [33]. (a) A snapshot of
the hard tetrahedron liquid at packing density φ ≈ 0.5 and pressure P = 60. (b) A PD-like cluster
taken from the system. The arrows depict the pattern of directions [θ ,φ ] on the surface of the sphere
indexed for matching. (c) The number of PDs as a function of the identification cutoff value. Notice
that for all cutoffs, there is an inflection point centered at P = 58, which corresponds to a possible
liquid-liquid transition marked by a sudden increase in PD-like local ordering.

is arbitrary, it has little effect on structural trends for the system. Fig. 7.28c shows the
number of PDs for a wide range of cutoffs. We see that for all cutoffs, the fraction of PDs
exhibits a weak crossover, marked by an inflection point, near P = 58. This pressure, in
turn, corresponds to an interesting thermodynamic transition for the system [33]. Although
cutoffs result in different numbers of PDs, the same underlying physical behavior is captured
regardless.

Order Parameters and Temporal Correlation Functions

Another standard application of structural metrics is to track structural transitions, either
as a function of time or a changing reaction coordinate. This is typically accomplished by
monitoring either an order parameter or correlation function as the system changes. In the
context of the shape matching framework, the difference between the two cases is largely
semantic; while an order parameter typically measures similarity with an ideal structure, a
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Figure 7.29 Assembly of a helical sheet composed of laterally tethered nano-rods [301]. As time
progresses, the initially flat sheet twists into a helix. The matching order parameter Mdist(St ,Shelix)
compares the structure at time t with the shape of the final ideal helical structure.

correlation function typically measures similarity between different structures in the system,
separated in time and/or space. The simple algorithm for tracking a transition as a function
of a changing parameter is given below:

call compute_shape_descriptor(S_ref)
for p in changing_parameter

call compute_shape_descriptor(S_p)
set order_param[p] = M(S_p, S_ref)

end for
return order_param

Here the similarity metric M ∈ [0,1] serves as a convenient order parameter. Track-
ing structural transitions is important for a wide variety of applications, including
elucidating thermodynamic transitions [57, 348, 349, 350, 351] and assembly pathways
[29, 352, 353, 268]. Many of the advanced molecular simulation techniques used to study
transitions [156,157,60,354,158] rely on structural metrics in the context of pseudo-reaction
coordinates [157], biasing parameters [156], and collective variables [158] to guide the
statistical sampling algorithm. Standard order parameters have been devised for various
types of ordering, including bond orientational ordering [48, 54, 132, 355], liquid crystalline
ordering [341, 262] such as nematic [356] and smectic [349] phases, chiral ordering [264],
and helical ordering [357]. Time correlation functions based on these types of order parame-
ters have been applied to creating structural “memory” functions for glassy liquids [138,139]
and growing quasicrystals [30].

As a simple example of creating an order parameter within the shape matching frame-
work, consider the sheet-like structure self-assembled from laterally tethered nano-rods
studied in reference [301], and shown in Fig. 7.29a. Due to an instability, the initial sheet
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Figure 7.30 Structural transitions in a phase separated system. (a) Visual depiction of the three
structures formed by a ditethered nanosphere system [314] (left to right: disordered, TC/TM, TC/TC).
(b) Matching order parameter for the three reference structures as a function of inverse temperature.

relaxes into a helical structure that minimizes the free energy. We can track this structural
transition by matching the shape of the sheet at a given time t with the final fully-equilibrated
helical structure: M(St ,Shelix). Since the structure is 3-dimensional and has radial depen-
dence, we can index it using a Zernike descriptor on the unit ball, SZ3. Since the sheet only
changes in terms of its twist in space, we save computational effort by only considering
points along the backbone of the sheet. To match the shape independent of the orientation
of the sheet, we take rotation invariant moments with " in the range 4 ≤ " ≤ 12. Fig 7.29a
shows the helical order parameter as a function of time for a long molecular dynamics
run. We observe that over tens of millions of MD steps, the sheet slowly and continuously
equilibrates to the final helical structure, in agreement with visual inspection. Our matching
order parameter gives a better indication of the structural transition than the more standard
helical order parameter H4 [357], which is rather insensitive when the pitch of the helix
is large compared to the radius [301]. The noise in the data at long t is indicative of the
relatively large fluctuations in shape that occur in equilibrium.

As a slightly more complex example, consider the structures formed by the ditethered
nanospheres shown in Fig. 7.30a [314]. The system goes through two transitions as a
function of inverse temperature or quench depth, first from a disordered structure to a
phase-separated structure characterized as a tetragonal cylinder/tetragonal-mesh (TC/TM),
and then to a similar structure characterized by tetragonal cylinders(TC/TC) [314]. The
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tion of elongation L. (b) The standard deviation of matching values, λ = 1−< Mdot(SF3
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as a function of elongation.

abbreviations indicate the patterns formed by the tethers and nanoparticles, respectively.
To obtain a quantitative measure of this behavior, we take three reference points: ideal
snapshots from the disordered regime, the TC/TM regime and the TC/TC regime. As
outlined in section 7.3.3, several different descriptors are applicable to this type of global
structure. Here, we use the shape distribution SD2, since it is distinguishing between the
three compared structures. Separate SD2 descriptors are created for each of the three “parti-
cle” types. These descriptors are then concatenated into an overall descriptor. Rather than
considering surface particles exclusively, we use all particle positions, since this is simpler
and is still distinguishing for the cylindrical phases under consideration. Fig. 7.30b shows
how the character of the system changes as a function of inverse temperature. We see that
the structural transition between the three phases is smooth and continuous, as verified
by visual inspection. In a separate reference [38], we show that a scheme based on the
distribution of Fourier descriptors for local density maps gives identical results.

As a relatively complex example, consider the gold nanowire undergoing tensile elonga-
tion shown in Fig. 7.31a [376, 377]. As the wire elongates, a “neck” begins to form, in this
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case, at ∼10 Å. This type of structural transition can strongly impact the transport properties
of nanowires [385] and thus is important to identify. The neck region can be characterized
by the loss of the original FCC structure locally, e.g. a change in orientation, number of
neighbors, or overall symmetry. Global crystalline order parameters [132] may not be well
suited, since only a subset of the system undergoes a transition. Standard schemes that
differentiate between crystal and liquid configurations locally, such as q6 · q6 [57] (see
section 7.3.5), are not well suited either, since the finite nature of the nanowire results in
neighboring atoms having different local coordinations, even in the ideal FCC configuration
(i.e. a mixture of full and partially coordinated FCC clusters). Instead, to detect the onset
of necking, we compare an atom’s neighbor shell to its initial structure as a function of
elongation L: M(SL,SL=0). Local neighbor shells are indexed using rotation-dependent
Fourier descriptors SF3 = q6, where " = 6 is chosen because it has been shown to describe
FCC clusters well without requiring other frequencies [57, 62]. The number of atoms
in the neck is small compared to the bulk, thus the average autocorrelation value is not
strongly sensitive to neck formation. However, the spread in the data is sensitive to neck
formation, and drastically increases when atoms in the neck lose their original structure
and yield low matching values. We can therefore create an ad hoc order parameter based
on λ = 1− < Mdot(SF3

L ,SF3
L=0) >stdev, where λ = 1 for the ideal configuration at L = 0, and

decreases proportionally as the spread in matching values increases. Fig.7.31b shows that
the onset of neck formation occurs at 9.7 Å, which is consistent with visual inspection.

Spatial Correlation Functions

In addition to characterizing how structures change as a function of time or a reaction coor-
dinate, another common application of structural metrics is to characterize how structures
change in space. In the context of the shape matching framework, this involves choosing
structures from different points in the system, rather than ideal structures, as reference
structures. Spatial correlation functions are often used to measure structural “correlation
lengths.” The algorithm for computing structural correlation lengths within the matching
framework is given in pseudocode below:

for i in list_of_local_structures
call compute_shape_descriptor(S_i)
for j in list_of_local_structures

call compute_shape_descriptor(S_j)
set r = distance(i, j)
set correlation_function(r) += M(S_i, S_j)
set normalization(r) = normalization(r) + 1

end for
return correlation_function / normalization
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Figure 7.32 Spatial correlations in a system of tethered nano “V’s” [306]. (a) Depiction of the
formation of lamellar phase as the system evolves in time on cooling. (b) Depiction of the coarse-
grained nanoparticle model. (c) Nanoparticle orientational correlations as a function of separation
distance r.

In the condensed matter literature, structural correlation functions have been defined for
crystal-like ordering in 2d [48, 54], and 3d [132, 57], nematic ordering [359], and many
other more specialized types of ordering. Other types of spatial correlation functions have
been widely applied as well. One example is the q6 · q6 scheme of references [57, 62],
which detects ordered crystal nuclei based on spatial correlations between local bond order
parameters.

As a simple example of creating a spatial correlation function within the shape matching
framework, consider the problem of characterizing the formation of lamella (sheets) in the
system depicted in Fig. 7.32a, composed of tethered V-shaped nanoparticles (Fig. 7.32b)
[306]. From visual inspection, it is clear that the nanoparticles have long-range orientational
correlations in the lamella phase, but not in the disordered phase. This can be quantified by
computing an orientational correlation function for nanoparticles as a function of separation
distance r. It may initially appear that the nematic descriptor can be applied to this problem;
however, since the nanoparticles have two directors, we lose important information about
particle packing by considering only one angle. Rather, an optimal metric reflects the
correspondence between both directors of the nanoparticles. This can be measured by a
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onal grains identified in the system. Each grain is given a different color while particles in the bulk
liquid are colored black. b) Time-dependent structural decorrelation function for the hexagonal
grains and the overall liquid. Notice that the hexagonal grains retain their structure much longer than
the overall liquid.

scheme based on the RMS descriptor, where the datapoints {X} for each nanoparticle are
given by the two directors, pointing from the vertex xv to each of the endpoints x1, x2:
{X} = {x1 − xv,x2 − xv}. Assignment of corresponding vectors is performed using the
“naive” method (see section 7.3.3), which is exact for this particular problem. Fig. 7.32b
shows the average value of the orientational correlation function

〈
Mdot(SRMS

i ,SRMS
j (r)

〉

as a function of the radial separation r for several different snapshots. In the disordered
phase, only very short range correlations are present and

〈
Mdot(SRMS

i ,SRMS
j (r)

〉
is small for

all r. The correlations quickly grow as the system begins to form sheets, and the range of〈
Mdot(SRMS

i ,SRMS
j (r)

〉
increases. In the final state, the lengthscale is infinite, spanning the

length of the simulation cell.
As a slightly more complex example, consider the problem of measuring time-dependent

structural correlations in the 2D binary mixture shown in Fig. 7.33a. The system consists of
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a 50:50 mixture of spherical particles with a diameter ratio 1.4:1, and can represent either a
model supercooled liquid [135,247] or a granular system near the onset of jamming [218,31].
The system contains of small hexagonal crystal (hex) grains arranged randomly within the
disordered bulk liquid. To measure the effect of hex structure on dynamics, we can compare
the rate of structural decorrelation in the hex and non-hex regions. To do so, we require
two correlation functions: first, a spatial correlation function to identify the hex regions
and, second, a temporal correlation function to quantify how closely a given structure
“remembers” its initial configuration as a function of time.

Identifying the hex grains within the bulk liquid requires a structural citerion that differ-
entiates between particles in the liquid and hex regions on a per-particle basis. As mentioned
previously, the q6 ·q6 scheme of reference [57] can be used to monitor nucleation and growth
in 3d systems that form fcc, bcc, and hcp crystals [62, 386, 21, 367, 293, 292]. Although the
scheme was originally based on the " = 6 Fourier coefficient q6, other shape descriptors
can be just as easily be substituted [29, 30]. The main physical insight underlying the
q6 ·q6 scheme is that crystals often contain local particle configurations that match with
their neighbors in terms of both shape and orientation. Therefore, crystal-like particles
can be identified by detecting those that match well with their neighbors. In analogy with
reference [57], a good indicator of local crystal-like local ordering is the fraction of solid-like
matches with neighbors:

fsolid = 1/n
n

∑
j

Θ[Mdot(Si,S j)−Mcut ]. (7.60)

Here Θ is the Heaviside function and “ j” is a neighbor of “i,” and S is a rotation-dependent
shape descriptor. Particles with a minimal fraction of solid-like matches fcut are con-
sidered to be locally crystalline. The cutoffs can be determined by viewing plots of the
P(Mdot(Si,S j)) and P( fsolid) distributions for the bulk liquid and bulk solid [57, 62], or
simply by visual inspection, as we perform here. This scheme holds for crystals in general,
provided the neighbor shells all have the same shape. In reference [38], we describe how
this scheme can be modified to handle crystals with an assortment of neighbor shells. The
algorithm for detecting crystal grains is given in pseudocode below:

for i in list_of_particles
set S[i] = compute_neighbors(i, rcut)
call compute_rotation_dependent_shape_descriptor(S[i])

end for

for i in list_of_particles
set n_solid = 0
set count = 0
for j within rcut of i

if M(S[i], S[j]) > M_cut
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n_solid = n_solid + 1
end if
count = count + 1

end for
if n_solid / count > f_cut

append(list_of_solid_particles, i)
end if

end for

For our example, we identify hex grains using the SRMS descriptor with Mcut = 0.99 and
fsolid = 0.5. Notice that this scheme does not simply detect local hexagons; rather it identi-
fies local hex regions while making the important distinction between isolated hexagons and
the intermediate-range hex clusters of interest. Our temporal correlation function is defined
by matching the point-matching descriptor for each cluster at time t with itself at a reference
time t0: Mdot[SRMS(t),SRMS(t0)]. Fig. 7.33b shows the correlation function for hexagonal
and non-hexagonal particles. We see that the hexagonal particles retain their structure longer
on average than non-hexagonal particles. Similar correlation functions have applied to study
glassy dynamics [138] and to study how the structure of liquid clusters change as they attach
to a growing quasicrystal [30].

The general ideas underlying the correlation functions outlined above can be applied
to more abstract problems as well. For example, rather than creating correlation functions
in space and time, we can create correlation functions in parameter space. Consider the
problem of automatically generating the structural phase diagram for the 2D Lennard-Jones-
Gauss (LJG) system [120] shown in Fig. 7.34a from a collection of simulation snapshots
for each statepoint. The phase diagram was generated by visual inspection of over 5000
statepoints [120]. We can automate the creation of this phase diagram by using an idea
similar to the q6 ·q6 scheme outlined above. In this case, rather than finding structural corre-
lations between neighboring particles in real-space, we can calculate correlations between
neighboring snapshots in parameter space. For each point on the structural phase diagram,
we compute I(i) = ∑ j M(Si,S j), where “i” and “ j” are neighbors in parameter space, and
S is a global shape descriptor. Here, we take the global descriptor as a combination of a
global superposition descriptor, indexed by a shape histogram with nθ = 20, nr = 1, and a
global probability distributions descriptor based on local Fourier descriptors with frequency
range " = 6,7, ...11: Sglobal =

〈
SH2

global,P(SF2
local)

〉
. Points in stable regions of parameter

space match well with neighboring points and have a high value of I(i), whereas transitional
points match poorly and have a low value of I(i). The algorithm for creating a visual map of
the structural phase boundaries for a parameter space is given in pseudocode below:

for each point i in parameter space
call compute_shape_descriptor(S[i])

end for

for each point i in parameter space
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Figure 7.34 Structural phase diagram for the 2d Lennard-Jones Gauss system [120]. (a) Structural
phase diagram created by visual inspection [120]. (b) Structural phase diagram created by shape
matching. Each pixel in parameter space is given an intensity based on the average match with
structures for neighboring points.

set pixel_intensity[i] = 0
for each neighboring point j

set pixel_intensity[i] += M(S[i], S[j])
end for

end for

The transitional points map out structural phase boundaries that look very similar to
the diagram created by visual inspection. Notice that the global superposition descriptor
detects no difference between the hexagonal and honeycomb crystals, since both structures
are six-fold symmetric, and thus yield equivalent combined shape histograms. Additionally,
the superposition descriptor picks up a slight artificial “boundary” within the hexagonal
region near r0 ∼ 1.15, where the hexagonal crystal begins to form multiple grains rather
than a single crystal, resulting in different shape histograms. The probability distributions
descriptor, on the other hand, gives no distinction between the pentagonal and decagonal
phases, since they are nearly identical locally, differing only in long range ordering. Overall,
both sets of global information taken in combination are necessary to correctly find all of
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the phase boundaries for this particular application. However, in many cases, the space of
structures is sufficiently non-degenenate to be described by a single method.

Heat Maps and Grouping

Another common application of shape matching techniques is to the problem of visually
grouping or classifying similar structures [360]. Grouping objects based on shape similarity
has also been applied recently to macromolecules and proteins [310, 344]. Grouping can be
accomplished by plotting the matrix of pairwise matching values known as a “similarity ma-
trix” or “heat map.” The algorithm for computing a similarity matrix is given in pseudocode
below:

for i in list_of_local_structures
call compute_shape_descriptor(S_i)
for j in list_of_local_structures

call compute_shape_descriptor(S_j)
set matrix[i,j] = M(S_i, S_j)

end for
return matrix

Objects can be grouped or classified based on features of the plot. As an example, consider
the TIP4P water clusters [378] shown in Fig. 7.35. The matrix shows the match values
obtained for minimum energy clusters of sizes N = 2−21, which are available on the Cam-
bridge Cluster Database [379]. The clusters are indexed using rotation-invariant Zernike
descriptors with frequency parameters " = 4,5, ..12.

The patterns displayed in the heat map require some interpretation. The high correlation
along the diagonal i = j is common to all heat maps, and simply indicates that structures
match perfectly with themselves. The region N = 12− 15 displays a bright box, which
indicates a group of structures that all match well with one another. The region N = 7−10
displays a checkerboard pattern, which indicates that every-other cluster matches well.
Cluster N = 16, due to its unique non-compact nature, matches poorly with all other clusters,
as indicated by the dark (purple) cross at N = 16. In addition to grouping and classifying
objects, heat maps can be used to visually indicate convergence with respect to a changing
parameter. Multiple heat maps based on different descriptors can be constructed for the
same set of structures to show the similarities on different levels of ordering. Although we
consider local clusters for our example, heat maps can be applied to any structures that can
be indexed by shape descriptors, including global structures.
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Figure 7.35 Grouping and classifying structures based on shape similarity. The plot shows a
similarity matrix for energy-minimized TIP4P water clusters [378]. The matrix simultaneously
shows the pairwise matching values for all clusters.

7.3.6 Future Outlook

In summary, we have introduced a shape matching framework for creating new structural
metrics for complex patterns, such as those encountered in self-assembly. All of the meth-
ods and examples outlined here are accessible online through our C/C++ shape matching
library [302]. Although our examples and discussions here are geared towards self-assembly
and condensed matter physics, the general ideas underlying the shape matching framework
are widely applicable to systems with complex structures, such as those encountered in
computational biology. In the future, new shape descriptors and algorithms can be added to
the framework to expand its scope to different classes of structures and problems.

The example applications and shape descriptors that we have presented here represent
only a small subset of the vast range of possibilities yet to be explored. One obvious area
for future study is to test the applicability of the wealth of shape descriptors from the shape
matching literature to particle systems. Another promising area to explore is the creation of
new abstract order parameters and correlation functions, such as the phase space correlation
function of Fig. 7.34. This type of application may represent one of the most important
uses for shape matching moving forward; replacing the human element with a computer
algorithm to explore parameter space has the potential to greatly expedite self-assembly
research.

227



Chapter 8

Future Outlook

In this thesis, we have explored several unique aspects of the formation of specialized or-
dered structures, the dynamics of supercooled liquids, and tools for characterizing structural
transitions. Our findings have given rise to many new questions that should be addressed
through future study. In this chapter, we address the ongoing and future work that relates to
the topics presented in the previous chapters.

8.0.7 Generality of Quasicrystal Growth Mechanism

In section 5.1, we investigated the growth mechanism of a model dodecagonal quasicrystal.
For this system, we found that the aperiodic growth of the quasicrystal was driven by the
ability of the growing quasicrystal nucleus to assimilate kinetically trapped particles into the
solid phase with minimal rearrangement, causing the system to form the the quasicyrstal
rather than the stable approximant crystal (Fig. 8.1). A similar, coarse-grained version of
this mechanism based on tiling models was proposed years earlier in reference [387]. The
generality of this mechanism should be investigated for other quasicrystal-forming systems.

One system for which the growth mechanism can potentially be tested is the Lennard-
Jones Gauss (LJG) system of reference [120], which forms a 2d decagonal quasicrystal.
In this case, the system forms locally stable decagons in the liquid phase (analogous to
icosahedra in the Dzugutov system) that may be incorporated into the quasicrystal during
the growth phase. The system also has the advantage of being two-dimensional, which
could potentially aid the direct visualization of the growth mechanism, and also simplify the
mathematical analysis of the underlying particle structure. In addition to the LJG system, the
growth mechanism can be tested for the binary LJ system of reference [163], which forms a
3d binary decagonal quasicrystal. In this case, the system has two different particle types,
and quasicrystal growth may be dictated by the local concentration of different particle
species. Because there are two particle types, the space of locally stable motifs may be more
complex, which may also provide an interesting avenue for future investigation.
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Figure 8.1 Cross-section of growing quasicrystal in the Dzugutov system depicting the growth
mechanism proposed in Chapter 5. The image is reproduced from reference [175], and was originally
created by Aaron Keys and Chris Iacovella.

8.0.8 Nucleation in Quasicrystals

During the course of our study of quasicrystal growth the Dzugutov system, we learned two
interesting facts about the solid “nucleus” that gives rise to the bulk quasicrystal. Namely, we
learned that (1) the nucleus has icosahedral local structure and (2), the nucleus is surrounded
by a wetting layer of icosahedra. This implies that a potentially interesting avenue for
future study involves investigating the effect of local icosahedral ordering on quasicrystal
nucleation.

The first question that should be answered is whether or not the formation of the critical
nucleus is correlated with icosahedral clusters in the system. Our preliminary results (ob-
tained via umbrella sampling) give strong evidence that this is the case. Fig. 8.2 shows the
typical arrangement of icosahedral clusters relative to nuclei of two different structures: a
dodecagonal quasicrystal and an fcc crystal. We observe that both nuclei are correlated with
the icosahedral clusters but in an opposite way; whereas the fcc nucleus (yellow) tends to
arise in a region devoid of icosahedra (purple), the quasicrystal nucleus (red) arises inside
an icosahedral cluster (grey). These results make intuitive sense from a packing standpoint;
since dodecagonal quasicrystals are polytetrahedral, the quasicrystal nucleus may tend to
arise within a region with stronger icosahedral ordering than the bulk liquid. On the other
hand, the fcc nucleus, which is not polytetrahedral, may tend to form in the non-icosahedral
bulk where the rearrangement of low-energy particles is not required.

A second interesting question to address is how ordered nuclei with icosahedral local
ordering (such as the quasicrystal depicted in Figure 8.2a) initially arise within the system.
While it is possible that the quasicrystal nucleus forms within an existing icosahedral cluster,

229



a b

Figure 8.2 Icosahedral clusters and nucleation. (a) A microstate from the Dzugutov system at
T = 0.55, P = 3.50 containing a quasicrystal nucleus (red) of size N ∼ 50. (b) A microstate from
the Dzugutov system at T = 0.55, P = 3.50 containing an FCC nucleus (yellow) of size N ∼ 100.
Icosahedral clusters are shown in grey. The quasicrystal nucleus preferentially forms inside an
icosahedral cluster whereas the FCC nucleus preferentially forms in the non-icosahedral bulk liquid.
We use umbrella sampling to sample both nucleus structures at the same state point.

it is also possible that the nucleus arises in the bulk liquid like an ordinary icosahedral
cluster and subsequently forms icosahedra about its surface. If the former scenario is the
case (i.e., the icosahedral cluster comes first), it is interesting to consider whether the cluster
has unique properties that make it a favorable “host” for quasicrystal nuclei. Answering
this question would require a method for sampling rare events, such as transition path
sampling (TPS) (see section 4.4). Unlike umbrella sampling used to obtain our preliminary
results, TPS yields MD trajectories that are sequential in time. Thus, we can extend reactive
trajectories backwards in time to determine the origin of the quasicrystal nucleus directly.

8.0.9 Phase Diagrams for Model Micelles

In our study of soft matter quasicrystals in Chapter 5, we introduced a minimal micelle
model to study the effect of surface particle mobility on quasicrystal stability. Specifically,
our model consists of small spheres tethered to a rigid spherical scaffolding (Fig. 8.4a). In
some cases, we also introduced “dimerized” micelles by bonding the centers of two spheres
together. Using this model, we were able to capture the important physical characteristics of
two different micelle-forming systems based on tethered nanosphere building blocks. We
showed that, for a particular set of parameters, the unique mobile surface particle entropic
mechanism exhibited by these systems can stabilize Frank-Kasper (FK) phases, such as
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Figure 8.3 Model systems for future assembly studies of quasicrystal assembly. (a) Model micelle
with mobile surface atoms. (b) Mixture of spherical and aspherical particles.

dodecagonal quasicrystals as well as more common structures such as bcc crystals.
In the future, the phase behavior of these model micelles can be studied in more detail.

Since the micelle model has numerous variable parameters, it presents a vast parameter
space. Parameters for the model include the size, shape, and interactions of the attached mo-
bile particles, the type and stiffness of the spring, and the shape of the rigid scaffolding that
provides the attachment points. In some cases, polymers might be tethered to the attachment
points rather than particles. It is possible that the entropic mechanism of surface area mini-
mization might help to stabilize unique structures other than quasicrystals for different sets
of the parameters. Once desirable target structures are obtained, explicit micellar systems
can then be designed based on simpler nanoparticle building blocks that assemble micelles
resembling the parameterized model. In addition to micellar systems, nanosatellite systems
may also be designed in some cases, such as the systems of references [201] and [388].

8.0.10 Sphere-Dimer Binary Mixtures

In our study of soft matter quasicrystals in Chapter 5, we introduced model binary mixtures
of pill-shaped dimers and spheres to study the effect of particle shape polydispersity on
assembled crystal structures (Fig. 8.4b). For certain parameter ranges, we found that FK
phases exhibit lower free energies than standard fcc, hcp, and bcc crystals for the binary
mixtures. Since other untested crystal structures may be more stable, our results do not
prove that the FK phases minimize the global free energy; rather, our results prove that
particle shape polydispersity lends relative stability to FK phases over standard crystals.

Of course, our results still strongly imply that it is possible for FK structures to mini-
mize the global free energy under particular conditions. Oblong particles can already be
fabricated in a variety of colloidal systems [389, 390, 391]. Thus any binary mixtures with
standard colloidal interaction potentials that assemble FK structures in simulations would
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Figure 8.4 Excitations and particle structure. The panel shows isoconfigurationally-averaged mo-
bility fields [137] for a 2d binary WCA supercooled liquid at different temperatures. The averaging
window is given by a typical timescale of an excitation, as defined in Chapter 6. The presence of
maxima throughout the averaged mobility field (i.e., the different colors) indicates that the dynamics
are correlated to particle structure.

be potentially viable experimentally. Molecular simulations can be employed to perform a
preliminary investigation of the parameter space over which systems might form FK crystals
and quasicrystals, as well as other interesting crystal structures. Our results from section 5.2
indicate that it may be difficult to assemble ordered phases for sphere-dimer mixtures for
relatively hard interactions, such as the WCA potential. For example, self-assembly runs
using parameters in the “stable” range for the FK structures shown in Fig. 5.9 typically
result in disordered non-ergodic phases (i.e., glasses). This indicates that either nucleation
is suppressed due to glassy dynamics (see section 2.3.3) or the free energy minimizing
structure is not ordered. The former scenario may be circumvented by choosing a potential
with softer interactions, thus allowing particles to better escape from local minima. One
standard colloidal soft interaction is given by the Yukawa potential for systems with screened
electrostatic interactions [392].

8.0.11 Elementary Excitations and Structural Weaknesses

In our study of fundamental particle motions in Chapter 6, we observed strong parallels
between particle dynamics in atomistic supercooled liquids and kinetically constrained mod-
els (KCMs) (see section 2.4.2). The theory of KCMs is partially based on the underlying
idea of dynamical facilitation (DF); that is, the motion of a particle begets or facilitates the
subsequent motion of another particle at a later time. Such facilitated motion may have an
associated waiting time; that is, the motion of one particle may lower the activation barrier
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for a local rare particle motion event, making it more likely to occur, but not guaranteeing
so.

In this sense, the motion of particles may be loosely tied to the underlying structure.
Structural weaknesses that arise due to nearby particle motion allow subsequent particles to
move. This idea can be tested by applying a standard path sampling framework to activated
events characterized by particle motion, similar to that applied in section 6.2. Structural
transitions in local particle configurations can then be characterized using the standard
methodology used to study rare events. For example, we can measure the free energy for a
local particle jump, and identify the transition state and reaction coordinate(s) characterizing
local particle motion. Doing so would provide an important step forward in understanding
the glass transition, since it would, for the first time, draw a concrete connection between
local particle structures and the dynamics of supercooled liquid dynamics.

8.0.12 Structural Correlations with String-Like Motion

A more specific subset of the broader question posed in the previous section, is: what is the
atomistic mechanism underlying strings of mobile particles? That is, what is it about the
local structure of particles that causes them to follow one another in quasi-one dimensional
strings? In 3d systems, such as the Dzugutov system, strings tend to occur at the surface of
icosahedral clusters [70]. This is surprising, since one might naively expect particle motion
to occur as far from the locally-ordered regions as possible. Rather, this result implies that
a tendency for particles to attach to the stable icosahedral clusters locally may provide a
driving force for string-like motion. Such attachment would increase the frustration of the
cluster, causing, on average, a subsequent detachment of particles elsewhere, such that the
cluster size distribution remains in equilibrium.

This idea could be tested by considering a simple model, such as a 2d liquid. Imagine a
tagged particle in such a system situated next to a relatively large ordered (say hexagonal)
cluster. We can ask ourselves the following questions: (1) how are the forces on this particle
different than those in a crystallizing system? (2) How will the resulting motion of our
tagged particle differ from a particle in a crystallizing system? Certainly in a global sense, a
glass-forming system and a crystallizing system differ strongly; the glass-forming system
can only form ordered grains of a certain small size before packing frustration sets in and
breaks the structure apart. However, locally, the forces and motions of particles may not
significantly differ between particles in a glass or in a nucleating crystal. Thus, particle
motion may occur via the same basic mechanisms. A related idea has been put forth by
Granato and coworkers, based around interstitial defects [393, 394].
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Figure 8.5 String-like motion in crystallization. The panel depicts a 2d crystalline system with a
structural defect, imposed by a small degree of particle size polydispersity. The displacement vectors
depict how the particles move to anneal the defect, causing another defect to form.

One potentially simple way to test our idea is to observe the particle dynamics in a
system with a growing crystal. Another potentially simple method is to observe how a
crystalline structure fixes local structural defects. Fig. 8.5 shows particle dynamics within a
hexagonal crystal grain with a small defect that occurs due to the presence of a small amount
of particle size polydispersity in the system. We observe that the particles move as strings to
fix the defect locally. The defect moves throughout the system when the defective regions
crystallize, causing nearby regions to become defective. This very preliminary result is
sufficiently interesting, that in the future, a more thorough study of the relationship between
string-like motion and crystallization can potentially be conducted.

8.0.13 Shape Matching For Experimental Systems

In our study of the shape matching methods for characterizing transitions in assembled
systems in Chapter 7, we introduced several general metrics that can be applied to particle
structures in general. As described in sections 7.2 and 7.3, this includes experimental images,
such those obtained from TEM or confocal microscopy. Thus, many of the same shape
matching algorithms to characterize experimental data as well, with the caveat that in some
systems, we often only obtain 2d snapshots of a 3d system.

In section 7.2.12, we demonstrated that shape matching can be used to identify unknown
structures based on experimental images, which is useful, for example, in the context of
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data mining algorithms (see, Fig. 7.18). Another application for which shape matching
techniques may prove particularly useful is in the case of quantifying structural perfection
in experimental systems. Images of particles can be compared with ideal mathematically
constructed reference images to give a quantitative degree of perfection, or a pseudo-order
parameter.

8.0.14 Targeted Parameter Space Searches Using Shape Matching

In a very simplified sense, there are two generic problems in the field of computational
self-assembly: (1) given a desirable target structure, what is a suitable range of parameters
for which the structure can be obtained, and (2) given a system consisting of a building
block and set of feasible parameters, what is the space of unique assembled structures that
we can obtain? Both problems are typically solved by a combination of physical intuition
and feedback from simulation results. For example, for a problem of the form (1), we might
guess a set of parameters that will yield the desired target structure and adjust these param-
eters based on molecular simulation results. For a problem of the form (2), we might run
simulations for a range of parameters and then use post-processing to construct a structural
phase diagram. In many cases, we attempt to optimize our study to consider the largest
space possible with the fewest simulations.

Both types of problems mentioned above can potentially be automated and optimized
by using shape matching methods described in Chapter 7. For example, the problem of
identifying parameter sets that produce a particular target structure can potentially be solved
by using shape matching techniques within the context of standard optimization algorithms,
such as genetic algorithms [375]. In this case, the measure of “fitness” might be proportional
to the match between an ideal structure, and that obtained for a trial parameter set. Shape
matching schemes may also be applied to the problem of finding unique structures for a
parameter space. For example, in section 7.3.5, we automatically defined structural phase
boundaries for a system sampled on a grid in parameter space. An algorithm based on this
type of matching scheme could be used to, for example, iterate along a phase boundary to
efficiently map the parameter space without simulating the regions within the boundaries,
thus saving significant computational effort.
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Chapter 9

Conclusions

In summary, we have investigated solidification transitions in several different model and
experimental liquids, with a varying degrees of structural complexity. To supplement our
studies, as well as other future studies in the field of colloidal and nanoscale assembly,
we have expanded the breadth of the mathematical toolset that can be used to characterize
particle structures and structural transitions. Our most important findings can be summarized
as follows:

1. Particle dynamics in dense granular materials approaching a jamming transition are
indistinguishable from particle dynamics in supercooled liquids approaching a glass
transition.

2. The theory developed based on coarse-grained kinetically constrained models (KCMs)
can be accurately applied to describe the particle dynamics and bulk relaxation
properties of fully-atomistic model glass formers.

3. The detailed particle-level mechanism by which quasicrystals form involves the incor-
poration of locally-stable motifs from the liquid-solid interface into the growing solid
nucleus with minimal structural rearrangement.

4. Quasicrystals can be consistently assembled from systems of micelles that exhibit
both shape polydispersity and mobile surface entities.

5. Computer science shape matching algorithms, commonly used for electronic database
searches, can be applied to create highly flexible order parameters for complex
assembled structures.

Our findings are modest within the grand scope of liquid-solid transitions; however, in a
more focused context, they provide some important incremental steps forward.

Our study regarding the connection between the glass transition and “jamming” in gran-
ular materials is one of several studies on this topic that have demonstrated the universality

236



of glassy phenomena (see also references [66, 65]). Because the granular system that we
investigate consists of hard particles, our results highlight the important role played by
excluded volume interactions in producing glassy phenomena, as predicted by Weeks, Chan-
dler and Andersen over 30 years prior [118]. Our study regarding the physical connection
between KCMs and fully-atomistic glass formers provides an important step forward in our
understanding of the nature of the glass transition. While KCMs are known to exhibit the
hallmarks of glassy dynamics in coarse-grained systems, the connection between these mod-
els and fully atomistic systems has, until recently, been ambiguous. Our work, along with
other recent studies relating coarse-grained models to more realistic systems [111, 109, 107],
has helped elucidate this connection. This highlights the important role of the minimal
physics built into coarse-grained glass formers in producing glassy dynamics in realistic
systems. The picture of glass forming liquids that arises from our study allows us to explain
previously unexplained behaviors, such as the origin of the growing dynamical length-
scale for strings of mobile particles, and the exponential probability distribution of string
lengths [73, 71, 31].

Our study regarding quasicrystal growth has a similar flavor; in this case, several coarse-
grained models had been proposed to describe quasicrystal growth [175, 387], but our study
was the first to investigate quasicrystal growth within a particle-based simulation. Our results
demonstrate the applicability of a particular growth model [175] proposed in reference [387],
and also provide important insight into how quasicrystals might form via self-assembly.
In particular, quasicrystals should be formed in rapidly quenched systems, in which there
is a sizable barrier to rearranging stable structures at the liquid-solid interface. This is in
agreement with the well-known experimental observation that quasicrystals typically form in
rapidly quenched melts and are often thermodynamically metastable with respect to a crys-
talline stable state [189]. This study has already aided us in investigating the thermodynamic
mechanism by which quasicrystals arise in a system of dendrimers [191], and understanding
how this type of mechanism can be widely exploited to assemble quasicrystals in micro and
nanoscale systems.

Our study of shape matching techniques introduces a powerful new paradigm for
characterizing complex particle structures. The framework that we introduce describes
highly-general algorithms that can be used with arbitrary shape descriptors to characterize
virtually any type of structure. The harmonic shape descriptors that we introduce can be
applied to a sizable subset of the space of structures that are currently known to occur in
nanoscale and colloidal systems. Shape matching techniques have already been applied to
several studies within the Glotzer group (see references [29, 30, 187, 33]), and, in the future,
may potentially be applied broadly within the computational and experimental self-assembly
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communities.
Perhaps more importantly than the direct implications of our findings, our studies pro-

vide many interesting avenues for future investigation. Our study of glassy dynamics in
granular matter has already given rise to several follow-up studies, based on exploring the
generality of our findings for different types of granular and colloidal systems, and systems
with different types of applied driving forces. Our findings regarding particle dynamics in
glassy liquids will not only aid future studies concerned with relating atomistic and molecu-
lar liquids to KCMs, but will also aid future theoretical studies by highlighting important
aspects of glassy liquids that theoretical descriptions of the glass transition must account for.
Our collective findings regarding quasicrystal formation imply that a wide range of systems
might form quasicrystals under the proper conditions, including micellar systems composed
of nanoparticle or block-copolymer building blocks, nano-satellite systems, or simple binary
colloidal mixtures with particle shape polydispersity. These systems will be studied in
more detail using computer simulations in the immediate future, and may also be realized
experimentally in the not-too-distant future. Our study concerning shape matching methods
will aid both computational and experimental studies of assembled systems by providing
a robust numerical mechanism for characterizing complex structures. In the longer-term,
these types of methods might be applied to unique computational algorithms, such as data
mining applications, or genetic algorithms to automate searches of parameter space for
desired target structures.

In summary, our findings provide some general insights into liquids-solid transitions,
which, we predict, will be most applicable to the problem of self-assembly on the nano
and colloidal scale, where a detailed understanding of these mechanisms is particularly
important. In a sense, our work represents only a tiny subset of the huge collection of studies
aimed at bridging the gap between standard materials and devices of yesterday and the new
tiny materials and devices of tomorrow. The future of nanotechnology is bright, and in the
coming decades we will witness huge new innovations on a tiny scale.
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Appendix A

Additional Studies

The work presented in this thesis is largely fundamental in nature, dealing primarily with
the physics of liquid-solid phase transitions in a general sense. Thus, for our work to have
lasting impact, our ideas must be applied by other scientists to facilitate their own research.
In some specific cases, we have done so directly. The results of these studies, which fall into
the field of self-assembly, are briefly outlined below.

A.1 Self-assembly of patchy particles into diamond struc-
tures through molecular mimicry

The diamond structure is desirable for photonic applications, because it exhibits a complete
3d photonic bandgap [395]. In [Z. Zhang, A.S. Keys, T. Chen, and S.C. Glotzer, Langmuir
(2005)] [29], we demonstrate that the diamond structure can be self-assembled from a model
system of patchy particles (Fig. A.1). We also show that the nucleation rate can be greatly
enhanced by seeding the system with a static diamond-structured nucleus. Additionally, we
show that adding a directional interaction, we reduce defects in the final structure.

In addition to demonstrating the assembly of a unique and desirable structure, this study
represents the first (implicit) use of our shape matching methods, which are applied to create
a specialized order parameter to detect diamond crystalline ordering. This application is
discussed in further detail in reference [38].

A.2 Icosahedral packing of polymer-tethered nanospheres
and stabilization of the gyroid phase

The double gyroid phase is a unique bi-continuous network structure that is known to occur
in systems of block copolymers [307, 210]. When functionalized with nanoparticles, this
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Figure A.1 Depiction of the diamond structure assembled from patchy particles studied in refer-
ence [29].

a b

Figure A.2 Double gyroid structure assembled from tethered nanospheres [187]. (a) The double
gyroid global structure. The two domains are colored differently for ease of viewing (b) Nanoparticles
at the gyroid node, exhibiting local icosahedral ordering.

type of structure may have important applications in photonics [396] and drug delivery [397].
In [C.R. Iacovella, A.S. Keys, M.A. Horsch, and S.C. Glotzer, Physical Review E (2007)],
we demonstrate that double gyroid phases can be assembled from systems of tethered
nanosphere building blocks (Fig. A.2).

In addition to reporting the formation of the double gyroid, we demonstrate that stability
of the gyroid can be rationalized by studying the local packing of nanoparticles within the
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structure. We find that nanoparticles exhibit local polytetrahedral ordering, much like a
liquid of spherical particles (see Chapter 3). However, since the nanoparticles are packed
into confined domains between the tethers, the icosahedral packing is not frustrated, and thus
stabilizes the system. This highlights the important difference between packing particles
in confined domains and in the bulk. In addition to these findings our study represents the
first instance of applying an explicit shape matching scheme to detecting particle structures,
which was applied for characterizing the local ordering of nanoparticles.

A.3 Materials science: A tale of two tilings

Only in the past decade have quasicrystals been assembled on the colloidal and nanoscale.
In [S.C. Glotzer and A.S. Keys, Nature (2008)] [32], we highlight the recent discovery by
Mikhael et al. [124] of decagonal quasicrystals in a 2d systems of colloidal particles with a
laser-induced potential field exhibiting 10-fold symmetry. For strong fields, the system forms
a decagonal quasicrystal, while for weak fields, the system forms an ordinary hexagonal
crystal. Interestingly, for intermediate field strengths, the system forms a Fibonacci chain
composed of of Archimedean (square and triangle) tiles that can be considered a unique
type of 1d quasicrystal that is periodic in one dimension and quasiperiodic in the other
(Fig: A.3). This finding not only highlights the interesting connection between quasicrys-
tals and Archimedean tiles, but also hints at a unique connection between quasiperiodic
structures with different dimensionalities.

A.4 Disordered, quasicrystalline and crystalline phases of
densely packed tetrahedra

Until recently, all of known quasicrystals consist of spherical particles, or roughly spherical
entities, such spherical micelles. In [A. Haji-Akbari et al., Nature (2009)] [33], we report the
formation of a unique dodecagonal quasicrystal from hard tetrahedral particles (Fig: A.4. We
demonstrate that the quasicrystal and its approximants represent a dense packing paradigm
for tetrahedra that, at the time, easily set the record for the densest known packing of
tetrahedra. (This record has since been broken several times by a class of structures with a
dimer packing motif).

In addition to reporting the formation of the quasicrystal, we investigate several other
properties of the hard tetrahedron system, including a possible liquid-liquid transition at
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a

b

Figure A.3 Schematic of a Fibonacci chain observed in a system of colloidal particles [124]. (a)
The two unit cells that are stacked to make up the chain (b) The Fibonacci sequence up to 21 elements.

Figure A.4 Dodecagonal quasicrystal assembled from hard tetrahedra [33]. The quasicrystal is
shown from two directions: (left) along the periodic z direction, (right) along the aperiodic 12-fold
direction.
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intermediate packing densities. To do so, we perform a detailed characterization of local
motifs within the system using shape matching. This represents our first application of our
particle shape matching framework to a system with highly non-spherical particles.
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Appendix B

Simulations and Analysis Codes

During the course of this dissertation, we developed several codes for performing molecular
simulations and data analysis. Although the source codes are too long to include in this
document, we provide a brief overview of the codes and their basic purposes in this appendix.
All of the codes listed below are currently available via the web.

B.1 LibTPS – Transition Path Sampling Library

LibTPS is an object-orientated library for performing transition path sampling and related
methods for an arbitrary molecular simulation code. The primary goal of the project is to
expose path sampling techniques to a wider audience for whom the time required to code
a path sampling algorithm poses a significant barrier to using the methods. A secondary
aim of the library is to provide a collaborative development environment for researchers
working on path sampling techniques to test and disseminate new path sampling algorithms.
Currently, the library implements transition path sampling (TPS) [60] and related methods,
such as transition interface sampling (TIS) [398] and Aimless Shooting [43]. Additionally,
the library provides several standard prototype systems with the aim of facilitating the
comparison of results and testing new algorithms. The library currently includes built-in
support for the molecular simulation API (see section B.6 below), LAMMPS [148], and
HOOMD-blueLAMMPS [250]; however, the library can be used with any molecular simu-
lation code written in either C/C++, Java or python. In the future, we also plan to provide
interactive path-sampling demos via the web.

B.2 SMAC – Shape Matching Analysis Code

SMAC is a library of routines for computing the shape descriptors and performing the
analyses described in Chapter 7. The library provides routines for computing Fourier de-
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scriptors, Zernike descriptors, shape contexts, shape distributions, and shape histograms.
Additionally, the library provides algorithms for several standard applications, such as local
and global structural identification and crystal grain detection. The routines are packaged as
a C++/python library that can be included within an existing code.

B.3 LibSHD – Spatially Heterogeous Dynamics Library

LibSHD is a library of routines for characterizing spatially heterogeneous dynamics in super-
cooled liquids and related systems based on the analyses outlined in section 4.6. The library
includes routines for computing standard dynamical functions such as the mean-squared
displacement, the self-intermediate scattering function, and the the self-Van Hove correla-
tion function. Additionally, the library includes routines for computing more specialized
measures of heterogeneous dynamics, including the non-Gaussian parameter, clusters of
mobile particles, strings of mobile particles, and various four-point correlation functions.
The library also provides routines for creating movies of dynamical data from simulation
trajectories.

B.4 LibSLAC – Library of Standard Liquid Analysis
Codes

LibSLAC provides routines for computing standard condensed matter analyses (see sec-
tion 4.5, including the radial distribution function, the isotropic structure factor, and the
simulated diffraction pattern. Although these analyses are fairly simple to implement, we
provide the library as a means to implement these standard functions quickly and correctly,
or to validate the results for new analysis codes.

B.5 VMDStream – Communicate with VMD from C++ us-
ing a TCP connection

VMDStream is a simple, lightweight library to control VMD [373] remotely from a C++
code. This is particularly useful for generating custom renderings for data analysis, control-
ling movies, or making animations. All that is required is some knowledge of VMDs Tcl
interface. The code consists of a single header file (only ∼ 300 lines of code) and can easily
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be incorporated into any existing C/C++ code.

B.6 Additional Codes and Projects

In addition to the codes outlined above, we have been involved in the development of
projects that benefit the molecular simulation community as a whole. We have developed
several additions to the HOOMD-blue code, including time-reversible integration routines
and binary restart read/write capabilities (both of which are necessary for transition path
sampling), potential energy-minimization, and the ability to run simulations in 2d. We have
contributed to the development of a molecular simulation application programmer interface
(API), which provides a common interface for interacting with molecular simulation codes.
Using this API, developers can write standardize diagnostics and algorithms based on an
arbitrary underlying molecular simulation engine. Our transition path sampling library,
LibTPS, mentioned above is one example of a library built around this API.
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[69] N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, “Spatially heterogeneous
dynamics investigated via a time-dependent four-point density correlation function,”
The Journal of Chemical Physics, vol. 119, p. 7372, 2003.

[70] M. N. J. Bergroth and S. C. Glotzer, “Structural signatures of strings and propensity
for mobility in a simulated supercooled liquid above the glass transition,” Arxiv
preprint cond-mat/0610395, 2006.

[71] Y. Gebremichael, “Particle dynamics and the development of string-like motion
in a simulated monoatomic supercooled liquid,” The Journal of Chemical Physics,
vol. 120, no. 9, p. 4415, 2004.

[72] M. Vogel and S. C. Glotzer, “Spatially heterogeneous dynamics and dynamic facilita-
tion in a model of viscous silica,” Physical Review Letters, vol. 92, no. 25, p. 255901,
2004.

[73] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer,
“Stringlike cooperative motion in a supercooled liquid,” Physical Review Letters,
vol. 80, no. 11, pp. 2338–2341, 1998.

[74] C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, “Spatial correla-
tions of mobility and immobility in a glass-forming Lennard-Jones liquid,” Physical
Review E, vol. 60, no. 3, pp. 3107–3119, 1999.

253



[75] C. Donati, S. Franz, S. C. Glotzer, and G. Parisi, “Theory of non-linear susceptibility
and correlation length in glasses and liquids,” Journal of Non-Crystalline Solids,
vol. 307, pp. 215–224, 2002.

[76] S. C. Glotzer, V. N. Novikov, and T. Schrøder, “Time-dependent, four-point den-
sity correlation function description of dynamical heterogeneity and decoupling in
supercooled liquids,” The Journal of Chemical Physics, vol. 112, no. 2, p. 509, 2000.

[77] F. H. Stillinger and J. A. Hodgdon, “Translation-rotation paradox for diffusion in
fragile glass-forming liquids,” Physical Review E, vol. 50, no. 3, pp. 2064–2068,
1994.

[78] C. A. Angell, “Perspective on the glass transition,” Journal of Physics and Chemistry
of Solids, vol. 49, no. 8, pp. 863–871, 1988.

[79] H. Vogel, “Temperature dependence of viscosity of melts,” Physikalische Zeitschrift,
vol. 22, pp. 645–646, 1921.

[80] G. Tammann and W. Hesse, “Dependence of viscosity on the temperature of su-
percooled liquids Z,” Anorganische Allgemeine Chemie, vol. 156, pp. 245–257,
1926.

[81] G. S. Fulcher, “Analysis of recent measurements of the viscosity of glasses,” Journal
of the American Ceramic Society, vol. 75, no. 5, pp. 1043–1055, 1992.

[82] J. T. Bendler and M. F. Shlesinger, “Generalized Vogel law for glass-forming liquids,”
Journal of Statistical Physics, vol. 53, no. 1, pp. 531–541, 1988.
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