A THEORY OF RECOGNITION

Technical Report No. 50
Electronic Defense Group
Department of Electrical Engineering

By: W. P. Tanner, Jr.
Approved by: A. B. Macnee

Project 2262

TASK ORDER NO. EDG-3
CONTRACT NO. DA-36-039 sc-63203
SIGNAL CORPS, DEPARTMENT OF THE ARMY
DEPARTMENT OF ARMY PROJECT NO. 3-99-04-042
SIGNAL CORPS PROJECT NO. 194B

May, 1955
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>1. BACKGROUND FOR THE THEORY</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The Detection Theory</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Definitions of Optimum</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Forced-choice Optimization</td>
<td>6</td>
</tr>
<tr>
<td>1.4 The Application of the Theory to Human Behavior</td>
<td>6</td>
</tr>
<tr>
<td>2. RECOGNITION FOR THE CASE OF TWO SIMPLE ALTERNATIVES</td>
<td>7</td>
</tr>
<tr>
<td>2.1 The Decision Axis for Two Signals</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Modification to Allow for Observation at both Frequencies</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Experimental Design</td>
<td>19</td>
</tr>
<tr>
<td>2.4 The Experiments</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Generality of the Theory</td>
<td>20</td>
</tr>
<tr>
<td>3. EXPANSION OF THE THEORY</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Requirement of a Set of Alternatives</td>
<td>29</td>
</tr>
<tr>
<td>3.2 The Existence of Hypotheses</td>
<td>31</td>
</tr>
<tr>
<td>3.3 The Entropy of the Alternative Ensemble</td>
<td>31</td>
</tr>
<tr>
<td>3.4 The Equivocation</td>
<td>32</td>
</tr>
<tr>
<td>3.5 Optimum Behavior Criteria</td>
<td>32</td>
</tr>
<tr>
<td>3.6 Complex Alternatives</td>
<td>33</td>
</tr>
<tr>
<td>3.7 Information Basis for a Choice between Complex Alternatives</td>
<td>33</td>
</tr>
<tr>
<td>4. CONCLUSIONS</td>
<td>34</td>
</tr>
<tr>
<td>APPENDIX I OBSERVER EFFICIENCY</td>
<td>35</td>
</tr>
<tr>
<td>APPENDIX II THURSTONE'S LAW OF COMPARATIVE JUDGMENT</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>41</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Illustration Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Block Diagram Illustrating Basic Assumption</td>
</tr>
<tr>
<td>2</td>
<td>The Recognition Space for a Signal Known to be One of Two Frequencies</td>
</tr>
<tr>
<td>3</td>
<td>Simplified Diagrams for the Orthogonal Cases</td>
</tr>
<tr>
<td>4</td>
<td>Detection Case for a Signal Known to be at One of Two Frequencies. Observer 1. Duration .1 Sec.</td>
</tr>
<tr>
<td>5</td>
<td>Detection Case for a Signal Known to be at One of Two Frequencies. Observer 2. Duration .1 Sec.</td>
</tr>
<tr>
<td>6</td>
<td>Detection Case for a Signal Known to be at One of Two Frequencies. Observer 1. Duration .3 Secs.</td>
</tr>
<tr>
<td>7</td>
<td>Detection Case for a Signal Known to be at One of Two Frequencies. Observer 2. Duration .3 Secs.</td>
</tr>
<tr>
<td>8</td>
<td>Observer 1. Duration = .05 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>9</td>
<td>Observer 2. Duration = .05 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>10</td>
<td>Observer 1. Duration = .1 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>11</td>
<td>Observer 2. Duration = .1 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>12</td>
<td>Observer 1. Duration = .5 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>13</td>
<td>Observer 2. Duration = .5 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>14</td>
<td>Observer 1. Duration = 1 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
<tr>
<td>15</td>
<td>Observer 2. Duration = 1 Sec. Around 1000 ~ Recognition of One of Two Alternatives</td>
</tr>
</tbody>
</table>
ABSTRACT

The theory of signal detection as applied to the human observer is reviewed. The theory is then extended to include the simple case of recognizing a signal as one of a set of two alternatives, and experiments relating to this case are reported. The principles upon which the theory can be extended to cover more complex alternatives are developed.
A THEORY OF RECOGNITION

1. BACKGROUND FOR THE THEORY

The theory of statistical decision has previously been applied to the problem of the sensory detection of signals. In this paper a simple recognition problem is analyzed in the framework of statistical decision. The extension of the detection theory to include the problem of recognition is the first phase of general expansion of the theory to encompass the field of perception. To make this paper self-contained, a brief review of the detection theory, and its correspondence with data presently available, is presented. This presentation is followed by a development of the recognition theory for the simple case studied here. Finally, certain principles are outlined for the general extension of the theory. The paper is presented largely in terms of auditory theory, although it is felt that the theory is applicable to the entire field of human perception.

1. The Detection Theory

The application of the theory of signal detection, or statistical decision theory, depends on three basic assumptions.

1) Sensory systems function primarily as communication channels.

2) Sensory systems are noisy channels.

3) Central mechanisms, where decisions are made, are capable of approximating optimum use of the information gathered by the peripheral sensory mechanisms.
The assumptions are illustrated by the block diagram in Figure 1. The physical environment, which in the theory discussed below is equivalent to the signal and noise generators, presents an input to the receptor organ. The function of this organ is to transform the physical energy into neural activity. The information contained in the neural activity is then transmitted along the sensory pathways. These pathways are subject to internally generated noise. The information plus the noise added in transmission, is then presented to, or displayed at, cortical centers. The presentation is here considered as an observation, \(x \), upon which the decision is based. The key points of the theory are that noise is added in the transmission of the information, and that the decision making device is not a perfect device. A decrement in performance (from that which would be expected if a perfect device were placed at the receptor level) is attributed to the noise added in sensory transmission.

The fundamental problem in signal detection is the fixed observation interval problem\(^1\). That is, the observer is asked to observe the output of a sensory system, and is then asked to decide on the basis of his observation, whether this output arose from noise alone, or from signal plus noise. In this theory the signal is known to be from a certain ensemble of signals. This is the criterion approach. In other words, the observer chooses a set of observations (the criterion A) which he will say represents signal plus noise; all other observations are in the complement of the criterion, CA, and he will say that these represent noise alone. The notation \(\text{SN} \) denotes signal plus noise, and \(\text{N} \) denotes noise alone. If there are only a countable number of possible observations, each observation, \(x \), has the probability \(P_{\text{SN}}(x) \) of occurrence if signal plus noise is presented and the

\(1. \) The discussion in Sections 1.1 and 1.2 is based on an unpublished paper by T. G. Birdsall of the Electronic Defense Group, University of Michigan.
BLOCK DIAGRAM ILLUSTRATING BASIC ASSUMPTION.

FIG. 1.
probability \(P_N(x) \) of occurrence if noise alone is present. The likelihood ratio is defined as \(f(x) = \frac{P_{SN}(x)}{P_N(x)} \). Usually there are uncountably many observation points (\(x \) is a continuous variable), and the probability density functions \(f_{SN}(x) \) and \(f_N(x) \) must be used; the likelihood ratio is then the ratio of these two quantities.

The evaluation of a criterion is usually in terms of the integrals of the density functions over the criterion \(A \), since the integral \(f_{SN}(x) \) over \(A \) is the conditional probability of detection, \(P_{SN}(A) \), and the integral of \(f_N(x) \) over the criterion \(A \) is the conditional probability of a false alarm, \(P_N(A) \).

1.2 Definitions of Optimum

The theory of signal detectability is essentially this: a class of criteria is defined in terms of likelihood ratio. Six slightly different definitions of "optimum" are advanced, and under each definition the optimum is found to be in this class of likelihood-ratio criteria. The notation denoting a criterion in this optimum class is \(A(\beta) \), which means that the criterion contains all observations with likelihood ratio greater than \(\beta \), and contains none of those with likelihood ratio less than \(\beta \), (that is, \(\beta \) represents the boundary condition). Whether or not likelihood ratios equal to \(\beta \) fall in or out of the criterion is unimportant.

The six definitions of optimum, and their solutions (the exact values \(\beta \) to be used, called the operating level) are listed below:

1) The Weighted Combination Criterion. This criterion, by definition maximizes \(P_{SN}(A) - \beta P_N(A) \). Solution: \(A(\beta) \), that is the observer reports that a signal is present is \(f(x) \geq (\beta) \), where \(x \) is the stimulus magnitude.
2) Seigert's Ideal Observer. The observer employs a criterion that minimizes total error; this is a special case of the Weighted Combination Criterion. Solution: \(A(\beta) \) where \(\beta = \frac{P(N)}{P(SN)} \), the ratio of a priori probabilities.

3) Expected Value Observer. The observer employs a criterion that maximizes the total expected value, where the individual values are:

\[
V_{SN\cdot A} = \text{value of detection}
\]

\[
V_{N\cdot CA} = \text{value of a correct "no signal present"}
\]

\[
K_{SN\cdot CA} = \text{cost of a miss}
\]

\[
K_{N\cdot A} = \text{cost of a false alarm}
\]

This is a further refinement beyond Seigert's Ideal Observer.

Solution: \(A(\beta) \) where \(\beta = \frac{P(N) \left(V_{N\cdot CA} + K_{N\cdot A} \right)}{P(SN) \left(V_{SN\cdot A} + K_{SN\cdot CA} \right)} \)

4) The Neyman-Pearson Observer. The observer employs a criterion such that \(P_N(A) = k \), with \(P_{SN}(A) \) a maximum overall criteria.

Solution: \(A(\beta) \), where \(P_N[A(\beta)] = k \).

5) A Posteriori Probability Observer. Here the observer does not actually employ a criterion, he makes the best estimate of the probability that signal-plus-noise was the input leading to observation \(x = x(t) \)

\[
P_{X}(SN) = \frac{f(x)P(SN)}{f(x)P(SN) + 1 - P(SN)}
\]
6) Information Observer. This criterion maximizes the reduction in uncertainty, in the Shannon sense (Ref. 2), as to whether or not a signal was sent. Solution: \(A(\beta) \) where \(\beta \) is the solution to

\[
\beta = \frac{P(N)}{P(SN)} \cdot \frac{\log P_B(\beta) (N) - \log P_A(\beta) (N)}{\log P_A(\beta) (SN) - \log P_B(\beta) (SN)}
\]

1.3 Forced-Choice Optimization

A somewhat different optimization is that involved in the forced-choice psychophysical experiment. In the forced-choice experiment a signal is presented in one of \(n \) intervals either in time or space, and the observer's task is to state in which interval the signal occurred. Optimum behavior requires making an observation, \(x \), in each interval, and choosing the interval for which the likelihood ratio, \(l(x) = \frac{f_{SN}(x)}{f_N(x)} \), is greatest. The situation is somewhat different from the criterion approach, as is the \textit{a posteriori} observer.

1.4 The Application of the Theory to Human Behavior

A series of papers previously have dealt with experiments designed to test the applicability of the theory of statistical decision to signal detection by the human observer. The conclusions drawn from the experiments are the following:

1) A subject can observe well into noise. The observation variable, \(x \), is indeed continuous (Refs. 4, 5, 6, 7, 8, 9).

2) The observer can act to optimize expected values in the fixed-observation interval experiment. This is shown to be true for both vision (Refs. 4, 6) and audition (Ref. 9).

3) The observer can act as a Neyman-Pearson observer (Ref. 4).

4) The observer can act as an \textit{a posteriori} observer (Ref. 4).
5) The observer can optimize in the forced-choice experiment, as indicated by the predictability from forced-choice to yes-no experiments. The ordering extends beyond the first choice, as indicated by the second-choice and fourth-choice experiments (Refs. 4, 9).

6) Within limits the observer can optimize the use of knowledge of signal parameters. He can tune to a narrow band of frequencies in auditory experiments, and can, within limits, adjust his auditory bandwidth to knowledge of signal duration.

7) At any instant in time the observer is tuned to exactly one band of frequencies. To act as a wide band receiver is a process requiring time. (Refs. 4, 9).

8) When the observer is listening for a signal known to be at one of two frequencies, detection performance decreases as a function of the separation of the frequencies (See Section 2.2). This performance suggests a scanning-type mechanism (Refs. 5, 9).

These conclusions furnish the background for the recognition theory.

2. RECOGNITION FOR THE CASE OF TWO SIMPLE ALTERNATIVES

Recognition, by definition, is the process of classifying a signal as a particular one of a set. The fundamental problem treated here is the case of a set with two members, each a signal of a specified frequency, f_1 or f_2. Through the experimental design, the a priori probabilities of the two signals $P(S_1N) + P(S_2N) = 1.00$. The observation xy is now associated with two probability density distributions, $f_{S_1N}(xy)$ and $f_{S_2N}(xy)$. The decision is again based on likelihood ratio, as is shown in Equation 1.
If the decision function can be defined along an axis, the problem is similar to the detection problem with one of the probability distribution functions \(f_{S_1N}(x) \) or \(f_{S_2N}(x) \) substituted for \(f_N(x) \) of the detection problem.

2.1 The Decision Axis for Two Signals

The problem is illustrated in Figure 2.1. The axis, \(OX \), represents the decision axis for the detection case where the signal is known to be at \(f_1 \). The axis, \(OY \), represents the decision axis for the detection case where the frequency is known to be at \(f_2 \).

The distance, \(OX \), divided by the standard deviation of the noise distribution, \(f_N(x) \), is called \(d_1' \), the \(d' \) for detection of frequency \(f_1 \). The distance, \(OY \), divided by the standard deviation of \(f_N(y) \) is \(d_2' \), the \(d' \) for detection of frequency \(f_2 \). The \(d' \) for recognition of frequency when the signal is known to be either \(f_1 \) or \(f_2 \), is designated \(d_{1,2}' \). The distributions \(f_N(x) \), \(f_N(y) \), \(f_{S_1N}(x) \) and \(f_{S_2N}(y) \) are all assumed to have equal variance.

The problem considered is again the fixed observation interval problem. An observation, \(xy \), a function of time for \(T \) seconds, is the datum upon which the decision is based. The signal is known to be either \(f_1 \) or \(f_2 \), but not both. The \(f_{S_1N}(xy) \) is the joint probability density function \(f_{S_1N}(x) \) and \(f_N(y) \), while \(f_{S_2N}(xy) \) is the joint probability density functions \(f_{S_2N}(y) \) and \(f_N(x) \), assuming \(x \) and \(y \) are independent.

1. As the development is suggestive of Thurstone's law of comparative judgment, the similarities and differences between this theory and that law are discussed in Appendix II.
FIG. 2. THE RECOGNITION SPACE FOR A SIGNAL KNOWN TO BE ONE OF TWO FREQUENCIES.
If $f_{S_{1N}}(xy) = \frac{1}{2\pi} e^{-\frac{(x - d'_1)^2}{2} - \frac{y^2}{2}}$ (2)

and $f_{S_{2N}}(xy) = \frac{1}{2\pi} e^{-\frac{(y - d'_2)^2}{2} - \frac{x^2}{2}}$ (3)

then, from Eq. 1,

$log \ t(x) = \frac{x^2}{2} + xd'_1 - \frac{(d'_1)^2}{2} - \frac{y^2}{2} + \frac{y^2}{2} - yd'_2 + \frac{(d'_2)^2}{2} + \frac{x^2}{2}$

$= xd'_1 - \frac{(d'_1)^2}{2} - yd'_2 + \frac{(d'_2)^2}{2}$ (4)

If $d'_1 = d'_2$ and $d'_1 = 0$, then

$y = x - \frac{log \ t(x)}{d'_1}$ (5)

Thus, if $t(x)$ is held constant, this is the equation for a straight line with slope 1.00, and intercept $\frac{log \ t(x)}{d'_1}$. This line passes through the origin when $t(x) = 1.00$.

By equation 5 each value of $t(x)$ is represented by a line of slope 1 which intersects the line connecting $d'_1 = \bar{x}$ and $d'_2 = \bar{y}$ at right angles. From this it follows that the decision axis for the recognition problem can be mapped on the line, with S_1 normally distributed (\bar{x}, 1) and S_2 normally distributed (\bar{y}, 1).

Part of Figure 2 has been reproduced as Figure 3(a) to illustrate this point more simply. The dotted lines on this figure are lines of constant likelihood ratio. The slope of the line $\bar{x} \bar{y}$ is -1 while the slope of the lines of constant likelihood ratio are +1 (by Eq. 5). Therefore, these lines intersect at right angles. If the value of y is held constant, say at $y = 0$, then the values of x are normally distributed along the x axis, indicating the normality of the mapping along the $\bar{x} \bar{y}$ axis.
The assumption of independence implies that the angle \(\theta(XOY) = 90^\circ \). Therefore

\[
(d'_{1,2})^2 = (d'_{1})^2 + (d'_{2})^2
\]

(6)

If \(d'_{1} \neq d'_{2} \), then Equation 5 becomes

\[
y = x \frac{d'_{1}}{d'_{2}} - \frac{\log l(x) + (d'_{1})^2 - (d'_{2})^2}{d'_{2}}
\]

(7)

And it can be shown that \(l(x) \) constant is represented by a line which intersects the line \(\overline{xy} \) at right angles, the line \(l(x) = 1.00 \) intersecting at the mid-point. Thus, equation 6 also applies to this case.

Again, part of Figure 2 has been reproduced as Figure 3(b). The line connecting \(\overline{xy} \) is at slope \(-\frac{d'_{2}}{d'_{1}} \) while the lines of constant likelihood ratio are slope \(+\frac{d'_{1}}{d'_{2}} \), and again the two lines intersect at right angles. In the figure, the distance \(d_{xy} = \sqrt{(d'_{1})^2 + (d'_{2})^2} \). Solving for the intersection of the line \(l(x) = 1.00 \) and the line \(\overline{xy} \):

\[
\cos A = \frac{d'_{1}}{x \overline{xy}}
\]

\[
\cos A = \frac{a(\overline{xy})}{(d'_{1})^2 - (d'_{1})^2 - (d'_{2})^2} = \frac{2a d'_{1}(\overline{xy})}{(d'_{1})^2 + (d'_{2})^2}
\]

Evaluating:

\[
\frac{d'_{1}}{x \overline{xy}} = \frac{2a d'_{1}(\overline{xy})}{(d'_{1})^2 + (d'_{2})^2}
\]
FIG. 3. SIMPLIFIED DIAGRAMS FOR THE ORTHOGONAL CASES.
\[l = \frac{2a(x \bar{y})^2}{(d_1')^2 + (d_2')^2} \]

Since \((x \bar{y})^2 = (d_1')^2 + (d_2')^2\), \(a = \frac{1}{2}\) and thus, if \(l(x) = 1.00\), the line \(x \bar{y}\) is intersected at the midpoint.

If the two signals are not independent, or, in other words, if there is a common factor in the observations \(x\) and \(y\), then the signal spaces \(x\) and \(y\) are correlated. The degree of correlation is defined by the cosine of the angle \(\theta\). For this case

\[(d_{1,2}')^2 = (d_1')^2 + (d_2')^2 - 2 \cos \theta \cdot d_1' \cdot d_2' \] \hspace{1cm} (8)

Equation 8 is the general form. For the orthogonal or independent case, \(\cos \theta = 0\) and Equation 8 is identical with Equation 6. For the perfectly correlated case, such as two signals of the same frequency differing only in \(d'\) as a result of different intensity, \(\cos \theta = 1.00\) and

\[d_{1,2}' = |d_1' - d_2'| \] \hspace{1cm} (9)

Thus, in each case, the decision function has been defined along an axis, showing that each recognition case is essentially the same as the detection case.

This discussion furnishes the basis for the development of the theory. So far it is based on the assumption that the process of observing one frequency does not interfere with the process of observing at other frequencies. That this is not a valid assumption is indicated by the seventh and eighth conclusions in Section 1.4.
2.2 Modification to Allow for Observation at Both Frequencies

The experiments upon which the 7th and 8th conclusions of Sec. 1.4 are based suggest that for a signal 0.1 second in duration at a frequency of either 900 cycles or 1000 cycles, the detection rate is as if both frequencies can be observed simultaneously. When the frequencies are separated by more than 100 cycle the detection performance is lower until the separation reaches 300 cycles \(f_1 = 700 \) and \(f_2 = 1000 \), at which point the performance is such that only one frequency can be observed during the duration of the signal. The results first reported by Tanner and Norman (Ref. 5) are illustrated in Figures 4 through 7, because they relate closely to the data to be reported below. The curve above the other two is the forced-choice curve for a signal of known frequency. The middle curve is for a signal known to be at one of two frequencies when it is possible to observe at both frequencies simultaneously. The bottom curve is for signal known to be at one of two frequencies, when it is possible to observe at only one frequency. Thus, if the observer happens to be observing at the wrong frequency he is forced to make his choice without relevant information.

The data are placed on the graph as follows. First the \(d' \) is determined for the signals when the frequency is known exactly, and then the percentage correct for the experiment in which the signal is known to be at one of two frequencies is entered for that \(d' \). Two durations are represented, with the results virtually the same. It should be noted that it is likely that both of the durations are within the range for matching of bandwidth to duration (Section 1.4, Conclusion 6), and the results for the durations should not be markedly different.

Thus, for a signal 0.1 second in duration, the signal space is expected to show the angle of correlation, \(\theta \), increasing until the frequencies are separated by 100 cycles (900 or 1000 cycles) at which point a maximum of \(\theta = 90^\circ \) is expecte
FIG. 4. DETECTION CASE FOR A SIGNAL KNOWN TO BE AT ONE OF TWO FREQUENCIES.

OBSERVER I. DURATION 0.1 SEC.
FIG. 5. DETECTION CASE FOR A SIGNAL KNOWN TO BE AT ONE OF TWO FREQUENCIES. OBSERVER 2, DURATION 0.1 SEC.
FIG. 6. DETECTION CASE FOR A SIGNAL KNOWN TO BE AT ONE OF TWO FREQUENCIES. OBSERVER I, DURATION 0.3 SEC.
FIG. 7. DETECTION CASE FOR A SIGNAL KNOWN TO BE AT ONE OF TWO FREQUENCIES. OBSERVER 2, DURATION 0.3 SEC.
or frequencies further separated, the calculations in \(\theta \) (Section 2.3) are expected to yield a decrease in \(\theta \) until at a separation of 300 cycles \(\theta \) should appear to be 0°. An apparent 60° can be achieved if the observer attends to one frequency, effectively performing a yes-no experiment. If he accepts a signal at that frequency, he states so. If he does not, then he indicates that the signal was at the other frequency. After the maximum is reached, the decrease in \(\theta \) does not represent correlation, but rather a loss due to the observer’s inability to observe by \(x \) and \(y \). If the signal is sufficiently long in duration the observer would be able to observe both \(x \) and \(y \) regardless of the separation, so that once reaches 90° it should stay there for frequencies of wider separation.

3 Experimental Design

The experimental design involved first a two-choice, forced-choice experiment at each of the frequencies, until approximately equal \(d' \)'s are determined. Then a signal known to be at either one of the two frequencies is presented at a specified time, the observer’s task being to state whether the signal is \(f_1 \) or \(f_2 \). The two-choice, forced-choice experiment is actually the choice of one of two signals orthogonal in time. The \(d' _1 \) and \(d' _2 \) are determined in the following manner. The percentage correct is used as an estimate of the probability of correct. This figure is used to enter normal tables, and the corresponding \(\frac{X}{\sigma} \) is determined. This value is multiplied by \(\sqrt{2} \) giving the equivalent yes-no \(d' \). For the recognition experiment, the same procedure is used, except in this case the value of \(\frac{X}{\sigma} \) is multiplied by 2.

From a rearrangement of Equation 8 the \(d' \)'s are then used to find \(\theta \).

\[
\cos \theta = \frac{(d' _1)^2 + (d' _2)^2 - (d' _{1,2})^2}{2d' _1d' _2} \tag{10}
\]

Thus \(\theta \) is shown as a function of frequency separation.
TABLE I
RESULTS OF THE EXPERIMENTS¹

\[N_0 = 52.3 \text{ db re}\, 0.0002 \text{ dyne/cm}^2 \]

<table>
<thead>
<tr>
<th>Frequency Separation</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(\frac{\sqrt{2E_1}}{N_0})</th>
<th>(\frac{\sqrt{2E_2}}{N_0})</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(N_{1,2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 cps</td>
<td>975 cps</td>
<td>1000 cps</td>
<td>3.16</td>
<td>3.16</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>50</td>
<td>950</td>
<td>1000</td>
<td>3.16</td>
<td>3.16</td>
<td>198</td>
<td>198</td>
<td>197</td>
</tr>
<tr>
<td>100</td>
<td>900</td>
<td>1000</td>
<td>3.10</td>
<td>3.16</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>1000</td>
<td>3.05</td>
<td>3.16</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>300</td>
<td>700</td>
<td>1000</td>
<td>3.02</td>
<td>3.16</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>400</td>
<td>700</td>
<td>1100</td>
<td>3.02</td>
<td>3.25</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>500</td>
<td>700</td>
<td>1200</td>
<td>3.02</td>
<td>3.42</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>600</td>
<td>700</td>
<td>1300</td>
<td>3.02</td>
<td>3.42</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
</tbody>
</table>

Duration .05 seconds

25	975	1000	3.44	3.44	197	196	196
50	950	1000	3.44	3.44	197	196	197
100	900	1000	3.43	3.44	191	196	292
200	800	1000	3.36	3.44	197	196	198
300	700	1000	3.23	3.44	197	196	194
400	700	1100	3.23	3.60	197	198	198
500	700	1200	3.23	3.67	197	194	196
600	700	1300	3.23	3.67	197	195	195

Duration .10 seconds

25	975	1000	5.37	5.37	197	198	197
50	950	1000	5.37	5.37	197	198	197
100	900	1000	5.14	5.37	197	198	296
200	800	1000	4.93	5.37	197	198	197
300	700	1000	4.60	5.37	197	198	197
400	700	1100	4.60	5.37	197	197	297
500	700	1200	4.60	5.90	197	196	197
600	700	1300	4.60	5.90	197	197	197

Duration .5 seconds

25	975	1000	5.81	5.85	198	198	198
50	950	1000	5.76	5.85	197	198	198
100	900	1000	5.63	5.85	197	198	198
200	800	1000	5.06	5.85	198	198	198
300	700	1000	4.93	5.85	198	198	196
400	700	1100	4.93	5.99	198	196	197
500	700	1200	4.93	6.38	198	198	198
600	700	1300	4.93	6.38	198	197	198

Duration 1.0 seconds

¹For an explanation of the term \(\sqrt{\frac{2E}{N_0}} \), see Appendix I.
<table>
<thead>
<tr>
<th>Observer 1</th>
<th>Observer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>d'_{1}</td>
<td>d'_{2}</td>
</tr>
<tr>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>1.77</td>
<td>1.85</td>
</tr>
<tr>
<td>1.69</td>
<td>1.85</td>
</tr>
<tr>
<td>1.97</td>
<td>1.85</td>
</tr>
<tr>
<td>2.14</td>
<td>1.85</td>
</tr>
<tr>
<td>2.14</td>
<td>1.80</td>
</tr>
<tr>
<td>2.14</td>
<td>1.80</td>
</tr>
<tr>
<td>2.14</td>
<td>1.80</td>
</tr>
<tr>
<td>2.19</td>
<td>2.19</td>
</tr>
<tr>
<td>2.19</td>
<td>2.19</td>
</tr>
<tr>
<td>2.06</td>
<td>2.19</td>
</tr>
<tr>
<td>2.91</td>
<td>2.19</td>
</tr>
<tr>
<td>2.46</td>
<td>2.19</td>
</tr>
<tr>
<td>2.46</td>
<td>2.40</td>
</tr>
<tr>
<td>2.46</td>
<td>2.17</td>
</tr>
<tr>
<td>2.62</td>
<td>2.62</td>
</tr>
<tr>
<td>2.75</td>
<td>2.62</td>
</tr>
<tr>
<td>2.91</td>
<td>2.62</td>
</tr>
<tr>
<td>2.79</td>
<td>2.62</td>
</tr>
<tr>
<td>2.67</td>
<td>2.62</td>
</tr>
<tr>
<td>2.67</td>
<td>2.66</td>
</tr>
<tr>
<td>2.67</td>
<td>2.42</td>
</tr>
<tr>
<td>2.67</td>
<td>2.91</td>
</tr>
<tr>
<td>2.65</td>
<td>2.56</td>
</tr>
<tr>
<td>2.25</td>
<td>2.56</td>
</tr>
<tr>
<td>2.19</td>
<td>2.56</td>
</tr>
<tr>
<td>2.61</td>
<td>2.56</td>
</tr>
<tr>
<td>2.25</td>
<td>2.56</td>
</tr>
<tr>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>2.25</td>
<td>2.40</td>
</tr>
<tr>
<td>2.25</td>
<td>2.47</td>
</tr>
</tbody>
</table>
2.4 The Experiments

Four durations, .05, .1, .5, and 1.0 seconds were studied for frequency separations of 25, 50, 100, 200, 300, 400, 500, and 600 cycles. Two observers served for the entire set of experiments. The experiments were conducted by the N. P. Psy tar programing system, described elsewhere (Refs. 2, 9). Approximately 200 observations are contained in each determination of d'. The results are tabulated in Table I, and are presented graphically in Figures 8 through 15. No effort has been made to fit curves to data, so that the reader can have an unbiased look at the data.

Occasionally the results show θ's greater than 90°. In all except one case there is the impression that the deviation is within the range of sampling error. The one case of serious deviation can be accounted for largely on the basis of a single run of 100 in which one observer dropped appreciably in the detection experiment from the other run of 100 at that frequency. The result is an indeterminate θ, explaining the absence of a data point for a frequency separation of 400 cycles in Figure 15. Aside from this, the data conform roughly with predictions.

2.5 Generality of the Theory

In the introduction, it is suggested that while the study is in auditio, the application extends generally to human information-collecting systems. In order to illustrate the anticipated generality the following discussion is presented on the problem of color vision in terms of experimental design and data interpretation. Suppose that instead of presenting two frequencies, two monochromatic light signals are studied in an experiment. Exactly the same procedure is to be followed, ending with a determination of cos θ.
FIG. 8. OBSERVER I. DURATION = 0.05 AROUND 1000~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 9. OBSERVER 2. DURATION = 0.05 AROUND 1000 ~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 10. OBSERVER I. DURATION = .1 AROUND 1000~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 11. OBSERVER 2. DURATION = .1 AROUND 1000~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 12. OBSERVER 1. DURATION = 0.5 AROUND 1000\textasciifont{~}
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 13. OBSERVER 2. DURATION = 0.5 AROUND 1000 ~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 14. OBSERVER DURATION = 1 SEC AROUND 1000 -
RECOGNITION OF 1 OF 2 ALTERNATIVES.
FIG. 15. OBSERVER 2. DURATION = 1 SEC. AROUND 1000~
RECOGNITION OF 1 OF 2 ALTERNATIVES.
In Section 2.1, \(\cos \theta \) is represented as a correlation term. According to the theory, if there is no common variance and the signals are transmitted through independent channels, then for these monochromatic light signals, \(\theta = 90^\circ \) (\(\cos \theta = 0 \)). This example is used because it does not depend on presumed equivalence between wavelength of light and frequency of sound. This theoretical framework offers a method of psychological determination of the number of independent systems involved in color vision or the number of different types of color receptors. There are many other problems to which such a theoretical framework may be useful.

3. EXPANSION OF THE THEORY

So far the program described in the series of papers dealing with detection and recognition problems, as treated in terms of statistical decision theory, as dealt largely with simple cases readily amenable to study through experimentation. The theory has implications for complex signal structures such that there now appears to be a basis for a more general theory. This section attempts to present a basis for that development.

1. Requirement of a Set of Alternatives

A decision actually is a choice of one from a set of alternatives. Up to the present time, the theory has dealt with cases involving decisions in favor of one of a set of two alternatives. Implicit in the theory is the fact that for an alternative to have associated with it an a posteriori probability greater than zero, it must also have an a priori probability greater than zero. This is a consequence of Bayes' Theorem. Thus, whenever an observer is placed in a recognition situation his choice is one from a set of alternative signals each of which has an a priori probability greater than zero.
It is further a requirement that the sum of these a priori probabilities be one. This requirement, along with the requirement expressed in the previous paragraph, states that an observer, placed in a recognition situation, assumes an ensemble of alternative stimuli, A_i (1---i---n) which has the following properties.

For every i \hspace{1cm} 0 < P(i) < 1.00

\hspace{2cm} (11)

and \hspace{1cm} \sum_{i=1}^{n} p(i) = 1.00

where $P(i)$ is the a priori probability of the ith alternative. It is important to note that all of the experiments so far reported in support of this theory are designed to specify the conditions of Equation (11) for the observer.

The a priori probabilities are not necessarily the true a priori probabilities. It is worth repeating the statement that these are probabilities that the observer assumes. They are, in fact, the observer's beliefs. Before the observer can state an a posteriori probability of an alternative existence, he must first admit the possibility of its a priori occurrence. Otherwise he would never consider the occurrence. The mere fact that he considers the alternatives implies that the a priori probability is greater than zero.

The a priori probabilities, assigned to the alternatives, depend on the observers past experience, immediate and distant. In an experimental situation the immediate past experience may consist of the experimental instructions and the results of the trials as the experiment progresses, while the more distant past experience may consist of his trust in the experimenter and his idea of the purpose of psychological experiments. The assumed probabilities may or may not approximate the true probabilities. If they fail to approximate the true probabilities there may be adjustments as experience accumulates. The important fact is that the
Probabilities assumed by the observer are those which are more likely to determine the behavior than are the true probabilities of the form of the signal.

2 The Existence of Hypotheses

By definition, an hypothesis is a probability distribution function. By the noise assumption of detection theory, for each signal alternative there exists a hypothesis, \(f_i(x) \), the probability density that if the ith alternative exists the observation \(x \) results. Further, by the noise assumption, for every \(i \), \(f_i(x) \neq 0 \), although for many of the alternatives it may be very close to zero.

3 The Entropy of the Alternative Ensemble

The alternative ensemble has been defined so that it is equivalent to the message ensemble of Shannon's communication theory (Ref. 3). Thus, an entropy can be assigned to the alternative ensemble, which is:

\[
H(x) = - \sum P(i) \log_2 P(i)
\] \((12) \)

This entropy is the uncertainty of the set, and defines the amount of information necessary to resolve the uncertainty. It is necessary to appreciate here that Shannon deals with averages, such that no single trial can describe the process. This means that if the observer is placed in exactly the same situation a large number of times, such that each alternative actually exists according to its associated probability, then, on the average, \(H(x) \) bits of information are required to resolve the uncertainty.

Equation 12 is based on the observers assumed probabilities, and expresses the amount of information required by him to resolve an assumed uncertainty. How a discrepancy between the observers assumed ensemble and the true ensemble enters will be discussed in the following sections.
3.4 The Equivocation

According to Shannon, the equivocation is the uncertainty remaining after the transmission of information. Here it is the uncertainty remaining after the observation \(x \). For each alternative in the ensemble there is the associated probability \(P_x(i) \) not equal to zero or one, and \(\sum P_x(i) = 1.00 \). The equivocation is given by

\[
H_y(x) = \sum P(i) f_1(x) P_x(i) \log_2 P_x(i)
\]

(13)

where \(P(i) \) and \(f_1(x) \) are not dependent on the observers assumed probabilities, while \(P_x(i) \) is dependent on these assumed probabilities. A discrepancy between the observers assumption of entropy increases \(H_y(x) \).

3.5 Optimum Behavior Criteria

In Section 1.2 six different definitions of optimum criteria are advanced. The one of particular interest here is the expected value optimum. This interest is based on a simple fact: as far as reducing entropy is concerned it is never optimum to make a decision if one can legitimately avoid making a decision. It is always better to store likelihood ratio, or some monotone function of likelihood ratio such as a posteriori probability; this has been demonstrated by Woodwa and Davies (Ref. 12). It is therefore postulated that, wherever possible, the observer stores the observations, making decisions only when advisable. The decision is for the purpose of determining action, not for maximizing information. If the observer feels that the conditions are such that the expected value of an action based on information available at some time \(t \) is greater than the expected value of any action which is based on additional information, then a decision is made at time \(t \). If he feels that the additional information is likely to increase the expected value of the action, the decision is delayed. Thus, at any time

34
During the information collecting process the observer is faced with a choice of one of n decisions, one of which is to collect further information. To each decision there is attached an expected value. The decision that is associated with the greatest expected value is the observer's choice.

It is at this point that the observer first suffers from a discrepancy between his assumed probabilities and the true probabilities, for it is when he takes a decision to take action that he becomes aware of errors. The values and costs are at this point realized, and he finds that he does not realize his expected values. At this time he may attempt to correct his assumed ensemble.

6 Complex Alternatives

Up to the present time, only situations where single observations are required have been considered. By definition, a complex alternative is defined as a sequence of simple alternatives. The complex set defines the entropy of the ensemble. Let A_j represent the jth complex alternative consisting of the sequence $a_{j1}, a_{j2}, \ldots, a_{j1}, \ldots, a_{jm}$, then a set of m complex alternatives has the entropy

$$H(x) = \sum_{j=1}^{m} P(A_j) \log_2 P(A_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(a_{ji}) \log_2 P(a_{ji}) \quad (14)$$

The complex set may be redundant. Information concerning any simple alternative in the sequence may furnish sufficient basis for a decision.

7 Information Basis for a Choice Between Complex Alternatives

In Section 3.5 it is postulated that a decision is made on the basis of expected values. Thus, for a set of complex alternatives, each simple alternative results in an observation, x_i. The set of observations, x_i, is combined into a single output x, such that for each complex alternative there is the probability density function $f_{A_j}(x)$. This function specifies the probability that, if the jth
complex alternative exists, this particular sequence of observations results. For each complex alternative a likelihood can now be determined on the basis of the sequence of observations. The choice is then made on the basis of optimizing expected value.

The significance of this statement is that it is possible to map the sequence of outputs into a single output (likelihood) and the problem again resolves to the problem of simple alternatives, with the decision again made on the same basis.

4. CONCLUSIONS

A simple theory of recognition is developed as an extension of the detection theory. Experimental evidence is presented supporting the theory. A framework is presented for extending the theory to more complex situations, showing how it is possible to map these more complex situations into the same space that applies to the simple situation.

It remains now to work out cases illustrating the more complex situations in sufficient detail to permit experimental evaluation. Experimental confirmation of the theory developed in Section 3 would provide a basis for the systematization of recognition data.
APPENDIX I

OBSERVER EFFICIENCY

Table I is self explanatory except for columns headed by \(\sqrt{\frac{2E}{N_0}} \). This column indicates a mathematical upper bound for expected performance. A perfect detector, operating on the output would be expected to achieve this level of performance. Any detector which achieves this level of performance is using all of the available information. This quantity represents a standard which can be used for purposes of evaluation of either an operator or a receiver, or a combination of an operator and a receiver. The significance of these columns is thus worth some discussion.

\[
d'_o = \sqrt{d} = \sqrt{\frac{2E}{N_0}} = \sqrt{\frac{2V^2t}{N_0}} \quad \text{(A.1)}
\]

Here \(d'_o \) is optimum \(d' \), \(d \) is the detection index (Ref. 1), \(E \) is the signal energy, \(N_0 \) is the noise power per unit bandwidth, \(V \) is the signal voltage, and \(t \) is the pulse duration. The right hand member of the equation is that used for the calculation of the column headed \(\sqrt{\frac{2E}{N_0}} \), with the subscript of \(E \) referring to the signal subscript.

The columns headed \(d' \) indicate the value of \(\sqrt{\frac{2E}{N_0}} \) which would be required to lead to the same level of performance as that achieved if a perfect device were placed on the output of the system. The observed \(d' \) is thus always equal to or less than the calculated value of the \(\sqrt{\frac{2E}{N_0}} \). The ratio of the inferred value to the calculated value can be used as an index of the efficiency of the operating device.

The calculations of \(\sqrt{\frac{2E}{N_0}} \) are based on measurements made of the output of the earphones used in the experiments. It has thus been possible to calculate efficiency ratings for the observers performance for the different durations and
the different frequencies studied in the experiments. These are listed in Table II.

TABLE II

OBSERVER EFFICIENCY AS A FUNCTION OF PULSE DURATION AND CENTER FREQUENCY

<table>
<thead>
<tr>
<th>Pulse duration in secs.</th>
<th>Observer 1</th>
<th>Observer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency</td>
<td>.05 .10 .50 1.00</td>
<td>.05 .10 .50 1.00</td>
</tr>
<tr>
<td>700</td>
<td>.503 .536 .383 .284</td>
<td>.596 .762 .580 .456</td>
</tr>
<tr>
<td>800</td>
<td>.367 .435 .341 .306</td>
<td>.646 .866 .566 .516</td>
</tr>
<tr>
<td>900</td>
<td>.274 .385 .358 .218</td>
<td>.545 .601 .566 .389</td>
</tr>
<tr>
<td>1000</td>
<td>.364 .523 .443 .296</td>
<td>.585 .637 .488 .438</td>
</tr>
<tr>
<td>1100</td>
<td>.378 .469 .322 .213</td>
<td>.554 .667 .495 .376</td>
</tr>
<tr>
<td>1200</td>
<td>.234 .310 .280 .271</td>
<td>.526 .591 .410 .376</td>
</tr>
<tr>
<td>1300</td>
<td>.376 .420 .361 .243</td>
<td>.526 .695 .493 .387</td>
</tr>
</tbody>
</table>

These tables are not intended to represent a complete study. They are suggestive of a method of study to approach most nearly the optimum use of signal energy in a system involving the human observer. Of the durations studied, the observers were most efficient at a duration of 0.1 seconds, and tend to be more efficient at the lower frequencies. These studies involve one particular noise level, and the interpretation of the tables should be made with this in mind.

The discussion in this appendix is presented as a contribution for methodology rather than as a contribution of content.
APPENDIX II

THURSTONE'S LAW OF COMPARATIVE JUDGMENT

In two papers, Thurstone (Ref's. 10, 11) presents and develops the Law of Comparative Judgment. Similarities between Thurstone's subject matter and that of this paper, and in particular, between the form of Thurstone's equations and those of this paper, justify a discussion of the content of this paper in terms of Thurstone's earlier work.

By the expression "comparative judgment", Thurstone describes the perimental design with which he is concerned. It is an experiment of the type in which the observer is presented first with a signal of frequency \(f_1 \) and then a signal of frequency \(f_2 \). He is then asked to state whether \(f_2 \) is higher or lower than \(f_1 \). Another variation of this experiment is where the observer is presented first with a signal of energy \(E_1 \) and then with an energy \(E_2 \). He is then asked to state whether \(E_2 > E_1 \) or \(E_2 < E_1 \). For the case where either \(E_1 \) or \(E_2 \) is zero (or noise alone) this is the two-choice, forced-choice experiment played in determining the detection d' used in this paper.

The definition of d' is \(\frac{M_{SN} - M_N}{\sigma} \), where \(M_{SN} \) is, in Thurstone's language, the modal discriminative process for signal plus noise, \(M_N \) is the modal discriminative process for noise alone, and \(\sigma \) is a measure of the discriminative dispersions \(\sigma_N \), \(\sigma_{SN} \) (\(\sigma_N = \sigma_{SN} \)). The observations \(x \) are assumed in the paper to be a continuous variable corresponding to Thurstone's discriminative processes.

The analysis of forced-choice experiments presented in earlier papers (Ref's. 4, 5, 6, 7, 8, 9) can be expressed in terms of comparative judgments. Suppose that a signal of energy \(E > 0 \) is presented in one of four intervals in time, while in the other three intervals signals of energy \(E = 0 \) are presented,
and that the observer is asked to state which interval contained the signal $E > 0$. Observations x are made in each of the four intervals. Three comparative judgments are required. First a comparative judgment involving the first and second intervals is made. Whichever is judged greater is compared to the third interval, and the greater of this comparison is then compared to the fourth interval. The greater of the last comparison is then judged to be the signal $E > 0$. This is equivalent to the analysis presented in the previous papers.

The main interest in the theory developed in this series of papers is not in comparative judgments, however. It is in detection and recognition. These are subjects not discussed by Thurstone, although had he recognized the existence of a noise distribution such as the one postulated in the theories of detection and recognition, it seems likely that he would have developed essentially the same theory as that developed in the current set of papers, only Thurstone would have been thirty years earlier. It is essentially the noise assumption, along with the denial of the fixed threshold, which has led to this development.

The detection and recognition theories developed in these papers involve experiments in which the observer has a single observation, x, and is asked to state which of a set of alternatives existed to lead to the observation x. It is not a comparative judgment in the Thurstone or forced-choice sense. Analysis of this type of experiment led to the interest in \textit{a priori} probabilities and risk functions, variables which are not immediately obvious in Thurstone's discussion of the law of comparative judgments. Thurstone has assumed that, of two stimuli (S_1 and S_2) the \textit{a priori} probabilities $P(S_1 > S_2$ and $P(S_2 > S_1)$ are equal, and that type I and type II errors are equally costly. Due reflections and experimentation should show that these variables (\textit{a priori} probabilities and risk functions) also play a part in comparative judgements. The criterion for judgment
>S₂ may not contain all values S₁-S₂ > 0 or only values S₁-S₂ > 0, but rather values S₁-S₂ > \alpha where \alpha is some function of \beta as defined in Section 1.2.

One further point requires discussion. Thurstone considers a correlation factor which he considers it safe to assume equal to zero. The assumption, in view of the noise assumption, is satisfactory for comparative judgments. If signals of two frequencies are presented successively in time, the correlation is likely to be zero because of the autocorrelation function of the noise. However, if a single observation is made, and the choice is between two frequencies close together, the presence of a signal at one frequency influences the observation of the components of the other frequency. In these experiments it is necessary to take into account the correlation factor. It is, in fact, this correlation factor which determines the "distance" Thurstone discusses. Equation of Section 2.1 is a general equation for Thurstone's "distance", given the distance of the signals from the noise, and given the correlation between the detection axes. It is not the same as Thurstone's general equation which looks very much like Equation 9.
REFERENCES

DISTRIBUTION LIST

1 Copy Director, Electronic Research Laboratory
 Stanford University
 Stanford, California
 Attn: Dean Fred Terman

1 Copy Commanding General
 Army Electronic Proving Ground
 Fort Huachuca, Arizona
 Attn: Director, Electronic Warfare Department

1 Copy Chief, Research and Development Division
 Office of the Chief Signal Officer
 Department of the Army
 Washington 25, D. C.
 Attn: SIGEB

1 Copy Chief, Plans and Operations Division
 Office of the Chief Signal Officer
 Washington 25, D. C.
 Attn: SIGEW

1 Copy Countermeasures Laboratory
 Gilfillan Brothers, Inc.
 1815 Venice Blvd.
 Los Angeles 6, California

1 Copy Commanding Officer
 White Sands Signal Corps Agency
 White Sands Proving Ground
 Las Cruces, New Mexico
 Attn: SIGWS-CM

1 Copy Commanding Officer
 Signal Corps Electronics Research Unit
 9560th TSU
 Mountain View, California

75 Copies Transportation Officer, SCEL
 Evans Signal Laboratory
 Building No. 42, Belmar, New Jersey

 FOR - SCEL Accountable Officer
 Inspect at Destination
 File No. 22824-PH-54-91(1701)

1 Copy H. W. Welch, Jr.
 Engineering Research Institute
 University of Michigan
 Ann Arbor, Michigan

43
1 Copy
Document Room
Willow Run Research Center
University of Michigan
Willow Run, Michigan

11 Copies
Electronic Defense Group Project File
University of Michigan
Ann Arbor, Michigan

1 Copy
Engineering Research Institute Project File
University of Michigan
Ann Arbor, Michigan