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CHAPTER 1  

 

Introduction 

 
 

1.1 Background 

The explosion of high throughput genomic data in recent years has already altered 

our view of the extent and complexity of biology. In the past decade, microarray 

technology (1) has played a prominent role in advancing our understanding of 

transcriptome complexity. Microarray is a hybridization-based technology that incubates 

fluorescently- labeled cDNA with custom-made microarray or commercial GeneChips. 

Microarray allowed scientists to simultaneously monitor the expression of almost all the 

genes in the genome, and along with a steady reduction in processing costs, led to its 

wide spread application. ChIP-chip (2), a technology that combines chromatin 

immunoprecipitation with microarray, has been widely utilized to investigate interactions 

between proteins and DNA in vivo. In ChIP-chip experiments, the protein-DNA binding 

is recognized by detecting hybridization signals using a fixed set of probes on DNA 

microarrays. However, due to their restriction of the probes present on the DNA 

microarray, such methods are naturally limited in scale and resolution.  Whole-genome 

tiling arrays are also cost prohibitive and technically challenging. 
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 With the recent development of next generation sequencing, array-based 

technologies have being replaced by sequencing-based technologies, such as RNA-Seq (3) 

and ChIP-Seq (4), which can dramatically improve the quantity and quality of high 

throughput genomic data. In RNA-Seq experiments, a population of RNA is converted to 

a library of cDNA fragments with adaptors attached to one end. Each molecule, after 

amplification, is then sequenced using next generation sequencing technologies. 

Following sequencing, the resulting reads are aligned to either the reference geno me or 

known transcripts to produce a genome-scale transcriptional profile. Meanwhile, ChIP-

Seq, or chromatin immunoprecipitation followed by ultra-high- throughput sequencing, 

has emerged as a powerful new technology for genome-wide mapping of protein-DNA 

interactions and histone modifications. Through direct sequencing of all DNA fragment 

from ChIP assays, ChIP-Seq is capable of revealing protein-DNA interaction sites across 

the entire genome, thus building a comprehensive and high-resolution interactome map 

for DNA-binding proteins of interest.  The comprehensiveness and the high resolution are 

two key advantages of ChIP-Seq over ChIP-chip. 

To analyze such high throughput genomic data is complicated. While sequencing 

cost has significantly declined, the amount of data the new platforms produce is 

skyrocketing, thereby producing an analytical bottleneck. Detecting biological signals 

from experimental noises is similar to looking for a needle in a haystack. Technologically 

specific features, heterogeneous data structures and massive sample sizes present great 

challenges and opportunities to develop novel statistical methodologies in computational 

biology.  
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Several analytical modalities have been proposed for analyzing high throughput 

genomic data, such as Boolean networks (5), gene networks (6) and genetic algorithms 

(7). A majority of them are frequentist modeling methods which involve complicated 

inference procedure and unstable numerical implementation. In this context, a Bayesian 

modeling method appears to be an attractive alternative. 

In this dissertation, we describe three Bayesian modeling methods in high throughput 

genomic data analysis. The general Bayesian modeling procedure can be described as 

consisting of two main steps (8): (a) setting up a full probability model, the joint 

distribution , that captures the relationship among all the variables (e.g., observed 

data , unknown parameters ) into consideration; (b) summarizing the findings for 

particular quantities of interest using appropriate posterior distributions, which is 

typically a conditional distribution of the quantities of interest given the observed data.  

A standard procedure for carrying out step (a) is to formulate the scientific question 

of interest though the use of a probabilistic model from which we can write down the 

likelihood function of unknown parameters. In the analysis of high throughput genomic 

data, this step involves understanding the underlying biological process and the data 

generation mechanism. Then a prior distribution  is contemplated, which should be 

both mathematically tractable and scientifically meaningful. Usually  is derived 

from previous biological findings. The joint probability distribution can then be 

represented as the product of the likelihood and the prior . Step (b) 

is completed by obtaining the posterior distribution through the application of Bayes 

theorem: 
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After integrating out nuisance parameters, we get full conditional distribution of 

unknown parameter  and conduct the standard posterior sampling based inference via 

Markov Chain Monte Carlo techniques.  

The Bayesian modeling approach has at least two advantages in analyzing high 

throughput genomic data. First, through the prior distribution, we can use prior 

knowledge and information about the value of unknown parameters. This is especially 

important since biologists often have substantial knowledge about the subject under study. 

To the extent that this information is correct, it will sharpen the inference about the 

unknown parameters and accelerate the detection of biological signals. Second, treating 

all the variables in the system as random variables greatly clarifies the methods of 

analysis. It follows from the basic probability theory (Bayes formula) that information 

about the realized value of any random variable based on observation of related random 

variables is summarized in the conditional distribution.  

1.2 Outline  

This thesis consists of three chapters that each addresses an independent statistical 

problem in high throughput genomic data analysis.  

In chapter 2, we develop a querying algorithm for analyzing microarray compendium 

data (9). In microarray gene expression data analysis, it is often of interest to identify 

genes that share similar expression profiles with a particular gene such as a key 

regulatory protein. While working well for small datasets, the heterogeneity introduced 

from increased sample size inevitably reduces the sensitivity and specificity of these 
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approaches. This is because most co-expression relationships do not extend to all 

experimental conditions. With the rapid increase in the size of microarray datasets, 

identifying functionally related genes from large and diverse microarray gene expression 

datasets is a key challenge. We develop a model-based gene expression query algorithm 

built under the Bayesian model selection framework that is capable of detecting co-

expression profiles under a subset of samples/experimental conditions. In addition, this 

algorithm allows linearly transformed expression patterns to be recognized and is robust 

against sporadic outliers in the data. Both features are critically important for increasing 

the power of identifying co-expressed genes in large scale gene expression datasets. Our 

simulation studies suggest that this method outperforms existing correlation coefficients 

or mutual information-based query tools. When we apply this new method to the 

Escherichia coli microarray compendium data, it identifies a majority of known regulons, 

as well as novel potential target genes of numerous key transcription factors.  

In chapter 3, we study the de novo motif finding problem using ChIP-Seq data (10). 

Coupling chromatin immunoprecipitation (ChIP) with recently developed massively 

parallel sequencing technologies has enabled genome-wide detection of protein–DNA 

interactions with unprecedented sensitivity and specificity. This new technology, ChIP-

Seq, presents opportunities for in-depth analysis of transcription regulation. In this study, 

we explore the value of using ChIP-Seq data to better detect and refine transcription 

factor binding sites (TFBS). We introduce a novel computational algorithm named 

Hybrid Motif Sampler (HMS), specifically designed for TFBS motif discovery in ChIP-

Seq data. We propose a Bayesian model that incorporates sequencing depth information 

to aid in motif identification. Our model also allows intra-motif dependency to describe 
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more accurately the underlying motif pattern. Our algorithm combines stochastic 

sampling and deterministic comprehensive search steps into a novel hybrid iterative 

scheme. This combination accelerates the computation process. Simulation studies 

demonstrate favorable performance of HMS compared  to other existing methods. When 

applying HMS to real ChIP-Seq datasets, we find that (i) the accuracy of existing TFBS 

motif patterns can be significantly improved; and (ii) there is significant intra-motif 

dependency inside all the TFBS motifs we tested; modeling these dependencies further 

improves the accuracy of these TFBS motif patterns. These findings may offer new 

biological insights into the mechanisms of transcription factor regulation.  

In chapter 4, we design a model-based gene expression measurement using RNA-

Seq data. High throughput sequencing technology, also called RNA-Seq, has become a 

revolutionary tool for transcriptomics analysis. Compared to microarray, RNA-Seq offers 

clear advantages, such as better dynamic range and the ability to discover novel 

transcripts. Current methods enumerate the number of reads within each exon and use the 

normalized read counts to represent the gene expression levels for that exon. However, 

the sequencing depth across exons fluctuates substantially and shows significant spatial 

correlation. These variations will affect the simple enumeration method that is currently 

being used. In this study, we propose a spatial Poisson regression model to provide a 

portrait of base- level sequencing depth within each exon. This method can capture local 

genomic features that affect coverage depth in the spatial model, and therefore, offer 

improved quantification of the true underlying expression levels.  
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CHAPTER 2  

 

Query large scale microarray compendium datasets using a model-based Bayesian 

approach with variable selection 

 

 

2.1 Introduction 

Genome-wide expression analysis with DNA microarray technology (1),(11). has 

become an indispensable tool in genomics research (12). Increased accessibility, lowered 

cost and improved technology result in more comprehensive studies, under more diverse 

conditions and a rapid expansion of available gene expression data. This presents an 

important resource for mining biological information. A particular example is the so-

called microarray compendium in which gene expression profiles were surveyed in 

hundreds of samples which were treated under diverse biological conditions (13-15). 

Data generated from such studies is highly informative. However, due to heterogeneity, 

finding biological insight from such datasets proves a major challenge. Scalable and 

effective mining tools capable of extracting knowledge from diverse and noisy 

information sources are critically needed (16). 

 An effective data mining tool for gene expression microarray data is to infer 

relatedness among genes based on their expression profile, a tactic referred to as the 

―guilt by association‖ (GBA) principle (17-21). The underlying hypothesis is that 
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functionally related genes, such as transcription factor (TF) and its regulated genes—

regulon —tend to display correlated gene expression patterns. For example, Mootha et al. 

(2003) (22) proposed the "neighborhood analysis algorithm" to identify "neighboring" 

genes that share correlated expression profiles with genes of interest. Various 

measurements such as Pearson correlation, Spearman’s rank correlation, Kendall’s  and 

mutual information (23) have been used to assess the strength of the correlation. 

Recently, much interest has been generated on genome-wide regulatory network 

inference (24), where pairwise regulatory relationships among genes need to be 

predicted. As an example, Faith et al. (2007) (13) developed the context likelihood of 

relatedness (CLR) algorithm to identify regulatory interactions.  

 Although successful in analyzing small datasets, the above mentioned correlation 

or distance measures will be less helpful for searching large datasets, such as microarray 

compendium data. This is because for most functionally related genes, tight correlation 

only occurs under specific experimental conditions. Therefore global correlation 

measures taken across diverse experimental conditions will be significantly reduced, and 

thus make it harder to recognize functional related genes. Given the microarray 

compendium scenario, we hypothesized that statistically significant correlation can still 

be detected using microarray, but strong correlation will be confined to a subset of 

samples/experimental conditions. Under this hypothesis, it is highly desirable to develop 

a query tool that can automatically recognize a subset of conditions under which the 

query gene and its targets share tightly correlated expression profiles. This is analogous 

to the development of local alignment tools such as BLAST (25) to search for subtle 

patterns in  large amounts of sequence data.  
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 In this study, we design a model-based query algorithm capable of detecting 

significantly correlated expression patterns that are restricted to a subset of experimental 

conditions. See Figure 2.1 for an illustration of our scheme. This approach not only 

predicts functionally related genes, it also allows one to discover under which 

experimental conditions such co-expression occurs. The proposed query tool will provide 

researchers with a much needed device to explore the rich resources of vast microarray 

databases available. This model is inspired by the Bayesian Partition with Pattern 

Selection (BPPS) model designed to identify functionally related proteins (26). Our 

proposed method is related to bi-clustering (27-31) since we consider both genes and 

samples/experimental conditions. However, bi-clustering is unsupervised, which is 

different from the supervised pattern matching procedure we propose. Qian et al. (2001) 

(32) introduced a pairwise query algorithm for gene expression data based on a Smith-

Waterman type local alignment algorithm (33). However, that algorithm is designed for 

querying time-course gene expression data only, and is generally not applicable to 

datasets where the experimental conditions are unrelated. Dhollander et al. (2007) (34) 

introduced a model-based query-driven module discovery tool—QDB, but it is aimed at 

performing informed bi-clustering instead of pattern matching, and it does not take into 

account the complex correlation patterns such as inverse patterns. Owen et al. (2003) (35) 

proposed a score-based search algorithm called gene recommender (GR) to find genes 

that are co-expressed with a given set of genes using data from large microarray datasets. 

GR first selects a subset of experiments in which the query genes are most strongly co-

regulated. Hence multiple query genes are required.  
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Figure 2.1 Illustration of the model-based gene expression query algorithm. Each row 
represents a gene, and each column represents a sample/experimental condition. The 
query gene is at the bottom. The Blue boxes indicate the collection of genes and 
experimental conditions in which co-expression with the query gene is observed.  
 

 
 
 
 
 
 
 
 
 
 

 

2.2 Methods  

2.2.1 Statistics model 

We propose a model-based query tool for gene expression data. The goal is to 

identify genes that share correlated expression profiles with a particular gene such as a 

key TF. 

The entire microarray compendium can be represented as a matrix, where each 

row represents a gene and each column represents an experimental condition. We are 

hoping to identify a subset of rows (genes) and a subset of columns (conditions) such that 

these genes show co-expression with the query gene under the selected conditions. This 

procedure is similar to placing binary labels on all rows and columns. Finding the 

maximum likelihood estimator is often a good solution to such a statistical inference 

problem. However, the large number of rows and columns make it impossible for us to 

Sample / Experimental conditions 

Query gene 

Genes 
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enumerate all possible combinations. We therefore employ a Markov Chain Monte Carlo 

strategy to guide an efficient search. The statistical model and computational algorithm is 

as follows (more details can be found in the appendix). 

Suppose there is a database containing expression levels of N genes across M 

different experimental conditions. Each gene is represented by an expression vector 

 that can be summarized as a data matrix , 

Given a particular query expression profile , we want to identify all 

genes that share similar expression patterns across a subset of experimental conditions. 

To do this, we define a difference vector as , and 

use  as the input data for our inference. We introduce a row indicator 

vector  and a column indicator vector ,  

indicates that gene  in the database is functionally related to the query gene and 0 

otherwise.  indicates that co-expression occurs at the  th experimental condition 

(foreground) and 0 otherwise (background). We assume that the differences between a 

related gene and the query gene at the foreground columns follow normal distributions 

. The remainder of Z is assumed to follow background normal distributions 

where . Let  represents the probability density 

function of normal distribution with mean  and variance . The overall likelihood can 

be expressed as: 

                                                                                                                                          

 
 (2.1) 

where Θ = ( ,  …, , , , … , , , … ). We adopt standard 

conjugate priors for these model parameters (8). 
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 (2.2) 

Specification of these prior distributions can be found in the appendix.  

 Parameters of interest are the two indicator vectors  and .  is regarded as the 

nuisance parameter and is integrated out to simplify the computation (36). We use the 

Gibbs sampler (37,38) to sample  and  from the posterior distributions. To be specific, 

our algorithm will cycle through all rows and columns sequentially, flip the indicator 

variables of each row or column, and then decide whether to accept the change based on 

the Bayes factor calculated. The joint distributions can be derived as follows:  

                                                                                                                                          

 
 (2.3) 

After integrating out nuisance parameters, we get full conditional distributions of 

 and , which are Bernoulli distributions. The details can be found in the appendix.  

The detailed procedure of our algorithm is as follows.  

(1) Initialization: randomly assign row and column indicators to be either one or 

zero. Calculate the differences .  
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(2) Cycle through all rows and columns sequentially 50 times. At each cycle, 

draw the indicator for each row and column from the full conditional distributions. The 

result with the highest log likelihood during the 50 cycles is recorded.  

(3) Repeat the cycle ten times, and report the result with the highest log likelihood 

from all runs. 

In the initialization step, the row and column indicators can be assigned randomly. 

In practice, one can simply assign 1 to the top half of rows and to the first half of columns 

and 0 to the rest of rows and columns. If there is additional information suggesting 

certain genes (rows) are targets (or non-targets) of the TF, it is recommended that the 

indicator 1 (or 0) be assigned to those genes and the same for the experimental 

conditions. 

2.2.2 Add linear factor 

 In the previous model, we require that the target genes and the query gene share 

similar expression levels in selected experimental conditions. This is restrictive since 

functionally related genes may display the same expression pattern but differ in absolute 

quantity. To capture this, we extend our model to allow the expression levels of the target 

gene and the query gene to differ by a constant factor. That is, their expression profiles 

are proportional to each other: . Here  is a linear transformation factor for 

gene .  can be either positive or negative indicating positive or negative correlation 

respectively. After normalization, we estimate the linear transformation factor  using 

least square without intercept. To keep our model simple and avoid over-fitting, we 

restrict the linear factor to be significantly different from 0. The estimation step is made 

at the beginning of each cycle based on the most recently updated column indicators.  
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2.2.3 Allow cell-level noise 

 In the aforementioned models, genes selected are mandated to have similar 

expression profiles up to a constant factor under a subset of experimental conditions. 

Hence the chosen rows and columns in the original data matrix form a solid block when 

combined. This may still be too restrictive because a few sporadic cells in the block may 

deviate from the corresponding values in the query profile. Possible reasons that may 

cause such discrepancy are experimental artifacts, measurement errors, or substructures 

in the co-expression pattern. To account for this, we introduce an additional binary 

indicator variable, , for each cell in this block to indicate whether this particular 

gene/experimental condition combination should be treated as background. This 

additional step allows us to identify significant but imperfect patterns. Adding this 

additional parameter, the overall likelihood is modified as follows:  

                                                                                                                                          

 
 (2.4) 

We use a Bernoulli distribution as the prior for ,  

                                                                                                                                          

 
, (2.5) 

 The prior for this new indicator variable will be set such that only a small fraction 

of cells is allowed to be treated as background.  

 After integrating out nuisance parameters, the full conditional distributions of all 

model parameters can be obtained similarly as before. The details can be found in 

appendix. 
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2.3 Results 

 The aforementioned algorithm has been implemented in a C++ program named 

BEST (Bayesian Expression Search Tool). To test its performance, we applied it to a 

series of synthetic datasets as well as to the real Escherichia coli microarray compendium 

dataset (39). In addition to BEST, we also tested well-established query tools based on 

Pearson, Spearman correlation coefficients, Kendall’s , mutual information (23) and the 

model-based query-driven module discovery tool—QDB (34).  

2.3.1 Synthetic datasets 

 All simulated data contained 100 rows (genes) and 50 columns (experimental 

conditions). Around 20% of the 100 genes were randomly assigned as the "target" genes. 

Let T represent the total number of target genes in a dataset. To mimic the scenarios that 

gene expression correlation only presents in a subset of experimental conditions, we 

separated the 50 columns into foreground and background and require that correlated 

expression profiles between the query gene and the target genes can only be observed 

among foreground columns. To assess the impact of the proportion of foreground 

columns on the effectiveness of identifying target genes, we tested four different settings: 

100%, 75%, 50% and 25% of columns were selected as foreground. At each foreground 

column, the expression profiles of the query gene and  target genes were generated from 

a dimensional multivariate normal distribution with mean zero and variance-

covariance matrix . The correlation coefficient between the query gene and each target 

gene was set to be 0.95. 

 The remaining expression profiles were generated independently from a uniform 

distribution between  and . To mimic the noisy nature of the microarray data, we 
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included the following additional settings: randomly add linear transformations to 50% of 

the target genes (the linear transformation factors were randomly picked from 

; randomly add additional noise  to 10% of the expression values of 

target genes in foreground columns to mimic outliers caused by experimental artifacts. 

We also considered settings in which neither or both of these two complications were 

present. The combination of these four scenarios with the four different proportions of 

foreground columns mentioned above resulted in 16 different testing cases. We generated 

50 simulated datasets for each of the 16 cases, and tested all query methods on each 

dataset to identify target genes. To compare performance, we sorted the 100 genes using 

the relatedness measures adopted in each method and found the proportions of true 

positives among the top  genes. The means and standard deviations of these proportions 

were summarized in Table 2.1. We also produced Receiver Operating Characteristic 

(ROC) curves for all methods under all simulation settings. ROC curves obtained from 

the most challenging scenario, where only 25% of the columns are foreground, are shown 

in Figure 2.2. ROC curves obtained from other simulation settings can be found in 

Figures A2.1, A2.2 and A2.3 in appendix. The areas under the curve (AUC) of these 

ROC curves were summarized in Table A2.1 in appendix. 
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Table 2.1 Performance comparison among various methods for querying simulated microarray gene expression dataset. Best results 
are displayed in bold.  
 

Case Sub-case* Pearsona Spearmanb Kendallc QDBd  Mutuale  BEST Af BEST Bg BEST Ch 
Case 1: I 1 (0)

1 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 

100% II 0.67 (0.12) 0.68 (0.12) 0.68 (0.12) 0.59 (0.13) 1 (0.01) 1 (0) 1 (0) 1 (0) 

foreground III 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 

  IV 0.62 (0.09) 0.70 (0.09) 0.70 (0.09) 0.51 (0.11) 0.78 (0.08) 0.97 (0.04) 0.98 (0.03) 0.98 (0.03) 

Case 2: I 0.89 (0.10) 0.96 (0.05) 0.99 (0.03) 1 (0) 0.87 (0.09) 1 (0) 1 (0) 1 (0) 

75% II 0.66 (0.12) 0.71 (0.10) 0.70 (0.09) 0.70 (0.10) 0.81 (0.09) 1 (0) 1 (0) 1 (0) 

foreground III 0.91 (0.09) 0.97 (0.04) 0.99 (0.03) 1 (0) 0.87 (0.09) 1 (0) 1 (0) 1 (0) 

  IV 0.61 (0.11) 0.68 (0.11) 0.70 (0.11) 0.53 (0.12) 0.70 (0.11) 0.97 (0.04) 0.97 (0.04) 0.97 (0.04) 

Case 3: I 0.66 (0.17) 0.73 (0.14) 0.80 (0.13) 0.97 (0.16) 0.61 (0.14) 1 (0) 1 (0) 1 (0) 

50% II 0.51 (0.11) 0.59 (0.11) 0.62 (0.12) 0.71 (0.13) 0.52 (0.13) 1 (0) 1 (0) 1 (0) 

foreground III 0.63 (0.14) 0.70 (0.13) 0.77 (0.12) 0.91 (0.25) 0.59 (0.15) 1 (0) 1 (0) 1 (0) 

  IV 0.42 (0.12) 0.49 (0.12) 0.53 (0.11) 0.53 (0.17) 0.43 (0.16) 0.92 (0.06) 0.92 (0.06) 0.93 (0.05) 

Case 4: I 0.36 (0.13) 0.38 (0.12) 0.40 (0.12) 0.29 (0.29) 0.29 (0.13) 0.79 (0.34) 0.95 (0.15) 1 (0) 

25% II 0.25 (0.10) 0.26 (0.09) 0.28 (0.09) 0.19 (0.08) 0.27 (0.09) 0.73 (0.36) 0.86 (0.28) 0.99 (0.02) 

foreground III 0.34 (0.09) 0.36 (0.09) 0.38 (0.09) 0.21 (0.14) 0.29 (0.10) 0.85 (0.29) 0.95 (0.17) 1 (0) 

  IV 0.25 (0.08) 0.26 (0.07) 0.26 (0.07) 0.22 (0.13) 0.22 (0.11) 0.57 (0.28) 0.66 (0.25) 0.73 (0.22) 
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1 Performance was measured by the proportions of true positives among the top  genes.  is the number of true positives in each 
simulated dataset. The mean and standard deviation of these proportions in the 50 simulated datasets were reported.  
* There are four sub-cases in each of the simulated cases with the same amount of foreground columns.  

Sub case I: no linear transformation, no cell- level noise; 
Sub case II: only add linear transformation; 
Sub case III: only add cell- level noise; 
Sub case IV: add both linear transformation and cell- level noise. 

a Query method using Pearson correlation coefficient.  
b Query method using Spearman correlation coefficient.  
c Query method using Kendall’s . 
d Query method using QDB. 
e Query method using mutual information. 
f Query method using BEST. 
g Query method using BEST allowing exclusion of individual cells from the foreground.  
h Query method using BEST when fixing the indicator variables of five true target genes and five true experimental conditions as 1.
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Figure 2.2 ROC curves for various query methods when applying to synthetic datasets 
simulated under different settings and when there are 25% foreground columns. BEST A 
default setting; BEST B allowing exclusion of individual cells from the foreground; 
BEST C fixing the indicator variables of five true target genes and five true experimental 
conditions as 1. A. No linear transformation nor cell- level noise. B. With linear 
transformation only. C. With cell- level noise only. D. With both linear transformation 
and cell- level noise. 
 

 



 

20 
 

 From the simulation results, we see that all methods performed perfectly when all 

columns were foreground and no complicated correlation was present. In subsequent 

cases, the performances of all methods deteriorated with the inclusion of background 

columns, linear transformation and additional cell level noise. We observed that BEST is 

robust against added noise and complications and performed the best overall. Even in the 

most challenging case, in which the co-expression only occurred in 25% of the 50 

columns, and half of the co-expressed genes were linearly transformed plus 10% 

additional cell- level noise, BEST still found 57% true co-expressed genes, and the AUC 

was 0.79. The simulation results also indicated that the version of BEST that allows cell-

level noise has 5.4% to 8.2% higher AUCs compared to the version that does not 

consider cell- level noise. To evaluate the impact of incorporating existing knowledge into 

the model, we tested another version of BEST in which we fixed the indicator variables 

of five real target genes and five true foreground experimental conditions as 1. We found 

that in the most challenging case, AUCs further increased 1.0% to 7.6% compared to the 

version that considers cell- level noise. The superior performance of BEST in these 

synthetic datasets suggested that our algorithm worked well in the context of highly 

heterogeneous microarray data and was robust against moderately distorted data and 

sporadic outliers. Our model naturally accommodates existing biological knowledge 

which often results in further improvement in prediction accuracy. Among others, 

sophisticated methods such as QDB and the method based on mutual information 

performed better than the rest as expected. We acknowledge that our simulation scheme 

do not fit QDB well since it is a model-based bi-clustering algorithm not designed for the 

purpose of ―querying per se‖. 
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2.3.2 Escherichia dataset 

 This dataset originally came from the study reported in (13). The authors 

conducted a comprehensive survey of gene expression profiles of all E. coli genes using 

612 Affymetrix GeneChip arrays treated with 305 different experimental conditions. The 

goal of that study was to construct regulatory networks and determine the relative merits 

of different network inference algorithms on experimental data. RMA normalized data 

(39) was used in this study. This dataset consisted of 4,217 genes and 305 samples. We 

started with TF Leucine-responsive Regulatory Protein (Lrp) as the query gene. Faith et 

al. (2007) (13) listed Lrp as one of three TFs that show substantial connectivity in the 

network mapped by CLR and recommended it as an ideal test case. The E. coli Lrp is the 

best-studied member of the Lrp family, a global regulator in E. coli affecting the 

expression of many genes and operons (40). According to RegulonDB (41), Lrp has 61 

experimentally verified transcription targets. We refer to the collection of these genes as 

the RegulonDB target set. Faith et al. (2007) (13) predicted potential transcription targets 

of Lrp using CLR, a mutual information-based algorithm. There were 43 genes predicted 

as Lrp targets at 60% precision and one gene was predicted as a Lrp target at 80% 

precision.  

2.3.2.1 Query result from 100-gene test set 

 We tested BEST on this dataset to see if it could identify known target genes of 

Lrp. The 61 genes in the RegulonDB target set were included as positive genes. We also 

included 39 E. coli genes which displayed the most variation across the 305 experiments  

and not in the RegulonDB target set as negative genes. We used the 100-gene test set to 

compare performance of our algorithm with other query methods based on Pearson, 
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Spearman and Kendall correlation coefficients, mutual information and QDB. Using the 

default setting, BEST identified 28 target genes; 27 of them (96%) were in the 

RegulonDB target set (highly significant for enrichment with p-value of 1.27×10-6). 

BEST also identified 143 experimental conditions (47%) as foreground. The log-

likelihood trace plot suggested rapid convergence (Figure A2.4 in appendix). To compare 

the performance of our method with others, we plotted ROC curves (Figure 2.3). BEST 

achieved an AUC of 0.87, which was significantly higher than others (≤ 0.70). We also 

randomly selected 28 genes as targets for comparison, which showed an AUC of 0.52.  
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Figure 2.3 ROC curves for various query methods applying to the 100-gene test set 
selected from the E. coli microarray compendium. The area under the curves (AUC) are: 
Pearson correlation: 0.69; Spearman correlation: 0.69; Kendall’s : 0.66; QDB: 0.70; 
Mutual information: 0.56; BEST: 0.87; Random control: 0.52.  
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Figure 2.4 The original (blue line) and inverted (red line) expression profiles of gcvB, 
lysU, kbl and tdh compared to query gene Lrp. Black lines indicate the query gene—Lrp. 
Only the 143 foreground experimental conditions identified by BEST were shown in 
these plots. Results are from the 100-gene test set selected from the E. coli microarray 
compendium. 
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 Among the 28 genes BEST identified (Table A2.2 in appendix), only one gene, 

gcvB, was not in the RegulonDB target set. gcvB is a regulatory RNA. It represses oppA, 

dppA, gltI and livJ expression and is regulated by gcvA and gcvR (42). Until now there 

has been no evidence to suggest gcvB is regulated by Lrp. However, the trace plot 

(Figure 2.4) showed that its expression profile, after inversion, is very close to the 

expression profile of Lrp. Its expression profile is also very close to that of three genes 

found in the RegulonDB target set, lysU, kbl and tdh (Table 2.2 and Figure 2.4).  

Furthermore, the scan of Lrp motif pattern (Figure A2.5 in appendix) indicates that there 

is a putative Lrp motif located in the intergenic region upstream of gcvB. Therefore we 

hypothesize that gcvB is also a target gene of Lrp (repressed by it).  
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Table 2.2 Information of the four genes showing inverse correlation patterns with Lrp identified by BEST when applied to the 100-
gene test set selected from the E. coli microarray compendium. All but the first one, gcvB, are in the RegulonDB target set.  
 

Rank Gene namea Log Bayes ratio Positive/Negativeb RegulonDBc CLRd Motif distancee Empirical p-valuef  
16 gcvB 107.80 Negative 

  
414 0.0047 

23 lysU 84.52 Negative X 
 

138 0.0044 
24 kbl 81.47 Negative X 

 
33 0.0019 

25 tdh 80.09 Negative X 
 

    
 
a Genes displayed here are sorted by the Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative indicates that the target gene shows the 
inversed pattern as the query gene. 
c ―X‖ indicates that the predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene. 
e Motif distance is defined as the distance between the start position of the gene and the closest motif in the intergenic region upstream.  
f Empirical p-value indicates the significance of conservation in the current motif, which is calculated as proportion of all possible 
motif locations in the complete E. coli genome that have likelihood ratios comparing between Lrp motif and background higher than 
that of the current motif.    
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 Results from BEST also suggested that Lrp is likely to actively carry out most of 

its regulatory role under about half of all the 305 experimental conditions tested. To 

verify this hypothesis, we separately calculated Pearson correlation coefficients between 

the expression profiles of Lrp and genes in the RegulonDB target set in the 143 

foreground conditions as well as the 162 background conditions. We found that the 

Pearson correlation coefficient in the foreground subset was indeed significantly higher 

than that of the background subset. A paired t-test comparing the two sets of correlation 

coefficients returned a p-value of 0.0079. When restricted to the 28 genes BEST 

identified as targets, the difference in the matched correlation coefficients became even 

more significant (p-value of 1.948×10-12). Side-by-side box plots are shown in appendix 

Figure A2.6. The 305 experimental conditions were listed in Table A2.3 in appendix 

which was sorted by log Bayes ratio (larger values correspond to foreground). We found 

that many of the experimental conditions listed in the top portion are related to minimum 

media or stress which is consistent to what Faith et al. (2007) (13) found that including 

minimum media conditions will help identify Lrp targets.  

 The core of our model is the two-component Gaussian mixture for the expression 

levels obtained under the foreground experimental conditions. To verify this assumption, 

we plotted histograms of expression levels obtained under ten different experimental 

conditions, the top and bottom five when sorted by the Bayes ratio comparing whether an 

experimental condition is foreground or background. The histograms are shown in Figure 

A2.7 in appendix. As expected, we observed that the histograms from the top five 
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experimental conditions show strong bi-modal shapes while those from the bottom five 

do not. 

2.3.2.2 Query result from 300-gene test set 

 To evaluate whether increased number of genes being queried and change in the 

proportion of negative genes affect BEST’s performance, we added an additional 200 

negative genes that showed high overall variations in all experiments to form a 300-gene 

test set. 

 Using the default setting in BEST, we identified 57 target genes (Table A2.4 in 

appendix) and 139 experimental conditions as foreground. Thirty-three of the target 

genes (58%) were in the RegulonDB target set (highly significant for enrichment with a 

p-value of 9.48×10-13). A recent microarray analysis suggested that Lrp may affect 

transcription of as much as 10% of all E. coli genes (43). Therefore it is highly likely that 

many genes that are not in the RegulonDB target set are indeed regulated by Lrp. Trace 

plots of the 24 hypothetical Lrp target genes are shown in Figure A2.8 in appendix.  

 We next compared our result to the 43 genes CLR predicted as Lrp targets in (13). 

The 239 negative genes we selected actually contain four genes that are on the 43 CLR 

predicted target gene list but not in the RegulonDB target set. Three of them, metE, ompT 

and yagU were also identified by BEST as Lrp target genes. In fact, they ranked first, 

second and sixth in the 24 hypothetical Lrp targets genes listed in Table A2.4 in 

appendix. Interestingly, two of them, ompT and yagU have been confirmed to be bound 

by Lrp in vivo using ChIP-qPCR (13). Furthermore, the scan of Lrp motif indicates that 

all three genes contain a putative Lrp motif in their intergenic regions upstream. 
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 We also plotted the histograms of expression levels obtained from the top and 

bottom five experimental conditions sorted by the Bayes ratio comparing whether an 

experimental condition is foreground or background (Figure A2.9 in appendix). We again 

observe strong bi-modal shapes in the histograms representing the top five experimental 

conditions but not in the histograms representing the bottom five.  

2.3.2.3 Query result from other TFs  

 In addition to Lrp, we also ran BEST on six other TFs (PdhR, FecI, LexA, FlhC, 

FlhD and FliA) to test its performance. Among them, LexA, a major regulator of DNA 

repair, is known to have a single well-conserved DNA binding motif. It is one of the best-

perturbed regulators in the microarray compendium due to the compendium’s emphasis 

on DNA-damaging conditions (13). Other TFs either regulate a large number of genes or 

have substantial connectivity in the network mapped by the CLR Algorithm (13). For 

each TF, we built a test set including all its target genes listed in regulonDB, together 

with genes predicted by CLR as target. We also included ~100 genes which displayed the 

most variation across the 305 experimental conditions as negative signals. The complete 

results are summarized in the appendix and all BEST predicted target genes are listed in 

Tables A2.5 – A2.10 in appendix. From these lists, we see that except for PdhR, the 

majority of target genes listed in regulonDB were identified by BEST. For example, all 

six FecI target genes, 29 out of 30 FlhC target genes and 41 out of 42 FliA target genes 

were identified. Furthermore, BEST identified all CLR predicted target genes at 60% 

precision and numerous additional known target genes.  
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2.4 Discussion 

 In summary, we developed a model-based query algorithm based on the Bayesian 

model selection framework. BEST, a computer program implements this algorithm, is 

able to query large and heterogeneous microarray gene expression databases for regulon 

discovery. The query operation considered here can be viewed as a classification 

procedure where genes sharing similar expression profiles with the query gene belong to 

one group and the rest belong to the other. Therefore, we considered BEST a supervised 

learning tool. The key feature of BEST is its ability to recognize co-expression under 

only a subset of experimental conditions.  

 In microarray experiments with only a few sample/experimental conditions, the 

GBA principle has been successfully applied to identify regulons of key TFs (44). When 

the experimental conditions are abundant and heterogeneous such as in the case of 

microarray compendium, the previous strategy will not be as successful since most TFs 

are only active under certain specific conditions and beyond those conditions no tight 

correlation is expected between TF and its regulons. BEST is built under the hypothesis 

that the correlation between TF and its regulon only hold in a subset of conditions. The 

objective of BEST is to simultaneously predict regulon of a TF and the experimental 

conditions associated with them. Tests conducted on simulated as well as real datasets 

indicated that the new algorithm works well and outperforms methods based on global 

correlation measures, especially when there is substantial noise and moderate distortion 

in the data.  

 We are encouraged that when applying BEST to the real E. coli compendium 

data, the majority of genes predicted by BEST as Lrp targets are known target genes of 
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the TF. Interestingly, numerous genes identified show inversed correlation pattern with 

Lrp. Table 2.2 lists four such genes, three of them are known to be regulated by Lrp, and 

the other one showed a very similar pattern with the three known ones. None of these 

four genes is predicted by CLR. We also believe that many of the ―false positive‖ genes 

are likely to be real Lrp target genes as well since as many as 10% of all E. coli genes are 

believed to be regulated by Lrp (43) which is significantly larger than the size of the 

current RegulonDB target set. We also tested major TFs whose target set is larger than 

ten. Querying these TFs showed that BEST is able to identify the majority of their known 

target genes. These results suggested that the hypothesis BEST assumed is reasonable. 

Using microarray compendium data, we are able to generate high confidence and testable 

hypothesis on TF-regulon relationships.  

 On the other hand, there are numerous genes in the RegulonDB target sets that 

were not identified by BEST. Visual inspection of these gene expression trace plots 

confirms that their expression profiles do not resemble the TF that is supposed to regulate 

them. This observation suggests that there are limitations on using the GBA principle on 

gene expression information alone to identify regulons of a TF. There are various reasons 

why GBA is insufficient to identify the full set of regulon. It is possible that the 

compendium does not include the experimental conditions under which these genes were 

regulated by the TF. It is possible that microarray gene expression data is not accurate 

enough due to measurement error and its limitation in quantifying low-level expression. 

It is also possible that due to the complexity in regulatory mechanism, some TF-regulon 

relationships do not imply co-expression under any condition.  For example, the TF may 

require the presence of co-factors or signaling molecules to exert its regulatory function. 
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Other complex regulatory mechanisms such as post-translational modification, chromatin 

modification, and microRNA regulation may also explain what we observed.   

 In this study, we assumed that all columns are independent and there is no 

covariance.  This is because replicates in our data have already been merged and adding 

covariance will significantly increase the complexity of our model. Admittedly, when 

there are biological or technical replicates, adding covariance in our model will improve 

the result. We plan to add this option in future releases of BEST.  

 It is possible to perform a genome-wide search using BEST for genes co-

expressed with the query gene. To reduce computation time and to maximize the chance 

of finding biologically meaningful targets, we recommend a filtering step to reduce the 

search space. In this study, we adopted a variance filter, which is typical in large-scale 

gene expression clustering analysis (45) to remove genes that show less variation than the 

query gene when considering all experimental conditions. We tested this strategy on Lrp 

in E. coli. There are 524 genes (out of 4217 in total, 12%) with total expression variance 

greater than that of Lrp. They contain 30 genes (out of 61, 49%) that are in the 

RegulonDB target set. Running BEST with the default setting on this dataset identified 

77 genes as targets. Among them, 18 are among the 30 known Lrp target genes 

(enrichment p-value is 3.32×10-9). Compared to the CLR prediction in (13), seven of the 

43 CLR predicted target genes that are not in the RegulonDB targets set are among the 

524 genes tested. Six of them, gdhA, metE, ompT, pntA, thrA, yagU were also identified 

by BEST. All but metE have been confirmed in vivo as Lrp targets using ChIP-qPCR 

(13). The 139 experimental conditions identified by BEST as foreground are essentially 

the same as in the results from the 100- or 300-gene test sets. These results confirmed the 
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feasibility of our genome-wide search strategy. One can lower the variance threshold to 

expand the search space if longer computing time can be tolerated.  

 The statistical model adopted in BEST is closely related to those used in various 

model-based clustering methods designed for analyzing microarray data (46-51). 

However, as a supervised learning tool, BEST is able to automatically distinguish the two 

sets of genes using the expression profile of the pre-specified query gene. This is 

particularly valuable for searching specific expression patterns of interest. The user can 

even specify a custom expression pattern to search. In addition, our method allows 

linearly transformed expression patterns to be recognized and is robust against sporadic 

outliers in the data. 

 Our algorithm is built under the Bayesian model selection framework, which may 

easily incorporate prior biological information. For example, some genes or experimental 

conditions can be designated as targets or foreground. Similarly, informative priors on 

cell indicators can help to rule out some sporadic outliers.  

 MCMC-based methods are typically computation- intensive and therefore time-

consuming. BEST’s running time depends on the number of iterations and on the size of 

the dataset. In the study on E. coli microarray compendium dataset, using the default 

setting which is ten parallel chains each with 50 cycles, searching 100 genes takes about 

30 minutes on a PowerMac with dual 2.5 GHz processors. Searching 300 and 524 genes 

takes about 3 hours and 30 hours respectively. A computer program named BEST has 

been developed based on the aforementioned algorithm. BEST can be downloaded at 

http://www.sph.umich.edu/csg/qin/BEST. 

http://www.sph.umich.edu/csg/qin/BEST
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2.5 Appendix 

2.5.1 Prior specification 

 We adopt standard conjugate priors for the model parameters. The prior 

parameters , , ,  and  are specified as follows: 

 First we estimate the linear transformation factor  using least square without 

intercept. To keep our model simple and avoid over-fitting, the linear transformation 

factor  is restricted to be significantly different from 0. The difference  is defined as 

. 

 We calculate the sample mean  and sample variance  of the difference  

in each column, and set . Next we calculate the sample variance  of column 

variance , and choose , , such that the prior distribution 

has mean  and variance . 

 To choose ,  in each column, we select  with absolute value less than 

 in that column and calculate their sample variance . Let  be the variance of 

all s, and choose  and , such that the prior distribution 

 has mean  and variance . 

 We use non- informative priors for row indicator , column indicator  and cell-

level indicator , i.e., . 

2.5.2 Full conditional distribution 

The overall likelihood can be expressed as: 
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The marginal posterior distribution is: 

 

 

After simplification, the log transformed marginal posterior distribution is:  

 

 

 

 

 

Allowing cell level noise, the overall likelihood is modified as follows: 
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The marginal posterior distribution is: 

 

 

After simplification, the log transformed marginal posterior distribution is:  
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2.5.3 Detail protocol of microarray data analysis procedure using BEST 

 The E. coli dataset originally came from the study reported in Faith et al. (2007) 

(13). The authors conducted a comprehensive survey of gene expression profiles of all E. 

coli genes using 612 Affymetrix GeneChip arrays treated with 305 different experimental 

conditions. RMA normalized data (Faith et al., 2008) (39) was used in this study, which 

consisted of 4,217 genes and 305 samples. The detail of microarray data analysis 

procedure, such as microarray profiling, bacterial strains, steady-state experiments, time-

course experiments, preparation of RNA and hybridization, external data, microarray 

normalization, are available at (Faith et al., 2007) (13). 

 Step 1: download microarray compendium data file 

―E_coli_v4_Builid_4_norm.tar.gz‖ from http://m3d.bu.edu/norm/?C=M;O=A. This 

zipped data file describes the normalized compendium dumps from M3D, which contains 

six files with expression data. ―avg_E_coli_v4_Build_4_exps305probes4217.tab‖, the 

expression data file which contains 305 experimental conditions and 4,217 genes, was 

used in our study. 

 Step 2: get the expression profile of the query gene, for example: Lrp, from the 

microarray compendium ―avg_E_coli_v4_Build_4_exps305probes4217.tab‖, which is 

the expression profile of Lrp across the 305 different experimental conditions.  

http://m3d.bu.edu/norm/?C=M;O=A
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 Step 3: filter genes based on their variances. First, we calculated the variances of 

all 4,217 genes found in the microarray compendium. We then remove all genes whose 

variation across all experimental conditions is less than the query gene. This purpose of 

filtering is to reduce computation time and to maximize the chance of finding biological 

meaningful targets. For the query gene Lrp, there are 524 genes (out of 4,217 in total, 

12%) with total expression variance greater than that of Lrp. We thus used these 524 

candidate genes in our search. 

 Step 4: normalize the query gene and the 524 candidate genes. First, we 

calculated the mean and standard deviation across the 305 experimental conditions for 

each gene, and then normalize each of the gene expression levels by subtracting its mean 

and dividing by its standard deviation. After normalization, the query gene Lrp and the 

524 candidate genes all have the same mean and variance (mean=0 and standard 

deviation=1). 

 Step 5: run BEST on the normalized gene expression levels using user-specified 

parameters such as the number of iteration in MCMC and the number of parallel cha ins.  

 Step 6: conduct motif search. We download position specific weight matrices 

(PSWM) from RegulonDB 

 (http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt), and the complete E. coli 

genome from GenBank  

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Escherichia_coli_K12_substr__MG165

5/U00096.fna). We then calculated the log likelihood ratio comparing between the motif 

model and the background model on each possible start location in the intergenic regions 

http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt
ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Escherichia_coli_K12_substr__MG1655/U00096.fna
ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Escherichia_coli_K12_substr__MG1655/U00096.fna
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(up to 500 bp upstream) of genes identified by BEST. The locations with log likelihood 

ratio higher than a certain threshold are treated as putative motifs.  

2.5.4 Query result from six other transcription factors  

 In addition to TF Leucine-responsive Regulatory Protein (Lrp), we used another 

six TFs (PdhR, FecI, LexA, FlhC, FlhD and FliA) as the query genes in this study to test 

BEST’s performance. All six TFs have an almost equal number of target genes in 

ReglonDB and CLR prediction with an estimated 60% precision (Faith et al. 2007) (13).  

2.5.4.1 Query result from PdhR 

 PdhR has five target genes in ReglonDB. CLR predicted four target genes with 

60% precision. None of them is in the RegulonDB target set. We included these nine 

genes and another 91 negative genes to form a 100 gene test set. BEST found 27 target 

genes and 179 experimental conditions as foreground. Twenty-seven of BEST’s target 

genes included two target genes in ReglonDB and four target genes predicted by CLR (p-

value of 0.0110). We found three genes (uspE, cspD, aceA) with inversed pattern. Table 

A2.5 lists all PdhR target genes identified by BEST. 

2.5.4.2 Query result from FecI 

 FecI has six target genes in ReglonDB. CLR predicted eight target genes with 

60% precision. Eight of these nine predictions are not in the RegulonDB target set. We 

included these 13 genes and another 87 negative genes to form a 100 gene test set. BEST 

found 31 target genes and 169 experimental conditions as foreground. Thirty-one of 

BEST’s target genes included all 13 target genes in ReglonDB and target genes predicted 

by CLR (p-value of 2.9×10-8). We found no gene with inversed pattern. Table A2.6 lists 

all FecI target genes identified by BEST.  



 

40 
 

2.5.4.3 Query result from LexA 

 LexA has 16 target genes. CLR predicted 17 targets genes with 60% precision. 10 

of these 17 predictions are not in the RegulonDB target set. We included these 26 genes 

and another 74 negative genes to form a 100 gene test set. BEST found 31 target genes 

and 237 experimental conditions as foreground. Thirty-one of BEST’s target genes 

included 10 target genes in ReglonDB and all target genes predicted by CLR (p-value of 

1.5×10-8). We found one gene (uspE) with inversed pattern. Table A2.7 lists all LexA 

target genes identified by BEST. 

2.5.4.4 Query result from FlhC 

 FlhC has 30 target genes in ReglonDB. CLR predicted 53 targets genes with 60% 

precision. 24 of these 53 predictions are not in the RegulonDB target set. We included 

these 54 genes and another 146 negative genes to form a 200 gene test set. BEST found 

54 target genes and 266 experimental conditions as foreground. Fifty-four of BEST’s 

target genes included 29 target genes in ReglonDB and all target predicted by CLR (p-

value of 2.7×10-46). We found no gene with inversed pattern. yjdA is the new 

hypothetical FlhC target gene identified by BEST in addition to false pos itive genes in 

Faith’s prediction with 60% precision. Table A2.8 lists all FlhC target genes identified by 

BEST. 

2.5.4.5 Query result from FlhD 

 FlhD has 46 target genes in ReglonDB. CLR predicted 46 target genes with 60% 

precision. Twenty of these 46 predictions are not in the RegulonDB target set. We 

included these 66 genes and another 134 negative genes to form a 200 gene test set. 

BEST found 55 target genes and 215 experimental conditions as foreground. Fifty-five of 
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BEST’s target genes included 29 target genes in ReglonDB and all target genes predicted 

by CLR (p-value of 1.67×10-17). We found two genes (micF, gadX) with inversed pattern. 

cheY, cheZ, flxA, micF, gadX and yjdA are the six new hypothetical FlhD target genes 

identified by BEST in addition to false positive genes predicted by CLR with 60% 

precision. Table A2.9 lists all FlhC target genes identified by BEST.  

2.5.4.6 Query result from FliA 

 FliA has 42 target genes in ReglonDB. CLR predicted 56 target genes with 60% 

precision. Fifteen of these 56 predictions are not in the RegulonDB target set. We 

included these 57 genes and another 143 negative genes to form a 200 gene test set. 

BEST found 56 target genes and 281 experimental conditions as foreground. Fifty-six of 

BEST’s target genes included 41 genes in ReglonDB and all target predicted by CLR (p-

value of 4.08×10-47). We found no genes with inversed pattern, and no new hypothetical 

FliA target gene identified by BEST in addition to false positive genes predicted by CLR 

with 60% precision. Table A2.10 list all FliA target genes identified by BEST. 
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2.5.5 Tables in appendix 

Table A2.1. Performance comparison using area under the curve (AUC) of Receiver Operating Characteristic (ROC) among various 
methods for querying simulated microarray gene expression datasets. Best results are displayed in bold.  
 

Case Sub-case* Pearsona Spearmanb Kendallc QDBd Mutuale  BEST Af BEST Bg BEST Ch 
Case 1: I 1 1 1 1 1 1 1 1 

100% II 0.68 0.68 0.68 0.85 1 1 1 1 

foreground III 1 1 1 1 1 1 1 1 

  IV 0.66 0.71 0.71 0.79 0.85 1 1 1 

Case 2: I 0.98 1 1 1 0.98 1 1 1 

75% II 0.7 0.71 0.71 0.89 0.95 1 1 1 

foreground III 0.99 1 1 1 0.98 1 1 1 

  IV 0.67 0.71 0.71 0.84 0.88 1 1 1 

Case 3: I 0.89 0.93 0.95 0.99 0.87 1 1 1 

50% II 0.67 0.69 0.69 0.89 0.81 1 1 1 

foreground III 0.88 0.92 0.94 0.92 0.84 1 1 1 

  IV 0.59 0.62 0.64 0.77 0.69 0.98 0.99 0.99 

Case 4: I 0.68 0.69 0.71 0.55 0.61 0.91 0.98 0.99 

25% II 0.55 0.55 0.56 0.51 0.58 0.85 0.92 0.99 

foreground III 0.67 0.68 0.69 0.51 0.59 0.93 0.98 0.99 

  IV 0.54 0.55 0.56 0.53 0.51 0.79 0.84 0.88 
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* There are four sub-cases in each of the simulated cases with the same amount of foreground columns.  

Sub case I: no linear transformation; 
Sub case II: only add linear transformation; 
Sub case III: only add cell- level noise; 
Sub case IV: add both linear transformation and cell- level noise. 

a Query method using Pearson correlation coefficient.  
b Query method using Spearman correlation coefficient.  
c Query method using Kendall’s . 
d Query method using QDB. 
e Query method using mutual information. 
f Query method using BEST. 
gQuery method using BEST allowing exclusion of individual cells from the foreground. 
h Query method using BEST when fixing the indicator variables of five true target genes and five true experimental conditions as 1. 
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Table A2.2 Information of the 28 potential Lrp target genes identified by BEST when 
applied to the 100-gene test set selected from the E. coli microarray compendium. 
 

Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 
1 serA 131.81 

 

X X 
2 leuA 129.99 

 

X X 
3 leuL 128.72 

 

X X 
4 gltD 128.22 

 

X X 
5 leuD 123.19 

 

X X 
6 ilvI 120.44 

 

X 
 7 ilvH 119.61 

 

X X 
8 gltB 119.04 

 

X 
 9 leuC 116.22 

 

X X 
10 livG 115.37 

 

X X 
11 ilvE 114.30 

 

X 
 12 livK 113.30 

 

X X 
13 leuB 110.28 

 

X X 
14 livJ 109.72 

 

X 
 15 livM 108.48 

 

X 
 16 gcvB 107.80 negative 

  17 serC 103.20 
 

X X 
18 aroA 97.58 

 

X X 
19 livH 94.76 

 

X X 
20 livF 93.82 

 

X X 
21 ilvL 90.43 

 

X 
 22 ilvD 89.88 

 

X 
 23 lysU 84.52 negative X 
 24 kbl 81.47 negative X 
 25 tdh 80.09 negative X 
 26 ilvG 79.47 

 

X 
 27 ilvM 71.23 

 

X X 
28 ilvA 65.02 

 

X   
 

a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies 27 genes among 61 target genes in RegulonDB.  ―X‖ indicates that the 

predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.3 Information on the 305 distinct experimental conditions (among 612 different 
chips with replicates). The 305 experimental conditions are sorted by log Bayes ratio. 
BEST predicts the top 143 as foreground and the rest as background. Detail information 
of these 612 chips and 305 experimental conditions could be found in microarray 
compendium data file ―E_coli_v4_Builid_4_norm.tar.gz‖ from the Gardner Lab. 

(http://m3d.bu.edu/norm/?C=M;O=A)  
 

Rank Experimental Conditions Replicates Log Bayes Ratio 
1 M9_K_arcA_anaerobic 3 50.47  
2 M9_WT 3 48.79  
3 M9_K_appY_anaerobic 3 44.81  
4 M9_K_soxS_anaerobic 3 43.21  
5 M9_K_arcA 3 38.07  
6 M9_K_oxyR_anaerobic 3 37.60  
7 M9_K_soxS 3 37.23  
8 M9_K_arcAfnr 3 37.02  
9 M9_WT_anaerobic 4 35.75  
10 M9_K_oxyR 3 35.52  
11 lacZ_W1863_t0 1 35.24  
12 M9_K_fnr 3 34.34  
13 ccdB_MG1655_t30 2 34.14  
14 M9_K_fnr_anaerobic 3 34.05  
15 ccdB_W1872_t60 1 31.42  
16 lacZ_W1863_t60 1 31.11  
17 ccdB_W1872_t30 1 30.66  
18 ccdB_W1872_t90 1 29.37  
19 M9_K_appY 3 29.01  
20 lacZ_MG1063_t0 2 27.61  
21 ccdB_MG1655_t0 2 26.92  
22 norfloxacin_chelator_MG1063_t0 1 26.75  
23 ccdB_chelator_MG1063_t0 1 26.31  
24 ccdB_chelator_MG1063_t60 1 26.12  
25 lacZ_W1863_t30 1 25.47  
26 fnr_K_fnrAnaerobic 4 25.21  
27 cybr_N_log 2 24.95  
28 MG1063_uninduced_t0 1 24.50  
29 MG1063_uninduced_t60 1 24.36  
30 MG1063_uninduced_t30 1 24.22  
31 suspension_7hr 1 23.49  

http://m3d.bu.edu/norm/?C=M;O=A
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32 MG1655_ampicillin_t120 1 23.40  
33 ccdB_chelator_W1872_t0 1 23.30  
34 MG1655_ampicillin_t30 1 23.23  
35 ik_H2_T3 1 23.04  
36 fnr_wtAnaerobic 3 22.85  
37 ik_L2_T3.5 1 22.80  
38 norfloxacin_BW25113_t120 1 22.59  
39 norfloxacin_BW25113recA_t60 1 22.39  
40 har_S1_R_noIPTG 3 21.62  
41 ccdB_chelator_MG1063_t30 1 21.60  
42 cybr_O_log 2 21.56  
43 biofilm_4hr 1 21.32  
44 ph5.7_anaerobic 5 21.24  
45 carbonSourceForaging 2 21.02  
46 WT_MOPS_glucose 5 20.77  
47 ik_L2_T4 1 20.38  
48 M9_K_arcAfnr_anaerobic 3 20.28  
49 WT_MOPS_glycerol 2 20.08  
50 ik_H2_T3.5 1 19.86  
51 MG1655_uninduced_t0 1 19.36  
52 luc2_U_N0000 2 19.30  
53 MG1655_ampicillin_t60 1 18.85  
54 ccdB_BW25113recA_t120 1 18.84  
55 ik_L2_T3 1 18.77  
56 menC_U_N0075 3 18.76  
57 crcB_U_N0075 3 18.69  
58 MG1655_t480_aerobic 2 18.61  
59 cpxR_U_N0075 3 18.31  
60 era_U_N0075 3 18.26  
61 crp_U_N0075 3 18.09  
62 luc_U_N0075 3 18.00  
63 gcvR_U_N0075 3 17.83  
64 dnaA_U_N0075 3 17.79  
65 menB_U_N0075 3 17.65  
66 fis_U_N0075 3 17.62  
67 ccdB_BW25113recA_t30 1 17.60  
68 ccdB_MG1063_t0 2 17.18  
69 ik_H2_T2.5 1 17.04  
70 WT_N0075 2 17.04  
71 ccdB_W1872_t0 1 16.89  
72 MG1655_t720_aerobic 2 16.86  
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73 norfloxacin_BW25113recA_t30 1 16.59  
74 MG1655_t270_anaerobic 2 16.35  
75 lacZ_W1863_t90 1 16.27  
76 rimI_U_N0075 3 16.19  
77 minD_U_N0075 3 16.15  
78 zipA_U_N0075 3 15.99  
79 dinP_U_N0025 3 15.75  
80 lacZ_MG1063_t30 2 15.74  
81 mcrB_U_N0075 3 15.62  
82 ccdB_BW25113recA_t180 1 15.53  
83 MG1655_uninduced_t60 1 15.48  
84 norfloxacin_chelator_MG1063_t0.1 1 15.34  
85 yebF_U_N0075 3 15.21  
86 MG1655_t150_aerobic 2 15.13  
87 ccdB_BW25113_t180 1 15.01  
88 biofilm_wt_noGlucose 1 14.83  
89 MG1655_t225_anaerobic 2 14.75  
90 ccdB_BW25113_t30 1 14.61  
91 ast_pBADsup2 3 14.50  
92 ph7 5 14.17  
93 recA_U_N0025 3 13.88  
94 MG1655_t300_aerobic 2 13.71  
95 uspA_U_N0075 3 13.53  
96 norfloxacin_MG1063_t0 1 13.47  
97 mcrC_U_N0075 3 13.41  
98 bcp_U_N0075 3 13.22  
99 b2618_U_N0075 3 13.19  

100 pepAA_t0 2 13.00  
101 nupC_U_N0075 3 12.84  
102 ldrA_U_N0075 3 12.34  
103 ccdB_K12_t90 1 12.15  
104 lacZ_K12_t60 1 12.09  
105 BW25113_uninduced_t120 1 11.80  
106 yoeB_U_N0075 3 11.71  
107 minE_U_N0075 3 11.48  
108 ph7_anaerobic 5 11.45  
109 luc_U_N0025 3 11.44  
110 ast_pBAD18 3 11.42  
111 MG1655_t405_aerobic 2 11.28  
112 sbcB_U_N0075 3 10.53  
113 fklB_U_N0075 3 10.45  
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114 lacZ_MG1655_t0 1 10.36  
115 MG1655_t1080_aerobic 2 9.96  
116 gyrA_U_N0075 3 9.66  
117 har_S0_R_noIPTG 5 9.52  
118 norfloxacin_BW25113_t180 1 9.51  
119 suspension_4hr 1 9.45  
120 W3110_K_luxS 2 9.23  
121 murI_U_N0075 3 8.80  
122 MG1655_uninduced_t120 1 8.43  
123 BW25113recA_uninduced_t180 1 7.97  
124 folA_U_N0075 3 7.76  
125 lacZ_K12_t30 1 7.69  
126 cspF_U_N0075 3 7.61  
127 dnaN_U_N0075 3 6.63  
128 ccdB_BW25113recA_t0 1 6.57  
129 W3110_wt 2 6.43  
130 ccdB_K12_t30 1 5.91  
131 hlpA_U_N0075 3 5.48  
132 MG1655_uninduced_t30 1 4.20  
133 biofilm_7hr 1 3.80  
134 T60_N10000 3 3.16  
135 MG1655_t180_anaerobic 2 2.78  
136 WT_N0000 2 2.69  
137 dinI_U_N0025 3 0.68  
138 BW25113recA_uninduced_t120 1 0.29  
139 ccdB_BW25113recA_t60 1 0.29  
140 ik_L2_T4.5 1 0.22  
141 dam_U_N0075 3 0.05  
142 lacZ_MG1655_t60 1 -0.22  
143 rstB_U_N0075 3 -0.71  
144 pepAA_t30 2 -1.03  
145 dnaT_U_N0075 3 -1.16  
146 MGD1_t30 2 -1.26  
147 norfloxacin_BW25113recA_t0 1 -1.62  
148 gyrI_U_N0075 3 -1.83  
149 MG1655_kanamycin_t120 1 -1.95  
150 ik_H2_T8 1 -2.05  
151 sulA_U_N0025 3 -2.29  
152 umuD_U_N0025 3 -2.38  
153 ccdB_K12_t60 1 -2.44  
154 T0_N0000 3 -2.50  
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155 ik_H2_T4.5 1 -2.56  
156 norfloxacin_BW25113_t30 1 -2.93  
157 lacZ_MG1655_t90 1 -2.93  
158 ik_H2_T6 1 -3.02  
159 ik_L2_T2.5 1 -3.04  
160 ruvA_U_N0025 3 -3.06  
161 ccdB_BW25113_t0 1 -3.09  
162 lexA_U_N0025 3 -3.54  
163 ik_L2_T5.5 1 -3.60  
164 holD_U_N0075 3 -3.87  
165 nrdA_U_N0075 3 -4.06  
166 ccdB_K12_t120 1 -4.15  
167 WT_D_N0100 2 -4.29  
168 pepCO_t30 2 -4.37  
169 lon_U_N0025 3 -4.56  
170 recA_D_N0100 2 -4.60  
171 MG1655_kanamycin_t60 1 -4.62  
172 MG1655_kanamycin_t30 1 -4.65  
173 ccdB_BW25113_t60 1 -4.90  
174 galF_U_N0075 3 -5.04  
175 ruvC_U_N0075 3 -5.24  
176 T48_N10000 3 -5.43  
177 MG1063_uninduced_t120 1 -5.44  
178 ccdB_chelator_W1872_t30 1 -5.66  
179 lacZ_MG1063_t90 2 -5.84  
180 BW25113recA_uninduced_t0 1 -5.95  
181 uvrA_U_N0025 3 -6.13  
182 IHF_U_N0075 2 -6.15  
183 MOPS_K_dps_stationary2 1 -6.15  
184 relA_U_N0025 3 -6.27  
185 BW25113recA_uninduced_t30 1 -7.01  
186 emrR_U_N0075 2 -7.21  
187 ik_H2_T4 1 -7.22  
188 cybr_O 2 -7.24  
189 WT_MOPS_stationary3 2 -7.39  
190 WT_MOPS_heatShock 1 -7.60  
191 MOPS_K_dps_stationary 2 -7.61  
192 cybr_N 2 -7.66  
193 luc_U_N0000 3 -7.72  
194 ph8.5_anaerobic 5 -7.86  
195 pyrC_U_N0075 3 -8.00  
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196 ph5 5 -8.10  
197 BW25113_uninduced_t30 1 -8.33  
198 cybr_N_stat 2 -8.51  
199 WT_MOPS_stationary2 2 -8.53  
200 hscA_U_N0075 3 -8.60  
201 ik_L2_T6 1 -8.67  
202 ik_H2_T5.5 1 -8.94  
203 mazF_U_N0025 3 -9.11  
204 pET3d_t0 2 -9.19  
205 luc2_U_N0025 2 -9.21  
206 T24_N10000 3 -9.22  
207 nrdB_U_N0075 2 -9.36  
208 BW25113_uninduced_t180 1 -9.42  
209 T36_N10000 3 -9.74  
210 MG1655_spectinomycin_t30 1 -9.74  
211 norfloxacin_BW25113_t60 1 -9.75  
212 WT_MOPS_cipro2 1 -10.61  
213 ccdB_MG1655_t60 2 -10.66  
214 MGD1_t0 2 -10.98  
215 WT_MOPS_acetate 2 -10.99  
216 ccdB_chelator_MG1063_t120 1 -11.15  
217 ccdB_MG1063_t30 2 -11.39  
218 lacZ_K12_t120 1 -11.41  
219 cybr_O_stat 2 -11.44  
220 W3110_K_luxS_glucose 1 -11.44  
221 lacZ_MG1063_t60 2 -11.71  
222 ccdB_BW25113_t120 1 -11.87  
223 ccdB_MG1655_t90 2 -11.91  
224 ik_L2_T5 1 -12.14  
225 WT_MOPS_proline 2 -12.22  
226 recA_D_N0050 2 -12.34  
227 WT_MOPS_stationary4 2 -12.42  
228 WT_MOPS_cipro 1 -12.81  
229 WT_N0025 2 -12.92  
230 T12_N10000 3 -13.07  
231 lacZ_MG1063_120 1 -13.07  
232 BW25113recA_uninduced_t60 1 -13.11  
233 fnr_K_fnrAerobic 3 -13.21  
234 MG1655_t150_anaerobic 2 -13.42  
235 norfloxacin_BW25113_t0 1 -13.55  
236 recA_D_N0000 2 -13.59  
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237 WT_MOPS_acidShock 2 -13.77  
238 MG1655_spectinomycin_t60 1 -13.82  
239 MG1655_spectinomycin_t120 1 -14.22  
240 biofilm_15hr 1 -14.39  
241 K12_t360 3 -14.44  
242 ccdB_K12_t0 1 -14.44  
243 WT_MOPS_lateLog 3 -14.46  
244 suspension_15hr 1 -15.01  
245 W3110_wt_glucose 2 -15.23  
246 har_S4_noIPTG 3 -15.91  
247 norfloxacin_BW25113recA_t120 1 -16.73  
248 ik_H2_T5 1 -16.96  
249 har_S1_noIPTG 3 -16.97  
250 norfloxacin_MG1063_t30 1 -17.00  
251 lacZ_MG1655_t30 1 -17.38  
252 pepCO_t0 2 -17.62  
253 lacZ_K12_t0 1 -17.85  
254 lacZ_K12_t90 1 -18.07  
255 har_S1_IPTG 3 -18.16  
256 MOPS_K_cspA 1 -18.20  
257 MG1655_t86400_cecum 5 -18.47  
258 BW25113_uninduced_t60 1 -18.67  
259 norfloxacin_chelator_MG1063_t0.2 1 -18.95  
260 norfloxacin_chelator_MG1063_t0.3 1 -19.00  
261 MG1655_t1560_aerobic 2 -19.27  
262 biofilm_24hr 1 -19.31  
263 biofilm_K_yceP 1 -19.35  
264 MG1655_norfloxacin_t30 1 -19.60  
265 MG1655_norfloxacin_t120 1 -19.95  
266 har_S0_noIPTG 3 -20.33  
267 MOPS_K_dps 3 -20.40  
268 cybr_KNO_N 2 -20.71  
269 har_S4_IPTG 3 -21.49  
270 ph8.7 5 -21.97  
271 K12_t150_K_fis 3 -22.24  
272 ik_L2_T8 1 -22.32  
273 T24_N0000 3 -22.43  
274 pET3d_t30 2 -22.91  
275 K12_t90_K_fis 3 -23.30  
276 BW25113_uninduced_t0 1 -23.45  
277 K12_t360_K_fis 3 -23.71  
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278 biofilm_K_yceP_indole 2 -25.13  
279 WT_N0050 2 -25.65  
280 T60_N0000 3 -25.75  
281 MOPS_K_hupB 1 -26.19  
282 norfloxacin_MG1063_t60 1 -26.30  
283 WT_MOPS_stationary 2 -26.59  
284 K12_t240_K_fis 3 -26.70  
285 K12_t150 3 -27.19  
286 har_S4_R_IPTG 3 -27.85  
287 norfloxacin_BW25113recA_t180 1 -29.03  
288 ccdB_MG1063_t60 2 -29.70  
289 MG1655_norfloxacin_t60 1 -30.08  
290 ccdB_MG1063_t120 1 -31.01  
291 ccdB_chelator_W1872_t60 1 -31.04  
292 K12_t240 3 -32.33  
293 MOPS_K_crp 3 -32.52  
294 MG1063_uninduced_t180 1 -32.69  
295 biofilm_K_tnaA 1 -32.85  
296 MOPS_K_hns 3 -33.23  
297 ccdB_chelator_W1872_t120 1 -33.23  
298 suspension_24hr 1 -33.70  
299 biofilm_wt_glucose 1 -34.55  
300 har_S1_R_IPTG 3 -35.58  
301 biofilm_K_trpE 1 -37.15  
302 ccdB_MG1063_t90 2 -37.89  
303 norfloxacin_MG1063_t120 1 -45.15  
304 K12_t90 3 -45.89  
305 har_S4_R_noIPTG 3 -51.28  
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Table A2.4 Information on the 57 potential Lrp target genes identified by BEST in the 
300-gene test set extracted from the E. coli compendium.  
 

Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 
1 serA 187.80 

 
X X 

2 gltD 182.97 
 

X X 
3 metE 180.95 

  
X 

4 leuL 178.03 
 

X X 
5 leuD 175.01 

 
X X 

6 leuA 174.43 
 

X X 
7 gltB 173.30 

 
X 

 8 livG 172.80 
 

X X 
9 livJ 172.44 

 
X 

 10 ilvE 172.35 
 

X 
 11 ompT † 169.81 

  
X 

12 pyrI 169.77 
   13 livK 169.16 
 

X X 
14 ilvH 168.41 

 
X X 

15 leuC 168.10 
 

X X 
16 ilvI 168.00 

 
X 

 17 gcvB 166.47 negative 
  18 serC 164.09 

 
X X 

19 livM 163.56 
 

X 
 20 leuB 163.18 

 
X X 

21 pyrB 161.91 
   22 yagU † 158.71 
  

X 
23 aroA 158.46 

 
X X 

24 cysD 158.39 
   25 ilvD 157.84 
 

X 
 26 lysU 157.56 negative X 
 27 livH 157.28 

 
X X 

28 livF 155.74 
 

X X 
29 stpA 153.87 

 
X 

 30 cysK 152.23 
   31 pheL 151.32 
   32 tnaC 149.80 negative 

  33 dppA 148.70 
   34 cysN 147.61 
   35 kbl 145.76 negative X 
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36 treC 143.28 negative 
  37 ilvL 142.44 

 
X 

 38 tdh 140.63 negative X 
 39 pyrL 140.4 

   40 ilvC 139.63 
   41 sdaA 138.77 negative X 

 42 sdaC 136.96 negative 
  43 ilvA 136.74 

 
X 

 44 thrL 135.9 
   45 hisL 135.55 
   46 yeeD 133.82 
   47 ilvM 131.85 
 

X X 
48 treB 130.2 negative 

  49 ompF 129.21 
 

X 
 50 fdoG 127.87 negative 

  51 oppA 127.26 
 

X 
 52 oppB 124.59 

 
X 

 53 rmf 122.65 
   54 oppF 122.24 
 

X 
 55 ynaJ 118.39 

   56 ilvG 113.06 
 

X 
 57 sroF 109.54       

 

a Genes displayed here are sorted by the Log Bayes ratio (target gene versus non-target 
gene). 
b Blank mean the target gene shows the same pattern as the query gene. Negative means 
the target gene shows the inversed pattern as the query gene.  
c BEST indentifies 33 genes among 61 target genes in RegulonDB. ―X‖ indicates that the 
predicted gene is in the RegulonDB target set. 
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
† Previously unknown targets of Lrp, experimentally verified by ChIP (Faith et al. 2007).  
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Table A2.5 Information on the 27 potential PdhR target genes identified by BEST in the 
100-gene test set extracted from the E. coli compendium.  
 

Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 
1 recN 348.48 

   2 intE 342.08 
   3 recA 337.20 
   4 tisB 336.43 
   5 xisE 332.99 
   6 araB 330.06 
   7 araA 328.56 
   8 sulA 328.12 
   9 araD 327.70 
   10 ymfJ 322.03 
   11 ymfT 317.29 
   12 ymfL 316.94 
   13 araE 314.20 
   14 murC 307.50 
  

X 
15 ftsW 306.20 

  

X 
16 murD 304.53 

  

X 
17 ndh 298.38 

  

X 
18 aceE 283.28 

 

X 
 19 aceF 279.67 

 

X 
 20 uspE 275.72 negative 

  21 proV 274.19 
   22 cspD 267.67 negative 

  23 isrB 263.68 
   24 spf 248.58 
   25 cspA 239.93 
   26 tisA 221.34 
   27 aceA 76.68 negative     

 

a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies two genes among five target genes in RegulonDB. ―X‖ indicates that 
the predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.6 Information on the 31 potential FecI target genes identified by BEST in the 
100-gene test set extracted from the E. coli compendium.  
 

Rank Gene Namea  Log Bayes Ratio positive/negativeb RegulonDBc CLRd 
1 ymfT 206.62 

   2 ymfJ 200.23 
   3 ymfL 196.67 
   4 araD 189.08 
   5 xisE 185.50 
   6 araB 185.40 
   7 araA 182.57 
   8 recN 177.90 
   9 araE 177.45 
   10 tisB 146.18 
   11 tisA 144.54 
   12 sulA 133.96 
   13 recA 118.89 
   14 proV 81.52 
   15 fecE 72.40 
 

X 
 16 fecB 67.88 

 

X 
 17 isrB 63.99 

   18 fecD 63.63 
 

X 
 19 fecC 63.13 

 

X 
 20 fecA 62.00 

 

X 
 21 fhuF 54.12 

  

X 
22 ybaN 53.60 

  

X 
23 exbB 46.24 

  

X 
24 fhuA 44.64 

  

X 
25 exbD 43.74 

  

X 
26 fecR 43.29 

 

X X 
27 bfd 33.30 

   28 micF 32.89 
   29 spf 29.53 
   30 cspA 19.14 
   31 entB -0.34 
 

  X 
 

a Genes displayed here are sorted by  Log Bayes ratio (target gene versus non-target 
gene). 
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b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies all six genes among six target genes in RegulonDB. ―X‖ indicates that 
the predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.7 Information on the 31 potential LexA target genes identified by BEST in the 
100-gene test set extracted from the E. coli compendium  
 

Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 
1 dinF 370.20 

 

X X 
2 araB 365.72 

   3 araA 365.42 
   4 araE 359.80 
   5 araD 358.89 
   6 ymfJ 349.63 
   7 ymfL 347.87 
   8 recN 347.63 
 

X X 
9 xisE 339.91 

   10 yebG 333.06 
  

X 
11 ymfT 332.53 

   12 dinI 320.63 
  

X 
13 recX 318.60 

   14 umuD 316.82 
 

X X 
15 tisB 314.57 

   16 yafN 314.26 
  

X 
17 tisA 312.63 

   18 dinD 312.63 
  

X 
19 uvrA 310.18 

 

X X 
20 dinG 308.19 

  

X 
21 yafO 306.66 

  

X 
22 sulA 305.85 

 

X X 
23 polB 299.75 

 

X 
 24 recA 292.55 

 

X X 
25 umuC 289.20 

 

X X 
26 dinB 282.91 

   27 bssS 262.57 
   28 ssb 262.39 
 

X 
 29 uvrD 259.91 

 

X 
 30 yebF 242.58 

  

X 
31 uspE 239.61 negative     

 

a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
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c BEST indentifies ten genes among 16 target genes in RegulonDB. ―X‖ indicates that the 
predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.8 Information on the 54 potential FlhC target genes identified by BEST in the 
200-gene test set extracted from the E. coli compendium  
 
Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 

1 flgE 422.41 
 

X X 
2 fliA 417.80 

 

X X 
3 flgC 415.00 

 

X X 
4 flgB 412.97 

 

X X 
5 flgG 406.95 

 

X X 
6 flgH 406.29 

 

X X 
7 flgD 403.29 

 

X X 
8 flhD 401.18 

  

X 
9 motB 398.98 

  

X 
10 fliL 398.54 

 

X X 
11 fliN 398.03 

 

X X 
12 flgI 397.19 

 

X X 
13 flgK 396.32 

  

X 
14 flgA 396.03 

 

X X 
15 fliK 389.85 

 

X X 
16 fliM 388.79 

 

X X 
17 flgF 388.45 

 

X X 
18 motA 387.71 

  

X 
19 cheA 386.19 

  

X 
20 cheW 385.20 

  

X 
21 fliZ 384.50 

 

X X 
22 fliJ 384.25 

 

X X 
23 flgM 382.36 

  

X 
24 fliF 382.00 

 

X X 
25 flgN 380.73 

  

X 
26 fliS 380.29 

  

X 
27 cheY 378.15 

  

X 
28 flgJ 372.04 

 

X X 
29 cheZ 371.92 

  

X 
30 cheR 371.27 

  

X 
31 yecR 370.70 

  

X 
32 cheB 369.11 

  

X 
33 fliG 367.55 

 

X X 
34 fliC 366.59 

  

X 
35 flgL 366.38 

  

X 
36 fliH 362.55 

 

X X 
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37 fliD 360.82 
  

X 
38 fliP 356.28 

 

X X 
39 fliQ 350.16 

 

X X 
40 tar 347.51 

  

X 
41 fliI  345.24 

 

X X 
42 ycgR 344.20 

  

X 
43 tap 338.41 

  

X 
44 fliE 326.37 

 

X X 
45 flxA 325.67 

  

X 
46 fliO 324.78 

 

X X 
47 ymdA 314.15 

  

X 
48 flhA 301.22 

 

X X 
49 flhE 300.16 

 

X X 
50 flhB 290.68 

 

X X 
51 fliR 275.89 

 

X X 
52 yhjH 272.24 

  

X 
53 tsr 255.05 

  

X 
54 yjdA 206.14 

 

    
 
a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies 29 genes among 30 target genes in RegulonDB. ―X‖ indicates that the 
predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.9 Information on the 67 potential FlhD target genes identified by BEST in the 
200-gene test set extracted from the E. coli compendium  
 
Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd 

1 flhC 333.41 
  

X 
2 flgE 312.18 

 

X X 
3 flgB 311.50 

 

X X 
4 flgH 311.46 

 

X X 
5 fliA 311.18 

 

X X 
6 flgC 310.34 

 

X X 
7 flgG 307.33 

 

X X 
8 flgD 299.71 

 

X X 
9 flgK 299.55 

  

X 
10 flgI 299.12 

 

X X 
11 fliZ 298.07 

 

X X 
12 flgA 296.58 

 

X X 
13 motB 294.72 

  

X 
14 cheW 293.40 

  

X 
15 flgF 293.22 

 

X X 
16 fliN 292.68 

 

X X 
17 fliL 292.29 

 

X X 
18 flgN 291.93 

  

X 
19 fliF 290.99 

 

X X 
20 flgM 290.12 

  

X 
21 fliM 288.74 

 

X X 
22 cheA 288.54 

  

X 
23 fliK 285.84 

 

X X 
24 fliS 282.94 

  

X 
25 motA 282.93 

  

X 
26 yecR 282.39 

  

X 
27 flgL 281.34 

  

X 
28 fliJ 279.79 

 

X X 
29 fliC 275.71 

  

X 
30 flgJ 275.32 

 

X X 
31 fliD 271.73 

  

X 
32 cheR 271.62 

  

X 
33 fliP 270.94 

 

X X 
34 fliG 270.80 

 

X X 
35 cheB 269.55 

  

X 
36 cheY 269.30 
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37 fliH 264.98 
 

X 
 38 tar 264.64 

  

X 
39 cheZ 264.38 

   40 fliE 260.07 
 

X X 
41 fliI  256.40 

 

X X 
42 ycgR 251.77 

  

X 
43 flxA 251.29 

   44 fliQ 251.26 
 

X X 
45 flhE 231.94 

 

X 
 46 fliO 229.43 

 

X X 
47 flhB 222.84 

 

X 
 48 flhA 221.21 

 

X X 
49 ymdA 218.56 

  

X 
50 fliR 196.03 

 

X X 
51 tsr 192.51 

  

X 
52 yibT 191.41 

   53 yhjH 191.29 
  

X 
54 yjbJ 188.62 

   55 hdeB 187.86 
   56 slp 184.57 
   57 ompF 181.05 
   58 micF 178.49 negative 

  59 gadE 178.32 negative 
  60 hdeA 177.08 

   61 hdeD 176.26 
   62 gadX 173.90 
   63 gadB 171.77 
   64 gadA 165.48 
   65 yjdA 148.57 
   66 bssS 122.36 
   67 ygiW 109.00 
 

    
 

a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies 29 genes among 46 target genes in RegulonDB. ―X‖ indicates that the 
predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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Table A2.10 Information on the 56 potential FliA target genes identified by BEST in the 
200-gene test set extracted from the E. coli compendium  
 
Rank Gene Namea Log Bayes Ratio positive/negativeb RegulonDBc CLRd  

1 fliZ 524.28 
 

X X 
2 flgE 520.41 

 

X X 
3 flgC 518.79 

 

X X 
4 flgB 510.76 

 

X X 
5 flgG 506.72 

 

X X 
6 flgD 506.65 

 

X X 
7 flgN 503.87 

  

X 
8 flgK 503.51 

  

X 
9 flgH 490.47 

 

X X 
10 flgM 488.91 

  

X 
11 fliD 484.75 

 

X X 
12 cheW 484.68 

 

X X 
13 cheA 480.61 

 

X X 
14 motB 470.69 

 

X X 
15 motA 469.88 

 

X X 
16 flgL 469.11 

 

X X 
17 flgA 467.86 

  

X 
18 fliK 463.84 

 

X X 
19 fliS 459.14 

 

X X 
20 fliN 456.92 

 

X X 
21 flgF 456.74 

 

X X 
22 cheZ 453.19 

 

X X 
23 cheR 452.47 

 

X X 
24 fliL 452.27 

 

X X 
25 fliJ 452.03 

 

X X 
26 flgI 448.03 

 

X X 
27 cheB 443.04 

 

X X 
28 tar 439.80 

  

X 
29 fliC 439.60 

  

X 
30 fliF 435.47 

 

X X 
31 fliM 431.91 

 

X X 
32 fliG 429.41 

 

X X 
33 cheY 425.70 

 

X X 
34 flgJ 423.63 

 

X X 
35 fliP 420.70 

 

X X 
36 yecR 418.55 

  

X 



 

65 
 

37 ycgR 415.26 
  

X 
38 tap 414.20 

 

X X 
39 fliQ 404.20 

 

X X 
40 fliH 389.79 

 

X X 
41 flxA 377.76 

 

X X 
42 fliT 369.77 

 

X X 
43 ymdA 364.62 

  

X 
44 fliO 361.51 

 

X X 
45 fliI  355.28 

 

X X 
46 fliE 354.40 

 

X X 
47 flhC 348.31 

  

X 
48 flhB 335.53 

 

X X 
49 flhE 321.02 

 

X X 
50 flhA 317.85 

 

X X 
51 fliR 312.35 

 

X X 
52 yhjH 310.92 

  

X 
53 flhD 305.93 

  

X 
54 tsr 281.05 

  

X 
55 ves 233.09 

  

X 
56 yjdA 187.37 

 

  X 
 

a Genes displayed here are sorted by Log Bayes ratio (target gene versus non-target gene). 
b Blank indicates that the target gene shows the same pattern as the query gene. Negative 
indicates that the target gene shows the inversed pattern as the query gene.  
c BEST indentifies 41 among 42 target genes in RegulonDB. ―X‖ indicates that the 
predicted gene is in the RegulonDB target set.  
d ―X‖ indicates that the gene is predicted by CLR as a target gene.  
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2.5.6 Figures in appendix 

Figure A2.1 ROC curves for various query methods when applying to synthetic datasets 
simulated under different settings and when there are 100% foreground columns. BEST 
A default setting; BEST B allowing exclusion of individual cells from the foreground; 
BEST C fixing the indicator variables of five true target genes and five true experimental 
conditions as 1. A. No linear transformation nor cell- level noise. B. With linear 
transformation only. C. With cell- level noise only. D. With both linear transformation 
and cell- level noise.  
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Figure A2.2 ROC curves for various query methods when applying to synthetic datasets 
simulated under different settings and when there are 75% foreground columns. BEST A 
default setting; BEST B allowing exclusion of individual cells from the foreground; 
BEST C fixing the indicator variables of five true target genes and five true experimental 
conditions as 1. A. No linear transformation nor cell- level noise. B. With linear 
transformation only. C. With cell- level noise only. D. With both linear transformation 
and cell- level noise.  
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Figure A2.3 ROC curves for various query methods when applying to synthetic datasets 
simulated under different settings and when there are 50% foreground columns. BEST A 
default setting; BEST B allowing exclusion of individual cells from the foreground; 
BEST C fixing the indicator variables of five true target genes and five true experimental 
conditions as 1. A. No linear transformation nor cell- level noise. B. With linear 
transformation only. C. With cell- level noise only. D. With both linear transformation 
and cell- level noise.  
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Figure A2.4 Log-likelihood trace plots of the ten parallel chains resulted from the BEST 
run on 100-gene and 300-gene test sets selected from the E. coli microarray compendium. 

 
 

Figure A2.5 Sequence logo plot (52) and position specific weight matrix (PSWM) for the 
motif of transcription factor Lrp. Lrp motif is downloaded from regulonDB: 
http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt. The logo plot was 
generated by the seqLogo program (53).  

 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 
A 11 14 27 14 21 11 10 37 6 6 8 12 0 
C 2 7 3 7 0 0 7 10 12 15 35 1 1 
G 28 13 3 0 11 8 4 0 8 11 10 10 33 
T 12 19 20 32 21 34 32 6 27 21 0 30 19 

 

http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt
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Figure A2.6 Boxplots of Pearson correlation coefficients. A. Boxplots of Pearson 
correlations between expression profiles of the 61 experimentally verified Lrp target 
genes and Lrp. The left one summarize correlations measured in the 162 background 
experiments and the right one summarize correlations measured in the 143 foreground 
experiments. A paired t-test comparing the two sets of correlation coefficients returns a p-
value of 0.0079. B. Boxplots of Pearson correlations between expression profiles of the 
28 genes BEST indentified as Lrp target. The left one summarize correlations measured 
in the 162 background experiments and the right one summarize correlations measured in 
the 143 foreground experiments. A paired t-test comparing the two sets of correlation 
coefficients returns a p-value of 1.948×10-12. 
 

A.                                       B. 
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Figure A2.7 A. Histograms of expression profile differences (zij) in the top five 
experimental conditions (foreground). B. Histogram of expression profile differences (zij) 
in the bottom five experimental conditions (background). Data used here is the 100-gene 
test set selected from the E. coli microarray compendium. 
   A.                        B. 
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A.                        B. 
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Figure A2.8 Trace plots of 24 predicted Lrp target genes identified by BEST that are not 
in the RegulonDB target set. Black lines indicate the query gene—Lrp, the red line 
indicate the potential target genes. Only the 139 foreground experimental conditions 
identified by BEST were shown in these plots.  
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Figure A2.9 A. Histograms of expression profile differences (zij) in the top five 
experimental conditions (foreground). B. Histogram of expression profile differences (zij) 
in the bottom five experimental conditions (background). Data used here is the 300-gene 
test set selected from the E. coli microarray compendium. 
 
   A.                        B. 
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A.                        B. 
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CHAPTER 3  

 

On the detection and refinement of transcription factor binding sites using ChIP-

Seq data 

 
 

3.1 Introduction 

 Accurately locating the transcription factor (TF)-DNA interaction sites provides 

key insights into the underlying mechanisms of transcriptional regulation. By exploiting 

the fact that binding sites for a specific TF often show sequence specificity, 

computational prediction of TF binding sites, or motif finding, has become an 

indispensible tool for functional genomics research. A variety of different software 

programs have been developed for motif- finding (44,54-59) (see Tompa et al. (60) for a 

review of this topic).  

 The input data for computational motif- finding algorithms are DNA sequences 

believed to be enriched by the TF binding sites, or motifs. Typical sources of the input 

data are known co-regulated genes (59), phylogenetic conservation (61), or results from 

functional genomics experimental assays (54,62-64). For the latter, continually evolving 

high-throughput technologies, from DNA microarray (1,11) to ChIP-chip (65,66) and 

now ChIP-Seq (4,67-69), offer rapidly improving opportunities for motif finding.  
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 ChIP-Seq, or chromatin immunoprecipitation (ChIP) (70,71) followed by ultra-

high-throughput sequencing, has emerged as a powerful new techno logy for genome-

wide mapping of protein-DNA interactions and histone modifications (4,67-69). Through 

direct sequencing of all DNA fragments from ChIP assays, ChIP-Seq can reveal protein-

DNA interaction sites across the entire genome, thus building a comprehensive and high-

resolution interactome map for DNA-binding proteins of interest.  

 From past experience, exploiting the quantitative information provided by high-

throughput genomic assays allows scientists to develop more effective motif- finding 

algorithms. Improvements in motif detection have been reported in studies using 

microarray (62,63) and ChIP-chip (54,64) data. The newly emerged ChIP-Seq technology 

has demonstrated remarkable sensitivity and specificity in identifying protein-DNA 

binding loci across the entire genome with high resolution and few constraints. In excess 

of 10,000 DNA sequences are routinely being identified as candidates that potentially 

harbor protein-DNA interaction sites of interest. Such information provides an exciting 

new venue for motif discovery and refinement.  

  A de novo motif search is a natural follow-up to the identification of ChIP-

enriched regions. Not only is it required when the TF binding motif pattern is unknown, it 

is also important in cases where TF and its canonical binding motif pattern have been 

established. After all, it is reassuring to be able to ―rediscover‖ the known TFBS motif 

pattern from the input sequences. More importantly, most of the known TF binding motif 

patterns stored in the various TF binding motif databases or reported in the literature are 

defined based on limited numbers of experimentally verified TF-DNA interaction sites. 

Many of these motif patterns could be inaccurate due to limited experimental data. 
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Performing a de novo motif search on a large number of ChIP-Seq binding sites has the 

potential to refine the motif patterns of the TFBS.  

 While a variety of methods that attempt to identify ChIP-enriched genomic 

regions from ChIP-Seq experiments (also called ―peak calling‖) have been described (72-

80), little has been developed utilizing ChIP-Seq data for motif finding.  

 Probability model-based de novo motif finding algorithms such as MEME have 

demonstrated a high level of sensitivity and specificity (44,55-57,81-85). However, since 

these methods were developed when only a handful of motif-enriched sequences were 

available, they do not work well when analyzing large sets of sequences identified by 

ChIP-Seq. There are at least two limitations that affect their performance: (1) the 

requirement for going through all bases in all sequences using time-consuming iterative 

procedures means that these methods do not scale well for the analysis of large sets of 

sequences generated from ChIP-Seq; (2) existing methods, which only consider sequence 

data, are unable to fully utilize the rich information produced from ChIP-Seq. Overlooked 

information includes the sequencing depth along the ChIP-enriched regions and the 

overall significance of ChIP-enrichment for each sequence. ―Sequencing depth‖ refers to 

the number of ChIP DNA fragments that cover each base. Currently, a common practice 

for performing motif finding on ChIP-Seq data is to use existing motif- finding tools on a 

subset of all sequences (e.g., the top 500 sequences or top 10% of all such sequences) 

(74,75). This is sub-optimal because the small sample size may lead to an inaccurate 

motif pattern and the selection of top sequences tends to result in motif patterns that are 

overly-conserved.  
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 We believe that a more desirable approach is to develop algorithms that can 

utilize all of the sequence information generated from ChIP-Seq. Not only will this 

strategy result in the identification of more accurate motif patterns, but we also predict 

that the dramatically increased number of in vivo binding sites revealed by ChIP-Seq will 

permit the use of probability models that are more sophisticated than the commonly-used 

product multinomial models (83) for characterizing the motif pattern.  

  To address these limitations and fully exploit the information provided by ChIP-

Seq experiments, we develop a novel model-based motif- finding algorithm named the 

Hybrid Motif Sampler (HMS). It is specifically designed for ChIP-Seq data and utilizes 

all ChIP-enriched regions identified from ChIP-Seq experiments. In this algorithm, we 

propose a new probability model that considers both DNA sequence and sequencing 

depth information that is available from ChIP-Seq experiment. It also allows inter-

dependent positions within a motif to be identified. In addition, we propose a novel 

hybrid searching scheme to significantly expedite the iterative procedure. Our algorithm 

is capable of processing tens of thousands of sequences and is much faster than the 

established de novo motif- finding tools such as MEME. 

3.2 Methods  

3.2.1 The statistical model 

 Let  denote a set of  sequences (e.g., DNA sequences in ChIP-

enriched regions identified by ChIP-Seq) of length . We initially assume that 

every sequence  contains exactly one binding site. In addition, the vector that is formed 

by the start locations is referred to as the alignment variable, denoted as  

where . Here  is the motif width and is assumed to be 
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known.  Given  and , the aligned sequence motif can be represented by a four by  

matrix. Each column of the matrix stores the frequency counts of the four types of 

nucleotides. Liu et al. (83) proposed the product-multinomial model to model the 

nucleotide preferences shown in such matrices. The product-multinomial model has been 

widely used in EM-based (57,81) and Gibbs sampler-based (56,82,84) motif finding 

algorithms. Let ,  represent the nucleotide preference at the  th 

position of the motif and let the probability vector  represent the nucleotide preference 

for non-motif positions in these sequences. Each of the  is a 

probability vector of length four. For notational simplicity, we use integers 1, 2, 3 and 4 

to represent the four types of nucleotides A, C, G and T.  

 For de novo motif finding, the parameter of main interest in our model is the 

alignment variable . Lawrence et al. (56) proposed a Gibbs sampler-based approach in 

which the posterior distribution for alignment  can be expressed as: 

 

                                                                                                                                          

 
 (3.1) 

Where  and the functions , returns the 

number of nucleotides of type . 

 For and , an alternative to sampling them from posterior conditional 

distributions as in a standard Gibbs sampler, one can use the predictive updating 

technique (83) to integrate them out. Alternatively, the posterior means can be used to 
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approximate the updated parameters during iteration. More details of these strategies can 

be found in Liu et al. (83) 

3.2.2 Allowance for some sequences that do not contain the motif  

 In the model above, we assume that every sequence  contains exactly one motif. 

However, this is not the case in real ChIP-Seq data. To increase specificity, it is highly 

desirable that we generalize the method to allow some sequences to be motif- free. We 

introduce a binary indicator variable  where   indicates that  contains at least 

one motif, and  otherwise. In the algorithm,  is set to 1 if the average of likelihood 

ratios observing the motif in the sequence , denoted as , is greater than 1. i.e.,  

                                                                                                                                          

  (3.2) 

After updating , we only conduct motif search on the sequences with .  

3.2.3 Modeling sequencing depth 

 The model described in equation (3.1) assumes that binding motifs are equally 

likely to occur at all positions in each sequence. This is reasonable when no information 

beyond the input DNA sequences is considered. However, such a model is no longer 

sufficient for analyzing ChIP-Seq data since additional information beyond the DNA 

sequences is available and should be incorporated. In particular, it has been shown that 

the sequencing depth in each ChIP-enriched region is indicative of the motif location 

(74,77). Figure A3.1 in appendix shows that: the majority of motifs are tightly packed 

near the peak summit (the location inside each peak with the highest sequence coverage 

depth), especially for the highly-significant peaks.  
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 To capitalize on the extra information provided by ChIP-Seq, we propose adding 

to the method an informative prior distribution of the motif location based on the 

sequencing depth. There are multiple ways to assign such priors. The simplest strategy is 

to make the prior probabilities directly proportional to the sequencing depth in each 

sequence. However, since sequencing depth is affected by many factors, such as local GC 

content, using a prior distribution like this may result in ―over fit ting‖. Alternatively, a 

parametric distribution that approximates the sequencing depth can be used to obtain the 

prior probabilities. In this study, we set the prior probabilities to be proportional to a 

discretized Student’s -distribution with three degrees of freedom and rescaled such that 

the prior probabilities form a step function with a fixed step-size (25 bp in this study). 

The prior probabilities are symmetric and centered at the peak summit (most peak-calling 

software provides the exact location of the summit). Specifically, the prior probabilities 

that a motif starts at position  can be expressed as: 

                                                                                                                                          

 
 (3.3) 

Where  is the probability density function of the Student’s -distribution with three 

degrees of freedom,  is the location of the peak summit,  is the motif width,  is the 

step size (25 bp in this study) in the step function and int ][  returns the integer part of a 

real number. Please see Figure A3.2 in appendix for an illustration of the prior 

probabilities. The reason that we choose Student’s -distribution instead of a normal 

distribution is because it better allows for some motif locations to be far from the peak 

(the standard deviation of Student’s -distribution with three degrees of freedom is 1.73, 

compared to one for standard normal distribution).  
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3.2.4 Modeling intra-motif dependency 

 The classical product-multinomial model assumes that the positions within the 

motif are independent of each other (86). However, recent studies indicate that some 

positions of TF binding motifs exert an inter-dependent effect on the binding affinities of 

TF’s (87-90). These findings imply that the commonly used product-multinomial model 

may be too simplistic in characterizing the binding sites. Models that allow for dependent 

positions likely will provide a better fit of the data. The significantly increased quantity 

of motifs identified by ChIP-Seq enables us to consider a more sophisticated model that 

can take into account the intra-motif dependency. 

 There have been numerous attempts to incorporate into models the inter-

dependency among positions within a motif. King and Roth (91) introduced a non-

parametric representation of motifs that allows arbitrary dependencies among positions. 

Barash et al. (92) suggested multiple Bayesian network models to represent dependencies 

among motif positions. Zhou and Liu (93) proposed a generalized weight matrix model in 

which a 16-component multinomial model is used to model two dependent positions 

jointly. 

 Here we extend the generalized weight matrix model of Zhou and Liu. To take 

greater advantage of the abundant sequence information made available by the ChIP-Seq 

technology, our model allows up to three positions to be inter-dependent. 

3.2.5 Detection of dependent positions 

 Given a set of aligned putative binding motifs, our goal is to identify positions 

that show inter-dependency. Here ―inter-dependency‖ implies conservation of nucleotide 

combinations spanning multiple positions that cannot be accurately described by the 
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independent motif model. As an example, for a pair of positions, if the frequency of a 

particular dinucleotide, say AC, is much higher or lower than the product of frequency of 

nucleotide A in the first position and frequency of nucleotide C in the second position, we 

conclude that the two positions are dependent.  

 A variety of methods have been proposed in the literature to search for such inter-

dependent positions. Barash et al. (92) applied machine learning approaches to infer the 

structure of a Bayesian network that best represents the underlying motif. Zhou and Liu 

(93) proposed a Metropolis-type iterative procedure to identify pairs of inter-dependent 

positions. Given the abundant motif data from ChIP-Seq, we implement a comprehensive 

search strategy to go through all pairs of positions within the motif to determine whether 

there is evidence of dependency. To be specific, for any two positions  and  among 

 possible pairs, we first obtain probability estimates of the 16 dinucleotides 

assuming either a 16-component multinomial model (dependent) or the product of two 

four-component multinomial models (independent). Let the number of motifs be 

represented by . The term  represents the number of motifs whose  th position is 

occupied by nucleotide x and the term  represents the number of motifs whose  

th and  th positions are occupied by nucleotides x and y respectively. The probability 

estimates under the two competing models are  and 

, respectively. We then calculate the Hamming distance between the two 

sets of estimates as  

                                                                                                                                          

 
 (3.4) 
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Under the hypothesis that the two positions are independent, we expect that 

distance , excluding sampling variability; larger  indicates stronger inter-

dependency between positions  and . In this study, we designate positions  and  to be 

dependent if . The threshold is determined from the empirical null distribution 

of  inferred through simulations. More details can be found in appendix. 

3.2.6 Posterior distribution 

We take a Bayesian approach and consider two different models to describe the 

motif pattern. In the first one, we assume all positions within the motif are independent. 

There are two sets of parameters in this model: alignment variable  and multinomial 

distribution probability vector . The prior distributions for  are 

multinomial with probabilities defined as in equation (3.3). Adopting a conjugate prior 

distribution for each , which is , the posterior probabilities that 

a motif starts at position  can be expressed as: 

                                                                                                                                          

 
 (3.5) 

As suggested in Liu et al. (83), the above conditional distribution can be closely 

approximated by replacing  by its posterior mean given the current alignment vector 

: 

                                                                                                                                          

 
 (3.6) 

For background (non-motif) regions, it has been shown that employing a Markov model 

to capture weak dependency in background DNA sequences improves the sensitivity and 

specificity of motif finding compared to an independent model in equation (3.1). In this 
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study, we use a third-order Markov model as in Liu et al. (55) to characterize the 

background sequences. Under such a model, the probability of observing DNA sequence 

fragment   in the background can be represented by 

 

                                                                                                                                           (3.7) 

 In this background model, the conditional probabilities are 

estimated from human promoter sequences downloaded from UCSC genome browser 

website (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/). The dataset contains 

5kb upstream sequences of annotated transcription starts for all RefSeq genes with 

annotated 5' UTRs.  

 After incorporating these modifications, the complete posterior distribut ion for 

  becomes 

  (3.8) 

 In the second model, we consider intra-motif dependency. Within the motif, we 

assign positions into two disjoint groups: groups of independent positions S and groups of 

dependent position pairs P where . By modeling dependent 

positions jointly, the probability ―matrix‖  becomes an amalgam of vectors of length 

four (modeling single positions) and vectors of length 16 (modeling pairs of dependent 

positions). The prior distributions for the two types of  ’s are   

and  respectively. The complete posterior 

distribution for   in the dependent model is 

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/
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  (3.9) 

Here the counting function , whose argument is a set of positions, counts the 

frequency of the 16 dinucleotides for a pair of positions within the motif. The above 

model can be extended easily to allow three-way inter-dependent positions.   

3.2.7 Acceleration via prioritized hybrid Monte Carlo 

 To streamline this motif- finding algorithm in order to handle a large number of 

input sequences, we develop a prioritized hybrid strategy to increase computation speed 

with only minimal if any sacrifice in accuracy. Unlike a standard Gibbs sampler where 

motif alignment variables are sampled stochastically from all sequences, only a small 

proportion, , of all sequences are subjected to stochastic sampling. For the remaining 

sequences, we select the alignment variable deterministically by identifying the position 

that corresponds to the highest probability as given by equation (3.8) or (3.9). Since the 

deterministic approach is much faster than the stochastic one and the proportion  we use 

is often quite small (  ~10%), this hybrid strategy is much faster than the standard Gibbs 

motif sampler (56). 

For each iteration, the proportion of sequences undergoing stochastic search is 

constant, but a different set of sequences is selected each time. We have automated the 

process of selecting a subset of sequences for stochastic search. All the sequences 

identified from the ChIP-Seq experiment are rank-ordered according to their ChIP-

enrichment. Assume we run  iterations in each Gibbs sampler. In the  th iteration, we 
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sample a fixed number of  sequences from a multinomial distribution 

. At the beginning of the iteration, we use a monotonically decreasing 

triangle probability distribution, which assigns higher probability to sequences with 

higher ChIP-enrichment. As the iteration proceeds, the slope of the triangle gradually 

becomes flatter so that the oversampling of higher ChIP-enriched sequences diminishes. 

In the last iteration, the distribution becomes uniform. For the  th iteration, we have 

  (3.10) 

3.2.8 Implementation 

 We have developed a software program that implements the algorithms described 

in this manuscript. The HMS program is a Gibbs sampler type iterative procedure. To 

reduce the possibility that the Markov chain converged to a local mode, we run multiple 

Markov chains and choose the motif pattern that corresponds to the highest likelihood as 

the final motif pattern. The number of parallel chains and the number of complete 

iterative cycles within each chain are specified by users. Within each chain, the iterative 

procedure can be broken down into three steps. In the first step, we use a traditional 

product multinomial model in which all positions are assumed independent of each other. 

We further assume every sequence contains one motif. In the second step, we again 

assume all positions are independent, but we allow some sequences to be motif- free. In 

the final step, we adopt the generalized motif model that allows intra-motif dependency. 

The HMS program, including the source code is freely available at 

http://www.sph.umich.edu/csg/qin/HMS/.  
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3.2.9 Performance evaluation using simulated data 

 In the simulation study, we are interested in evaluating the performance of various 

de novo motif finding algorithms from two perspectives: first, the number of times a 

program successfully detects the motif inserted into each of the 100 simulated datasets; 

second, the accuracy of the inferred motif pattern given that the motif has been found.  

 For the former, since we know the true location of all inserted motifs in the 

simulated datasets, we are able to directly verify whether each motif site predicted by the 

testing software is correct. Within each simulated dataset, we declare that the inserted 

motif is found if the proportion of sequences in which the program correctly identifies the 

true motif location is greater than 20%.  

For the latter, we measure the accuracy of an inferred motif pattern by calculating 

the average Hamming distance between the true probability matrix  and its prediction 

denoted as  : 

  (3.11) 

3.2.10 Performance evaluation using real data 

 Given a set of sequences identified by ChIP-Seq, we want to discern which de 

novo motif- finding algorithm produces a more accurate motif pattern. Since the exact true 

motif pattern is unknown, we use motif enrichment as the criterion. We assume that 

among multiple motif patterns, the one that is most enriched in the ChIP-Seq-identified 

regions relative to random controls is closest to the true motif pattern. 

 We use a cross-validation scheme to assess motif enrichment. The original dataset 

is equally divided into halves: a training set and a testing set. The input sequences are 
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restricted to within 200 bp in length and centered at the peak summit (no more than 100 

bp toward each side of the peak summit). For the testing set, we create a control set 

composed of randomly selected DNA promoter sequences (within 5kb upstream of the 

transcription start site) as in Zhou and Liu (93) matched by number of sequences and 

length of each sequence. We run each motif- finding program on the training set to 

identify the motif pattern, and then utilize this pattern to scan both the testing and the 

corresponding control sets to assess how many sequences contain the motif. We employ a 

set of significance thresholds and calculate the corresponding empirical false discovery 

rate (FDR) (94) and motif enrichment, as measured by Chi-square test statistics for a 

 contingency table. The empirical FDR is estimated by dividing the number of 

control sequences that contain the motif by the number of testing sequences that contain 

the motif. We repeat the scheme five times for each dataset and report the average test 

statistics corresponding to each FDR level.  

We plot the curves of the empirical FDR versus the Chi-square test statistics when 

the empirical FDR is between 0 and 0.2. To accomplish this, we equally divide the 

empirical FDR into ten consecutive windows and calculate the mean of the Chi-square 

test statistics from five cross validations (when the corresponding empirical FDRs fall 

into the same window). Since the curve representing the most enriched motif pattern will 

be the highest, we use area under the curve (AUC) as a quantitative assessment of the 

overall motif enrichment. Higher AUC indicates further motif enrichment.  

3.2.11 Estrogen receptor ChIP-Seq experiment on MCF7 cells 

 To test the algorithms in a real setting, we have conducted a ChIP-Seq experiment 

to survey genome-wide binding of Estrogen Receptor (ER) on the MCF-7 breast cancer 
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cell line. ER is a hormonal TF that, when liganded by estrogen, binds specially to 

estrogen response elements (ERE) and plays a critical role in breast cancer development. 

Identifying ER target genes and refining the ERE motifs are thus of significant interest. A 

brief description of the experimental protocol is shown in the next paragraph. More 

details can be found in appendix. 

 Briefly, MCF-7 cells were grown in RPMI media supplemented with 10% FBS to 

50% confluence. The cells were then hormone-starved for three days prior to treatment of 

the vehicle control or 10nM β–estradiol for 45 minutes. The cells were then harvested for 

ChIP analysis using an antibody against estrogen receptor (ER)-alpha (sc-543x, Santa 

Cruz) or against IgG. The ChIP-enriched DNA was evaluated for significant enrichment 

of positive control genes and then subjected to ChIP-Seq sample preparation and short-

read sequencing using Illumina Genome Analyzer (Illumina Inc, San Diego, CA) 

following the manufacturer’s protocols. The raw sequencing images were analyzed using 

the Illumina analysis pipeline, and the sequencing reads were subsequently aligned to the 

human reference genome (NCBI v36, hg18) using ELAND software (Illumina Inc, San 

Diego, CA), producing sequencing reads of 35 bps. Only sequencing reads that are 

uniquely mapped to the human reference genome with up to two mismatches were 

included for further analysis as delineated in this study. We used the HPeak software 

program (95), to define the ChIP-enriched regions. Details of the HPeak software 

program can be found in appendix. 
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3.3 Results 

3.3.1 Simulation study 

3.3.1.1 Independent motif models 

 The goal of this simulation study was to evaluate the ability of HMS to identify 

the correct motif patterns. We use the default setting for HMS which adopts the 

informative prior and allows intra-motif dependency. For comparison, we also tested a 

simpler version of HMS that assumes all positions are independent. In addition, we 

applied two established motif- finding software tools, MDscan (54) and MEME (57) on 

the same sets of simulated data. Following the simulation scheme of Liu et al. (54), four 

motif models were manually created (Table A3.1A), representing two different motif 

widths (8 bps and 16 bps), and two different degrees of conservation measured by 

information content (1.42 and 0.93). The information content is defined as:  

  (3.12) 

where  is the proportion of base  at the motif position . Information content ranges 

from 0 to 2, reflecting the weakest to the strongest motifs. Finally, two different motif 

abundance schemes (Table A3.1B) were considered for a total of eight combinations in 

the simulation study. The eight simulation settings covered a wide range of scenarios. 

The combination of short motif width, weak motif information content and low motif 

abundance was the most challenging. 

 For each setting, we simulated 100 test datasets. Each dataset contains 3,000 

sequences of 200 bp in length. To mimic real human data, all the sequences were 

generated from a third-order Markov model with parameters estimated from the 
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collection of 5kb promoter sequences of annotated genes in the human genome 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/). Hypothetical motifs were 

generated from product multinomial models with specified length and information 

content. The proportion of sequences that contained a motif followed one of the two 

abundance schemes mentioned in the previous paragraph. We assumed that each 

sequence contained at most one motif.  

 We next derived the empirical distribution from real ChIP-Seq data of CTCF 

and NRSF of the motif start locations in a 200 bp window centered at the peak summit. 

We strategically inserted the motifs in these sequences following this empirical 

distribution.  As a consequence, the motif locations were biased toward the center of the 

sequence, which was assumed to be the location of the peak summit.  

 We applied MDscan, MEME and HMS to every dataset. Two versions of HMS 

were used in the comparison. One assumed an informative prior (proportional to a 

discretized and rescaled Student’s -distribution with three degrees of freedom) that 

favored motif start locations near the peak. The other, denoted as HMS_uniform, 

assumed a uniform prior for the motif start location throughout the genome. As described 

in the Methods section, we used the successful motif detection rate and the accuracy of 

predicted motif pattern as measurements of performance.  

 For the motif detection rate, both versions of HMS achieved perfect results in all 

eight simulation settings. MEME and MDscan achieved perfect results in six and four 

settings respectively. MEME achieves equal or higher detection rate than MDscan in all 

but one setting. (Table A3.2A in appendix).  

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/


 

99 
 

Figure 3.1 Performance comparison on simulated data with independent and dependent 
motif model. The y-axis represents the difference between two sets of discrepancies 
resulted from two different motif finding methods. The discrepancies are measured by the 
average Hamming distance between the estimated and the true probability matrix . A. 
Independent, motif width = 8 bp. B. Independent, motif width = 16 bp. C. Dependent, 
motif width = 8 bp. D. Dependent, motif width = 16 bp.  
A. Independent, motif width = 8 bp. 

 

B. Independent, motif width = 16 bp. 
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C. Dependent, motif width = 8 bp. 

 

D. Dependent, motif width = 16 bp. 

 

 We next compared performance on motif pattern prediction accuracy. The 

prediction accuracy is defined as the discrepancy between predicted and true  for each 

method and each dataset. See equation (3.11) for the expression for the discrepancy. To 
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discrepancies obtained using HMS and that of a competing method (HMS_uniform, 

MEME and MDscan). Among the 100 datasets, we only considered the ones in which all 

methods successfully detected the right motif. Significantly smaller discrepancy (p-value 

<0.01) was observed in six out of eight simulation settings when comparing HMS to 

MEME, and in seven out of eight settings when comparing HMS to MDscan (Figure 

3.1A, Figure 3.1B and Tables A3.2A in appendix). In addition, we found that adopting 

the informative prior for the proposed HMS method results in more accurate motif 

pattern prediction in all eight simulation settings than when using the uniform prior. 

(Tables A3.2A in appendix).           

3.3.1.2 Inter-dependent motif models 

 We next conducted simulation studies to evaluate the performance of HMS when 

some positions within the motif showed inter-dependency. In our simulation, dependency 

was added to two pairs of positions in the 8 bp motif model and four pairs of positions in 

the 16 bp motif model. The joint distribution of the pairs was taken from the one 

predicted for position pair (1,2) in the E2F motif in Zhou and Liu (93) (as shown in 

Figure 2(b) in the original paper, reproduced in Table A3.3 in appendix).  

 In terms of motif detection, both versions of HMS achieved perfect results in five 

out of the eight simulation settings. MEME and MDscan achieved perfect results in four 

and two settings respectively. Furthermore, HMS and HMS_uniform reported higher 

detection rates compared to MDscan and MEME in all simulation settings. Our results 

also suggest that the HMS method assuming informative prior performed better than the 

HMS method assuming non- informative prior (Table A3.2B in appendix).  
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When comparing motif pattern prediction accuracy, paired t-tests showed that 

motif pattern prediction discrepancies were significantly smaller for HMS than MEME 

and MDscan in all testable simulation settings (MEME did not identify the correct motif 

in any dataset under two simulation settings; MDscan only identifies the correct motif in 

two out of 100 datasets under one simulation settings. Therefore no paired t-test is 

performed for those simulation settings).  The performance was similar between the two 

versions of HMS (Figure 3.1C, Figure 3.1D and Table A3.2B in appendix). 

3.3.2 Real data 

 To further evaluate the performance of HMS, we tested it along with MDscan and 

MEME on four real ChIP-Seq datasets. The first three datasets, namely NRSF (neuron-

restrictive silencer factor) (4), STAT1 (signal transducer and activator of transcription 

protein 1) (68), and CTCF (CCCTC-binding factor) (67), are publically-available. The 

ER dataset, however, is newly generated for this study. The details of these four datasets 

can be found in Table A3.4A and appendix. 

3.3.2.1 Intra-motif dependency 

 It is well known that some positions of TF binding motifs exert an inter-

dependent effect on the binding affinities of TFs (87-90). However, due to the scarcity of 

the motifs identified for each TF, it is difficult to detect those dependent positions based 

solely on the limited motif sequence data. With the introduction of the ChIP-Seq 

technology, significantly more motif sequences can now be identified, which gives us 

unprecedented opportunity to identify dependent positions. Using the exhaustive search 

strategy we outlined in the methods section, we surveyed the four ChIP-Seq datasets used 

in this study: NRSF, STAT1, CTCF, and ER. The Hamming distance between two 
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probability vectors— and  were presented 

in heatmaps (Figure 3.2 and Figure A3.3 in appendix). The two sets of probabilities of the 

16 dinucleotides were estimated under the independent and dependent models 

respectively. Larger distance indicated higher dependency. Using the Hamming distance 

of 0.2 as the threshold, the number of dependent position pairs in the motif ranged from 

three to five in the four real datasets we studied (Table A3.5 in appendix). These pairs 

formed two triplets in NRSF and CTCF motifs, one triplet and one pair in the STAT1 

motif and two triplets and one pair in the ER motif. In particular, we found that positions 

14 and 15 in the CTCF motif show exceptionally strong dependency. The frequency of 

dinucleotides AC and GG in these positions were below what would be expected if they 

were independent. Similarly, the frequency for dinucleotides AG and GC exceeded 

expectations. The probability of discrepancy between independent and dependent motif 

models exceeded 0.1 in all four relevant cells in the four by four table (Table A3.6 in 

appendix).  

 Although our search strategy considers all pairs equally, we found that the 

strongest intra-motif dependency occurred at pairs of adjacent positions (Figure 3.2 and 

Figure A3.3 in appendix). All 16 dependent position pairs we identified in the four motifs 

were adjacent. This is not surprising given the strong dependency in neighboring 

positions of DNA sequences. We also found that strong intra-motif dependency often 

occurred in the so-called ―gap‖ positions where the motif pattern appeared to be ―weak‖ 

according to single-column motif model (e.g., positions 10, 11 and 11 and 12 in the ER 

motif). 
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Figure 3.2 Illustration of the unbiased exhaustive survey of all pairs of positions within 
the ER motif to assess the strength of their dependency. The differences in Hamming 
distance between the independent and dependent models are plotted in a heatmap. Larger 
differences (in dark red color) indicate higher dependency. Dependent triples: position 2, 
3 and 4, position 10, 11 and 12. Dependent pairs: position 18 and 19. Dependent 
positions are illustrated in the box on the logo plot and the heatmap.  
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3.3.2.2 TFBS motif profile comparison 

 Since both HMS and MDscan were able to rapidly process tens of thousands of 

DNA sequences without sacrificing much computation time, we fed the entire set of 

ChIP-enriched regions into these two programs. In this comparison, we only used the top 

500 sequences as input for MEME, since this program was not optimized to analyze large 

numbers of DNA sequences. Next, we applied MAST (96), a motif scanning software 

that is a companion to MEME, to scan the remaining sequences using the motif pattern 

identified by MEME. This is a commonly-used strategy in motif analysis (75). We also 

included motif patterns either from the literature (CTCF motif from Kim et al. (97)) or 

from MatBase (Genomatix, Software GmbH, Munich, Germany) for comparison. We 

used two different versions of HMS in our analysis: the default setting allowing 

dependency among positions in the motif and HMS_ind assumed all positions are 

independent. Informative prior for alignment variable  is used in both versions of HMS.  
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Figure 3.3 Comparison of ER motif patterns identified by different de novo motif- finding 
tools, as well as known motif patterns stored in the MatBase (Genomatix Software 
GmBH, Munich, Germany). A. Logo plots (52) of motifs identified by various motif-
finding programs as well as the ones stored in the MatBase. The logo plots are generated 
using R package ―seqLogo‖ (53). B. Comparison of motif enrichment in ChIP-Seq using 
cross validation. C. Comparison of motif enrichment in ChIP-chip data using motif 
patterns identified in ChIP-Seq. In order to obtain a smooth curve when plotting 
empirical FDR versus Chi-square test statistics, we applied kernel smoothing using an R 
function smooth.spline(). 
A.  
Genomatix V$ER01:                                      Genomatix V$ER02: 

 
Genomatix V$ER03:                                     MEME: 

    
HMS: 

 
B.           C. 

 

 



 

107 
 

 Although the four TFs and their binding motifs were quite diverse, the motif 

pattern identification results were remarkably consistent. The results from the ER dataset 

are presented in Figure 3.3. Results from the three publicly available ChIP-Seq datasets 

can be found in Figure A3.4-A3.6 in appendix.  

 Figure 3.3A showed that de novo motif patterns identified by MEME and HMS 

from the ER ChIP-Seq dataset. Both patterns were similar to the ER motif stored in 

MatBase. However, the motif pattern identified by HMS was relatively less conserved 

(average information content: HMS: 0.64, MEME: 0.71, Genomatix V$ER01: 1.00, 

Genomatix V$ER02: 1.03, Genomatix V$ER03: 0.89) but more palindromic than the 

other motif patterns (Hamming distance between the two 6-mer half sites after one half 

site was converted to its reverse complement: HMS: 0.09, MEME: 2.57, Genomatix 

V$ER01: 4.00, Genomatix V$ER02: 2.18, Genomatix V$ER03: 2.53). We did not 

include MDscan in our comparison since MDscan was unable to consistently identify the 

consensus ER motif pattern. In Figure 3.3B, we plotted the Chi-square test statistics that 

measured the motif enrichment at different levels of the empirical FDR. Comparing 

AUC, we found that the motif patterns identified by MEME and HMS showed much 

higher AUC than the known motif patterns stored in MatBase. We believe that the 

dramatically increased number of binding sites identified by ChIP-Seq contributed to the 

refinement of the motif pattern. MEME and a simplified version of HMS (which used an 

independent mono-nucleotide model, referred as HMS_ind) exhibited a similar result. 

AUC for HMS, which allowed up to three-way interdependency, was 16.7% higher than 

MEME (Table A3.7 in appendix). The improvement is statistically significant when we 

repeated the cross-validation steps 100 times and compared the AUCs from HMS and 
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MEME using a paired t-test (p-value < 0.00001). We also compared the proportions of 

ChIP-enriched sequences that contain each of the ER motif patterns shown in Figure 3A. 

We found that, under the two empirical FDR levels (0.05 and 0.1), the proportion of 

motif pattern defined by HMS is higher than that from HMS_ind (by 12.95% and 8.07% 

respectively). Comparing HMS to MEME under these empirical FDR levels, the 

proportion of motif pattern defined by HMS again is higher (by 19.52% and 9.20% 

respectively). These differences are again significant (p-value < 0.00001) when verifying 

with paired t-test comparing results from 100 cross-validations. In addition, we found that 

proportions of motifs reported by HMS, HMS_ind and MEME are much higher than 

those found in the MatBase (Table A3.8 in appendix). 

 Among the other datasets (NRSF, STAT1, and CTCF), HMS and MEME 

consistently identified the consensus motif patterns in all trials. MDscan was able to 

consistently identify only the NRSF motif, but not the ones for the other two datasets. 

Again, we found that the motif patterns identified by these de novo motif- finding tools 

were more enriched than known motif patterns found in the literature or MatBase. Motif 

patterns defined by HMS consistently showed higher enrichment and resulted in higher 

AUC than MEME (Figures A3.4-A3.6, Table A3.7 in appendix). Motif patterns defined 

by HMS are consistently found in more ChIP-enriched sequences than those defined by 

HMS_ind and MEME at the same empirical FDR levels (Table A3.8 in appendix). The 

performance differences are significant except for the STAT1 motif.  

3.3.2.3 Comparison to ChIP-chip data 

 In order to confirm that the higher enrichment of the motif identified by HMS on 

ChIP-Seq data was not platform-dependent, we compared an independent set of testing 
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and control sequences using ChIP-chip. Not only the technology is different, but also the 

cells and antibodies used. Detailed information about these datasets can be found in Table 

A3.4B and appendix.  

 Despite all the differences, we found that the ER motif pattern identified by HMS 

from ChIP-Seq data once again exhibited significantly higher enrichment than those of 

HMS_ind and MEME (Figure 3.3C): the improvements of AUC were 17.5%, and 57.4%, 

respectively (Table A3.7 in appendix). These differences are statistical significant (p-

value < 0.00001). Similar plots and AUC comparisons performed on the other three 

datasets—NRSF, STAT1 and CTCF—showed comparable patterns (Figures A3.4-A3.6, 

Table A3.7 in appendix). These findings support that the motif pattern identified by HMS 

has a higher accuracy. 

3.3.3 Computation Time 

 All computation was performed on Dell PowerEdge 1950 compute nodes with 

2.83 GHz CPU processors and 8 GB RAM. To compare the computation time required 

for each algorithm, we selected the top 500, 1,000, 1,500, 2,000, up to 5,000 sequences 

identified from the NRSF ChIP-Seq data and fed them into the three motif- finding 

programs—MDscan, MEME, and HMS. We found MDscan to be the fastest, with HMS 

a close second. Computation time increased linearly with the number of sequences for 

MDscan and HMS; and both were much faster than MEME. The differences are quite 

dramatic. For real data, computation times for HMS ranged from 0.4 hours (NRSF data) 

to about 2.5 hours (CTCF data). However, since all parallel chains are independent, 

computation time can be reduced to one tenth if using a multi-processor computing 
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cluster. In contrast, MEME takes much longer; from 13 hours (NRSF data) to more than 

23 days (CTCF data, job aborted after 23 days of running).  

3.4 Discussion 

 The newly-emerged ChIP-Seq technology is capable of comprehensively 

revealing protein-DNA interacting sites across the entire genome with high resolution, 

which presents both opportunities and challenges for the identification of TFBS motif 

patterns. Increasing the number of input sequences allowed us to define TFBS motif 

patterns more accurately. However, most of the existing motif- finding programs such as 

MEME are not optimized to analyze the large number of input sequences that are 

generated from ChIP-Seq experiments. In this manuscript, we introduce HMS, a novel 

computational algorithm, specifically designed for TFBS motif discovery from ChIP-Seq 

data. It combines stochastic sampling with deterministic optimization in an iterative 

procedure. The assignment of sequences to these two treatments was dependent on the 

ranks of the ChIP-enrichment of those regions. This prioritized hybrid Monte Carlo 

strategy allows us to rapidly analyze tens of thousands of input sequences and produces 

an accurate estimate of the motif pattern. Our algorithm has the additional advantage of 

leveraging sequencing depth within each region to aid motif identification. Since the 

shape of sequencing depth is indicative of likely loci of the motif, using an informative 

prior gives HMS greater capability to identify weaker motifs than it could otherwise, a 

clear advancement. 

 In addition, using HMS we found that there is substantial intra-motif dependency 

among selected pairs of positions. We identified 16 highly significant position pairs 

within the NRSF, STAT1, CTCF and ER motifs. All of these position pairs are adjacent 
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to each other, some form triplets. In particular, we noticed a position pair (14 and 15) in 

the CTCF motif that displays exceptionally strong dependency in which dinucleotides 

AG and GC are far more frequent then AC and GG at these two positions. Using both 

simulated data and real data, we showed that incorporating dependent positions in a motif 

model offers further improvement in detecting and characterizing the underlying TF 

binding motif patterns.  

 Currently, most de novo motif searches on sequences identified by ChIP-Seq are 

conducted on a subset of all available sequences. This is because searching through the 

full set of thousands, or even tens of thousands, of input sequences using existing motif-

finding tools is extremely time-consuming. Our simulation study showed that this 

strategy, while convenient, has increased the likelihood of missing the true motif patterns. 

Further, the probability matrix  inferred with this strategy are often less accurate. In 

contrast, HMS allows us to analyze the full set of input sequences within only a fraction 

of the computational time required for existing de novo motif- finding tools like MEME. 

In this study, stochastic search was performed on the top 10% of all sequences. This 

proportion is adjustable by users. We have experimented increasing or decreasing the 

10% cutoff and found that these changes made little difference in the performance of 

HMS.  When applied to multiple real ChIP-Seq datasets, we found that the motif patterns 

identified by HMS tend to be more enriched than motifs identified by other methods.  

Remarkably, when comparing the same motif patterns identified from ChIP-Seq data to 

enriched regions identified from independent ChIP-chip experiments for the same TF, 

even with different cell types or different antibodies or both, we still found that motif 

patterns identified by HMS showed higher enrichment in the ChIP-enriched regions 



 

112 
 

relative to random control sequences. This finding suggests that the motif patterns 

identified by HMS are closer to the underlying motif pattern recognized by the TF.

 In this study, we utilized ChIP-enrichment of the peaks to rank order all input 

sequences, believing that ChIP-enrichment is positively correlated with the motif 

abundance. However, there are many potential reasons, both biological and technical, that 

a particular region is sequenced more deeply. These include the availability of the 

antibody’s epitope during the immunoprecipitation step, conformational changes on the 

TF, abnormality in the cell line such as aneuploidy, bias introduced during the 

sequencing library construction, nucleotide- induced sequencibility bias (such as GC 

content) and bias related to alignment (repeat regions, various polymorphisms). These 

complications will reduce the correlation between ChIP-enrichment and sequencing 

depth. We believe advanced models that consider these factors will further improve the 

performance of HMS. Another potential enhancement would be to model the protein-

DNA binding affinity indicated by read density using thermodynamic models (98).   

 In this study, if the motif width is unknown, we run HMS with every possible 

width within the range specified by the user and report all significant motif patterns. One 

possible improvement to this step would be to allow motif width  to vary during 

iterations (99). For example, we may add a Metropolis step, with equal probability of 

adding or removing one base at one end of the motif, and test whether the new motif 

pattern provides a better fit with the data. Another possible area for improvement 

concerns multiple binding sites. Currently, HMS is only designed to search for the 

primary binding site (i.e., the binding motif of the regulatory protein being ChIP’ed). 
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However, we can also use HMS to identify secondary binding sites by masking the first 

motif identified and re-running HMS on the masked sequences. 

 In summary, we showed that ChIP-Seq data can significantly increase our ability 

to discover and refine TFBS motif patterns. However, new computational tools are 

needed in order to efficiently and thoroughly handle the ChIP-Seq data, as well as to 

exploit the various advantages of ChIP-Seq technology. The development of the highly 

scalable HMS algorithm represents an early attempt. With significant improvement in 

both accuracy and computation speed, we believe that HMS will be of broad interest to 

researchers conducting ChIP-Seq experiments and has the potential to accelerate 

discovery in biomedical research.   

3.5 Appendix 

3.5.1 URLs of data used in this study 

ChIP-Seq: 

NRSF: 

http://www.illumina.com/downloads/Illumina_ChIPSeq_Demo_Data_Johnson_Science_

2007.zip 

STAT1: http://www.bcgsc.ca/data/chipseq 

CTCF: http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx 

ER:  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM470418  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM470419  

ChIP-chip:  

http://www.illumina.com/downloads/Illumina_ChIPSeq_Demo_Data_Johnson_Science_2007.zip
http://www.illumina.com/downloads/Illumina_ChIPSeq_Demo_Data_Johnson_Science_2007.zip
http://www.bcgsc.ca/data/chipseq
http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM470418
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM470418
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NRSF: 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gds&term=GSE8489[Accession]&cmd=sea

rch 

STAT1: http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE2714  

CTCF: http://licr-renlab.ucsd.edu/download.html 

ER: 

http://research4.dfci.harvard.edu/brownlab//datasets/index.php?dir=ER_MCF7_whole_hu

man_genome/ 

3.5.2 HPeak Software  

 HPeak (95) is a hidden Markov model (HMM)-based algorithm for analyzing 

ChIP-Seq data. The goal of HPeak is to partition the genome into segments that are either 

ChIP-enriched or non-enriched such that the enriched portion of the genome is much 

more likely to harbor protein-DNA interaction sites. The input data is a collection of 

sequencing reads that have been aligned to the reference genome uniquely. HPeak first 

partitions the entire genome into small bins of fixed length (e.g., 25 bps) and evaluates 

the distribution of ChIP DNA fragments in these bins throughout the genome. Next 

HPeak applies a two-state HMM on the sequencing depth profile to identify stretches of 

ChIP-enriched bins from the background. HPeak uses two different probability 

distributions, the generalized Poisson (GP) distribution (100) and the zero inflated 

Poisson (ZIP) distribution (101) to model the numbers of sequencing reads that overlap 

with ChIP-enriched and non-enriched bins respectively. Both these distributions are 

modified from the standard Poisson distribution to fit data where there is serious over or 

under dispersion or there are a large proportion of extra zeros, cases we often observe in 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gds&term=GSE8489%5bAccession%5d&cmd=search
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gds&term=GSE8489%5bAccession%5d&cmd=search
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE2714
http://licr-renlab.ucsd.edu/download.html
http://research4.dfci.harvard.edu/brownlab/datasets/index.php?dir=ER_MCF7_whole_human_genome/
http://research4.dfci.harvard.edu/brownlab/datasets/index.php?dir=ER_MCF7_whole_human_genome/
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genome-wide sequencing read coverage profiles. Using a user-specified posterior 

probability threshold, HPeak then identifies stretches of bins from the HMM that show 

significant enrichment of sequencing read counts. Each set of bins is defined as a peak. In 

addition to its genomic location and the length of the peak, HPeak also reports the 

location of the highest sequencing depth within the peak, the actual maximum sequencing 

depth at that location, and the posterior probability of these bins be ing ChIP-enriched. 

Because such probability reflects the significance of these peaks, one can rank all peaks 

predicted by HPeak using these probabilities. HPeak software is freely available from the 

website http://www.sph.umich.edu/csg/qin/HPeak/. 

3.5.3 Estrogen Receptor ChIP-Seq Experiment on MCF7 Cells 

 MCF-7 cells were grown in RPMI media supplemented with 10% FBS to 50% 

confluence. The cells were then hormone-starved for three days prior to the treatment 

with 10 nM β-estradiol or vehicle control for 45 minutes. The cells were then harvested 

for ChIP analysis as previously described using an antibody against the estrogen receptor 

(ER)-alpha (sc-543x, Santa Cruz Biotechnology Inc, Santa Cruz, CA) or the IgG control. 

Briefly, cultured cells near 90% confluence were crosslinked with 1% formaldehyde for 

10 minutes and the crosslinking was inactivated by 0.125 M glycine for 5 minutes at 

room temperature (RT). The cells were then rinsed with cold 1X PBS twice and scraped 

off in 1X PBS + protease inhibitor (PI). Cells were pelleted and resuspended in cell lysis 

buffer plus PI for 10 minutes. Nuclei pellets were spun at 5,000 rpm for 5 minutes, 

resuspended in nuclear lysis buffer, and then incubated for 10 minutes. Chromatin was 

sonicated to an average length of 500 bp with an Ultrasonic Processor Sonicator 3000 

(Misonix Inc, Farmingdale, NY) and then centrifuged at 14,000 rpm for 10 minutes to 

http://www.sph.umich.edu/csg/qin/HPeak/
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remove the debris. Supernatants containing chromatin fragments were incubated with 

agarose/protein A or G beads (Millipore. Billerica, MA) for 15 minutes and centrifuged 

at 5,000 rpm for 5 minutes to remove the nonspecific binding. To immunoprecipitate 

protein/chromatin complexes, the supernatants were incubated with 3-5 µg of antibody or 

IgG overnight, then added 50 µl of agarose/protein A or G beads and incubated for 

another hour. Beads were washed twice with 1X dialysis buffer and four times with IP 

buffer. The antibody/protein/DNA complexes were eluted with 150 µL IP elution buffer 

twice. To reverse the crosslinks, the complexes were incubated in elution buffer plus 10 

µg RNase A and 0.3 M NaCl at 67 C for four hours. DNA/proteins were precipitated 

with ethanol, air-dried, and dissolved in 100 µL of TE. Proteins were then digested by 

proteinase K at 45 C for one hour and DNA was purified with a QIAGEN PCR 

purification column and eluted with 30 µL EB buffer.  

 The ChIP-enriched DNA was evaluated for significant enrichment of positive 

control genes and then subjected to ChIP-Seq sample preparation following the 

manufacturer’s protocols (Illumina Inc, San Diego, CA). Briefly, the ends of ChIP-

enriched DNA or control DNA (~10 ng) was first repaired by T4 DNA polymerase, T4 

PNK, and Klenow DNA polymerase at 20 C for 30 minutes. An ―A‖ base was added to 

the 3’ end of the blunt phosphorylated DNA fragments using Klenow exo at 37 C for 30 

minutes. Adapters were then ligated to the ends of the DNA fragments by DNA ligase at 

RT for 15 minutes. DNA fragments were separated on 2% gel at 100V for 1 hour, the 

200 25bp band was excised from the gel, and the DNA was extracted by QIAGEN gel 

extraction kit. Gel-extracted DNA was amplified by PCR reaction for 16 cycles and 

quality assured using Bioanalyzer (Agilent Technologies, Santa Clara, CA). ChIP-
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Sequencing was performed using the Illumina Genome Analyzer according to standard 

manufacturer’s procedures. The raw sequencing image data were analyzed by the 

Illumina analysis pipeline, aligned to the unmasked human reference genome (NCBI v36, 

hg18) using Eland software (Illumina Inc, San Diego, CA) to generate sequence reads of 

35 bps. 

3.5.4 Simulation scheme for studying intra-motif dependency 

 As described in the Methods section of this chapter, for a pair of positions within 

the motif, we use the Hamming distance between two sets of estimated dinucleotide 

frequencies based on two competing probability models (16-component multinomial 

distribution or the product of two four-component multinomial distributions) to gauge 

whether the two positions are dependent. To select a reasonable cutoff, we conducted a 

simulation study to estimate the null distribution for such Hamming distances. We 

considered five levels of nucleotide conservation, with information content ranging from 

0.29 to 1.76 (0.29, 0.64, 1.15, 1.42 and 1.76). There are in total 15 different combinations 

of these information contents. For each combination, we specify two four-component 

multinomial distributions that match the two information content levels. One thousand 

nucleotides were drawn from each of the two multinomial distributions independently. 

We choose the large number to reflect the fact that typically large amounts of motifs were 

identified from ChIP-Seq experiments. The Hamming distances were calculated using 

formula (3.4) in this chapter: 
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We simulated one million position pairs using the above procedure in order to obtain an 

accurate null distribution of the background Hamming distance. The histograms of these 

Hamming distances were shown in Figure A3.7. From these plots we found that strong 

dependency (large Hamming distance) tends to occur between a pair of positions in 

which each position itself is weakly conserved.  

3.5.5 Tables in appendix 

Table A3.1A Four motif models for two motif widths and two motif strengths used in the 
simulation study. 
 

Motif Consensus (Width) Motif information content 
S1 (high) S2 (low) 

GACTACCA (W8) 1.42 0.93 
AGGATCTAATGATCCT (W16) 1.42 0.93 

 
Table A3.1B Two motif abundances scheme used in the simulation study.  
 

Expected copies of motif segments Motif abundance 
A1 (high) A2 (low) 

Top 25% sequences 0.9 0.6 
25% - 50% sequences 0.7 0.4 
50% - 75% sequences 0.5 0.2 
Last 25% sequences 0.3 0 
Total expected motif segments 1,800 900 
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Table A3.2A Performance comparison on simulated data assuming all positions within the motif are independent.  
 

Simulation Times_found2  Difference compared to HMS3 

setting1  HMS HMS_uniform MEME MDscan HMS_uniform MEME MDscan 
W8S1A1 100 100 100 100 0.01** 0 0.11**  
W8S1A2 100 100 100 100 0.00** 0 0.09**  
W8S2A1 100 100 71 33 0 0.07**  0.11**  
W8S2A2 100 100 78 96 0.01 0.09**  0.02 
W16S1A1 100 100 100 100 0 0.02**  0.12**  
W16S1A2 100 100 100 100 0.00**  0.02**  0.10**  
W16S2A1 100 100 100 54 0.00*  0.02**  0.21**  
W16S2A2 100 100 100 91 0.00*  0.02**  0.20**  
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Table A3.2B Performance comparison on simulated data assuming some positions within the motif are dependent. 
 

Simulation Times_found2  Difference compared to HMS3 

setting1  HMS HMS_uniform MEME MDscan HMS_uniform MEME MDscan 
W8S1A1 98 98 63 96 0 0.10**  0.11**  
W8S1A2 100 100 85 93 0 0.09**  0.10** 
W8S2A1 92 89 0 2 -0.01#  NA 0.09#  
W8S2A2 73 69 0 61 0.03 NA 0.09**  
W16S1A1 100 100 100 100 0 0.22**  0.28**  
W16S1A2 100 100 100 100 0 0.21**  0.26**  
W16S2A1 100 100 100 40 0 0.21**  0.31**  
W16S2A2 100 100 100 83 0 0.20**  0.30**  
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 1Each simulation setting is a combination of motif width (W), information content (S) and motif abundance (A). The scheme is 
similar to Liu et al, (2001) (54) and described in Table A3.1.  
2―Times found‖ indicates among the 100 simulated dataset, how many times the correct motif is identified by the motif- finding 
algorithm.  
3Difference referrers to the difference between two average Hamming distances h and hHMS in which h measures average discrepancy 

(per base) between probability matrix  and its prediction denoted as  (Formula (3.11)). hHMS measures 

average discrepancy (per base) between probability matrix  and  predicted by HMS method. We use * to indicate a p-value in 
paired t-test between 0.01 and 0.05 and ** to indicate a p-value in paired t-test less than 0.01. # indicates that p-value is not available 
due to lack of sample size (in simulation setting W8S2A1, MDscan can detect correct motif only in two out 100 simulated data sets.) 
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Table A3.3 The joint distribution of dinucleotides in two dependent positions. The probabilities in this multinomial distribution are 
taken from the one predicted for position pair (1,2) in the E2F motif in Zhou and Liu (93) (Figure 2(b) in their paper). 

First Base Second Base 
A C G T 

A 0 0 0.19 0 
C 0 0 0.16 0.06 
G 0 0.09 0 0 
T 0 0.44 0.06 0 

  

Table A3.4A Information on the four real ChIP-Seq datasets 
TF Cell type Antibody # of peaks Coverage Reference 
NRSF Jurkat T cell Monoclonal antibody 12C11 4,982 1.4 MB Johnson et al. (2007) 
STAT1 HeLa S3 cell Rabbit polyclonal antibody  27,470 8.1 MB Robertson et al. (2007) 
CTCF CD4+ T cell Upstate 07-729 22,159 7.4 MB Barski et al. (2007) 
ER MCF7 cell ER α (HC-20) 10,072 2.5 MB Hu et al. (2010) 

 
Table A3.4B Information on the four real ChIP-chip datasets  

TF Cell type Antibody # of peaks Coverage Reference 
NRSF Jurkat T cell Monoclonal antibody 8,819 12.2 MB Johnson et al. (2007) 
STAT1 HeLa S3 cell α p91 (C-24) rabbit polyclonal antibody 3,701 4.7 MB Euskirchen et al. (2007) 
CTCF IMR90 and U937 cell Mixture of 9 monoclonal antibodies 13,804 12.1 MB Kim et al. (2005) 
ER MCF7 cell ER α (HC-20) 10,901 11.1 MB Carroll et al. (2005) 
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Table A3.5. Dependent positions identified in four motifs from ChIP-Seq data. 
 

Motif Top dependent pairs Hamming distance 
NRSF width = 21 bp (18-19) 0.3308  
Dependent positions: (3-4) 0.3297  
[(2-3)(3-4)] [(18-19)(19-20)] (19-20) 0.3196  
  (2-3) 0.2629  
CTCF width = 24 bp (14-15) 0.4635  
Dependent positions:  (16-17) 0.3358  
[(13-14)(14-15)] [(16-17)(17-18)] (17-18) 0.2720  
  (13-14) 0.2664  
STAT11 width = 19 bp (7-8) 0.3052  
Dependent positions:  (6-7) 0.2853  
[(6-7)(7-8)] (13-14) (13-14) 0.2008  
ER width = 19 bp (11-12) 0.2562  
Dependent positions:  (10-11) 0.2553  
[(2-3)(3-4)] [(10-11)(11-12)] (18-19) (18-19) 0.2327  

 
(3-4) 0.2260  

  (2-3) 0.2070  
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Table A3.6. The probability mass function of 16-component multinomial distribution (dependent) of position 14 and position 15 in the 
CTCF motif, and the probability mass function of 16-component multinomial distribution (independent) of position 14 and position 15 
in CTCF motif (the outer product of the probability mass function of  two independent four-component multinomial distributions).  
 

 
Position 15 Marginal 

distribution Position 14 A C G T 
A 0.03 (0.04) 0.14 (0.25) 0.28 (0.16) 0.03 (0.03) 0.48 
C 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 
G 0.05 (0.04) 0.34 (0.24) 0.06 (0.17) 0.03 (0.03) 0.48 
T 0.00 (0.00) 0.02 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 

Marginal distribution 0.08 0.51 0.34 0.06 1 
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Table A3.7. Comparison of motif enrichment among motif patterns identified by different de novo motif finding tools as well as 
known motif patterns described in the literature or stored in the MatBase (Genomatix Software GmBH, Munich, Germany). 

Area under the curve1 ChIP-Seq2 ChIP-chip3 
NRSF STAT1 CTCF ER NRSF STAT1 CTCF ER 

HMS 258.62** 439.68 2312.87** 327.99** 163.08** 94.23** 1102.02** 1216.94** 

HMS_ind 254.73** 388.99 2198.81** 290.30 161.98** 83.75 1001.35** 1035.42** 
MEME 242.83 440.33 2076.76 281.14 148.76 82.95 908.35 773.30 
MDscan 240.16 -- -- -- 143.25 -- -- -- 
Genomatix V$NRSF 210.38 -- -- -- 36.38 -- -- -- 
Genomatix V$STAT01 -- 77.39 -- -- -- 9.69 -- -- 
Genomatix V$STAT03 -- 191.70 -- -- -- 28.96 -- -- 
Kim07_CTCF -- -- 1225.97 -- -- -- 509.62 -- 
Genomatix V$ER01 -- -- -- 35.29 -- -- -- 292.43 
Genomatix V$ER02 -- -- -- 35.05 -- -- -- 71.48 
Genomatix V$ER03 -- -- -- 87.40 -- -- -- 245.37 

1Area under the curve (AUC) in the empirical FDR versus Chi-square test statistics plot (Figure 3.3B and C, Figures A3.4-A3.6 B and 
C). Values in bold indicate the best performance in that column. Five cross-validations were performed on each dataset using each of 
the four motif finding algorithms. In addition, we conducted cross-validation 100 times and compared the AUCs obtained from two 
different method using a paired t-test to assess whether the performance difference we observed in statistical significant. We use ** 
indicates an empirical p-value less than 0.01. 
2The empirical FDRs for NRSF, STAT1, CTCF and ER ChIP-Seq data sets all range from 0 to 0.2. 
3The empirical FDRs for NRSF and CTCF ChIP-chip data sets range from 0 to 0.2. The empirical FDRs for STAT1 and ER ChIP-chip 
data sets range from 0 to 1. 
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Table A3.8. Comparison of motif enrichment among the three motif finding tools and 
known motif patterns stored in the MatBase (Genomatix GmBH, Munich, Germany).1  
 

ChIP-Seq NRSF STAT1 CTCF ER 
Empirical FDR2  0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 

HMS 49.30 51.41 10.84 25.29 79.05 84.45 29.39 38.57 

HMS_ind 48.25 51.09 10.12 22.10 75.91 83.10 26.02 35.69 
MEME 46.63 49.55 10.28 24.08 72.43 81.16 24.59 35.32 
MDscan 45.21 49.11 -- -- -- -- -- -- 
Genomatix V$NRSF 41.09 42.52 -- -- -- -- -- -- 
Genmoatix V$STAT01 -- -- -- -- -- -- -- -- 
Genomatix V$STAT03 -- -- 10.09 12.16 -- -- -- -- 
Kim07_CTCF -- -- -- -- 56.68 62.01 -- -- 
Genomatix V$ER01 -- -- -- -- -- -- -- -- 
Genomatix V$ER02 -- -- -- -- -- -- -- -- 
Genomatix V$ER03 -- -- -- -- -- -- 10.62 14.56 

 

1Values in the table are percentages of ChIP-enriched sequences that contain the specific 
motif pattern. Values in bold indicate the best performance in that column.  
2The empirical FDR is estimated by dividing the number of control sequences that 
contain the motif by the number of testing sequences that contain the motif.  
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3.5.6 Figures in appendix 

Figure A3.1 Rank order of all ChIP-enriched regions versus location of motifs. Zero in 
the y-axis indicates the location of highest sequencing depth in the ChIP-enriched regions 
obtained from HPeak program. For each position  within a ChIP-enriched region 

, we calculate a motif score defined as equation (3.1), measuring the similarity between 
the DNA sequence of length w (motif length, assumed known) starts from the current 
location and the known motif pattern represented by PSWM. Higher scores indicates 
better match. We record the position with highest motif score for each ChIP-enriched 
region . For each dot, the x-axis represents the rank of ChIP-enriched region (from the 
highest to the lowest), and the y-axis represents the physical position of the most likely 
motif location in each ChIP-enriched region. The red dots indicate the motifs with score 
above the first quantile, and the yellow dots indicate the motifs with score between the 
first quantile and median. A. NRSF, B. STAT1, C. CTCF, D. ER. 
A.                B. 
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C.                 D. 

 

 
Figure A3.2 Illustration of the informative prior distribution of motif start locations. The 
prior probabilities (solid black line) are proportional to a discretized Student’s t 

distribution with three degrees of freedom (with standard error = 1.73) and rescaled such 
that the prior probabilities form a step function with a fixed step-size (25 bp in this study). 
The solid red line represents the probability density function of shifted and rescaled 
Student’s t distribution with three degrees of freedom. 
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Figure A3.3 Illustration of the unbiased exhaustive survey of all pairs of positions within 
the motif.  Larger differences (in darker color) indicate higher dependency.  
 
NRSF: (2,3,4) (18,19,20)                                        

  
CTCF: (13,14,15) (16,17,18) 

  
  

STAT1: (6,7,8) (13,14)                                    
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Figure A3.4 Comparison of NRSF motif patterns identified by different de novo motif 
finding tools as well as the  known NRSF motif found in the MatBase (Genomatix 
Software GmBH, Munich, Germany). A. Logo plots of motifs identified by various motif 
finding programs as well as the NRSF motif stored in the MatBase. B. Comparison of 
motif enrichment in ChIP-Seq using cross validation. C. Comparison of motif enrichment 
in ChIP-chip data using motif patterns identified in ChIP-Seq.  
A. 
Genomatix:                                                                    MEME: 

 
MDscan:                                                                        HMS: 

 
B.                                                                                 C. 
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Figure A3.5 Comparison of STAT1 motif patterns identified by different de novo motif 
finding tools as well as known STAT motif patterns stored in the MatBase (Genomatix 
Software GmBH, Munich, Germany). A. Logo plots of motifs identified by various motif 
finding programs as well as the STAT motifs stored in the MatBase. B. Comparison of 
motif enrichment in ChIP-Seq using cross validation. C. Comparison of motif enrichment 
in ChIP-chip data using motif patterns identified in ChIP-Seq. Note: the x axis in STAT1 
ChIP-chip figure is from 0 to 1.0 instead of the usual range of 0 to 0.2 due to its high 
empirical FDR.  
A. 
Genomatix V$STAT01:                                       Genomatix V$STAT03: 

 
MEME:                                                                  HMS: 

 
B.                                                                                 C. 
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Figure A3.6 Comparison of CTCF motif patterns identified by different de novo motif 
finding tools as well as a known motif pattern found in Kim et al. (2007). A. Logo plots 
of motifs identified by various motif finding programs as well as the one found in Kim et 
al. (2007). B. Comparison of motif enrichment in ChIP-Seq using cross validation. C. 
Comparison of motif enrichment in ChIP-chip data using motif patterns identified in 
ChIP-Seq.  
A. 
Kim07_CTCF:                                                        MEME: 

 
HMS: 

 

B.                                                                                 C. 
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Figure A3.7 The histogram of 15 empirical distributions of Hamming distance. The label 
 shown under each of the 15 empirical distributions of Hamming 

distance indicates the 15 combinations of information content. Small ,  represent low 
information content, while large ,  represent high information content.  
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CHAPTER 4  

 

Spatial Poisson regression model for gene expression using RNA-Seq data 

 

 

 

4.1 Introduction 

 The transcriptome is the complete set of transcripts in a cell under any given 

developmental stage or physiological condition. Comprehensively cataloging all the 

components in the transcriptome is a grand challenge in the post-genome era. In the past 

decade, microarray technology has played a prominent role in advancing our 

understanding of transcriptome complexity. Microarray is a hybridization-based 

technology that incubates fluorescently- labeled cDNA with custom-made microarray or 

commercial GeneChips. Microarray allows scientists to simultaneously monitor the 

expression of almost all the genes in the genome, and along with a steady reduction in 

processing costs, led to its wide spread application. Despite its overwhelming success, 

microarray technology has its limitations. First, design probes on the microarray requires 

knowledge of the genome sequence, hence novel transcripts will be missed. In addition, 

cross-hybridization, background signal and saturation result in a reduction of its dynamic 

range. 
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 Sequencing-based approaches to measure gene expression have the potential to 

overcome these limitations. The ultra-high-throughput next generation sequencing (also 

known as massively parallel sequencing) technologies capable of producing millions of 

sequence reads are making the transition from development to widespread application 

rapidly. These technologies are able to dramatically increase the throughput in DNA 

sequencing compared to conventional Sanger technology and at much lower cost. An 

array of studies have been published that successfully apply these new sequencing 

technologies to measure mRNA expression levels on cells from various species including 

Saccharomyces cerevisias, Schizosaccharomyces pombe, Arabidopsis thaliana, mouse 

and human cells (102-108). In RNA-Seq experiments, a population of RNA is converted 

to a library of cDNA fragments with adaptors attached to one end. Each molecule, after 

amplification, is then sequenced using one of the next generation sequencing 

technologies. Following sequencing, the resulting reads are aligned to either the reference 

genome or known transcripts to produce a genome-scale transcriptional profile.   

 While sequencing costs have significantly declined with the advent of the new 

technologies, the amount of data the new platforms produce is skyrocketing, thereby 

producing an analytical bottleneck. To match the advancement provided by the new 

sequencing technologies, significant attention and effort needs to be directed to the 

statistics and bioinformatics front. Sophisticated and tailor-made data analysis strategies 

are needed in order to fully realizing the power of the new sequencing technologies.  

 In order to quantify and compare transcriptions between different genes or 

between different experiments, read data generated by RNA-Seq needs to be properly 

normalized. Several methods for transcript quantification have been proposed in the 
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literature. Mortazavi et al. (2008) (104) proposed measuring the transcript levels in reads 

per kilobase of exon per million mapped reads (RPKM), which takes into consideration 

RNA length and the total read number in the measurement. The RPKM measure is 

essentially an averaging estimate of the transcript's expression intensity assuming an 

underlying Poisson or binomial model. Similar approaches have been used by other 

authors, for example, Bullard et al. (2009) (109) and Marioni et al. (2009) (107). All 

these methods utilize reads data at either the gene level or at the exon level. The counts of 

the bases demonstrate fairly large base-specific variations and between-base correlations 

(see preliminary analysis of a real RNA-Seq dataset in appendix), which we believe are 

attributed partly to the RNA-Seq technology and partly to some transcription 

mechanisms. Most current methods, including the RPKM measure and the method 

proposed by Jiang and Wong (2010) (110), do not take into consideration the base- level 

variations and correlations. As a result, the estimation of transcript expression will 

become less efficient, especially for low-expressed isoforms. In addition, it will 

compromise the comparison of transcript expressions between genes or between different 

experiments and hinder the discovery of novel transcript activities.  

 Because between-base correlations depend on the relative distances between 

bases, they are referred to as one-dimensional spatial correlations or in short spatial 

correlations in this study. The presence of location-specific variations along with spatial 

correlation is a characteristic of many spatial data sets generated in geostatistics, spatial 

epidemiology, and image processing and has been studied in the literature of spatial 

statistics. In this study, we apply and extend the ideas, models, and methodologies rooted 

in spatial statistics to model and analyze RNA-Seq data. 
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4.2 Methods  

4.2.1 Spatial Poisson regression model 

 We consider RNA-Seq data at the single exon level in this study. Observed 

sequencing depth often demonstrates substantial variation and spatial correlation (see 

preliminary analysis of a real RNA-Seq dataset in appendix), which is attributable to both 

biological and technological factors. As a consequence, simple summary statistics 

measures such as the total number of reads within the exon boundary will be adversely 

affected by these complications. To overcome these problems, we propose to model the 

sequencing depth at each base accounting for the spatial correlation. These models 

explicitly take into consideration the variation and the correlation; therefore they are 

capable of facilitating proper normalization on sequencing depth at the base- level. 

 Let  represent the sequencing depth at the  th base of the specified exon in the 

 th sample in a study. Here  and  is the length of the exon; , and 

 is the total number of replicated samples. Our goal is to build a probability model, 

analogous to the one proposed in Li and Wong (2001) (111) for modeling the probe- level 

microarray data, to capture the observed variation in . There are many factors, both 

biological and technological, that affect . In order to keep the model simple and to 

avoid overfitting, we propose to use spatial Poisson regression models.  

 At least five different categories of factors contribute to the variation of the reads 

. The most important category, also the one we are most interested in estimating, 

consists of the biological factors that represent the expression level of this exon in the cell 

type under study. Examples of cell types are treated or untreated, disease or normal. 
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Suppose there are in total  such biological factors in the  th sample, denoted by 

. Let . 

 The second category represents factors that are specific to the current sample. 

They arose from the sample preparation step and sequencing process, hence are referred 

to as technical factors. An example is the lane effect. Compared to other factors, studies 

have shown that variation introduced by technical factors is typically not significant 

(107). Suppose there are in total  such technical factors in the  th sample, denoted by 

. Let . 

 The third category includes systematic biases introduced by intrinsic local 

genomic features, such as GC content that affect sequencing depth. This type of bias is 

platform-specific. As an example, Dohm et al. (2008) (112) showed that the sequencing 

depth is positively correlated with GC content using the Illumina/Solexa platform. We 

use a generic term  to represent biases that belong to this category. In the preliminary 

analysis of a real RNA-Seq dataset (appendix), we observed a quadratic association 

pattern between sequencing depth and GC content. Therefore we add both first and 

second order terms of GC content in the model.  

 The factors in the first three categories are considered fixed. The last two 

categories contain random effects. The fourth category consists  of random effects 

 at base  through  in the  th sample, respectively. As in 

spatial statistics, ’s are assumed to be independent and identically distributed as 

. These effects are used to account for unstructured variability, which may be 

attributed to some latent factors of over-dispersion.  
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 The last category includes  representing the spatial 

correlation between the base counts. Like in spatial statistics, there are many ways to 

specify this spatial correlation structure. In this study, we will primarily investigate two 

configurations, the joint structure and the conditional or ICAR structure. 

 One way to specify the spatial correlation structure of ’s in the  th sample is 

to assume that they follow the same multivariate Gaussian distribution , where 

 is the correlation matrix of ’s and . It is usually not 

possible to estimate a general covariance matrix . Often,  is assumed to be a 

parametric function of distance  between the  th base and the  th base. Clearly, the 

parametric function cannot be arbitrary and is required to result in a positive definite 

matrix . One popular choice is  where  is a parameter determining the extent 

of correlation. This structure is referred to as the joint structure.  

 Another approach is to impose the correlation structure locally using a Gaussian 

Markov random field. This idea was originally proposed by Besag (1974) (113) and 

others, and was used by both Clayton and Kaldor (1987) (114) and Besag et al. (1991) 

(115). For a fixed base , first we need to define its neighborhood . A simple approach 

is to define  as the collection of every base  which is adjacent to base . Other 

definitions are possible, for example, Cressie and Chan (1989) (116) defines 

neighborhoods in terms of the distance . Second, we need to define a weight matrix 

 as follows. For ;  if ; and  

otherwise. Let  denote the collection of ’s with . The conditional 

distribution of  given  is assumed to be: 
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  (4.1) 

The correlation is referred to as the Gaussian Markov structure or the intrinsic conditional 

autoregressive (ICAR) structure.  

 The discussion about the pros and cons of the joint and ICAR structures can be 

found in Best el al. (2005) (117) and Wakefield (2007) (118). Other more sophisticated 

models are also available in the literature. Two examples are the mixture model proposed 

by Green and Richardson (2002) (119) and the spatial partition model proposed by 

Knorr-Held and Raber (2000) (120). Best et al. (2005) (117) presents a thorough 

simulation study for comparing the performances of different models, and concludes that 

both the joint and ICAR structures have good properties for disease mapping. Covariates 

and deterministic spatial trends can be incorporated into the two structures in a 

straightforward fashion. 

 In the literature on disease mapping, MCMC methods are the predominant 

methods used for model fitting and inference, following Besag et al. (1991) (115) and 

Diggle et al. (1998) (121). In the literature on imaging processing, however, maximum 

likelihood methods are also used; see Zhu et al. (2009) (122) for example. The preference 

for Bayesian computational methods is due to the fact that the spatial random effects 

’s and ’s are not directly observable; and it takes high-dimensional integration to 

integrate them out, which can be computationally challenging. In the study, we will 

follow the tradition of using Bayesian computational methods when we apply the spatial 

models to the RNA-Seq data analysis. 



 

141 
 

 We propose the following spatial Poisson regression model for RNA-Seq data of 

a fixed exon: 

  

 
(4.2) 

Where , , ,  and  are the model parameters. In 

addition, the specifications of the random effects also include more parameters, 

depending on which configuration is adopted.  

 When the joint structure is assumed for ’s, then the model specified by (4.2) is 

referred to as the joint spatial Poisson regression model; when the ICAR structure is 

assumed for ’s, then the model specified by (4.2) is referred to as the ICAR spatial 

Poisson regression model. Note that the weight matrix  has to be further specified 

when we use ICAR structure for ’s. In this study, we define the neighborhood  as 

the adjacent bases. If we not only include the bases directly adjacent to  but also include 

bases that are within  bases of , assigning equal weights to bases in  may be not 

appropriate, therefore other weighting schemes need to be considered.  

 The expression level of the exon in the  th sample under biological factor  can 

be defined as , which is adjusted by GC content bias term , the technical 

factor , the location-specific random effect  and the spatial random effect . From 

the model the term  can be used as the normalized expression level for 

comparison between different exons and between different cell lines.  

4.2.2 Model implementation 

 We adopt a Bayesian approach and use MCMC methods to carry out estimation 

and inference. We start by assigning appropriate priors for model parameters. The 
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marginal distribution of random effects  and  are  and , 

respectively. If we specify inverse Gamma priors for  and , then the implied prior 

for  is not inverse Gamma so that we cannot easily control the total variance. 

Following the notations in Wakefield (2007) (118), we write the total precision as: 

, and specify a Gamma prior . Then let  

represent the proportion of the total variation that is attributable to the spatial component, 

and assign a Beta prior, , to , and transform from  to  via: 

  (4.3) 

 If the joint structure is assumed for ’s, there is another parameter  

determining the extent of global correlation. We assign another Beta prior, , to 

. We assign non- informative prior  for , and ,  for  

and .  

 In the default setting, we set uniform priors for  and  with . 

In addition, we use weakly informative priors for  and  with , 

. It is tricky to assign a prior for the total precision . We use an 

empirical Bayesian method: use moment estimate  to assign an informative prior  

for . Specifically, we consider a simplified joint spatial Poisson regression model with 

no biological factors, technological factors or systematic biases.   

  (4.4) 

The marginal distribution of random effects  and  are  and , 

respectively.  and  are independent. It is straightforward to calculate the first 

moment and the second moment of : 
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  (4.5) 

 

 

 

 

(4.6) 

Then we can get the moment estimate  for total precision :  

  (4.7) 

where 

  (4.8) 

 To avoid taking the logarithm of a negative number, we only work on exons with 

 (see over-dispersion filter in real data analysis section). We fix the 

coefficient of variation (CV: ratio of the standard deviation to the mean) to be 1 in the 

informative prior  for  by setting and . 

 It is straightforward to derive the joint posterior distribution (formulas in 

appendix), and we use Gibbs sampler to iteratively sample parameters from the 

conditional posterior distribution. Since we use conjugate priors, the conditional posterior 

distributions for  and  are Gamma distributions, which are easy to sample. The 

conditional posterior distributions for fixed effects  and , and random effects ’s and 

’s are complicated and not in closed forms. Fortunately, they are all log-concave 

functions, and we can use adaptive rejection sample (ARS) (123) to draw samples. For 

the other parameters,  and , their conditional posterior distributions are not log-

concave, but very nearly log-concave. We use adaptive rejection Metropolis-Hastings 
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sampling (ARMS) (124) to draw samples from these complicated distributions. One 

important issue in using ARS and ARMS is to assign appropriate ranges for the 

parameters. In ARS, we use interval  for fixed effects  and , and interval 

 for random effects ’s and ’s, respectively. In ARMS, we use the natural 

boundary  for the parameters,  and . 

 In addition, to make the intercept term ’s identifiable, we add two constraints 

on the random effects in each iteration of the Gibbs sampler: 

  (4.9) 

To be specific, at the end of each iteration, we replaced  and by  and 

. 

4.3 Simulation study 

 In this study, we propose the spatial Poisson regression model for exon level 

RNA-Seq data. This model is able to capture spatial correlation and non-spatial variation, 

and we believe the expression index estimated from such model will reflect the 

underlying expression levels more accurately. The reads per kilobase of exon per million 

mapped reads (RPKM) proposed by Mortazavi et al. (2008) (104) is one of the most 

popular existing methods to measure exon level gene expression. RPKM takes into 

consideration exon length and the total read number in the measurement, and it can be 

calculated as the normalized sample mean. Another similar approach is to use the 

normalized sample median (the median number of reads within an exon per kilobase of 

exon model per million mapped reads), which is robust to sporadic outliers. Next we 

conducted a series of simulation studies to compare the exon level gene expression 
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measurement estimated by the spatial Poisson regression models, the normalized sample 

mean method and the normalized sample median method.  

 To make the simulation study simple and still without loss of generality, we did 

not consider the technical factors. Further we only incorporated one biological factor: 

cases vs. controls. We assumed that the cases and the controls are independent and have  

distinct parameters; therefore we can simulate them independently.  

4.3.1 No systematic bias 

 We started from a simple case with no systematic bias. Let  represent the 

sequencing depth at the  th base of a specified exon where , and  is 

the length of the exon; , and  is the number of duplicated samples. 

Here  is an index for the experimental conditions:  indicates the case sample, and 

 indicates the control sample. We simulated the seven cases and the seven controls 

from a joint spatial Poisson regression model separately: 

 

 

 

 

(4.10) 

 We need to specify parameters: , , , , ,  and  in the 

simulation. First assuming that expression levels in the cases and the controls were the 

same , and then the true fold change was .  was set to  

since the real RNA-Seq data exhibited strong spatial correlations (see preliminary 

analysis of a real RNA-Seq dataset in appendix). To mimic distinct variability observed 

in the real RNA-Seq data (Figure A4.1 in appendix), we designed five combinations of 

the variance of two random effects, , ,  and  (Table 4.1). 
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Table 4.1 Five combinations of variance of two random effects.  
 

Settings 
Cases Controls 

Spatial Non-spatial Spatial Non-spatial 
variance  variance variance  variance 

A 0.04 0.01 0.04 0.01 
B 0.05 0.02 0.04 0.01 
C 0.04 0.01 0.05 0.02 
D 0.05 0.01 0.04 0.02 
E 0.04 0.02 0.05 0.01 

  

 In setting A, the total variances of two random effects are the same in the cases 

and the controls, and the ratios between spatial and non-spatial variances are the same too. 

In setting B, the total variance of two random effects in the cases is larger than that in the 

controls. In setting C, the total variance of two random effects in the cases is smaller than 

that in the controls. In setting D, the total variances of two random effects are the same in 

the cases and the controls, but the ratio between spatial and non-spatial variances in the 

cases is larger than that in the controls. In setting E, the total variances of two random 

effects are the same in the cases and the controls, but the ratio between spatial and non-

spatial variances in the cases is smaller than that in the controls.  

 We estimated expression indexes for the cases and the controls, and the 

corresponding fold change (ratio) using four methods: the joint spatial Poisson model, the 

ICAR spatial Poisson model, the normalized sample mean method and the normalized 

sample median method. For two spatial Poisson models we proposed, we used 10,000 

iterations in each Gibbs sample. The first 9,000 samplers were dropped as the burn- in 

stage, and then every 10th sample in the last 1,000 samples were used to calculate the 

posterior mean. We ran five parallel chains and used the one with highest posterior mode.  
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We repeated 100 simulations for each of five cases, and recorded the mean estimate and 

the mean square error (MSE) across 100 simulations (Table 4.2). 

 

Table 4.2 Simulation results when there is no systemic bias. Best methods (smallest MSE) 
in each setting are listed in bold font.  
 

Settings Methods 
Case Control Fold change 

Estimate MSE Estimate MSE Estimate MSE 

A 

Joint 1.000354 0.000014 0.999733 0.000019 1.000642 0.000036 

ICAR 1.000749 0.000015 0.999944 0.000019 1.000826 0.000037 
mean 1.022173 0.000514 1.021895 0.000508 1.000302 0.000052 

median 0.999950 0.000070 0.998843 0.000066 1.001178 0.000147 

B 

Joint 1.000660 0.000015 1.000020 0.000016 1.000656 0.000032 

ICAR 1.000379 0.000015 1.000253 0.000016 1.000143 0.000032 

mean 1.031257 0.001004 1.021648 0.000493 1.009431 0.000142 
median 0.999607 0.000080 1.000014 0.000081 0.999686 0.000187 

C 

Joint 1.000329 0.000015 1.000202 0.000013 1.000139 0.000026 

ICAR 1.000540 0.000015 0.999944 0.000013 1.000609 0.000026 

mean 1.022173 0.000513 1.030123 0.000929 0.992300 0.000094 
median 0.999771 0.000072 0.999457 0.000080 1.000398 0.000158 

D 

Joint 1.000503 0.000015 1.000829 0.000014 0.999688 0.000029 

ICAR 1.000698 0.000016 1.000083 0.000014 1.000630 0.000031 
mean 1.026408 0.000721 1.027008 0.000754 0.999441 0.000047 

median 1.000614 0.000071 1.000464 0.000085 1.000255 0.000195 

E 

Joint 1.000507 0.000016 1.000225 0.000015 1.000296 0.000030 

ICAR 1.000003 0.000017 1.000498 0.000014 0.999519 0.000032 
mean 1.027096 0.000762 1.026273 0.000717 1.000830 0.000056 

median 0.999164 0.000069 1.000129 0.000095 0.999139 0.000182 

 

 As we expected from a simple calculation (appendix), the normalized sample 

mean method overestimated the expression level of the cases and the controls (1.0216 ~ 

1.0313) in all five settings. In setting A, D and E, the normalized sample mean method 
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provided unbiased estimates of the fold change (1.0003, 0.9994, 1.0008). However, in 

setting B, the normalized sample mean method overestimated the fold change (1.0094), 

and in setting C, the normalized sample mean method underestimated the fold change 

(0.9923). Compared to the normalized sample mean method, the normalized sample 

median method provided unbiased and efficient mean estimates (smaller MSE) in all five 

settings. However, the fold changes estimated in the normalized sample median method 

were unbiased but inefficient (larger MSE). The performance of the joint spatial Poisson 

model and the ICAR spatial Poisson model were similar. The two spatial Poisson models 

provided more efficient estimates (smaller MSE) of the expression level and the fold 

change compared to the normalized sample mean method and the normalized sample 

median method. 

4.3.2 Adding GC content as systematic bias 

 We observed a quadratic pattern between GC content and sequencing depth from 

an exploratory analysis of a real RNA-Seq dataset (appendix). It is challenging to 

measure the true underlying gene expression level with such systematic bias. To test the 

impact of GC content, we extended the previous simulation study be adding GC content 

as covariates in the mean structure. Here we compared four methods: the joint spatial 

Poisson model with GC content as covariates (Joint_GC), the ICAR spatial Poisson 

model with GC content as covariates (ICAR_GC), the normalized sample mean method 

(mean) and the normalized sample median method (median). 

 We first simulated seven cases and seven controls from the joint spatial Poisson 

regression model separately: 

  (4.11) 
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 In this model,  is the GC content at the  th base, and  is the average GC 

content in this specified exon. We simulated   from a normal distribution with mean 

0.5373 and standard error 0.1197. These two values are calculated from the real data.  (see 

preliminary analysis of a real RNA-Seq data in appendix). Note that the GC content is the 

same at the  th base across all duplicated samples. Further we need to specify parameters: 

, , , , , , , , ,  and . The same simulation setting was 

adopted here: ,  and the true fold change is . The 

variance of two random effects, , , ,  were also from Table 4.1. To mimic 

the real RNA-Seq data (see preliminary analysis of a real RNA-Seq dataset in appendix), 

we set , ,  and . Here we 

assumed that the true expression level  was the sequencing depth at some base with 

GC content . In the simulation, we adopted a quadratic function form between GC 

content and sequencing depth, therefore the sequencing depth at most of the bases will be 

smaller than , and both the normalized sample mean method and the normalized 

sample median method underestimated the true expression level. Such bias was larger in 

controls than in cases since the coefficient ( ) of second order term  in the 

controls was smaller than those ( ) in the cases. As a consequence, both the normalized 

sample mean method and the normalized sample median method overestimated the true 

fold change. We used the same approach as the previous simulation study to record the 

simulation results and compared the performance among four different methods. The 
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values in Table 4.3 are the mean estimate and the mean square error (MSE) across 100 

simulations.  

 

Table 4.3 Simulation results when there is systemic bias. Best methods (smallest MSE) in 
each setting are listed in bold font.  
 

Settings 
Case Control Fold change 

Estimate MSE Estimate MSE Estimate MSE 

A 

Joint_GC 0.9993  0.0002  1.0019  0.0002  0.9976  0.0006  

ICAR_GC 0.9944  0.0004  1.0006  0.0004  0.9942  0.0007  
Mean 0.9838  0.0007  0.9528  0.0027  1.0328  0.0015  

Median 0.9639  0.0037  0.9550  0.0038  1.0098  0.0018  

B 

Joint_GC 1.0054  0.0003  1.0036  0.0003  1.0020  0.0005  

ICAR_GC 1.0005  0.0006  0.9955  0.0003  1.0053  0.0008  
Mean 0.9951  0.0005  0.9578  0.0023  1.0392  0.0021  

Median 0.9646  0.0030  0.9620  0.0030  1.0034  0.0017  

C 

Joint_GC 1.0035  0.0003  0.9999  0.0004  1.0040  0.0007  

ICAR_GC 1.0017  0.0004  0.9987  0.0008  1.0036  0.0010  
Mean 0.9880  0.0006  0.9648  0.0017  1.0242  0.0010  

Median 0.9760  0.0021  0.9430  0.0046  1.0357  0.0029  

D 

Joint_GC 1.0020  0.0004  1.0033  0.0004  0.9990  0.0007  

ICAR_GC 1.0007  0.0006  0.9999  0.0004  1.0011  0.0009  
Mean 0.9908  0.0005  0.9567  0.0022  1.0358  0.0017  

Median 0.9657  0.0031  0.9516  0.0037  1.0156  0.0026  

E 

Joint_GC 1.0022  0.0003  1.0015  0.0003  1.0009  0.0006  

ICAR_GC 0.9988  0.0005  1.0024  0.0006  0.9971  0.0012  
Mean 0.9915  0.0005  0.9603  0.0019  1.0326  0.0014  

Median 0.9620  0.0032  0.9530  0.0035  1.0101  0.0019  

 

 We observed that both the normalized sample mean method and the normalized 

sample median method underestimated the expression level of the cases and the controls 

in all five settings. In addition, both the normalized sample mean method and the 

normalized sample median method overestimated the fold change in all five settings. 
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With GC content as covariates, in all five settings both the joint spatial Poisson model 

and the ICAR spatial Poisson model provided more efficient estimate (smaller MSE) of 

expression level of the cases and controls, and the corresponding fold change. Further, 

the joint spatial Poisson model was better than the ICAR spatial Poisson model in terms 

of MSE. That was what we expected since the datasets were simulated from the joint 

spatial Poisson model. 

 In the joint spatial Poisson model with GC content as covariates (Joint_GC) and 

the ICAR spatial Poisson model with GC content as covariates (ICAR_GC), we can 

obtain the estimate of GC content effects. To compare these two methods, we also 

recorded the bias and the mean square error (MSE) of , ,  and  across 100 

simulations in Table 4.4. 

 The joint spatial Poisson model with GC content as covariates (Joint_GC) 

provided more efficient estimates (smaller MSE) of GC content effects than the ICAR 

spatial Poisson model with GC content as covariates (ICAR_GC).  
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Table 4.4 Bias and MSE of GC content effects 
 

Settings Methods 
    

Bias MSE Bias MSE Bias MSE Bias MSE 

A 
Joint_GC -0.0389 0.0708 0.0808 1.2813 -0.0375 0.0565 -0.0526 1.0827 
ICAR_GC -0.5335 0.5996 0.4426 2.3226 -0.4451 0.4779 0.0088 2.3588 

B 
Joint_GC -0.0544 0.0701 -0.2492 1.6509 0.0073 0.0787 -0.2457 1.4625 
ICAR_GC -0.5152 0.5852 0.0534 2.9662 -0.4057 0.4626 0.3396 1.7157 

C 
Joint_GC 0.0103 0.0767 -0.2067 1.3550 -0.0218 0.0868 0.0890 2.0289 
ICAR_GC -0.3835 0.4905 -0.0727 1.8915 -0.5484 0.6385 0.1682 4.0081 

D 
Joint_GC 0.0281 0.1028 -0.1476 2.0763 -0.0371 0.0803 -0.2386 1.8750 
ICAR_GC -0.4127 0.4854 -0.0727 3.3440 -0.4287 0.4698 0.0115 2.1239 

E 
Joint_GC -0.0548 0.0874 -0.1105 1.7161 -0.0391 0.0773 -0.0785 1.4506 
ICAR_GC -0.5020 0.5495 0.1330 2.8561 -0.4721 0.5326 -0.1578 3.5296 
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4.4 Real data analysis 

 In this study we analyzed the sequencing quality control project (SEQC) dataset 

(unpublished data from Dr Jun Li, Department of Human Genetics, University of 

Michigan), which consists of two samples from microarray quality control project 

(MAQC) (125): brain and universal human reference (UHR). They were prepared using 

the standard Illumina mRNA-Seq protocol and reagents and sequenced across seven 

lanes (across two single flowcells) to a depth of 35 bases. The data were generated using 

Illumina pipeline 1.1 and eland_rna which is optimized for alignment of transcriptomic 

reads. Only reads that uniquely mapped to the human reference genome, with up to two 

mismatches, were included in this study. Total numbers of uniquely mapped reads are 

listed in Table 4.5 (Lane 5 was used as the negative control).  

 

Table 4.5 Total numbers of uniquely mapped reads in the SEQC dataset 
 

Lane Brain (million) UHR (million) 
Lane 1 5.4285 6.5531 
Lane 2 6.3744 6.6063 
Lane 3 6.4921 7.2336 
Lane 4 6.6011 7.1439 
Lane 6 6.6963 7.0093 
Lane 7 6.5739 6.8177 
Lane 8 6.1030 6.4989 

  

 Exon level annotations for 385,122 ENSEMBL exons were downloaded from 

ENSEMBL database version 55: http://jul2009.archive.ensembl.org/biomart/martview/ 

with genome assembly GRCh37. Using UCSC genome browser tool ―liftover‖ to convert 

GRCh37 to NCBI36, total number of exons was reduced to 384,763, and then the base-

http://jul2009.archive.ensembl.org/biomart/martview/
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level sequencing depth files were generated for these 384,763 exons in seven brain 

samples and seven UHR samples.  

 Three exon filters were adopted in this study (Table A4.1 in appendix). The first 

one was the non-zero filter. First we removed all exons with zero sequencing depth since 

they contained no information. 170,877 exons left in the brain samples, 185,253 exons 

left in the UHR samples. The second one was the over-dispersion filter. The observed 

sequencing depth files exhibited substantial over-dispersion (Figures A4.1 in appendix): 

the variance of the number of reads in each exon is larger than the mean of the number of 

reads in each exon in the majority of exons with non-zero read coverage. We measured 

such over-dispersion in a specified exon by the test statistic proposed in Dean (1992) 

(126): 

  (4.12) 

 Here  is an index for the experimental conditions:  indicates the brain 

samples, and  indicates the UHR samples.  is an index for base, and  is 

the length of the specified exon.  is an index for sample, and  is the 

number of duplicated samples. Under  when  was generated from a Poisson 

distribution,  followed the standard normal distribution. Using the over-dispersion 

filter, we selected a subset of over-dispersed exons (  in all seven brain samples 

and  in all seven UHR samples). After this filtering, 43,141 exons were left in 

the brain samples and 56,947 exons were left in the UHR samples. The third one was the 

―non-gap‖ filter. Ideally, we expected that the sequencing depth would be constant within 

each exon. However, we observed some gaps (zero read coverage) in the long exons (see 
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preliminary analysis of a real RNA-Seq dataset in appendix). Such gaps may be due to 

low overall sequencing depth, repeated regions, or inaccurate exon annotations. To avoid 

such complicating issues, we adopted a very stringent ―non-gap‖ filter in this study by 

defining ―non-gap‖ exons as those exons without gaps in either one of seven samples. 

3,569 ―non-gap‖ over-dispersed exons in brain samples and 5,241 ―non-gap‖ over-

dispersed exons in UHR samples were left after the three filters. 

 Three methods, the normalized sample mean method, the joint spatial Poisson 

model without GC content as covariates and the joint spatial Poisson model with GC 

content as covariates, were used to measure the exon level gene expression in 3,569 

exons in the brain samples and 5,241 exons in the UHR samples. The three methods were 

referred to as mean, noGC and GC in the following tables (Table 4.6, 4.7, 4.8, 4.9 and 

4.10), respectively. Due to the intensive computation, we used one chain in each Gibbs 

sample with 1,000 iterations. The first 900 samples were dropped as the burn- in stage, 

and then every 10th sample in the last 100 samples were used to calculate the posterior 

mean.  

 We compared the RNA-Seq data with the exon array data. The exon array data 

(127) was download from the NCBI Gene Expression Omnibus (GEO) repository under 

the GEO records GSE13072. Affymetrix GeneChip Human Exon 1.0 ST arrays were 

used to measure the brain samples and the UHR samples. There were ten brain samples 

and ten UHR samples, respectively. The custom CDF (128) file was used to process the 

raw CEL files, and then we obtained the exon level gene expression data for 304,495 

ENSEMBL exons. Merging the RNA-Seq data with the exon array data, 3,175 exons in 

the brain samples and 4,499 exons in the UHR samples were left. 
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 We used the exon array data as the gold standard, and compared the three 

methods: mean, noGC and GC, by Spearman’s rank correlation coefficients (Table 4.6). 

The overall performances were very similar. The normalized sample mean method was 

the best, while the joint spatial Poisson model with GC content as covariates was slightly 

better than the joint spatial Poisson model without GC content as covariates. 

 
Table 4.6 Spearman’s rank correlation coefficients for three methods 

Sample No. of exons Mean noGC GC 
Brain 3,175 0.4976 0.4915 0.4954 
UHR 4,499 0.4579 0.4523 0.4550 

  

 Inspired by the ideas in Li et al (129), we looked into the reason why our spatial 

Poisson models failed to provide more accurate exon level gene expression estimates. We 

believe that in most of the exons we compared, the three estimates were very similar. 

Therefore there was little improvement in the overall Spearman’s rank correlation 

coefficients. To see whether the joint spatial Poisson model can lead to improvement in 

those cases when it was different from the normalized sample mean method, we defined 

the distance  as the absolute log fold change between the normalized sample mean 

method and the joint spatial Poisson model with GC content as covariates:  

  (4.13) 

 The distance  can quantify the difference between the estimates from the 

normalized sample mean method and from the joint spatial Poisson model with GC 

content as covariates. We further classified all exons into four groups according to , and 

then compared the performance of the three methods within each group (Table 4.7).  
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Table 4.7 Spearman’s rank correlation coefficients for three methods at difference  levels. 

 
Sample Distance # of exons Mean noGC GC noGC_Mean1 GC_Mean2 GC_noGC3 

Brain 

d>0.04 34 0.3553 0.4874 0.4933 37.17% 38.76% 1.16% 
d>0.03 113 0.2397 0.2689 0.2745 12.17% 14.52% 2.09% 
d>0.02 455 0.4962 0.506 0.5099 1.99% 2.76% 0.76% 
d>0.01 1531 0.4904 0.4871 0.4932 -0.66% 0.54% 1.21% 

UHR 

d>0.04 50 0.5138 0.5408 0.5636 5.25% 9.69% 4.22% 
d>0.03 169 0.3188 0.3222 0.3419 1.07% 7.26% 6.13% 
d>0.02 692 0.4921 0.4918 0.5042 -0.03% 2.50% 2.53% 
d>0.01 2310 0.4956 0.4937 0.4957 -0.39% 0.03% 0.42% 

 
1noGC_Mean: relative improvement between the joint spatial Poisson model without GC content as covariates and the normalized 
sample mean method. 
2GC_Mean: relative improvement between the joint spatial Poisson model with GC content as covariates and the normalized sample 
mean method. 
3GC_noGC: relative improvement between the joint spatial Poisson model with GC content as covariates and the joint spatial Poisson 
model without GC content as covariates.  
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 From the Table 4.7, we found that the joint spatial Poisson model achieved high 

improvement when the estimates from the joint spatial Poisson model and the estimates 

from the normalized sample mean method were different. When the distance  was large 

than 0.04, using the joint spatial Poisson model with GC content as covariates provided 

38.76% relative improvement in the brain samples and 9.69% relative improvement in 

the UHR samples, in term of the Spearman’s rank correlation coe fficients. The relative 

improvement became smaller when the difference  were smaller. In addition, we found 

that using GC content as covariates was consistently better than without GC content.  

 To further investigate the benefit of modeling GC content, we quantified the 

difference between the joint spatial Poisson model with GC content and the joint spatial 

Poisson model without GC content by the distance : the absolute log fold change 

between two joint spatial Poisson models:  

  (4.14) 

 The distance  quantified the difference between two joint spatial Poisson 

models. We further classified all exons into four groups according to their distance , 

and then compared the performance of two joint spatial Poisson models within each 

group (Table 4.8). 

 We found that using GC content as covariates was consistently better than without 

GC content, especially when the difference between two methods was large. When the 

distance  was large than 0.03, using the joint spatial Poisson model with GC content 

as covariates provided 11.52% relative improvement in the brain samples and 3.69% 
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relative improvement in the UHR samples, in term of the Spearman’s rank correlation 

coefficients. 

 

Table 4.8: Spearman’s rank correlation coefficients for two joint spatial Poisson models 
at difference  levels. 
 

Sample Distance # of exons noGC GC GC_noGC1 

Brain 
 88 0.2835 0.3161 11.52% 
 301 0.4199 0.4284 2.02% 
 1248 0.4476 0.4530 1.21% 

UHR 
 151 0.3477 0.3605 3.69% 
 505 0.3630 0.3669 1.06% 
 1795 0.4035 0.4079 1.09% 

 

1GC_noGC: relative improvement between the joint spatial Poisson model with GC 
content as covariates and the joint spatial Poisson model without GC content as 
covariates. 

 

4.5 Discussion 

 The recent arrival of next generation sequencing technologies is rapidly changing 

how we design future genetics and genomics studies (130,131). Compared to Sanger 

sequencing, these ―next generation‖ methods can produce orders of magnitude more data, 

and can do so efficiently, accurately, and at a fraction of the cost. These attractive 

features motivate scientists to apply these sequencing technologies to a variety of 

applications. One of the successful applications is the transcriptome analysis or RNA-Seq 

(104,107). Compared to microarray, RNA-Seq offers clear advantages such as better 

dynamic range and ability to discover novel transcript. However, just like in the early 

days of microarray, scientists face daunting challenges when deriving gene expression 
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levels from the counts of sequencing reads. Current methods enumerate the number of 

reads landed within each exons and use the normalized read counts to represent the gene 

expression levels for that exon. However, the sequencing depth across exons varies 

substantially. The variation also differs across exons which will affect the simple 

enumeration method that is currently being used.  

 In microarray data analysis, estimates from parametric models such as the model-

based expression index (MBEI) from dChip (111) proved to be much more accurate in 

reflecting the underlying expression levels than summary statistics of raw intensity values. 

In this study, borrowing the idea from model-based methods for analyzing microarray 

data, we develop model-based methods to analyze base- level sequencing depth data from 

RNA-Seq for each exon using spatial Poisson regression models. First we introduce two 

random effects for spatial correlation and non-spatial variation. In addition, we observe a 

quadratic GC content effect on sequencing depth, and add both linear and quadratic terms 

of GC content in the mean structure of the spatial Poisson regression models. Both 

simulation studies and real data analyses demonstrate that the expression index estimated 

from spatial Poisson regression models reflect the underlying expression levels more 

accurately, compared to existing methods that enumerate reads within each exon.  

 In this study, we propose spatial Poisson regression models for the exon level 

RNA-Seq data. It is easy to extend these models to isoform level and gene level RNA-

Seq data. Since exons are nested within an isoform, one intuitive approach is to introduce 

a hierarchical structure into the models and model the spatial correlation between 

different exons within the same isoform. When there are multiple isoforms in a gene, 

some exons may belong to a number of different isoforms, and the expression levels of 
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these isoforms may also be different from each other. We can use a mixture of spatial 

Poisson models for gene level RNA-Seq data, and each spatial Poisson model will 

provide an isoform specific expression index. Further, the proportion of each isoform can 

be used to detect novel alternative splicing events.  

 We adopt three exon filters: non-zero filter, over-dispersion filter and non-gap 

filter in the real data analysis. It is reasonable to remove those exons without read 

coverage since there is no information for gene expression. Next, the spatial Poisson 

regression models implicitly assume that the observed exon level read counts to be over-

dispersed by modeling two random effects. Among all exons, a majority of them exhibit 

significant over-dispersion, and our spatial Poisson regression models are designed for 

those over-dispersed exons. For those exons without significant over-dispersion, the 

Poisson regression or other well tailored models could be better alternative solutions. In 

addition, we can remove the exon with gaps by using the non-gap filter. Lots of systemic 

biases will create gaps with exon and make real RNA-Seq data very noisy. Some gaps 

could be introns or intergenetic regions due to incorrect exon annotations. Further 

masked genomic regions or repeated regions can’t be mapped by short reads. The lowly 

expressed exons can’t be measured with limited sequencing depth. In this study, we use 

the stringent non-gap filter to avoid such potential systemic biases, but more 

sophisticated models, such as zero-inflated Poisson model (101) or generalized Poisson 

model (100), may fit well for read counts in exons with gaps. 

 Using exon array data as the gold standard for exon level gene expression may be 

not the best choice, since it is well-known that array-based technologies suffer from 

limited dynamic range and high background noise. In the MAQC project (125), 
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quantitative real-time PCR (qRT-PCR) (132) has been used as the gold standard to 

measure the fold change of gene expression between brain samples and universal human 

reference samples. Further study (132) showed that 3’ digital gene expression (DGE) data 

can provide high quality gene expression measurement. Using qRT-PCR and DGE data 

as the gold standard could be a good future direction. However, we only have gene level 

qRT-PCR and DGE data, the exon level qRT-PCR or DGE data is not available. 

Furthermore, it is challenging to directly compare them with RNA-Seq data due to 

alternative splicing. 

 There are still some limitations in the current work. First, the number of iterations 

used in the simulation study and real data analysis may not be large enough, and may 

result in biased estimates. Our spatial-based method is computational intensive compared 

to existing methods for analyzing RNA-Seq data. But since the same procedure is applied 

to each exon, the inference procedure can be run in parallel. We anticipate modern cluster 

computers will mitigate the computation burden we faced, especially with the massively 

parallel graphical processing unit (GPU) technology. We also believe that the accuracy in 

statistical inference outweighs computation cost. In addition, it is important to test the 

goodness of fit of our spatial-based method. Gelfand, Dey and Chang  proposed a model 

determination approach using predictive distributions (133), and we will include this in 

the future research.  
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4.6 Appendix 

4.6.1 Formulas used in the MCMC algorithm 

4.6.1.1 Joint spatial Poisson regression model 

 Assume we have RNA-Seq data for a specific exon with length . Let  

represent the sequencing depth (number of mapped reads) at the  the base of a specified 

exon in the  th sample in a study. Here , and  is the length of the exon; 

, and  is the number of replicated samples. There are many factors, both 

biological and technological, that affect  including: (1) biological factors, for example, 

GC content, labeled by . (2) A random effect term to account for structure or spatial 

variability, denoted by . (3) A random effect term to account for unstructured, non-

spatial variability, denoted by . We propose the following spatial Poisson regression 

model for RNA-Seq data of a fixed exon: 

 

For the  th sample, we assume  follow a multivariate normal distribution with mean 

 and variance matrix , such that  and . The 

determinant and inverse of variance matrix  are: 

 

Where  is a 3-banded matrix: ; ; 

; . In addition, we assume  are independent 

and follow . We adopt a Bayesian approach, and assign conjugate prior to some 

parameters. Define:  
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From the spatial Poisson regression model, we have: 

 

 

 

 

For the  th sample,  

 

 

 

 

Then combine information in all  samples, 

 



 

165 
 

 

 

The joint posterior probability is: 

 

 

 

 

 

 

 

After simplification, we can get: 
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Next we will derive the conditional distribution for each parameter:  
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For the  th sample,  

 

 

For the  th sample, when : 

 

For : 

 

when : 
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For  th base in the  th sample,  

 

 In each iteration of Gibbs Sampler, we will go through , , , , , 

,  and , and sample each 

parameter from its conditional distribution. For  and , we can directly 

sample from Gamma distribution. For , ,  and 

, we use adaptive rejection sample (ARS) since their conditional 

distributions are log-concave. For  and , we use adaptive rejection Metropolis sample 

(ARMS) since their conditional distributions are close to log-concave. 

4.6.1.2 ICAR spatial Poisson regression model 

 An alternative is to use ICAR prior for the random effects , and then the model 

is referred as the ICAR model.  

For the  th sample, the ICAR prior for  is: 

 

 

 

Then combine information in all  samples, 

 



 

169 
 

 

The posterior probability is: 

 

 

 

 

 

Next we will derive the conditional distribution for each parameter:  
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For the  th sample,  

 

 

For the  th sample, when : 

 

For : 

 

when : 
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For  th base in the  th sample,  

 

 In each iteration of the Gibbs sampler, we go through , , , , , 

 and , and sample each parameter 

from its conditional distribution. For  and , we can directly sample from 

a Gamma distribution. For , ,  and 

, we use adaptive rejection sample (ARS) since their conditional distributions are 

log-concave. For , we use adaptive rejection Metropolis sample (ARMS) since its 

conditional distribution is close to log-concave. 

4.6.2 Performance of the normalized sample mean method  

 Let  represent the sequencing depth at the  th base of a specified exon where 

, and  is the length of the exon; , and  is the 

number of duplicated samples. Here  is an index for the experimental conditions:  

indicates the case sample, and  indicates the control sample. We simulated seven 

cases and seven controls from the joint spatial Poisson regression model separately: 
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In the normalized sample mean method, the estimates of exon level gene expression are: 

 

Which is an unbiased estimate of  

 

The moment estimate of fold change is: 

 

When the data  are simulated from the joint spatial Poisson model, the normalized 

sample mean method will always overestimate the true expression level. Larger total 

variance of two random effects indicates larger bias. However, the bias of fold change 

estimator is not simple. When the total variances of two random effects are the same in 

two experimental conditions , the estimate of fold change is 

unbiased. When the total variance of two random effects in case is larger than that in 

control , the estimate of fold change will overestimate the true 

value, while when the total variance of two random effects in case is smaller than that in 

control , the estimate of fold change will underestimate the true 

value. To account for these complicated cases, we considered five different cases for 

variance of the two random effects (Table 4.1). 

4.6.3 Preliminary analysis of a real RNA-Seq dataset 

 In this study we analyzed the sequencing quality control project (SEQC) dataset 

(unpublished data from Dr Jun Li, Department of Human Genetics, University of 

Michigan), which consists of two samples from microarray quality control project 

(MAQC) (125): brain and universal human reference (UHR). They were prepared using 
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the standard Illumina mRNA-Seq protocol and reagents and sequenced across seven 

lanes (across two single flowcells) to a depth of 35 bases. The data were generated using 

Illumina pipeline 1.1 and eland_rna which is optimized for alignment of transcriptomic 

reads. Only reads that uniquely mapped to the human reference genome, with up to two 

mismatches, were included in this study.  Exon level annotations for 385,122 ENSEMBL 

exons were downloaded from ENSEMBL database version 55: 

http://jul2009.archive.ensembl.org/biomart/martview/ with genome assembly GRCh37. 

Using UCSC genome browser tool ―liftover‖ to convert GRCh37 to NCBI36, total 

number of exons was reduced to 384,763, and then the base- level sequencing depth files 

were generated for these 384,763 exons in seven brain samples and seven UHR samples. 

We applied three exon filters in this study: non-zero filter, over-dispersion filter and non-

gap filter. The number of exons left in the brain samples and the UHR samples are listed 

in Table A4.1. 

 

Table A4.1: The number of exons left in the brain samples and the UHR samples after 

three exon filters 
Filters Brain UHR 

Total number of exons 384,763 384,763 
After non-zero filter 170,877 185,253 

After over-dispersion filter 43,141 56,947 
After non-gap filter 3,569 5,241 

  

 We plotted the Log2 RPKM versus the Log2 variance for 170,877 non-zero exons 

in seven brain samples and 185,253 non-zero exons in seven UHR samples in Figure 

A4.1. From Figure A4.1, we observed substantial over-dispersion: the variance of the 

http://jul2009.archive.ensembl.org/biomart/martview/
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number of reads in each exon is larger than the mean of the number of reads in each exon 

in the majority of non-zero exons, especially for the highly expressed exons.  

 

Figure A4.1: Log2 RPKM versus Log2 variance in all 14 samples. The red line is the 
diagonal line where the mean and the variance are the same.  
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 Next we explored the correlation between GC content and sequencing depth. We 

divided each of these 384,763 exons into 100 bp bins, and counted the number of ―G‖ 

and ―C‖ in each bin. The GC content is defined as the sum of the ―G‖ count and the ―C‖ 

count. The average length of these 384,763 exons is 293 bp. We removed the bins with 

length less than 100 bp, and then got 912,929 100 bp bins. Then we calculated the 

number of mapped reads in each 100 bp bin, and removed the bins with zero read 

coverage. The total number of 100 bp bins was reduced to 297,404. The distribution of 

GC content in these 297,404 100 bp bins looked similar to normal distribution (Figure 

A4.2): with range from 17 to 97, with mean 53.73 and standard deviation 11.97.  
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Figure A4.2: Distribution of GC content in 297,404 100 bp bins 

 

 Next we calculated the Log2 RPKM (reads per thousand base pair per million 

uniquely mapped reads) for each of these 297,404 100 bp bins in each sample, and then 

took the average of Log2 RPKM across the 100 bp bins with the same GC content. 

Figure A4.3 shows the quadratic patterns between GC content and Log2 RPKM in seven 

brain samples and seven UHR samples.  

 

Figure A4.3: Quadratic patterns between GC content and Log2 RPKM in seven brain 
samples and seven UHR samples.  
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 From Figure A4.3, we observed a quadratic pattern between GC content and Log2 

RPKM: the bins with small or large GC content have lower sequencing depth than the 

bins with median GC content, except for the noise at the two edges (number of GC < 20 

and numebr of GC > 90) which may due to lack of sample size. In addition, the within 

sample variation is very small, but there may exist some between sample variation.  

 Next we took average of Log2 RPKM with same GC content across seven 

duplicated samples in brain or UHR, and then fitted a simple weighted linear regression 

with quadratic term. The weight is the frequency of GC content (Figure A4.2). We 

assumed that the bin with GC content 50 has Log2 RPKM zero. The normalized GC% 

was defined as:  

 

Figure A4.4 shows the raw data and the fitted lines from the simple linear regression.  

For brain samples: 

 

For UHR samples: 
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Figure A4.4: Simple weighted linear regression with quadratic term 

 

To incorporate GC content as covariates, we add both linear and quadratic term of GC 

conent:  

 

Where  represent the fixed effect of GC content, ’s are the 

random effect for the spatial correlation, and ’s are the random effect for unstructured 

variability. Assume the reads is 35 bp. We extend the  th base to both sides for 34 bp to 

make a 69 bp bin, and then define  as the percentage of ―G‖ and ―C‖ in this 69 bp bin 

centered at the  th base.  is defined as the mean percentage of ―G‖ and ―C‖ in the 

specified exon.  is the exon level expression index for the  th sample with GC content 

, which is the parameter of interest. Note that we observed very little within sample 

variation, therefore the parameters  and  are the same across all  duplicated samples.  

 We draw trace plots (Figure A4.5) for the exon ENSE00001701801 (chr 17, 

1250091~1250306) from seven brain samples. It contains 216 bases, and shows 

substantial over-dispersion and spatial correlation (Table A4.2). 
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Figure A4.5: Trace plots for the exon ENSE00001701801 

 

Table A4.2: Mean, variance and ACF for exon ENSE00001701801 in seven brain 

samples 

 
Lane Mean Variance ACF(lag=1) ACF(lag=20) 

1 58 2068 0.9893  0.7095  
2 64 2852 0.9903  0.6811  
3 61 2489 0.9896  0.6736  
4 74 3417 0.9878  0.6967  
6 62 2581 0.9904  0.6773  
7 71 3258 0.9902  0.6867  
8 60 2190 0.9884  0.6690  
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CHAPTER 5  

 

Conclusion 

 

 

 This thesis presented model-based methods for the analysis of high throughput 

genomic data. In the presence of technologically specific features, heterogeneous data 

structures and massive sample sizes, Bayesian approaches can be a powerful modeling 

framework. The research in this dissertation demonstrates that Bayesian modeling 

approaches have achieved great success and have the potential to accelerate biomedical 

research. 

 Chapter 2 describes a model-based Bayesian variable selection approach to query 

large scale microarray compendium datasets. By modeling the observed microarray 

compendium data as a mixture of normal distributions, this approach identifies transcript 

factor target genes under a subset of experimental conditions. Further, it is capable of 

detecting complicated co-expression patterns, such as inversed patterns, and it is robust in 

the presence of sporadic outliers. All these unique features are critical to improve the 

power of differentiating biological signals from background noise. Due to the high 

dimensionality of unknown parameters, the commonly used maximum likelihood 
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estimate is not feasible. In this context, a Bayesian modeling approach coupled with 

Markov Chain Monte Carlo estimation techniques appears to be an attractive alternative. 

 Chapter 3 presents hybrid motif sampler (HMS), a de novo motif finding 

algorithm designed for analyzing ChIP-Seq data. We model the intra-motif dependency 

using high dimensional multinomial distributions. The increased number of model 

parameters is supported by the dramatically increased sample size in ChIP-Seq 

experiments and describes the underlying motif pattern more accurately. Borrowing 

information from the base level sequencing depth data, we adopt an informative prior 

distribution to facilitate motif detection. We also combine stochastic sampling and a 

deterministic search to speed up the computationally intensive iterative procedure. Using 

a Bayesian modeling approach to analyze ChIP-Seq data thoroughly and efficiently will 

significantly improve the accuracy of existing transcript factor binding sites.  

 Chapter 4 introduces a spatial Poisson regression model for exon level RNA-Seq 

data. We utilize two random effects to explain the spatial correlation and the non-spatial 

variation. These two random effects are not directly observable. We need to use high 

dimensional integration to integrate them out in frequentist methods. Bayesian modeling 

with Markov chain Monte Carlo techniques provides an appealing solution by iteratively 

sampling each random effect from conditional distributions. We also incorporate GC 

content effects into the mean structure for better fitting, and it can be easily extended to 

adjust for other biological effects and technical effects. The analysis of the SEQC dataset 

shows that the spatial Poisson regression model has the ability to improve quantification 

of the true underlying expression levels.  
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 In all chapters, the Bayesian modeling framework serves as the consistent 

procedure for combining information from high throughput genomic data and prior 

information. The fast and efficient Markov Chain Monte Carlo techniques allow 

statistical inference despite of the high dimensionality of unknown parameters. With the 

development of new biological technologies, scientists are facing an analytic bottleneck 

of accumulating high throughput genomic data. Therefore, Bayesian modeling 

approaches will be of greatest benefit to the broader biomedical community for their 

simplicity, efficiency and practical advantages.  
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