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Preface 

Leukemia is responsible for the majority of cancer-related deaths among people 

under the age of 20 [1]. A subset of particularly aggressive leukemias carry 

genomic rearrangements of the Mixed Lineage Leukemia (MLL) gene, and these 

leukemias are generally associated with poor clinical outcome [2]. MLL 

rearrangements are mainly found in the form of internal gene amplifications and 

chromosomal translocations, which result in the in-frame fusion of the N-terminus 

of MLL with one of a variety of different fusion partners. Although significant 

progress has been made towards understanding how different domains of MLL 

and its fusion partners contribute to leukemogenesis, there is still much to 

understand in order to effectively treat patients that are afflicted with MLL 

rearrangements. The aim of this project was to further elucidate the mechanisms 

of MLL fusion protein-mediated leukemogenesis with a focus on the contribution 

of the fusion partners. 

 

 

 

 

 

 

 



 vi 

Table of Contents 

Dedication……………………………………………………………………………ii 

Acknowledgements….......................................................................................iii 

Preface………………………………………………………………………………..v 

List of Figures……………………………………………………………………...viii 

List of Tables……………………………………………………………………..….xi 

List of Abbreviations…………………………………………………………….....xii 

Abstract……………………………………………………………………………..xiii 

Chapter 1: Introduction……………………………………………………………..1 

Chapter 2: The Role of Wild-type Mll in MLL Fusion Protein-Mediated 
Leukemogenesis 
 
 I. Introduction………………………………………………………………...8 

          II. Materials and Methods……………………………………………………9 

         III. Results………………………………………………………………….….13 

        IV. Discussion…………………………………………………………………18 

Chapter 3: The Role of the Fusion Partner in MLL Fusion Protein-Mediated 
Leukemogenesis 
 
 I. Introduction………………………………………………………………...20 

          II. Materials and Methods……………………………………………….…..22 

         III. Results……………………………………………………………………..34 

         IV. Discussion………………………………………………………………...61



 vii 

 Chapter 4: Concluding Remarks…………………………………………………..84 

References.…………………………………………………………………………..86

 



 viii 

List of Figures 

Figure 1 Schematic of wild-type MLL protein………………………………………3  

Figure 2.1 Schematic of floxed Mll alleles………………………………………….9  

Figure 2.2 Genotyping results after 4-hydroxytamoxifen treatment……………..14 

Figure 2.3 Effects of Mll disruption on Mll and H3K4 trimethylation levels at 
Hoxa9…………………………………………………………………………………..15  
 
Figure 2.4 Effects of Mll disruption on Af9 at Hoxa9………………………………15 
 
Figure 2.5 Mll-C, Af9, and trimethylated H3K4 levels at Meis1…………………..16  

Figure 2.6 Effects of wild-type Mll disruption in MLL-AF9 transformed cells……17  

Figure 3.1 Schematic of AF9C-term and control constructs………………………....38 

Figure 3.2 Mass spectrometry-based identification of AF9C-term-associating 
proteins………………………………………………………………………………….38 
 
Figure 3.3 Western blot verification of protein associations………………………40 
 
Figure 3.4 MLL fusion proteins associate with EAP……………………………….41 
 
Figure 3.5 Western blot analysis of FLAG-AF9C-term after sucrose gradient 
centrifugation…………………………………………………………………………..43 
 
Figure 3.6 Gene expression in fusion-transformed cell lines……………………..44 
 
Figure 3.7 Localization of ENL/MLL-ENL and AF9/MLL-AF9 to target loci……..45 
 
Figure 3.8 RNA polymerase II stalling at Hoxa9……………………………………47 
 
Figure 3.9 Association of MLL fusion proteins with elongating 
RNA polymerase II…………………………………………………………………….48  
 
Figure 3.10 Sensitivity of leukemic cell lines to flavopiridol……………………….50
  
Figure 3.11 Effects of flavopiridol on gene expression……………………………51 



 ix 

 
Figure 3.12 Association of MLL fusion proteins with Dot1L………………………53 
 
Figure 3.13 Knockdown of Dot1L in MV4:11 Cells………………………………...54 
 
Figure 3.14 IL-6-induced differentiation of M1 cells…………………………..…...55  
 
Figure 3.15 Expression and localization of EAP subunits during 
IL-6-induced differentiation of M1 cells…………………………………………...…56  
 
Figure 3.16 Hoxa9 expression after 48 hour treatment with 
differentiation-inducing agents…………………………………………………..…..57  
 
Figure 3.17 MLL fusion transformed cell lines are resistant to 
LPS-induced differentiation……...…………………………………………………..59  
 
Figure 3.18 Dissociation of EAP from target loci after LPS treatment…………..60  
 
Figure 3.19 Model for EAP regulation of Hox genes in hematopoietic cells 
with and lacking MLL rearrangements……………………………………………...64 
 
Figure 3.20 phospho-Ser5 CTD kinase activity of EAP…………………………..65 
 
Figure 3.21 Association of CDK1 with EAP………………………………………...66 
 
Figure 3.22 CDK consensus site in EAP components…………………………….67 
 
Figure 3.23 Western blot for AF9 C-term -associating proteins after 
24 hours of IL-6 treatment…………………………………………………………….68 
 
Figure 3.24 Polycomb binding at Hoxa9…………………………………………….71  
 
Figure. 3.25 Dissociation of Ring1b from Hoxa9 locus in differentiating 
M1-AF9 C-term cells……………………………………………………………………..71  
 
Figure 3.26 Polycomb dissociation from Hoxa9 after 24 hours of LPS 
treatment………………………………………………………………………………..72  
 
Figure 3.27 HEXIM and NPM1 expression and localization in fusion 
transformed cell lines………………………………………………………………….74  
 
Figure 3.28 Hexim1 and Npm1 localization in M1-control and 
M1-AF9 C-term cell lines………………………………………………………………...75  
 
Figure 3.29 Sensitivity of fusion-transformed cell lines to HMBA………………...76  
 



 x 

Figure 3.30 Hexim and Npm1 expression and localization after 24 hours 
of LPS treatment……………………………………………………………………….77 
 
Figure 3.31 Effects of NPM1 and HEXIM1 on MLL fusion protein-mediated 
Hoxa9 activation……………………………………………………………………….78  
 
Figure 3.32 NPM1 inhibition of MLL-AF9-mediated leukemogenesis…………..79  
 
Figure 3.33 FLT3-ITD and NPM1 effects on Hoxa9 expression…………………80  
 
Figure 3.34 Morphology of hematopoietic cells co-transduced with 
FLT3-ITD and NPM1………………………………………………………………….80  
 
Figure 3.35 Expression of FLAG-MLL fusion proteins in MLL fusion 
transformed cells……………………………………………………………………....82 
 
Figure 3.36 FMR2 family member binding at Hoxa9………………………………83 



 xi 

List of Tables 
 

 
Table 2.1 Primers and Probes for ChIP……………………………………………..12  

Table 3.1 SYBR green primer sequences for gene expression analysis………..32 

Table 3.2 Summary of mass spectrometry-based analysis of proteins 
associating with MYC-MLL1116-1397-AF9 in 293 transfectants……………………..36 
 
Table 3.3 List of AF9C-term-associating proteins identified by mass 
spectrometry……………………………………………………………………………39 
 
Table 3.4 Mass spectrometry-based analysis of AF9C-term-associated proteins 
after glycerol gradient centrifugation………………………………………………...43 



 xii 

List of Abbreviations 
 
CDK, cyclin dependent kinase; ChIP, chromatin immunoprecipitation; CtBP, C-

terminal Binding Protein; CTD, carboxy-terminal domain; EAP, Elongation 

Assisting Proteins or ENL-associated Proteins; HAT, histone acetyl transferase; 

HD, homeodomain; HLMT, histone lysine methyl transferase; MLL, Mixed 

Lineage Leukemia; NPM, Nucleophosmin; PMA, phorbol 12-myristate 13-

acetate; AEP, AF4 family/ENL family/pTEFb; HMBA, hexamethylene 

bisacetamide; PHD, plant homeodomain; MOF, males absent on the first; G-

CSF, granulocyte colony-stimulating factor; RBbP, Rb binding protein; IL, 

interleukin; LPS, lipopolysaccharide; DNMT, DNA methyl transferase; HDAC, 

histone deacetylase; CBP, Creb-binding protein; SET, Su(var), Enhancer of 

zeste, Trithorax; NURF, nucleosome remodeling factor; TAF, template activating 

factor; TIF, transcription intermediary factor; YEATS, (Yaf9, ENL, AF9, Taf14, 

Sas5); FMR2, fragile x mental retardation 2; FLT, FMS-like tyrosine kinase; DRB, 

5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole; NuRD, nucleosome 

remodeling and deacetylase; PAFc, polymerase associated factor complex



 xiii 

Abstract 

Leukemogenic MLL fusion proteins, including MLL-AF4, MLL-AF9, and MLL-ENL, 

transform through up regulated expression of HOX genes and the HOX cofactor MEIS1. 

How they lead to the aberrant activation of these genes is not completely understood. In 

this study, we identified proteins recruited by one of the most common MLL fusion 

proteins, MLL-AF9, through purification of proteins that interact with the transforming 

domain of AF9 in myeloblastic M1 cells. Consistent with earlier purifications of ENL and 

AF4 from 293 cells, the 90 amino acid C-terminal domain associates with many of the 

most common MLL translocation partners including Enl, Af4, Laf4, Af5q31 and Af10. 

This complex, previously termed EAP for Elongation Assisting Proteins, contains the 

RNA polymerase II C-terminal domain kinase Cdk9/Cyclin T1/T2 (pTEFb), the histone 

H3 lysine 79 methyltransferase Dot1l, and the Polycomb proteins Pc3 and Ring1b. 

Chromatin immunoprecipitation (ChIP) studies show that myeloid cells transformed by 

MLL fusion proteins show higher levels and a broader distribution of EAP components 

at leukemogenic loci. Inhibition of EAP components pTEFb and Dot1l show that both 

contribute significantly to activation of Hoxa9 and Meis1 expression. EAP is dynamically 

associated with the Hoxa9 and Meis1 loci in hematopoietic cells and rapidly dissociates 

during induction of differentiation. However, in the presence of MLL fusion proteins, 

EAP dissociation from target loci is prevented. These data suggest that MLL fusion 

proteins deregulate key target genes by excessive recruitment and impaired 

dissociation of EAP from target loci. 



 1 

Chapter 1 

Introduction 

Chromatin Structure in the Regulation of Transcription 

DNA is spooled around histone octamers, known as nucleosomes, which 

contain two copies of histone 2A, 2B, 3, and 4 [3]. Nucleosomal structure is 

modified in different ways in order to compact or loosen DNA during 

transcriptional repression or activation, respectively. It may be altered through 

ATP-dependent processes, such as nucleosome sliding, eviction, and histone 

dimer exchange [4], or through post-translational modifications (PTMs) of the 

protruding histone tails and globular domain [5].  

The level of transcriptional control conferred by the structure of chromatin 

accounts for how cells with the same DNA sequence can form complex 

organisms. It has also become clear over the past decade that the aberrant 

regulation of chromatin remodeling processes has critical roles in the 

development of cancer and many other pathological conditions [6,7,8,9,10,11]. 

There are several different enzymes that act on histones, including methyl 

transferases, kinases, ubiquitin ligases, and acetylases, and their activities serve 

as indicators of transcriptional status [5]. For instance, histone acetylation is 

generally associated with transcriptional activation, while histone deacetylation is 

associated with transcriptional repression. Histone lysine methyl transferases 
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(HLMTs), which are the primary focus of the work presented herein, methylate 

specific residues on histones. Histone methylation marks are associated with 

expressed or silenced genes, depending on which residue is methylated [5]. 

Mixed Lineage Leukemia is among the HLMTs, with many other roles in 

regulating chromatin structure.  

Mixed Lineage Leukemia 

Mixed Lineage Leukemia (MLL) is a 3,969 amino acid transcription factor 

that has multiple functional domains (Fig. 1). At its N-terminus, MLL has DNA 

binding domains, including three AT hooks and a DNA methyl transferase 

homology region that binds unmethylated DNA [12,13] and transcriptional 

repressors such as Bmi1, histone deacetylases (HDACs) 1 and 2, and C-terminal 

Binding Protein (CtBP) [14]. Downstream are three canonical plant 

homeodomain (PHD) fingers, a bromodomain, and one extended PHD. PHD3 of 

MLL binds trimethylated lysine 4 of histone 3 (H3K4me3) [15] as well as the 

transcriptionally repressive proline isomerase Cyp33 [16,17]. Downstream is a 

transcriptional transactivation domain that interacts with the acetyl transferase 

Creb-binding protein (CBP) [18]. The C-terminus interacts with the histone acetyl 

transferase (HAT) MOF, which acetylates lysine 16 of histone 4 to activate 

transcription [19]. MLL has a highly conserved SET domain at its C-terminus that 

confers MLL with an enzymatic ability to methylate the lysine 4 residue of histone 

3 (H3K4) [20]. The SET domain also interacts with INI1, a component of the 

SWI/SNF chromatin remodeling complex [21]. The SWI/SNF complex is 

comprised of 8 to14 subunits, with the ATPase BRG1 or hBRM at its core [22]. 
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Although BRG1 and hBRM are sufficient to disrupt nucleosomal structure,

associating proteins such as INI1 enhance their enzymatic activity and contribute 

to gene specificity [22]. Thus, MLL operates on many different levels to regulate 

transcription.

 

 

Figure 1 Schematic of wild-type MLL protein 

 

Although there are reports that MLL represses transcription through its 

DNMT domain and third PHD finger [16,23,24,25,26], it is largely characterized 

as a transcriptional activator. In fact, the DNMT domain and third PHD finger also 

have roles in MLL-mediated transcriptional activation [13,15]. MLL regulates the 

expression of many genes, but some of the most notable in the context of both 

embryonic development and leukemogenesis are Hox genes and Hox cofactors 

[20,27,28].  

HOX genes 

HOX genes encode a conserved family of transcription factors that are 

critical in axis specification during embryonic development [29]. In mammalian 

cells, they exist in four clusters, A, B, C, and D, on four different chromosomes. 

HOX proteins contain homeodomains that bind DNA with poor sequence 
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specificity; further DNA specificity is conferred by their cofactors MEIS and PBX, 

which also have homeodomains. HOX proteins can activate or repress 

transcription, depending on the ternary structure that is created with its cofactors 

and DNA [30]. They also bind DNA replication origins and are thought to be 

involved in the deregulation of DNA replication in cancers [31]. 

The A cluster HOX genes such as HOXA7, HOXA9, and HOXA10 are 

over-expressed in many cases of acute leukemia, and HOXA over-expression is 

a poor prognostic factor [32,33,34]. Normally, the expression of these genes is 

tightly controlled at the transcriptional, post-transcriptional, and post-translational 

levels. They are highly transcribed in primitive hematopoietic cells, and 

transcription levels decrease with differentiation [29]. HOX transcripts are 

targeted by microRNAs [35], and the proteins are subjected to proteasomal 

degradation [36] and post-translational modifications that modulate DNA binding 

[37,38]. The necessity for all these layers of regulation may be explained by the 

potency of these proteins, which is demonstrated by the fact that over-expression 

of Hoxa9 and its cofactor, Meis1, is sufficient to transform hematopoietic cells 

and lead to leukemia in mice [39]. The combination of Hoxa9 and Meis1 induces 

a stem-cell like gene expression program that enhances proliferation and 

imposes a differentiation block [39,40,41]. 

 Mll and Hox gene expression 

The importance of Mll in regulating Hox expression is demonstrated in Mll-

knockout mice [28]. Homozygous mice die at day ten of embryogenesis, and 

heterozygous mice display skeletal and hematopoietic defects. These 
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phenotypes are associated with severe deficiencies in Hox expression. 

Subsequent studies have shown that MLL directly binds to the Hox and Meis loci 

and activates their transcription through its methyl transferase activity [20]. 

Mice expressing truncated Mll, which lacks the SET domain and hence its 

methyl transferase activity display a phenotype mildly reminiscent of the Mll 

knockout mice [42]. These mice are viable, with slight skeletal malformations. 

They have decreased Hox expression that correlates with decreases in H3K4 

monomethylation and increases in DNA methylation at their loci. Thus, while the 

methyl transferase domain of MLL is important for transcription, it is dispensable 

for viability. Not surprisingly, MLL has roles beyond its methyl transferase activity 

that are critical to survival.  

MLL fusion proteins in leukemia 

Rearrangements of the MLL gene in the form of translocations is found in 

up to 10% of human leukemia cases. These events are associated with acute 

lymphocytic, myeloid, and therapy-related leukemias that generally have a poor 

prognosis [2,43]. The translocations lead to the production of an in-frame fusion 

protein where a small portion of the N-terminus of MLL is fused to one of over 

fifty possible fusion partners. The most common fusion proteins are MLL-AF4, 

MLL-AF9, and MLL-ENL. Knock-in murine and other transformation models have 

shown that all three of these fusion proteins are leukemogenic, with characteristic 

over-expression of Hox genes [44,45,46,47,48,49,50]. This accurately portrays 

the human disease, where leukemias carrying MLL fusions have distinctly high 

levels of HOX and the HOX cofactor MEIS1 [51]. Furthermore, Hoxa9 and Meis1 
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are essential for leukemic transformation by MLL-AF9 and MLL-ENL in murine 

leukemogenesis assays [52], and HOXA9 is also critical to human leukemia cell 

lines that carry these translocations [40]. 

There are many interesting aspects of MLL fusion proteins that contribute 

to transformation. The N-terminus interacts with menin and the polymerase 

associated factor complex (PAFc). These interactions are important for targeting 

MLL and MLL fusion proteins to genes and for MLL fusion protein-mediated 

leukemogenesis [53,54,55,56,57]. Menin, originally identified as a tumor 

suppressor in multiple endocrine neoplasias [58] also recruits LEDGF, a 

chromatin-associating protein with roles in transcriptional activation [54]. PAFc, 

which is composed of five subunits, has roles in both the initiation and elongation 

stages of RNA polymerase II activity [59]. PAFc is critical for histone 2B 

monoubiquitination, which is a prerequisite for H3K4 and H3K79 methylation 

[60,61,62]. The DNMT domain of N-terminal MLL has been shown to bind CpG 

rich regions in DNA, physically protecting Hox genes from DNA methylation-

mediated gene silencing [13]. The C-terminal fusion partners have little homology 

between each other but have been grouped into two categories: nuclear and 

cytoplasmic partners. 

The cytoplasmic partners, such as AF1p and GAS7, are found only in a 

minority of MLL rearrangements. These proteins, which do not have known 

nuclear functions, appear to cause dimerization of the fusion protein, which is 

sufficient to cause leukemic transformation [63,64]. The dimerization-based 

mode of transformation is illustrated in a transgenic mouse that expresses MLL 
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fused to beta-galactosidase, an arbitrary, tetramerizing protein, and develops 

leukemia [65]. However, dimerization-based leukemia has a long latency and low 

penetrance compared to leukemia induced by MLL fusions with nuclear partners. 

The nuclear fusion partners, AF4, AF9, and ENL are by far the most 

common and are transcriptional activators [66,67,68]. MLL-ENL and MLL-AF9 

have been shown to require the transactivation domains of their respective 

partners for transformation [66]. These fusion proteins result in acute lymphocytic 

and myeloid leukemias that develop within three months, with most mice 

succumbing to the disease within a year [44,46].  

MLL fusion proteins bind across transcriptionally active genes and are 

associated with chromatin modifications indicative of active transcription, such as 

H3 and H4 acetylation, H3K4 methylation, and H3K79 methylation [69]. These 

marks are induced by the dimerization and transactivation-based modes of 

transcription. However, MLL fusion proteins do not possess the transactivation 

and SET domains of wild-type MLL that are associated with some of these 

chromatin modifications. The following studies explored whether these domains 

are important to MLL fusion protein activity and how MLL fusion proteins 

establish or compensate for them.
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Chapter 2 

The Role of Wildtype Mll in MLL Fusion Protein-Mediated Leukemogenesis 

Introduction 

Both MLL fusion proteins and wild-type MLL function as transcriptional 

activators of Hox expression. In almost all cases of leukemia with MLL 

translocations, the expression of wild-type MLL is retained. In fact, increased 

levels of wild-type Mll co-localize with MLL fusions at target genes such as 

Hoxa9 and Meis1 [69]. This suggests that wild-type MLL may have a role in MLL 

fusion-mediated leukemogenesis. Wild-type MLL has H3K4 methyltransferase 

activity through its SET domain [20] as well as the ability to interact with the 

HATs CBP and MOF [19], and these activities are associated with transcriptional 

activation of Hox genes. MLL fusion proteins have lost these domains in the 

translocation event. Thus, one possibility is that wild-type Mll is critical to MLL 

fusion protein-induced transformation through its HAT and HMT functions. 

Another possibility is that MLL fusion proteins implement alternative mechanisms 

to recruit HMT, HAT, or other chromatin modifying-activities. We first explored 

the role of wild-type Mll in MLL-AF9-transformed myeloblasts, and in our 

experimental system, found that loss of wild-type Mll does not have a discernable 

effect on the phenotype of MLL-AF9 transformed cells.
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Materials and Methods 

Cell Lines MLL-AF9 and HOXA9/MEIS1 transformed myeloblast cell lines that 

have exons three and four of both Mll alleles flanked by loxp sites (Fig. 2.1, Mll-

loxp cells from Patricia Ernst) were obtained from Mary Ellen Martin in Jay 

Hess’s lab (UPenn).  

            
Figure 2.1 Schematic of floxed Mll alleles Red arrows indicate primers used for 
genotyping. Size of amplified fragment is indicated below. 
 

MSCV-Cre-ER-puro (from Charles Roberts) was packaged into retrovirus using 

the Plat-E cell line. The Mll-floxed hematopoietic progenitor cells were then 

transduced by spinoculation with Cre-ER retrovirus for 90 minutes at 2500 RPM, 

25 C in an Eppendorf 5810 R centrifuge. MLL-AF9, Cre-ER transduced cells 

were selected with 625 nM puromycin and then single-cell sorted to obtain 

monoclonal cell lines. HOXA9/MEIS1, Cre-ER transduced cells were single cell 

sorted and screened by genotyping (see below) after 4-hydroxytamoxifen 

treatment, as MEIS1 is in the MSCV-puro vector. MLL-AF9 and HOXA9/MEIS1 

transformed cells were treated with 25 nM and 100 nM 4-hydroxytamoxifen 

(Sigma), respectively, in order to activate Cre recombinase. All cells were grown 
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in IMDM (Invitrogen) with 15% FBS (Stem Cell Technologies) and 10 ng/mL IL-3. 

293 cells were maintained in DMEM with 10% FBS. 

Genotyping Primers used for detection of Mll after Cre-mediated excised are 5’-

GATTGGCCAATGTCTCGTAGTAGGC-3’ (forward) and 5’-

CAGTGGACATTCCAACTCTTCAA-3’ (reverse). Primers used for detection of in 

tact Mll use the same forward primer, but the reverse primer 5’-

CACCCAGCATTGCAGAGTCAG-3’. All three primers were used in the same 

PCR reaction using an annealing temperature of 58 C. Products were run on 3% 

agarose (Invitrogen) gels and visualized with ethidium bromide. 

Chromatin Immunoprecipitation Chromatin immunoprecipitation (ChIP) was 

performed according to Upstate’s protocol using their recommended lysis, 

dilution, and wash buffers. In brief, cells were fixed in 1% formaldehyde for 15 

minutes at room temperature. Cells were pelleted, PBS-rinsed, and snap frozen. 

After thawing, cells were lysed and sonicated at high intensity 30 second on-off 

cycles for 15 minutes in the Diagenode Bioruptor XL. These conditions generated 

an average DNA fragment size of 500 bp as determined by DNA electrophoresis. 

Protein-DNA complexes were collected using anti-MLLC (from Yali Dou), anti-

trimethyl-H3K4 (Millipore, 04-745), or anti-AF9 (Bethyl, A300-597A)-conjugated 

Protein G Dynabeads. After washing the beads, DNA was eluted by incubation 

with SDS buffer (1% SDS, 100 mM sodium bicarbonate) for 30 minutes at 42ºC. 

DNA-protein cross-links were reversed overnight in 0.2 M NaCl at 65 C. DNA 

was purified using the QIAquick PCR Purification Kit (Qiagen) and subjected to 

qPCR. 
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Morphology Staining After 4-hydroxytamoxifen treatment, cells were stained 

with HEMA-3 stain kit (Fisher Scientific) according to the manufacturer’s 

instructions. 

Cell Growth Cells were seeded at a density of 105 cells/mL in 8 mL of growth 

media and counted each day using Trypan blue (Invitrogen) exclusion. 

Flow Cytometric Analysis Cells were harvested, washed with PBS, and stained 

for 30 minutes with anti-c-Kit-FITC (BD Pharmingen), anti-Mac1-PE, and anti-Gr-

1-FITC (BD Pharmingen. Cells were washed with PBS two times, filtered into 

flow cytometry polystyrene tubes with strainer caps, and flow cytometry was 

performed at the University of Michigan Flow Cytometry Core. Data were 

analyzed using WinList 3.0 software. 

qPCR Hoxa9 and Meis1 expression and ChIPed DNA were detected using 

Taqman primers (Applied Biosystems) using Applied Biosystems 7500 Real-

Time PCR system. Expression was normalized to Gapdh (Applied Biosystems). 

and analyzed using the ∆Ct method [70]. Data is expressed as percent of total 

input using the formula  % Total Input = 2^-[Ct (IP)-Ct (Input)] [71]. Primer and 

probe sequences used in ChIP experiments are provided in Table 2.1. 
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Primer  Taqman Probe Forward Reverse 

1 CCTGCGGTGGCAAC

CTCAGATCC 

GCCATCAAGGCCTAATC

GTG 

AAGACCCGAAGCTCCT

CCTG 

2 CCCACATCGAGGGC

AGGAAACACT 

CACCCGCGGCGTCTT CGAACCAATGGATCTG

GCA 

3 TGAATTTTCCCCCTT

TTGGGCCAC 

TAGACTCACAAGGACAA

TATCTCCTTTT 

AGGTACTGAGTATTAA

GCAGCTGTTTACA 

4 CCACCGCCCCTCCC

ATTAACAACA 

CTGTTGCTTTGTGTTCC

AGATTG 

AAGTGAGAAGGCCACA

GCCA 

5 CCTCTTGATGTTGAC

TGGCGATTTTCCC 

TGACCCCTCAGCAAGAC

AAAC 

TCCCGCTCCCCAGACT

G 

6 AAGCGCCTGGCTGG

CTTTCCA 

AGGGTGATCTGGCCGA

TGT 

AAAATGGGCTACCGAC

CCTAGT 

7 TGTTGGTCGCTCCTG

ACTTTCCACC 

CACAGCGAGGCAAACG

AAT 

TTATTGTTTCGGAAGC

CACACA 

8 ATTATGACTGCAAAA

CACCGGGCCATT 

CGCGATCCCTTTGCATA

AAA 

CGTAAATCACTCCGCA

CGCT 

9 CTTCAGTCCTTGCAG

CTTCCAGTCCAA 

CAGCTCTGGCCGAACA

CC 

TTCCACGAGGCACCAA

ACA 

10 TACCCTCCAGCCGG

CCTTATGGC 

GGTGCGCTCTCCTTCGC GCATAGTCAGTCAGGG

ACAAAGTGT 

11 CCAACTGGCTACATG

CTCGCTCCA 

TCTCTCTCCCTCCGCAG

ATAAC 

GGGCATCGCTTCTTCC

G 

Meis1 

(Promoter) 

CGATTTATTTCAAGC

GTCC 

TCTGCCTGCCCTACGTT

TATTC 

TTCCAGCCTCTCTTCC

CAAA 

Meis1 

(Coding) 

ACCGGTCCACCACCT

GAACCACG 

GCATGCAGCCAGGTCC

AT 

TAAAGCGTCATTGACC

GAGGA 

hHoxa9-1 N/A  CAAATCGCATTGTCGCT

CTA 

CCGCAGGGATTATTTA

CAGG 

hHoxa9-2 N/A  CGACCCACGGAAATTAT

GAA 

TGCAAAACATCGGACC

ATTA 

Table 2.1 Primers and Probes for ChIP  
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Results 

Disruption of wild-type Mll 

 Conditional Mll knock-out cells that have exons three and four of both Mll 

alleles flanked by loxp sites (Fig. 2.1) have previously been utilized to study the 

role of wild-type Mll in normal hematopoeisis [27,72]. After Cre recombinase-

mediated excision of exons three and four of Mll, the gene encodes a 

hypomorphic Mll protein that lacks 1000 residues at the N-terminus, including the 

AT hooks and subnuclear and nuclear targeting motifs. Hematopoietic cells with 

Mll disrupted by this method have reductions in Hox expression and lose the 

ability to reconstitute blood and bone marrow in recipient mice. 

We transformed hematopoietic progenitor cells isolated from these 

conditional Mll-/- mice with MLL-AF9 or a combination of HOXA9 and MEIS1 to 

test the importance and specificity of wild-type Mll to MLL fusion protein-

mediated leukemic transformation. Complete excision of wild-type Mll could not 

be achieved in the polyclonal pool of drug-selected Cre-ER positive cells. Thus, 

four monoclonal cell lines stably expressing Cre-ER were established and treated 

with 4-hydroxytamoxifen. To follow Cre activity, the cells were genotyped after 

ethanol or 4-hydroxytamoxifen treatment using PCR primers that amplify in tact 

or disrupted Mll (Fig. 2.1). In the HOXA9/MEIS1 transformed cells, complete 

excision of Mll was detected after 24 hours of treatment with 100 nM 4-

hydroxytamoxifen (Fig. 2.2, bottom). Non-floxed MLL-AF9 transformed cells were 

sensitive to the toxicity of 4-hydroxytamoxifen, and complete disruption of Mll in 
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these cells was achieved after five days of treatment with 25 nM 4-

hydroxytamoxifen (Fig. 2.2, top). 

                      
Figure 2.2 Genotyping results after 4-hydroxytamoxifen treatment Monoclonal 
MLL-AF9-transformed (top) or Hoxa9/Meis1-transformed (bottom) cell lines 
treated with ethanol (-) or 4-hydroxytamoxifen (+). 
  

To ensure that Mll disruption resulted in loss of functional Mll protein, 

chromatin immunoprecipation (ChIP) followed by q-PCR was performed to detect 

wild-type Mll and its associated chromatin modification, H3K4 trimethylation, at 

target loci in MLL-AF9 transformed cells (Fig. 2.3). In cells with the wild-type Mll 

alleles disrupted, a three-fold reduction of Mll binding was observed at the Hoxa9 

locus. However, no changes in H3K4 trimethylation were seen after two weeks of 

excision. 

Using an AF9 antibody that recognizes both endogenous Af9 and MLL-

AF9, we looked at binding of AF9 and MLL-AF9 after Mll disruption (Fig. 2.4). 

Interestingly, a decrease in binding by one or both of these proteins was 

detected, suggesting there may be a link between wild-type Mll and the fusion 

protein and/or the fusion partner.  
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Figure 2.3 Effects of Mll disruption on Mll and H3K4 trimethylation levels at 
Hoxa9 ChIP-qPCR for Mll (left) and H3K4 trimethylation in Mll+/+ and Mll-/- cells. 
Schematics of Hoxa9 are depicted below the graphs, with red arrows indicating 
transcription start sites and black boxes indicating exons. HD is the 
homeodomain-encoding exon. This experiment was performed once.  

 

 

                

Figure 2.4 Effects of Mll disruption on Af9 at Hoxa9 ChIP-qPCR for Af9 at Hoxa9 
in Mll+/+ and Mll-/- cells Schematics of Hoxa9 are depicted below the graphs, 
with red arrows indicating transcription start sites and black boxes indicating 
exons. HD is the homeodomain-encoding exon. This experiment was performed 
once.                 
 

 We also looked at another target of Mll, Meis1, and similar results were 

observed, with decreases in Mll and Af9 binding, but no change in H3K4 

trimethylation (Fig. 2.5). 
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Figure 2.5 Mll-C, Af9, and trimethylated H3K4 levels at Meis1 ChIP-qPCR in the 
coding region of Meis1 in Mll+/+ and Mll-/- cells. Antibodies used for ChIP are 
indicated below the graph. This experiment was performed once. 
 

MLL-AF9 transformed cells do not require wild-type MLL 

 Both the HOXA9/MEIS1 and MLL-AF9 transformed cells continued to 

grow in the presence of 4-hydroxytamoxifen, and a dramatic effect of disrupting 

wild-type Mll was not observed. However, we continued to analyze the cells to 

determine whether loss of wild-type MLL had an effect on any aspect of the 

leukemic phenotype. The morphology, growth, cell surface markers, and gene 

expression levels of cells with and without functional wild-type Mll were 

compared in four monoclonal cell lines. As shown below in representative 

experiments, no significant differences were observed in the morphology, growth, 

immunophenotype, or gene expression of the monoclonal cell lines after Mll 

disruption (Fig. 2.6A-D). The only exception was an increased expression of 

Meis1 found in Clone 1 (Fig. 2.6, right). Since this was not observed in the other 

three clones, it is thought to be a quirk of Clone 1 rather than a representative 

result of Mll loss.  
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Figure 2.6 Effects of wild-type Mll disruption in MLL-AF9 transformed cells A) 
Wright-Giemsa stained cell with (left) or lacking (right) functional wild-type Mll. B) 
Growth curves of MLL-AF9 transformed cells with Mll-/-or Mll+/+. C) 
Immunophenotype after Mll disruption. Red graphs are isotype controls. Black 
graphs represent Mll+/+ cells. Green graphs represent Mll-/- cells. D) Hoxa9 (left) 
and Meis1 (right) expression in four monoclonal cells lines or the polyclonal pool 
of Cre-ER-expressing cells. 
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Discussion 

According to these experiments, disrupting wild-type Mll function does not 

have a significant effect on leukemic myeloblasts. However, Thiel et al. recently 

published that wild-type Mll is needed for MLL fusion protein-mediated 

leukemogenesis [57]. This was concluded based on the same conditional knock-

out cells used here and knock-down experiments in murine and human leukemia 

cells. Another recent report suggests that wild-type MLL is needed for MLL fusion 

protein binding to target loci [73].  

The most likely explanation for the discrepancy between our results and 

those of other groups is that the monoclonal cell lines used in our experiments 

represent a fraction of cells that have acquired additional genetic events that 

contribute to transformation. Even though dramatic reductions in wild-type Mll 

binding were observed after Mll excision, no changes in H3K4 trimethylation 

were detected. This is in contrast to the study by Thiel et al. where decreases in 

di and trimethylated H3K4 were observed after shRNA-mediated knockdown of 

MLL in the human leukemia THP-1 cell line, which expresses MLL-AF9. Thus, 

the monoclonal cell lines utilized in this study may have found ways to adapt, for 

example, by recruiting another H3K4 methyl transferase, or although unlikely 

given the half-life of wild-type MLL [74,75], residual wild-type Mll protein may be 

stabilized by the MLL fusion protein or some other mechanism. Of note, one 

acute myeloid leukemia cell line with the MLL-AF6 translocation lacks expression 

of the other MLL allele [76].  
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In retrospect, it appears that the polyclonal cell line may indicate a role of 

wild-type Mll in MLL-AF9 mediated-leukemic transformation as Hoxa9 levels 

decreased to approximately 60% after Mll disruption (Fig. 2.6D). These cells 

were not used for further study since complete excision of wild-type MLL could 

not be achieved, again perhaps indicating the importance of wild-type Mll to 

many of the cells. Testing the leukemogenicity of polyclonal and monoclonal 

MLL-AF9-transformed Mll+/+ and Mll-/- cells by transplantation in irradiated mice 

may reconcile our data with those of Thiel et al. 

Based on the results of these initial experiments, we focused our efforts 

on identifying what additional proteins and activities are recruited by one of the 

most common MLL translocation partners, AF9.
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Chapter 3 

The Role of the Fusion Partner in MLL Fusion Protein-Mediated 

Leukemogenesis 

Introduction 

AF4, AF9, and ENL 

 AF9 and ENL share 80% sequence homology and further structural 

homology in their C-terminal transactivation domains that is critical to gene 

activation [66]. The 90 C-terminal amino acids of AF9 and ENL are sufficient and 

necessary for leukemic transformation when fused to the N-terminus of MLL 

[44,82]. Through two-hybrid, GST pull-down, and overexpression systems, AF4, 

AF5q31, and PC3 have been shown to interact with these 90 residues. ENL also 

binds histone 1 and histone 3 through its N-terminal YEATS domain, which is 

shared with AF9 [77,78,79].   

AF4, AF5q31, and LAF4 are members of the fragile X mental retardation 

(FMR2) family of proteins, all four of which have been identified as MLL fusion 

partners in leukemia. These proteins have three characterized domains, 

including a DNA binding domain at the N-terminus, a transactivation domain, and 

a conserved C-terminal domain [80]. Early studies revealed that AF4 colocalizes 

with AF9 in leukemia cells, and although the MLL-AF4 fusion protein maintains 

this association, it alters the subnuclear localization of AF9 [81]. Altogether, these 
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initial experiments suggested a mechanistic link between the various MLL fusion 

proteins in leukemia.  

In this study, we focused on defining the mechanisms of transactivation by 

one of the most common MLL fusion proteins, MLL-AF9, and explored possible 

therapeutic targets. We first identified proteins that interact with the C-terminal 90 

amino acids of AF9, the minimal domain required for transformation when fused 

to the N-terminal fragment of MLL [44,82]. We found that, in myeloblastic cells, a 

complex that includes several other MLL fusion partners and key transcriptional 

regulators associates with the transforming domain of AF9 and the MLL-AF9 

fusion protein. These proteins have been named Elongation Assisting Proteins 

(EAP). ChIP studies for EAP components show that they are localized to 

leukemogenic genes in cells with and lacking MLL fusion proteins. Notably, in 

cells transformed by MLL fusion proteins, increased amounts of EAP are 

localized to the Hox loci and the complex is more broadly distributed. 

Furthermore, while EAP recruited independently of MLL fusion proteins 

dissociates from target loci in response to differentiation cues, MLL fusion 

protein-associated EAP remains at target genes, maintaining Hox and Meis 

expression. These findings suggest that a key activity of MLL fusion proteins is to 

prevent the normal dissociation of elongation machinery from loci critical for 

leukemogenesis. 
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Materials and Methods 

Cloning and Transduction of AF9C-term into M1 cells Bases 1691-1963 

encoding residues 478-568 of human AF9 (Accession NP_004520) were PCR-

amplified from an MLL-AF9 expression vector and cloned into the Xho1 and Not1 

sites of a modified murine stem cell virus (MSCV) vector. This vector contains 

two N-terminal FLAG tags, three nuclear translocation signals, and two C-

terminal MYC tags and expresses GFP off of an internal ribosome entry site 

(MIGR1-2XFLAG-3XNLS-2XMYC). MIGR1-2XFLAG-AF9-3XNLS-2XMYC and 

the control MIGR1-2XFLAG-3XNLS-2XMYC were packaged into viruses using 

the 293-derived Plat-E cell line [83]. One ml of viral supernatant and 5 g/ml 

polybrene was added to three million M1 cells (from ATCC) in a six-well tissue 

culture dish. Cells were spin-infected for 90 minutes at 2500 RPM in an 

Eppendorf 5810 R centrifuge. The next day the media was changed. Cells were 

GFP sorted at the University of Michigan Flow Cytometry Core one week after 

transduction. 

Cell lines  M1 (ATCC), M1-control, M1-AF9C-term, RS4;11 (ATCC), KOPN-8 

(DSMZ), REH (ATCC), Raji (ATCC), 697 (DSMZ), NALM-1 (DSMZ), HAL-01 

(DSMZ), and NALM-6 (DSMZ) cells were maintained in RPMI media containing 

10% fetal bovine serum. MV4:11 (ATCC) cells were maintained in IMDM with 

15% FBS and 10 ng/mL IL-3. 293 cells (ATCC) were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum 

(Gibco). E2A-HLF, MLL-AF9, and MLL-ENL transformed bone marrow cells were 

established in our lab. In brief, 6-8 week old C57/BL6 mice were injected with 
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150 mg/kg 5-fluorouracil. Bone marrow was harvested after four days and placed 

in a pre-stimulation IMDM media containing 100 ng/ml SCF, 10 ng/ml IL-3, and 

10 ng/ml IL-6. The next day, cells were transduced with pMSCV-E2A-HLF (a 

generous gift from Dr. Michael Cleary), pMSCV-MLL-AF9, or pMSCV-MLL-ENL 

that was packaged into retroviruses using Plat-E cells as described above for the 

MIGR1 constructs. Forty-eight hours post-transduction, cells were placed in 

selection media containing 1 mg/ml G418 (Invitrogen). Fusion protein-

transformed cells were maintained in IMDM media containing 15% FBS and 10 

ng/ml IL-3. 

LC-tandem MS Protein Identification of EAP by LC-tandem MS Samples 

were resolved by SDS-PAGE and visualized with MS-compatible silver stain 

(PROTSIL-2, Sigma). Whole lanes corresponding to control and AF9 IP were cut 

into 16 slices each and destained following the manufacturer’s protocol. 

Cysteines were reduced with 150 ml of 10 mM DTT followed by alkylation with 50 

mM iodoacetamide (in 0.1M ammonium bicarbonate, pH 8.0) at RT for 30 min 

each. Gel slices were crushed, dried using a vacufuge, and re-swollen in 30 l of 

ammonium bicarbonate buffer containing 500 ng of sequencing grade, modified 

trypsin (Promega). After 5 minutes incubation on ice, another 40 l of ammonium 

bicarbonate buffer was added and digestion was carried out at 37 C overnight.  

An additional 250 ng of trypsin was added 2 hours prior to the extraction of 

peptides.  Peptides were extracted once each with 150 l of 60% acetonitrile 

containing 0.1% TFA and acetonitrile containing 0.1% TFA.  All extracts were 

pooled and concentrated using a vacufuge to a final volume of 30 l. 
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 Ten l of the digest was separated on a reverse phase column (Aquasil 

C18, 15 mm tip x 75 mm i.d. x 15 cm, Picofrit column, New Objectives, Woburn 

MS) using acetonitrile/1% acetic acid gradient system (5-75% acetonitrile over 40 

minutes followed by 95 % acetonitrile wash for 5 minutes) at a flow rate of ~300 

nl/min. Eluted peptides were directly introduced into an ion-trap mass 

spectrometer (LTQ-XL, ThermoFisher) equipped with a nano-spray source. The 

mass spectrometer operated in data-dependent MS/MS mode to acquire a full 

MS scan (400-2000 m/z) followed by MS/MS on the top 5 ions from the full MS 

scan (relative collision energy ~35%). Dynamic exclusion was set to collect 2 

MS/MS spectra on each ion and exclude it for an additional 2 minutes. Raw files 

were converted to mzXML format and searched against mouse IPI database (V 

3.31, 67,611 entries) + reverse database using X!Tandem [84] with k-score plug-

in, an open-source search engine developed by the Global Proteome Machine.  

Search parameters included a precursor peptide mass tolerance window of 3 Da 

and fragment mass tolerance of 0.8 Da.  Oxidation of methionine (+16 Da) and 

carbamidomethylation of cysteines (+57 Da) were considered as variable 

modifications. Search was restricted to tryptic peptides with one missed 

cleavage. X!Tandem outputs were subjected to PeptideProphet [85] and 

ProteinProphet [85] analysis using default parameters of each program.  All 

proteins with a ProteinProphet probability of >0.9 (error rate <3%) were 

considered for further analysis.  MS/MS spectra corresponding to proteins that 

were unique to the experimental sample were manually verified. 
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Immunoprecipitation and Western blots Nuclei were isolated from 200 ml to 

1000 ml of M1 suspension culture by douncing cells in hypotonic buffer (10 mM 

KCl, 10 mM Tris-Cl, pH 7.9) and spinning at 4000 rpm for 15 minutes, 4 C. 

Nuclei were then lysed in BC-300 lysis buffer: 0.1% NP40, 10% glycerol, 300-500 

mM KCl, 100 uM PMSF, 1 protease inhibitor cocktail tablet (Roche), 1 mM 

EDTA, 50 mM Tris-CL pH 7.9 for 30 minutes at 4ºC. Some immunoprecipitations 

were done in the presence of 100 g/ml ethidium bromide or after treatment with 

2500 units of Benzonase (EMD Biosciences) in the presence of 2 mM MgCl2. 

Cell lysate was spun at maximum speed in an Eppendorf 5424 microcentrifuge 

for 15 minutes and supernatant was pre-cleared with protein-G-agarose (Roche) 

beads for 1 hour at 4ºC. After pre-clearing, the lysate was incubated with 100 l 

anti-FLAG M2 agarose beads (Sigma) for 1 hour rocking at 4ºC.  Beads were 

subjected to six five-minute washes with lysis buffer (excluding protease 

inhibitors). For mass spectrometry analysis, the purified proteins were eluted with 

2X FLAG peptide (Sigma, Sequence: DYKDDDDDYKDDDDK) two times for 

fifteen minutes each at 4ºC, resolved by SDS-PAGE, visualized with 

ProteoSilver2 kit (Sigma) according to the manufacturer’s instructions, and 

submitted to the University of Michigan Mass Spectrometry Core. For Western 

blotting, the beads were heated at 90ºC Celsius for 5 minutes in SDS Tris-

Glycine sample buffer (Invitrogen). The supernatant was loaded onto 4-20% Tris-

Glycine gels (Invitrogen), and proteins were transferred to a nitrocellulose 

membrane for 1 hour. Membranes were blocked in 5% non-fat dry milk (Bio-Rad) 

and then incubated with the appropriate primary antibody overnight. Goat anti-



 26 

rabbit or goat anti-mouse secondary antibodies (Santa Cruz) were used at 

1:2000 for 30 minutes. Proteins were detected using SuperSignal West Pico 

Chemiluminescent Substrate (Pierce). Whole cell lysate was used for IPs in 

human leukemia cell lines and antibodies conjugated to Protein G Dynabeads (in 

PBS with 5% BSA) (Invitrogen), prepared by overnight incubation, were used for 

overnight IP (antibodies listed below).  

Gradient Centrifugation FLAG-AF9C-term from M1 cells was immuno-purified as 

described above. The 2X FLAG peptide eluate was loaded onto a 15-45% 

glycerol or 5-20% sucrose gradient and ultracentrifuged at 23,000 rpm, 4 C for 

16 hours in the TH-660 rotor of a Sorvall WX Ultra 80 centrifuge. Protein 

standard, supplemented with Dextran blue (Sigma) for a 2 megadalton marker, 

was run in parallel (GE Healthcare). 200 uL fractions were collected and proteins 

were either concentrated at 14,000 RPM for 2 hours (Millipore, YM-3) for 

Western blot analsysis of sucrose gradient or precipitated with tricholoracetic 

acid (TCA) for mass spectrometry-based analysis. For TCA precipitation, 

samples were first incubated with 2% sodium deoxycholate for 30 minutes on ice, 

then with10% TCA for 1 hour on ice. Samples were spun for 10 minute at 14,000 

rpm, 4 C in an Eppendorf 5424 microcentrifuge, washed with 1 mL cold acetone 

for 10 minutes, and spun again at 14,000 rpm, 4 C for 10 min. After air-drying, 

samples were dissolved in urea buffer (9 M urea, 20  mM HEPES, pH 7.5) for 

mass spectrometric analysis. 

Transient Transfections 105 human embryonic kidney 293 cells were seeded in 

10 cm or 15 cm (for mass spectrometry) dishes overnight. Cells were transfected 
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with 10 µg empty vector, 10 µg pMYC-MLL1116-1397-AF9, 5 µg empty vector and 5 

µg pcDNA-HA-Dot1l, 5 µg pcDNA-HA-Dot1l and 5 µg pFLAG-HA-MLL1116-1397, or 

5 µg pcDNA-HA-Dot1l and 5 µg pFLAG-MLL-AF9, harvested after 48 hours for 

whole cell lysis in BC-300 buffer, and immunoprecipitated overnight with anti-

FLAG M2 (Sigma) or anti-MYC (Clontech) affinity resin. After five five-minute 

washes with lysis buffer, beads were boiled in SDS Tris-Glycine loading buffer, 

loaded onto 6% or 4-20% Tris-Glycine gels, and transferred to nitrocellulose 

membranes. After 1 hour blocking in 5% non-fat milk, blots were incubated with 

anti-HA (Covance), anti-FLAG (Sigma), or anti-CDK9 (Santa Cruz) overnight, 

with secondary antibody for 30 minutes, and subjected to enhanced 

chemiluminescence with SuperSignal West Pico Chemiluminescent Substrate. A 

gel with empty vector and pMYC-MLL1116-1397-AF9 IP’ed samples was silver 

stained with Sigma’s ProteoSilver2 kit and submitted to the University of 

Michigan Mass Spectrometry Core for analysis. 

Chromatin Immunoprecipitation Chromatin immunoprecipitation (ChIP) was 

performed according to Upstate’s protocol using recommended lysis, dilution, 

and wash buffers. In brief, cells were fixed in 1% formaldehyde for 15 minutes at 

room temperature. Cells were pelleted, PBS-rinsed, and snap frozen. After 

thawing, cells were lysed and sonicated at high intensity 30 second on-off cycles 

for 15 minutes in the Diagenode Bioruptor XL. These conditions generated an 

average DNA fragment size of 500 bp as determined by DNA electrophoresis. 

Protein-DNA complexes were collected using antibody-conjugated Protein G 

Dynabeads that were prepared as described above for standard 
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immunoprecipitations (antibodies listed below). After washing the beads, DNA 

was eluted by incubation with SDS buffer (1% SDS, 100 mM sodium 

bicarbonate) for 30 minutes at 42ºC. DNA-protein cross-links were reversed 

overnight in 0.2 M NaCl at 65 C. DNA was purified using the QIAquick PCR 

Purification Kit (Qiagen) and subjected to qPCR as described below. Primer and 

probe sequences are provided in Table 2.1. For the human MonoMac6 leukemia 

cell line, DNA samples were run on an agarose (Invitrogen) gel, amplified by 

standard PCR on an Eppendorf Mastercycler, and visualized with ethidium 

bromide. Primers are listed in Table 2.1.  

Knockdown of DOT1L Knockdown experiments were performed by Stephanie 

Jo of Jay Hess’s lab. MV4:11 cells at a concentration of 10 million cells/ml  were 

transfected with a 500 nM mixture of 2 siRNA oligonucleotides targeting DOT1L 

(Dharmacon) by electroporation using a Bio-Rad GenePulser MXcell. RNA was 

extracted and reverse-transcribed (described below) for qPCR 48 hours post-

transfection. Gene expression was normalized to 5S ribosomal RNA.  

Flavopiridol Experiments MLL-AF9, MLL-ENL, or E2A-HLF cells were seeded 

at 105 cells/ml in growth media. The following day, cells were treated with 0 nM-

200 nM flavopiridol, which was generously provided by Sanofi-Aventis and the 

National Cancer Institute, NIH. Gene expression was analyzed after 24 hours 

of treatment as described below. Viability was assessed by cell counting with 

Trypan blue exclusion at 48 hours. Viability curves were generated using Prism 

5.0 software. 

 Screening of human ALL cell lines was performed by Daniel Sanders of 
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Jay Hess’s lab with assistance from the University of Michigan Center for 

Chemical Genomics (CCG). Cells were seeded at a density of 1250 cells/well in 

a 384-well plate overnight in RPMI-1640 medium containing 10% FBS. 200 nl of 

flavopiridol (stock concentrations of 0.04mM – 5mM) was added using a 

Beckman Biomek FX with a HDR (Beckman Coulter, Fullerton,CA) to give a final 

concentrations of 0.2 -25µM. 10 µM of staurosporine (BIOMOL) was used as a 

positive control for complete cell death and DMSO was used as a negative 

control. The plates were incubated in a 37° C, 5% CO2 incubator for 48 hours. 

Viability was assessed using CellTiter-Glo Luminescent Cell Viability Assay 

(Promega). 25µl of CellTiter-Glo reagent was added to each well using a 

Multidrop (Thermo Scientific) and luminescence was read (gain 3600, 0.76 

sec/well read) with a PHERAstar plate reader (BMG Labtech). pIC50 curves were 

generated using gretl software. 

Treatment with Differentiation Agents MLL-AF9, MLL-ENL, or E2A-HLF cells 

were seeded at 105 cells/ml in growth media. The next day, cells were treated 

with 100 ng/ml IL6 (R&D Systems), 10 nM PMA (Sigma) 5 g/ml LPS (Sigma), 

10 ng/mL G-CSF (R&D Systems) or an equal volume of PBS, ethanol (for PMA), 

or DMSO as a control. 24-72 hours after treatment, cells were counted using 

Trypan blue exclusion or RNA was isolated for gene expression analysis. 

Il-6/LPS-induced Differentiation of Myeloblastic Cells M1-AF9C-term, MLL-AF9, 

MLL-ENL, or E2A-HLF cells were seeded at 105 cells/ml in growth media. The 

next day, cells were treated with 100 ng/ml IL6, 5 g/ml LPS, or an equal volume 

of PBS as a control. At different time points following treatment, cells were 
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collected for morphologic staining with the HEMA-3 stain kit (Fisher Scientific). 

Additional aliquots were prepared for gene expression analysis for Hoxa9, Meis1, 

Gapdh, and beta-actin (described below), standard immunoprecipitation and 

Western blot (described above), or chromatin immunoprecipitation (described 

above). 

Luciferase Reporter Assay 293 cells were seeded in 12 well plates in triplicate. 

The next day the growth media was replaced with OptiMEM (Gibco) media 

supplemented with 0.5% FBS and cells were co-transfected with MIGR1 or 

pMLL-AF9,100 ng Hoxa9-Luc, 15 ng CMV-Renilla and combinations of pCMV-

NPM (from Dr. Sheng-Hao Chao), pCMV-HEXIM (from Dr. Sheng-Hao Chao), 

and pCMV-NPMC+ (from Dr. Sheng-Hao Chao) using Fugene 6 (Roche). Total 

amount of DNA transfected per well was 0.5 g. 48 hours post-transfection cells 

were lysed and assayed for luminescence using Promega’s Dual Luciferase 

Reporter Kit according to the manufacturer’s instructions. Luminescence was 

monitored using a Monolight 3010 luminometer (BD Biosciences). 

Methyl Cellulose Assays Virus was prepared and transduced into murine bone 

marrow as described above, except using MSCV-HA-NPM, MSCV-HA-NPMC+, 

MSCV-FLAG-MLLAF9-IRES-GFP, MSCV-FLT3-ITD. Bone marrow cells were 

plated in Methyl Cellulose (Stem Cell Technologies) with 100 ng/ml SCF (R&D 

Systems), 10 ng/ml IL-3 (R&D Systems), 10 ng/mL GM-CSF (R&D Systems), 10 

ng/ml IL-6 (R&D Systems), and 1 mg/mL neomycin (Gibco) 3 days after 

transduction. Colonies were counted and replated weekly for three weeks. Cells 

were also collected for RNA and morphology analysis at these time points. 
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qPCR  qPCR for ChIPed samples was performed with Taqman primers and 

Taqman Universial Master Mix (Applied Biosystems) using the Applied 

Biosystems 7500 Real-Time PCR system. Primers are listed in Table 2.1. Data is 

expressed as percent of total input using the formula  % Total Input = 2^-[Ct (IP)-

Ct (Input)] [71]. 

For expression analysis, RNA was extracted from cell lines with Trizol 

reagent (Invitrogen) according to the manufacturer’s protocol. Reverse-

transcription was performed using Superscript II (Invitrogen) according to the 

manufacturer’s protocol. FAM-labeled Hoxa9, Meis1, Af9, Enl, Cyclin T2, Dot1L, 

c-Jun, Hexim1, Hexim2, Npm1, Gapdh, -Actin, and U2 snRNA Taqman primers 

(Applied Biosystems) Primer/Probe set number 9 and 11 in Table 2.1 ( for 

detecting abortive and full-length Hoxa9 transcripts) were used in expression 

analysis of murine cell lines. The qPCR reactions were carried out with Taqman 

Universal Master Mix (Applied Biosystems) using Applied Biosystems 7500 Real-

Time PCR system. SYBR Primers detecting FLAG-tagged MLL constructs have 

been previously reported and were obtained from Dr. Andrew Muntean [55]. 

Sequences are provided in Table 3.1. Gene expression was normalized to 

Gapdh for all experiments except the flavopiridol, HMBA, and DOT1L knockdown 

experiments. In the flavopiridol and HMBA experiments, gene expression was 

normalized to U2 snRNA, which is transcribed independently of pTEFb CTD 

kinase activity [86]. For DOT1L knockdown experiments, primers for qPCR were 

designed with MacVector sequence analysis program. Single product formation 

was confirmed by running PCR products on a 1% agarose gel. SYBR Universal 
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Master Mix (Applied Biosystems) was used for qPCR. Data were normalized to 

5S ribosomal RNA. Primer sequences are provided in Table 3.1. Analysis was 

performed using the comparative Ct method [70]. 

Gene Forward Primer Reverse Primer 

HOXA9 CCACGCTTGACACTCACACTTTG TTGGCTGCTGGGTTATTG

GG 

MEIS1 CAGCACAGGTGACGATGATGAC AAGGATGGTGAGTCCCGT

GTCTTG 

DOT1L ATGACCGACGACGACCTGTTTGTG CGACGCCATAGTGATGTTT

GC 

5S rRNA TCTACGGCCATACCACCCTGA GCCTACAGCACCCGGTAT

TCC 

FLAG-

MLL 

GGACTACAAGGACGACGATGA ACAGCTGTGCGCCATGTT 

Table 3.1 SYBR green primer sequences for gene expression analysis 

Flow Cytometric Analysis E2A-HLF, MLL-AF9, and MLL-ENL cells were 

treated with LPS or PBS as described above. After 24 hours, cells were 

harvested, washed with PBS, and stained for 30 minutes with anti-c-KIT (BD 

Pharmingen) and anti-Gr-1 (BD Pharmingen) conjugated to FITC and PE, 

respectively. Cells were washed with PBS two times, filtered into flow cytometry 

polystyrene tubes with strainer caps, and flow cytometry was performed at the 

University of Michigan Flow Cytometry Core. Data was analyzed using FlowJo 

software.  

CTD Kinase Assay  400 milliion M1-control or M1- AF9C-term cells were lysed in 

the same conditions described above. Anti-FLAG beads (Sigma) were added to 

whole cell lysate for overnight IP as described above. After washes, 100 ng of 

recombinant PolII-CTD (Calbiochem), 100 M ATP, 5 mM MgCl2, and 1 mM 
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DTT, were added to the beads. Reaction mixture was incubated for 1 hour at 

room temperature with rocking. Supernatant was removed, the reaction was 

stopped by addition of SDS loading buffer, and samples were loaded onto a gel 

for SDS-PAGE and Western blotting as described above. 

Antibodies ChIP antibodies include Dot1L (Bethyl, A300-953A, A300-954A 

mixture), ENL (from Dr. Robert Slany), Ring1b (MBL, D139-3), PC3 (Santa Cruz, 

sc-23591) AF4 (from Dr. John Kersey), AF5q31 (from Dr. Robert Roeder), Laf4 

(Abcam, ab-38318), monomeH3K79 (Abcam, ab-2886), dimeH3K79 (Abcam, ab-

3594), trimeH3K79 (Abcam, ab-2621), trimeH3K9 (Abcam, ab-8898), 

trimeH3K27 (Millipore, 07-449), RNA polymerase II (Covance, MMS-126R), 

pSer2-CTD (Covance, MMS-129R), pSer5-CTD (Covance, MMS-134R), Cyclin 

T2 (Santa Cruz, sc-12421), MLL-C (from Dr. Yali Dou), trimeH3K4 (Millipore, 04-

745), NPM1 (Abcam, ab-10530), HEXIM1 (Santa Cruz, sc-48871), HEXIM2 

(Santa Cruz, sc48874), CDK1 (Abcam, ab-18), mouse and rabbit IgG (Santa 

Cruz, sc-2025, sc-2027), IgM (Abcam, ab-9175). Standard IP and Western blot 

antibodies: Cdk9 (Santa Cruz, sc-8338), Cyclin T1 (Santa Cruz, sc-10750), AF4 

(from Dr. John Kersey), Laf4 (Abcam, ab-38318), AF5q31 (from Dr. Robert 

Roeder), ENL (from Dr. Robert Slany), AF9 (Bethyl, A300-597A), Ring1b (MBL, 

D139-3), CBX8 (Abcam, ab-70796), HA (Covance, MMS-101P) Dot1L (Bethyl, 

A300-953A, A300-954A mixture), MLL (Bethyl, A300-086A, A300-087A mixture), 

MLL-C (from Dr. Yali Dou) FLAG (Sigma, F-3165), mouse and rabbit IgG (Santa 

Cruz, sc-2025, sc-2027 ), CDK1 (Abcam, ab-18), pSerine (Qiagen, 37430), 

pThreonine (Qiagen, 37420), pSer5-CTD (Covance, MMS-134R). 
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Results 

MLL1116-1397-AF9 associates with histone-associated proteins and the COP9 

signalosome in 293 cells 

 We began our study of MLL fusion partner associations by transiently 

transfecting 293 cells with the transforming domain of AF9 fused to a small 

portion of N-terminal MLL (MLL1116-1397). In this experiment, mass spectrometry-

based analysis identified the histone-associated proteins, SET (TAF-1), TIF-

1beta, and RBBP4 and 7. SET is a nuclear oncogene that is important in the 

activation of genes through its role as a histone chaperone [87]. SET also 

interacts with CBP and enhances its HAT activity [87,88]. Notably, SET is found 

in translocations with the nucleoporin, NUP214, in pediatric cases of acute T-cell 

lymphocytic leukemias that are characterized by HOXA overexpression [89]. 

SET-associated proteins, TIF-1beta (KAP-1), which is mainly characterized as a 

repressor but serves as a transcriptional activator in embryonic stem cells [90] 

and Protein Phosphatase 2 were also identified in this experiment (Table 3.2). 

Finally, two components of the nucleosome remodeling and deacetylase (NuRD) 

complex [91], RBBP4 (small subunit of CAF-1/RBAP48, p48) and 7 

(RBAP46/p46), were identified in association with MLL1116-1397-AF9. These 

RBBPs were originally identified by their interactions with the Rb tumor 

suppressor, and have since been found to have roles in binding histones and 

stimulating HAT1 activity [92]. The finding that MLL1116-1397-AF9 associates with 

the aforementioned proteins, which have roles in transcriptional activation and 

repression [91,93,94], suggests a couple of possibilities. One is that in the 
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presence of MLL fusion proteins, SET, TIF-1beta, and NuRD components serve 

as transcriptional activators. The other possibility is in line with the ability of MLL 

fusion proteins to repress transcription [16,23,24,25,26], where MLL-AF9 may 

coordinate with transcriptional repressors to suppress the expression of tumor 

suppressors. 

Many subunits of the COP9 signalosome were identified as well (Table 

3.2). Certain COP9 subunits have roles in binding histones and acting as 

transcriptional coactivators at target genes [95], but the COP9 signalosome is 

widely recognized for its role in mediating proteasomal degradation. Given that 

we identified nearly all of the subunits including the ubiquitin-conjugating enzyme 

UBC3B suggests that their function in this MLL1116-1397-AF9-associated complex 

is to degrade substrates, likely MYC- MLL1116-1397-AF9, which is massively over-

expressed. Thus, these results may not reflect physiological interactions with 

AF9. 
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Protein Total Peptides Unique Peptides Protein Probability 

MLL 190 17 1 

AF9 20 2 1 

TIF-1beta 6 4 1 

SET 7 4 1 

Rbbp4/7 5 2 1 

Myb binding 
protein 1A 

10 7 1 

Protein 
Phosphatase 2c 

46 22 1 

NPM1 9 3 1 

Rad18 3 2 1 

UBC3B 4 2 1 

COP9 subunit 2 5 3 1 

COP9 subunit 3 4 3 1 

COP9 subunit 4 15 10 1 

COP9 subunit 5 8 5 1 

COP9 subunit 6 8 4 1 

COP9 subunit 7a 4 3 1 

COP9 subunit 7b 4 3 1 

COP9 subunit 8 10 5 1 

Table 3.2 Summary of mass spectrometry-based analysis of proteins associating  
with MYC-MLL1116-1397-AF9 in 293 transfectants Summary of mass spectrometry-
based identification of the COP9 signalosome as MYC-MLL1116-1397-AF9-
associating proteins. Protein probability, total number of peptides, and number of 
unique peptides are indicated. This experiments was performed once. 
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The transforming domain of AF9 (AF9C-term) associates with other MLL 

fusion partners and key transcriptional regulators in hematopoietic cells  

Using another approach, we stably-transduced the C-terminal 90 amino 

acids of AF9 into leukemic M1 cells. To ensure efficient nuclear targeting and 

protein purification, we included two N-terminal FLAG-epitope tags, three nuclear 

translocations signals, and two C-terminal MYC tags in this AF9 construct (Fig. 

3.1). Cell extracts were immunopurified with FLAG affinity resin and resolved by 

polyacrylamide gel electrophoresis (PAGE) followed by silver staining (Fig. 3.2A). 

A protein expressing only the tags and nuclear translocation signals 

served as a negative control. Proteins specifically interacting with AF9C-term 

identified by mass spectrometry include MLL fusion partners Af4, Laf4, Af5q31, 

Af10, Ell, and Enl, in addition to Cdk9, Cyclin T1/T2 (pTEFb), Dot1l, Pc3 and 

Ring1b (Fig. 3.2B). A more detailed list, with the number of peptides identified for 

each protein is summarized in Table 3.3. None of the proteins identified in 293 

cells were identified with significance in these experiments. This may be because 

those proteins associate exclusively with MLL1116-1397, they require the tertiary 

structure formed by MLL1116-1397-AF9, they are cell type-specific associations, or 

because they were an artifact of over-expression. We proceeded to characterize 

the proteins that associate with AF9C-term as they are largely characterized as 

transcriptional activators [96,97,98] and thus have important implications in Hox 

regulation and deregulation by MLL fusion proteins. This group of proteins has 

been named Elongation Assisting Proteins (EAP).  
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Figure 3.1 Schematic of AF9C-term and control constructs 

 

 

  
Figure 3.2 Mass spectrometry-based identification of AF9C-term-associating 
proteins A) Schematic of experimental design. B) Representative silver-stained 
gel with a list of proteins associating with AF9C-term identified by mass 
spectrometry to the right. Proteins immunoprecipitating with the control fragment 
were subtracted in the analysis in order to identify proteins differentially 
associating with AF9C-term.
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Table 3.3 List of AF9C-term-associating proteins identified by mass spectrometry 
Protein probability, total number of peptides, number of unique peptides, and 
number of experiments in which the proteins were identified are indicated.  
 
 

Associations with Af5q31, Laf4, Cdk9, and Pc3 were verified by Western 

blot (Fig. 3.3A). BCoR, AF5q31, Laf4, Cdk9, Cyclin T1/T2, Dot1L, and Af10 were 

Protein Total 
Peptides 

Unique 
Peptides 

Protein 
Probability 

Number  of 
Experiments 

BCoR 23 15 1 5 

Dot1L 9 6 1 6 

Af4 51 24 1 7 

Laf4 126 39 1 11 

Af5q31 213 53 1 10 

Af10 15 9 1 6 

CyclinT1 46 17 1 8 

Cyclin 
T2 

5 2 1 4 

Enl 14 6 1 1 

Ell 37 19 1 5 

Med4 5 3 1 2 

Med6 2 1 1 1 

Med8 3 2 1 1 

Med9 2 2 1 1 

Med18 4 3 1 1 

Med19 2 1 .96 1 

Crsp2 9 6 1 1 

Crsp6 8 5 1 1 

Crsp7 9 5 1 1 

Crsp8 16 8 1 1 

Thrap4 13 9 1 2 

Thrap5 12 6 1 2 

Crsp9 1 1 .93 1 

NPM 2 1 .85 3 

HEXIM1 28 8 1 4 

HEXIM2 21 7 1 5 

MePCE 59 8 1 5 

Larp7 59 8 1 5 

Cdk9 14 6 1 9 

Cdk1 2 2 1 1 

PRMT5 9 3 1 5 

Pc3 1 1 .93 1 

Ring1b 5 3 1 3 
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identified by mass spectrometric-based analysis after the immunoprecipitations 

were carried out in 500 mM KCl and 100 µg/mL ethidium bromide, suggesting 

that they are strong and are not mediated through DNA interactions. Benzonase 

treatment was tested on Dot1l, AF5q31, and Cdk9 associations to confirm the 

ethidium bromide results (Fig. 3.3B). Mass spectrometric analysis identified 

Ring1b and Pc3 after AF9C-term immunoprecipitation in up to 500 mM KCl, but not 

when ethidium bromide was present. Enl, Ell, and Af4 were identified by mass 

spectrometry after immunoprecipitation in 300 mM salt, and whether these 

interactions are DNA-dependent was not tested. 

 

Figure 3.3 Western blot verification of protein associations A) Western blots after 
FLAG IP from M1-Control and M1-AF9C-term cell lines. Antibodies used for 
detection are indicated below blots. B) Detection of associations after nuclease 
treatment. Antibodies used for detection are indicated to the left of the blots. On 
the right, is an ethidium bromide stained agarose gel of DNA present at the 
beginning of the immunoprecipitation in the presence or absence of Benzonase. 

 

To test whether the associations are preserved in the context of the MLL 

fusion protein, we performed immunoprecipitations in 293 transfectants and 

human leukemia cell lines (Fig. 3.4A, C). These experiments showed that like 

MLL-ENL and MLL-AF4 [99,100], MLL-AF9 retains the ability to associate with 

key EAP subunits, including pTEFb, DOTL, and RING1b. Furthermore, chromatin 

immunoprecipitation of different EAP components shows that many of them 



 41 

localize to the HOXA9 locus in MonoMac6 cells, which express the MLL-AF9 

fusion protein (Fig. 3.4B). 

 

Figure 3.4 MLL fusion proteins associate with EAP A) Transient co-transfections 
of 293 cells with an N-terminal fragment of MLL (FLAG-HA-MLL1116-1397) or 
FLAG-MLL-AF9 with HA-Dot1L. B) ChIP for different EAP components (indicated 
above the gels) in MonoMac6 cells at two promoter sites of HOXA9 detected by 
conventional PCR. C) Immunoprecipitation of EAP components from the RS4:11 
and KOPN8 human leukemia cell lines that express the MLL-AF4 and MLL-ENL 
fusion proteins, respectively. Antibodies used in immunoprecipitations are 
indicated above the blots. Proteins were detected using antibodies indicated 
below the blots in the RS4:11 cells and to the right of the blots in the KOPN8 
cells. 
 

In order to address the heterogeneity of EAP, we performed a preliminary 

gradient centrifugation experiment where 2X FLAG eluate after FLAG-AF9C-term-

immunoprecipitation from M1-AF9C-term cells was loaded onto a glycerol gradient 

and ultracentrifuged to separate AF9C-term-containing complexes based on 
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differences in size. Fractions were collected, and proteins were TCA precipitated 

and dissolved in a minimal volume for mass spectrometric-based identification of 

proteins. Detection of the 90 amino acid AF9 fragment was limited by mass 

spectrometry since this technique was only able to identify one peptide of this 

small construct. Stably over-expressed AF9C-term was only detected in the low 

density fractions, suggesting that most of the AF9C-term may be extraneous (Table 

3.4). Western blot analysis on other gradient centrifugation experiments shows 

that AF9C-term is found throughout the gradient, again, with the highest levels in 

the low-density fractions (Fig. 3.5). Western blot analysis of other EAP subunits 

was limited by a combination of low protein levels and poor antibodies. 

 Results from glycerol gradient centrifugation suggest that the EAP 

complex is heterogeneous with an approximately 2 Megadalton RNA polymerase 

II-associated EAP complex, containing FMR2 members, pTEFb, and pTEFb-

associated factors such as the inhibitory HEXIM proteins, LARP7, and MEPCE 

(Table 3.4).  Chromatin-associated proteins such as Dot1L and the Polycomb 

proteins were difficult to detect in these experiments, with Dot1l and Af10 present 

in low abundance in the high-density fractions. This finding supports the model 

proposed by Yokoyama et al. who describe physically distinct pTEFb and Dot1l-

associated complexes that functionally coordinate to regulate transcription [100]. 

Further, purification of Dot1L from stable 293 transfectants led to the 

identification a 2 Megadalton complex termed DOTCom [101]. DotCom consists 

of a few EAP components, including AF9, ENL, and AF10, along with 

components of the WNT signaling pathway, and does not include pTEFb.  
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Table 3.4 Mass spectrometry-based analysis of AF9C-term-associated proteins 
after glycerol gradient centrifugation Gradient fractions collected from a 15-45% 
glycerol gradient are indicated above the table, with increasing fraction number 
corresponding to increasing density. Proteins identified are listed on the left, with 
the number of peptides identified in each fraction highlighted in pink.  
 
 
 

                      
Figure 3.5 Western blot analysis of FLAG-AF9C-term after sucrose gradient 
centrifugation 2X FLAG eluate was loaded onto a 5-20% sucrose gradient, which 
was ultracentrifuged for 16 hours. Fractions were collected, concentrated, and 
subjected to SDS-PAGE followed by Western blot for FLAG-AF9C-term. 
     
MLL fusion proteins increase the amount of pTEFb and Dot1L at target loci 

A key question for understanding mechanisms of transformation by MLL 

fusion proteins is how the amount and distribution of EAP subunits at target loci 

differs between cells transformed by MLL fusion proteins versus those 

transformed by other mechanisms. To address this, we established leukemia cell 
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lines by expression of MLL-ENL, MLL-AF9, or E2A-HLF in murine hematopoietic 

progenitor cells and analyzed EAP component expression levels and binding at 

Hoxa9. E2A-HLF transformed cells are not dependent on Hox expression for 

growth [52]. These cells express Hoxa9 at 5-10-fold lower levels than MLL 

fusion-transformed cell lines and have barely detectable expression of Meis1 

(Fig. 3.6). The cells express comparable levels of the EAP components Enl, 

Cyclin T2, and Dot1L while Af9 expression is significantly lower in the MLL fusion 

transformed cells (Fig 3.6). 

  

Figure 3.6 Gene expression in fusion-transformed cell lines qPCR analysis of 
Hoxa9 (left), Meis1 (middle), and EAP (right) expression in the fusion-
transformed cell lines expressed as the fold difference over E2A-HLF- 
transformed cells. Data are normalized to Gapdh. 
 

Although the fusion proteins expressed in these cell lines have N-terminal 

FLAG epitope tags, ChIP experiments using different FLAG antibodies were 

unsuccessful. Hence, AF9 and ENL antibodies were used to detect fusion protein 

binding at target loci. ChIP-qPCR experiments using these antibodies show a 

pattern of binding similar to that we previously reported for a conditional form of 

MLL-ENL [69] or for MLL-AF4 [102] (Fig. 3.7), with peaks in both the promoter 

and coding region of Hoxa9 that contrast with the distribution of MLL, which is 

concentrated at the promoter in cells lacking MLL rearrangements [69]. This 
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pattern of binding is not found after ChIP-qPCR for endogenous Enl and Af9 in 

cell lines that lack MLL fusion proteins (Fig. 3.15 and Fig. 3.18, top panel). An 

interesting note is that while MLL-AF9 appears to recruit wild-type Enl, wild-type 

Af9 levels are minimal at target loci in cells transformed with MLL-ENL. This is 

possibly due to the lower levels of Af9 expression in the MLL fusion-transformed 

cell lines compared to the E2A-HLF-transformed cells.  

 
Figure 3.7 Localization of ENL/MLL-ENL and AF9/MLL-AF9 to target loci A) 
ChIP-qPCR analysis of binding at Hoxa9 locus. Schematics of Hoxa9 are 
depicted below the graphs, with red arrows indicating transcription start sites and 
black boxes indicating exons. HD is the homeodomain-encoding exon. B) ChIP-
qPCR in the coding region of the Meis1 locus after immunoprecipitation of the 
proteins indicated along the x-axis. 
 

Until recently, pTEFb has mainly been studied in the context of HIV [103]. 

It is a crucial co-factor to the viral protein, Tat, which recruits pTEFb to TAR 
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elements of nascent viral transcripts in order to overcome abortive transcription. 

Tat-mediated transactivation is absolutely dependent on pTEFb activity, and the 

importance of pTEFb in the development of other diseases, such as cardiac 

hypertrophy and cancer, is being established, as well [103].  

pTEFb phosphorylates Serine 2 of the RNA polymerase II (Pol II) CTD as 

well as the 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) sensitivity 

inducing factor DSIF, thereby releasing RNA pol II from elongation inhibition 

[104]. One possibility is that MLL fusion proteins deregulate Hox expression 

through recruitment of excessive pTEFb to target loci thereby resulting in 

unregulated transcriptional elongation. We tested for evidence of RNA 

polymerase II stalling at the Hoxa9 locus in the fusion-transformed cell lines. We 

used qPCR primers within the first 100 bases of the transcriptional start site of 

Hoxa9 as an indicator of abortive transcription and within the last exon of Hoxa9 

as an indicator of complete transcription. The amount of short transcripts greatly 

exceeds that of mature transcripts in the E2A-HLF transformed cells, with only 

20% of the initiated transcription developing into mature transcripts. There are 

higher levels of full-length transcripts in the MLL fusion transformed cells, with 

full-length transcripts comprising 40 to 80% of all transcripts  (Fig. 3.8). 

In keeping with this, ChIP for the pTEFb component Cyclin T2 showed 

that more Cyclin T2 is localized to the coding regions of Hoxa9 and Meis1 in cells 

with MLL fusion proteins than in those lacking MLL rearrangements (Fig. 3.9A, 

B). In cells transformed by E2A-HLF, ChIP for Pol II showed that it is present at 

Hoxa9 and Meis1 similar to levels in MLL-AF9-transformed cells (Fig. 3.9A, B). 
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Serine 5 CTD phosphorylation, a modification associated with Pol II 

transcriptional initiation, is also present at levels similar to MLL-AF9-transformed 

cells at Hoxa9. However, cells expressing MLL fusion proteins show 2 to 10-fold 

more Serine 2 phosphorylated Pol II at the Hoxa9 and Meis1 loci (Fig. 3.9A, B). 

These data indicate that, while Hoxa9 transcription in the E2A-HLF cells is 

initiated at levels similar to MLL-AF9-transformed cells, it is lacking in its ability to 

progress to transcriptional elongation. However, the MLL fusion transformed cells 

are able to overcome this elongation block at the Hoxa9 promoter, likely due to 

pTEFb recruitment.  

 

                                

Figure 3.8 RNA polymerase II stalling at Hoxa9 qPCR for mature (3’) and 
abortive (5’) Hoxa9 transcripts in fusion-transformed cell lines with PCR primers 
that amplified the HD-encoding exon or 100 bp downstream from the 
transcriptional start site. Data are expressed as the amount of mature transcripts 
over total initiated transcripts and are normalized to Gapdh.  
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Figure 3.9 Association of MLL fusion proteins with elongating RNA polymerase II 
ChIP-qPCR experiments for different RNA polymerase II associated factors at 
Hoxa9 (A) and Meis1 (B). Schematics of Hoxa9 are depicted below the graphs, 
with red arrows indicating transcription start sites and black boxes indicating 
exons. HD is the homeodomain-encoding exon. p values are provided for the 
differences in binding between the MLL-AF9 and E2A-HLF-transformed cells at 
the most 3’ site (HD) in Hoxa9 and the coding region of Meis1. 
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Assessment of pTEFb as a therapeutic target 

Other groups have also reported the importance of transcriptional 

elongation to MLL fusion protein-mediated transcription. It was shown that knock-

down of ENL compromises transcriptional elongation, and that ENL, AF4, and 

AF5q31 stimulate elongation in an RNA tethering assay. Furthermore, loss of the 

pTEFb interaction domain in AF4 family members, abrogates the fusion protein’s 

leukemogenicity [99,100,105]. These data altogether suggest that the kinase 

activity of pTEFb is a potential therapeutic target in leukemias with MLL 

rearrangements. To assess whether cells transformed by MLL fusion proteins are 

differentially sensitive to CDK9 inhibition, we treated murine AML cell lines 

transformed by E2A-HLF, MLL-AF9, and MLL-ENL as well as a range of human 

ALL cell lines harboring different chromosomal translocations (RS4;11, KOPN-8, 

REH, 697, NALM-1, HAL-01, NALM6, RAJI) with the cyclin-dependent kinase 

inhibitor, flavopiridol, which has a Ki of 3 nM with CDK9 and weaker inhibition of 

other CDKs [106], and measured effects on cell viability and gene expression. 

Viability assays showed that cell lines with MLL fusion proteins are modestly 

more sensitive to flavopiridol than those lacking MLL fusion proteins (Fig. 3.10A, 

B). 
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Figure 3.10 Sensitivity of leukemic cell lines to flavopiridol A) Viability assay in 
murine fusion-transformed cell lines. B) Viability assay (contributed by Daniel 
Sanders) in human leukemia cell lines carrying various chromosomal 
aberrations. 
 

Flavopiridol treatment results in decreased Hoxa9 and Meis1 expression, but 

other constitutively expressed genes such as Gapdh and beta-actin are also 

affected in the MLL-ENL-transformed cells (Fig. 3.11), a finding that is consistent 

with the general role of pTEFb in transcriptional regulation [107,108]. Thus, the 

MLL fusion transformed-cell lines are not more sensitive to flavopiridol due to 

selective inhibition of Hoxa9 transcription. In fact, at higher concentrations, 

flavopiridol more effectively inhibits Hoxa9 expression in low-expressing E2A-

HLF transformed cells, even more so than the house-keeping genes (Fig. 3.11). 

It is also possible that the inhibition of other cyclin-dependent kinases may be 

leading to the toxicity and gene expression decreases observed in these assays. 

Of note, flavopiridol is currently in clinical trials for the treatment of leukemia and 

other cancers, and its potency is attributed to inhibiting many CDKs. 

Nonetheless, in combination with other drugs, it is showing promise as a 

therapeutic as it targets cycling cells and recruits quiescent leukemic cells into a 

proliferative state [109,110,111]. However, it is largely protein-bound and the 

dosage is limited by diarrhea and other side effects. 



 51 

            
Figure 3.11 Effects of flavopiridol on gene expression qPCR analysis of gene 
expression in MLL-ENL (left) and E2A-HLF (right) transformed cells after 24 hour 
treatment with flavopiridol. Data are normalized to U2 snRNA. 
  

Assessment of Dot1L as a therapeutic target 

Dot1L is different from other histone lysine methyl transferases in that it 

does not have a SET domain, and it methylates H3 in the globular domain of the 

nucleosome [112]. Furthermore, it is the only known H3K79 methyl transferase. 

Characterizing this enzyme in normal and pathological conditions has been an 

active area of research for the past several years. Although Dot1L is necessary 

for mammalian development [113], loss of Dot1L is relatively well-tolerated in 

adult mice (Jo et al, in preparation). This, along with its unique catalytic activity, 

makes it an attractive candidate as a therapeutic target.  

ChIP studies performed for Dot1l show that the enzyme is present at 

elevated levels at MLL fusion target loci in a pattern similar to the MLL fusion 

proteins (Fig. 3.12A, B). While monomethylation of H3K79, a regulatory mark 

[96], is higher in the E2A-HLF cells, di and trimethylation of H3K79, marks 

associated with active transcription [96], are higher in cells transformed by MLL 

fusion proteins, showing a broad distribution across the locus. These findings are 

consistent with recent ChIP experiments performed on human ALL cell lines 
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[102] and primary ALL blasts [50], which show that precursor B ALLs with MLL 

rearrangements show large blocks of histone H3 lysine 79 di-methylation at the 

HOXA9 locus compared to leukemic cells lacking MLL rearrangements. Elevated 

levels of Dot1L and its associated H3K79 di and trimethyl marks are also seen in 

the coding region of the Meis1 locus (Fig. 3.12B). Trimethylated H3K79 is 

consistently higher at Hoxa9 and Meis1 in MLL-AF9 transformed cells compared 

to MLL-ENL transformed cells even though MLL-ENL transformed cells express 

higher levels of these genes. This may be because MLL-AF9, which contains the 

90 C-terminal amino acids of AF9, is capable of recruiting positive regulators of 

Dot1L-mediated trimethylation, while MLL-ENL, which contains most of the ENL 

protein, is not able to perhaps due to the presence of regulatory domains. In 

regards to the association of H3K79 trimethylation with expressed genes, the C-

terminus of AF9 may not be sufficient for optimal transcriptional activity [100]. 

MLL-AF9 transformed cells lag behind MLL-ENL transformed cells in their levels 

of RNA polymerase II-associated factors at target loci (Fig. 3.9), which may be 

why they express lower levels of target genes.  

Knockdown of Dot1L in cells with MLL rearrangements show decreased 

Hoxa9 and Meis1 expression, demonstrating the importance of Dot1L to MLL 

fusion protein-mediated gene activation (Fig. 3.13, contributed by Stephanie Jo) 

[50]. Remarkably, our initial studies with Dot1L conditional knockout mice show 

that transformation by MLL-AF9 is absolutely dependent on Dot1L, while other 

oncoproteins, such as E2A-HLF or the combination of HOXA9 and MEIS1, are 
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not (Stephanie Jo, Hess lab), suggesting that loss of Dot1L function is not 

generally toxic to myeloid cells.  

 

Figure 3.12 Association of MLL fusion proteins with Dot1L ChIP-qPCR performed 
for Dot1L and its associating H3K79 methylation marks at Hoxa9 (A) and Meis1. 
(B). Schematics of Hoxa9 are depicted below the graphs, with red arrows 
indicating transcription start sites and black boxes indicating exons. HD is the 
homeodomain-encoding exon. IgG controls are shown in Figure 3.9. 
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Figure 3.13 Knockdown of Dot1L in MV4:11 Cells qPCR detection of Dot1L, 
Hoxa9, and Meis1 after siRNA-mediated knockdown of DOT1L expression in the 
MV4:11 human leukemia cell line. 

 

EAP association with target loci is dynamic and is altered by recruitment  

via MLL fusion proteins 

Previous studies in 293 cells, as well as the work reported here, indicate 

that the EAP complex regulates Hoxa9 and Meis1 transcription both in cells with 

and lacking MLL rearrangements [105]. Since the composition of the complex 

appears to be similar, the question arises how regulation of the complex is 

altered by MLL fusion proteins so that this does not allow for down-regulation of 

target genes. One attractive possibility is that through fusion with MLL, EAP 

association with target loci becomes dependent not only on interactions mediated 

by EAP subunits, but also on the amino terminal MLL sequences. The presence 

of a number of DNA binding motifs including the AT hooks, DNMT domain, as 

well as interactions with menin, PAFc, or wild-type MLL [55,57,73], could result in 
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tighter association with target loci, making dissociation of the complex resistant to 

normal physiologic differentiation cues.   

To explore this further, we first developed a model system in which we 

could study the association of EAP with target loci during the induction of myeloid 

differentiation. Myeloblastic M1 cells and our stably-transduced M1-AF9C-term cell 

line differentiate into macrophages in response to IL-6 (Fig. 3.14A, [114]), with 

dramatic down-regulation of Hoxa9 and Meis1 evident after 24 and 4 hours of 

treatment, respectively (Fig. 3.14B). An interesting note is that the stably over-

expressed AF9C-term localizes to Hoxa9 and Meis1. To date, Af9 has not been 

shown to directly regulate Hoxa cluster genes [115]. This result may be due to 

over-expression of AF9C-term. Another possibility is that the retroviral integration 

that occurred upstream of Hoxa9 and Meis1 in the M1 cell line [116,117], may 

recruit Af9 as a means to Hoxa9 and Meis1 overexpression. 

 

 
Figure 3.14 IL-6-induced differentiation of M1 cells A) Wright-Giemsa stained 
cells after 48 hours of IL-6 treatment. B) Gene expression of Hoxa9 and Meis1 
after 4, 8, or 24 hours of IL-6 treatment. 
 

The decreases in Hoxa9 and Meis1 expression are accompanied by rapid 

dissociation of EAP subunits including Af9, Cyclin T2, and Dot1 from the Hoxa9 
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locus, which is evident as early as 4 hours (Fig. 3.15B, C). Notably, with the 

exception of endogenous Af9, decreases in EAP expression are not detected 

until 8 hrs post-treatment (Fig. 3.15A), indicating that the dissociation precedes 

EAP down-regulation in differentiating cells. The MYC-AF9 is stably expressed 

by an MSCV promoter, and its expression is presumably independent of IL-6-

mediated gene regulation. Af9 and Enl were the earliest to dissociate from the 

Meis1 locus (Fig. 3.15C), and it remains to be seen whether their dissociation 

precedes Meis1 down-regulation. Thus, there may be differences in regulation 

between Hoxa9 and Meis1 in this experimental model.  

 

Figure 3.15 Expression and localization of EAP subunits during IL-6-induced 
differentiation of M1 cells A) Expression of EAP components after 4 and 8 hours 
of IL-6 treatment. B) ChIP for different EAP subunits indicated above the graphs 
at 4 and 8 hours. Schematics of Hoxa9 are depicted below the graphs, with red 
arrows indicating transcription start sites and black boxes indicating exons. HD is 
the homeodomain-encoding exon. C) ChIP for EAP components in the coding 
region of Meis1. 
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We then utilized the E2A-HLF, MLL-ENL, and MLL-AF9 transformed cell 

lines to test if EAP dissociation is altered by MLL fusion proteins. We screened a 

panel of differentiation agents to assess the sensitivity of the cell lines as 

measured by changes in Hoxa9 expression (Fig. 3.16). These experiments show 

that LPS down-regulates Hoxa9 expression by approximately 60% in E2A-HLF 

transformed cells, but not in MLL fusion transformed cells.      

              

Figure 3.16 Hoxa9 expression after 48 hour treatment with differentiation-
inducing agents qPCR for Hoxa9 expression after treatment with IL-6, GCSF, 
PMA, or LPS. Data are expressed as fold difference over PBS (IL-6, G-CSF, 
LPS) or ethanol (for PMA)-treated cells. Data are normalized to beta-actin. 
 

E2A-HLF transformed murine bone marrow cell lines are highly sensitive 

to induction of differentiation with lipopolysaccharide (LPS) (Fig. 3.17A-C), with 

dramatic downregulation of Hoxa9 (Meis1 is barely detectable in these cells) 

observed after 24 hours of LPS treatment (Fig. 3.17C). In contrast, cells 

transformed by MLL-AF9 or MLL-ENL do not show appreciable Hoxa9 or Meis1 

downregulation or differentiation (Fig. 3.17A-C). To show that LPS signaling is 

intact in the MLL fusion transformed cell lines, we tested the expression of c-Jun, 
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a target gene of LPS signaling [118]. Both MLL transformed cell lines showed 

upregulation of c-Jun, although the increase in MLL-AF9 transformed cells is 

relatively modest (Fig. 3.17C). It remains possible that E2A-HLF transformed 

cells express higher levels of the LPS receptor, co-receptors, or signaling 

intermediates or regulators. However, since the proteins involved in the LPS 

signaling pathway in myeloblasts is unknown, this possibility could not be tested. 

Another explanation for the observed difference in Hox expression is that 

the MLL fusion protein alters association of EAP with target loci. In support of 

this, ChIP shows that in E2A-HLF transformed cells, key EAP subunits, including 

Enl, Af9, and Dot1l, dissociate from the Hoxa9 and Meis1 loci in response to LPS 

(Fig. 3.18A, B). In contrast, cells transformed by either MLL-AF9 or MLL-ENL 

show persistent association of these EAP subunits with the loci after LPS 

treatment. It is possible that a consequence of EAP dissociation is the 

dissociation of RNA polymerase II as we detected decreases in total Pol II 

binding at Hoxa9 and Meis1 in terminally differentiated E2A-HLF cells, while Pol 

II levels at these loci in MLL fusion-transformed cells were unchanged or 

elevated (Fig. 3.18A,B).  

There are other explanations as to how EAP subunits may be retained at 

target loci by MLL fusion proteins. The MLL fusion protein may recruit other 

proteins to target loci in order to maintain EAP association, or they may prevent 

the recruitment of proteins that displace EAP from target loci. Insight into these 

possibilities may be gleaned from the identification of proteins associating with 
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EAP after LPS treatment in LPS-sensitive E2A-HLF transformed cells versus 

LPS-resistant MLL fusion transformed cells. 

 

Figure 3.17 MLL fusion transformed cell lines are resistant to LPS-induced 
differentiation A) Wright-Giemsa staining of cells after 24 hour LPS treatment. B) 
Flow cytometric analysis on LPS- and PBS-treated cell lines for forward scatter 
(size), side scatter (granularity), and the cell surface differentiation markers c-Kit 
and Gr-1. Black and blue graphs represent PBS and LPS treated cells, 
respectively. Percentage of total cells in the gated region is indicated in the top-
right corner of the boxes. C) qPCR for Hoxa9, c-Jun, and Meis1 expression. 
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Figure 3.18 Dissociation of EAP from target loci after LPS treatment A) ChIP-
qPCR for EAP components across Hoxa9 in leukemia cell lines after 24 hours of 
LPS treatment. Schematics of Hoxa9 are depicted below the graphs, with red 
arrows indicating transcription start sites and black boxes indicating exons. HD is 
the homeodomain-encoding exon. B) ChIP-qPCR for binding in the coding region 
of Meis1. Note that each cell line was subjected to experimentation on different 
days. Thus, % Total Inputs may not be directly comparable between the three 
cell lines for technical reasons such as differences in antibody and sample 
preparation. 
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Discussion 

Mechanism of the Fusion Partner 

The mechanism by which MLL translocation partners deregulate 

transcription is beginning to be defined. One of the first insights was provided by 

Bitoun et al. who identified proteins in human embryonic kidney cells that 

associate with the MLL translocation partner AF4, including ENL, AF5q31, CDK9 

and CYCLIN T1 [119]. AF4, in association with ENL and AF9, was found to 

stimulate activity of the RNA polymerase II (RNA Pol II)-CTD kinase pTEFb and 

the histone methyltransferase DOT1L. Subsequently, we reported a complex of 

proteins termed EAP for ENL-associated Proteins or Elongation Assisting 

Proteins that interacts with the MLL translocation partner ENL in 293 cells [105]. 

EAP is similar to the complex reported by Bitoun et al. but includes a number of 

additional interacting proteins such as AF10, PC3, RING1b and others. 

Importantly, the amino acids in ENL that directly interact with DOT1L were found 

to be essential for MLL-ENL to transform bone marrow progenitors. This, 

together with earlier data showing that the MLL-DOT1L fusion is sufficient for 

leukemic transformation [98], suggested that DOT1L methyltransferase activity is 

crucial for HOX gene deregulation and transformation seen in leukemias with 

MLL rearrangements.  

 pTEFb, which interacts with AF4 family members [99,100,120] has also 

been shown to be critical to MLL fusion protein-mediated transformation [100]. 

Yokoyama et al highlight the importance of pTEFb, which is shown to be part of a 

core complex termed AEP that is physically distinct from the DOT1L complex. 
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They show that fusing the pTEFb-interacting domain of AF4 family members to 

MLL is necessary and sufficient for leukemic transformation, while contrary to a 

previous report [98], DOT1L is not sufficient. However, the authors do not rule 

out the importance of DOT1L to transformation. Thus, both CTD kinase and 

histone methyl transferase activities of MLL fusion protein complexes appear to 

be critical to their ability to aberrantly activate the expression of leukemogenic 

genes. 

Significance 

Deregulation of the A cluster HOX genes and MEIS1 is emerging as a 

very common mechanism of transformation in acute leukemia [34]. It is also 

becoming apparent that controlling transcriptional elongation plays a central role 

in regulating transcription at these loci. The Drosophila Hox genes Ultrabithorax 

and Abdominal-B, for example, have Pol II associated with their proximal 

promoters, even though they are not expressed [121]. Similarly, Pol II is also 

present at silenced genes in mammalian cells [122]. Furthermore, mutations in 

elongation factors elongin A or Cdk9 result in homeotic defects associated with 

Pol II stalling [123].   

Just as transcriptional elongation is regulated in the developing embryo, 

deregulation of transcriptional elongation is emerging as an important 

mechanism in growth regulation and oncogenesis. For example, high levels of 

CDK9 expression are associated with a variety of solid tumors including 

neuroblastoma, primitive neuroectodermal tumors, prostate cancer and a wide 

range of lymphomas [124]. The mechanisms regulating CDK9 association with 
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promoters are incompletely defined. In some cases, recruitment appears to 

mediated by the bromodomain containing-protein BRD4, while in other cases, 

specific transcription factors such as MYC recruit pTEFb directly [97]. From work 

presented here and in previous experiments [105,119], it now is clear that 

another recruitment mechanism, particularly important for Hox gene regulation, 

involves interactions with the EAP complex.   

The amount of evidence showing that deregulated recruitment of DOT1L 

plays a role in oncogenesis is also increasing rapidly. One of the first connections 

was that DOT1L interacts with the MLL translocation partner AF10 and that its 

methyltransferase activity is important for MLL fusion protein-mediated 

transformation [98]. Subsequent studies and the work reported here implicate 

DOT1L in transformation by other MLL fusion proteins (MLL-AF4, MLL-ENL, 

MLL-AF9) as well as by the CALM-AF10 translocation in AML and SET-NUP214 

in T-ALL [50,89,105].  As is the case for pTEFb, the mechanisms regulating 

DOT1L association with target loci are poorly understood.   

By association with the EAP complex, both CDK9 and DOT1L would be 

coordinately recruited to target promoters such as the HOX loci.  While many 

mechanisms are possible, one possibility is that EAP is recruited via the YEATs 

domains in AF9 or ENL, which bind histones H1 and H3 [77], wild-type MLL 

[15,73], or AF10’s PHD finger, a domain that binds trimethylated histone 3 in 

other proteins [15,125]. The central role of AF9 and ENL in transcriptional 

regulation of the HOX loci is highlighted by the histone H3 lysine 79 

demethylation and loss of HOX transcription with ENL knockdown [105] and by 
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the finding that Af9 knockout mice show homeotic transformations and posterior 

shifts in Hox gene expression [115]. Importantly, our experiments show that EAP 

association with target loci is dynamic and under active regulation, as the 

complex rapidly dissociates from the Hox and Meis loci within 4 hours of 

treatment with differentiation-inducing agents.  

A number of possible models can be imagined for how the EAP complex 

results in persistent high-level Hox transcription in cells with MLL fusion proteins.  

The finding of increased levels of EAP subunits in the presence of MLL fusion 

proteins and the lack of silencing of the Hox and Meis loci in these cells in 

response to induction of differentiation suggests the model shown in Fig. 3.19. In 

this model, fusion of EAP subunits to N-terminal MLL sequences, as occurs in 

mixed lineage leukemia, alters association of the EAP complex so that levels of 

the complex are increased and dissociation is impaired. This results in persistent 

Hox and Meis gene expression in spite of differentiation signaling cues.  

                               

Figure 3.19 Model for EAP regulation of Hox genes in hematopoietic cells with 
and lacking MLL rearrangements 
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Remaining questions 

Other activities of EAP 

There are other potential activities of the EAP complex that have yet to be 

explored. A robust phospho-Ser5 activity on RNA polymerase II was detected 

after immuno-purification of AF9C-term-associated proteins from M1 cells and 

incubation with recombinant CTD (Fig. 3.20). Interestingly, a higher weight band 

at the expected size of endogenous hyper-phosphorylated RNA polymerase II 

was detected as well. This indicates that AF9 C-term associates with either hyper-

phosphorylated RNA polymerase II or hypo-phosphorylated RNA polymerase II 

that was phosphorylated in the kinase reaction.  

                 

Figure 3.20 phospho-Ser5 CTD kinase activity of EAP A schematic of the 
experimental design is shown on the left. After immunoprecipitation and washing, 
FLAG beads were incubated with recombinant RNA polymerase II CTD in a 
kinase reaction mixture that contains ATP. On the right, is a blot for phospho-
Ser5 after the kinase reaction. The arrows indicate Ser 5 phosphorylated 
recombinant CTD (lower arrow) and hyper-phosphorylated RNA polymerase II 
(upper arrow).  
 

ChIP data show that MLL fusion protein-transformed cells have elevated levels of 

phospho-Ser5 (Fig. 3.9) and in the case of MLL-ENL, RNA polymerase II, and 
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mass spectrometric-based analysis (Table 4) of AF9 C-term -associating proteins 

identified 13 subunits of the Mediator complex (Table 3.3), which is involved in 

assembly of the pre-initiation complex and bridges RNA polymerase II to 

transcription factors. Altogether, these data implicate EAP in early steps of RNA 

polymerase II maturation.  

There are many CDKs that are reported to phosphorylate Ser5 of RNA 

polymerase II, such as CDK7 and CDK1, the latter of which was identified by 

mass spectrometry to associate with AF9 C-term. By Western blot, an association 

with the transforming domain of AF9 was weakly detected (Fig. 3.21A). However, 

ChIP for CDK1 at the Hoxa9 locus of MLL-ENL-transformed cells shows that it is 

present, while there is barely any CDK1 detectable at Hoxa9 in the E2A-HLF-

transformed cells (Fig.  3.21B).  

 

Figure 3.21 Association of CDK1 with EAP A) Western blot for CDK1 after AF9 C-

term purification from M1 cells. B) ChIP-qPCR for CDK1 at Hoxa9 in fusion-
transformed cells. Schematics of Hoxa9 are depicted below the graphs, with red 
arrows indicating transcription start sites and black boxes indicating exons. HD is 
the homeodomain-encoding exon. 
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Thus, CDK1 is associated with the Hoxa9 locus, however a close connection with 

the EAP complex is not convincing. It is worth exploring whether other kinases 

may be responsible for Ser5 phosphorylation of RNA polymerase II seen in the in 

vitro assay. The other possibility is that pTEFb has the ability to phosphorylate 

Ser5 in these experimental conditions.  

Regulation of EAP  

Defining how cell signaling pathways impinge upon EAP’s activity and 

association with DNA is another important topic for future investigation. It is 

noteworthy in this regard that both Lilliputian, the Drosophila homolog of 

AF4/FMR2, and Dot1 appear to be downstream effectors of the RAS signaling 

pathway [126]. Dot1L is also linked to the Wnt signaling pathway, which is 

essential to the development of leukemia cells [101,127]. In our experiments, we 

identified many phospho-sites in several different EAP components. Interestingly, 

a motif that is recurrent in many EAP subunits was phosphorylated in LAF4, 

AF5q31, Cyclin T2, and AF9 (Fig. 3.22).  

                  
Figure 3.22 CDK consensus site in EAP components CDK consensus site is in 
red. Peptides are from EAP components indicated to the right. “p” indicates 
phosphorylated serines identified by mass spectrometry. 
 

This motif, SPXK, is a CDK consensus site [128] and is found in critical domains 

of EAP components, including the transactivation domain of AF9 and the histone 

methyl transferase domain of Dot1L. It is also found among the AT hooks of MLL 

and other DNA binding proteins. Furthermore, a study predicting substrates of 
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CDK1 identifies Dot1L and the MLL homolog ASH1 as potential substrates [129]. 

 In order to explore whether phosphorylation might be an important mode 

of regulation of the EAP complex, we immunoprecipitated AF9 C-term from M1 cells 

after PBS or LPS treatment and blotted with phospho-threonine and phospho-

serine antibodies (Fig. 3.23, left). Interestingly, we found a downward shift in 

migration of a band corresponding to the size of AF9 C-term (Fig. 3.23, left), 

possibly indicating that AF9 C-term is dephoshorylated in response to IL-6 

signaling. However, an anti-FLAG blot for FLAG-AF9 C-term is necessary to ensure 

that these bands are reflecting changes in AF9C-term rather than some other 

protein. 

       

Figure 3.23 Western blot for AF9 C-term -associating proteins after 24 hours of IL-6 
treatment FLAG-Control or FLAG-AF9C-term was IP’ed from IL-6-treated M1-AF9 C-

term cells. Arrows indicate what are proposed to be the hyper- and hypo-
phosphorylated forms of AF9. Antibodies used for detection are indicated below 
the blots. 
 

To determine if this modification altered AF9 C-term’s ability to interact with other 

EAP subunits, we blotted for Cyclin T1 and Cdk9 as well (Fig. 3.23, right). These 

two associations were retained in spite of the modifications to AF9C-term. Thus, it 

could be hypothesized that IL-6 signaling, which induces differentiation through 

the JAK-STAT pathway in M1 cells [130], leads to the dissociation of AF9 C-term 

and pTEFb from DNA (Fig. 3.15), possibly through direct or indirect post-
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translational modifications (PTMs) of AF9C-term. However, these EAP components 

remain associated together. It is possible that they relocate to other genes or are 

sequestered away as an inactive complex. Whether other associations such as 

those with Dot1L and the Polycomb proteins are maintained in response to 

differentiation was not tested. It will be interesting to see to what extent this 

complex remains associated in different physiological conditions.  

 Of further interest is the identification of signaling pathways that maintain 

or enhance EAP associations and enzymatic activity. Firstly, it is important to 

know which phosphorylation or other PTM sites are critical to localization, protein 

and DNA interactions, and enzymatic activities and to identify the enzymes 

responsible for them. This may reveal new therapeutic targets, such as kinases, 

phosphatases, and other enzymes that are aberrantly activated in MLL-

rearranged leukemias. 

EAP association with transcriptional repressors  

Paradoxically, we and other groups identified transcriptional repressors in 

association with AF9 and ENL [78,79,131]. Preliminary experiments show that 

the MLL fusion-transformed cells have higher levels of Pc3 and Ring1b at Hoxa9 

and Meis1 than the E2A-HLF-transformed cells (Fig. 3.24), which have much 

lower levels of expression of these genes (Fig. 3.6). Their binding appears to be 

independent of H3K27 and H3K9 repressive marks, which are similar between 

the two cell lines (Fig. 3.24). Furthermore, Ring1b dissociates along with 

transcriptional activators in response to IL-6-induced Hoxa9 downregulation (Fig. 

3.25). We also assessed binding of Polycomb proteins and associating 
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repressive marks at the Hoxa9 locus after LPS treatment. In E2A-HLF 

transformed cells that experience reductions in Hoxa9 after LPS treatment (Fig. 

3.17C), Ring1b remains at the locus, while Pc3 dissociates (Fig. 3.26A, top 

graphs). There are slight decreases in H3K27 trimethylation and increases in 

H3K9 trimethylation, which are histone marks associated with silenced genes 

(Fig. 3.26A, bottom graphs). In the MLL fusion protein-transformed cells, which 

maintain Hoxa9 expression after LPS treatment, both Pc3 and Ring1b dissociate 

from Hoxa9 (Fig. 3.26B, C, top panels). H3K9 and H3K27 trimethylation levels 

remain unchanged or decrease at Hoxa9 in these cells (Fig. 3.26B, C, bottom 

panels). One explanation is that a proper balance of the Polycomb proteins is 

important to maintaining the structural integrity of the EAP complex. However, it 

is also possible that they have yet to be discovered roles in transcriptional 

regulation. Indeed, ongoing experiments are revealing that Polycomb proteins 

have roles in transcriptional activation during leukemogenesis (Jiaying Tan, Hess 

lab). Other groups have also implicated Ring1b and other Polycomb proteins in 

the activation of Hox genes during embryonic development and propose that they 

may be required for H3K9 acetylation, a mark associated with transcriptionally 

active genes [132,133]. 
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Figure 3.24 Polycomb binding at Hoxa9 ChIP-qPCR for Polycomb proteins and 
associating repressive histone marks. Schematics of Hoxa9 are depicted below 
the graphs, with red arrows indicating transcription start sites and black boxes 
indicating exons. HD is the homeodomain-encoding exon. IgG controls are 
shown in Fig. 3.36 for top panel and Fig. 3.21 for bottom panel. 

 

 

Figure. 3.25 Dissociation of Ring1b from Hoxa9 locus in differentiating M1-AF9 C-

term cells ChIP-qPCR for Ring1b and transcriptional activators at Hoxa9 after 24 
hour IL-6 treatment. Schematics of Hoxa9 are depicted below the graphs, with 
red arrows indicating transcription start sites and black boxes indicating exons. 
HD is the homeodomain-encoding exon. 
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Figure 3.26 Polycomb dissociation from Hoxa9 after 24 hours of LPS treatment 
ChIP-qPCR for Polycomb proteins and associating repressive histone marks. 
Schematics of Hoxa9 are depicted below the graphs, with red arrows indicating 
transcription start sites and black boxes indicating exons. HD is the 
homeodomain-encoding exon. 
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The pTEFb inhibitors HEXIM1 and HEXIM2 were also found to associate 

with AF9 C-term. The HEXIM proteins, in association with 7SK snRNA, inhibit the 

catalytic activity of CDK9 and are thought to sequester pTEFb away from DNA 

[103]. Our finding that AF9 C-term associates with these inhibitory constituents 

indicates that there is either a separate EAP inhibitory complex sequestered 

away from DNA or that HEXIM is at AF9 C-term target loci. We performed ChIP to 

explore whether HEXIM localizes to DNA with the active EAP complex and 

indeed detected HEXIM1 at Hoxa9, with similar amounts between the E2A-HLF 

and MLL-ENL-transformed cells (Fig. 3.27A). HEXIM1 levels are present at 

significantly higher levels at Meis1 in the E2A-HLF cells (Fig. 3.27B), which have 

barely detectable Meis1 expression.  

We also tested for the presence of the HEXIM-interacting protein 

Nucleophosmin 1 (Npm1) [134]. NPM1 is a multi-functional protein, with roles in 

ribosome biogenesis, genomic stability, histone chaperoning, protein 

stabilization, and transcriptional regulation, among many others [135]. We found 

that Npm1 also localizes to Hoxa9 and Meis1, with higher levels in the low-

expressing E2A-HLF transformed cells (Fig. 3.27A, B). Of note, while MLL fusion 

proteins express Hexim1 at levels similar to E2A-HLF-transformed cells, they 

express less Hexim2 and Npm1 (Fig. 3.27C).  Thus, the differences in Npm1 

levels found by ChIP-qPCR at the Hoxa9 and Meis1 loci may be due to 

differences in expression at the transcriptional level. 
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Figure 3.27 HEXIM and NPM1 expression and localization in fusion transformed 
cell lines A) ChIP for HEXIM1 and NPM1 at Hoxa9. Schematics of Hoxa9 are 
depicted below the graphs, with red arrows indicating transcription start sites and 
black boxes indicating exons. HD is the homeodomain-encoding exon. B) 
Binding at coding region of Meis1. C) qPCR for expression of Hexim1, Hexim2, 
and Npm1 in the fusion-transformed cell lines normalized to Gapdh. 
 

We also analyzed Hexim1 and Npm1 localization in M1 cells that express 

the transforming domain of AF9 or a control fragment with the hypothesis that 

AF9 may hinder Hexim and Npm1 binding to the active locus. These experiments 

showed that the M1-AF9 C-term cells had approximately two-fold less Hexim1 and 

Npm1 at the Hoxa9 and Meis1 loci (Fig. 3.28A, B).  
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Figure 3.28 Hexim1 and Npm1 localization in M1-control and M1-AF9 C-term cell 
lines A) ChIP-qPCR for HEXIM1 and NPM1 at Hoxa9. Schematics of Hoxa9 are 
depicted below the graphs, with red arrows indicating transcription start sites and 
black boxes indicating exons. HD is the homeodomain-encoding exon. B) 
Binding at coding region of Meis1. 
 

Interestingly, MLL fusion protein-transformed cells are highly resistant to 

the chemical HMBA (Fig. 3.29A), which upregulates HEXIM expression and 

leads to the differentiation of myeloid leukemia cells [136]. It will be interesting to 

determine whether Hexim levels increase at Hoxa9 in HMBA-treated E2A-HLF 

cells and whether HMBA-treated MLL fusion protein-transformed cells are able to 

block this localization. The results obtained thus far indicate that MLL-ENL 

transformed cells avoid HMBA-induced Hexim upregulation at the transcriptional 

level, while MLL-AF9 and E2A-HLF-transformed cells have increased levels of 

Hexim1 or 2 in response to HMBA (Fig. 3.29B). All cell lines experience slight 

increases in Npm1 expression (Fig. 3.29B). Thus, this may be a system in which 

to test for localization of Npm1 and Hexim proteins to Hox and Meis loci. Forcing 

the expression of HEXIM1 and NPM1 by retroviral transduction in different 

hematopoietic cell lines is another approach to testing whether these proteins are 
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recruited to Hoxa9 to inhibit transcription and if MLL fusion proteins block this 

recruitment. 

 

Figure 3.29 Sensitivity of fusion-transformed cell lines to HMBA A) Cell count 
after 48 (left) and 72 (middle) hour treatments with HMBA. Control DMSO 
treatment (right) was used to assess general sensitivity of the cell lines. B) 
Expression of Hexim1, Hexim2, Npm1, and Hoxa9 after 24 hour HMBA 
treatment. Data are normalized to U2 snRNA. 
 

We began to explore how Npm1 and Hexim localization are altered during 

changes in Hoxa9 expression in the LPS differentiation system. These 

preliminary results do not show changes in the levels of these proteins at the 

locus, but rather a possible change in the distribution that may impact Hoxa9 

expression (Fig. 3.30). Upon LPS treatment of E2A-HLF-transformed cells and 

Hoxa9 down-regulation, Npm1 and Hexim1 appear to occupy the coding region 

of the gene. In the MLL fusion transformed cells, which do not show decreases in 

Hoxa9 expression in response to LPS, Npm1 and Hexim1 appear to be confined 

to the promoter region. Thus, Npm1 and Hexim1 may exert their inhibitory 

functions on the elongation machinery, as would be expected from the role of 

pTEFb in transcriptional elongation. 
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Figure 3.30 Hexim and Npm1 expression and localization after 24 hours of LPS 
treatments A) ChIP for HEXIM1 and NPM1 at Hoxa9 Schematics of Hoxa9 are 
depicted below the graphs, with red arrows indicating transcription start sites and 
black boxes indicating exons. HD is the homeodomain-encoding exon. B) 
Expression of HEXIM1, HEXIM2, and Hoxa9 after LPS treatment. Data are 
normalized to Gapdh. 
 

Further studies show that NPM1 represses Hoxa9 expression. In 

luciferase reporter assays using 293 cell transfectants, NPM1 was shown to 

repress MLL-fusion protein-mediated transactivation (Fig. 3.31), and this effect 

was potentiated by co-transfection with HEXIM1. In addition, a mutant of NPM1, 

NPMC+, that localizes to the cytoplasm and sequesters HEXIM1 [134] leads to 

activation of Hoxa9 promoter activity. Importantly, NPMC+ is the most common 

mutation found in leukemia, present in one third of all adult leukemias, and it is 
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associated with the upregulation of HOX genes [137,138]. Thus, it appears that 

NPM1 may have important roles in directly regulating HOX expression.  

            

Figure 3.31 Effects of NPM1 and HEXIM1 on MLL fusion protein-mediated 
Hoxa9 activation Luciferase reporter assay expressing luciferase from a Hoxa9 
promoter after transfection with the plasmids indicated below. 
 

We moved into a hematopoietic system to test whether NPM1 and 

NPMC+ have effects on Hox expression and Hox-mediated leukemic 

transformation. Preliminary experiments show that MLL-AF9 loses its ability to 

form leukemic colonies from hematopoietic progenitor cells in the presence of 

NPM1 (Fig. 3.32). Whether this is due to NPM1’s direct antagonism of MLL-AF9 

remains to be seen.  
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Figure 3.32 NPM1 inhibition of MLL-AF9-mediated leukemogenesis Methyl 
cellulose cultures (left) showing MLL-AF9 loses its ability to form large, compact 
colonies in the presence of NPM (lower panel). Wright-Giemsa staining shows 
myeloblast that form after MLL-AF9 transduction and monocytic cells when NPM 
is co-transduced with MLL-AF9 (bottom right). 
 

Further, we tested whether the cytoplasmic mutant, NPMC+ could lead to 

leukemic transformation alone or in cooperation with another oncoprotein, FLT3-

ITD, which is commonly found in leukemias with NPMC+ [139]. The expression 

of NPMC+ alone in hematopoietic cells does lead to the activation of Hoxa9 (Fig. 

3.33), and this effect is enhanced by co-transduction with FLT3-ITD (Fig. 3.33). 

However, NPMC+ alone was not sufficient to lead to leukemic colony formation in 

methyl cellulose.  
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Figure 3.33 FLT3-ITD and NPM1 effects on Hoxa9 expression qPCR detection of 
Hoxa9 expression after one week of retroviral transduction with the constructs 
indicated along the x-axis. Results are expressed as fold difference over MSCV-
transduced cells. Data are normalized to Gapdh. 
 

Transduction with NPMC+ and FLT3-ITD did lead to the formation of very large, 

atypical colonies that exhibit high levels of Hoxa9 expression and uncontrolled 

cell growth. However, this phenotype does not appear to be due to the loss of 

NPM’s nuclear function as the phenotype was greatly potentiated by the 

combination of wild-type NPM1 and FLT3-ITD (Fig. 3.34)      

        

Figure 3.34 Morphology of hematopoietic cells co-transduced with FLT3-ITD and 
NPM1 Methyl cellulose colonies (left) show cohesive cells that develop after co-
transduction of NPM1 and FLT3-ITD. Wright-Giemsa staining reveals high 
nuclear to cytoplasmic ratio indicating that they may be neoplastic. 
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These cells do not appear to express hematopoietic lineage markers. It is 

possible that a non-hematopoietic cell was transformed to yield these colonies, or 

more provocatively, that a hematopoietic cell trans-differentiated into another cell 

type in response to the combination of FLT3-ITD and NPM1. These phenomena 

require more investigation to identify the cell type and the cell that it originated 

from. 

Redundancy in EAP  

Many of the interactions identified with AF9 raise the possibility of 

redundancy between subunits. There is structural and functional homology 

among, LAF4, AF5q31, and AF4, CYCLIN T1 and CYCLIN T2, and AF9 and 

ENL. One possibility is that they exist in distinct complexes, potentially at 

different target genes. The fact that we were never able to observe Cyclin T1 at 

Hoxa9 in murine or human leukemia cells may indicate that Cyclin T2 is the 

primary regulator of Hox genes.  

Similarly, relatively low levels of Af9 were detected at Hoxa9 and Meis1 in 

MLL-ENL transformed cells (Fig. 3.7), possibly suggesting that MLL-ENL does 

not require Af9 for transcriptional activation. Furthermore, Enl and AF9 were 

weakly identified as interacting proteins with AF9C-term and ENL, respectively 

(Table 3.3, [105]). It should be noted that, in these experiments, MLL-AF9 

appears to be a weaker oncogene than MLL-ENL with regards to Hoxa9 and 

Meis1 expression (Fig. 3.6) and RNA polymerase II-associated factors (Fig. 3.9). 

This may be due to the fact that MLL-AF9 is expressed at 25% the levels of MLL-

ENL (Fig. 3.35).            
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Figure 3.35 Expression of FLAG-MLL fusion proteins in MLL fusion transformed 
cells qPCR detection of MLL fusion proteins in fusion transformed cell lines 
priming FLAG sequence and N-terminal MLL sequence. Data are normalized to 
Gapdh. 
 

However, another possibility is that MLL-ENL, which contains most of the ENL 

protein, has a greater capacity to interact with positive regulators of transcription 

than the 90 C-terminal residues of AF9 found in the MLL-AF9 used in these 

experiments. For instance, MLL-ENL contains the histone binding YEATS 

domain that possibly aids in efficient targeting to loci, while MLL-AF9 lacks this 

domain. MLL-AF9 does recruit Enl to Hoxa9 and Meis1 (Fig. 3.7). Thus, in cases 

of MLL-rearranged leukemias, where much of AF9 or ENL may be lost from the 

translocation, there may be advantages to having both AF9 and ENL at target 

loci, and the importance of these proteins to each other, even given the weak 

association, has not been ruled out.  

A preliminary ChIP experiment indicates that both AF4 and AF5q31 are 

present at the Hoxa9 locus (Fig. 3.36). Thus, two or more of the FMR2 proteins 

may function together. In support of this, AF4 and AF5q31 were shown to 

preferentially heterodimerize through their C-terminal domains [100]. The precise 

role of these proteins remains to be defined. They do not appear to differ greatly 
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in their levels at Hoxa9 between the E2A-HLF and MLL fusion transformed cells. 

Thus, there may be differences in their ability to stimulate pTEFb activity [119] 

through some yet to be discovered mechanism that regulates FMR2 protein 

activity or associations. 

 

Figure 3.36 FMR2 family member binding at Hoxa9 Schematics of Hoxa9 are 
depicted below the graphs, with red arrows indicating transcription start sites and 
black boxes indicating exons. HD is the homeodomain-encoding exon. 
 
Hierarchy of EAP 
 

The hierarchy in EAP remains unclear. Thus far, data have been 

presented suggesting that pTEFb, in association with AF4 members and ENL, is 

sufficient for MLL fusion protein-mediated leukemogenesis, with other events 

such as Dot1L activity occurring downstream. Our differentiation experiments, 

which show the earliest and most dramatic dissociation of AF9, ENL, and Cyclin 

T2, lend support to this idea (Fig. 3.15). However, the order of downstream 

events that are critical to Hox activation and the different EAP subunits involved 

are unclear and require more experimentation.  
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Chapter 4 

Concluding Remarks 

 MLL fusion proteins are multi-potent proteins that form a sophisticated 

transcriptional network,which leads to leukemia. Although there are many other 

aspects to the mechanism of MLL fusion protein-mediated leukemogenesis, 

several lines of evidence show that the fusion partner and its associating factors 

are critical. The work presented in this dissertation show the following: 

 The transforming domain of AF9 associates with other MLL fusion 

partners and enzymes associated with transcriptional elongation, including 

the CTD kinase pTEFb, and the HMT Dot1L, and this complex has been 

named Elongation Assisting Proteins (EAP). 

 EAP dissociates from target loci early in response to differentiation cues. 

 EAP remains bound at loci in the presence of MLL fusion proteins in spite 

of cues to differentiation. 

EAP components have also been identified in association with other MLL fusion 

partners, including AF4 and ENL, in independent studies [100,101,105,119]. A 

fascinating finding is that many of the nuclear fusion partners associate with each 

other, suggesting that they share a common mechanism of transformation. Even 

the cytoplasmic partners have been shown to recruit some of the same 

machinery as the nuclear partners albeit through an alternative mechanism [100]. 

This may greatly simplify therapeutic strategies of targeting MLL fusion protein 
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associated leukemias, which are heterogeneous due to the variety of possible 

fusion partners.

The most effective therapeutic targets will be the proteins or associations 

that present the least amount of harm to normal cells. Unfortunately, MLL fusion 

proteins exploit transcription factors that are needed for the transcription of most 

genes. Thus, from the data presented to date, targeting aberrant protein-protein 

interactions in the MLL fusion protein-associated complexes, such as those with 

Dot1L and pTEFb, show the most promise. Another interesting approach would 

be to exploit the dual nature of EAP, which appears to be a bi-functional complex 

that contains transcriptional activators and repressors. Identifying signaling 

pathways that control its transcriptional mode may reveal therapeutic targets as 

well.
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