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Abstract  

 
We perform first-principles investigations of thermally activated phase transitions and 

diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles 

total energy calculations for different structural and configurational microstates. Effective 

Hamiltonians constructed from the total energies are subjected to Monte Carlo 

simulations to study thermodynamic and kinetic properties of the solids at finite 

temperatures. 

 

Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic 

approximation. As an example, stoichiometric TiH2 is studied where a cubic phase 

becomes stable at high temperature while ab-initio energy calculations predict the cubic 

phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. 

An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher 

temperature. The importance of anharmonic terms is emphasized and the true nature of 

the high temperature phase is elucidated beyond the traditional Landau-like explanation. 

 

In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in 

Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A 

comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms 
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in spinel-Li1+xTi2O4 is performed. Two distinct phases are predicted at different lithium 

compositions. The predicted voltage curve qualitatively matches with experimental 

observation. The predicted fast diffusion arises from crystallographic features unique to 

the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion 

in intercalation compounds. 

 

Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion 

in spinel-LixTiS2. We predict strong composition dependence of the diffusion 

coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li- 

hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at 

non-dilute concentrations with very different migration barriers. The strong dependence 

of hop mechanisms on local Li-arrangement is at the origin of large concentration 

dependence of the diffusion coefficients. This contrasts with spinel-LixTiO2 where the 

transition states are coordinated only by the end states of the hop, thereby restricting hops 

to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate 

in TiS2 host compared to Li ions. 
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Chapter 1 

Introduction 

The advancement of computational capacities of modern day computers and 

developments of efficient theoretical tools have rendered the field of computational 

material science effective and practical in understanding and predicting key material 

properties. Density functional theory can accurately calculate the electronic structure and 

energy associated with an arrangement of atoms.[1-5] Statistical mechanics acts as the 

theoretical bridge between finite temperature thermodynamic and kinetic properties and 

the energy landscape of atomic arrangements and the excitations of atoms and 

electrons.[6-10] In the present thesis, the link between ab-initio energy calculation and 

the macro-scale properties will be demonstrated, particularly in chapter 2. New 

contributions in developing models for structural phase transitions and the use of 

statistical mechanics for understanding non-dilute interstitial diffusion will be 

emphasized in this chapter. In chapter 3, this methodology will be applied to elucidate 

structural phase transformations with a particular focus on the cubic to tetragonal phase 

transformation in stoichiometric TiH2. In chapters 4 and 5, the thermodynamics and 

kinetics of intercalation processes in Li-ion battery electrodes will be presented. Some 

fundamental insights about diffusion processes, the role of crystal structure and features 

of the network of interstitial sites will be explained in these chapters. In chapter 6, 

diffusion of copper ions will be presented in comparison to the Li ions in the same 

crystallographic host structure. The role of guest species in the diffusion process and 

some practical consequences of it will be emphasized. We will conclude the thesis in 

chapter 7 revisiting the original ideas and insights it would provide. 
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Phase transformations in materials can occur due to the variation of numerous external 

factors such as temperature, chemical composition, electromagnetic fields, stress 

fields.[11, 12]  Various properties are associated with different kinds of phase transitions 

and technological applications of materials exploit these property variations. 

Solidification is an example of a liquid to solid phase transformation where physical 

properties of the material change with a change in temperature. A ferromagnetic to 

paramagnetic transition is associated with the change in magnetic properties.[13] Certain 

metals transform to a superconducting phase at extremely low temperature.[13, 14]  To 

exploit these changes in properties, it is crucial to understand the nature of the phase 

transitions and the factors controlling them at a fundamental level. 

The various types of phase transitions can be classified on several levels. A first-order 

phase transition causes a discontinuity of the slope of the free energy of the material. A 

second-order phase transition is usually accompanied by a divergence of the second 

derivative of the characteristic free energy.[7, 11, 12] Solid to liquid phase 

transformations are classic examples of a first-order transformation as the discontinuity is 

observed in density which is related to a first order derivative of free energy with respect 

to pressure. On the basis of the long-range movement of the atoms, one can define 

diffusive and displacive phase transformations.[13] In displacive transformations, the 

transition between two phases occurs without long-range diffusion of atoms while atoms 

travel from one region to the other during diffusive transitions. 

In the present thesis, we focus on two very important classes of phase transitions: 

structural transformations and transformations due to atomic redistribution. In a broad 

sense, structural phase transitions cover all kinds of transformations involving a change 

in crystal structure without a change in composition. The diffusional tranformations or 

transformations due to atomic redistribution through diffusion involve changes in 

material properties due to different arrangements of atoms (order/disorder) or 

compositions of atoms, without altering the crystal structure. Both of these are observed 

in many technologically important materials. Often both the structural and diffusional 

transitions are commonly observed simultaneously during heat treatment of steel.[15, 16] 
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Structural phase transformations are exploited in shape memory alloys for smart 

materials.[17-19] On the other hand, in any open system where chemical composition of 

one or more components can change, different atomic distributions can be energetically 

favorable at different compositions. The redistributional phase changes occur, for 

example, during each charge-discharge cycle of modern-day rechargeable batteries.[20, 

21]  In many of these material systems, structural phase transformations accompany the 

redistributional phase transformations.  

The first major focus of the present thesis is explaining thermally activated phase 

transitions where the high temperature phase is predicted to be mechanically unstable at 0 

K.  It is difficult to explain this behavior with the traditional assumptions in modeling 

structural phase transformations. Our study will introduce key ideas to explain the high 

temperature and high symmetry phases and bring insights for the structural phase 

transitions in general. The other area of focus is the thermally activated diffusion process 

especially within Li-ion battery electrodes. While diffusion behavior at non-dilute 

concentrations is a key factor in determining the efficiency of an electrode, very little is 

understood at a fundamental level. The effect of crystal structure and chemical 

composition on Li diffusion will be elucidated with several examples discussing critical 

insights for future material design. 

Structural phase transformations occur through a diffusionless mechanism, where both 

strain energy and interfacial energy play a major role.[22] In one kind of structural phase 

transformation, the relative positions of atoms change with/without minor shape 

change.[23, 24]  It involves small movements of atoms and it affects only the symmetry 

of the structure. When homogeneous distortive lattice strains are involved in the 

transformation, the underlying Bravais lattice changes to a different one. The cubic to 

tetragonal transformation is an example of a homogeneous distortion and is very common 

in materials of technological importance.[25-37] The austenite to martensite transition in 

steel is of this type and hence the common terminology for structural phase transitions 

due to the distortive lattice strain is a martensitic transition. Landau theory [12, 13, 38] 

rationalizes these transformations by introducing a coarse-grained free energy, expressed 
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as a function of an internal order parameter that characterizes the extent of the phase 

transformation. The conventional explanation of a structural phase transformation with 

changes in temperature assumes the mechanical stability of both phases. For a first order 

cubic to tetragonal transition, a Landau description assumes two local minima in the free 

energy as a function of tetragonality (c/a ratio, where c is the tetragonally distorted lattice 

parameter and a is the length of either of the other two lattice vectors of equal 

magnitude). As temperature changes, the shape of the free energy curve changes in a way 

that preserves the double-well nature while shifting the relative depths of the wells. This 

is schematically shown in fig 1.1 for a first-order cubic to tetragonal transition. The 

change in free energy curve with temperature is due to electronic and vibrational 

excitations at the atomic scale. The dependence of free energy on atomic scale vibrations 

are often assumed to be harmonic (the equilibrium position of atoms are at a steep energy 

well and the displacements from the equilibrium positions are small).[39] However, these 

assumptions can be far from the reality in many cases due to the predicted mechanical 

instability of observed high symmetry phase.[40-42] One such example will be discussed 

in chapter 3 and the idea can be extended to studies of many similar transitions. 
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FIG 1.1: Conventional explanation of tetragonal to cubic phase transformation with 

increase in temperature. (a) At low temperature, free energy curve has a deeper local 

minimum at tetragonal state compared to the cubic state. (b) At high temperature, the 

shape of the free energy curve changes so that the cubic state becomes more stable 

compared to the tetragonal state. 

Redistributional phase changes occur in many electrode materials during the charge and 

discharge of Li-ion batteries. In a Li-ion battery, Li
+
 ions get transported between cathode 

and anode through an electrolyte with high ionic conductivity but zero electronic 

conductivity. The electrodes are typically made of intercalation compounds with 

relatively open but rigid host structures where Li-ions can fill the interstitial sites without 

major irreversible structural modifications.[21, 43-48] The open circuit voltage of a cell 
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is determined by the difference in Li chemical potentials between cathode and anode. To 

maximize the average voltage of a Li battery, it is desirable to combine a high-potential 

cathode with a low potential anode. The most common anode material is carbon in 

graphitic form.[21, 47, 49-52] Li-ions can intercalate between the graphitic sheets and the 

flexible crystal structure of graphite allows for easy insertion and extraction of Li-ions. It 

provides very low voltage (0.1-0.2 V) which makes it attractive as an anode.  

Cathodes, on the other hand, are typically made of transition metal dichalcogenides.[21, 

43] Transition metals such as Co, Ti, Mn, Ni, V form sulfides and oxides which have 

stable host structures that can intercalate Li ions. Removal (charging) and re-insertion 

(discharging) of Li-ions often do not significantly or irreversibly alter the structure. The 

structures of the transition metal dichalcogenides are reasonably open so that Li-ions can 

intercalate at ease. In early years, transition metal sulfides were used as the cathode.[53-

55] The sulfides (such as LixTiS2) were kinetically very favorable for the intercalation 

process.[53, 56-58] Oxides were chosen over sulfides in later years because of higher 

voltage. The most common cathode material in modern day Li-ion battery is 

LixCoO2.[43-45, 59] Other commonly used single transition metal oxides are LixMn2O4, 

LixTiO2, LixVO2, LixFeO2, LixNiO2 etc.[60-65] Intercalation compounds having more 

than one transition metals such as LixNi1-yCoyO2, Lix(Mn0.5Ni0.5)O2 are also actively 

pursued to combine the advantages of different single metal oxides.[66-68] Other than 

the transition metal dichalcogenides, olivines (LixMPO4 where M = Fe, Mn, Co, Ni) form 

another class of cathode materials.[46, 69] They are the latest electrode materials and 

proved to be very attractive because they are much less expensive than the transition 

metal oxides. These intercalation compounds show a variety of crystal structures. Many 

of the transition metal dichalcogenides such as LixCoO2, LixTiS2, Lix(Ni1/2Mn1/2)O2 have a 

layered crystal structure where Li ions reside on two-dimensional sheets between the 

transition metal oxide/sulfide slabs. Compounds such as LixMn2O4 and LixTiO2 prefer to 

be in spinel crystal structure. Li sites in the spinel host forms a three dimensional 

network.  In olivine crystal structure (e.g., LixFePO4) Li diffusion occurs through one-

dimensional channels. The large variety of crystal structures immensely influences the 

redistributional phase change and the diffusion process. 
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Along with capacity and cycle life, charge-discharge rate is a crucial criterion in Li-ion 

battery design. Discharge rate determines the power level of a battery. The rate of 

charging remains a critical bottleneck in applying Li-ion technology where fast-charging 

is an essential criterion such as in electric vehicles. The charge-discharge rate is critically 

controlled by the ionic diffusion through the cell. The electrolytes allow fast diffusion of 

Li-ions. Hence diffusion in electrodes typically determines the overall rate of the process. 

The kinetics often has influence on not only the rate but also the voltage curve for a 

material. Nevertheless, the diffusion behavior remains poorly understood in many of the 

modern electrode materials. Typically, the diffusivities in the intercalation compounds 

have strong dependence on the Li composition.[56, 70] This composition dependence of 

diffusivities can be critical in determining the optimal rate of charge/discharge for 

achieving the full capacity. The effect of crystal structure and chemical species on the 

composition dependence is not well understood. The present thesis contributes to the 

understanding of these control factors at a fundamental level. 

Diffusion behavior is intrinsically difficult to measure experimentally for individual  

electrodes. Computational techniques such as molecular dynamics are also not ideal to 

study kinetics for a long-timescale (slow) process such as diffusion involving the 

cumulative effect of many atoms performing a large number of hops. In this thesis, we 

will apply an established approach[70] based on statistical mechanics combined with ab 

initio calculations to understand diffusion in intercalation compounds and in particular, 

elucidate the role of crystal structure, anion chemistry and diffusing species(Li versus 

Cu). We will discuss the general formalism based on first-principles energy calculations, 

cluster expansion and transition state theory in chapter 2. Application of statistical 

mechanical tools such as kinetic Monte Carlo simulations enables us to determine 

macroscopic properties such as chemical diffusion coefficients. In chapter 4, we examine 

Li diffusion in spinel-LixTiO2 as diffusion is fast in this material and the role of crystal 

structure in affecting diffusion will be explained. In chapter 5, diffusion behavior is 

studied in the spinel-LixTiS2 with the same crystal structure as spinel-LixTiO2. However, 

the change of anion alters the site preference for Li intercalation. The role of coordination 

in the interstitial Li site network is shown to have a crucial influence on diffusion 



8 

 

kinetics. In chapter 6, Cu diffusion is looked into in the same spinel titanium sulfide to 

understand how the choice of guest species influences the diffusion behavior.  
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Chapter 2 

 Methodology 

2.1 Introduction 

The present thesis relies on first-principles computational techniques to understand 

thermodynamic and kinetic properties of solids. The link between first-principles 

electronic structure calculations and macroscopic material properties is established with 

statistical mechanics. Statistical mechanics defines macroscopic equilibrium properties as 

long time scale averages of short time scale excitations (microstates) due to atomic and 

electronic fluctuations. The probability of a particular microstate being sampled is a 

function of the energy of that microstate. Hence, a statistical mechanical description of 

the solid state crucially depends on the calculation of the energy of a microstate. Due to 

the large number of possible microstates under a certain set of thermodynamic boundary 

conditions, it is impossible to calculate energies for all the microstates from first 

principles. An effective Hamiltonian enables the extrapolation to the large number of 

excitations, that contribute to average thermodynamic properties, of a limited number of 

quantum mechanical energy calculations. The effective Hamiltonians can be subjected to 

statistical tools such as Monte Carlo simulations to sample different microstates and 

calculate macroscopic properties as a weighted average of those microstates. Kinetic 

properties such as diffusion coefficients can also be modeled from small fluctuations that 

occur at the thermodynamic equilibrium. In the present chapter, we will look into the 

basics of statistical thermodynamics, different types of effective Hamiltonians and review 

first-principles calculations that are essential for parameterization of the effective 

Hamiltonians. In the later part of this chapter, we will discuss the construction of 
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configurational Hamiltonians by cluster expansion method, the relevant basics of Monte 

Carlo algorithms and the atomic scale formulation of solid state diffusion. 

2.2 Basics of Statistical Thermodynamics 

The thermodynamic description of a material is blind to its atomic scale details, though 

the root of all macro-scale manifestations of the material properties is in the atomic scale 

phenomena. Statistical mechanics acts as the theoretical bridge between these two scales. 

Properties of a material under thermodynamic equilibrium do not change with time, while 

at the atomic scale, the material system samples different microstates due to thermal 

fluctuations. A microstate refers to a particular electronic and vibrational excitation at the 

atomic scale for a particular arrangement of atoms. Each microstate has an energy. The 

observation time in a thermodynamic measurement is significantly larger than the typical 

time scale of the atomic level thermal fluctuations and over this thermodynamic time 

scale, many atomic scale microstates are sampled by the material. Therefore, the time-

invariant macroscopic properties are the time averages of these micro-scale 

microstates.[6, 7] 

Each microstate () has an energy



E , which in principle can be calculated using 

quantum mechanics by solving Schrodinger equation. For a solid at constant temperature, 

T, volume, V and number of atoms, N, the probability that the solid is in the microstate  

is, according to statistical mechanics, given by 



P  
exp E /kBT 

Q
           (2.1) 

where kB is the Boltzman‟s constant and Q is called the partition function.[6] The 

partition function is a normalization factor, which is the summation of the exponential 

functions corresponding to all possible microstates of the system under the imposed 

thermodynamic boundary conditions. It is defined as  



Q  exp E /kBT 


             (2.2) 
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The free energy, F, or the characteristic potential associated with the particular set of the 

chosen boundary conditions is related to the partition function according to 



F  kBT ln Q             (2.3) 

For constant T, V and N (called canonical ensemble), the free energy is called Gibbs free 

energy and thermodynamic equilibrium is represented by the minimum Gibbs free energy 

locus.   

The statistical mechanical study of the macroscopic properties critically rely on the 

evaluation of the energies of different microstates. To calculate these energies for a large 

number of possible microstates, we need a model that accurately describes the functional 

relationship between the energy and the associated degrees of freedom for all the 

microstates. The model function for energy is called an effective Hamiltonian. The 

predictability of the statistical mechanical description of an equilibrium process is 

substantially controlled by the accuracy of the associated effective Hamiltonian. In the 

next section, we will discuss the effective Hamiltonians for the processes relevant to the 

present thesis. 

2.3 Effective Hamiltonians 

For solids, important microstates involve the electronic, vibrational and the 

configurational (atomic arrangements) degrees of freedom. Any microstate can be 

expressed as a linear combination of these excitations. Any one or more than one type of 

these excitations can play crucial role in the equilibrium behavior of the particular solid. 

The excitations, which do not directly take part in determining the macroscopic 

thermodynamic behavior, can be coarse-grained[13, 71] to simplify the relevant statistics 

and to eliminate unnecessary computation. The coarse-graining idea is based on the fact 

that all these different excitations are associated with time-scales that vary by a few 

orders of magnitude. In the present study, the vibrational (in case of cubic to tetragonal 

phase transformations) and the configrational (in case of the Li-intercalation in Li-ion 

battery electrodes) excitations have major roles.  



12 

 

A Hamiltonian that takes the important degrees of freedom into account can be used to 

map a physical process accurately. Here we discuss the role of two major degrees of 

freedom in solids and how we can construct Hamiltonians to model them. 

2.3.1 Vibrational Hamiltonians  

At finite temperature, the atoms in a crystalline solid vibrate about their mean position 

due to thermal excitations. Many structural phase transitions are associated with these 

thermally active vibrational excitations of the constituting atoms. Different modes of the 

relative vibrations among the atoms in a solid can be constructed with the help of linearly 

independent set of quasi-particles (phonons).[39, 72] Phonon-dispersion curves depict the 

relationship between the frequency (which also defines energy) and the wave vectors. To 

study these vibrational modes and their effects on the structural phase transitions, one 

needs an effective Hamiltonian that can generate all relevant microstates for different set 

of individual displacements. The most common approach to model this kind of 

Hamiltonian is by considering harmonic springs between the lattice sites. The potential 

energy can be written as a Taylor expansion with respect to the displacements of 

individual lattice sites from their equilibrium position. For the simplest case of one-

dimensional lattice, it takes the following form.[6] 

    ....
2

1
0,....,0,0,....,,

0
1 1

2

0
1

21 




































 

 

ji

N

i

N

j ji

j

N

j j

N

UU
UU 





      (2.4)  

The zero subscript associated with the derivatives indicates that the derivatives are 

calculated at the equilibrium position. The second term in the right hand side is zero, as 

energy is the minimum at the equilibrium position. The first term is a constant, which is 

the minimum energy of the lattice at equilibrium.  This term acts as an additive constant 

and does not contribute to the energetics. The first significant term in the expression is 

the third term that involves the second derivative of the energy. This term corresponds to 

the simple harmonics and truncation after this term is called the harmonic 

approximation.[6, 39]  
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Vibrational energy of the lattice can also be expressed as a function of the strain matrix at 

individual lattice sites if the relative displacements of the basis atoms are negligible. 

Similar to the displacement Hamiltonians, the strain Hamiltonians can be harmonic or 

anharmonic according to the truncation order. Construction and parameterization of the 

vibrational Hamiltonian allow us to study the finite temperature thermodynamic behavior 

of a solid under thermal excitations. 

2.3.2  Configurational Hamiltonians 

For Li-ion battery electrodes, lithium ions can occupy the interstitial sites in a host 

structure of transition metal dichalcogenides. Lithium ions and vacancies can arrange in 

different orders over the available interstitial sites. Each unique arrangement represents a 

configurational microstate and is associated with a unique energy. The functional 

relationship between the configurational excitation and the energy of the solid is 

represented by the configurational Hamiltonians. The configurational degrees of freedom 

play a major role in the intercalation thermodynamics and hence configurational 

Hamiltonians have wide significance in this thesis. Cluster expansion is a rigorous tool 

for constructing the cofigurational Hamiltonians. We will discuss the basics of cluster 

expansion in section 2.5. 

An effective Hamiltonian needs to be parameterized to accurately reproduce the energies 

of a large number of possible microstates. The input for the parameterization is a set of 

calculated energies for a finite number of microstates. We rely on the first principles for 

calculating these input energies. The basics of first-principles calculations are presented 

in the following section. 

2.4 First-principles calculations 

The starting point of any electronic structure calculation is the quantum mechanical time 

dependent Schrodinger equation [73-76]  as shown below: 




2

2m
2 r ,t V r ,t  r ,t  i

 r ,t 
t

                   (2.5) 
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This equation acts as the pivot of quantum mechanics just as Newton‟s laws of motion do 

for the classical mechanics. The first term is the kinetic energy while the second one is 

the potential energy term or the effect of the external potential driving the motion of the 

particle. The right hand side term is the time evolution term for the wave function .  

contains all available information about the system. Within Born-Openheimer 

approximation and considering only the electrons of the system, the external potential 

 rV


 can be approximated as time-invariant.[5, 39, 76] The time-independent part of 

equation 2.5 is called stationary Schrodinger‟s equation and it can be written in the 

following form: 

 



H r   E r             (2.6) 

where, H is the Hamiltonian operator expressed as 



H  
2

2m
2









V r  









 and E is a 

scalar representing the total energy of the electron. The goal of first-principles 

calculations is to solve equation (2.6) for the electrons in the material and calculate the 

probability distribution, energy eigen states of the electrons and the total ground-state 

energy.   

 

The Schrodinger equation can be solved starting with the orbital description (e.g. Hartee-

Fock.[1, 2, 39, 76])  or starting with the electron density description. The Hartee-Fock 

method works well for small molecules and becomes extremely complex for bulk solids. 

Therefore, electron density description is used for calculating electronic structure for the 

bulk solids. 

Electron density can be defined as the probability of finding any of the N electrons within 

the volume element rd


but with arbitrary spin while the other N-1 electrons have 

arbitrary positions and spin in the state represented by .[2] It is an observable unlike 

 and can be measured by X-ray diffraction. Hohenberg-Kohn theorem formally 

established the one to one correspondence between this electron density and the external 

potential, hence to the Hamiltonian: “The external potential  rVext


, within a trivial 
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additive constant, is a unique functional of the electron density  r


 ; since, in turn  rVext


 

fixes Ĥ , we see that the full many particle ground state is a unique functional of 

 r


 ”.[77] 

Based on the Hohenberg-Kohn theorem, we can write the ground state energy according 

to 

       00000  Neee EETE            (2.7) 

Where the first term in the right hand side is the kinetic energy, the second term is the 

electron-electron interaction energy and the last term is the nucleus-electron interaction 

energy, all written as a function of the electron density. 

If we write the energy due to nucleus-electron interaction as a function of the electron 

density, 

    rdVrE NeNe


 00             (2.8)  

the energy expression takes the following form: 

       0000  eeNe ETrdVrE  


          (2.9) 

The first term in the right hand side depends on the relative positions of the nuclei in the 

system and hence it is a system dependent part. However, the other two terms in the right 

hand side are system-independent or universal. Collecting these system independent 

terms into a new quantity, called the Hohenberg-Kohn functional  0HKF , we arrive at 

     000  HKNe FrdVrE  


         (2.10) 

If the Hohenberg-Kohn functional is evaluated for some arbitrary  r


 , it gives the sum 

of kinetic energy and the electron-electron repulsion energy with the ground state wave 

function  for this  r


 . This   delivers the lowest energy among many possible wave 

functions that yield  r


 . This functional is very important in the sense that if we knew 
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this functional exactly, we could have solved many-body Schrodinger equation exactly, 

not approximately. In reality, forms of both kinetic energy term and electron-electron 

repulsion term are not known. A part of the electron-electron repulsion term can be 

written as the classical Coulomb potential and the rest of it can be expressed with an 

unknown non-classical potential in the following manner. 

 
   

 
 nclee Erdrd

r

rr
E   21

12

21

2

1 


        (2.10) 

Modeling of this non-classical part is the major challenge to any density based method of 

solving the Schrodinger equation. The second theorem of Hohenberg and Kohn makes 

use of the variational principle and establishes the method as a „ground-state-only‟ 

method. 

Though Hohenberg and Kohn established electron-density as the key quantity in solving 

the ground-state electronic structure, initial density-based attempt on solving multi- 

electron systems was formulated by Llewellyn Thomas and Enrico Fermi shortly after the 

introduction of the Schrodinger equation.[1, 2]  

2.4.1 Density Functional Theory 

Density functional theory (DFT) serves as the most widely used method in the field of 

computation of electronic structure and ground state total energies. DFT uses the 

advantages of both orbital based methods and the density based methods. While the direct 

use of the density functional in the Hamiltonian reduces the number of variables by great 

deal, the functional are not known in terms of the electron density. Kohn and Sham 

introduced the concept of a non-interacting reference system with one-electron orbitals 

such that the major part of the kinetic energy can be computed with high accuracy.[78] 

The remaining part is fairly small and is combined with the non-classical part of the 

electron-electron interaction energy (  nclE ). The use of both orbital approach and 

density approach makes DFT computationally viable while not sacrificing accuracy by a 

great deal. 
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In Hartee-Fock approach, a single Slater determinant determined from N spin orbitals 

describes the state of the system. This Slater determinant represents exactly the wave 

function for N spin orbitals if and only if they are non-interacting. For this non-

interacting wave function, the kinetic energy can be expressed exactly as 





N

i

iiHFT
1

2

2

1
           (2.11)  

The spin orbitals ( i ) are chosen so that the expectation value of the energy expression 

( HFE ) attains the minimum.  

On this same non-interacting system, it is possible to introduce a Hamiltonian of the 

following form: 

 



N

i

is

N

i

is rVH
11

2

2

1 
          (2.12)  

where  rVs


 represents the effective local potential that the electron experiences. As the 

Hamiltonian operator does not contain any electron-electron interaction term, it is a 

Hamiltonian for the non-interacting reference system. This method of forming a multi-

electron Hamiltonian from non-interacting single electron Hamiltonians is very similar to 

that introduced by Hartee and Fock. The only difference is in using a local effective 

external potential due to all other nuclei and electrons in the system. These orbitals are 

called Kohn-Sham orbitals. The connection between this hypothetical system to the real 

system lies in the form of the effective potential. The density determined from these 

Kohn-Sham hypothetical orbials ( i ) has to equal the ground state density of the real 

interacting electrons system. 

     rsrr
N

i s

is


0

2

,            (2.13)  
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By calculating the major part of the unknown kinetic energy with exact kinetic energy 

expression for non-interacting electrons (equation 2.11), Kohn and Sham introduced the 

following separation of the functional: 

           rErJrTrF XCs


                     (2.14)  

XCE is called the exchange-correlation energy and is defined by: 

                nclCeesXC ETJETTE        (2.15)  

It is important to note here that the exchange-correlation function contains all energetic 

contributions everything that is unknown: the residual part of the kinetic energy 

functional not determined from the non-interacting orbitals and the non-classical part of 

the electrostatic contributions (self-interaction, exchange and correlation corrections). Up 

to this point, the density functional theory is exact. All the approximations are made 

while modeling the exchange-correlation functional. 

In light of the Kohn-Sham separation of the energy functional, the total energy of the 

solid as a function of electron density can be explicitly written in the following form.[2]  
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      (2.16)  

The exchange-correlation functional ( XCE ) cannot be written in any explicit form. We 

can now apply the variational principle and find the condition that the wave function 

must satisfy to minimize the above energy expression. The condition can be derived to 

have the following form: 
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    (2.17) 

By comparing the above equation to the Schodinger equation for a single electron in the 

non-interacting reference system, it becomes obvious that the term in the square brackets 

or effV is identical to the external potential sV in equation 2.12. 

While the Kohn Sham equation resembles the single electron stationary Schrodinger 

equation, effV depends on the solution such that the equation has to be solved in a self 

consistent iterative way. 

The exchange correlation energy (   rE XC


 ) is the quantity where all approximations in 

density functional theory are contained. The first and the most common approximation to 

model this quantity is called the Local Density Aprroximation (LDA).[78] In this 

approximation, XCE takes the following form: 

      rdrE XCXC


            (2.18) 

Here, XC is the exchange correlation energy density (per unit electron-density). The 

quantity XC is estimated from the value with uniform electron gas with the same density 

(  r


 ). This approximation was first put into calculations by Ceperly and Alder 

(1980).[79] This approach is well suited for solids with delocalized electronic states as 

the electron density structure is similar to that of a homogeneous electron gas. For 

individual atoms and molecules, the electron density varies more rapidly rendering LDA 

a crude approximation.  

Instead of using the uniform electron density, the gradient in density can be taken into 

account to handle the inhomogeneities. However, there is an intrinsic problem in using 

density gradients. LDA satisfies the symmetry and the scaling properties of the 

hypothetical exact exchange correlation potential and direct introduction of gradients 

disrupts this requirement. Perdew introduced a generalized gradient approximation 
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(GGA) which takes care of these requirements.[80, 81] GGA works better than LDA for 

individual atoms and molecules but it is more complex. 

Approximations to density functional theory are associated with certain limitations. LDA 

underestimates the lattice parameter while GGA overestimates it. LDA also 

underestimates the band gaps. However, in case of studying the intercalation behavior in 

transition metal dichalcogenides, it is the formation energies that dictate the 

thermodynamics. Many errors in the total energy cancel out. GGA is very important in 

case of magnetic systems and is generally believed to be more accurate than LDA. We 

have used GGA[82] in all the first-pirnciples calculations in this thesis. 

In practical DFT calculations, the core electrons are often represented by a pseudo 

potential and hence not solved explicitly.[83, 84] This approach is valid as long as the 

core electrons do not take part in bonding and their energy levels are not shifted when 

placed in different surroundings. For calculating the bulk properties of crystalline solids, 

DFT calculations are performed under periodic boundary condition. This periodic 

condition allows us to apply Bloch‟s Theorem[39] and solve for a limited number of 

orbitals specified by a wave number k


 in the reciprocal space of the solid. The orbital 

energy levels are continuous functions of k


. Therefore they can be solved for a finite 

number of k


points and the intermediate values can be interpolated with some suitable 

scheme. The orbitals are expanded as the sum of plane waves with periodicity of the 

reciprocal lattice with a pre-selected cutoff for the maximum energy. In the present 

thesis, we have used PAW (Projector Augmented Wave)[85] pseudopotentials as 

incorporated in VASP (Vienna Ab-initio Simulation Package)[86-88].   

The First-principles calculation methods allow us to calculate the total energies of 

microstates which are essential input for constructing an effective Hamiltonian. Accurate 

parameterization of the effective Hamiltonian is the next step in statistical mechanical 

formulation. For redistributional Hamiltonian, cluster expansion is an established 

rigorous tool for the parameterization. In the nest section, we will review the basics of the 

cluster expansion technique. 
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2.5 Cluster expansion 

Cluster expansion is a technique of formulating an effective Hamiltonian to account for 

configurational degrees of freedom. It has been widely used in alloy theory and can be 

efficiently used for the modeling of the intercalation process. Intercalation compounds 

consist of a host crystal structure (typically of transition metal oxide, sulfide or 

phosphates) that remains the same throughout the intercalation process (except slight 

relaxation in volume and shape). The interstitial sites within this host structure are 

available for Li occupancy. In a crystal of M sites, there are 2
M

 ways of distributing Li 

ions and vacancies. In a real solid, ionic relaxations do not allow the Li-ions to stay 

exactly at the crystallographic interstitial positions in the crystal. Nevertheless, it is 

always (for small relaxations) possible to relate the Li-ions (or vacancies) to the 

crystallographic sites through a one to one correspondence.  

 

Fig 2.1: An example square crystal with the sites occupied by two different species (red 

and green) 

In fig 2.1, we show a simple example of a square crystal where we can formulate a binary 

cluster expansion. Each site can be occupied either by a Li ion or by a vacancy. We can 

assign an occupation variable (σi) to the sight i which has a value +1 (-1) if there is a Li-



22 

 

ion (vacancy). Any arbitrary arrangement of Li-vacancy can be uniquely represented by a 

vector of +1‟s and -1‟s:  

 Mi  ......,, 3,21


           (2.19) 

 

Fig 2.2: Examples of clusters of on a square crystal 

On the same crystal, we can find clusters of different sizes (point, pair, triplet, quadruplet 

etc) as shown in fig 2.2 For a particular cluster, cluster function (



) is defined as the 

product of the occupation variables at the member sites as shown below.[89] 

  





 
i

i


                       (2.20) 

As for an example, if cluster δ is a triplet cluster with two Li-ions and a vacancy at the 

constituent sites,   will be calculated as (+1) × (+1) × (-1). It can be rigorously proved 

that these cluster functions for all possible clusters in the lattice form a complete 

orthonormal basis set in configuration space and any property that depends on 

configuration can be exactly expanded as a linear combination of these basis 

functions.[89] It is similar to the discrete Fourier series and can be thought of as a 

generalization of the Ising Hamiltonian. The expansion takes the following form with the 

unknown parameters (Vα). 
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   





 VVf 0           (2.21) 

The unknown parameters (Vα) are called the effective cluster interactions (ECI). The 

ECI‟s are constant expansion coefficients and should not be confused with the inter-

atomic potentials. The cluster expansion is defined strictly for a particular arrangement of 

interstitial sites. If more than one phase competes for stability having different crystal 

structures and hence different arrangement of interstitial sites, separate cluster expansions 

need to be formulated to describe the configurational degrees of freedom over the 

separate phases.  

Symmetry of the underlying lattice has to be taken into account for the cluster expansion 

formalism.[90] In the square lattice shown in fig 2.2, all the lattice sites are 

symmetrically equivalent as any one site can be obtained by translating any other site by 

the linear combination of the lattice vectors. Moreover, the pair cluster 



  can be obtained 

by rotating the cluster β by 90 degrees and subsequently translating it by ba


 2  vector. 

The rotation by 90 degrees is a member of the space group of the square lattice. A cluster 

is said to be symmetrically equivalent to another cluster if the first one can be constructed 

from the latter one by at least one member of the space group of the underlying lattice 

and a translation vector which is a linear combination of the lattice vectors. Therefore, the 

cluster 



  is symmetrically equivalent to the cluster β. All the symmetrically equivalent 

clusters will have the same ECI.  

Parameterization of the cluster expansion means finding the set of ECI‟s that reproduces 

the configuration-dependent variables of the material. For the intercalation process, the 

relevant variable is the formation enthalpy. Total energies for different Li-vacancy 

orderings are calculated from the first principles. The formation enthalpies can be 

calculated from these total energies using the laws of mixture. The quality of the cluster 

expansion is measured with two metrics: the root mean square (RMS) error and the cross 

validation (CV) score. The RMS error measures the reproducibility of the formation 

enthalpies and the cross validation score measures the degree of predictability.[91] In a 

set of n formation energies, we leave one out of the parameterization process and let the 
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cluster expansion predict the formation enthalpy for the left-out configuration. The less 

the RMS error and the CV score, the better the fit. We use the matrix inversion algorithm 

to find the least square fit of the ECI‟s. A genetic algorithm is used to find the set of 

optimal clusters that minimizes the CV score and the selection criteria puts more weight 

on the smaller clusters and adds one cluster only if all the smaller sub-clusters are 

included in the set.[92] The cluster function forms a complete basis set if the size of the 

clusters extends up to infinity. But any practical cluster expansion has to be truncated 

after a certain cluster size. For most of the materials, the cluster expansion consisting of 

up to four-point clusters have been successfully reproduced the formation enthalpies with 

reasonable accuracy. Moreover, it has been shown that the CV score of a cluster 

expansion decreases with the inclusion of larger clusters only up to a certain optimal size 

(different for different material) and then increases monotonically with the use of larger 

clusters.[91] As the CV score minimization is an essential criterion for an accurate cluster 

expansion, we do not use five point or bigger clusters in the cluster expansion in the 

present thesis. 

2.6 Monte Carlo Methods 

Monte Carlo Methods represent a class of statistical algorithms.[8, 93-96] It can be 

successfully applied to study equilibrium properties based on the principles of statistical 

thermodynamics. At certain boundary conditions, a system samples several 

configurations each with relative frequency consistent with the probability distribution 

(equation 2.1). The configurations form a Markov chain and the transition from one 

configuration to another is associated with certain probability. Over a large number of 

attempts (called Monte Carlo passes), statistical thermodynamics ensures that the free 

energy follows this probability distribution. Hence the mean value of that free energy 

represents the equilibrium free energy. 

2.6.1  Canonical Monte Carlo 

For a closed system under constant temperature and volume, the statistical ensemble we 

choose to study the thermodynamic equilibrium is called the canonical ensemble. The 
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control variables are T, V and N. Under this boundary condition, the characteristic 

potential is Gibbs free energy and the transition probability under standard Metropolis 

algorithm[97] is given by the following rule. 



P 1     if 



E2  E1  0    (2.22a) 



P  exp  E2  E1 /kBT    if 



E2  E1  0    (2.22b) 

where, P is the transition probability for configuration 1 to transform to configuration 2. 

E1 and E2 are the corresponding energies for the two configurations. If this calculated 

probability is less than a random number between 0 and 1, then the new configuration (2) 

is accepted. Otherwise, the first configuration (1) is kept. 

For the investigation of the cubic to tetragonal phase transitions, we defined one state by 

a set of lattice strain variables (compared to cubic reference lattice) of all the lattice sites 

in the computational domain. A change in any of the 6(N+1) strain variables (there are N 

sites in the domain and 6 independent strain metrics per site, and there are six strain 

variables for the homogeneous strain of the super cell) means a transition to another state 

of the system. As the system is a closed system with constant temperature and volume, 

the canonical Monte Carlo method has been applied to study the thermodynamic 

equilibrium. Energy of any state of the system is calculated from the effective 

Hamiltonian parameterized by the first-principles total-energy calculations. 

2.6.2  Grand Canonical Monte Carlo 

In case of Li-insertion in the intercalation compound, the number of Li-atoms is no 

longer constant. The control variables are temperature, volume and the external potential. 

External potential directly controls the chemical potential (). Therefore, we take T, V 

and  as the control variables and the thermodynamics is studied with the help of the 

grand canonical ensembles. The characteristic potential in this case is called the grand 

canonical potential which is obtained from the following equation. 



 E N             (2.23) 
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where N is the number of Li atoms. The probabilities are calculated in the similar way 

except using this grand canonical energy (Ω) instead of the internal energy (E). By 

minimizing the grand canonical free energy, we can obtain the equilibrium relationship 

between Li-concentration and chemical potential of Li.  This relationship is of 

importance for battery applications as the open circuit voltage of an intercalation 

compound electrode with respect to a metallic Li reference anode is related to the 

chemical potentials of the electrodes. 

2.6.3  Kinetic Monte Carlo 

Kinetic Monte Carlo is an efficient algorithm to capture the dynamics of the diffusing 

atoms. At any point of time, the system can jump to several possible end states. The 

individual atomic hops joining two such states of the system form a cumulative array. 

Each individual hop has some probability (



 ) of occurrence (according to equation 2.31 

in section 2.7) and the whole array can be associated with the cumulative probability 

(



Tot ).[98] A random number (u1) between 0 and 1 is generated and the event (i) is 

selected so that  



i  u1Tot                  (2.24) 

The dynamic process is modeled as a continuous-chain Markov process that obeys 

Poisson statistics. Under this assumption, the hops are instantaneous and the process-time 

is updated by the time between the jumps. The time between the two states of the system 

follows the Poisson distribution function with a mean that is the reciprocal of the 

cumulative probability of the jump. Therefore, the time is updated by, 



t 
ln u2

Tot

                (2.25) 

where u2 is a random number between 0 and 1. The KMC algorithm is efficient because 

each iteration is guaranteed to produce a transition. In case of diffusion, we follow each 

Li-ions and record the displacement vectors and update the time after iteration. The 

averages shown in equation 2.28 and 2.29 (in section 2.7) are taken after a large number 
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of Monte Carlo passes. Also, for each concentration, we average the relevant quantities 

for different initial arrangement of Li and vacancies. 

2.7   Atomic-scale Formulation of Diffusion 

The diffusion coefficient, D, appearing in Fick‟s first law depends both on the 

thermodynamic as well as the kinetic properties of the solid. For Li diffusion over the 

interstitial sites of the host, it is convenient to write D as a product of a thermodynamic 

factor, Θ, and a self diffusion coefficient, DJ, according to[99]  



DDJ                        (2.26) 

The thermodynamic factor 

x

TkB

Li

ln















                       (2.27)                          

measures the deviation from thermodynamic ideality. It is unity in the dilute limit where 

interactions between different Li ions are negligible and diverges close to an ordered 

stoichiometric phase where the deviation from ideal solution behavior is the largest. The 

self-diffusion coefficient measures the mobility of the Li ions over the interstitial sites 

and can be evaluated at equilibrium with a Kubo-Green expression:[100] 
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          (2.28) 

where d is the dimension of the interstitial network, t is time, N is the total number of 

lithium ions and  tRi


is the vector connecting the end points of the trajectory of the i

th
 Li 

ion at time t. The self-diffusion coefficient, DJ, has a similar form as that of the tracer 

diffusion coefficient, D
*
, which is defined as 

 



N

i

i tR
Ndt

D
1

2* )(
1

2

1 
.          (2.29) 
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The self-diffusion coefficient is related to the square of the displacement of the center of 

mass of all diffusing Li ions at equilibrium, thereby accounting for correlations in the 

trajectories of different Li ions. The self-diffusion coefficient is therefore a measure of 

the collective mobility of many Li ions. The tracer diffusion coefficient, D*, in contrast, 

is related to the square of the displacement of one Li and therefore measures the mobility 

of individual Li ions. While DJ and D* are metrics of the kinetics of diffusion, they also 

depend on the thermodynamic behavior of the solid. The mobility of Li ions can be very 

sensitive to the equilibrium degree of the short- and long-range order among the Li ions. 

Often mobility is reduced in the ordered phases having stoichiometric compositions as 

elementary hops will then introduce some degree of local disordering, which is often 

accompanied by a significant increase in the energy of solid.  

The thermodynamic factor (Eq. 2.27), can be calculated with the grand canonical Monte 

Carlo simulations by evaluating[99] 

 2N

N


                        (2.30) 

where N is the number of Li atoms in the system (Monte Carlo cell) and N is the 

fluctuation around the average N at constant Li chemical potential Li. Both DJ and D* 

can be calculated with the kinetic Monte Carlo simulations, which simulates trajectories 

 tRi


as a function of time. Essential input for a kinetic Monte Carlo simulation[98, 101] 

is an accurate description of the hop frequencies for the elementary Li-vacancy 

exchanges. These can be calculated with transition state theory, which for the Li-ion hops 

into an adjacent vacant site takes the form[102] 








 


Tk

E

B

exp*                  (2.31) 

where 



E is the activation barrier  and 



* is the vibrational prefactor. Often the Li ions 

are disordered over the interstitial sites of the host and can sometimes exhibit long-range 

order at stoichiometric compositions. The migration barriers 



E  appearing in the hop 
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frequency, Eq. 2.31, depends on the local Li composition and state of disorder and will 

therefore vary as the migrating ions sample different local environments along their 

trajectories.  



30 

 

 



31 

 

FIG 2.3: Different shapes of the energy path associated with a nearest neighbor atomic 

hop: (a) If the saddle point of the hop can be included in the cluster expansion, the 

migration barrier for any direction of the hop is calculated from the energy difference. 

Both stable site energy (E1) and transition state energy (E2) need to be calculated from the 

cluster expansion. (b) In case the transition state cannot be included in the cluster 

expansion, the migration barrier will depend on the direction of the hop. Kinetically 

resolved barrier (KRA) is the energy-height of the transition state from the straight line 

joining the end states of the hop (perpendicular to the direction of the hop and at the 

middle of the two end states). The middle point of the straight line joining the end states 

is higher by the energy difference from the lower end state. Depending on the hop-

direction, we need to either add or subtract this quantity from KRA value to obtain the 

migration barrier. (c) In case of the transition state not included in the cluster expansion, 

we can use the direct differences of energies instead of KRA value to calculate the 

migration barrier. 

Several approaches have been formulated and implemented to account for the 

dependence of migration barriers on local Li-vacancy disorder using a local-cluster 

expansion. If the transition state can be included in the cluster expansion, the migration 

barrier can be modeled from the direct difference in energies when the hopping Li stays 

at the stable site and when it is at the transition state (fig 2.1(a)). When the activated state 

is a local minimum, the forward migration barrier can be calculated by the summation of 

two quantities: (i) the kinetically resolved barrier (KRA)[70] and (ii) the difference in the 

end state energies as shown in fig 2.1(b).  The backward migration barrier is calculated 

by the difference of these two quantities. When the energy height of the transition state 

from one of the end states remains constant with variations in the local arrangements, the 

constancy of this quantity can be used to model the migration barrier eliminating the need 

of a local cluster expansion. As the end state energies are reproducible with the global 

cluster expansion, the addition of a constant term (saddle point height) yields the 

migration barrier. The concept is explained schematically in fig 2.1(c).  When none of 

these simplifications work for a solid, a local cluster expansion of the KRA values 

captures the dependence on the surroundings rigorously. In case of the -Li1+xTi2O4, we 



32 

 

used the method explained in fig 2.1(a), In case of -Li1+xTi2O4, two different KRA 

values were used for two different local environments. For modeling the migration 

barriers in LixTiS2, third approach (fig 2.1(c)) was used and three different constant 

values for the saddle point height were used for three different local environments. 

The vibrational prefactor (



*) in equation 2.31 is a measure of the attempt frequency of a 

hop. It can be calculated from the ratio of the products of two sets of frequencies 

according to the following equation as derived by Vineyard. [102] 





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             (2.32) 

The numerator represents the product of all normal vibration frequencies at the initial site 

of the hop and the denominator represents the same at the saddle point. N stands for the 

number of sites involved in a hop and for a nearest neighbor Li-vacancy exchange, it is 2. 
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Chapter 3 

 Mechanical Instabilities and Structural Phase 

Transitions 

3.1 Introduction 

Many high temperature crystalline phases undergo structural phase transformations upon 

cooling. The modification in crystal structure often results in an abrupt change in materials 

properties. In some materials, a structural phase transformation is accompanied by a large strain, 

which can be exploited in shape-memory applications, while in others, the crystallographic 

changes lead to a spontaneous electric polarization within the crystal. A distinction can be made 

between structural transformations characterized by atomic displacements within a unit cell (type 

I), as occurs in most ferroelectric oxides, and structural transformations that produce large 

homogeneous strains (type II), as occurs for example in martensitic transformations involving a 

Bain distortion. 

First-order structural phase transformations occur when the free energy of the high temperature 

phase crosses the free energy of the low temperature phase. The use of thermodynamic potentials 

to rationalize phase stability breaks down around a second-order phase transformation due to 

large fluctuations with diverging correlation lengths as the transition temperature is approached. 

Nevertheless, the phases participating in the structural phase transformation can still be described 

thermodynamically in terms of free energies away from the second order transformation 

temperature.  

The conventional thermodynamic description of crystalline phases at finite temperature relies on 

the assumption of mechanical stability with respect to a homogeneous strain of the unit cell 
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and/or an internal shuffle of the atoms within the unit cell. This means that the energy or a 

coarse-grained free energy (when accounting for electronic excitations at finite temperature) 

should exhibit a local minimum for that crystal structure with respect to shape changes and 

atomic displacements. For mechanically stable crystal structures, free energies can be calculated 

within the harmonic (or quasi-harmonic) approximation,[103]
 

while contributions from 

anharmonic vibrations are often neglected. Recent first-principles investigations of phase 

stability using various approximations to density functional theory (DFT),[77, 78] however, have 

shown that a large number of experimentally observed, high temperature phases are predicted to 

be mechanically unstable at zero Kelvin.[40-42, 104-110] Pure Ti, for example, has a bcc crystal 

structure above 1150K, while DFT based calculations at zero Kelvin predict that bcc Ti is 

mechanically unstable and should spontaneously relax to hcp, fcc or the   phase.[40-42] 

Various approximations to DFT predict similar phenomena in ferroelectric materials with, for 

example, the high temperature cubic phases of BaTiO3 and PbTiO3 predicted to be unstable at 

zero Kelvin with respect to atomic displacements that lead to crystal structures with lower 

symmetry.[104-106]
  

First-principles effective Hamiltonians subjected to Monte Carlo simulations have brought 

fundamental insight about the nature of the anharmonic vibrational excitations that render the 

high symmetry phases stable at elevated temperature in systems exhibiting type I structural phase 

transformations, such as BaTiO3 and PbTiO3.[104-106] Far less, however, is understood about 

type II structural phase transformations involving large homogeneous strains. Here we show that 

anharmonic vibrational degrees of freedom can play a crucial role in stabilizing the high 

temperature phases that are both susceptible to a type II structural phase transformation and that 

are also predicted to be mechanically unstable at zero Kelvin.  
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FIG 3.1: Energy of TiH2 as a function of the c/a ratio as calculated within the generalized 

gradient approximation to DFT (energy is normalized per cubic unit cell, containing 4 Ti atoms 

and 8 H atoms). 

An example of a type II structural phase transformation is the cubic to tetragonal phase transition 

of TiH2. The Ti atoms of TiH2 reside on an fcc sublattice while the H atoms occupy all the 

tetrahedral interstitial sites. At high temperature, TiH2 has cubic symmetry but spontaneously 

transforms to a tetragonal phase below 300 K with a c/a ratio less than 1.[111] A first-principles 

calculation of the energy versus c/a ratio within GGA correctly predicts the tetragonal variant to 

have the lowest energy as illustrated in Fig. 3.1. (The energy versus c/a, normalized per cubic 

unit cell of TiH2, was calculated with the VASP code[86, 87] using the projector augmented 

wave method.[85, 88]) Surprisingly, though, the high temperature cubic form (c/a=1) is 

predicted to be mechanically unstable (Fig 3.1) with respect to tetragonal distortions, raising 

fundamental questions about the true nature of the high temperature cubic phase. The tetragonal 

distortion of TiH2 arises from a Jahn-Teller instability that splits a spike in the electronic density 

of states of cubic TiH2 at the Fermi level F . Thermal smearing of the electronic states around 

F  could conceivably undo the energy gain of the Jahn-Teller distortion and thereby stabilize the 

cubic phase above a critical temperature.[112] This was indeed shown to be the case, with 

thermal electronic excitations qualitatively modifying the shape of the free energy of TiH2 versus 

c/a, rendering cubic TiH2 mechanically stable above ~1000 K. This temperature, however, is 
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well above the experimental tetragonal to cubic transition temperature of 300 K, suggesting that 

electronic excitations alone may not be sufficient to explain the stability of cubic TiH2. Other 

excitations involving vibrational degrees of freedom could play an important role, although a 

calculation of the free energy of TiH2 as a function of c/a within the harmonic approximation did 

not alter the mechanical instability of cubic TiH2 at finite temperature.[113]  

In this chapter, we explore the role of anharmonic strain fluctuations at the level of the crystal 

unit cell in stabilizing the mechanically unstable cubic form of TiH2 at high temperature.  

3.2 Construction of Hamiltonian 

We map the TiH2 crystal onto a cubic lattice representing the corner points of the cubic fcc unit 

cell of the Ti sublattice. For this cubic reference lattice, we introduce an effective Hamiltonian 

that accounts for strain anharmonicity and that predicts cubic TiH2 to be mechanically unstable 

with respect to tetragonal distortions. We write the Hamiltonian as a sum of functions 

 associated with different clusters of sites,  , of the cubic lattice according to 



E ....,u i,....  E0   u i,u j   u i,u j,u k   u i,u j ,u k,u l  ...

 quadruplet


  triplet


  pair

             (3.1) 

where the 



u i  are deviations from ideal positions in the reference cubic lattice of site i, Eo is the 

energy of the undeformed reference cubic lattice and the summations in principle extend over all 

possible clusters of sites. Instead of expressing the cluster functions  explicitly in terms of 

atomic deviations, 



u i , from the cubic reference lattice, it is more convenient to write them as a 

function of strain variables that serve as a measure of the deformation of the cluster ζ from its 

ideal shape in the reference cubic crystal. For a pair cluster (e.g., Fig. 3.2a), an appropriate 

metric for deformation is the stretch of the bond between two cubic lattice points. For a non-

collinear three-point cluster or a non-planar four-point cluster, useful metrics of deformation can 

be extracted from two-dimensional or three-dimensional strain gradient tensors F which map the 

cluster in the cubic reference lattice onto the cluster of the deformed lattice. As a particular 

example, consider a four-point cluster of the cubic lattice consisting of a central site connected to 

three nearest neighbor sites along the three cubic directions (Fig. 3.2b). The symmetric Cauchy-
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Green tensor, C=F
T
F, removes any rigid rotation of the cluster around its central atom. 

Furthermore, its diagonal elements are a measure for the stretch, 



S  C 1.0 , of the bonds 

along the three cubic directions , while its off-diagonal elements measure shears as they are 

related to the angles   between the cubic directions of the cluster according to 



cos C CC .  

 

FIG 3.2: (a) first and second nearest neighbor clusters of the cubic lattice and (b) four point 

cluster of the cubic lattice used in the lattice Hamiltonian (see text). 

In its general form, the anharmonic lattice Hamiltonian, Eq. (3.1), offers enough degrees of 

freedom to accurately reproduce the (free) energy surface for both homogeneous and localized 

deformations of the cubic lattice. From a practical point of view, however, the Hamiltonian must 

be truncated for some maximally sized cluster. For TiH2, inclusion of four-point clusters is 

essential to capture the predicted instability of the cubic phase with respect to a tetragonal 

distortion. The Hamiltonian, used in the present study, therefore, contains in addition to cluster 

functions   corresponding to pair clusters up to the second nearest neighbor shell, also a 

cluster function for the four-point cluster depicted in Fig 3.2b. We express the cluster functions 

  as polynomials of the metrics of strain for the cluster . For the pair clusters   can be 

expressed as a polynomial of the stretch of the pair, and if only harmonic contributions are taken 

into account, we can write



 Kij u i  u j
2
, where Kij is related to a spring constant.  

The polynomial expression for the cluster function,  , of the four-point cluster must contain 

higher order terms to capture the anharmonicity of the energy as a function of the c/a ratio. 
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Furthermore, the polynomial corresponding to the four body clusters must satisfy the symmetry 

associated with the cubic to tetragonal transformation so that it predicts the same (free) energy 

variation when the cubic lattice is compressed along the x, y or z-axis. It is therefore more 

convenient to represent the strain of the four-point cluster in terms of linear combinations of the 

stretches, S , and shears, cos , according to[114, 115]
 

e1  (S1  S2  S3) / 3 , e2  (S1  S2 ) / 2 ,  e3  (S1  S2  2S3) / 6  

e4  cos12 ,  e5  cos23 ,  e6  cos13  

Here, e1 measures dilation of the cluster, while e2 and e3 describe the deviatoric distortion of the 

cluster. The remaining three terms, e4, e5 and e6, measure the shear strains between the three 

cubic directions. The most important strain variables in the context of the cubic to tetragonal 

phase transformation are e2 and e3 as they measure the degree of tetragonality, and enable a 

representation of all symmetrically equivalent tetragonal variants in a two dimensional plot. The 

cluster function for the four-point cluster,  , can be expressed as a polynomial of the ei 

according to[114] 



  A e2
2  e3

2  Be3 e3
2  3e2

2  C e2
2  e3

2 
2
 Q e4

2  e5
2  e6

2                 (3.2) 

which satisfies the symmetry relations between the three equivalent tetragonal variants that can 

form from the cubic lattice. Symmetry constraints require coefficients of any odd power of e2, e4, 

e5 and e6 to be zero and only allow selected odd powers of e3 when multiplied with even powers 

of e2. The polynomial must satisfy 3-fold symmetry with respect to e2 and e3 as well as mirror 

symmetry around the e3 axis and the two axes obtained by rotating the e3 axis by 120
o
 and -120

o 

to ensure that the same energy is predicted for the symmetrically equivalent tetragonal 

distortions along the x, y and z directions. In Eq. (3.2), we neglect an explicit dependence on 

dilation (which is accounted for to some degree by the pair cluster functions) as well as 

anharmonic contributions from shear strains, e4, e5 and e6. The A, B, C and Q parameters are 

independent of deformations of the four-point clusters, but could depend on temperature if 

electronic excitations and harmonic vibrational degrees of freedom of the basis atoms within the 

cubic unit cell are accounted for. We note that the above expression was originally introduced to 
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describe the free energy for a cubic to tetragonal transformation at the continuum level.[114, 

115] Here we apply the expression to describe a contribution to the energy of deformation of a 

cluster of four sites in a discrete cubic lattice.  

3.3 Results 

With pair-cluster functions up to the second nearest neighbor and the cluster function of Eq. (3.2) 

for the four-point cluster, we have an effective Hamiltonian that can describe the energy of the 

cubic crystal and its stable tetragonal variants as a function of arbitrary local strain that does not 

disrupt the connectivity of the cubic lattice. With these terms, the Hamiltonian can be written as 

          
 


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               (3.3) 

The summation over i and j is over all nearest and second nearest neighbor pairs while the 

summation over   is over all four point clusters symmetrically equivalent to that of Fig. 3.2(b). 

The el is the l
th

 strain metric (as used in Eq. (3.2)) for the four-body cluster .  

To accurately represent the anharmonic degrees of freedom in TiH2, we fit the coefficients Kij, A, 

B, C and Q of Eq. (3.3) to the first-principles energy landscape for homogeneous and localized 

deformations of the cubic lattice of TiH2. The energies of 202 homogeneous and local 

deformations of the TiH2 lattice were calculated from the first principles. The first-principles 

calculations were performed with DFT within GGA as implemented in the VASP code. The 

core-electron interactions were treated with the projector augmented wave (PAW) method.[85, 

88] A plane wave basis set cutoff energy of 400 eV was used and an 8  8  8 k-point grid was 

chosen for the cubic unit cell (which contains four units of TiH2). All homogeneous strains are 

relative to a cubic reference lattice with a lattice parameter of 4.4316 Å. Volumetric strains were 

uniformly sampled between -4% and +4% of the reference volume and tetragonal distortions of 

the cubic cell were sampled by varying the c/a ratio between 0.85 and 1.15. Energies for shear 

deformations were calculated in three states of tetragonal distortion (c/a = 0.92, c/a = 1.0 and c/a 

= 1.07) with shear strains taken as large as 7%. We also calculated the energy of local 

deformations of the lattice using a supercell containing 2  2  2 cubic unit cells (consisting of 
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32 TiH2 units). The lattice site at the center of the supercell (corresponding to a Ti atom) was 

systematically perturbed and only its first nearest neighbor Ti and hydrogen atoms were allowed 

to relax completely (these nearest neighbor atoms are basis atoms within the cubic unit cell of 

TiH2). For the cubic phase and the stable tetragonal phase (c/a ratio = 0.92), we incrementally 

perturbed the central Ti atom of the 2  2  2 supercell in the x, z and body diagonal directions 

with a maximum excursion of 1/10
th

 of the original length of the cubic lattice vector.  

A fit to the energies of these deformations yielded the following values for the coefficients of the 

anharmonic strain Hamiltonian, Eq. (3.3): Kij = 2.586 eV/Å
2
 for the first nearest neighbor spring 

constant (of the cubic lattice), Kij = 0.776 eV/Å
2
 for the second nearest neighbors spring 

constant, A = -9.406 eV, B = -0.682 eV, C = 140.895 eV and Q = 0.009 eV. In fitting these 

coefficients, more weight was assigned to the low-energy deformations (relative to the tetragonal 

ground state) than to the high-energy deformations. High-energy deformations were included in 

the fit to ensure that the anharmonic strain Hamiltonian does not predict spurious local minima at 

large deformations. While overall the root mean square (RMS) error between the first-principles 

energies and those predicted by the Hamiltonian is 203 meV per unit cell, the quality of the fit is 

significantly better for the low energy excitations. The rms error between first principles energies 

and those predicted by the Hamiltonian is 3 meV per unit cell for homogeneous deviatoric and 

shear strains and local deformations of the tetragonal ground state (c/a = 0.92) that lead to an 

energy increase of less than 50 meV per unit cell above the ground state energy.  
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FIG 3.3: Energy contour plot as a function of the deviatoric strain metrics e2 and e3 as predicted 

by the effective strain Hamiltonian (see text). The cubic phase, corresponding to the origin in e2 

and e3 space, is predicted to be a local maximum, while the three wells correspond to the 

symmetrically equivalent stable tetragonal distortions of the cubic lattice. 

The resulting effective Hamiltonian reproduces an energy minimum for the symmetrically 

equivalent tetragonal variants along the x, y and z directions and an energy maximum for the 

cubic lattice. Fig. 3.3 illustrates an energy contour plot predicted by the first-principles 

parameterized Hamiltonian as a function of e2 and e3 for homogeneous deviatoric deformations 

of the cubic lattice, while all other homogenous strain metrics are set to zero. The cubic lattice 

corresponds to the origin of the e2 and e3 plot and is a local energy maximum. Tetragonal 

distortions of the cubic lattice along the z-axis are along the e3 axis with e2 = 0. The Hamiltonian 

predicts a mininum for positive e3 at approximately 0.066, which corresponds to a tetragonal 

distortion along z with a c/a ratio of approximately 0.92. Tetragonal distortions along the x and y 

axis occur along the dashed lines in Fig. 3.3 rotated from the vertical axis by 120
o
 and -120

o
 

respectively.   
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We subjected the effective Hamiltonian to Monte Carlo simulations to explore the role of 

anharmonic vibrational degrees of freedom in stabilizing the mechanically unstable cubic phase 

at elevated temperature. A standard Metropolis Monte Carlo algorithm was used with periodic 

boundary conditions (the Monte Carlo cell sizes contained 16
3
, 24

3
 and 32

3
 cubic unit cells). We 

choose a lattice site of the cell at random and perturb it with random distance and direction 

(bounded by a maximum excursion). The Hamiltonian is used to calculate the energy changes 

E due to the random perturbations and the perturbation is accepted if E  is negative or exp(-

ΔE/kBT) is greater than a random number between 0 and 1 (kB is the Boltzman constant and T is 

the absolute temperature). During a Monte Carlo pass, each lattice site is visited on average once 

and distortions of the Monte Carlo supercell are also sampled by random perturbations of the 

lattice vectors. We performed 6000 Monte Carlo passes at each temperature during which 

averages of local and macroscopic strain variables were taken.  
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FIG 3.4: (a) Variation of the lattice parameters a and c as a function of temperature calculated 

with Monte Carlo simulations applied to the effective strain Hamiltonian that predicts the cubic 

phase to be mechanically unstable; (b) Average values of e2 and e3 as a function of temperature 

(the low temperature tetragonal phase is oriented along the z-axis) and (c) Average values of the 

absolute values of e2 and e3 as a function of temperature. 

Figure 3.4(a) illustrates the variation with the temperature of the c and a lattice parameters (c is 

taken as the smallest of the three lattice parameters and a is taken as the average of the two larger 

lattice parameters) as calculated during the Monte Carlo simulations. As is clear from Fig. 3.4(a), 

the system has tetragonal symmetry at low temperature (characterized by a difference in c and a 

lattice parameters), but transforms to cubic symmetry at high temperature. The c and a lattice 

parameters converge to each other rapidly as the temperature approaches 635K, undergoing a 

transition to the cubic lattice where all lattice parameters are equal. The same behavior is 

predicted during heating and cooling Monte Carlo simulations, with no detectable hysteresis in 

the transition temperature. These Monte Carlo results clearly show that although the effective 

Hamiltonian predicts the cubic phase to be mechanically unstable with respect to tetragonal 

distortions, finite temperature excitations nevertheless lead to a stabilization of a cubic phase at 

elevated temperature.  

Further insight about the true nature of the high temperature cubic phase can be obtained by 

inspection of the averages of the deviatoric strain metrics, e2 and e3. Figure 3.4(b) illustrates the 

temperature dependence of e2 and e3 averaged over all lattice points of the crystal. At low 

temperature, the system adopts a tetragonal symmetry with the compressed lattice vector along 

the z axis (e2 = 0 and e3 is positive). As the temperature increases, the average of e3 decreases, 

rapidly converging to zero as the temperature approaches 635K. Above 635K, both e2 and e3 are 

on average equal to zero signifying that at high temperature the system adopts a cubic symmetry 

on average. Inspection of the averages of the absolute values of e2 and e3, however, shows that e2 

and e3 fluctuate significantly within the high temperature cubic phase, sampling both positive 

and negative values with equal frequency (Fig. 3.4(c)). Furthermore, the averages of the absolute 

values of e2 and e3 are equal above the transition temperature, indicating that there is no 

preference for any of the three low energy tetragonal variants within the cubic phase. This 
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indicates that the high temperature cubic phase is in fact characterized by the large temporal 

fluctuations of spatially localized deviatoric deformations. Within the tetragonal phase below 

635K, sizable fluctuations of e2 are also present (as manifested by a non-zero average value of 

the absolute value of e2) and these grow with increasing temperature. At the tetragonal to cubic 

transition temperature, the absolute values of e2 and e3 become equal, indicating that the system 

samples e2 and e3 with circular symmetry.  

The finite temperature behavior of this system can be rationalized by inspection of the energy 

contours of Fig. 3.3, plotted in terms of homogenous deviatoric strains, e2 and e3 of the cubic 

reference lattice. We emphasize that the energy surface of Fig. 3.3 is for homogeneous strains of 

the lattice, while the true energy surface sampled in the Monte Carlo simulations is more 

complex and depends on a large number of local deformation variables as well. Local 

deformations, including local shears, introduce additional energy penalties that are not 

represented in Fig. 3.3, but are correctly accounted for in the Monte Carlo simulations. At a low 

temperature, the crystal resides in one of the potential energy wells of Fig. 3 corresponding to 

one of the three stable tetragonal variants. The values of e2 and e3 fluctuate around their values at 

the local minimum. As the temperature is raised, increased thermal energy allows the system to 

sample higher energy states, leading to larger excursions of e2 and e3 from their values at the 

local minimum. As the tetragonal to cubic transition temperature is approached, sufficient 

thermal energy becomes available for the system to overcome the barriers separating the energy 

wells of the three tetragonal variants, at which point the system loses its tetragonal symmetry and 

on average adopts cubic symmetry. With sufficient thermal energy, the local minima are no 

longer deep enough to confine the lattice deformations to regions of phase space characterized by 

a tetragonal distortion and the system samples states within a potential well that has cubic 

symmetry, bounded by a rapid increase in potential energy with almost circular symmetry in e2 

and e3 space. Relative sampling frequency in the e2-e3 space can shed more light on the nature of 

this phase transition. We discuss the variation of relative sampling frequencies at different 

temperatures in appendix A. The Monte Carlo simulations indicate shorter correlation lengths 

between the deviatoric metrics of strain between neighboring lattice sites within the cubic phase 

as compared to the tetragonal phase. 
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The predicted transition temperature of 635K is higher than the experimental transition 

temperature of 300K. However, we found that the transition temperature is sensitive to the 

difference in energy between the tetragonal and cubic phases as well as the c/a ratio of the stable 

tetragonal distortion. A change in the minimum-energy-c/a ratio from 0.92 to 0.94 (which is the 

experimentally found value of c/a ratio for the tetragonal phase[111]) reduces the transition 

temperature to 350 K (which is very close to the experimental value of 300 K[111]). 

Furthermore, the strain Hamiltonian is fit to the zero Kelvin energy surface. At finite 

temperature, electronic excitations and harmonic vibrational excitations of the basis atoms within 

the cubic cell lead to a reduction in the free energy difference between the cubic phase and the 

tetragonal phase.[113] Inclusion of this temperature dependence in the effective Hamiltonian is 

also likely to reduce the predicted transition temperature. The systematic construction of 

effective lattice Hamiltonians that incorporate the integrated-out degrees of freedom that do not 

explicitly participate in a structural phase transformation has been described by Rabe and 

Wagmare.[116] 

3.4 Conclusion 

We have shown that anharmonic vibrational degrees of freedom can play a crucial role in 

stabilizing the high temperature phases that are predicted to be mechanically unstable at zero 

Kelvin and that undergo a structural phase transformation involving large homogeneous strains 

upon cooling. This finding indicates that the thermodynamic properties of many high 

temperature phases are likely to be more complex than is commonly assumed in analyses of 

phase stability that rely on the (quasi) harmonic approximation.  
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Chapter 4 

 Phase stability and non-dilute Li diffusion in 

spinel lithium titanate 

4.1 Introduction  

Charge and discharge rates of Li-ion batteries depend sensitively on Li ion mobility 

within the electrode materials. Most electrode materials of reversible Li-ion batteries are 

intercalation compounds that accommodate Li ions in the interstitial sites of a crystalline 

host.[43] Lithium ions diffuse in and out of the intercalation compound by exchanging 

with vacancies. Often the Li concentration within the host can be varied from very dilute 

concentrations to the fully concentrated limit. Hence, Li diffusion predominantly occurs 

at non-dilute concentrations where interactions among Li ions play an important role in 

influencing mobility.  

Lithium intercalation compounds exhibit a wide variety of crystal structures and 

chemistries.[43, 60, 61, 117] Transition metal oxides such as LixCoO2, Lix(Ni1/2Mn1/2)O2 

and Lix(Co1/3Ni1/3Mn1/3)O2 have a layered crystal structure that accommodate Li ions 

between transition metal oxide slabs, thereby restricting Li diffusion to two-dimensional 

layers. Crystallographic features of the lithium sites in layered LixCoO2 and LixTiS2, for 

example, result in a diffusion mechanism predominantly mediated by di-vacancies,[56, 

70, 118] which becomes inefficient at high Li concentrations where the number of 

vacancies becomes small. Diffusion in the layered intercalation compounds is also 

affected by the dimensional variations of the host crystal structure. The contraction of the 

c-lattice parameter (perpendicular to the Li-layers) with decreasing Li concentration in 
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LixCoO2 and LixTiS2 results in an increase of migration barriers, causing the diffusion 

coefficient to decrease at low Li concentration.[56, 70] Intercalation compounds such as 

LixFePO4 have an olivine crystal structure[46] in which Li diffusion is restricted to one-

dimensional channels.[69] One-dimensional diffusion has important consequences for the 

rate capabilities of the olivine compounds as well as the kinetic mechanisms of the two-

phase reaction from LiFePO4 to FePO4.[119-122] The crystal structures of other 

intercalation compounds such as spinel-LixMn2O4[123] or anatase-TiO2[124, 125] consist 

of three-dimensional interstitial networks, and it is generally believed that the higher 

dimensional networks lead to enhanced Li mobility.  

While several in-depth studies have been performed on Li diffusion in layered 

intercalation compounds,[56, 70] much remains to be understood about the dependence 

of diffusion mechanisms on crystal structure and composition in non-layered intercalation 

compounds. In this chapter, we perform a first-principles investigation of lithium 

diffusion in the spinel crystal structure as a function of lithium concentration, focusing on 

Li1+xTi2O4.[62, 126, 127] The spinel form of Li1+xTi2O4 is crystallographically identical 

to spinel LixMn2O4.[123, 128] Though the manganese spinel variant is currently used as a 

cathode in Li-ion batteries for automotive applications, its electronic structure is 

significantly more complex than that of spinel Li1+xTi2O4, exhibiting localized charge 

ordering,[129] local and cooperative Jahn-Teller distortions,[130] and complex magnetic 

ordering,[131-133] all varying with Li concentration. The arrangements of Mn
3+

 and 

Mn
4+

 ions in spinel LixMn2O4, for example, are likely correlated to the arrangements of 

Li ions and could result in a coupling between Li hops and rearrangements of charge 

ordering over the Mn-sublattice. This electronic complexity is for a large part absent in 

Li1+xTi2O4, thereby simplifying the study of both its thermodynamic[134] and kinetic 

properties and allowing us to isolate the role of the spinel crystal structure on lithium 

diffusion at non-dilute concentrations.  

Unlike most lithium transition metal oxides that serve as cathodes in Li-ion batteries, the 

Li1+xTi2O4 spinel electrode exhibits a low voltage, making it a viable anode in lithium 

batteries. Especially the Li-excess variant, Li1+x(Li1/6Ti5/6)O2, has proven very attractive 
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as a high rate anode material[126, 127, 135-138] in part since its cubic lattice parameter 

varies negligibly with Li concentration, thereby making it less susceptible to mechanical 

fatigue that results from the repeated Li removal and insertion. The spinel titanate also 

operates above the voltage of solid-electrolyte interface (SEI) formation, which is in part 

responsible for the limited cycle life times of graphitic anodes.[139, 140] 

We start our study with an investigation of the thermodynamics of Li intercalation in 

Li1+xTi2O4 spinel from first principles, using a cluster expansion in combination with 

Monte Carlo simulations. Next we analyze elementary Li hop mechanisms at a variety of 

Li compositions and in various states of Li-vacancy order/disorder. These results are then 

used in kinetic Monte Carlo simulations where Li diffusion coefficients are calculated as 

a function of Li concentration. A cluster expansion is implemented in the kinetic Monte 

Carlo simulations to rigorously account for variations in the migration barriers with Li 

composition and local Li-vacancy (dis)order. We conclude with a discussion of the 

unique features of the spinel crystal structure with respect to Li diffusion and how they 

lead to the enhanced mobility compared to the layered intercalation compounds. 

4.2 Results  

The spinel form of Li1+xTi2O4, which belongs to the 



Fd3 m space group, consists of an 

oxygen fcc sublattice (32e sites) with the titanium atoms filling half of the available 

octahedral interstitial sites of the oxygen sublattice (16d sites).  The other half of the 

octahedral sites, designated 16c, and one eighth of the available tetrahedral sites, 

designated 8a, can be occupied by Li.[60] The remaining interstitial sites share faces with 

oxygen octahedra surrounding titanium and are, therefore, energetically too costly for 

lithium occupancy. The crystal structure of spinel and the interstitial Li sites are shown in 

figure 4.1. 
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FIG 4.1:  (a) Crystal structure of Li1+xTi2O4 spinel. Li ions can occupy the 8a sites 

(center of the green LiO4 tetrahedrons). Ti ions are located at the 16d sites (center of the 

brown TiO6 octahedrons) (b) The Li sublattice in spinel host consists of a diamond 

network of 8a tetrahedral sites (green circles) with the octahedral 16c sites (pink circles) 

halfway in-between two nearest neighbor tetrahedral sites. 

The tetrahedral 8a sites form a diamond sublattice. The octahedral 16c sites reside half-

way between neighboring tetrahedral sites. Each tetrahedral site, therefore, has four 

octahedral nearest neighbor sites, while each octahedral site has two nearest neighbor 

tetrahedral sites. There are twice as many octahedral 16c sites as tetrahedral 8a sites.  

4.2.1 Formation energies and cluster expansion 

To construct a cluster expansion for the configurational energy, we calculated the 

formation energies of 123 symmetrically non-equivalent lithium-vacancy configurations 

over the interstitial sites of the Li1+xTi2O4 spinel using DFT (VASP within GGA). 

Configurations were generated in periodic supercells having varying sizes. Fourteen 
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configurations had the primitive unit cell consisting of 4 Ti and 8 O atoms; 64 

configurations had a supercell consisting of two primitive cells; 40 configurations had a 

cubic supercell consisting of 4 primitive cells and 5 configurations had a supercell 

consisting of 8 primitive cells (2×2×2). The coordinates of all atoms were fully relaxed.  

An energy cutoff of 400 eV was used and an 8×8×8 k-point was used in the reciprocal 

lattice of the primitive cell.  For the cubic supercell and the supercell with 8 primtive 

cells, we used a 4



4



4 k-point grid. Of the 123 configurations investigated, fifteen 

relaxed to other configurations, reducing the number of fully-relaxed, symmetrically-

distinct configurations to 108. The formation energies of these configurations were 

calculated with respect to the energies of delithiated spinel Ti2O4 (keeping the spinel 

symmetry) and fully lithiated Li2Ti2O4 (with Li filling all octahedral 16c sites) according 

to: 



E formation  E 
1

2
1 x ELi2Ti2O4


1

2
1 x ETi2O4

                                                              (4.1) 

and are illustrated in figure 4.2 (the formation energies are per primitive cell, which 

contains 4 Ti and 8 O). 

 

FIG 4.2: Formation energies of different configurations calculated from first-principles 

and the associated convex hull. The hull points are connected by the blue hull-line. 

Formation energies are per primitive cell consisting of 4 Ti and 8 Oxygen atoms. 
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The blue line in Fig. 4.2 represents the convex hull of the formation energies. The convex 

hull is equivalent to the well-known common tangent construction applied to free 

energies to determine phase stability as a function of composition. The formation 

energies residing on the convex hull in Fig. 4.2 are equal to the free energies of the stable 

ordered phases of Li1+xTi2O4 at zero Kelvin, where the entropy is equal to zero. The 

equilibrium state of Li1+xTi2O4 when x has a value between pairs of the stable ordered 

phases consists of a two-phase mixture of the two stable phases. The energy of the two-

phase mixture resides on the common tangent at the composition x.  

The DFT formation energies of Fig. 4.2 provide important insights about the behavior of 

Li insertion into spinel Li1+xTi2O4. In the concentration range -1.0 < x < 0.0, all low 

energy configurations consist of tetrahedral Li, in agreement with a previous first-

principles study of this system.[134] Octahedral occupancy in the same composition 

range is mechanically unstable (see section 4.1.3). Initial configurations with octahedral 

lithium either relax to a configuration with only tetrahedral occupancy or, if the 

symmetry of the configuration prevents Li relaxation out of an octahedral site, relax to a 

high-energy configuration corresponding to a saddle point in the energy landscape. At x = 

1, in contrast, the ground state structure consists of only octahedral Li ions. A miscibility 

gap (i.e. two-phase coexistence) exists in the range 0.0 < x < 1.0 as can be seen by the 

absence of any ground states in that concentration range and as was predicted 

previously.[134]  

The uniform and dense distribution of ground states for -1.0 < x < 0.0 suggests that a 

solid-solution like behavior, where no particular ordering of lithium and vacancies is 

preferred, should dominate at moderate temperatures. This behavior changes once all 

tetrahedral sites of the host are occupied at x = 0. For x > 0, the configurations either 

consist of mixed tetrahedral and octahedral occupancy by Li or exclusively octahedral 

occupancy by Li. Although the energy of the crystal is minimized when Li occupies 

tetrahedral sites, the addition of Li to LiTi2O4, in which all the tetrahedral sites are filled, 

must occur by filling octahedral sites. This can occur in two ways: (i) if existing 

tetrahedral Li are not displaced, the additional Li must fill octahedral sites that are nearest 
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neighbors to the filled tetrahedral sites, thereby incurring a large energy penalty; (ii) Li 

addition to octahedral sites can also be accompanied by the displacement of tetrahedral Li 

to energetically less favorable but more abundant octahedral sites. In either case, the 

energy of the configuration with intermediate Li composition is higher than that of a two-

phase mixture of LiTi2O4 and Li2Ti2O4. 

Experimentally, it is not possible to remove all the Li ions from spinel Li1+xTi2O4. 

Voltage curves have only been measured up to a composition of x = - 0.2,[127] while 

studies using chemical delithiation indicate that Ti atoms begin to rearrange over the 

interstitial sites of the oxygen sublattice to adopt more stable arrangements as more and 

more Li are removed from spinel LiTi2O4
.
[141] The energy of delithiated spinel Ti2O4, 

for example, is higher than that of anatase TiO2 by 557 meV per TiO2 formula unit (both 

have the same fcc oxygen sublattice but a different Ti ordering over the octahedral sites). 

This shows that delithiated spinel has a significantly higher energy than other polymorphs 

of TiO2 thereby making it susceptible to transformation. Even when the Ti atoms are 

constrained to remain in the 16d sites of the spinel crystal structure, we found that the 

removal of symmetry constraints during total energy minimization of delithiated spinel 

Ti2O4 results in severe structural relaxations of the oxygen and titanium ions to the degree 

that it no longer resembles a spinel host structure.  

Of the 108 symmetrically distinct configurations illustrated in Fig. 4.2, 70 were used to 

fit the ECI‟s of a cluster expansion for the configurational energy of Li-vacancy 

order/disorder over the tetrahedral and octahedral sites of Li1+xTi2O4. Two configurations 

in the dilute lithium regime were left out of the fit as they relaxed to structures that no 

longer resemble spinel while an additional thirty six high-energy configurations were left 

out to facilitate a more rapid convergence of the truncated cluster expansion.[142] For 

statistical mechanical averaging, a key requirement of the cluster expansion is that it 

accurately predicts low energy configurations. We also fit to differences in energies 

between configurations in which a Li is initially in a tetrahedral site and then in an 

adjacent octahedral site. Since the octahedral sites are mechanically unstable when x < 0, 

we used the nudged elastic band method to calculate the GGA saddle point energies of 
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the octahedral sites. Fitting to differences in energy between octahedral and tetrahedral Li 

occupancy was done to ensure an accurate prediction of migration barriers, since as will 

be described in section 4.2.3, the octahedral sites correspond to activated states when x < 

0. Nine such differences in energy were used in the cluster expansion fit. The resulting 

cluster expansion consists of an empty cluster V0, two point clusters (one for tetrahedral 

and the other for octahedral site), nine pair clusters, seven triplets and five quadruplets. 

The overall rms error was 9 meV and CV score was 18 meV per TiO2 formula unit. 

4.2.2 Thermodynamics  

Grand canonical Monte Carlo simulations were applied to the cluster expansion to 

calculate thermodynamic averages. We used 6000 Monte Carlo passes of which the first 

2000 passes were for equilibration and the last 4000 were used for averaging. Each Li site 

is visited on average once during a Monte Carlo pass. Output from grand canonical 

Monte Carlo simulations includes the equilibrium Li composition and average grand 

canonical energy as a function of chemical potential and temperature. This relationship is 

of importance as the open circuit voltage of an intercalation compound electrode with 

respect to a metallic Li reference anode is related to the chemical potentials of the 

electrodes according to  



V (x)  
Li Li

reference

Fz
                                                                   (4.2) 

where z is the electron charge carried by one Li ion, F is Faraday‟s constant and 



Li is 

the Li chemical potential of the intercalation compound. 



Li
reference

 is the Li chemical 

potential of a pure Li reference electrode.  

Figure 4.3 shows the calculated voltage curve for Li1+xTi2O4 as a function of x obtained 

by inserting the calculated chemical potential into Eq. (4.2) and using the energy of bcc 

Li for the chemical potential of the reference anode.  
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FIG 4.3: Equilibrium voltage curve as a function of lithium concentration (at room 

temperature), calculated with grand canonical Monte Carlo simulations. The plateau 

between x = 0.0 and x = 1.0 indicates two-phase coexistence.   

The plateau in the voltage curve signifies a two-phase coexistence between LiTi2O4 and 

Li2Ti2O4. We will refer to Li1+xTi2O4 with x < 0 as the   phase and Li1+xTi2O4 with x~1 

as the   phase. The smooth decrease in voltage with increasing Li content in the   

phase indicates solid solution behavior as expected from the first-principles formation 

energies. The plateau voltage is approximately 0.94 volt while the experimental voltage 

curve[127] exhibits a plateau at 1.34 volt. The discrepancy can be attributed to the 

underestimation by LDA and GGA of voltages in transition metal oxide intercalation 

compounds due to self-interaction in the d orbitals of the transition metals.[143] The step 

in the voltage at x = 0 is approximately 1.2 volt.  Colbow et al.[127] measured the voltage 

curve of Li1+xTi2O4 down to a Li concentration of x = - 0.2. Their measured voltage 

curves indicate that the voltage increases by approximately 1.4 volt when charging 

Li1+xTi2O4 from the plateau voltage to x = - 0.2. The corresponding difference in the 

calculated voltage curve is 1.2 volts. Apart from a systematic under-prediction of the 

equilibrium voltage curve, both the qualitative shape and the relative variation in voltage 

are in very good agreement with experiment. 
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A phase diagram, mapping phase stability as a function of temperature and composition, 

can also be constructed based on the output from Monte Carlo simulations. Using the 

well-established free energy integration techniques[144] (i.e. dNdG  at constant T and 

   dd   at constant Li , where G is the Gibbs free energy, NG Li , 

NE Li  and TkB/1 ), it is possible to calculate the Gibbs free energy as a 

function of composition at various temperatures. Regions of two-phase coexistence can 

then be determined with the common tangent construction applied to the Gibbs free 

energy (or equivalently by determining the crossing of ‟s for different phases as a 

function of Li ). Free energy integration, however, requires a value for the free energy in 

a particular reference state. Convenient reference states correspond to those in which the 

configurational entropy is negligible, such as at dilute concentration and well-ordered 

phases at low temperature. The free energy of the phase is then very close to its energy 

and can be approximated with a low-temperature expansion technique.[145]  

 

FIG 4.4: Calculated phase diagram as a function of temperature and lithium 

concentration. For low to moderate temperature, Li ions occupy tetrahedral sites for x < 

0.0 ( -phase). Li-ions occupy octahedral sites at x = 1.0 (  -phase). There is a 

miscibility gap between the two phases for 0.0 < x < 1.0. The miscibility gap disappears 

above 1500 K. 
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Figure 4.4 shows the calculated phase diagram for Li1+xTi2O4, which exhibits a 

miscibility gap between the  phase (with exclusively tetrahedral occupancy) and the   

phase (with exclusively octahedral occupancy). The equilibrium concentrations of the 

coexisting phases at fixed temperature define the boundary of the miscibility gap. The 

steep nature of the two-phase boundary suggests that both the phases are very stable even 

at high temperatures until the system is completely disordered above 1500 K.  

 

FIG 4.5: Variation of thermodynamic factor () as a function of lithium composition. 

Note that the thermodynamic factor diverges near the stoichiometric phases (x = 0.0 and x 

= 1.0) 

The thermodynamic factor (Θ) is an important part of the chemical diffusion coefficient 

and can be calculated in grand canonical Monte Carlo simulations by keeping track of the 

fluctuations of the number of lithium atoms at constant Li  according to Eq. 2.27. Figure 

4.5 shows the variation of the thermodynamic factor with Li concentration at room 

temperature. In the α phase, Θ ranges between 20 and 40 but diverges as x approaches 0 

in Li1+xTi2O4 when all tetrahedral Li sites are filled.  The thermodynamic factor also 

diverges in  -Li2Ti2O4 in which all octahedral Li sites are occupied. Both LiTi2O4 and 

Li2Ti2O4 correspond to the well-ordered phases and therefore deviate strongly from 

thermodynamic ideality. In stoichiometric phases, with a dilute concentration of 
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vacancies over the occupied sublattice, it can be shown that the thermodynamic factor 

scales with the inverse of the vacancy composition. The thermodynamic factor is not 

defined in the two-phase region (0 < x < 1). 

4.2.3 Diffusion 

4.2.3.1 Elementary hop mechanisms and barriers 

The mechanisms of lithium diffusion are qualitatively very different in  and  phases 

due to the change in Li site occupancy from tetrahedral sites in  -Li1+xTi2O4 (x < 0) to 

octahedral sites in  -Li2Ti2O4. Furthermore, as diffusion typically occurs in the non-

dilute concentration regime, interactions between the nearby diffusing lithium ions also 

affect migration barriers for a particular atomic hop mechanism. We explored hop 

mechanisms and migration barriers from first-principles as a function of Li concentration 

using the nudged elastic band (NEB) method as implemented in VASP. NEB calculations 

were performed within a cubic supercell of Li1+xTi2O4 containing 32 oxygen, 16 titanium 

and variable number of lithium ions. Migration barriers were also calculated in larger 

supercells containing 64 oxygen, 32 titanium and variable Li ions.  
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FIG 4.6: Migration barrier for different lithium concentrations in the  -phase (x < 0) (a) 

Lithium ion path during a hop (shown by the arrow) between two tetrahedral sites 

(marked as „T‟) through the intermediate octahedral site (marked as „O‟). (b) Change in 

energy as a Li-ion hops in a particular configuration for three lithium compositions (Red 

squares: x = -7/8, blue triangles: x = -1/2 and black circles: x = -1/8). (c) Trend of 

migration barriers with lithium composition 

Figure 4.6(a) shows the lithium ion migration path as it hops between the two nearest 

neighbor tetrahedral sites.  Figure 4.6(b) shows the energy along the migration path 

between adjacent tetrahedral Li sites in representative Li-vacancy configurations at three 

different concentrations (x = -7/8, -1/2, -1/8) in the  -phase (i.e. Li occupies the 
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tetrahedral sites). A Li hop between the neighboring tetrahedral sites must pass through 

an octahedral site. The curve at x = -1/2, for example, is for a Li hop in one of many 

possible Li-vacancy configurations within the cubic unit cell used for these calculations. 

A striking feature of all three curves is that the octahedral site is never a local minimum 

but rather a saddle point (i.e. a maximum along the hop direction and a minimum 

perpendicular to the hop direction) for all compositions considered in the   phase (-1 < x 

< 0). This is contrary to the common belief that the octahedral sites of spinel intercalation 

compounds, such as Li1+xMn2O4 and Li1+xNi0.5Mn1.5O2, while energetically less favorable 

than tetrahedral sites for x < 0 are nevertheless a local minimum. The results of Fig. 

4.6(b) show that this is not the case for Li1+xTi2O4; rather the octahedral site is the 

activated state of the hop. This is in agreement with the recent NMR evidence on Li-

excess spinel titanate.[146] Fig. 4.6(b) also shows a variation of the migration barrier 

with Li concentration, systematically decreasing as the Li concentration increases. This is 

also illustrated in Fig. 4.6(c), which shows the migration barriers at seven different 

concentrations in  -Li1+xTi2O4. At each concentration, there are many possible Li-

vacancy configurations. In Fig. 4.6(b) we have only considered one configuration at each 

concentration, however, there will be some variability in migration barriers for different 

Li-vacancy configurations, even at the same Li concentration. Overall, Fig. 4.6(b) shows 

a clear trend of the decreasing migration barriers with the increasing Li concentration. 

We point out that at very dilute Li concentrations (i.e. x = -15/16), large relaxations 

within the 2×2×2 supercell resulted in a structure that no longer resembles the spinel host. 

The migration barrier calculated at this concentration is not included in Fig. 4.6(c). 

Li diffusion in  -Li2Ti2O4 is qualitatively different from that in  -Li1+xTi2O4 (x < 0) as 

Li occupies octahedral sites now. The grand canonical Monte Carlo simulations (Sec. 

4.1.2) indicate that  -Li2Ti2O4 is only stable in a very narrow concentration interval. 

Hence diffusion will be primarily mediated by a dilute concentration of vacancies. 

Occasionally though, several vacancies may encounter each other, thereby forming 

vacancy complexes that result in diffusion mechanisms differing from that of a single 

vacancy hop mechanism. With the nudged elastic band method, we investigated two 

types of hops: (i) the migration of an octahedral Li to a neighboring vacant octahedral site 
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(Fig. 4.7(a)) and (ii) the migration of an octahedral Li to a neighboring vacant octahedral 

site that is next to a second octahedral vacancy (Fig. 4.7(b)). A Li ion migrating between 

the nearest neighbor octahedral sites must perform a curved hop through an adjacent 

tetrahedral site as illustrated in Fig. 4.7(a) and (b).  

 

FIG 4.7: Migration energy barrier for different hop environments in  -phase (a) Lithium 

ion path for a hop with a single vacancy. Octahedral sites are marked as „O‟ and 

tetrahedral sites are marked as „T‟. Blue circles represent occupied octahedral sites and 

vacant octahedral sites are hollow circles. The hop-path is shown by the arrow. (b) 

Lithium ion path for a hop with two octahedral vacancies. Color-codes are the same as in 

figure-(a). (c) Change in energy along the path for a hopping lithium ion in the 

neighborhood of single vacancy (green squares at the top, curve a) and in the 

neighborhood of two vacancies (pink circles at the bottom, curve b)  
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Figure 4.7(c) shows the calculated energy along the migration paths for the two hops of 

Fig. 4.7(a) and 4.7(b) as calculated with the NEB method. Curve a in Fig. 4.7(c) (green 

squares) corresponds to the energy path when an octahedral lithium hops to a neighboring 

octahedral vacancy through an intermediate tetrahedral site. The tetrahedral site is a local 

minimum but higher in energy (~200 meV) compared to the octahedral site. The 

migration barrier for the octahedral to tetrahedral Li hop is ~280 meV, while for the 

tetrahedral to octahedral hop, it is ~80 meV. When there are two vacancies in the nearest 

neighbor octahedral sites, the energy curve changes substantially (curve b in Fig. 4.7(c)). 

The tetrahedral site now becomes more stable than the octahedral site (~90 meV). As a 

result, the migration barrier for the octahedral to tetrahedral hop is lower (~100 meV) 

than that for the tetrahedral to octahedral hop (~190 meV). Both of the migration barriers 

were calculated in the same cubic cell used for most of the barrier calculations in   

phase. 

The local stability of the intermediate tetrahedral sites in  -Li2Ti2O4 in presence of the 

octahedral single and di-vacancies implies that the hops between the neighboring 

octahedral sites occur as a sequence of two sub-hops (octahedral  tetrahedral, 

tetrahedral  octahedral). This is in contrast to the hops between the tetrahedral sites in 

 -Li1+xTi2O4 (x < 0) where, as described above, the intermediate octahedral sites are the 

activated states (i.e., saddle points).  

When three octahedral vacancies in  -Li2Ti2O4 encounter each other, the energy 

landscape becomes even more complex. We found that a configuration consisting of 

three octahedral vacancies surrounding a common vacant tetrahedral site is mechanically 

unstable: the fourth nearest neighbor octahedral lithium of the vacant tetrahedral site 

spontaneously relaxes to the tetrahedral vacant site. This implies that once three 

octahedral vacancies coalesce, tetrahedral occupancy occurs spontaneously. Migration of 

this tetrahedral Li, however, cannot occur by means of a nearest neighbor tetrahedral to 

octahedral hop since the end state of this hop is mechanically unstable. One possible 

mechanism with which a tetrahedral Li surrounded by four octahedral vacancies in  -

Li2Ti2O4 can migrate is through a coordinated two-atom hop as illustrated in Fig. 4.8. We 
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did not investigate these possibilities in detail and restrict our analysis to octahedral to 

tetrahedral hops in the immediate vicinity of the single octahedral vacancies and pairs of 

octahedral vacancies.  

 

FIG 4.8: An example of a simultaneous two-atom hop. Octahedral sites are marked as 

„O‟ and tetrahedral sites are marked as „T‟. Blue circles represent occupied octahedral 

sites and vacant sites are hollow circles.  Two arrows indicate simultaneous hops of two 

atoms. 

4.2.3.2 Kinetic Monte Carlo simulations 

Having established the elementary hop mechanisms in  -Li1+xTi2O4 and in 

stoichiometric  -Li2Ti2O4, we next calculated collective Li diffusion coefficients with 

the kinetic Monte Carlo simulations. The kinetic Monte Carlo simulations sample Li 

trajectories over the interstitial sites of the Ti2O4 spinel host structure, whereby each 

elementary hop occurs with a frequency given by the transition state theory according to 

Eq. (2.31). At non-dilute concentrations, the Li ions and vacancies in  -Li1+xTi2O4 are 

disordered, so that the migration barriers, E , appearing in Eq. (2.31) will vary along the 

trajectory of each Li ion as they depend on the local arrangement of Li ions and vacancies 

surrounding the Li performing a hop. In  -Li1+xTi2O4, the migration barrier for 

elementary hops between the neighboring tetrahedral sites is the difference in energy 

between the intermediate octahedral site and the initial tetrahedral site. These energy 

differences can be calculated directly with the cluster expansion for the configurational 
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energy described in Sec. 4.2.1. The cluster expansion predicts the configurational energy 

over both the tetrahedral and octahedral sites of spinel Li1+xTi2O4, and as described in 

Sec. 4.2.1, was optimized to reproduce energy differences between octahedral and 

tetrahedral site occupancy.  

In  -Li2Ti2O4, both the octahedral and tetrahedral sites correspond to the local minima 

and the elementary hops occur between the adjacent octahedral and tetrahedral sites. In 

this case, the cluster expansion can only be used to predict the end states of the hop. To 

calculate the migration barriers within the kinetic Monte Carlo in  -Li2Ti2O4, we used a 

method that relies on a cluster expansion for the energies of the end-states of a hop 

combined with a kinetically resolved activation barrier, KRAE , as described in ref[70]. 

KRAE  for a given hop mechanism corresponds to the average of the forward and 

backward migration barriers. The actual migration barrier in a particular direction is then 

equal to KRAE  plus the average of the end-state energies minus the energy of the initial 

state. The dependence of KRAE  on the configuration of the surrounding Li ions can be 

described with a local cluster expansion.[70] In our kinetic Monte Carlo simulations of 

diffusion in  -Li2Ti2O4, we only considered dilute vacancy concentrations (i.e. one 

vacancy or two vacancies in the Monte Carlo cell) so that the degree of disorder around 

the migrating Li ions is minimal. In our simulations, we simply used a constant value for 

KRAE (162 meV) for an octahedral-tetrahedral hop surrounded by an isolated octahedral 

vacancy and a different value for KRAE  (143 meV) for a octahedral-tetrahedral hop 

surrounded by an octahedral di-vacancy.  

The vibrational prefactors, 



 *, appearing in Eq. (2.31) were calculated within the local 

harmonic approximation.[147] Any variation of 



 * with concentration and configuration 

was not taken into account in this study. In  -Li1+xTi2O4, we calculated  



 * for a lithium 

hop into an isolated vacancy within the cubic cell (1/8 vacancies over the tetrahedral 

sites). We used this value of 



 *(13.4 THz) over the whole composition range in the 

kinetic Monte Carlo simulations of  -Li1+xTi2O4. In  -Li2Ti2O4, we calculated 



 * for 

an octahedral to tetrahedral hop next to a single vacancy among 16 octahedral sites in the 
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cubic cell. The vibrational prefactor was averaged over the forward and backward hop 

directions (octahedral  tetrahedral and tetrahedral  octahedral). This averaged value 

(5.9 THz) was used in the kinetic Monte Carlo simulations for  - Li2Ti2O4. 

We calculated the self and tracer diffusion coefficients described in Sec. 2.7 by 

simulating representative Li-ion trajectories in the kinetic Monte Carlo simulations. We 

used a standard kinetic Monte Carlo algorithm, first proposed by Bortz et al.[98, 101] A 

lithium vacancy configuration representative of the equilibrium state at the temperature 

and composition of interest was chosen as the initial state of each simulation. For the   

phase (Li1+xTi2O4, x<0) we used a Monte Carlo cell containing 888 primitive cells 

(containing 3072 tetrahedral and octahedral sites). 3000 Monte Carlo passes were 

performed starting from each initial configuration and the trajectories were averaged after 

1000 passes (each Monte Carlo pass corresponds to N Li hops where N is the number of 

Li sites). At each temperature and composition, 100 independent simulations were 

performed starting from different initial Li-vacancy configurations. At each temperature 

and composition, self and tracer diffusion coefficients, (as described in Eq. (2.28) and 

(2.29)), were averaged after every Monte Carlo pass and over independent simulations 

with different initial configurations. 

For the stoichiometric   phase (Li2Ti2O4), we calculated diffusion coefficients using 

kinetic Monte Carlo cells containing either one octahedral vacancy or two octahedral 

vacancies. In the simulations containing two vacancies, we found that a fraction of the 

hops proceeds through the di-vacancy mechanism illustrated in Fig. 4.7(b) in which the 

intermediate tetrahedral occupancy is energetically more favorable than the octahedral 

end states (Fig. 4.7(c)). The remaining hops proceeded as isolated single vacancy hops. 

The fraction of divacancy hops depends on the vacancy concentration, which we varied 

by changing the kinetic Monte Carlo cell size. We found, for example, that approximately 

16% of the hops occurred according to the divacancy mechanism for a vacancy 

concentration of 0.23%, 10% for a vacancy concentration of 0.1% and 7% for vacancy 

concentration of 0.05%. These vacancy concentrations over the octahedral sites of  -

Li2Ti2O4 correspond to Li concentrations that are within the predicted two-phase 
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miscibility gap of the phase diagram of Fig. 4, indicating that the fraction of divacancy 

hops in stoichiometric  -Li2Ti2O4 is small. By adjusting the kinetic Monte Carlo cell 

size (to sample different vacancy concentrations), we determined that both the tracer and 

self-diffusion coefficients scale linearly with vacancy concentration, even for the 

simulations that contained two octahedral vacancies.  

 

FIG 4.9: Calculated diffusion coefficients as a function of lithium composition. Red 

circles: tracer diffusion coefficient (D*), green squares: self-diffusion coefficient (Dj), 

purple circles: chemical diffusion coefficient (D) 

Figure 4.9 illustrates the calculated diffusion coefficients as a function of lithium 

concentration at room temperature. The chemical diffusion coefficient, D, was calculated 

by multiplying the self-diffusion coefficient, DJ, with the thermodynamic factor,  (of 

Fig. 4.5). All three diffusion metrics increase with the increasing concentration in  -

Li1+xTi2O4 except as the Li concentration approaches x = 0. The increase of D* and DJ in 

 -Li1+xTi2O4 has its origin in the gradual lowering of the migration barriers with Li 

concentration, as is predicted with DFT calculations described in Sec. 4.2.3.1 (Fig. 

4.6(c)) and reproduced by the cluster expansion used in the kinetic Monte Carlo 

simulations. As the stoichiometric composition of LiTi2O4 is approached, however, D* 

and DJ decrease sharply due to the reduction in the number of tetrahedral vacancies. The 



67 

 

tracer diffusion coefficient is always less than the self-diffusion coefficient. Close to 

stoichiometric compositions (i.e. LiTi2O4 and Li2Ti2O4), both D* and DJ scale with the 

vacancy concentration, while the thermodynamic factor scales with the inverse of the Li-

sublattice vacancy concentration. The dependencies of Dj and  on vacancy 

concentration in stoichiometric phases cancel each other out when the self-diffusion 

coefficient and thermodynamic factor are multiplied together to obtain the chemical 

diffusion coefficient (D). Note that the chemical diffusion coefficients have very similar 

values in the   and   phases in spite of the fact that the Li hop mechanisms are very 

different in the two phases.  

 

FIG 4.10: Variation of the correlation factor with lithium composition 

The correlated motion of lithium ions at non-dilute Li concentrations can be measured 

with the correlation factor f which is defined as  



f 
r t 

2

na2
,                                                                                          (4.3) 

where 



r t 
2

 is the average of the squared distance a lithium ion travels after a time t, n 

is the number of hops and a is the hop distance. The correlation factor, f, measures the 

degree with which the actual Li tracer diffusion coefficient (D*) deviates from what it 
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would be if Li ions performed a random walk. The correlation factor is equal to one when 

subsequent Li hops are uncorrelated, as occurs in the dilute limit. However, at non-dilute 

Li concentrations, Li-ions interact with each other energetically and block potential sites 

for hops to occur to, thereby introducing correlations between successive Li hops. Figure 

4.10 illustrates the calculated variation of the correlation factor f with lithium 

composition at room temperature. Compaan and Haven analytically calculated the 

correlation factor in the diamond crystal to be 0.5 in presence of a single vacancy.[148] 

Figure 4.10 shows that f is slightly less than 0.5 between -0.5 < x < 0, becoming equal to 

0.5 as x approaches 0, where the vacancy concentration over the tetrahedral sites goes to 

zero. The correlation factor in the   phase is lower than in the   phase. In the presence 

of a single vacancy in the   phase, f does not depend on the vacancy composition for 

small vacancy concentrations, having a value of approximately 0.37. In Monte Carlo cells 

containing two vacancies, however, f varies strongly with vacancy concentration, 

decreasing as the vacancy concentration increases. Hops between the nearest neighbor 

octahedral sites in  -Li2Ti2O4 are modeled within the kinetic Monte Carlo simulations as 

occurring in two steps through the intermediate tetrahedral site. The fact that the Li ions 

are assumed to thermalize in the tetrahedral sites increases the fraction of return hops to 

the initial octahedral site. 

4.3 Discussion 

Intercalation compounds used as electrodes in Li ion batteries come in a wide variety of 

crystal structures. The crystal structure of an intercalation compound can have a strong 

influence on the electrochemical properties of an electrode material, including the voltage 

profile and the concentration dependence of the Li diffusion coefficient. Here we 

performed a comprehensive study of Li diffusion in the spinel crystal structure, focusing 

in particular on Li1+xTi2O4. The spinel crystal structure is more complex than many other 

intercalation compounds used as electrodes in Li-ion batteries in that it consists of both 

tetrahedral and octahedral sites that can be occupied by Li. Below x = 0 in spinel 

Li1+xTi2O4, Li occupies the tetrahedral sites, while at x = 1, Li occupies the more 

numerous, but energetically less favorable octahedral sites. A miscibility gap exists 
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between x = 0 and x = 1 due to the strong repulsion between pairs of Li ions occupying 

the nearest neighbor tetrahedral and octahedral sites. Spinel Li1+xTi2O4 is very similar in 

structure to the Li-excess spinel, Li1+x(Li1/6Ti5/6)2O2, an attractive anode material. Both 

the titanate spinel and its Li-excess variant exhibit the rare trait that their lattice 

parameters vary negligibly with Li concentration (between x = 0 and 1), making them 

less susceptible than other intercalation compounds to mechanical degradation during Li 

removal and reinsertion. Our study of the titanate spinel also sheds light on diffusion 

mechanisms in LixMn2O4 spinel, although the existence of charge ordering over the Mn 

ions is likely to complicate Li transport in the Mn spinel.  

While only a limited concentration interval is accessible experimentally below x = 0 in 

Li1+xTi2O4, an advantage of a computational study is that it enables us to investigate the 

characteristics of Li diffusion within the spinel crystal structure even at concentrations 

where the host is metastable. Our study of Li diffusion for x < 0 has yielded the 

surprising prediction that the octahedral sites, intermediate between neighboring 

tetrahedral sites, are in fact the transition states (i.e. saddle points on the energy surface) 

for elementary Li hops. This is in contrast to what has been predicted for the octahedral 

sites in the spinel form of Li1+xMn2O4, where the octahedral sites for x < 0 are local 

minima.[149] Furthermore, we have found that the difference in energy between the 

octahedral site and the tetrahedral site decreases with the increasing Li concentration x. 

Hence the migration barriers for elementary Li hops between tetrahedral sites decreases 

as more Li ions fill the tetrahedral sites. This trend does not arise solely from a change in 

crystal dimensions with Li concentration, as was predicted for the layered intercalation 

compounds.[56, 70] The same trend was found when calculating the migration barriers at 

different concentrations while holding supercell volume at each concentration fixed to a 

common value. The decrease in migration barrier with the increasing Li concentration 

has an electrostatic origin, as an increase in the Li content leads to a progressive 

reduction of the effective Ti valence from Ti
4+ 

at x = -1 to Ti
3.5+

 at x = 0. Indeed, we 

found that the difference between the electrostatic energy of Li in the octahedral site and 

the tetrahedral site decreases as the Ti valence decreases. We expect a similar trend in 

other spinels, including Li1+xMn2O4.  
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At x = 1, where the Li ions occupy octahedral sites, diffusion becomes more complex. 

The tetrahedral sites between the nearest neighbor octahedral sites are now local minima 

and hops between octahedral sites proceed in two steps. Furthermore, in presence of a di-

vacancy of octahedral sites, the intermediate tetrahedral site actually becomes more stable 

than the end states.  

When serving as an anode, only the voltage plateau between x = 0 and 1 in spinel 

Li1+xTi2O4 is cycled over. The plateau signifies two-phase coexistence between LiTi2O4 

and Li2Ti2O4 and the insertion or removal of Li ions from the two-phase mixture will 

require the migration of interfaces separating the coexisting phases. The kinetics of this 

process can be treated as a standard moving boundary problem,[150] where the velocity 

of the interface separating LiTi2O4 domains (tetrahedral occupancy) from Li2Ti2O4 

domains (octahedral occupancy) depends on the diffusion coefficients within the 

coexisting phases. Our study has shown that the diffusion coefficients of LiTi2O4 and 

Li2Ti2O4 do not significantly differ from each other, in spite of the qualitative differences 

in hop mechanisms at the atomic scale for x = 0 and x = 1. If the interface between the 

coexisting phases has a sluggish mobility and thereby becomes the rate-limiting step of 

Li extraction and insertion, then the additional kinetic coefficients relating interface 

velocity to differences in thermodynamic potentials across the interface must be 

determined. At this stage, our understanding of the mobility of interfaces in intercalation 

compounds remains very limited.[151]
 
 

An important difference between the spinel crystal structure and the layered crystal 

structures of LixCoO2, LixTiS2 and Lix(Co1/3Ni1/3Mn1/3)O2 among others is the 

dimensionality of the interstitial network. The layered intercalation compounds limit Li 

diffusion to two-dimensional triangular lattices. Individual Li hops between the 

neighboring octahedral sites of the layered intercalation compounds pass through an 

adjacent tetrahedral site and the migration barriers for these hops are significantly 

reduced if they occur into a di-vacancy.[56, 70] At high Li concentrations, the self and 

tracer diffusion coefficients therefore scale with the di-vacancy concentration, which to 

first order is equal to 
2

Vx (where, Vx is concentration of vacancy). In spinel Li1+xTi2O4 
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when x < 0 in contrast, diffusion is mediated by a single vacancy mechanism such that 

the tracer and self-diffusion coefficients depend linearly on the vacancy concentration. 

The correlation factors of Li diffusion also differ substantially between the layered 

intercalation compounds and spinel, with that of the spinel phase being a factor of 5-10 

times larger than that of the layered intercalation compounds at high Li 

concentrations.[70] The efficiency of redistributing Li ions through a di-vacancy 

mechanism over a two-dimensional network is significantly lower than through a single 

vacancy mechanism in a 3-dimensional network. Hence for the same migration barrier 

for individual hops, the spinel crystal structure should offer Li ions a higher mobility (as 

measured by D
*
 and DJ) compared to the layered intercalation compounds.  

The present study can be extended to the Li-excess variant, Li1+x(Li1/6Ti5/6)O, with similar 

methodological and computational infrastructure. In Li-excess spinel, the excess Li ions 

occupy a fraction of the Ti octahedral 16d sites. The Ti-sublattice will then also exhibit 

configurational degrees of freedom arising from all possible ways of arranging Li and Ti. 

The additional configurational degrees of freedom can be treated with a coupled 

sublattice cluster expansion.[152, 153] 

4.4 Conclusions 

We have performed a first-principles investigation of the concentration dependent Li 

diffusion coefficient in spinel Li1+xTi2O4 by applying kinetic Monte Carlo simulations to 

a first-principles cluster expansion of the configurational energy of Li-vacancy disorder 

over the interstitial sites of the Ti2O4 host. Spinel transition metal oxide intercalation 

compounds such as LixMn2O4 and Li1+x(Li1/6Ti5/6)O2 are important electrode materials for 

Li-ion batteries. The present study has demonstrated that the octahedral sites are activated 

states for Li hops between the neighboring tetrahedral sites when x < 0 in Li1+xTi2O4. 

Furthermore, the migration barriers for hops between the neighboring tetrahedral sites are 

sensitive to Li concentration, decreasing with increasing x. We have been able to attribute 

this decrease with an increase in the effective Ti valence states as Li is added to the host, 

which penalizes the octahedral site more than the tetrahedral site. In Li2Ti2O4, Li ions 
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occupy octahedral sites and migrate by passing through intermediate tetrahedral sites, 

which are predicted to be locally stable (as opposed to being saddle points in the energy 

landscape). The predicted Li diffusion coefficient varies by several orders of magnitude 

with Li concentration for x < 0. In spite of the qualitative difference in hop mechanisms 

in LiTi2O4 and Li2Ti2O4, their Li diffusion coefficients are nevertheless very similar in 

value. Our study provides insight about the effect of crystallographic features in spinel 

and layered intercalation compounds on Li mobility.  
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Chapter 5 

Competing mechanisms of non-dilute Li-

diffusion in spinel-LixTiS2 

 

5.1 Introduction 

Diffusion of Li-ions directly dictates the charge-discharge rate and the thermodynamic 

reversibility of the Li-ion battery electrodes. While graphite is the most common anode 

material,[49, 154, 155] transition metal intercalation compounds serve as the cathode 

materials in present day Li-ion batteries.[43, 44, 128, 156-159] These intercalation 

compounds have a reasonably stable host structure that deforms negligibly with the 

change in Li-concentration. Li-ions sit in the interstitial sites of this host.  

Both the crystal structure and the chemical composition of the host have significant effect 

on the Li-diffusion kinetics. The Li-diffusion network can be one-dimensional (e.g., 

Olivine such as LiFePO4),[69, 160] two-dimensional (e.g., layered LiCoO2)[56, 70, 118, 

161] or three-dimensional (e.g., spinel-LiTiO2).[47, 60, 61, 128, 135, 162] It is generally 

expected that the higher the dimensionality of Li-diffusion network, the higher the 

diffusivities. However, the nature of this dependence of Li-mobility on the interstitial 

sites is not clear, especially in the non-dilute regime. Moreover, within similar crystal 

structure, cations and anions can vary widely. A typical positive electrode is made of 

oxides or sulfides of the transition metals such as, Co, Mn, Ti, Ni. In general, oxides give 

higher voltage than sulfides while sulfides are kinetically more efficient than oxides. 
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Again, the nature of this effect of anions on the diffusion kinetics needs to be 

characterized.   

There have been several first-principles studies on diffusion behavior of Li in the 

intercalation compounds in recent years. In layered O3-LiCoO2, it has been shown that 

the clusters of the two nearest neighbor vacancies (di-vacancy) form the major diffusion 

mediating defect cluster in the two-dimensional sheets of interstitial sites.[70] Moreover, 

it has been observed that there is a systematic elongation of c-lattice parameter with the 

increasing Li-concentration.[163] This change in crystal dimension brings down the 

migration energy associated with the individual Li-hops. Hence, there is an increasing 

trend in Li-mobility with concentration. Diffusivity drops again at the dilute-vacancy 

limit where diffusion mediating di-vacancies become rare. Similar trend of the c-lattice 

parameter is observed during the Li-intercalation in the graphite-anodes.[49, 164] In the 

layered form of LixTiS2, similar kinetic behavior is observed where di-vacancies play the 

crucial role of diffusion mediation and there is significant c-lattice parameter change with 

Li-composition.[56] Diffusion in spinel-LixTiO2, on the other hand, occurs in the three 

dimensional network of interstitial sites as discussed in chapter 4 of the present thesis. 

There is negligible lattice parameter change with Li-intercalation and the single vacancies 

are the diffusion mediating defects. Moreover, in spinel-LixTiO2, diffusion has been 

observed to be significantly faster compared to layered-LixTiS2.  

In the present study, we elucidate Li-diffusion in spinel titanium sulfide. Knowledge of 

diffusion in this material can complement the previous studies, as it can compare two 

anion-chemistries and two crystal structures at the same time keeping everything else the 

same. The present study would complete the comparison triangle and help associate the 

changes in kinetic behavior with the changes in chemical components or crystal 

structures. In this compound, Li occupies the octahedral sites instead of the tetrahedral 

sites. The hop-mediating tetrahedral sites are coordinated with four octahedral nearest 

neighbors, while for layered LixTiS2, the intermediate tetrahedral site of the hop is 

coordinated to only two nearest neighbor octahedral sites. Therefore, spinel-LixTiS2 

offers greater opportunity to study the effects of various local environments. We use a 



75 

 

coupled approach of the electronic structure method and the cluster expansion technique 

combined with the statistical mechanical tool such as Monte Carlo simulations to 

illustrate both thermodynamic and kinetic behavior. We first examine the elementary hop 

mechanisms and their relative importance. In the kinetic Monte Carlo simulations, we 

track the relative frequencies of different mechanisms and relate the observed kinetic 

behavior to these frequencies. To conclude, we discuss the overall understanding gained 

from this study in the context of the general diffusion process in intercalation compounds. 

5.2 Results 

 5.2.1 Crystal structure and site stability 

Spinel titanium sufide is isostructural with spinel titanium oxide. The sulfur atoms take 

the place of the oxygen atoms. The spinel form of titanium sulfide acts as a robust host 

for Li intercalation. The host structure deforms negligibly over the relevant Li-

composition range. Fig 5.1 illustrates the spinel crystal structure and the available 

interstitial sites. 

 

FIG 5.1: Crystal structure of LixTiS2. Sulfur atoms (Yellow) form an FCC lattice. Ti 

atoms (Red) occupy half of the octahedral sites. The other half of the octahedral sites 

(Cyan) and all the tetrahedral sites (Green) are available for lithium intercalation. 
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We calculated the total energies of 159 symmetrically non-equivalent arrangements of Li 

and vacancies over the interstitial sites (both tetrahedral and octahedral) in super cells 

consisting of up to 4 primitive cells from first principles. A uniformly dense grid of k-

points (8×8×8 k-points per primitive cell) was chosen for all these calculations based on 

the k-point convergence test. The formation energies of these configurations have been 

calculated with reference to the delithiated spinel (Ti2S4) and fully lithiated spinel 

(Li2Ti2S4) having one lithium per transition metal atom. All the ground states on the 

convex hull contain only octahedral Li. The configurations with tetrahedral Li are higher 

in energy compared to the octahedrally occupied members at the same composition. This 

demonstrates that Li prefers the octahedral sites over the tetrahedral sites and this 

behavior persists over the entire composition range between TiS2 and LiTiS2. 

We fit a cluster expansion consisting of 30 Effective Cluster Interactions (ECI) to the 159 

DFT formation energies. The cluster expansion has a RMS error of 1.75 meV per LixTiS2 

formula unit and a weighted cross-validation score of 6 meV per LixTiS2 formula unit.  

In the Grand canonical Monte Carlo simulation, at room temperature (with 1000 passes 

for equilibration and 3000 passes for averaging), equilibrium composition of Li is tracked 

for different chemical potentials. The smooth change of chemical potential indicates solid 

solution behavior for the entire composition range (plot not shown here). The site 

occupancies at moderate temperature are also tracked in Monte Carlo simulation and it is 

observed (plot not shown here) that the tetrahedral sites are never occupied by Li-ions 

even at room temperature. 

5.2.2 Elementary Li-hops and migration barriers 

Macroscopic diffusion in intercalation compounds occurs as a result of many elementary 

Li hops to neighboring vacancies. In spinel-LixTiS2, DFT energy calculations and the 

finite temperature Monte Carlo simulations predict that Li ions prefer the octahedral sites. 

The tetrahedral sites are higher in energy but are local minima. The Li-migration path 

between the octahedral sites is curved and passes through a tetrahedral site. This path is a 

low energy path and the NEB calculation of this hop predicts the tetrahedral sites to be a 
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local minimum. Hence, a Li ion thermalizes in the tetrahedral site continuing to another 

octahedral vacancy or hopping back to the original octahedral site it started from. The 

end state energies as well as the associated migration barrier depend on the local 

arrangement of Li and vacancies, especially at non-dilute Li-concentrations. This local 

environment dependence needs to be accounted for to accurately quantify the non-dilute 

Li-diffusion in spinel-LixTiS2. 

A Li ion at octahedral site hopping into the nearest neighbor tetrahedral vacancy, sees 

different immediate local environments. The tetrahedral vacancy has four nearest 

neighbor octahedral sites, one of which is occupied by the hopping Li. Among the other 

three octahedral sites, number of Li ions varies from zero to three. If it is zero, the hop is 

called a triple-vacancy hop as the end state of the hop, the tetrahedral site, is surrounded 

by three vacancies at the initial state (fig 5.2(c)). In similar argument, there can be di-

vacancy (fig 5.2(b)) or single-vacancy (fig 5.2(a)) hops. If all three octahedral sites (other 

than the one with the hopping Li) are occupied, it is a case of the zero-vacancy hop, 

following the similar nomenclature. A zero-vacancy hop is never possible as the end state 

is not energetically stable.  

It is worth noting at this point that though the tetrahedral sites are stable and Li ions 

thermalize at these sites, octahedral sites are the only sites occupied at equilibrium for the 

whole range of Li-concentration (according to the Monte Carlo simulations). Diffusion is 

a non-equilibrium process. Nevertheless, it can be shown that diffusion is governed by 

the perturbations around the equilibrium. Hence, hops originating from the octahedral 

sites (octahedral hops) are the important hops that govern the diffusion process. Hops 

originating from the tetrahedral sites (tetrahedral hops) occur only as a subsequent event 

of an octahedral hop. Therefore, migration barriers associated with the octahedral hops 

critically control diffusion behavior. Dependence of these migration barriers on local 

environments needs proper investigation. 

The energy paths for the Li-hops were calculated through NEB calculation as 

implemented in VASP. All NEB calculations have been done under constant volume 

constraint and the volume has been chosen to be the average of the volumes of the two 
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fully relaxed end-states. We explored local-environment effect on the migration barriers 

in a cubic super cell consisting of 32 oxygen, 16 titanium and variable number of lithium 

ions. Fig 5.2 shows the path and energy for several important atomic hops. In fig 5.2(a), 

the physical arrangement of the nearest neighbor cell around the unit cell is shown when 

a Li ion at the octahedral site hops to the nearest neighbor tetrahedral vacancy with a 

single octahedral vacancy around it. The octahedral sites further from the nearest 

neighbor ones of the tetrahedral site are occupied by Li. Only the octahedra around the 

hop are shown and the rest of the super cell has been omitted for the sake of clarity. 

Figures 5.2(b) and 5.2(c) depict the arrangements when two and three nearest neighbor 

octahedral vacancies are available around the hop, respectively. The corresponding 

migration energy paths are shown in fig 5.2(d). Fig 5.2(d) clearly shows that different 

immediate hop-environments result in very different migration barriers. For the single-

vacancy hop (circles), the energy barrier is very high (~600 meV), while for the di-

vacancy hop (solid squares), it is ~420 meV and for the triple-vacancy hop (hollow 

squares), it is the lowest (~230 meV). These are the values of energy barriers that an 

octahedral Li needs to overcome to hop to the nearest neighbor tetrahedral vacancy.  
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FIG 5.2: Migration paths for three different immediate environments. Curvilinear Li-hop 

between two nearest neighbor octahedral sites through the intermediate tetrahedral sites 

with (a) a single vacancy (b) two vacancies (c) three vacancies among four nearest 

neighbor octahedral sites. (d) Energy paths associated with each of these hops. The top 

curve (hollow squares), the middle curve (filled blue squares) and the bottom curve 

(filled red circles) correspond to the energy paths for single-, di- and triple vacancy 

environments, respectively. 

We further explored migration barriers in different configurations at different Li-

concentrations in the same cubic super cell. Fig 5.3 shows the migration barriers for Li-

hops from the octahedral sites to the tetrahedral sites in three different nearest neighbor 

Li-occupancies but having different Li-concentrations and Li-vacancy configurations 

further away from the migrating Li. In this figure, hollow squares correspond to single 

vacancy hops; the filled squares and circles correspond to di- and triple-vacancy hops 

respectively. We can observe that there are three distinct bands of energy barrier values, 

each corresponding to a particular immediate hop-environment. The lowest band of 

energy barriers corresponds to the triple vacancy hops (a Li hopping into a tetrahedral site 

surrounded by three vacancies). There are some variations in barrier for different 

configurations at the same concentration and a pronounced variation with concentration. 

The migration barriers for triple vacancy hops tend to decrease with the increasing Li-

content. Similarly, for di-vacancy hops (filled squares), there is some configurational 

dependence along with a weaker composition dependence compared to the triple vacancy 

hops, also decreasing with the increasing Li concentration. 
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FIG 5.3: Migration barriers for octahedral hops for different mechanisms at different Li-

compositions. The hollow squares, the blue filled squares and the red filled circles 

represent migration barriers for single-, di- and triple vacancy mechanisms, respectively. 

 

FIG 5.4: Saddle point heights (compared to the tetrahedral site energy) for different 

mechanisms at different Li-compositions. The hollow squares, the blue filled squares and 
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the red filled circles represent saddle point heights for single-, di- and triple vacancy 

mechanisms, respectively. A dashed line represents the average value of the saddle point 

height for the coresponding hop-mechanism. 

Fig 5.3 showed some variation of the migration barrier for the octahedral hops 

(octahedral  tetrahedral). If we look at the saddle-point height from the tetrahedral site 

energy, this variation with composition is negligibly small (fig 5.4). This fact was used 

for calculating the migration barriers in the kinetic Monte Carlo simulations. The 

migration barrier for an octahedral hop can be reconstructed by the summation of the two 

terms: (i) the difference of energies between the tetrahedral and the octahedral Li (ii) the 

energy height of the saddle-point from the tetrahedral site. This has been schematically 

shown in figure 2.1(c). Our cluster expansion encompasses both the octahedral and the 

tetrahedral sites. Therefore, it reproduces both the end-state energies, hence the energy 

difference, with reasonable accuracy. The energy height of the saddle point from the 

tetrahedral reference site is not reproduced by the cluster expansion. The data points in 

fig 5.4 correspond to the same calculations that fig 5.3 shows the results for. Here, we 

observe similar bands of energies for three immediate local environments. We note that 

the fluctuations between different concentrations and different configurations for the 

same concentration are small. The dashed lines shown in each band represent the 

arithmetic mean of all the values in that band. The deviations from this mean value is not 

more than 20 meV in any band. If we take these mean values as the constant energy 

heights for three immediate local environments, we accept the error bar to be within this 

20 meV. The cluster expansion has an RMS error of 1.75 meV per LixTiS2 formula unit 

and for the calculation cell with 16 Ti atoms the error accumulates over 20 meV. Also the 

accepted error bar for DFT calculations is 5 meV per formula unit. In allowing a range of 

20 meV variation in saddle point heights we are not outside the error bar that we accept 

for the cluster expansion and DFT calculations. Therefore, we model the saddle point 

energy heights to be three constants each for a particular immediate local environment: 

22 meV for the single vacancy hop, 104 meV for the di-vacancy hop and 247 meV for the 

triple vacancy hop. By taking a constant value for the whole band of saddle-point heights, 
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we acknowledge the fact that the information only about the nearest neighbor occupations 

around a hop is sufficient to determine the migration barrier. 

5.2.2 Diffusion behavior of lithium 

To study Li diffusion in Ti2S4 spinel host, we use kinetic Monte Carlo (KMC) 

simulations. The migration barriers are calculated using the cluster expansion 

parameterized by the first-principles energies. Along with the effective Hamiltonian (the 

cluster expansion), we use a model for the saddle point energy heights to reproduce 

migration barrier for an arbitrary configuration at any concentration. We have calculated 

vibrational prefactor (ν
*
) by calculating frequencies from first-principles within the local 

harmonic approximation. The dependence of the vibrational prefactor on changes in 

composition as well as the changes in hop-environment was found to be small. Therefore, 

we used two values corresponding to each direction: 3.1 THz for the octahedral hops and 

7.1 THz for the tetrahedral hops.  

In the KMC simulations, for each initial configuration, we used 1000 Monte Carlo passes 

for equilibration and another 1000 for averaging different displacement metrics and 

fluctuation variables. We used 100 initial configurations for one concentration and 

averaged the relevant quantities over these different ensemble runs.  
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FIG 5.5: (a) Variation of thermodynamic factor with lithium concentration. At dilute 

lithium limit, the factor matches with the theoretical value of unity. (b) Variation of 

diffusion metrics as functions of lithium concentration. The hollow squares, the filled 

blue squares and the filled red circles represent tracer diffusion coefficient, self diffusion 

coefficient and chemical diffusion coefficient, respectively. 
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The different diffusion metrics are plotted at fig 5.5(b).  The curve represented by the 

hollow squares shows the variation of tracer diffusion coefficient (D*). The curve with 

the solid squares corresponds to the jump diffusion coefficient (DJ). Both DJ and D* 

decrease monotonically with concentration having similar curve-shapes, DJ having 

slightly greater numerical value compared to D*. The values of D* and DJ range from 

~10
-8

 cm
2
/s and ~10

-16 
cm

2
/s, spreading over a window of 8 orders of magnitude. In Fig 

5.5(a), the thermodynamic factor ( ), as calculated in the grand canonical Monte Carlo 

simulations, is plotted as a function of Li-concentration.   is unity at the dilute limit, 

consistent with the fact that as x → 0, the Li-ions behave as in an ideal solution. It 

increases rapidly by an order of magnitude as the Li-concentration increases ranging 

between 10 and 30 for most Li-concentrations.   diverges close to the stoichiometric 

phase of the fully lithiated spinel where Li-ions fill all the octahedral sites. The product of 

this thermodynamic factor and the jump diffusion coefficient yields the chemical 

diffusion coefficient (D) (red circles in fig 5.5(b)). D is numerically identical to DJ in the 

dilute limit, as   is unity. Near this dilute limit, it increases with the increase in  . 

However DJ drops much more rapidly than   increases and this results in the gradual 

drop in the chemical diffusion coefficient. Near the fully-lithiated limit, the rapid increase 

in   causes D to drop at a slower rate than DJ. The chemical diffusion coefficient varies 

between ~10
-8

 cm
2
/s to ~ 10

-13 
cm

2
/s. This variation has significant implications for the 

charge-discharge behavior of TiS2 spinel system and stresses the fact that the study of 

non-dilute diffusion is critical in understanding the intercalation kinetics. 
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FIG 5.6: (a) Variation of the fractions of average availability of single-, di- and triple-

vacancy environments. The possibility of zero-vacancy environment is kept out of the 

count as it does not contribute to the diffusion process. (b) Average fraction of 

frequencies of the different hop mechanisms as sampled in the kinetic Monte Carlo 

simulations. The hollow squares, the filled blue squares and the filled red circles 
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represent fraction of frequencies corresponding to single-, di- and triple-vacancy hops, 

respectively. 

The large variation of D and DJ with Li-composition is a direct result of the strong 

dependence of the migration barriers on the local Li-environments. The average 

availability of these local environments can be tracked in the grand canonical Monte 

Carlo simulations. Fig 5.6(a) shows the relative abundance of the single-, di- and triple-

vacancy environments around each candidate diffusive Li-atom. At low Li-concentration, 

almost all the diffusing Li-atoms encounter the triple-vacancy environments (red circles 

in fig 5.6(a)). On the other hand, at high Li-composition, single-vacancy environment 

(hollow squares) dominates significantly in relative abundance. In the mid-stage of 

lithiation, all three environments occur in significant numbers while di-vacancy ones 

(solid squares) dominate over the others. At the lithiated limit, the vacancy becomes 

extremely rare and all the hop environments cease to exist. The zero-vacancy 

environments (which are insignificant from the diffusion point of view) are kept out of 

the count in fig 5.6(a). Therefore, the sum does not add up to unity, especially at the non-

dilute Li-concentrations, where the number of zero-vacancy environments increases with 

Li-composition. 

The availability of a particular environment does not necessarily mean that a Li executes 

a diffusive hop in that environment. Each of these environments has a different migration 

barrier. As the probability associated with a particular hop is related to the negative 

exponential of the barrier energy, a triple vacancy hop is the most probable one, when all 

three types of hop environments are equally available. However, as we observe from fig 

5.6(a), different hop-environments are prevalent in the different stages of intercalation. 

Therefore, these variations in availability put bias on how frequently a particular hop-

environment is sampled. Fig 5.6(b) shows the relative frequency of the hop-environments 

sampled in the diffusion process, as tracked in the kinetic Monte Carlo simulations. As 

any one of the three relevant environments is associated with each Li-hop, the sum of 

these fractions at any concentration is unity. At low lithium concentration, the triple 

vacancy environments are the most abundant and the triple vacancy hops substantially 
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dominate over the other two types of hop. However, as di-vacancy environments become 

more readily available at higher Li-concentration, a considerable fraction of di-vacancy 

hops occurs. In the dilute vacancy limit, the system is left with mostly single vacancy 

environments barring a few di-vacancy environments. It is only then when a few single 

vacancy hops are executed by the Li-ions. This trend is consistent with the order of the 

migration barriers associated with each hop-environment. The fraction of the sampled 

frequency for di-vacancy hops goes up with the increasing di-vacancy availability and 

dominates over triple-vacancy hops over concentrations of 75%. At the dilute vacancy 

limit, di-vacancy hops become rare compared to the single-vacancy hops and hence the 

fraction of di-vacancy hops drops. This drop is due to the small fraction of Li-ions 

choosing the high-energy-barrier single vacancy option. 

 

FIG 5.7: Variation of lithium correlation factor with concentration. 

The correlation factor (f) measures the deviation of the tracer diffusion coefficient (D*) 

from what it would be, if all successive Li-hops were uncorrelated (i.e., random walk). 

Mathematically the correlation factor can be calculated from eq. 4.3. At the dilute limit, 

successive hops of the sparsely distributed Li-ions will be largely uncorrelated and the 

correlation factor tends to unity. On the other hand, at the dilute vacancy limit (high Li 

concentration), correlations between successive Li-hops will be significant. The 

analytical estimate of the correlation factor [148, 165] at the dilute vacancy limit can be 

obtained from the coordination number of the end points of the Li-hops (1-2/z, where z is 
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the coordination number).[165] Each octahedral Li is coordinated to two nearest neighbor 

tetrahedral vacancies. Therefore, z takes a value 2 and the formula predicts the 

correlation factor to be zero. In figure 5.7, we show the correlation factor calculated from 

the KMC simulations. At both the limits, it matches perfectly with the analytical 

estimates. It tends to unity in the dilute Li limit and decreases smoothly to zero as the 

correlation between different Li-hops becomes more and more pronounced. 

5.3 Discussion 

The study of Li diffusion in TiS2-spinel elucidates some fundamental aspects of diffusion 

in the intercalation compounds in general. Spinel has an interesting crystal structure 

which offers two kinds of interstitial sites, octahedral and tetrahedral. Depending on the 

pair of anion and the concentration of the diffusing species, the octahedral or the 

tetrahedral sites are populated during the intercalation process. In the case of Li-diffusion, 

both the octahedral and the tetrahedral sites play a crucial role. The tetrahedral sites are 

predicted to be higher in energy from zero-Kelvin DFT calculations and even at room 

temperature they are not occupied. However, these tetrahedral sites are the intermediate 

stable sites as Li-ions hop between octahedral sites during the diffusion process. In 

chapter 4, studies of Li-intercalation in titanium oxide spinel (Li1+xTi2O4) show that the 

system is phase-separated between the tetrahedral and the octahedral Li-occupancies. In 

the phase with the tetrahedral Li-occupancy, the octahedral sites are the saddle points. On 

the other hand, in the phase with the octahedral Li-occupancy, the tetrahedral sites are the 

local minima and the degree of stability of the tetrahedral sites is directly affected by the 

occupation of the nearest neighbor octahedral sites, as in the case of LixTi2S4. However, 

in Li1+xTi2O4, these two distinct behaviors are found in two different phases stable at 

different levels of Li-intercalation separated by a miscibility gap. In the manganese oxide 

spinel, we see similar site preference by intercalating Li-ions as in titanium oxide 

spinel[60, 128] and observe similar behavior in the Li-excess variant of titanate spinel 

(Li1+x(Li1/6Ti5/6)2O4).[127, 135-138] This comparison highlights the effect of anion on the 

site stability and electrochemical behavior of the spinel host. 
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We explored the dependence of migration barriers on configuration and composition 

extensively in the present study. We have looked into 33 different Li-hops covering 

different configurations of the surrounding Li-sites and the whole composition range. The 

clear segregation of the energy barrier data points in three bands, for the three types of 

surrounding occupations of the immediate vicinity of the hop, demonstrate how strongly 

migration barriers depend on the immediate local environment. The decreasing trend of 

the migration barrier for the triple- and di-vacancy octahedral hops with Li-concentration 

can be attributed to the monotonic increase of lattice volume with composition, where 

lattice constant changes by 4% over the composition range (result not shown here). 

It is observed that the interplay between the two factors, the relative abundance and the 

relative preference of the competing mechanisms, govern the diffusion process in the 

non-dilute regime. In the case of the layered intercalation compounds (such as, LixCoO2 

or layered-LixTiS2), only one mechanism (di-vacancy mechanism) dominates the 

diffusion process in the whole concentration range and diffusivity drops sharply with the 

drop in the availability of this mechanism at the dilute vacancy limit.[56, 70] In the dilute 

phase of spinel-titanate (with tetrahedral Li-occupancy), single-vacancy hop is the only 

available mechanism and it remains effective very close to the dilute vacancy limit. In 

case of LixTiS2-spinel, different mechanisms take over in different stages of intercalation. 

In the significant part of the concentration range, triple- and di-vacancy mechanisms vie 

for the dominance and only at the dilute vacancy limit, single vacancy hops contribute 

slightly in the diffusion process. This is reflected in the non-dilute diffusivity values 

(specifically DJ and D* values) as they drop steadily with concentration consistent with 

the relative dominance of the hops and associated migration barriers. The present study 

contributes to the extension of the understanding of the diffusion kinetics in the 

intercalation compounds from the previous fundamental investigations on other materials. 

We gain some fundamental insight from the present study both for the design of future 

materials and for developing intuitions for predicting the kinetic behavior of the new 

intercalation compounds. Hops with an intermediate site, having coordination of multiple 

nearest neighbors, have a significant effect on the diffusion kinetics. In the dilute phase of 
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Li1+xTi2O4 (with tetrahedral Li-ions), a Li-ion jumps between two tetrahedral sites 

through the intermediate octahedral site, which is a saddle point. The intermediate 

octahedral site is coordinated only to the end states of the hop. The occupation status of 

the end states is predetermined and there is no option of alternation. This fact leaves the 

system with only one available mechanism of diffusion – a single vacancy hop. The 

migration barrier associated with that hop solely dictates the diffusivity in the non-dilute 

regime. In the case of LixTiS2, any hop consists of the two octahedral end states and an 

intermediate stable tetrahedral site. The intermediate site is coordinated with the four 

nearest neighbor octahedral sites. This results in the flexibility of the diffusing Li-ions to 

choose from the three possible mechanisms: triple-, di- and single-vacancy hops. The 

choice is based on the relative energy barriers of the hops. If the single vacancy hop has a 

high energy barrier, the diffusing ion can bypass that hop and be able to diffuse 

efficiently through lower energy di- or triple vacancy hops. The availability of the 

alternative paths contributes to the efficiency of the kinetics. Therefore, it is essential to 

explore the coordination of the intermediate site of a hop in understanding diffusion 

kinetics in a new intercalation compound. 

5.4 Conclusion  

We have performed a comprehensive study of Li diffusion in spinel-LixTiS2. This chapter 

elucidates the effect of crystal structure and anion chemistry on diffusion kinetics in 

intercalation compounds. It complements chapter 4 by elucidating the effect of anion on 

the site preference and hence the diffusion paths. Titanium sulfide spinel also offered 

more possible hop mechanisms compared to titanate spinel. The competitive migration 

energy values for three mechanisms do not allow a single mechanism to dominate for the 

whole composition range as in case of layered intercalation compounds or spinel titanate. 

It is observed that the multiple-coordination for the intermediate site of a hop increases 

efficiency of diffusion kinetics. This is an important observation for the design of 

kinetically favorable materials. 
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Chapter 6 

Non-dilute Cu-diffusion in spinel-CuxTiS2 

6.1 Introduction  

In the previous two chapters we have discussed the Li-diffusion behavior in spinel crystal 

structure. We have examined both oxide spinel and sulfide spinel for the same transition 

metal, titanium. The change in anion significantly affected the diffusion behavior. In this 

chapter, we are going to report how change in diffusing species can alter the diffusion 

process on the same crystal structure. This will complete the comparison triangle with 

crystal structure, anion-chemistry and diffusing species as three vertices.  

Diffusion of Cu has critical influence in the performance of Cu0.5TiS2 electrodes that rely 

upon the displacement reaction.[166] Before the charging of the cell, the delithiated 

electrode contains Cu-ions at the interstitial sites of the TiS2 host. During charging Li-

ions displace the Cu-ions and metallic Cu-beads accumulate on the surface of the 

electrode. During the discharging process, when Li ions move out from the cathode host, 

Cu-ions move back to the interstitial sites. This displacement reaction has completely 

different voltage curves for the charge and the discharge process.[166] The enormous 

hysteresis in the electrochemical behavior can be elucidated from the kinetic behavior of 

Li and Cu in the titanium sulfide spinel host. 

6.2 Results  

 6.2.1 Crystal structure and site stability 
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The host structure of TiS2 has been described in chapter 5 (fig. 5.1). Cu ions prefer to be 

in the tetrahedral sites for the whole composition range (between Ti2S4 and CuTi2S4). The 

octahedral sites are saddle points rather than local minima (fig 6.2). Hence for the whole 

composition range, tetrahedral sites are the only interstitial sites available for Cu 

intercalation. We calculated 22 non-equivalent configurations of Cu and vacancy 

arrangement over the tetrahedral lattice. The reference states are set at the two ends of the 

composition range. The calculated formation energies and the associated convex hull are 

shown in fig 6.1(a). These formation energies were used to parameterize a cluster 

expansion consisting of 10 ECI‟s, which has less than 0.5 meV RMS error and 2.75 meV 

weighted cross-validation score per TiS2 formula unit. When we subject the cluster 

expansion Hamiltonian to the grand canonical Monte Carlo simulation, we track the 

equilibrium chemical potential as a function of Cu-concentration (fig 6.1(b)). The smooth 

variation and absence of steps and plateaus in the chemical potential plot indicate that Cu 

forms a solid solution with the TiS2 spinel host.  
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FIG 6.1: (a) Formation energies and the associated convex hull for different Cu-vacancy 

orderings at different Cu-concentration. The convex hull is represented by the blue line 

connecting the filled blue squares. (b) Equilibrium chemical potential curve as a function 

of Cu concentration as tracked in the grand canonical Monte Carlo simulations. 

 6.2.2 Elementary hops and migration barrier 
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For the study of diffusion behavior, we first looked at the individual atomic hops for Cu. 

We used the similar cubic super cell for NEB calculations for Cu-hops as described for 

Li-hops in chapter 5. The super cell consisted of 16 TiS2 formula units. A Cu atom hops 

from one tetrahedral site to its nearest neighbor tetrahedral vacancy straight through the 

intermediate octahedral site. The energy paths along the hops at different Cu-

concentrations are shown in fig 6.2. We have looked into the hops at two extreme 

concentrations: a single Cu and a single vacancy in the super cell along with two other 

intermediate compositions.  In all these cases, the intermediate octahedral site is always a 

saddle point rather than a local minimum. This behavior is similar to the Li-diffusion in 

the 



-phase of Li1+xTi2O4 (fig 4.6(b)). Also, we observe that the migration barriers 

associated with these hops are significantly higher compared to Li-hops (vide fig. 5.2(d)) 

and this high value (~935 meV) is almost invariant to the change in compositions and 

configuration of surrounding interstitial sites. The slight variation of the migration barrier 

(~50 meV range) can be attributed to the volume expansion of the host lattice with Cu-

intercalation, shown by the lattice constant variation plot in fig 6.3.  

 

FIG 6.2: Migration energies for the nearest neighbor Cu-hop at different Cu 

concentrations. The end states are tetrahedral sites. The images for the NEB calculation 

are placed at equal distances along the straight line path joining the end states. 
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FIG 6.3: Variation of equilibrium lattice parameter of CuxTi2S4 with change in x. 

6.2.3 Diffusion behavior of Cu 

The cluster expansion described in section 6.2.1 was subjected to the kinetic Monte Carlo 

simulations to elucidate the diffusion behavior of Cu. In the grand canonical Monte Carlo 

simulations, we calculated the thermodynamic factor (fig 6.4(a)) as a function of Cu 

composition, which is an essential quantity in calculating the chemical diffusion 

coefficient. Here we note the similarity between the thermodynamic factor plots for Li- 

and Cu-intercalation in the spinel host.  (fig 5.5(a) and fig 6.4(a)). This similarity of 

shape corresponds to the fact that both Li-TiS2 and Cu-TiS2 pairs form solid solutions.  
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FIG 6.4: (a) Variation of thermodynamic factor with copper concentration. (b) Variation 

of diffusion metrics as functions of copper concentration. The filled green circles, the 

hollow squares and the filled red squares represent tracer diffusion coefficient, self 

diffusion coefficient and chemical diffusion coefficient, respectively. 
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In the kinetic Monte Carlo simulation, we used the cluster expansion to extrapolate the 

stable state energies for the system and associate a fixed KRA value (935 meV) to all Cu 

hops. 1000 Monte Carlo passes were allowed for equilibration and 2000 passes were used 

for averaging. The final averaging was done over 100 starting ensembles corresponding 

to each concentration. A constant vibrational prefactor of 1.010
13

 was used for the 

whole composition range. Fig 6.4(b) shows different diffusion metrics for Cu. The curve 

with the filled squares represents the tracer diffusion coefficient and the curve with 

hollow circles represents the jump diffusion coefficient.  DJ is always greater than D*. 

Variation in both DJ and D* does not depend on the variation of the migration barrier 

with concentration due to the invariance of the migration barrier. Diffusion mediating 

vacancies become more and more rare as Cu concentration increases. This makes both 

D* and DJ to drop with Cu-concentration and this drop is 3 orders of magnitude over the 

whole composition range. The high value of migration barrier, causes Cu diffusion to be 

very slow in sulfide spinel. The product of DJ and   represents the chemical diffusion 

coefficient and it is shown by the filled red squares in fig 6.4(b). The increasing   with 

the increasing Cu concentration, makes D to be almost constant over the concentration 

range varying only within a single order of magnitude. If we compare the values of 

diffusion coefficients for Li- and Cu-diffusion, we notice almost seven orders of 

magnitude difference on average. Therefore, for the titanium sulfide host, Li-diffusion is 

almost instantaneous compared to Cu-diffusion.  

This large difference in Li- and Cu-diffusion rates results in completely different voltage 

curves during charge and discharge processes in CuTi2S4 electrodes. During discharge, 

Li-ions are inserted in the electrode while Cu-ions are extruded to make room for the Li-

ions. The process follows the equilibrium path on the phase plane that represents the 

equilibrium among three phases, CuTi2S4, LiTiS2 and metallic Cu. The rate of discharge 

depends critically on the Cu-diffusion as the slowest sub-process determines the process-

rate. The charging process is distinctly segregated into two processes: (i) Li-ions are 

extruded form the host crystal (ii) Cu-ions are reinserted into the host from the metallic 

Cu-beads. The voltage curve reflects only the first process and hence it follows the 

equilibrium path between two phases: vacant host of TiS2 and lithiated host LiTiS2. 
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Therefore, the enormous hysteresis of the displacement reaction has its origin in the large 

difference in diffusion rates for the two species. 

6.3 Conclusion  

The study of Cu-diffusion in TiS2-spinel host illustrates the effect of guest species on 

both electrochemistry and diffusion process. This adds another axis to the axes of 

comparison based on the crystal structure and anion species. The large difference in 

diffusivities of Cu and Li explains the different voltage curves for the charging and 

discharging process and the large hysteresis associated with the displacement reaction in 

CuTi2S4. 

 

 

 

 

 

 

 

 

 

 



100 

 

Chapter 7 

Conclusions 

In the present thesis, we have investigated the thermally and chemically activated phase 

transitions and diffusion of guest species in crystalline solids from the first principles. In 

chapter 1, we have reviewed the general ideas and classifications of phase transitions and 

the factors influencing them. The two types of phase transitions, structural and 

redistributional, were introduced with examples. Thermally activated structural phase 

transition was categorized with respect to the physical processes involved. 

Redistributional phase changes were discussed in the context of Li-ion battery electrodes 

because of their technological importance. Along with the equilibrium properties, the 

importance of understanding the kinetics of the transport of guest species in the 

electrodes was emphasized.  

In the second chapter, the details of methodology were reviewed and presented in a 

concise form. First of all, we presented the role of statistical thermodynamics in relating 

the zero-Kelvin ab-initio total energies to the moderate temperature macroscopic 

equilibrium and kinetic properties. The essential input to the statistical mechanical 

calculations is an effective Hamiltonian. The effective Hamiltonians can evaluate the 

energies of a large number of microstates while they are constructed from a finite number 

of ab-initio energies. The construction of the effective Hamiltonians for the relevant 

degrees of freedom was discussed in this chapter. The principles and methods for the first 

principles calculations were summarized. The principle of cluster expansion technique 

for the construction of the redistributional Hamiltonians and relevant algorithms for 

statistical mechanical calculations were then presented. At the end of this chapter, it was 

discussed how the macroscopic diffusion process can be formulated from the atomic 
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scale fluctuations though the principles of irreversible thermodynamics and transition 

state theory.  

In chapter 3, a thermally activated structural phase transition was elucidated at the 

fundamental level. We examined a particular example of cubic to tetragonal phase 

transition in stoichiometric TiH2 where the high temperature cubic phase was 

mechanically unstable at zero Kelvin. An anharmonic strain Hamiltonian was formulated 

including the symmetry associated with the cubic to tetragonal transformation. The 

parameterization of the Hamiltonian relied upon the first principles total energy 

calculations of a number of deformed structures (with respect to the reference cubic 

structure) under homogeneous and local strains. The effective Hamiltonian was able to 

reproduce the basic features of the energy landscape relevant to the cubic to tetragonal 

phase transition. Moderate to high temperature equilibrium behavior of the system was 

investigated with Monte Carlo simulations. The inclusion of anharmonic terms in the 

effective Hamiltonian could explain the high temperature cubic phase even when it is not 

mechanically stable at zero Kelvin. Non-zero absolute value of the order parameter of the 

transition revealed the true nature of the high temperature cubic phase. The 

experimentally observed cubic phase is essentially spatial and temporal average of the 

tetragonal variants. The discrepancy in the predicted transition temperature was attributed 

to some mismatch between the experimentally observed degree of tetragonality and as 

calculated from the first principles. The quantitative accuracy could be improved with 

temperature dependent expansion coefficients. However, the key issuess in this study 

were: (i) the role of anharmonic terms in the strain Hamiltonians in explaining the 

existence of mechanically unstable high symmetry phase at higher temperature and (ii) 

the true nature of the high temperature high symmetry phase. Both of these were 

elucidated in this chapter.  

In chapter 4, we comprehensively studied thermodynamic and kinetic properties of 

lithium titanate spinel as an electrode material in Li-ion batteries. The chosen material 

represents a class of electrode materials with spinel crystal structure with favorable 

diffusion behavior. The most prominent member of this class is the manganese spinel 
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(LixMn2O4). However, intercalation and diffusion process in manganese spinel is 

associated with complex charge and magnetic ordering. Titanium spinel offers no such 

electronic complexity and hence ideal for studying the effect of crystal structure in Li-

intercalation process. The three dimensional network of interstitial lithium sites allow us 

to understand the effect of dimensionality on diffusion process. In Li1+xTi2O4, there are 

two symmetrically distinguishable interstitial sites: tetrahedral and octahedral. From the 

first-principles calculation of total energies for several lithium-vacancy orderings over 

these interstitial sites, it was observed that tetrahedral sites are preferred at low lithium 

concentration and the octahedral sites are preferred at the lithiated limit. In the low-

concentration  -phase (tetrahedrally occupied), lithium ions form a solid solution with 

the titanate host. In the voltage curve, we observe a smooth variation. The fully lithiated 

 -phase has all the available octahedral sites occupied by Li-ions. There is a miscibility 

gap between these two distinct phases between x = 0 and x = 1 in Li1+xTi2O4. The 

calculated voltage curve matches remarkably with the experimental evidence in shape, 

step size and range of voltages. The equilibrium behavior of Li1+xTi2O4 with change in x 

was investigated at different temperatures. Using free-energy integration technique, a 

temperature-concentration phase diagram was constructed. The phase diagram illustrates 

that the miscibility gap between  - and  -phase exists up to high temperature where it 

narrows down until above 1500 K, everything becomes completely disordered. 

The major focus of chapter 4 was the study of the diffusion behavior of lithium ions in 

Ti2O4-host structure. In the  - phase, the nearest neighbor migration paths are straight 

line paths and the migration energy has a decreasing trend with lithium concentration. 

From the migration barrier plots we observe that the intermediated octahedral sites are 

never a local minimum as assumed in the previous studies of diffusion in spinel 

structures. In the  -phase, diffusion mechanisms change completely with the change in 

the site preference. The lowest energy nearest neighbor atomic path between two 

octahedral sites is curvilinear and the intermediate tetrahedral site is a local minima. The 

migration barrier is very sensitive to the immediate local environment and two hop 

mechanisms compete in the  -phase: (i) single vacancy and (ii) divacancy. The single 
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vacancy mechanism is associated with a higher migration barrier. However single 

vacancies are more abundant compared to the pair of vacancies in stoichiometric  -hase. 

It was observed that because of this abundance, the single vacancy mechanism dominates 

substantially in the diffusion process in the  -phase. In the  -phase, decreasing trend of 

migration barrier with lithium concentration is reflected in the increasing trend of self- 

and tracer-diffusion coefficients. Near the stoichiometric  -phase, diffusion mediating 

vacancies become rare and that causes drop in the diffusion metrics. The product of self-

diffusion coefficient and the thermodynamic factor results in the chemical diffusion 

coefficients. The diffusion coefficients are significantly larger compared to the layered 

intercalation compounds while the migration barriers are in the similar range. This 

proved the three dimensional diffusion (in spinel) is more efficient than the two-

dimensional diffusion (in layered materials).  

The study of non-dilute Li diffusion in titanate spinel elucidated some fundamental 

aspects of diffusion in the intercalation compounds. The effect of dimensionality and the 

difference in diffusion mediating defects were demonstrated. The thermodynamic 

behavior of Li1+xTi2O4 established it as an efficient candidate anode material with 

reversible electrochemical behavior and negligible misfit strain with lithium insertion. 

Favorable diffusion behavior makes it attractive for the high rate applications. 

In chapter 5, the diffusion process in titanium sulfide spinel was examined. Titanium 

sulfide spinel is iso-structural with titanate spinel. The change in anion causes the site 

preference to change. For the titanium sulfide, the octahedral sites are the preferred sites 

for the lithium intercalation for the whole concentration range. Any nearest neighbor 

lithium hop passes through the intermediate tetrahedral site and hence the hop is 

curvilinear. Unlike titanate spinel, an octahedral lithium is energetically stable even with 

the three vacant octahedral nearest neighbors. We identified the three possible 

mechanisms of diffusion: single-, di- and triple-vacancy mechanisms. The migration 

barriers for these mechanisms have a decreasing trend with the increase in the number of 

surrounding vacancies. The relative abundance of the three possible environments was 

tracked in the grand canonical Monte Carlo simulations. In the kinetic Monte Carlo, we 



104 

 

studied the average fraction of three different hops chosen by the migrating lithium ions. 

The interplay between the opposite trends of two contributing factors, the relative 

abundance and the associated migration barrier, determines the fraction of the different 

hops to change with concentrations and leads to a very significant design insight. From 

the previous studies on layered intercalation compounds (with two-dimensional 

diffusion), the di-vacancy mechanism dominates in the diffusion process substantially 

during the entire process of lithium intercalation. The abundance and migration barrier 

associated with these di-vacancies critically control the kinetics. In case of olivines where 

diffusion occurs through one dimensional channels, again a single mechanism is 

important and hence controls the rate. In the case of three dimensional diffusion such as 

in spinel, there are more than one mechanisms that play crucial role in the diffusion 

kinetics. In case of the octahedral phase (  ) of titanate spinel, there are two available 

mechanisms (single- and di-vacancy). In the case of the titanium sulfide spinel, three 

mechanisms are available to the migrating lithium ions and they play significant roles in 

different concentration regimes. The more the number of available mechanisms, the more 

efficient the kinetics.  

Moreover, this study on titanium sulfide spinel emphasizes another aspect: the 

coordination of the intermediate site of a hop renders the kinetics more efficient. The 

intermediate tetrahedral site of a hop in LixTiS2 is coordinated to four nearest neighbor 

octahedral sites. This multiple coordination results in multiple mechanisms and hence a 

better kinetics. This observation provides key insight for the future design of the fast 

diffusing materials, not only for the Li-ion battery electrodes, but also for any other 

diffusion dominated system.  

In chapter 6, we have investigated copper diffusion in titanium sulfide spinel. This study 

helped us to understand the effect of the guest species on the diffusion process. It has 

broader significance as in CuTi2S4 electrode, displacement reaction occurs where lithium 

ions replaces copper ions during discharging and copper comes out on the surface as 

metallic Cu-beads. During the charging of the cell, lithium ions get removed from the 

electrode while copper ions reoccupy the interstitial sites of the TiS2-spinel host structure. 
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To understand this displacement reaction, it is essential to study Cu-diffusion in TiS2-

spinel. Fully relaxed DFT calculations of Cu-vacancy orderings over the interstitial sites 

revealed that the tetrahedral sites are preferred by the Cu-ions. The NEB calculations of 

the nearest neighbor Cu-hops between two tetrahedral sites illustrate that the octahedral 

sites are not only high energy but also energetically unstable sites. The site preference 

does not alter with Cu-concentration (between Ti2S4 and CuTi2S4). The chemical 

potential curve as a function of Cu concentration showed the solid solution like behavior 

without any preferred ordering between Cu-ions and the vacancies over the interstitial 

sites. The migration barrier for the nearest neighbor Cu-hops has insignificant variation 

with Cu concentration or number of available vacancies in the local surroundings (unlike 

Li-hops). The migration barriers are much higher compared to that for the Li-hops. The 

slight variation of the migration barrier values were due to the change in lattice parameter 

with Cu concentration. The invariance of migration barrier with concentration results in 

the defect-concentration (availability of vacancies) having a very significant role in 

controlling the kinetics. We observed three orders of magnitude drop in self-diffusion 

coefficient value in the relevant concentration window of Cu. Near stoichiometric phase, 

thermodynamic factor diverges rapidly to high values and this stabilizes the chemical 

diffusion coefficient to have almost a constant value for the whole concentration range. 

The chemical diffusion coefficient has a value, seven orders of magnitude less on average 

than that for Li-diffusion. Therefore, compared to Cu-diffusion, Li-diffusion is practically 

instantaneous. The large difference in diffusivities of two species in TiS2 spinel host has 

significant implications in the reversibility of the displacement reaction. During 

discharging, Li-ions move into the host, Cu-ions move out at the same time, the whole 

process follows the equilibrium path on the phase plane in equilibrium with the metallic 

copper. However, the charging process does not retract this path reversibly. Li-ions 

quickly move out of the host structure and subsequently Cu-ions slowly move into it. 

Hence, the charging curve follows the equilibrium path between Li2Ti2S4 and Ti2S4. This 

difference in charge-discharge curves results in enormous hysteresis and it is governed by 

the kinetics of the two species diffusing in the same host crystal. 
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We have used a thorough theoretical and computational framework for elucidating the 

structural and redistributional phase transformations and interstitial diffusion in 

crystalline solids. An example of the thermally activated tetragonal to cubic phase 

transition was looked into in detail. The vital role of the anharmonic terms in the strain 

Hamiltonians in modeling of these transitions was illustrated. We explained the stability 

of the high temperature phase while it is mechanically unstable at zero Kelvin through the 

statistical mechanical calculations on the anharmonic strain Hamiltonian. The true nature 

of the high temperature and high symmetry phase was also shown to have changed the 

conventional understanding. The redistributional phase transformations were 

demonstrated with the intercalation process in the technologically attractive Li-ion 

battery electrodes. The thesis systematically uses a detailed procedure for understanding 

the macroscopic thermodynamics and the diffusion kinetics in the intercalation 

compounds in the Li-ion battery electrodes. Dependence of the equilibrium and diffusion 

behavior, on crystal structure, choice of anion and the diffusing species were illustrated 

through three chapters. The reasons behind efficient kinetic behavior in materials with 

three dimensional diffusion paths were explained. The present thesis explains previous 

observations, provides fundamental insights, and inspires future endeavors in the area of 

computational material modeling.  
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Appendix A 

Frequency map for vibrational microstates  

In Monte Carlo simulations, we can track different strain metrics associated with each vibrational 

excitations. The sampling frequency depends on the atomic scale energy landscape. The 

excitations causing low energy states are sampled more frequently and the high energy 

excitations are rarely sampled. With increase in temperature, increased thermal energy allows the 

system to sample higher energy excitations more frequently. Therefore the temperature 

dependence of sampling frequencies illustrates the fundamental nature of the temperature 

dependent structural phase transitions. 

In case of cubic to tetragonal phase transformation, variables e2 and e3 are the relevant metrics to 

track the transformation. Moreover, focus on two independent strain metrics allow us to plot the 

frequencies in a three dimensional plot. In Monte Carlo simulation, we measure all strain metrics 

for each accepted excitation for a lattice site. On an e2-e3 grid, the number of attempt is 

incremented if the deviatoric strain metrics fall in a particular e2-e3 interval. The total number of 

successful attempts for each grid-cell is normalized by the number of sites in the simulation cell 

and the number of Monte Carlo passes. This normalized attempt count represents the relative 

sampling frequency in e2-e3 space. 

Fig A.1 illustrates the relative frequency map for low temperature (100 K). In fig A.1(a), the three 

dimensional plot is shown where frequencies are plotted as the height above the e2-e3 plane and in 

fig A.1(b), the same plot is shown as the top-view to highlight the location of sampling peak on 

the e2-e3 plane. At low temperature, the initial ground state was chosen to be the tetragonal 

variant with z-axis compression. This tetragonal distortion is represented by the point on e3 axis. 

Fig A.1(b) shows that the all the high frequency distortions are around this tetragonal ground 

state.  
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FIG A.1: Frequency map at low temperature (100 K) (a) Three dimension view of 

frequency map where frequencies are plotted as heights from the e2-e3 plane (b) two 

dimensional top-view of the frequency map where the position of high frequency points 

are located on the e2-e3 plane. 

In fig A.2 similar frequencies were plotted above the transition temperature where cubic phase is 

observed. Here we observe, similar bell-shaped frequency landscape. However, the bell spans a 

wider region in e2-e3 plane and it is centered around the origin, which represents the cubic phase. 
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FIG A.2: Frequency map at high temperature (700 K) (a) Three dimension view of 

frequency map where frequencies are plotted as heights from the e2-e3 plane (b) two 

dimensional top-view of the frequency map where the position of high frequency points 

are located on the e2-e3 plane. 

Above the transition temperature, shape of the frequency map has circular symmetry 

around the origin and hence on average the phase resembles the pure cubic phase. The 

wide span of the bell shaped curve indicates that the thermal energy of the system is high 

enough to sample microstates corresponding to large deviatoric strains. Absence of three 
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local minima corresponding to the three equivalent tetragonal variants in the frequency 

plot illustrates that the description of the high temperature cubic phase as the average of 

three tetragonal variants is over simplified. The energy landscape is much more complex 

than that shown in fig 3.3. The energy contour plot in fig 3.3 shows the energy landscape 

under homogeneous deviatoric strains only. It does not account for the local strains that 

include dilation and shear components. In Monte Carlo simulation, though, the energy 

penalties due to other strain components are accurately accounted for and the frequency 

map on the e2-e3 plane demonstrates the true nature of the high temperature cubic phase. 

In reality, the thermal energy of the system is so high above the transition temperature 

that it cannot see the local tetragonal wells. Hence it samples all kinds of excitations 

around the cubic phase with circular symmetry without being restricted to the tetragonal 

energy wells. 
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