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ABSTRACT 

3-D ADAPTIVE EULERIAN-LAGRANGIAN METHOD FOR MULTIPHASE 

FLOWS WITH SPACECRAFT APPLICATIONS 

 

by 

 

Jaeheon Sim 

 

Chair: Wei Shyy 

 

Understanding interfacial dynamics and fluid physics is important in many 

engineering applications, including spacecraft. Under microgravity, the moving 

boundaries and associated interfacial transport processes significantly impact the vehicle 

dynamics, design, and missions. However, it is difficult to mimic the micro-gravity 

condition experimentally. Numerical simulations of such problems are also challenging 

due to multiple time/length scales, large variations in fluid properties, moving 

boundaries, and phase changes. 

A 3-D adaptive Eulerian-Lagrangian method is implemented for multiphase flow 

computations. The stationary (Eulerian) Cartesian grid is used to resolve the flow field, 

and the marker-based triangulated moving (Lagrangian) surface meshes are utilized to 

treat the phase boundaries. A main focus of the present study is to treat both fluid and 

solid phase boundaries in a unified framework with a contact line force model and a 

phase change model. The fluid interfaces are modeled using a continuous interface 

method which smoothes both the variations in material properties and the influences of 



 

 xiii 

surface tension. The solid boundaries are treated by a ghost cell-based sharp interface 

method. A dynamic contact line force model is applied to calculate the position and 

movement of the solid-fluid-fluid interface. The energy and mass transfer due to phase 

change is computed using Stefan condition across the interfaces. A multi-level adaptive 

grid method is devised so that different length scales of the flow field can be resolved 

effectively. 

Selected studies on the interfacial dynamics relevant to spacecraft fuel delivery 

applications are conducted and assessed with experimental measurements and scaling 

analysis. For liquid fuel draining under microgravity, depending on the relative influence 

between capillary force and inertia force, three different flow regimes are observed and 

liquid residuals are measured. The liquid fuel sloshing under varying acceleration results 

in a large shift in its center of mass and significant influence on the vehicle dynamics. For 

thrust oscillation studies, the liquid surface stability under vertically oscillating 

acceleration is investigated, and the threshold acceleration is correlated with the forcing 

frequency, surface tension, and viscosity. For thermo-fluid transport computations with 

phase changes, validation studies are conducted with natural convection flows, Stefan 

problems, and melting processes by convection/diffusion flows. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation and Goals 

Space missions – including rocket launchers, the space stations, and interplanetary 

space flights – require an understanding and managing of the cryogenic liquid dynamics 

under micro-gravity conditions. This understanding is crucial because cryogenic liquid 

dynamics under micro-gravity conditions have a significant impact on the engine 

operation, vehicle dynamics, spacecraft design, and even the overall mission. However, 

the limitation of experimental facility, especially short experimental time, makes 

experimental studies under micro-gravity difficult to perform. Figure 1.1 shows examples 

of zero-gravity facilities with a few seconds operational time on the ground. Furthermore, 

numerical simulations of such problems are also challenging due to multiple time/length 

scales, large variations in fluid properties, moving boundaries, and phase changes. 

In this dissertation, a 3-D adaptive Eulerian-Lagrangian method is developed for 

complex multiphase flow computation with spacecraft applications. A main focus of the 

present study is to treat both fluid and solid phase boundaries in a unified framework with 

a contact line force model and a phase change model. Spacecraft fuel tank dynamics and 

fluid physics related to liquid fuel draining, sloshing, and surface stability are studied.  
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(a)                                                               (b) 

 

Figure 1.1: Examples of zero-gravity research facilities on the ground. (a) 2.25 sec 

drop tower at the NASA Lewis zero-gravity research facility (Derdul et al. 1966). 

(b) 5.18 sec drop tower at the NASA Glen zero-gravity research facility. 
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1.2 Spacecraft Liquid Fuel Tank Dynamics Overview 

When designing and operating a spacecraft, the dynamics and management of the 

cryogenic propellants is a major concern. The unoriented draining and sloshing motion 

under microgravity has a critical impact on the vehicle dynamics due to the shift in its 

center of mass. The variation of the amount of fuel delivered to the combustion chamber 

may result in engine operation failure and, consequently, in a mission failure. 

Furthermore, the thermal effect in a cryogenic propellant has huge influence on the 

spacecraft safety as well as fuel dynamics. Even a small amount of heat leaked from the 

incident solar radiation, the aerodynamics heating, or the spacecraft structure causes 

thermal stratification and fuel vaporization. This occurs because the boiling temperature 

of the cryogenic propellant is extremely low, and the space mission usually takes a long 

time. The fuel vaporization results in cryogenic propellant loss and self-pressurization in 

a fuel tank, and this determines the operational time and design safety of the fuel tank. 

Figure 1.2 illustrates these various phenomena related to liquid fuel dynamics in a 

spacecraft. 

Contrary to the behavior of fluid on the ground, the fuel draining process under 

microgravity conditions can cause unexpected large interface distortion and slosh waves, 

resulting in fast vapor ingestion and large liquid residuals. Figure 1.3 shows an example 

of liquid fuel draining experiment at the micro-gravity facility, where large interface 

distortions is observed, and it may results in large liquid residuals at the moment of vapor 

ingestion.   
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Figure 1.2: Illustration of spacecraft liquid fuel tank dynamics; fuel draining, 

sloshing, surface stability, and self-pressurization. 
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Petrash et al. experimentally studied the effect of weightlessness on the liquid-

vapor interface in a spherical tank without draining (Petrash et al. 1962; Petrash et al. 

1963). Various drop tower tests on the draining process under microgravity followed. 

They found that the shape of the tank bottom and the position of the outlet have little 

influence on the draining process while the pressuring gas diffuser and outlet baffle 

minimize the interface distortion (Derdul et al. 1966; Nussle et al. 1965). Typically, the 

Froude number, the ratio of inertia to gravitational forces, is correlated with the draining 

phenomena under normal gravity (Berenyi and Abdalla 1970). However, the Froude 

number has diminished influence on the draining process under microgravity; instead, the 

Weber number, which measures the ratio of inertia to surface tension forces, is found to 

 
 

Figure 1.3: An example of liquid fuel draining experiment at the 2.25 sec micro-

gravity facility of the NASA Lewis research center (Derdul et al. 1966). A huge 

interface distortion is observed and large amount of liquid fuel may not be used 

effectively due to the unoriented draining and vapor ingestion. 
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have a stronger influence on the draining procedure in weightlessness (Berenyi and 

Abdalla 1970; Derdul et al. 1966). Symons defined a draining parameter by grouping the 

Weber number and the Froude number to cover phenomena ranging from micro to 

normal gravity conditions, and he categorized three different draining flow regimes 

according to the flow characteristics of the draining process (Symons 1978).  

Liquid propellant sloshing motion is another primary concern in a spacecraft since 

the movement of mass distribution imposes disturbances on the vehicle controls and 

interrupts engine operations. Under high acceleration, the sloshing motions are 

suppressed and are of no concern. However, low gravity orbital missions require accurate 

predictions and controls of propellants. For the Saturn V earth orbital flight prior to the 

lunar missions of the 1960’s, Toole and Hastings conducted scale model ground 

experiments at the 4.3 sec drop tower facility at the NASA Marshall space flight center, 

in order to understand the behavior of a sloshing liquid subjected to a sudden reduction in 

acceleration (Toole and Hastings 1968). Engine shutdown converts the large potential 

energy at high acceleration into kinetic energy, and it results in a large sloshing motion. 

The amplitude and configuration of the liquid fuel interface and shift in the liquid center 

of gravity are investigated. In 1966, a full scale orbital test studying the design of the S-

IVB propellant control was launched using a modified Saturn 1B, designated AS-203 

(Ward et al. 1967). Recently, more studies have been conducted on the Sloshsat FLEVO 

(Facility for Liquid Experimentation and Verification in Orbit) mini satellite of Figure 

1.4 to understand how sloshing affects the attitude and orbit control of space vehicles by 

monitoring the behavior of water in an instrumented tank (Prins 2000; Veldman et al. 

2007). 
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(a)                                                               (b) 

 

Figure 1.4: Sloshsat FLEVO (Facility for Liquid Experimentation and 

Verification in Orbit) mini satellite for liquid fuel sloshing studies in a space 

environment. (Credits: NLR) (a) FLEVO satellite artwork (b) 3-D experiment 

tank integrated in the satellite 
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Thrust oscillation is also crucial in rocket designs since it has influence on the 

whole rocket system, including astronauts’ safety, and might even result in a critical 

structural failure of the rocket. Active controls have been applied to reduce such a 

dangerous pogo oscillation and shock absorbers have been installed for the safety of 

astronauts and payloads by mitigating thrust oscillation (Yang and Andersen 1995). 

However, more detailed studies on the causes and influences of thrust oscillation are still 

required since it is related to engine pressure and fuel delivery systems, such as 

fuel/oxidizer pumps and injectors. Moreover, the bubble formations due to thrust 

oscillation may cause vapor ingestion into the combustor, resulting in engine failure. The 

enhanced heat transfer from droplets causes an ullage pressure rise and has a huge 

influence on the fuel tank structure. When focusing on the surface wave stability caused 

by thrust oscillation, it is clear that it has a very similar mechanism to the well-known 

Faraday wave, a parametrically excited surface wave. In 1831, Faraday found that a 

parametric vertical vibration generates subharmonic standing waves on the fluid surface 

(Faraday 1831). Since then, various surface wave modes and patterns and the influence of 

tank geometries have been studied (Das and Hopfinger 2008; Miles and Henderson 1990; 

Simonelli and Gollub 1989). A liquid depth to radius ratio is also an important parameter 

due to its influence on the nonlinear resonance. The standing surface wave becomes non-

linear and unstable at certain specific conditions, and critical standing wave height and 

exciting frequency/magnitude level are proposed as a criteria for surface instability 

(Perlin and Schultz 2000). Goodridge et al. experimentally investigated the surface wave 

stability for fluids with different viscosity by measuring the exciting acceleration level 

where the surface becomes unstable, namely the threshold acceleration, in a cylindrical 



 

 9 

container (Goodridge et al. 1996; Goodridge et al. 1997; Goodridge et al. 1999). They 

found that the threshold acceleration depends on surface tension and viscosity as well as 

forcing frequency. 

Considering microgravity conditions in a typical spacecraft environment, the 

capillary effect becomes very important due to a small Bond number, the ratio of body 

(or gravitational) forces to surface tension forces. Thus, a study on the multiphase flow 

that includes interfacial dynamics is required in order to understand the liquid fuel 

dynamics in a spacecraft. However, experimental studies are limited because the 

microgravity conditions are hard to realize on the ground. Drop tower tests and in-flight 

tests have been conducted, but their short operational times prohibit simulating practical 

engineering problems. Thus, a high fidelity numerical simulation of such a multiphase 

flow in a space environment is crucial to compensate for the limitations of these 

experiments. 

1.3 Multiphase Flow Computation Overview 

Multiphase flows can be characterized by a system where two or more phases 

exist. This definition includes a wide range of cases, essentially all flows having 

moving/deforming surfaces that separate different fluids/phases. Figure 1.5 illustrates a 

multiphase flow separated by an interface between different fluids. Across the interface, 

fluid properties such as density, viscosity, and conductivity are discontinuous; and 

interfacial phenomena such as surface tension balancing normal stress variations and 

phase changes causing mass transport across phase boundaries exist (Prosperetti and 

Tryggvason 2007; Shyy et al. 1996). 
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With the rapid progress made in computational techniques, a number of 

practically relevant fluid dynamic problems can now be computed with high accuracy. 

However, the multiphase flow computation still remains one of the most challenging 

problems due to the multiple time and length scales such as capillarity, 

diffusion/conduction, convection, and solid objects. Furthermore, the physical process 

involving moving/deforming interfaces with steep jumps in fluid properties, the interface 

topological changes along with merger/breakup, and the mass/heat transfer across phase 

boundary challenge the computational techniques. 

The multiphase flow includes an interface between different phases having 

distinct physical properties; consequently, this involves identifying interface location and 

modeling interfacial dynamics, including a steep jump in fluid properties in response to 

surface tension effects. Various methods have been proposed and improved and each 

method has its own relative strengths and weaknesses (Osher and Fedkiw 2002; 

 
 

Figure 1.5: Illustration of a typical multiphase flow separated by an interface. 
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Prosperetti and Tryggvason 2007; Scardovelli and Zaleski 1999; Shyy et al. 1996; 

Tryggvason et al. 2001). 

1.3.1 Interface Representation 

As reviewed in Shyy et al., three main categories exist in representing and 

tracking the location and the shape of the moving boundaries, including Lagrangian 

(moving grid), Eulerian (stationary grid), and Eulerian-Lagrangian methods utilizing 

moving meshes with tags or markers in a stationary grid (Shyy et al. 1996). 

Lagrangian methods 

In Lagrangian (moving grid) methods, a body-fitted grid is used for tracking the 

interface in Figure 1.6(a). Thus, the interface location coincides with the computational 

grid, which is updated to match the moving interface location at every time instant in 

Figure 1.6(b). Ryskin and Leal implemented structured curvilinear body-fitted grids 

(Ryskin and Leal 1984), and Perot and Nallapati used unstructured tetrahedron grids for 

multiphase flow computations (Perot and Nallapati 2003). This method tracks the 

interface location explicitly, and it produces accurate results since the nature of a body-

fitted grid guarantees the application of interfacial force and boundary conditions at the 

exact location. However, regenerating the whole grids for appropriate grid quality is 

required when large deformation and/or movement occur (Antaki et al. 2000). This is 

difficult and computationally expensive when large deformation/movements and/or 

topological changes take place, especially in 3-D computation (Johansen and Colella 

1998). 

  



 

 12 

 

 

  

 

 

(a) (b) 

 

Figure 1.6: Lagrangian methods. (a) Interface representation and tracking by body-

fitted grids. (b) Solution procedure. 
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Eulerian methods 

Unlike the Lagrangian methods, the Eulerian (stationary grid) methods extract the 

interface location with the help of a scalar function on a stationary computational grid in 

Figure 1.7(a). The interface is tracked implicitly via post processing of this scalar 

function. This category includes two popular methods, namely, the level-set (LS) method 

(Osher and Fedkiw 2001, 2002; Sethian and Smereka 2003) and the volume of fluids 

(VOF) method (Harlow and Welch 1965; Scardovelli and Zaleski 1999; Welch and 

Wilson 2000). The difference between these two methods is the choice of the scalar 

function, which is a signed-distance function in LS and volume fraction in VOF. Figure 

1.7(b) shows the overall procedure of these Eulerian methods. Due to the implicit 

tracking of the interface, these methods can handle topological changes such as merger 

and break-up naturally (Shyy et al. 1996). However, it usually requires a fine grid to 

extract the interface location from Eulerian cells with the appropriate resolution. 

Moreover, an erroneous mass loss/gain and associated conservation laws’ requirements in 

the LS method can cause loss of accuracy, and these are sometimes unacceptably large 

and detrimental (Enright et al. 2002). VOF methods track the volume explicitly, and thus 

there is no volume loss. However, it suffers from the difficulty of retrieving interface 

geometric properties from sharply changing volume fractions from cell to cell, and it is 

observed to produce spurious floatsam and jetsam in the region of the interface having a 

large curvature (Renardy and Renardy 2002; Scardovelli and Zaleski 1999). 

Eulerian-Lagrangian methods 

Eulerian-Lagrangian methods utilize a separate set of moving (Lagrangian) mesh 

and associated marker/tag system representing the interface on a stationary (Eulerian) 
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(a) (b) 

 

Figure 1.7: Eulerian methods. (a) Interface representation and tracking in VOF 

method. (b) Solution procedure. 
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grid used to compute the flow fields in Figure 1.8(a). Thus, the interface can be tracked 

explicitly via Lagrangian meshes, which move freely on the stationary Eulerian grid by 

interpolating velocities from the Eulerian grid (Mittal and Iaccarino 2005; Peskin 1977; 

Peskin and McQueen 1989; Peskin 2003; Singh and Shyy 2007; Tryggvason et al. 2001). 

The conceptual framework is shown in Figure 1.8(b). These methods possess several 

desirable features when compared with Lagrangian or Eulerian methods. The interface 

representation does not require modifications to the computational grid for the field 

equations even for large deformation/moving as Lagrangian methods do. The explicit 

tracking of the interface generally presents finer resolution than computational grids, and 

thus, it requires a coarser grid than Eulerian methods (Glimm et al. 1998). Due to an 

explicit definition of the interface in the Lagrangian framework, the interface does not 

inaccurately diffuse in time and lose mass as the LS methods tend to do. An explicit 

definition of the interface also avoids inaccuracies caused by the errors in interface 

construction of VOF methods. The most serious concern about the Eulerian-Lagrangian 

methods is the complexity of the interface data, especially for topological changes. The 

source of difficulty lies in establishing valid connectivity information during surgical 

altering of the existing interface data (Shin and Juric 2002). Although such a procedure 

can be easily accomplished for two-dimensional interfaces, extension to three dimensions 

is a much more involved procedure. However, significant progress has been made and 

high accuracy computations for interfacial dynamics are reported in numerous 

publications (Shin and Juric 2002; Singh and Shyy 2007). 
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(a) (b) 

 

Figure 1.8: Eulerian-Lagrangian methods. (a) Interface representation and tracking 

using moving meshes on the stationary Cartesian grid. (b) Solution procedure. 
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1.3.2 Interfacial Dynamics Modeling 

Another challenging issue is the handling of the interfacial dynamics, even if the 

location and the shape of the interface are known at a given time. Across an interface, in 

general, the pressure and viscous stresses show discontinuities and fluid properties 

suddenly jump due to surface tension. Moreover, phase change includes mass and heat 

transfer across an interface. How to treat such a phase discontinuity and the associated 

capillary effects can be classified into two categories: the sharp interface method and the 

continuous interface method. 

Sharp interface method (SIM) 

The sharp interface method is a class of techniques that satisfy the jump condition 

between the flow fields on two sides of a phase boundary exactly on the interface of zero 

thickness in Figure 1.9(a). The interface is considered as a boundary separating two 

phases. The governing equations are solved separately for each phase with the boundary 

conditions of interfacial dynamics drawn from both sides. Eventually, these boundary 

conditions are required to match the required formulations explicitly in time and in space. 

A body-fitted grid in the Lagrangian method matches well with the sharp interface 

methods since the interface is aligned with the grid, and the interfacial dynamics can be 

applied exactly on the interface (Ryskin and Leal 1984). The cut-cell (Ingram et al. 2003; 

Udaykumar et al. 1996; Ye et al. 1999), ghost fluid (Kang et al. 2000; Liu et al. 2005), 

and some of the immersed interface methods (Leveque and Li 1994; Li and Lai 2001; Xu 

and Wang 2006) with Eulerian or Eulerian-Lagrangian methods are also under this 

category.   
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(a) 

 

 

 

(b) 

 

Figure 1.9: Interfacial dynamics modeling. (a) Sharp interface method with zero-

thickness interface. (b) Continuous interface method with smeared interface within 

finite zone. 
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In general, the sharp interface method produces accurate results with less 

compromise of the interfacial conditions. However, it is more demanding 

computationally since the solution for each phase needs to be coupled with one another. 

For the Lagrangian method, accuracy issues related to mesh skewness can be challenging. 

While one can regenerate new meshes periodically, there is no guarantee that the quality 

of the flow solutions can be maintained between the different mesh systems. For both the 

moving mesh method and the cut-cell method, computational cost and numerical stability 

require special efforts for cases involving complex physics (phase change, heat/mass 

transfer, etc.) and substantial interface movement/deformation.  

Continuous interface method (CIM) 

Compared to the sharp interface method, the continuous interface method 

smoothes out the fluid property within a finite range and models the surface tension 

forces as a momentum source term within this range instead of as an interface of zero 

thickness in Figure 1.9(b). This facilitates a single fluid formulation for the entire domain 

with the flow/fluid properties varying gradually across the interface over a thin zone. This 

smeared/smoothed region contains usually three to four cells in thickness. The continuous 

interface method has been widely used with Eulerian-Lagrangian tracking (e.g., the 

immersed boundary method (Peskin 2003)) as well as Eulerian tracking such as level-set 

and volume-of-fluid because it is easier to implement. In general, the continuous interface 

method results in a lower order of accuracy than the sharp interface method due to the 

smearing of interfacial properties (Shyy 2004; Ye et al. 2004). However, this method is 

very effective and computationally more economical in handling various multiphase 

problems even with large deformation and moving interfaces. Effective treatments for 
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handling large property changes between fluid domains across interfaces have also been 

proposed. Table 1.1 summarizes and compares the features of the sharp and continuous 

interface method. 

1.3.3 Phase Change Modeling 

The phase change and following mass transfer across phase boundary has not 

been well known due to its physical and numerical complexity. Son et al. solved the 

boiling bubbles problem using the level set method. They assumed the temperature inside 

the bubble to be constant and computed mass transfer with temperature gradient only at 

the liquid side (Son and Dhir 1998). This assumption is applied with the VOF method by 

Welch and Wilson (Welch and Wilson 2000). Juric and Tryggvason extended an 

immersed boundary method into a boiling problem by adding a smoothed latent heat 

Table 1.1: Features of SIM and CIM 

Interfacial 

dynamics 

Sharp interface method 

(SIM) 

Continuous interface method 

(CIM) 

Equation sets 
Separate set of equations 

for each phase 

A single set of equations 

for all phases 

Jump condition 

across interface 

Explicit sharp jump within zero-

thickness 

Smooth changes within finite 

range 

highlights 
Higher order of accuracy 

(small spurious velocity current) 

Effective in large deformation 

Easy to implement 

issues 

Computationally expensive and 

difficult 

(with large deformation in 3D) 

Lower accuracy with smearing 
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source term into the energy equation. They iterated the whole solution procedure 

estimating the amount of mass transfer (Juric and Tryggvason 1998). Shin and Juric 

simplify the method of computing the mass transfer from the known temperature 

gradient, but at both the liquid and the vapor sides (Shin and Juric 2002). However, 

continuous treatment with diffused material property of thermal conductivity limited the 

accuracy of heat transfer across the interface. Luo et al. implemented a hybrid method 

using sharp treatment for temperature computation with a standard continuous level-set 

method (Luo et al. 2005). Morgan improved accuracy in a phase change computation by 

correcting the temperature around the interface and directly using linear interpolation 

based on the interface temperature. This hybrid approach is very popular due to its 

simplicity and accuracy. However, the material properties are computed differently for 

momentum equations and the energy equation, and the sharp treatment is not appropriate 

for large deformable flows. Furthermore, Ferziger conducted an interesting study to 

demonstrate that the errors in continuous temperature treatment may be from the 

incorrect smoothed average of thermal conductivity around the interface in steady pure 

heat conduction problem with no phase change (Ferziger 2003).  

1.3.4 Challenges and Recent Advances 

Various methods have been proposed to represent and model the interface, each 

having strong and weak points. To represent the interface, a number of new 

developments have been proposed to compensate the existing methods. For example, 

Enright et al. implemented a particle level-set method, which utilizes Lagrangian markers 

around an interface with the Eulerian level-set method to ameliorate the mass loss 

observed in the original level-set method (Enright et al. 2002). The hybrid marker-VOF 
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method is proposed by Aulis et al.; it employs a Lagrangain marker-based tracking for 

better treatment of the interface (Aulisa et al. 2003). Sussman suggested the coupled LS-

VOF method by combining the level-set method and the volume of fluid method 

(Sussman 2003). In the Eulerain-Lagrangian method, a topology change is the most 

challenging issue. Torres and Brackbill suggested unconnected point-set tracking 

methods for easy topology changes (Torres and Brackbill 2000). However, in this 

approach, it is difficult to control the interface resolution and compute geometry by 

spline-fitting. The marker-based triangle set tracking method is implemented by many 

researchers due to its easy geometric computation. This popular approach is utilized with 

connectivity information for easy topology changes and without connectivity information 

for easy control of resolution. Table 1.2 summarizes the recent advances in interface 

representation and tracking methods. 

In the interfacial dynamics modeling, both sharp and continuous interface 

methods can be implemented with any interface representation and tracking method. 

However, the Lagrangian method is usually handled with a sharp interface method due to 

its body-fitted grids. In the Eulerian and Eulerian-Lagrangian method, the computational 

grid is non-boundary conforming, and the choice depends on the interface properties. The 

sharp interface method has a higher order of accuracy than the continuous interface 

method, and it is attractive when studying fixed or small deformation phase boundaries. 

The continuous interface method is generally adopted for moving interfacial flow.  
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Table 1.2: The summary of the recent advances in an interface representation 

and tracking method. 

Base method Improved method Features 

Level-set (LS) 

particle level-set 

(Enright et al. 2002; Enright et 

al. 2005) 

- cloud of markers around 

interface 

- ameliorates erroneous mass 

loss 

Volume of fluid 

(VOF) 

hybrid marker-VOF 

(Aulisa et al. 2003, 2004; Davis 

and Jones 1983) 

- marker-based interface 

- avoids interface construction 

LS and VOF 
coupled LS-VOF 

(Sussman 2003) 

- easy geometry computation in 

LS 

- excellent mass conservation in 

VOF 

marker-based 

point-set tracking 

(Torres and Brackbill 2000) 

- set of unconnected points 

- easier handling of topology 

changes 

- geometry-computation by 

spline-fitting 

- difficult to control interface 

resolution 

connectivity free triangle-set 

tracking 

(Shin and Juric 2002) 

- set of unconnected of triangles 

- easy geometry computation 

- level-contour reconstruction 

for topology changes 

- difficult to control interface 

resolution 

marker-based triangle-set 

tracking 

(Singh and Shyy 2007; 

Tryggvason et al. 2005) 

- set of connected triangles 

- easy to control interface 

resolution 

- level-contour reconstruction 

for topology changes 
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1.4 The Present Approach 

In the present study, a 3-D adaptive Eulerian-Lagrangian method is adopted for 

explicit tracking of Lagrangian grids and effective computation of a Eulerian frame in 

order to simulate a complex multiphase flow around irregular geometries. Both fluid and 

solid phase boundaries are implemented in a unified framework for practical engineering 

problems. The large-deformable fluid boundaries are modeled using a continuous 

interface method, and the surface tension between fluid interfaces is smeared within finite 

distance. The solid boundaries are treated by a sharp interface method along with the 

ghost cell method by reconstructing the solution on the ghost cell based on the known 

solid boundary condition. The contact line where the fluid interface meets the solid 

boundary is modeled using a contact line force model, which enforces the given contact 

angle dynamically. For the moving contact line treatment, a local slip condition is applied 

around the contact line. The multi-level adaptive Cartesian grid method is implemented 

to resolve the sufficient computation resolution locally and dynamically, especially 

around the interface with effective computation. The energy equation solver is added into 

the present incompressible flow solver with Boussinesq approximation for buoyancy 

force computation. The phase change model using continuous treatment for temperature 

is developed with modified smoothing of material properties. Figure 1.10 shows the 

schematic drawing of the present approach for multiphase flow computation. 

1.5 Scope and Outline of the Dissertation 

In chapter 2, the implemented 3-D adaptive Eulerian-Lagrangian method is 

described. First, the interface representation method is presented, and interfacial 

dynamics modeling is described for each continuous interface method for the fluid phase
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Figure 1.10: Illustration of the present approach. 
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boundary and the sharp interface method for the solid phase boundary. The dynamic 

contact line force model at the fluid-fluid-solid contact line and adaptive grid method is 

followed. 

Chapter 3 discusses isothermal computation results. First, the present contact line 

force model is validated by simulating capillary tube cases with various contact angles, 

and three spacecraft fuel delivery applications are investigated via direct numerical 

simulations with experimental validation and scaling analysis: liquid fuel draining and 

different draining flow regimes under microgravity; liquid fuel sloshing and its influence 

on the vehicle dynamics under sudden reduction in acceleration; and liquid fuel surface 

stability under vertically oscillating gravitational acceleration like rocket thrust 

oscillation. 

In chapter 4, thermo-fluid transport computations are conducted. The laminar 

natural convection flow driven by the buoyancy force in a cavity is computed for 

validation study for the present approaches including thermal effect. 1-D two-phase 

Stefan problems and 2-D melting case by convection/diffusion flow are presented for 

validation purposes of the implemented phase change model. 

In chapter 5, the conclusions and future work for the present study are 

summarized. 
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CHAPTER 2  

3-D ADAPTIVE EULERIAN-LAGRANGIAN METHOD 

This chapter presents the key components of the implemented marker-based 3-D 

adaptive Eulerian-Lagrangian method. In section 2.1, the governing equations for 

incompressible flow and the numerical treatment of a single fluid formulation for all fluid 

phases are discussed. Section 0 shows how to represent and track the interface. In section 

2.3, the interfacial dynamics of continuous treatment for the fluid interface are discussed, 

and in section 2.4, the sharp interface treatment for solid interface is discussed. Section 

2.5 deals with the interaction between the fluid boundary and the solid boundary, and the 

contact line force model. The phase change model is discussed in section 2.6, and the 

adaptive grid is implemented for effective computation in section 2.7. 

2.1 Governing Equations and Solution Procedure 

Figure 2.1 shows a schematic drawing for general multiphase flow computation 

with solid interface (    and fluid interface (   ). In the fluid domain (  ), the non-

dimensionalized incompressible Navier-Stokes equations for mass, momentum, and 

energy conservation are given in Eqs. (2.1), (2.2), and (2.3), respectively, which account 

for the interfacial dynamics as source terms in the governing equations: surface tension 

effects of fluid interfaces as a momentum forcing term (  ), and the latent heat effects 

across fluid interfaces as an energy source term (  ). In the governing equations,   is the 
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velocity vector, and  ,  ,  ,  , and   is the density, viscosity, heat capacity, thermal 

conductivity, and pressure, respectively.  

  

  
          (2.1) 

   

  
              

 

  
             

 

  
   

 

  
   (2.2) 

    

  
           

 

     
           

 

(2.3) 

Here, all variables are non-dimensionalized by a characteristic velocity ( ) and 

length scale ( ), standard gravity (  ), and liquid material properties (density   , viscosity 

  , heat capacity   , thermal conductivity   , and surface tension  ). The non-

 

 

Figure 2.1: Schematic drawing for general multiphase flow computation. Fluid 

domain (  ) and solid domain (  ) are divided by solid interface (   . The fluid 

domain (  ) is subdivided into multiphase fluids by fluid interface (   ).  
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dimensional parameters of Reynolds, Froude, Weber, and Prandtl numbers in Eq. (2.2) 

and (2.3) are defined as,           ,            ,       
    , and     

       . In addition, the capillary number and bond number can be defined as    

            and               
   , respectively. 

2.1.1 Smoothed Material Properties 

A single set of equation formulations for all fluid phases in the whole domain is 

made possible by smoothing out the discontinuous material properties across the 

interface. This is achieved with the help of an approximate Dirac delta function (  ) and 

an indicator function ( ). The approximate Dirac delta function, originally proposed by 

Peskin (Peskin and McQueen 1989), is implemented over a finite thickness of 4 cell 

width instead of the analytical form of the Dirac delta function, which has a non-zero 

value only at the zero-thickness interface. The indicator function is a scalar function in 

the stationary Eulerian frame varying from zero to one smoothly across the interface and 

has a value of 0.5 at the interface location.  

The analytical form of the Dirac delta function is only non-zero at the exact 

interface location. However, this approach cannot be used along with a discretized set of 

equations because the discrete points on the Eulerian ( ) and Lagrangian ( ) frameworks 

do not necessarily coincide. For this reason, approximations to the Dirac delta function, 

which introduce a region that represents the interface over a finite thickness, have been 

studied for their properties (Engquist et al. 2005; Peskin 2003; Stockie 1997).  In the 

present study, the discrete Dirac delta function approximation, which supports the 

conservation rules dictated by the zeroth, first, and second moments as described in 
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Peskin (Peskin 2003), is employed as the base discrete form using the one-dimensional 

representation given in Eq. (2.4). 

 

In Eq. (2.4),     is the shortest distance between the cell-center to the interface 

location, and it is normalized by the cell spacing ( ). Because      becomes zero when 

the distance is larger than two cells width, the smearing region becomes limited to two-

cell widths on each side of the interface. Figure 2.2 shows the discrete Dirac delta 

     

 
 
 

 
 

 

 

 
                               

 

 
                             

          

     (2.4) 

 

 

Figure 2.2: The discrete Dirac delta function and the indicator function around 

an interface. 
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function approximation (    ) in Eq. (2.4) and the indicator function (I) around the 

interface. 

One way to extend the one-dimensional representation of the discrete Dirac 

function to two- and three-dimensions is to use the multiplication rule as presented in Eq. 

(2.5) (Peskin 2003).  This approach is attractive due to its low computational cost.  

 

In Eq. (2.5), the distance vector ( ), is presented in Cartesian components, 

indicated by the subscripts. This results in a discrete Dirac delta function (  ), which is 

an approximation based on grid spacing ( ).  

On the other hand, when the information of the minimum distance is readily 

available, as in the case of the level-set methods, it is possible to directly utilize the 

distance function with the one-dimensional form of the discrete Dirac function,  , as 

shown in Eq. (2.6). 

             
 

   
    

    
 
                (2.6) 

  

Obtaining the indicator function accurately is critical for numerically simulating 

multiphase flow problems. In the literature, two closely related but numerically distinct 

forms of computations can be found. One of these methods adopts the solution of a 

Poisson equation using the form in Eq. (2.7). The other utilizes a discrete form of the 

Heaviside step function from the analytical solution of Eq. (2.7) using 1-D form of the 

discrete Dirac delta function given in Eq. (2.8). 

      
 

      
                  (2.5) 
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  (2.7) 

                         
 

  

 (2.8) 

 

On dealing with contact line problems, in which the interface is on a solid surface, 

the above approach requires boundary conditions in the vicinity of the interface. Because 

the variation of the indicator function at this region depends on the normal direction, it is 

difficult to utilize an appropriate boundary condition. One possible condition is to assume 

zero variation in the indicator value at the normal direction to the boundary. However, 

this condition leads to an interface representation that makes a right angle to the domain 

boundary, which can result in a different interface shape on the Cartesian grid than the 

 

Figure 2.3: The comparison of two approaches for indicator function computation. 

The Poisson equation approach may misrepresent interface location near boundary. 
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actual interface at angles away from 9  . Using linear extrapolation can also cause an 

incorrect interface line (     ) around this region. Figure 2.3 illustrates such a scenario. 

This issue can be handled using an alternate way of computing the indicator 

function, which utilizes the shortest distance value between the cell-center to the interface 

location by integrating the one-dimensional form of the discrete Dirac function given in 

Eq. (2.8). This approach is known to be applicable more generally than the Poisson 

equation solver method since it requires only distance information from the interface 

without boundary conditions, and thus gives accurate values even at the boundaries 

(Uzgoren et al. 2009). 

 

 

 

Figure 2.4: Region of computation and boundary conditions for Dirac delta function 

and indicator function. 
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Considering the support of a discrete Delta function and an indicator function, the 

computations are only performed over the two-cell width region on each side of the 

interface to reduce the computational cost of the Poisson equation. Figure 2.4 illustrates 

this region for the computation. This region is obtained by determining the cells around 

each surface node with a two-cell width radius. The boundary conditions away from the 

interface are set to yield the desired variation, i.e. zero or one. This approach is 

computationally effective when these boundary conditions are away from the interface 

location. 

Separate indicator functions for the fluid and solid interfaces are used to 

distinguish the solid interface (modeled by a sharp interface method) from the fluid 

interface (modeled by a continuous interface method) on the fixed Eulerian Cartesian 

grids. Such a feature of the indicator function enables handling the complex nature of 

geometric operations in a computationally efficient way. 

The smoothed fluid properties such as density and viscosity are computed using 

Eqs. (2.9)-(2.12). 
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                          (2.11) 
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2.1.2 Solution Procedure: Projection Method 

The governing equations Eqns. (2.1)-(2.3) are solved using a projection method 

with a staggered grid finite-volume formulation. The pressure and fluid properties are 

stored at the cell center and face-normal velocities are stored on the Cartesian cell faces. 

The convection term ( ) is discretized using a 3rd order ENO scheme in space and a 2nd 

order Runge-Kutta integration in time. The central difference scheme and Crank-

Nicholson method is implemented for the viscous term ( ). The discretized solution 

procedures are summarized in Eqns. (2.13)-(2.16). In Eqn. (2.17),        term is zero if 

the phase change doesn’t occur and mass is not transferred across the interface. 

       

  
               

 

       
              

      (2.13) 

     

  
            

 

    
                      (2.14) 

       
  

    
    (2.15) 

         
  

    
      (2.16) 

 

with Pressure Poisson equation of Eq. (2.17) by taking divergence of Eq. (2.16). 

          
  

    
                (2.17) 
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2.2 Interface Representation and Tracking 

2.2.1 Marker-based Interface with Connectivity Information 

In this marker-based Eulerian-Lagrangian method, the interface is represented by 

massless markers in coordination with each other in order to maintain the interface 

connectivity information. The corresponding data structure is established via line-

segments in two-dimensional domains and triangles in three-dimensional domains, as 

represented in Figure 2.5. Markers store the surrounding elements’ indices, and elements 

store their neighboring elements based on the edge that they share. For boundary 

elements, a negative value is used to refer to the computational boundary or intersecting 

solid elements in Figure 2.6. 

         

 

(a)                                                                    (b) 

 

Figure 2.5: Examples of interface surface represented by massless markers and 

elements. (a) Line-segments in 2-D. (b) Triangular elements in 3-D. 
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2.2.2 Interface Advection 

The marker locations, denoted by   in the Lagrangian frame, are updated from 

the velocities at its location,     , in Eq. (2.18). 

  

  
      (2.18) 

 

Fluid interfaces use the computed flow solution field to obtain the marker 

velocities as shown in Eq. (2.19). In this equation, the discrete Dirac delta function, 

       , is employed for converting the Eulerian velocity field,     , to Lagrangian 

form,     . The interface velocity is exactly the same as the fluid velocity at the 

interface location if there is no mass transfer (  ) in Eq. (2.19). However, with phase 

change, the velocity component from the mass transfer across the interface should be 

considered. On the other hand, the solid interfaces use the prescribed velocity field to 

 

Figure 2.6: Connectivity information for an interface element. Each edge has 

information for two neighboring elements. Boundary information such as 

computational boundary and solid elements is stored using negative value for 

differentiating inner elements. 
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advance the marker points using Eq. (2.18). 

                  
 

 
  

  
   (2.19) 

 

2.2.3 Interface Grid Quality 

As the marker points advance to a new position with time, the interface surface 

mesh can exhibit an uneven distribution of marker points. In order to maintain consistent 

computational accuracy, the spacing between marker points is rearranged by adding or 

deleting markers whenever two markers come too close to or too distant from each other. 

The criteria for the distance between the adjacent markers are estimated based on the 

requirements posed by the background grid and the function relating Eulerian quantities 

to Lagrangian. For fluid interfaces, each cell should contain at least one and at most two 

markers within its volume in order to achieve continuous representation for transferred 

quantities like surface tension. This constraint can be used to approximate the distance 

between a marker located at   and an adjacent marker located at       as a function of 

the Eulerian grid spacing,  , given in Eq. (2.20). 

 

 
             (2.20) 

 

For the solid interface, there is no transferred quantity between Eulerian and 

Lagrangian quantities, and coarse resolution is accepted if the computed indicator 

function is able to represent the physical geometry. Thus, two or three times of distance 

between markers can be utilized for the solid interfaces. 
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(a) 

 

 

(b) 

 

Figure 2.7: Examples of interface grid quality control for inner elements. (a) A long 

edge is divided into two edges by creating a marker at the midpoint (b) A small edge 

is collapsed to its midpoint, and neighboring edges are removed. 
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Maintaining grid quality by adding or removing the marker can be done relatively 

easily when the element is located inside and is surrounded by other elements. Figure 2.7 

Shows examples of interface grid quality control for inner elements. The new marker is 

created at the mid-point of a long edge and neighboring elements are divided into two 

creating edges. For the short edge, two markers of the edge collapse into its midpoint, and 

two neighboring elements are removed. However, it can be more complicated for the 

boundary elements. Examples of interface grid quality control for boundary elements are 

described in Figure 2.8. The volume errors during these processes can be recovered by 

 

 

(a) 

 

 

(b) 

Figure 2.8: Examples of interface grid quality control for boundary elements and 

edges. (a)  Short edges are collapsed to its midpoint and are snapped to the 

boundary. (b) A flat boundary edge is removed and inner elements are extended 

to the boundary. 



 

 41 

adjusting the location of the modified marker in its normal direction, as discussed by 

Singh and Shyy (Singh and Shyy 2007). 

2.2.4 Topology Change: Interface Reconstruction 

The level-contour-based interface reconstruction technique with connectivity 

information is implemented to handle topological changes such as merger or break-up. 

With connectivity information, the time-consuming reconstruction is facilitated only in 

the case of merger/break-up by examining the possibility of topological changes at 

prescribed time intervals. These reconstruction procedures can be done locally for a 

specific interface body, and the errors in the phase volume after reconstruction are 

explicitly corrected by perturbing the markers in the local normal direction. Figure 2.9 

shows an example of an interface reconstruction between two spheres. 

 

  

 

 

Figure 2.9: An example of topology change. Two spheres merge into one by level-

contour-based reconstruction when they approach each other. 
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2.3 Fluid Interface: Continuous Interface Method 

The continuous interface method is implemented for all fluid phases by a single 

fluid formulation due to its effectiveness in modeling highly deformable fluid interfaces. 

The surface tension and latent heat at the interface are smeared around Eulerian cells. 

The surface force computation of Eq. (2.21), where   is the surface tension and   

is the curvature of the interface, is applied as the source term in momentum Eq. (2.2). 

              
 

 (2.21) 

The surface force of the interface is also transformed from Lagrangian quantity 

( ) to Eulerian quantity ( ) via the approximate discrete Dirac delta function,        . 

Two popular methods exist in computing surface tension on a discretized interface 

element (line-segments in 2D and triangles in 3D). The first approach is a direct 

curvature computation, where the unit normal vector and curvature can be computed 

using curve fitting for two-dimensional interfaces (Francois and Shyy 2002, 2003; Ye et 

al. 1999) and surface fitting for three-dimensional interfaces (de Sousa et al. 2004) in Eq. 

(2.22). Another approach implements a line integral form shown in Eq. (2.23) with 

normal and tangent vectors from the given interface elements (Al-Rawahi and 

Tryggvason 2002; Tryggvason et al. 2001). 

        
  

 (2.22) 

                        
   

 (2.23) 

 

There are two important observations to be made here: the net surface tension 

force on a closed surface should be zero (conservation); and the curvature computation 
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using interpolation based methods is numerically sensitive and often requires some form 

of data smoothing. (Al-Rawahi and Tryggvason 2004; de Sousa et al. 2004; Francois and 

Shyy 2002, 2003) The use of Eq. (2.22) does not enforce conservation whereas the line-

integral form, Eq. (2.23), does not require explicit curvature computation and maintains 

the conservation.  

In the present study, the line-integral form approach developed by Singh (Singh 

2006) is implemented by computing the local normal and tangent vectors in Figure 2.10 

along the triangle edges using the simple approach of Al-Rawahi (Al-Rawahi and 

Tryggvason 2002, 2004) shown in Eq. (2.24).  

            
 

              

     

 (2.24) 

 

  

 

Figure 2.10: The definition of the unit normal and tangent vectors on the triangle 

element of fluid interface. 
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2.4 Solid Interface: Sharp Interface Method using Ghost Cells 

Solid interfaces are modeled using the sharp interface method by reconstructing 

solution fields around an interface to incorporate the given boundary condition on the 

solid interface in an Eulerian Cartesian grid. Solution reconstruction can be conducted 

either on the fluid side or solid side in Figure 2.11. Both approaches work well for a 

single phase flow around solid surfaces. However, the fluid velocity reconstruction 

method ignores the influence of surface tension from the fluid interface by reconstructing 

fluid velocities directly and, thus, tends not to describe the moving phase boundary near 

the solid interface. Alternatively, the velocity reconstruction on the solid side can be 

implemented via ghost cells, which are defined as solid cells having at least one 

neighboring fluid cell. This approach works well even with the contact line where the 

fluid interface meets the solid interface without disturbing the fluid velocities. 

 

(a)                                                                     (b) 

 

Figure 2.11: Two approaches for the solution reconstruction in the sharp interface 

method. (a) Fluid velocity reconstruction computes fluid velocities directly from 

interpolation and loses the influence of surface tension near contact line. (b) Solid 

velocity reconstruction via ghost cells keeps the influence of surface tension. 
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The solution reconstruction on the ghost cell is conducted by a linear or 

bi/trilinear interpolation scheme using solutions at the solid surface and at the known 

fluid cells. Avoiding extrapolation due to the location of a ghost cell in the solid phase, 

the interpolation can be conducted first at an imaginary point in the fluid phase. Then, the 

solution of the ghost cells can be obtained from the interpolated value at the imaginary 

point and a known value at a solid surface in Figure 2.12. 

 

 

Figure 2.12: Identification of ghost cell (GC), solid point (SP), and imaginary point 

(IP). The interpolation of velocity is conducted on the imaginary point first, and 

then computed at the ghost cells based on the velocity of solid point. 
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In a complex solid geometry with sharp edge, the identification of ghost cells is 

challenging, and an incorrect definition of ghost cells results in an incorrect interpolation. 

In some cases, following the interpolation scheme results in large errors. Figure 2.13 

shows an example of complex geometry, where fluid cells at the sharp tip cannot be 

solved since they don’t have enough neighboring cells. Also, the ghost cell cannot get 

enough fluid cells for interpolation. For such an extreme case, the isolated fluid cells that 

do not have enough neighboring fluid cells are considered as solid cells in Figure 2.13. 

This treatment makes the present numerical method robust even with complex geometry. 

 

  

 

 

Figure 2.13: Identification of fluid and solid cells around sharp edge for the sharp 

interface method. The fluid cells should have enough neighboring fluid cells for 

defining appropriate ghost cells and interpolation scheme. The fluid cells in the 

sharp edge are treated solid cells. 
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2.5 Contact Line Treatment 

When we consider a fluid-fluid interface intersecting a solid surface, treatment of 

the tri-junction locations, called the contact line, is required to account for the presence 

and interactions of all three phases, fluid-fluid-solid. One of the most discussed issues for 

modeling these contact lines with Navier-Stokes equations is that the imposed no-slip 

condition for velocity leads to a non-integrable singularity in stress. In the present 

research, the contact line force is imposed with local slip condition to overcome this 

singularity issue. 

In Figure 2.14, the angle at the contact line can be used for representing the 

balance of forces resulting from intermolecular forces between solid, liquid and gas 

 

 

Figure 2.14:  Forces at tri-junction (contact line) where, liquid, gas, and solid 

meets together at the same point in 2-D and at the same line in 3-D. FA represents 

the adhesive forces. 
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phases. The tangential component of the resulting force at the contact line (  ) is shown 

in Eq. (2.25). In static equilibrium, Eq. (2.25) leads to the well-known Young-Laplace 

equation as given in Eq. (2.26). 

                 (2.25) 

               (2.26) 

 

In Eq. (2.26),     is the surface force due to the interaction of solid and gas;     is 

the surface force due to the interaction of solid and liquid; and   is the surface tension 

defined between liquid and gas. The given static contact angle is represented by   , and   

is the present contact angle at an instant. In this approach, the force at the contact line is 

obtained by plugging Eq. (2.26) into Eq. (2.25). This contact line force in Eq. (2.27) 

accelerates or decelerates flow fields, and makes the contact angle (  ) asymptotic 

towards a prescribed static contact angle (  ). 

  

                 (2.27) 

 

During the computation of the source term due to surface tension, the contact line 

region contributes as a recovery force in the tangential direction to the solid surface (  ) 

instead of the curvature effects given in Eq. (2.28). The contact angle is enforced on open 

edges where the element connects to either a computational boundary or a solid interface 

by modifying Eq. (2.24). The surface tension force from the interface curvature is applied 

to closed edges, and the contact line force is applied to open boundary edges. 
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(2.28) 

 

One of the difficulties in combining sharp interface methods with continuous 

interface methods in the same framework is lack of information during the transfer 

between Eulerian and Lagrangian quantities. The surface tension is smoothed into 

Eulerian fluid cells around the interface, and the fluid marker velocity is computed from 

around fluid cells via discrete Dirac delta function in Eqs. (2.19) and (2.21). The surface 

tension is computed easily in Eq. (2.28) by assuming an extended interface over the solid 

boundary, where the surface tension is zero since the curvature is also zero. For marker 

velocity computation in Eq. (2.19), we consider only the fluid region and conducted 

weighted averaging of Dirac delta function by Eq. (2.29). 

 

     
            

        
 (2.29) 

 

In Eq. (2.29), the summation of the delta function in the denominator will yield 

unity (as a property of the delta function) further away from the contact line, whereas it is 

less than unity for markers in the proximity of a solid surface.  

A local slip condition is applied around the contact line on solid boundary to 

simulate the moving contact line problems with better accuracy. The present model and 

solid boundary treatment work well with a no-slip condition for steady and/or slowly 

moving fluid interface problems. However, the no-slip condition imposed on the solid 
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leads to a non-integrable singularity in stress and retarded interface movement due to the 

discontinuous velocity fields in Figure 2.15(a). This singularity can be solved by applying 

a slip condition within a finite distance from the contact line using the Dirac-delta 

function in Figure 2.15. A perfect slip is applied exactly on the contact line, and a partial 

slip is within 2 cell distances as continuous fluid interface is diffused. 

 

  

   

        (a)                                                             (b) 

 

Figure 2.15: The comparison of velocity fields between no-slip and local slip 

condition. (a) No-slip condition. (b) Local slip application around contact line.   
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2.6 Mass Transfer Computation 

Mass transfer computation is one of the key issues in the phase change process 

since it is related to the movement of the phase boundary and the amount of latent heat in 

the energy transfer process. In the energy equation Eq. (2.3), the latent heat is computed 

by Eq. (2.30), where     is mass transfer due to phase change and   is the latent heat. 

                
 

 (2.30) 

 

Similar to the transformation of surface tension, the latent heat of the interface 

due to phase change is also transformed from a Lagrangian quantity ( ) to an Eulerian 

quantity ( ) via the approximate discrete Dirac delta function,        . 

In the present study, the mass transfer is computed in Eq. (2.31) based on the 

Stefan condition using the probe-based temperature gradient for simplicity in Figure 2.16. 

 

 

Figure 2.16: Probe-based temperature gradient computation for Stefan condition. 
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The interface temperature is assumed equal to the saturation temperature since it is an 

adequate assumption in macroscopic problems (Juric and Tryggvason 1998). The probe-

length is the chosen cell distance ( ), but 0.8 ~1.3  gives no difference. 

                  
   

  
 
 
   

   

  
 
 
 (2.31) 

 

The energy equation of Eq. (2.3) is solved using continuous treatment with 

smoothed material properties in Eqs. (2.9)-(2.12), and the projection method in Eqs. 

(2.14)-(2.16) is applied to solve momentum equation. The mass conservation equation in 

Eq. (2.1) is coupled by assuming          when we solve pressure Poisson equation 

in Eq. (2.17). However, the divergence of velocity is not zero around the interface if the 

phase change occurs and mass is transferred across the interface. Shin and Juric 

developed the conservation of mass in Eq. (2.32) (Shin and Juric 2002), and the modified 

Eq. (2.33) for the non-conservative form is implemented in the present work. 

            
       

  
            
    

 (2.32) 

    
 

 
        

  

  

 
    

 

 
 
       

  
            
    

  (2.33) 
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2.7 Adaptive Grid 

Multiphase flow problems involve multiple length scales. In order to effectively 

resolve the flow features in such cases, an adaptive grid based on isotropic refinement is 

implemented. The cells are split into four and eight equal sibling cells in two- and three-

dimensions, respectively, in order to better handle regions that require higher resolution. 

The grid is represented using unstructured data that connects cells through cell faces. 

Figure 2.17 shows the implemented data structure for the storage of an isotropically 

refined Cartesian grid. For cell data structure, refinement level and i, j, k index are used 

cell-face lists. The level indicates how many times a cell has been split from the initial 

state. The i, j, k index provide the location and size of cells with the information of level. 

All faces forming a cell are stored to provide cell-to-face connectivity information. For 

each face, orientation indicates the normal direction of the face; 1, 2, and 3 are used for 

x-, y-, and z-direction, respectively. The sidecell information is also stored for referring 

cells sharing this face. The location and area of faces can be computed easily from 

sidecell information and face direction. The details of the data structure and algorithm 

can be found in many previous researches (Aftosmis 1997; Ham et al. 2002; Singh and 

Shyy 2007).  

Adaptation is performed based on the flow solution quality for effective 

computation as well as the interface location. The geometry-based adaptation around 

interfaces allows better resolution in the near wall region and phase boundary. Near the 

fluid interfaces, for which discontinuous flow properties smear across two layers of cells, 

refinement is performed to improve the resolution and capture detailed flow structures 

more accurately. This fully resolved region around a fluid interface is further extended to
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(a) 

 

 

 

 (b) 

 

Figure 2.17: The unstructured data format for adaptive Cartesian grid. (a) The cell 

and the face data structure (b) An illustration of face data format. 
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six layers of cells to handle both the discrete Dirac function as well as a possibility for 

large deformation of the interface. On the other hand, solid interfaces, where interfacial 

dynamics are not smeared, triggers full refinement with two-cell layers from the wall. 

Figure 2.18 shows examples of geometry-based adaptation in a confined fuel tank and 

velocity- and temperature-solution based grid adaptation in a 2-D square natural 

convection case. The computational cells are dynamically refined based on the solution 

of the flow field. The present implementation uses a curl based adaptation criterion for 

velocity and gradient or divergence based criteria for temperature, comparing a cell value 

      in Eq. (2.34) with a standard deviation of the whole domain (  ) in Eq. (2.35). The 

length scale   is estimated as the cubic root of cell volume. The decision to refine or 

coarsen a cell is defined in Eqs. (2.36) and (2.37). 

             (2.34) 

   
 

        
 

 

 (2.35) 

                     (2.36) 

                             (2.37) 

 

During the adaptation procedure, the flow field variables at the Cartesian cell-

center and face-center should be reconstructed for the newly created cells and faces. The 

cell-centered values such as pressure and temperature are reconstructed linearly while the 

face-normal velocities are reconstructed using divergence-free reconstruction (Balsara 

2001). Flow variable reconstruction during cell and face coarsening is performed simply 

by averaging of the corresponding cell-centered or face-centered values. 



 

 56 

 

 

(a) 

 

 

(b) 

Figure 2.18: Examples of adaptive grids. (a) Geometry-based adaptation around 

liquid/vapor interface and solid fuel tank wall. (b) Velocity and temperature 

solution-based adaptation in a 2-D natural convection case. 
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2.8 Summary 

In this chapter, the marker-based 3-D adaptive Eulerian-Lagrangian method has 

been described and further developed to perform incompressible interfacial flow 

computations, including phase change. The bulk flow variables are solved on the 

stationary (Eulerian) background grid, whereas interface variables are handled by moving 

(Lagrangian) surface meshes. A single fluid formulation for all fluid phases is 

implemented via smoothed material properties with the help of an indicator function. 

Interface is represented by massless markers and triangular surface meshes with 

connectivity information. The fluid interface is treated continuously for large-deformable 

phase boundary simulation, and the solid interface is treated sharply via ghost cell 

method for better accuracy. The contact line force model is proposed in order to enforce 

the moving contact angle. Geometry- and solution-based Cartesian grid adaptation is 

utilized for effective computation. The components of the numerical algorithm and their 

interactions are summarized in Figure 2.19. 
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Figure 2.19: The summary of the present numerical method and the interactions 

between Eulerian and Lagrangian descriptions. 
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CHAPTER 3  

ISOTHERMAL COMPUTATIONS 

This chapter presents the results of the isothermal computation. In section 3.1, the 

implemented contact line force model is validated using a capillary tube computation 

with various contact angles. Section 3.2 discusses the liquid fuel draining dynamics of a 

spacecraft with different draining flow regimes under micro-gravity conditions. In order 

to simulate the influence of the engine shutdown within earth’s orbit, section 0 examines 

the computation of the liquid sloshing motion under a sudden reduction of acceleration. 

Finally, section 3.4 examines the surface stability of liquid fuel under vertically 

oscillating gravitational accelerations, like rocket thrust oscillation.  

3.1 Validation of Contact Line Force Model: Capillary Tube 

For the purpose of this validation study of the implemented contact line force 

model, a capillary tube with an initially flat interface is simulated at zero-gravity 

condition, varying contact angles and non-dimensional parameters. The initial flat 

interface between gas and liquid is deformed into the curved steady interface shape with 

the given contact angle as the contact line force is applied to the tri-junction point 

between gas, liquid, and solid wall. The grid convergence and accuracy of various contact 

angles were first studied in axisymmetric domain. Then, 3-D simulations were conducted 

by representing the circular tube wall using solid interfaces with triangular elements in 
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the adaptive Cartesian background grids. These configurations and initial flat interfaces 

in a capillary tube are shown in Figure 3.1. The density ratio and viscosity ratio are 1000 

and 100 respectively. The Bond number,          , is zero for the zero-gravity 

condition, and the Laplace number,          , is varied from     to    . 

The height of a liquid column (ΔH), defined as the difference between a wall 

attachment point and a centerline location, is normalized by the radius of tube (R) and 

chosen for verifying the performance of the present contact angle model. Figure 3.2 

shows the comparison between the analytical solution (Shyy 1994) and the present 

axisymmetric computation results with various contact angles from 0° to 180° at    

 

 

 

(a) 

 

(b) 

 

Figure 3.1: The computational configuration for 3-D capillary tube simulations. (a) 

The tube wall is represented by sharp solid interface method, and the computational 

grids are adapted locally around solid boundary. (b) The fluid interface is assumed 

initially flat for validating the present contact line force model. 
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   . A maximum of 129 grid points are used along the tank radius based on the grid 

convergence test. The current contact angle model works very well with various contact 

angles, and it demonstrates consistency with theoretical values, especially from 15° to 

165°, where the difference is less than one cell distance.  

In order to validate the 3-D performance of the contact angle and the solid 

interface, the 3-D capillary tube geometry in Figure 3.1 was tested with various Laplace 

numbers. At the same grid resolution, the 3-D computation has the same accuracy as the 

2-D, where the interface location is tracked with an accuracy of one cell distance. The 

change in the wall attachment point at 30° contact angle is tracked in time from the initial 

 

 

Figure 3.2: The comparison of the non-dimensional height of liquid column between 

theoretical values and the present numerical computation. The Laplace number 

La=10
4
, and a maximum of 129 grid points are used along the radial direction. 
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flat interface shape to the final steady state in Figure 3.3. With a modest Laplace number, 

for example,       , the interface shape evolves smoothly without overshooting, but a 

large Laplace number can cause oscillations in interface shapes before it reaches the 

steady state solution because the relatively large surface tension and small viscosity 

create a larger contact line force, and thus movement. Figure 3.4 shows the 3-D sample 

snapshot of the deformed interface shape for the given contact angles 30, 90, and 150°. 

The Cartesian grid is adapted locally and dynamically in order to resolve interfacial 

dynamics and track the interface effectively. 

 

 

 

 

Figure 3.3: The wall attachment point of 3D Capillary tube with 30
o
 contact angle. 

The Laplace number varies from 100 to 50,000. 
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(a) θ = 30°                         (b) θ = 90°                          (c) θ = 150°  

  

Figure 3.4: The steady interface shape of 3D capillary tube for different contact 

angles. (a) θ = 30° (b) θ = 90° (c) θ = 150° 
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3.2 Liquid Fuel Draining Dynamics in a Spacecraft 

The dynamics of the fuel delivery under microgravity are studied numerically and 

compared with an experimental study conducted by Symons at the zero-gravity facility of 

the NASA Lewis research center (Symons 1978). Figure 3.5 shows the experimental and 

numerical configuration. The tank with hemispherical bottom and a small draining hole is 

represented by a solid interface treatment on the stationary Cartesian grid. In the 

experiment, the inlet baffle (or pressurizing gas diffuser) of 1/2 the tank radius is installed 

to prevent direct impingement of the pressurizing gas onto the liquid fuel surface. It is 

known that the inlet baffle minimizes the interface distortion (Nussle et al. 1965). This 

 

 

(a)                                                                    (b) 

 

Figure 3.5: The geometry configuration of liquid fuel tank draining simulation. 

(a) Experimental setup. (b) The present numerical study. 
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equipment is modeled numerically by a mixed wall and an outlet boundary condition at 

the height of the inlet baffle. The non-dimensional initial liquid height, based on tank 

radius ( ), is set to    or   .  

In Symons’ experimental study, the draining phenomena was measured after 

some transition time from normal gravity (  ) to the required microgravity (       ) 

condition with an equilibrium interface surface. The simulation is started from the end of 

the transition time, using the initial equilibrium ellipsoidal interface shape. The specified 

mass flow rate is used except in one case, which is used for a more accurate comparison 

with the experimental data. As is done in the experiments, trichlorotrifluoroehhane is 

utilized as a substitute for liquid fuel, and air is employed as a pressurizing gas. The 

material properties at 20°C are given in Table 3.1. 

The non-dimensional parameters, the Weber number (  ), the Bond number 

(  ), and the draining parameter ( ), are defined with non-dimensional time (  ) to 

compare the results with the experiment and to distinguish the flow regime under 

microgravity in equations (3.1)-(3.4). 

Table 3.1: The material properties of trichlorotrifluoroehhane and air at 20
o
C 

(Symons 1978). 

material properties at 

20°C 

trichlorotrifluoroehhane 

(liquid) 
air (gas) 

density [kg/m
3
]          1.205 

viscosity [kg/m·s]                      

surface tension [N/m] 0.0186 
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where   is dimensional time,   is the volume flow rate of the fuel draining, and   is the 

characteristic length of the fuel tank. In this study, the radius of tank is taken for the 

characteristic length, as presented in Figure 3.5. According to Symons, the flow 

characteristics of the draining process can be classified into three main categories: inertia-

dominated, transition, and capillary-dominated regimes. In the present study, the Bond 

number is fixed at 5 with          , and various Weber numbers are chosen from 0.1 

to 80 for characterizing each regime in terms of sloshing waves and residual volume. 

They correspond to draining parameters   of 0.01667 to 13.33.  

Direct simulation is conducted for a transition regime case corresponding to the 

draining parameter       ,  for which the experimental results are available. It should 

be noted that Symons quantified the draining parameter based on the mass flow rate 

measured under normal gravity (Symons 1978). However, these measured flow rates will 

be acceptable only if the pressurizing air pressure is much higher than the hydrostatic 

pressure of the liquid. This occurs in the inertia-dominated regime, where large flow rates 

require high air pressurizing. The difference of hydrostatic pressure between normal and 

   
      

     

  
 

   
 

     
 (3.1) 

   
  

  
 

     

 
 (3.2) 

  
  

    
 (3.3) 

   
  

   
 (3.4) 
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micro gravity conditions cannot be ignored in capillary-dominated or transition regimes 

with small air pressurizing; it can cause errors in the measured flow rate. In order to 

establish an exact basis for comparison, a procedure similar to the experiment is 

conducted by measuring the air pressure numerically for a given mass flow rate under 

normal gravity. Then, the obtained air pressure is used in a fuel draining simulation under 

microgravity.  

In this preliminary test, the reported draining parameter        in the 

experiment practically corresponds to 0.16 with 10% errors due to hydrostatic pressure 

differences. Thus, Figure 3.6 compares the simulation, which has a draining parameter of 

0.16, with the experimental data, which has a draining parameter of 0.18. The figure also 

shows the non-dimensional height variation at the centerline and at the tank wall. 

Contrary to the draining phenomenon under normal gravity, the fuel surface goes down 

with different velocity at the centerline and wall with varying downward speeds. This 

results in a jellyfish-like sloshing motion that repeats flat and elongated surfaces. The 

present study consistently agrees with Symons' experimental study (Symons 1978). The 

sloshing motion and sudden vapor ingestion phenomena are captured in detail, whereas 

the wall contact point location is slightly different in the beginning of the draining 

process, possibly as a result of differences in the initial conditions. 

Under normal gravity, the liquid fuel in a tank goes down and maintains a flat 

interface shape during the draining process. Thus, the fuel can be used efficiently with 

little left over. However, the liquid fuel interface shows a very large distortion under 

microgravity conditions, since the small gravitational force does not flatten the liquid
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Figure 3.6: The comparison of the present simulation results with experimental data 

by Symons (Symons 1978). 



 

 69 

surface. Rather, the balance of interfacial force and gravitational force determines the fuel 

surface shape. In this condition, the amount of usable fuel depends on the interface 

surface shape. Residual volume is defined as the remaining liquid volume in a tank at 

vapor ingestion, and thus, it informs us how much fuel can be used at the given condition. 

Figure 3.7 shows the non-dimensional residual volume   
  normalized by the 

hemispherical bottom volume for two different initial fill levels: 2 tank radii and 3 tank 

radii. The residual volume increases with the draining parameter until it reaches a certain 

value. At that point, it becomes insensitive to any changes in the draining parameter. 

With intermediate draining parameters, the residual volume shows oscillations due to the 

 

 

  

Figure 3.7: The present numerical measurement of non-dimensional residual 

volume in draining parameter.  
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influence of sloshing waves. If a slosh wave is at its highest point at the incipience of 

vapor ingestion, the vapor ingestion is postponed, and this results in a decreased residual 

volume. The phase of the slosh waves determines the time of vapor ingestion, which in 

turn determines the remaining liquid residual volume. Thus, a higher initial fill level does 

not guarantee longer engine operation since vapor ingestion can occur earlier than with a 

lower initial fill level. The existence of three regimes can also be shown: a linear part 

with a small draining parameter, an oscillation part in the middle range, and the flat 

residual volume part with a high draining parameter. 

The time history of the non-dimensional height at the centerline and at the wall 

attachment point is shown in Figure 3.8 for the mentioned regime conditions. A capillary-

dominated regime is characterized by many slosh waves with small magnitudes. In this 

regime, the fluid level decreases with the same velocity, both on the centerline and wall; 

simultaneously, it maintains its initial interface shape due to dominating capillary forces. 

The transition regime shows a few slosh waves with large amplitudes. The only sloshing 

wave observed in Figure 3.8 for the transition regime may not even be observed for 

smaller initial fill levels due to the short draining time. In the inertia-dominated regime, 

the wall attachment point rarely moves; however, the interface at the centerline moves 

down with a constant velocity until vapor ingestion occurs. This regime is observed for 

large draining parameters and causes a larger residual volume at the time of vapor 

ingestion because of the almost stationary wall attachment point. 

Detailed interface shapes at different time steps are presented in Figure 3.9 for 

each regime. Figure 3.9(a) represents capillary-dominated regime for which the interface 

maintains its initial shape and moves with an almost-constant velocity until vapor
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Figure 3.8: The present numerical measurement of non-dimensional height at the 

centerline and on the tank wall at capillary-dominated (We/(Bo+1) = 0.03), 

transition (We/(Bo+1) = 0.3), and inertia-dominated regime (We/(Bo+1) = 13.3). 

Initial fill level is 3 tank radii. 
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 (a)                                             (b)                                             (c) 

 

Figure 3.9: The snapshots of the interface shape for each regime during the draining 

process.  (a) Capillary-dominated regime (We/(Bo+1) = 0.03), (b) Transition regime 

(We/(Bo+1) = 0.33), (c) Inertia-dominated regime (We/(Bo+1) = 13.33) 
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ingestion occurs. The transition regime with large-amplitude slosh waves is shown in 

Figure 3.9(b). The interface heights at the centerline and at the wall attachment point 

move at different speeds when compared with the capillary-dominated regime. 

Consequently, the interface tends to vary between curving up and flattening out as 

illustrated in Figure 3.9(b). In an inertia-dominated regime, the draining happens 

significantly around the center of the tank, yielding a constant velocity at the centerline as 

a result of weak capillary forces being unable to pull up/down the other regions of the 

surface. As a result, an elongated interface shape with an almost fixed wall attachment 

point is observed, as shown in Figure 3.9(c). 

The non-dimensional period of slosh waves,   , is investigated for various 

draining parameters in Figure 3.10, where the inertia-dominated regime is omitted since 

waves do not exist for that regime. The wave period increases with the draining 

parameters from the capillary-dominated regime to the transition regime. In a capillary-

dominated regime, waves have a small period and magnitude. The amplitude of waves 

becomes bigger as the draining parameter increases yielding large, noticeable waves with 

larger wave periods in the transition regime. As shown in Figure 3.10, such behavior is 

consistent with the single data point obtained by the experimental study of Symons 

(Symons 1978). Due to present experimental limitations of operation time under 

microgravity facility, no additional experimental data relevant to the wave period are 

available for further comparison. The present numerical study shows an almost linear 

correlation between the non-dimensional wave period and the draining parameter. 
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Figure 3.10: The present numerical measurement of non-dimensional wave period 

in a fuel tank with draining parameter. 
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3.3 Liquid Fuel Sloshing under Varying Acceleration 

Figure 3.11(a) shows the configuration of the scale model of the Saturn V/S-IVB 

liquid hydrogen tank experimented by Toole et al. (Toole and Hastings 1968). To 

conduct 3-D flow computations in a concave-shaped tank on stationary Cartesian grids, 

triangular surface meshes are used for representing solid tank walls and fluid phase 

boundary in Figure 3.11(b). Petroleum ether and air are utilized as a substitute of liquid 

fuel and pressurizing gas respectively as is done in the experiment. The properties of 

petroleum ether at 21°C are given in Table 3.2. 

Based on this experimental investigation, a test case with Bo=24 and Fr=14.6 is 

chosen to assess our computational modeling performance. These values correspond to an 

acceleration level of        and maximum fluid velocity of 0.33m/s. The acceleration 

history is shown in Figure 3.12. The key non-dimensional parameters are the Bond 

number and the Froude number, defined in Eqs. (3.5) and (3.6), which are related to the 

parameters in Eq. (2.2). 

                 
    

 
 (3.5) 

                  
    

 

  
 (3.6) 

Table 3.2: Material properties of petroleum ether at 21°C (Toole and Hastings 

1968). 

density            kg/m
3
 

viscosity             kg/m·s 

surface tension             N/m 
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Figure 3.11: The geometry configuration of a liquid sloshing in a fuel tank with a 

hemispherical bottom. (a) Fuel tank geometry. (b) 3-D computational setup. 

 

 

 

Figure 3.12: The acceleration history for simulation with engine shutdown at t=0. 

The acceleration decreases from normal gravity to micro-gravity (0.01g0). 
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Because we do not have any information on the kinetic energy at a given interface 

shape, it is difficult to match the Froude number of the simulation with the experiment. 

There is no record that indicates the applied impacting force to make the initial sloshing 

motion. Therefore, drawing from the snapshot, we pick a free surface shape that has the 

highest wall attachment point. Then we adjust the acceleration time to match the Froude 

number and measure the maximum velocity of a wall attachment point by trial and error. 

Figure 3.13 shows a comparison between the present computational results and 

the experimental results. Although Toole’ snapshot started at t=-0.14sec, the simulation 

started at t=-0.12sec in order to match the given Froude number. The fluid motion is 

accelerated from the initial stationary position as the potential energy is converted into 

kinetic energy by the acceleration of normal gravity. At t=0.00sec, the acceleration 

suddenly reduced to        as described in Figure 3.12, and the high kinetic energy 

obtained at normal gravity is converted back into potential energy at micro-gravity. 

Smaller acceleration results in higher liquid fuel position to get the same potential energy 

level. The liquid fuel reaches and stays at the top of the tank for the time being, and then, 

it retracts and makes the second sloshing motion. The numerical study is not perfectly 

identical with the experimental study because the kinetic energy distribution is different 

due to different mechanisms that make the sloshing wave. However, the overall liquid 

fuel motion and wave period are nearly identical and demonstrate substantial agreement 

with the experimental results. 

Figure 3.14 shows the change of the center of mass in time. The axial location 

plot indicates that the center of mass moves by 22% of the tank radius, and the sloshing 

waves damp very fast. In Figure 3.14(b), the z-directional change can be negligible as 
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expected, and the y-directional change is up to 46% of the tank radius. The large change 

in the center of mass requires excessive demand on the entire vehicle dynamics and 

control systems. 

 

  

      

t = -0.12 t = +0.08 t = +0.54 t = +1.00 t = +2.44 t = +3.84 

      

t = -0.14 t = +0.07 t = +0.53 t = +0.99 t = +2.44 t = +3.84 
 

 

 

 

 

 

Figure 3.13: The comparison of the present sloshing fuel tank simulation (top) 

with experiment by Toole (bottom). The velocity vector and fluid surface are 

represented on a center-cut plane. 
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(a) 

 

 

 

 (b) 

 

Figure 3.14: The numerical measurement of the center of mass of sloshing 

cryogenic fuel tank (a) Axial x-location. (b) Radial y and z-location. 
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3.4 Liquid Fuel Surface Stability under Thrust Oscillation 

The influence of thrust oscillation on the liquid fuel tank is investigated. In a 

practical rocket system, thrust oscillation is composed of many different frequencies and 

magnitudes produced by different parts of the rocket (Yang and Andersen 1995). The 

present study focused on the parametrically excited liquid fuel surface wave, namely the 

Faraday wave where the vertical sinusoidal oscillation in Eq. (3.7) is applied to liquid/air 

in an open container, as depicted in Figure 3.15. 

                    (3.7) 

  

where,    is standard gravity,   is oscillation magnitude ratio, and   is forcing frequency. 

According to the dispersion relation for infinite depth periodic waves in Eq. (3.8), 

the surface waves become unstable by restoring forces of either gravitational effects or 

surface tension effects (Landau and Lifshitz 1987). 

  

(a) (b) 

 

Figure 3.15: The numerical configuration of parametrically excited Faraday 

waves. (a) 3-D geometric configuration of liquid/air in an open container. (b) 

Vertical sinusoidal acceleration. 
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    (3.8) 

 

where   is the angular frequency of the surface waves,   is the local acceleration, and   

is the wave number. At a low wave number, the gravitational effect dominates; the 

surface tension effect dominates at a high wave number. The crossover wave frequency, 

              , is determined from the crossover wave number,         , where 

the effects are equal. When the liquid fuel tank is parametrically excited with forcing 

angular frequency       , the energy is pumped into waves of angular frequency   = 

    ,   ,      ,… The non-dimensionalized forcing frequency and forcing 

acceleration are defined from the dimensional study in Eqs. (3.9) and (3.10). 

   
  

         
 (3.9) 

   
 

         
 (3.10) 

 

Depicted in Figure 3.15, an open container with a depth of 8" and a diameter (or 

width in 2-D) of 8" is simulated to compare the present study with the experimental 

results conducted by Goodridge (Goodridge et al. 1996; Goodridge et al. 1997; 

Goodridge et al. 1999). Water and water-glycerin solutions with different viscosities are 

used to investigate the liquid surface stability. As is done in the experimental study, the 

contact angle between liquid and solid is assumed 0°. 2-D simulations are first conducted 

to check the overall tendency of stability due to their computational efficiency, and then 

3-D cases are simulated for scaling analysis and comparison with the experiment. 
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(a) (b) (c) 

 

Figure 3.16: The features of surface wave stability as oscillation magnitude 

increases. Water/air fluids are vertically oscillated at a forcing frequency f=20 Hz. 

The flat liquid surface waves becomes periodic standing waves as oscillation 

magnitude increases, and shows the transition to unsteady aperiodic states with 

upward jets and droplets when the acceleration exceeds a certain threshold 

acceleration.  (a) α=0.1 (b) α=0.5 (c) α=1.3 
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Figure 3.16 shows the 2D liquid surface wave evolution in time for water/air 

fluids as oscillation magnitude increases at a given forcing frequency        . With 

low acceleration, it shows a flat surface wave in Figure 3.16(a), but it becomes a periodic 

standing wave in Figure 3.16(b) as forcing acceleration increases. When the acceleration 

exceeds a certain threshold level, referred to threshold acceleration, the stable periodic 

surface waves are transformed to an unstable aperiodic state and show some upward jets 

in Figure 3.16(c). Goodridge (Goodridge et al. 1997) defined the threshold acceleration 

as the acceleration level where two droplets are detected within ten seconds. Das (Das 

and Hopfinger 2008), however, defined it as a jet forming or wave crest pinching off, 

followed by irregular motion. In this study, droplets or long filament-like jet formations 

are assumed as criteria for threshold acceleration because droplet formation itself in 

numerical studies may result in different criteria according to the grid resolution. 

The influence of a fluid’s viscosity on the threshold acceleration is investigated. 

Both water and 80% glycerin-water solution, which has a kinematic viscosity ( ) fifty 

times larger than water’s, are considered. A higher kinematic viscosity makes the liquid 

surface waves more stable. This results in a higher threshold acceleration before 

aperiodic wave states appear with upward jets. Another feature of higher viscosity is 

creation of longer filament-like jets, as shown in Figure 3.17. 

According to the dispersion relation for infinite depth periodic waves in Eq. (3.8), 

as the forcing frequency increases, the gravity effect is less important, and the capillary 

effect becomes more dominant. Figure 3.18(a) shows gravity waves at forcing frequency 

      , which is lower than the crossover forcing frequency (                  

in water/air case). It shows unsteady aperiodic states with a very large upward jet on the
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(a) 

 

 

 

 (b) 

 

Figure 3.17: The effect of fluid viscosity at forcing frequency f=20 Hz. Higher 

viscosity of fluid shows longer filament-like jets with higher threshold acceleration. 

(a) Water with α=1.3 (b) 80% glycerin-water (           ) with α=2.3 
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centerline of the container. The transition from the gravity wave into the capillary wave is 

observed in Figure 3.18(b), where the large upward jet in the center of the axis does not 

exist, and smaller multiple jets are shown in multiple locations. It is noted that a higher 

forcing frequency results in a smaller wave length, and consequently smaller multiple 

jets. The grids are adapted dynamically, up to 200 grid points along the tank diameter, in 

order to capture the complex surface wave motions. We can find that 3-D computation 

capability with a fine grid is required to capture the capillary wave motions with multiple 

jets as shown in Figure 3.18(b). 

The non-dimensional threshold acceleration (              ) is plotted with 

non-dimensional angular forcing frequency (      
        ) in Figure 3.19. Both 2-

D and 3-D computations are in agreement with Goodridge’s experiment. However, the 2-

D simulation shows a slightly higher threshold acceleration than the 3-D simulation. The 

2-D planar case requires more forcing energy to form upward jets since it needs to push 

up more mass than the 3-D. These result in higher threshold acceleration in 2-D. 

However, the overall trend matches very well. The non-dimensionalized threshold 

acceleration shows          dependence for the lower-viscosity region (       ), and 

        dependence for the higher-viscosity region (       ). This indicates that each 

region is dominated by different parameters. The correlation study on the dimensional 

parameters shows it clearly. For the low viscosity region, the threshold acceleration can 

be correlated by             
   

 correlation, and thus the flow is dominated by surface 

tension and forcing frequency. For the high viscosity flow region, the viscosity itself and 

the forcing frequency dominate the surface stability by         
   

 dependence.  
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(a)                                                 (b) 

 

Figure 3.18: The comparison between gravity waves and capillary-transition waves 

in aperiodic surface states for water/air case. (a) f=10 Hz and α=0.3 (b) f=20 Hz and 

α=0.6 
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Figure 3.19: The non-dimensionalized threshold acceleration as a function of 

non-dimensionalized angular forcing frequency. Lower-viscosity region (   < 10
-

5
) and higher-viscosity region (   > 10

-5
) show different correlation between a 

threshold acceleration and a forcing frequency. 



 

 88 

3.5  Summary 

In this chapter, isothermal multiphase flow computations are conducted using the 

3-D adaptive Eulerian-Lagrangian method investigated in Chapter 2. The contact line 

force model is validated through a capillary tube simulation with various contact angles 

and Laplace numbers. This simulation is consistent with theoretical values especially 

from 15
o
 to 165

o
. Three isothermal computations related to the draining, sloshing, and 

surface stability of liquid fuel in a spacecraft fuel tank are numerically performed, and the 

results agree well with the experimental observations. Specifically, the following are 

observed. 

(i) Liquid fuel draining dynamics under microgravity  

 Three different flow regimes are observed in the draining process under 

microgravity condition: a capillary-dominated regime, a transition regime, and an 

inertia-dominated regime. 

 The liquid residual increases with oscillation as the draining parameter increases, 

and it remains almost constant at a large draining parameter. 

 The non-dimensional slosh wave period increases with the draining parameter. 

(ii) Liquid fuel sloshing under varying acceleration  

 The reduction of acceleration transforms large potential energy at high 

acceleration into large kinetic energy because the potential energy is small at low 

acceleration and this results in a large sloshing motion in the fuel tank. 

 The sloshing motions make large shifts in its center of mass, which can show 

significant influence on the vehicle dynamics.  

(iii) Liquid fuel surface stability under vertical sinusoidal oscillation of acceleration 
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 As the forcing oscillation magnitude increases, the surface wave exhibits periodic 

standing waves, and reaches aperiodic unstable states with upward jets and 

droplets when the forcing magnitude exceeds a certain threshold value, namely 

the threshold acceleration. 

 The threshold acceleration increases with the forcing frequency. 

 As the kinematic viscosity of a fluid increases, the threshold acceleration 

increases with longer filament-like upward jets. 

 As expected from the dispersion relation for infinite depth periodic wave, the 

gravity wave is observed when the forcing frequency is lower than the crossover 

wave frequency. The capillary-transition wave is observed as the forcing 

frequency increases. 

 For lower viscosity fluids, the surface tension dominates the surface stability, and 

            scaling is observed from both Goodridge’s experiment and the 

present simulations. 

 For higher viscosity fluids, the viscosity becomes an important parameter, and 

            scaling is observed from both Goodridge’s experiment and the 

present simulations. 
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CHAPTER 4  

THERMO-FLUID TRANSPORT COMPUTATIONS 

In this chapter, the present approach to thermo-fluid transport and the phase 

change model are validated along with the sharp solid interface method. In section 4.1, 

the implemented energy equation is tested using laminar natural convection flow, which 

is driven by the buoyancy force, varying Rayleigh number and the solid interface 

configuration. Section 4.2 illustrates the validation of the phase change model using 1-D 

two-phase Stefan problems with various material properties and density effects. A 2-D 

melting case by convection/diffusion flow follows in section 4.3. 

4.1 Validation of Thermo-Fluid Computations: Natural Convection 

In order to validate the present numerical approaches to the thermal effects, 

laminar natural convection flow driven by buoyancy force in a cavity is studied and 

compared with a benchmark solution. Figure 4.1 shows the numerical configuration, 

where the enclosed cavity is heated differentially at    and    on the vertical walls, and 

the horizontal walls are thermally insulated. The Prandtl number (      ) is fixed to 

be 0.71, where   is kinematic viscosity and   is thermal diffusivity. The simulation is 

conducted for the Rayleigh numbers of 10
3
, 10

4
, 10

5
 and 10

6
, and it is compared with the 

benchmark solution by de Vahl Davis (Davis 1983; Davis and Jones 1983). The Rayleigh 

number is defined as               , where   is gravitational acceleration,   is 
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thermal expansion,    is the difference of temperature between the hot and cold walls, 

and   is the width of the cavity. 

 An example of the buoyancy-driven natural convection flow at Ra=10
5
 is shown 

in Figure 4.2. The flow moves up along the hot wall on the left side, and it moves down 

along the cold wall on the right side due to buoyancy force. These buoyancy effects make 

two counter-rotating eddies on the center of the cavity. To validate the implemented 

sharp solid interface treatment for the thermo-fluid transport computation, various cases 

with different tilted angles are simulated. Figure 4.3 shows the temperature contours and 

grid adaptation in   - and    -tilted cavities in the stationary Cartesian grids. In Figure 

 

 

Figure 4.1: The numerical configuration of natural convection flow driven by 

buoyancy forces. 
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4.4, the velocity profiles along the mid-vertical and horizontal planes show identical 

results for different tilted angles and different grid adaptations. Because the present study 

used second-order central difference schemes, it shows second-order accuracy. This 

results in less than 0.1% errors at 81x81 grids when compared with the benchmark 

solution in Figure 4.5. Table 4.1 summarizes the errors for various variables at Rayleigh 

numbers of 10
3
 to 10

6
. For Rayleigh numbers less than 10

5
, the error is less than 1% at 

81x81 grids, and it is in agreement with the benchmark solution. However, the errors tend 

to increase as the Rayleigh number increases. The Nusselt number usually shows larger 

errors due to the effect of post-processing methods. 

 

 

 

Figure 4.2: Temperature contour and streamlines in a natural convection flow 

driven by buoyancy forces at Ra=10
5
. 

 



 

 93 

 

 

(a) 

 

 

 (b) 

 

Figure 4.3: Examples of temperature contours and grid adaptation of a natural 

convection flow driven by buoyancy forces at Ra=10
5
. The cavity is tilted with 

different angles on a Cartesian grid. (a) Non-tiled case. (b) 45
o
-tilted case. 
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Figure 4.4: The comparison of velocity profiles at Ra=10
5
 along the mid-plane. 

Different tilted angles and grid adaptation show good agreement. 

 

 

 

Figure 4.5: Grid convergence test for Umax on the vertical mid-plane based on the 

benchmark solution by de Vahl Davis (Davis 1983). 
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Table 4.1: The comparison between the present study and the benchmark solution 

by de Vahl Davis (Davis 1983) in a natural convection flow driven by buoyancy 

forces. 

 

In Figure 4.6, the flow features of natural convection in a 2-D square cavity are 

investigated. The boundary layer grows along the wall, and the flow fields become more 

asymmetric as the Rayleigh number increases. For Ra=10
3
 and 10

4
, one large 

recirculation zone is created at the center of the enclosed cavity as the flow moves up the 

left side of the hot wall and down the right side of the cold wall. The one recirculation 

zone is divided into two counter-rotating smaller eddies at Ra=10
5
. These counter-

rotating eddies move to the corners of the top-left and bottom-right, and another eddie is 

created between them as the Rayleigh number reaches 10
6
. 

The detailed profiles of velocities, temperature, and the Nusselt number 

distribution are plotted in Figure 4.7. The temperature distribution shows rapid changes 

on the hot and cold vertical walls as the Rayleigh number increases, which, in turn, 

results in the corresponding velocity profiles. The Nusselt number distribution along the 

vertical walls shows this more clearly. The Nusselt number, and thus heat transfer, 

increase, as the Rayleigh number increases, and it displays an asymmetric heat transfer. 

Φ Error = ( Φ - Φref )/Φref  [%] on 81x81 grids 

Ra                 

     0.06 0.09 0.04 0.79 

     0.08 0.14 0.46 0.81 

   0.00 0.09 0.27 1.40 

      0.00 0.00 0.35 1.08 

    0.09 0.45 0.71 1.62 

      0.20 0.43 1.34 1.19 

      0.15 0.34 0.69 2.63 
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Most of the heat is transferred from the bottom of the hot wall on the left side and from 

the top of the cold wall on right side. 

 

 

  

(a) Ra=10
3
 

 

(b) Ra=10
4
 

 

  

(c) Ra=10
5
 (d) Ra=10

6
 

 

Figure 4.6: The effect of Rayleigh number in natural convection of a 2-D square 

cavity; temperature contour and streamlines (a) Ra=10
3
 (b) Ra=10

4
 (c) Ra=10

5
 (d) 

Ra=10
6
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Figure 4.7: The effect of Rayleigh number in natural convection of a 2-D square 

cavity from Ra=10
3
 to 10

6
; velocity, temperature and Nusselt number. 
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4.2 Validation of phase change model: 1-D Stefan problem 

A one-dimensional phase change test problem is performed to evaluate the 

present computational approach for phase change. One-phase and two-phase Stefan 

problems with no density effect are first validated and compared with the theoretical 

solution (Alexiades and Solomon 1993). The phase change with density effect is further 

simulated for open and closed containers, and self-pressurization in a closed container is 

measured in a closed container case. 

4.2.1 1-D one- and two-phase Stefan Problem 

Figure 4.8 shows the numerical configuration for these Stefan problems with the 

same density on a semi-infinite slab, where the left wall was maintained at a constant 

temperature    with the interface location,     , denoted by separating the vapor and 

liquid phases on the left and right sides respectively. The one-phase Stefan problem in 

Figure 4.8(a) is the simplest explicitly solvable phase change problem, where the phase 2 

is assumed to stay at the saturation temperature and the temperature at the interface 

location; thus, the solution is independent of the phase 2. However, this assumption is an 

unrealistic scenario in the real world. In the two-phase Stefan problem of Figure 4.8 (b), 

the initial temperature of phase 2 is a certain value,   , but it varies in time due to the 

heat transfer from phase 1. These one- and two-phase Stefan problems are summarized in 

Table 4.2. 
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(a) 

 

 

 

 (b) 

 

Figure 4.8: The numerical configuration of one dimensional phase change test 

problem. (a) One-phase Stefan problem. (b) Two-phase Stefan problem. 
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Table 4.2: The summary of one-dimensional Stefan problem. 

 One-phase Stefan problem Two-phase Stefan problem 

Interface 

temperature 
                                                    

Stefan condition                             
                  

    
          

     

Initial condition 

                                                 

              

Boundary 

condition 
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The theoretical interface location and temperature distribution for the one-phase 

Stefan problem are given by Eqs. (4.1)-(4.3), where   and   are thermal diffusivity and 

heat capacity of the phase 1 and   is the latent heat of the phase change, such as 

evaporation or melting. Parameter   is obtained by solving the transcendental Eq. (4.3). 

  

 

The computations are started with the initial interface location at         , 

assuming      at the left end and the saturation temperature       . The parameter   

= 0.62006263 is based on the solution of the transcendental equation for the chosen fluid 

properties. The theoretical temperature distribution at the time that corresponds to the 

initial interface location is imposed as the initial condition of the present numerical study, 

with the computational domain from x=0 to x=1 using 100 grid cells. The interface 

location in time due to phase change is shown in Figure 4.9(a), where the interface moves 

fast in the beginning and slows down as time goes on because the temperature gradient 

becomes smaller as the interface goes far from the hot temperature at x=0. The present 

study agrees with the analytical solution in the interface location and temperature 

distribution at t=0.2. 

 

 

           (4.1) 

           
       

      
     

 

    
                      (4.2) 

                 
       

   
  (4.3) 
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(a) 

 

 

(b) 

 

Figure 4.9: The comparison of the present numerical study and analytical 

solution for one-phase Stefan problem. (a) Interface location (b) Temperature 

profile at time = 0.2. 
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In the two-phase Stefan problem, the temperature of phase 2 is different from the 

saturation temperature, and it varies in time due to heat transfer from phase 1. Therefore, 

the solution is dependent on both phase 1 and 2 in Eqs. (4.4)-(4.7). 

 

The two-phase Stefan problem is simulated using a varying thermal conductivity 

ratio from 0.1 to 10. It is known that the continuous interface treatment has some errors in 

simulating the thermal effect. However, Ferziger demonstrated that the error is due to an 

incorrect smoothed averaging of the material properties in the stationary heat conduction 

problem with no phase change (Ferziger 2003). In the present study, the thermal 

conductivity is averaged using in Eqs. (2.9)-(2.12), and it demonstrates substantial 

agreement with analytical solution, even for phase change cases. Figure 4.10 shows the 

interface location and the temperature distribution for the different thermal conductivity 

ratios from 0.1 to 10, and it matches very well with the analytical solution. The different 

temperature profile for each case is shown in Figure 4.10(b), where small thermal 

conductivity in phase 2 produces a large temperature gradient, and it results in fast 

movement of the interface due to a large mass transfer. 

 

           (4.4) 

           
       

      
     

 

     
                      (4.5) 

           
       

             
      

 

     
                      (4.6) 

  
           

                
 

           

                               
 (4.7) 
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(a) 

 

 

(b) 

 

Figure 4.10: The comparison of the present numerical study and analytical 

solution for two-phase Stefan problem. (a) Interface location. (b) Temperature 

profile at time = 0.2. 
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4.2.2 1-D two-phase Stefan Problem: Density Effect 

 The density effect in a phase change is studied in the open and closed container 

system. The liquid density is assumed to be twice that of the gas density, and the given 

material properties and boundary conditions are shown in Table 4.3. When the liquid 

phase is transferred into the gas phase, the mass of the liquid phase is conserved during 

the phase change according to the rule of mass conservation. However, the volume of the 

transferred phase is not conserved. Because the density ratio of liquid to gas is twice from 

the beginning, the volume of the transferred gas is initially twice that of the volume of the 

corresponding liquid. The difference of volume may result in a rise of density and 

pressure in the gas phase and/or a volume expansion of the gas phase. In Figure 4.11(a), a 

container open at the right end is considered, where the gas phase will expand and the 

liquid phase will move to the right during the phase change process. If we assume there is 

no mechanical drag, the bulk of the liquid will move with no mechanical force, and the 

density of the gas will be maintained, as will the original density because the right end is 

open. 

Figure 4.12(a) shows the interface location change in the phase change process, 

and the open container simulation is identical with the analytical solution. The closed 

container case is shown in Figure 4.11(b), where both ends are closed, and the liquid 

cannot move to the right; therefore, the gas cannot be expanded. This causes the pressure 

to rise in the gas phase as the self-pressurization occurs in a closed spacecraft fuel tank 

system. Figure 4.12(a) shows that the interface moves slowly in a closed system because 

the liquid phase cannot move, and the interface movement is completely dominated by 

the amount of phase change. Figure 4.12(b) compares the pressure between the two 
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systems. In the open container, the liquid moves freely, so the pressure of the gas is 

maintained. This is the same as it is in the beginning because the expanded gas pushes the 

liquid up and into the right side. When the phase change occurs in the closed system, the 

pressure of the gas phase rises when density increases. However, the speed of the 

pressure rise decreases in time, and it reaches asymptotic values. 

 

 

  

Table 4.3: Parameters for 1-D two-phase Stefan problem with density effect. 

Parameter Phase 1 (gas) Phase 2 (liquid) 

Temperature at end                

Saturation temperature          

density ( ) 1.0 2.0 

heat capacity ( ) 1.0 1.0 

thermal conductivity ( ) 1.0 1.0 
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(a) 

 

 

 

 (b) 

 

Figure 4.11: The numerical configuration of one-dimensional Stefan problems 

with density effect. (a) Open container system with gas expansion and no density 

change. (b) Closed container with pressure rise 
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(a) 

 

 

(b) 

 

Figure 4.12: The comparison of the interface location and the pressure rise 

between open and closed container system. (a) Interface location. (b) Pressure 

rise of gas phase. 
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4.3 2-D Melting in a Square Cavity by Convection/Diffusion 

Two-dimensional melting driven by natural convection in a square cavity is 

considered to present the fidelity of the phase-change approach implemented. The case is 

performed in a rectangular tank half-filled with a pure substance in solid phase suddenly 

exposed to high isothermal surface at left vertical wall and thermally insulated at top and 

bottom walls. The initial temperature of the material in this cavity is uniformly    as the 

temperature of right vertical wall, and gravity is parallel to the vertical wall. Constant 

thermodynamic properties are assumed through the melting process. Figure 4.13 shows 

the configuration of 2-D melting in a square cavity by convection/diffusion flow. The 

liquid/solid interface is initially located at the mid-vertical plane, and moves to right by 

melting process since the heat is transferred by convection and diffusion flows from hot 

wall at left side to solid surface. The isothermal temperature is assumed in the solid 

phase.   

 

Figure 4.13: The configuration of a 2-D melting by convection/diffusion. 
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In the case of melting driven by natural convection in a square cavity, 

dimensional analysis shows the heat transfer rate can be expressed in terms power laws of 

Rayleigh number (            ) at high Prandtl number (      ) range while it 

is function of    times    at low Prandtl number range (Bertrand et al. 1999; Jany and 

Bejan 1988). Here,   is gravitational acceleration,   is thermal expansion,    is the 

difference of temperature between hot wall and interface, and   is the height of cavity.   

and   are the kinematic viscosity and the thermal diffusivity, respectively. In this study, 

the Prandtl number is fixed at         and two different Rayleigh number cases 

(      and    ) are computed for simulating diffusion-dominated and convection-

dominated phase change flow. Figure 4.14 shows the location of interface between liquid 

and solid phase with temperature contours and velocity vectors plot. In a small Rayleigh 

number with       of Figure 4.14(a), thermal diffusion dominates the natural 

convection flow, and is the primary source of heat transfer. Thus, the interface moves to 

the right with the same melting speed, since the heat transfer is almost the same along the 

interface. However, at the high Rayleigh number case of Figure 4.14(b), the convection 

effect dominates the natural convection, and transfers heat from the left hot wall to the 

right solid side. The solid is melted from the top side due to large heat transfer by the 

convection flow. This is shown clearly from the temperature contour plot. Figure 4.15 

shows the comparison of liquid phase fraction between low and high Rayleigh number 

cases, and we can find that the heat transfer at         increases with the Rayleigh 

number as already known. 
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(a)                                                (b) 

Figure 4.14: The snapshots of the temperature contours and velocity fields during 

melting process in a square cavity by natural convection flow. (a) Diffusion-

dominated melting case at Ra=10. (b) Convection-dominated melting case at 

Ra=10
5
. 
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Figure 4.15: The comparison of the liquid phase fraction in a melting process by 

convection/diffusion flow. 
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4.4 Summary 

In this chapter, thermo-fluid transport computations including phase change 

between different phases (fluid/fluid or fluid/solid) are conducted. The implemented 

incompressible flow solver with Boussinesq approximation is validated using natural 

convection flow in an enclosed cavity driven by buoyancy force, and the developed sharp 

solid interface treatment and adaptive grids method works well in these thermo-fluid 

problems with 2
nd

 order accuracy. The phase change model is validated using 1-D one- 

and two-phase Stefan problems, and the results match very well with the analytical 

solution. The density effects during phase change are tested for two-phase Stefan 

problem with different density ratios in a closed and open container. 2-D melting 

simulation by convection/diffusion flow is investigated to understand phase change 

across a solid surface. The implemented phase change model works well with both 

continuous fluid and sharp solid interface models. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the accomplishments and key contributions of this 

dissertation, and proposes improvements and future work for the present research. 

5.1 Conclusions 

In this dissertation, the marker-based 3-D adaptive Eulerian-Lagrangian method is 

investigated and further developed for an integrated 3-D computational capability for 

multiphase flows, including spacecraft applications. The bulk flow variables are solved 

on the stationary (Eulerian) background grid, whereas the interface variables are handled 

by moving (Lagrangian) surface meshes. A single fluid formulation for all fluid phases is 

implemented via smoothed material properties with the help of the indicator function. 

The interface is represented by massless markers and triangular surface meshes with 

connectivity information. The fluid interface is treated continuously for large-deformable 

phase boundary simulation. In addition, the solid interface is treated sharply via ghost cell 

method for better accuracy. The contact line force model is proposed in order to enforce 

the moving contact angle. The phase change model is implemented using a probe-based 

temperature gradient technique. The geometry- and solution-based Cartesian grid 

adaptation is utilized for effective computation. 
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For isothermal computations and thermo-fluid transport computations with phase 

change, validation studies and spacecraft fuel delivery applications, including liquid fuel 

draining, sloshing, and surface stability, are conducted and assessed with analytical 

solution and experimental measurements.  

In summary, the following key contributions are achieved in this dissertation. 

(i) The marker-based adaptive Eulerian-Lagrangian method is developed for complex 

multiphase flow computations having both fluid and solid interfaces: 

 Both sharp and continuous interface methods are implemented with contact line 

force model in a unified framework in order to simulate practical engineering 

problems having fluid interface around irregular solid geometries. The contact 

line force model is validated with capillary tube simulation with various contact 

angles and Laplace numbers, and it shows good consistency with theoretical 

values especially from 15
o
 to 165

o
 of contact angles. 

 The phase change model using a probe-based temperature gradient computation is 

implemented with both sharp solid interfaces and continuous fluid interfaces. 1-D 

one- and two-phase Stefan problems with density effects are solved for validation 

study, and the results match very well with the analytical solution. 2-D melting by 

convection/diffusion flows is simulated to test phase changes across the 

fluid/solid interface. The implemented phase change model works well with both 

continuous fluid and sharp solid interface models. 

(ii) Numerical studies on the spacecraft fuel delivery system are conducted and accessed 

with experimental measurements and scaling analysis: 
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 In a liquid fuel draining process under microgravity, a capillary-dominated 

regime, transition regime, and inertia-dominated regimes are observed depending 

on the relative influence between capillary force and inertia force. The liquid 

residual increases with oscillation as the draining parameter, defined by Symons 

(Symons 1978), increases, and it remains almost constant in the inertia-dominated 

regime with a large draining parameter. 

 Engine shutdown in earth’s orbit results in large sloshing motions due to the 

sudden reduction in acceleration, and it has significant influence on the vehicle 

dynamics with large shift in its center of mass. 

 Liquid fuel surface stability under thrust oscillation is studied. The surface wave 

exhibits aperiodic unstable states when the forcing oscillation magnitude exceeds 

a certain threshold value, which is referred threshold acceleration. The threshold 

acceleration increases with forcing frequency and viscosity, and it is correlated 

with forcing frequency, surface tension, and viscosity by scaling analysis. 

5.2 Future Work 

Future work is proposed in the following areas: 

 In this study, the implemented contact line force model presents reliable results 

for various stationary and moderately moving boundary problems such as 

capillary tube and liquid fuel dynamics. However, it is required to investigate the 

applicable limitations to this contact line force model, especially with validation 

study for dynamic contact angle. 

 The present approach implemented laminar flow computation. However, many 

engineering problems require turbulent flow computation with high Reynolds 
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number or high Rayleigh number. For single phase flow computations, the sharp 

interface method has been extended to turbulent flows by several researchers 

(Iaccarino and Verzicco 2003; Yang and Balaras 2006). A turbulent model can be 

added to the present multiphase flow solver, and wall boundary treatment should 

be considered along with the present sharp solid interface method with local slip 

contact line model. 

 Even with the present adaptive grid technique, multiphase flow applications 

require large amount of computer memory and long computational time due to 

fine grid for multiple length scale. Parallel computing techniques can be 

implemented for effective computation. However, it is difficult to distribute 

overall computational load evenly on a number of processors especially on the 

present adaptive grid since the grid is changing dynamically and locally with 

moving interfaces. Effective partitioning algorithm such as the space filling curve 

(SFC) (Aftosmis et al. 2004) should be implemented with the dynamic load 

balancing for the present adaptive grid method. 

 Further studies related to thermal effects in a spacecraft should be conducted for 

overall understanding of fuel tank dynamics. The phase change due to heat 

absorption results in a self-pressurization and a fuel loss in a spacecraft fuel tank. 

These effects should be investigated for designing spacecraft fuel tank and 

planning missions.  
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