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Abstract 

Bacteria can increase their survival in stressed environments by forming sessile biofilms 

on surfaces. Natural ecosystems are usually occupied by multiple species, which may 

interact with and therefore affect biofilm formation of an incoming species. This 

dissertation research explores the effects of species interactions and investigates genetic 

mechanisms of species interactions between an environmental strain Stenotrophomonas 

maltophilia and a water quality indicator species Escherichia coli on biofilm formation of 

E. coli. It was found that E. coli biofilm development was promoted in dynamic flow 

systems, but inhibited in static batch plates in mixed species culture compared with pure 

culture conditions. The opposite effects of co-culture on E. coli biofilm formation 

suggested that species interactions may have different impacts under different culture 

conditions. To enable the mechanistic study of species interactions, a separation method 

was developed to allow transcriptome analysis of mixed species communities. 

Transcriptomic responses of E. coli to S. maltophilia were analyzed to investigate genetic 

mechanisms of inhibited E. coli biofilm formation in static co-culture. Eighty-nine and 

108 genes exhibited genetic responses of E. coli to S. maltophilia co-cultured in biofilm 

and suspensions, respectively. Several genes were involved with inhibited biofilm 

formation of E. coli in static co-culture. One highly up-regulated gene, fliA, was selected 

for a mechanistic study. It was found that the production of a major monomer of curli, 

CsgA, as well as cell aggregation were greatly repressed in E. coli with fliA 

overexpression. Knocking out fliA partially restored the inhibitive effect of co-culture on 

E. coli biofilm growth. Therefore, it was concluded that inhibited E. coli biofilm 

formation by interactions with S. maltophilia partially was caused by the induction of 

gene fliA to suppress curli production. Overall, this dissertation examined the effects of 

species interactions on biofilm formation of E. coli, highlighted the impact of 

environmental conditions on the effect, and revealed partial understanding of species 

interactions at a genetic level. This fundamental study contributes to understanding of 
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biofilm formation in real environments with mixed species, and serves as a starting point 

towards the development of bacteriotherapy for pathogen control using indigenous 

species for environmental health. 
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Chapter 1  
Introduction 

1.1 Background 

A biofilm is an aggregation of microorganisms embedded in an extracellular matrix of 

polymeric substances attached onto a surface. Bacterial biofilms ubiquitously grow 

almost everywhere where surfaces are in contact with fluids [1-4]. Persistence of biofilms 

may cause many problems, including in locations where they can cause serious health 

concerns. Cells in biofilms usually exhibit higher resistance to antimicrobial treatment [5-

8]. Pathogenic species become more difficult to control once biofilms are formed and 

thus cause many recurring and chronic infections [8]. Non-pathogenic biofilms may also 

be a health concern, due to the potential to harbor pathogens in biofilm matrices and 

protect them from antimicrobial treatment. For example, many water-borne disease 

outbreaks are linked to persistent biofilms on internal pipe surfaces in drinking water 

distribution systems [9]. On the other hand, biofilms may prevent the deposition of 

invading pathogens in biofilms and serve beneficial roles in preventing infections. For 

example, biofilms in gastrointestinal tracts contribute to the protection of hosts against 

pathogenic microorganisms [10]. Thus, persistent indigenous biofilms may be a double-

edged sword with regard to incoming pathogens and health concerns, since whether a 

pathogen could be embedded in biofilms and then reproduce is critical for its survival and 

functions.  

Natural biofilms in medical, industrial, and environmental systems usually consist of 

various bacterial species [11]. Interactions of these species with an incoming species 

affect biofilm formation of this species as well as the overall biofilm composition. 

Understanding the effects of species interactions on biofilm formation and the 

mechanisms of species interactions will help to better regulate biofilm formation of 

species of interest. Future applications of such studies include the effective prevention or 
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cure of harmful species with indigenous microbiota. A successful case of bacteriotherapy 

for human health was recently reported [12]. 

The purpose of this study was to explore the effects of species interaction on biofilm 

formation and to investigate genetic mechanisms of species interactions with regard to 

biofilm formation. A dual-species model consisting of Escherichia coli and 

Stenotrophomonas maltophilia was selected in this study. E. coli is an important indicator 

of fecal contamination in environmental samples, especially in water resources. Positive 

detection of E. coli usually suggests fecal contamination and the presence of pathogenic 

microorganisms [13]. Some E. coli strains themselves are pathogens, resulting in 

gastrointestinal disease and urinary tract infections. E. coli was also selected in part 

because of the broad knowledge of its biofilm formation and gene regulations. S. 

maltophilia is a widespread bacterial species in the environment. It is frequently isolated 

from water, soil, sludge, and more recently from various nosocomial systems [14]. 

Isolation of E. coli and S. maltophilia from water filtration and distribution systems, 

rhizosphere, and urinary tract infections showed that they may share the same niches in 

nature [15-17], where interactions between the two species may take place. Studying this 

dual-species model can contribute to the understanding of species interactions and 

biofilm formation of species of interest in a more complex community with multiple 

environmental species. 

This dissertation consists of seven chapters. This first chapter provides the general 

motivation and background of the study and describes the basic structure of the 

dissertation. Chapter 2 is a literature review of bacterial species interactions in mixed 

species biofilms. Chapter 3-6 each presents an independent study written in a manuscript 

format, which is submitted or prepared for publication. A brief introduction with a 

literature review and the objectives of each study are presented in each of these chapters. 

Chapter 7 presents the conclusions from this dissertation research and provides directions 

for future study. The appendix lists a co-authored study about identification of biofilm 

regulators using combined computational and experimental methods. It was published in 

PLoS One. 
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Specifically, Chapter 2 summarizes different effects of species interactions on biofilm 

formation of species including but not limited to E. coli and S. maltophilia. Moreover, 

mechanisms of species interactions, especially genetic mechanistic studies, were 

reviewed and summarized in this chapter. 

Chapter 3 explores the effects of species interactions between E. coli and S. maltophilia 

on biofilm formation of E. coli. Furthermore, the impact of culture conditions on species 

interaction with regard to biofilm development was examined. Biofilm cultures were 

conducted in two laboratory culture systems, static batch in microtiter plates and dynamic 

culture in flow cells, respectively, simulating environmental conditions with standstill 

and running water/liquid over the surfaces on which biofilms grow. An explanation of the 

observed effects on E. coli biofilm growth was also briefly explored.  

Chapter 4 describes the development and testing of a separation method to allow 

transcriptome analysis of a mixed species community. This method was developed in 

order to study genetic mechanisms of species interactions with a focus on E. coli.  

Separation efficiency and preservation of the transcription profile of E. coli during 

separation are presented in details. This study was submitted to BMC Microbiology for 

consideration of publication. 

Chapter 5 is the study of genetic responses of E. coli to S. maltophilia in mixed species 

cultures. Identification of E. coli genes differentially expressed in mixed species 

suspensions or biofilms compared with those in single species pure cultures are presented 

in this chapter. Functional analysis and categorization of identified genes show genetic 

responses of E. coli to S. maltophilia. Further study includes verification of some 

identified genes in inhibited biofim formation of E. coli in mixed species culture. Gene 

identification in this chapter brings up research directions for mechanistic studies, of 

which Chapter 6 is an example. 

Finally, Chapter 6 presents a study designed to uncover the mechanisms of gene fliA 

involving in E. coli biofilm formation in co-culture with S. maltophilia. The gene fliA is 

among the highly induced genes identified in Chapter 5. This chapter firstly inspects the 

relationship of fliA up-regulation with interactions between the two species. The 
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mechanism is revealed from the study of cell motility, curli production, and biofilm 

formation with regulated fliA expression. 
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Chapter 2  
Literature Review:  Species Interactions in Mixed Species Biofilms  

2.1 Abstract 

This chapter summarized observations about the effects of species interactions on biofilm 

formation of various bacterial species from literature studies. The effects were 

categorized as synergistic, antagonistic, neutral and other influence on biofilm formation. 

Mechanistic studies of species interactions revealed several mechanisms in different 

species to pose the effects on other species. This brief review helped to get acquaintance 

with the current status in the field and provided clues such as study methods and 

approaches for this dissertation research. 

2.2 Introduction 

Dual-species biofilm culture in laboratory systems are used in most studies of multiple 

species, although multiple-species biofilms (e.g. 20 species [1]) and in vitro biofilm 

growth (e.g. in mice [2]) are also explored. A broad review of literature studies on species 

interactions among various bacterial species including the two model species in this 

dissertation study, Escherichia coli and Stenotrophomonas, was conducted. Achieved 

knowledge about species interactions on biofilm formation was summarized in this 

chapter.  

2.3 Effects of species interactions on biofilm formation 

Species interactions are generally categorized as synergistic, antagonistic and neutral 

effects on biofilm formation by comparing mixed-species biofilms with that of individual 

single-species biofilms. The object of comparison includes but not limits to biomass, 

colonization, stability, function, structure and fitness of biofilms.  
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2.3.1 Synergistic effect 

Synergistic effect on biofilm formation was observed among many bacterial species [3-

7]. The most obvious phenomenon is a significant increase in biomass of biofilms when 

two or multiple species were cultured together than cultured individually [5, 8]. 

Comparison in biomass of biofilms grown in microtiter plates was used to quickly assess 

the effect of species interactions, especially for screening among many strains [9]. In 

flowing systems, synergistic effect on biofilm formation was usually observed as 

stimulated surface colonization of a weak-biofilm-forming strain, possibly due to 

embedding in biofilm matrix or co-aggregation with a surface-adhesion-proficient strain 

[5, 10]. Increased cell density of one species in the effluent in co-culture also indicated 

synergism in biofilm formation in flowing systems, where direct observation of biofilms 

was difficult to conduct [11].  Assistance from other species in surface colonization could 

be a critical strategy for the survival and propagation of deficient biofilm-forming species 

in the environments such as in flowing pipes, where cells in planktonic growth mode are 

more easily to be removed such as by disinfection [10]. 

In addition, synergistic interactions were easily observed among species with commensal 

relationships in substrate usage, such as those demonstrated in biodegradation of organic 

chemicals [6, 12]. Relying on metabolic product(s) of another species as the only 

substrate for one species was responsible for the cooperation of the two species and the 

synergistic effect on biofilm formation. This relationship may drive genetic evolution for 

an intimate association in biofilms [6]. Improved functions (e.g., degradation efficiency), 

increased fitness, and enhanced stability of mixed species biofilms also indicate 

synergistic interactions. For example, mixed-species biofilms displayed a higher 

efficiency in mercury reduction and remained more stable when encountering a sharp 

increase in mercury loading [13]. In addition, mixed-species biofilms of four enamel 

pathogens showed a more powerful function in demineralizing intact enamel than any of 

the biofilms consisting of only one pathogen [14]. 

Moreover, increased resistance to antimicrobial reagents, oxidative stress, and bacterial 

invasion of mixed-species biofilms in comparison with mono-species biofilms also 

suggests synergistic interactions among species [8, 15, 16]. Protection of sensitive species 
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by more resistant species was demonstrated within several mixed-species biofilms 

exposed to disinfectants or antibiotics [1, 17]. The protective effect may increase with the 

proportion of resistant cells in mixed-species biofilms [1]. A more viscous matrix may be 

formed due to interactions between different matrix polymers (e.g. exopolysaccharide) 

produced by different species [18]. Increased viscosity could act as a better barrier to 

prevent the penetration of antimicrobial reagents into mixed-species biofilms [8, 15]. 

Spatial organization of different species in biofilms may also contribute to increased 

resistance. For examples, cells were found to be more intermingled with each other in 

biofilms when the concentration of toxicant increased [16]. The survival of sensitive 

species was increased due to its closer distance to the toxicant-degrading species. 

2.3.2 Antagonistic effect 

Antagonistic effect refers to decreased biofilm formation when one bacterial species is 

co-cultured with other species. Competition for nutrition is inevitable when several 

bacterial species occupy the same niche in the environment [19]. Attachable surface is 

also an important resource specifically for biofilm growth. Species with a higher growth 

rate and/or stronger surface-attachment ability may have an advantage over co-cultured 

species when they were competing for limited substrate and solid surfaces [1, 20]. The 

faster initial occupation of space and rapid propagation of attached cells may result in 

antagonistic effect on the colonization of other species, or even completely exclude their 

growth.   

Antagonism is most obviously observed when bacteriocin-sensitive species is co-cultured 

with bacteriocin-producing species. Co-existence of these species in biofilms was 

reported in several studies [21, 22], while it was hardly observed in planktonic cultures 

[23]. Examination of biofilm structure showed exclusive microcolonies of each species 

on the surface [21]. The specific spatial distribution was probably a strategy to alleviate 

antagonistic interactions. Biofilm matrix may serve as a diffusion barrier for bacteriocin 

and allow the co-existence of bacteriocin-sensitive species.  

Changing the living environment is another strategy that some species use to compete 

against the others. For example, Proteus mirabilis could successfully induce crystal 
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formation and out-compete other pathogens co-infecting catheterized urinary tract by 

raising urinary pH [24]. Actinomyces naeslundii failed to maintain in mixed-species 

biofilms possibly due to the quite acidic environment (pH<5.3) caused by other dominant 

species such as Streptococcus mutans [14].  

2.3.3 Other effects 

Co-culturing with other species may affect biofilm formation of one species, but the 

effect is hardly categorized as synergism or antagonism as described earlier. Alteration of 

biofilm structure is an example of this kind of effect. Biofilm of Pseudomonas 

aeruginosa was able to develop in both single and mixed species culture with 

Stenotrophomonas maltophilia. However, the structure of P. aeruginosa changed to 

filamentous architecture in co-culture due to interactions with S. maltophilia [25]. 

2.3.4 Neutral effect 

No significant difference in biofilm formation of one species in mixed species culture 

compared to that in single species culture is referred as neutral effect [26]. This is the 

least interested subject for study. It may indicate the fact that no relationship exists 

between different species on biofilm growth. On the other hand, it does not exclude the 

possibility that the effect of species interactions on biofilm formation is lower than the 

detection limit of current methods such as microtiter assay used in many studies [8, 9]. 

2.4 Mechanisms of species interactions in biofilms 

Research into the exploration of mechanisms of species interactions on biofilm formation 

has been widely conducted to date. Knowledge of the mechanisms not only facilitates the 

understanding of microbial ecology in real environments, but also contributes to a better 

management of biofilm formation of species of interest necessarily in future. 

Diffusible signal based species interaction was among the best-studied mechanisms. 

Various signals were secreted by different bacterial species to affect and influence 

biofilm formation of other species in co-culture. The character, production, and response 

of different signals by various species were reviewed in details. Non-signal driven 

interactions including physical cell-to-cell contact, altered surface charge, nutrient 
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competition, and conjugation etc. are also reviewed. Finally presented in this chapter is 

the investigation of responses of one species to species interactions from a genetic level 

and resulted better understanding of genetic mechanisms of species interactions in several 

most recent studies. 

2.4.1 Species interactions via diffusible signals 

Quorum sensing signals were produced by many bacterial species, such as Vibrio fischeri 

and Pseudomonas aeruginosa, to sense and control their own population densities, as 

well as their own biofilm formation and expression of a few genes such as those encoding 

virulence factors [27-31]. Characterized signals in quorum sensing include a series of 

acylated homoserine lactones (AHLs) and autoinducer-2 (AI-2), etc. 

Since many bacterial species produce the same or similar quorum sensing signals, it is 

not surprising to find that one species could detect and respond to signals produced by 

another species when they are cultured together. For example, AHLs were found to 

mediate species communication between Pseudomonas aeruginosa and Burkholderia 

cepacia in mixed-species biofilms both in flow chambers and in lung tissue of infected 

mice [2]. However, the communication was only unidirectional. Specifically, B. cepacia 

was able to perceive AHLs from P.aeruginosa, but not vice versa. This was due to the 

specific composition of AHLs and different sensitivity of AHLs-binding R-homologues 

of the two species [2]. Another category of quorum sensing signals, the AI-2 signals, was 

also confirmed to drive a two-side communication between Escherichia coli and Vibrio 

harveyi in mixed specie culture [32]. Interestingly, AI-2 signals produced by the two 

species were actually different in structures [33]. The ability of intra-species 

communication implied that AI-2 signals released from one species could be converted 

into the specific form recognizable by the other species [32]. Similar quorum sensing 

signals based species interactions were also observed among many other species in 

several studies [34-36]. 

Another category of signals is growth inhibitors, of which best studied were antimicrobial 

reagents such as antibiotics. Inhibitory signals produced by one species usually cause 

antagonistic effects or completely exclude the biofilm formation of other species in co-
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culture. For example, an antibacterial protein AlpP produced by Pseudoalteromonas 

tunicata was able to remove other strains that were sensitive to AlpP from mixed-species 

biofilms [37]. 

In contrast to inhibitory signals, some signals produced by one species are able to 

promote biofilm formation of other species. For example, the extracellular molecule 

indole secreted by Escherichia coli was able to stimulate biofilm formation of 

Pseudomonas aeruginosa and Pseudomonas fluorescens [38]. Some species were 

confirmed to induce biofilm formation of other species via signals, but the signals were 

not well characterized. For example, an extracellular signal secreted by Lactobacillus 

casei was responsible for increased biofilm formation of Saccharomyces cerevisiae in co-

culture [39]. But the signal itself was unknown except its weight of 3 to 5 kDa and its 

sensitivity to heat.  

Considering the wide distribution of signal-producing species and possible inhibitory 

effects on other species living in the same environment, it is not surprising that many 

species have developed certain strategies to quench signals and mitigate the effects posed 

by the signals. For example, quorum-quenching enzymes have been identified in several 

species such as Agrobacterium tumefaciens [40-42]. Co-existence of both signal-

producing and signal-inactivating species was identified in mixed-species biofilms in a 

water treatment system [42]. The mechanism of signal tuning in biofilm formation has 

been partially approached among some species. For example, the signal indole was 

converted to an inactivate molecule by Pseudomonas fluorescens to enhance E. coli 

biofilm formation in mixed species culture [38]. 

Spatial distribution of species interacting via signals in biofilms has also been studied. It 

was found that juxtaposition between different species was required for species 

communication, especially in an open environment such as a continuous flow system 

widely used for laboratory biofilm culture [43]. For example, only when the two bacterial 

species were in very close proximity in biofilms, did Streptococcus gordonii respond to 

extracellular signals produced by Veillonella atypical [3]. Position vicinity of two species 

may be not critical in closed systems such as a batch culture, because signals may 
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accumulate and reach a threshold level to trigger the response. However, extracellular 

signals may be able to function between species only over a short distance. 

Coaggregation of two species may bring two microorganisms closer for interspecies 

communications via signals [43]. 

2.4.2 Species interactions with cell-to-cell contact 

Coaggregation was discovered between bacterial species isolated from the oral cavity in 

1970 [44] and later was observed in many other microbial ecosystems such as freshwater 

biofilms [45]. Coaggregation brings two species physically in contact and thus help in 

signal communication [43], metabolic collaboration [3], surface attachment and biofilm 

formation especially for attachment-deficient species [3, 10, 11, 46]. 

Coaggregation is usually mediated by adhesins and receptors on aggregated species. 

Several adhesins have been identified, but with little characterization, in several species 

[46]. For example, coaggregation of Fusobacterium nucleatum with Porphyromonas 

gingivalis was probably mediated by an adhesin of 30-kDa outer-membrane polypeptide 

[47]. Two adhesin proteins of Streptococcus gordonii, SspA and SspB, were found to 

mediate its coaggregation with P. gingivalis. Some adhesins were carried on fimbriae, 

which were able to penetrate the electrostatic spheres of two bacterial cells and help the 

adhesin to locate receptors. Less was known about coaggregation receptors. A 

polysaccharide in cell wall was characterized as a putative receptor [46]. Multiple 

adhesin-receptors may be involved in a pair of coaggregated species, such as P. 

gingivalis and S. gordonii [48]. However, it was found that not all adhesin-receptors were 

required for biofilm formation of primary colonizers [49].  

In contrast, surface proteins may serve as communication signals to prevent other species 

to adhere with pre-colonized species. For example, it was found that surface protein 

arginine deiminase (ArcA) of Streptococcus cristatus served as a signal to repress the 

expression of fimA in Porphyromonas gingivalis. FimA is the major component of 

fimbriae, which is required to initiate biofilm formation of P. gingivalis. As a result, the 

communication through ArcA excluded P. gingivalis in biofilm development with S. 

cristatus [50, 51]. 
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2.4.3 Other species interaction mechanisms 

Besides diffusible signals and cell-to-cell contact, some other mechanisms have been 

revealed. For example, heterogeneous surface charge of Enterococcus faecalis was found 

to stimulate synergistic biofilm formation of Enterococcus faecalis with other species 

such as Morganella morganii [52]. In addition, plasmid conjugation was also shown as a 

driving force in synergistic biofilm formation among several Escherichia coli strians [9].  

2.4.4 Better understanding of mechanisms from genes involved in species 
interactions 

Identification of genes involved in species interactions has greatly promoted the 

understanding of mechanisms of species interactions. Individual genes (e.g., Mfa1 and 

wapH) crucial in species interactions were discovered using methods such as mutant 

screening [6] and promoter-labeling gene fusions [43]. More genes were identified by 

cDNA microarray technology to study the transcriptomic response to species interactions 

[53-56]. Characterization of identified genes has expanded the mechanistic insight.  For 

example, identification of nine genes involved in arginine biosynthesis and transport lead 

the discovery of stabilized arginine biosynthesis of Streptococcus gordonii by co-

aggregating with Actinomyces naeslundii [53]. Transcriptomic analysis of Lactococcus 

lactis showed dramatic modification when co-cultured with Staphylococcus aureus, 

including ion transport and synthesis [56]. And iron synthesis was confirmed as an 

interaction pathway between Pseudomonas aeruginosa and S. aureus [54]. 

2.5 Implications 

Previous studies of mixed species biofilm formation were reviewed. The effects of 

species interaction on biofilm formation of various bacterial species and mechanisms of 

species interactions were summarized and discussed briefly. These previous studies 

provided a strong basis of this dissertation study. It suggested more effective methods and 

approaches for this type of study in great need, which is one of the focuses of this 

dissertation study on biofilm formation of Escherichia coli and Stenotrophomonas 

maltophilia. Specifically, cDNA microarray technology was explored to investigate the 

mechanisms of species interactions since it had been proved to be an effective approach. 
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Furthermore, a separation method was developed to enable the application of cDNA 

microarray technology in studying mixed species biofilms. 
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Chapter 3  
The Presence of Stenotrophomonas maltophilia Affects Escherichia coli Biofilm 

Formation Differently in Static versus Continuous Flow Conditions 

3.1 Abstract 

Biofilms in natural environments may harbor pathogenic species or prohibit their growth, 

depending on the type of species interactions. This study examined the effect of species 

interactions between Escherichia coli and Stenotrophomonas maltophilia, representing a 

pathogen and an environmental strain, respectively, on biofilm formation for two 

commonly studied conditions, static batch and dynamic flow cultures. E. coli biofilm 

formation was significantly, but differently altered due to interactions with S. maltophilia 

for either culture condition. In a flow cell system, E. coli biofilm formation was greatly 

promoted, possibly due to strengthened surface attachment in the presence of continuous 

shear force by a S. maltophilia biofilm matrix. In contrast, biofilm formation by E. coli 

was reduced in static batch co-cultures, possibly due to nutrient competition, competition 

for surface attachment, or reduced cell aggregation of E. coli cells. Results from this 

study indicated that the probability of an invading species to successfully colonize pre-

existing biofilms not only depended on interactions with existing species but also on 

environmental conditions, such as the degree of shear force exposure. 

3.2 Introduction 

Most microorganisms in nature live in sessile biofilms rather than as free-moving 

planktonic cells. Persistence of biofilms may cause many problems, including health 

concerns. Cells in biofilms usually exhibit higher resistance to antimicrobial treatment [1-

4]. It becomes more difficult to control pathogenic species when they grow in biofilms 

and, as a result, pathogens in biofilms cause many recurring and chronic infections [4]. 

While single species biofilms have been widely studied, natural biofilms usually consist 

of multiple species sharing the same ecological niche [5]. Biofilm formation by one 



 20 

species could be affected by the presence of other species via mechanisms such as 

nutrient competition, signal transduction, and coaggregation [6-8]. Indigenous non-

pathogenic biofilms may harbor pathogens or may prevent the deposition of other 

pathogens in biofilms depending on the types of interactions between the pathogenic 

species and other biofilms species [9, 10]. Studies of species interactions between 

environmental species and pathogens and the effect of species interactions on biofilm 

formation will help to understand and control biofilm formation involving pathogenic 

species. 

A dual-species model consisting of Escherichia coli and Stenotrophomonas maltophilia 

was selected in this study. E. coli is an important indicator of fecal contamination in 

environmental samples, especially in water resources. Positive detection of E. coli usually 

suggests fecal contamination and the presence of pathogenic microorganisms [11]. Some 

E. coli strains themselves are pathogens, resulting in gastrointestinal disease and urinary 

tract infections. S. maltophilia is a bacterial species found in many different 

environments. It is frequently isolated from water, soil, sludge, and various hospital 

systems [12]. Since previous studies have isolated both E. coli and S. maltophilia from 

water filtration and distribution systems, rhizosphere environments, and urinary tract 

infections [13-15], it is possible that they share the same niches in various environments, 

where interactions between the two species may take place. This study was designed to 

investigate how biofilm formation was affected by species interactions between E. coli 

and S. maltophilia in controlled laboratory systems.  

Static cultures in microtiter plates and dynamic cultures in flow cells are the two most 

widely used systems for laboratory studies of biofilm formation. The two culture 

conditions can simulate typical environments where biofilms grow relevant for drinking 

water distribution, including storage tanks and distribution pipes with standstill and 

running water, respectively. Biofilm formation by one species differs in systems with 

different fluid characteristics [16]. It is likely that mixed species biofilm formation also 

varies within different systems. However, most previous studies of species interactions 

on biofilm formation were performed in only one of these two culture conditions [6, 17]. 
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Therefore, the objective of this study was to study whether culture conditions would 

affect species interactions on biofilm formation.  

3.3 Results 

3.3.1 Biofilm formation in flow cell systems 

Five parallel flow cell systems (E1, E0.1, S1, E1S1, E0.1S1) were operated.  Single 

species biofilm formation was monitored for E. coli (E1 and E0.1, inoculation of 1 ml 109 

CFU/ml and 108 CFU/ml E. coli cells, respectively) and S. maltophilia (S1, inoculation of 

1 ml 109 CFU/ml cells). Furthermore, mixed species biofilm formation inoculated with 

different ratios of the two species (E1S1 and E0.1S1, 1 and 0.1 indicated inoculation of 1 

ml 109 CFU/ml and 108 CFU/ml cells, respectively) was evaluated. Initial attachment of 

inoculated cells on the glass surface was promoted by pausing the flow of media for one 

hour. Unattached cells were gradually washed away after the media flow was resumed 

(time zero) and biofilm formation was then monitored using confocal laser scanning 

microscopy. 

In the system E1 (pure E. coli culture), biofilm with cell aggregates was formed at the 

first monitoring time point (1 h after time zero, simply denoted as 1 h hereafter) (Figure 

3.1A), indicating the formation of E. coli aggregates and surface attachment during the 

period of initial attachment. However, most of these initially attached cells were removed 

after the flow resumed, leaving few cells on the surface (Figure 3.1A, 17 h to 33 h). 

Small microcolonies were then formed and grew into bigger microcolonies (Figure 3.1A, 

33 h to 45 h). Detached cells from microcolonies inoculated other uncovered surface (55 

h), and eventually a thick blanket of biofilm covering the entire surface developed after 

80 h, with no observable change in biomass density or structure thereafter. 

In another single species culture system S1, S. maltophilia cells were also able to adhere 

onto the surface during the stage of initial attachment and formed biofilm by 1 h of flow. 

At this stage, S. maltophilia biofilm consisted of mostly a single layer of attached cells 

and the amount of attached biomass was much less compared to the amount of E. coli 

biofilm at the same point (system E1, 1 h). However, these initially attached cells were 

not removed by the media flow and quickly proliferated into a thick biofilm within only 
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17 h (Figure 3.1A).  A portion of S. maltophilia cells exhibited a filamentous morphology 

during this process (Figure 3.1B). 

When the same number of E. coli and S. maltophilia cells were inoculated together into 

one flow cell system (E1S1), S. maltophilia biofilm showed similar growth as in its single 

species culture (system S1), but thick E. coli biofilm formation was much quicker (33 h) 

compared to that in system E1 (80 h, Figure 3.1A). The biggest difference of E. coli 

biofilm growth in the mixed species culture was that the removal of initially attached E. 

coli cells by the flow as seen in system E1 was not observed in system E1S1. This 

suggested that the S. maltophilia biofilm protected E. coli cells from being eliminated by 

the flow and thus facilitated E. coli biofilm formation. This effect became even more 

apparent in system E0.1S1, which was inoculated with 10-fold less E. coli cells. The 

control system E0.1 only exhibited a few cells near the edge of the flow chamber and no 

E. coli biofilm was detected after four days of operation. In contrast, a thick biofilm of E. 

coli cells gradually developed within two days in system E0.1S1.  

3.3.2 Biofilm formation in static batch culture 

Different from flow cell systems, static batch cultures in microtiter plates are not exposed 

to flow during biofilm growth. The effect of species interactions on biofilm formation 

was further evaluated in this different culture condition. 

Biofilm growth in microtiter plates was evaluated by quantifying the amount of biomass 

of the attached cells after staining with crystal violet. Comparing the amount of biomass 

of single and mixed species biofilms indicated the effect of species interactions on 

biofilm formation. Biomass quantification showed that E. coli formed much more biofilm 

than S. maltophilia, even when 10-fold less cells were used for inoculation (Figure 3.2A). 

When the two species were cultured together with different ratios of inoculated cells 

(0.1:1, 1:1 and 1:0.1), the total amounts of biomass of mixed species biofilms were all 

significantly less than the biomass of a pure culture E. coli biofilm (70% - 90% 

reduction) (Figure 3.2A). 

In addition to biomass quantification, biofilms in static culture were also inspected 

microscopically to evaluate their structure and composition, especially for mixed species 
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biofilms. Microscopic images of the biofilms (Figure 3.2B,C,D) confirmed the biomass 

quantification data in Figure 3.2A. E. coli biofilm consisted of multiple layers of attached 

cells while S. maltophilia biofilm only had a single layer of attached cells. Mixed-species 

biofilms were composed of a single layer of S. maltophilia cells interspersed with small 

microcolonies of E. coli cells. These images, as well as quantified biomass, revealed that 

E. coli biofilm formation was significantly reduced in mixed species cultures while 

biofilm development of S. maltophilia was not affected. These results suggested that 

interactions between S. maltophilia and E. coli showed inhibitive effects on biofilm 

formation of E. coli but not of S. maltophilia in static batch cultures. Significant 

inhibition was observed even when 10-fold less S. maltophilia cells were co-inoculated 

with E. coli (Figure 3.2A). 

3.3.3 Effect of diffusible signals on biofilm formation 

Previous studies showed that diffusible signal factors (DSF) secreted by S. maltophilia 

could alter biofilm formation of other species [6]. Therefore,  experiments were designed 

to evalute whether the presence of DSF inhibited E. coli biofilm formation in static co-

cultures.  

Since supernatant of cell cultures contains DSF, supernatant samples were acquired from 

planktonic cultures of S. maltophilia harvested during exponential and stationary phases. 

The effect of DSF on E. coli biofilm formation was evaluted by supplementing growth 

media with these supernatant samples. The results indicated that neither of the two 

supernatant samples had an effect on biofilm formation of E. coli (Figure 3.3A).  

In a second experiment to evalute the effect of DSF, transwell systems were used for cell 

contact-free co-culture between the two species, which had the advantage over the 

previous experiment that DSF was available during any growth phase. E. coli biofilms 

were present in each well, while S. maltophilia cells grew in inserts, which were inserted 

in each well. Porous membranes at the bottom of each insert allowed DSF to diffuse into 

the corresponding well, but separated S. maltophilia cells from direct contact with E. coli 

cells. A mixed culture of E. coli and S. maltophilia was also grown in an insert, in case 

some specific DSF may be produced in mixed species culture conditions. Both cell 



 24 

contact-free cultures inhibited E. coli biofilm formation to a small degree (approximately 

15% decrease in biomass) (Figure 3.3B). However, this small amount of inibitions only 

partially explained the much greater inhibition (70-90% biomass reduction) observed 

when E. coli biofilm was grown in mixed species cultures (Figure 3.2). 

3.3.4 Reduced cell aggregation and surface attachment 

Since cell-contact between E. coli and S. maltophilia cells was suggested to be 

responsible for the inhibition of E. coli biofilm formation in static culture, the effect of 

mixing S. maltophilia cells with E. coli on E. coli cell aggregation (adherence of cells to 

cells) and surface attachment (adherence of cells onto surface) was examined. The degree 

of cell aggregation was expressed as the percentage of E. coli cells forming aggregates 

and settling down from the top layer of a static culture column due to gravity. 

Aggregation of E. coli cells was reduced from 99.9% in single species culture to 96.7% 

and 80.9% when mixed with10-fold less and an equal number of S. maltophilia cells, 

respectively (Figure 3.4A).  

Initial surface attachment measured the adhesive property of cells during short-term 

contact with the surface. The amount of surface-attached cells (shown as biomass) was 

measured after suspended cells were deposited on the surface for one hour. Results 

showed that initial attachment of E. coli was greatly reduced (85% reduction) when 

mixed with S. maltophilia cells (Figure 3.4B). The strength of surface attachment of E. 

coli was further investigated by conducting an invasion experiment. Pre-developed E. 

coli or S. maltophilia biofilm was allowed to be invaded by suspended cells of the other 

species for 24 h. Microscopic images revealed that S. maltophilia cells were able to 

remove most surface-attached E. coli cells and took over the surface (Figure 3.5). In 

contrast, E. coli cells failed to eliminate S. maltophilia cells from the surface and hardly 

adhered onto unoccupied surface or S. maltophilia biofilm (Figure 3.5). These results 

indicated that E. coli cells were able to attach onto surface, but the strength of their 

surface attachment was much weaker than that of S. maltophilia cells. As a result, E. coli 

cells were out-competed in surface adherence by S. maltophilia.  The lower cell 

aggregation and surface attachment of E. coli cells when mixed with S. maltophilia cells 
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may explain the greatly inhibited E. coli biofilm formation in mixed species static co-

cultures. 

3.4 Discussion 

Comparing biofilm formation of E. coli or S. maltophilia in single species cultures with 

mixed species cultures indicated a strong effect of species interactions on biofilm 

development. Two laboratory model systems, microtiter plates and flow cells 

representing static batch and dynamic flow conditions, respectively, were used to culture 

biofilms in this study. Different culture conditions not only influenced mono-species 

biofilm formation of E. coli or S. maltophilia, but also showed an effect on species 

interactions between E. coli and S. maltophilia with regard to biofilm formation. 

The two culture conditions in microtiter plates and flow cells differed in nutrient supply, 

hydrodynamic parameters, shear force, accumulation of metabolites, suspended cell 

growth, etc. These parameters likely affect biofilm development in a species-specific way 

as indicated by several previous studies that observed different effects of culture 

conditions on biofilm formation by several species [16, 18-20].  

3.4.1 Mono-species biofilm formation varied in static and dynamic cultures 

Understanding single species biofilm formation forms the basis to study mixed species 

biofilm formation and species interactions. Therefore, we first analyzed E. coli and S. 

maltophilia mono-species biofilm development for two culture conditions.  We observed 

that E. coli formed a thick biofilm after 22 h in static culture as reported previously [21]. 

However, E. coli developed biofilms much slower in flow cells. Specifically, it took more 

than three days to form a mature biofilm in a flow cell system with a large inoculum (1 

ml, 109 CFU/ml), while no biofilm had developed four days after inoculation with 10-

fold less cells (1 ml, 108 CFU/ml). One reason for the slow biofilm development by E. 

coli in flow cells was the detachment of initially adhered cells by continuous flow as 

observed in Figure 1A. Surface attachment of E. coli cells was shown to be weak in flow 

cells.  Similar observations were made during an invasion experiment (Figure 3.5), even 

though the amount of initially attached E. coli cells was high (Figure 3.4B). In static 

microtiter plates, there was no shear force so cells were not removed once attached. 
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Moreover, planktonic cells accumulated in microtiter plates may also contribute to cell 

aggregation and thus biofilm formation since the E. coli strain showed high aggregation 

ability (Figure 3.4A). Planktonic replication was previously reported as essential for 

biofilm formation of other species [16].  

In contrast to E. coli, S. maltophilia formed little biofilm in microtiter plates (Figure 3.2) 

but quickly developed mature biofilms in flow cell systems (less than 17 hours after 

inoculation, Figure 3.1A). Similar characteristics of S. maltophilia biofilm formation 

were also reported in other studies [6, 22]. Although the amount of initially attached cells 

was low (Figure 3.1A and Figure 3.4B), surface attachment was sufficiently strong to 

survive continuous flow (Figure 3.1A). A single layer of attached cells was able to 

develop into thick biofilms in flow cells, but not in microtiter plates. Microscopic images 

showed that thickening of S. maltophilia biofilm started from the formation of a 

filamentous network in dynamic culture (Figure 3.1B). However, no filamentous cells 

were observed in static culture even with a longer incubation (72 h). This result may 

explain why the biofilm did not become thicker in microtiter plates. A previous study 

showed that the switch to filamentous morphology in dynamic culture was triggered by 

diffusible signal factors (DSF) consisting of a few fatty acids [6]. However, DSF, if 

produced, should accumulate in batch cultures more easily than in flow cells. Several 

possible reasons may explain the absence of filamentous cells in microtiter plates. Firstly, 

DSF may be not produced in stationary growth phase, while S. maltophilia cell growth 

reached late stationary phase after 22 h culture in microtiter plates. In addition, S. 

maltophilia may secrete other signals or secondary metabolites to inhibit the switch to 

filamentous cell growth. These signals or metabolites may have accumulated in microtiter 

plates so that filamentous biofilm were not observed in the batch culture experiments. 

In summary, the combination of specific culture conditions and cell properties of E. coli 

and S. maltophilia determined their different behavior in biofilm formation. The absence 

of shear force and high cell aggregation of suspended E. coli cells resulted in thick 

biofilms of E. coli in static batch culture. Strong surface attachment and filamentous cell 

growth promoted biofilm growth of S. maltophilia in dynamic culture only. 
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3.4.2 E. coli biofilm formation affected by species interactions 

When the two species were cultured together, S. maltophilia biofilm formation resembled 

that observed in pure culture, but E. coli biofilm development was altered significantly. 

Specifically, biofilm formation of E. coli was promoted in dynamic conditions (Figure 

3.1) but inhibited in static cultures (Figure 3.2) due to interactions with S. maltophilia. 

The enhanced E. coli biofilm formation in flow cells was believed to result from reduced 

cell detachment due to the presence of the S. maltophilia biofilm matrix. Detachment of 

initially attached E. coli cells was the reason for little E. coli biofilm growth in pure 

culture as discussed above. No obvious detachment of E. coli cells was observed in 

mixed species culture (Figure 3.1A). Enhanced surface colonization of E. coli by other 

species in hydrodynamic systems was reported in several studies [19, 23, 24], and one of 

these studies found that co-aggregation with proficient biofilm forming species was the 

reason for enhanced surface colonization [23]. However, aggregates of E. coli with S. 

maltophilia were not observed in the effluent in this study (data not shown). Shear force 

caused by fluid flow was the primary drive of cell detachment [25]. It was shown that 

flow velocity near the surface with biofilm was reduced to 50% compared to that without 

biofilm [26]. It is reasonable to infer that initially attached E. coli cells were exposed to 

reduced shear force due to the quickly developed biofilm matrix of S. maltophilia. As a 

result, the detachment of E. coli cells due to fluid flow was reduced and biofilm 

formation was promoted as observed in Figure 3.1A. Further studies are needed to 

explore other unknown mechanisms that may play a role in this observation.  

In static batch culture, competition for nutrients, reduced cell aggregation, and 

competition for surface space by S. maltophilia may all contribute to inhibited E. coli 

biofilm formation. Unlike the continuous supply of media in flow cells, nutrient supply is 

limited in batch cultures so that competition for nutrients is more intense and may affect 

cell growth of one species. Cell density of E. coli was lower, although not significantly, 

in planktonic co-culture compared to that in pure culture (18 or 33% lower, p>0.05 when 

the ratio of inoculated E. coli to S. maltophilia was 1:0.1 or 1:1, respectively). Cell 

aggregation, which was critical for E. coli biofilm formation [21], was reduced 

significantly when mixed with S. maltophilia cells (Figure 3.4A). Surface attachment of 
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E. coli was shown to be weaker than that of S. maltophilia as discussed above. Moreover, 

invasion experiments showed that suspended S. maltophilia cells were able to remove 

pre-developed E. coli biofilms (Figure 3.5). It can be inferred that suspended S. 

maltophilia cells grown in microtiter plates could remove surface attached E. coli cells 

and further inhibit E. coli biofilm formation besides competition for surface attachment. 

In contrast to flow cell systems, suspended S. maltophilia cells were removed by media 

flow and thus failed to remove E. coli cells embedded in their biofilm matrix.    

It remains unclear why E. coli cells could not attach onto the thin layer of S. maltophilia 

cells in the static culture as they did in the dynamic culture. In a preliminary experiment, 

we showed that S. maltophilia biofilm killed by UV lost the ability to avert E. coli cells 

from attaching onto S. maltophilia cells and, as a result, a thick E. coli biofilm developed 

on the matrix of dead S. maltophilia cells (data not shown). Live suspended S. 

maltophilia cells grown and accumulated in microtiter plates may contribute to the 

prevention of E. coli from attaching to the S. maltophilia biofilm. In addition, although 

our studies found that supernatant from S. maltophilia cultures failed to inhibit E. coli 

biofilm development, we could not exclude completely the role of DSF and other 

exudates in the inhibition of E. coli biofilm formation in microtiter plates. Further 

research is necessary to explain these observations, including the use of purified DSF to 

test its effect on E. coli biofilm formation. 

3.5 Conclusions 

This study showed that biofilm formation of E. coli was affected by interactions with 

another species S. maltophilia. Moreover, the effect of species interactions on biofilm 

formation altered with culture conditions. With regard to E. coli biofilm formation, 

species interactions behaved antagonistic in static batch culture but synergistic in 

dynamic culture. The fact that species interactions varied among different species was 

reported in previous studies [17, 24]. However, altered species interactions with culture 

conditions have not yet been reported. 

Microtiter plates and flow cell systems are the two most commonly used laboratory 

systems in studies of biofilms, representing environments such as water storage towers 
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and delivery pipes in distribution systems, respectively. Results from this study suggest 

that the probability of an invading species to successfully colonize pre-existing biofilms 

not only depends on interactions with existing species but also on environmental 

conditions, such as shear force due to hydrodynamic parameters. Survival of a species, 

specifically an incoming pathogen, may be greatly enhanced by embedding in biofilms 

[4], similar to the increased E. coli biofilm formation in the presence of S. maltophilia 

biofilm in flow cells in this study. Controlling biofilm formation and the resulting fate of 

pathogens may be achieved by altering indigenous biofilm species or by changing 

hydrodynamic conditions. 

This study of E. coli and S. maltophilia provided an interesting model of the impact of 

species interactions on biofilm growth. Further investigation of genetic mechanisms of 

interactions between these two species, for example by identifying and characterizing 

genes involved, are desired for a better understanding of species interactions and for 

management of species interactions in controlling pathogens. 

3.6 Materials and Methods 

3.6.1 Bacterial strains and cultures 

E. coli K-12 PHL644/pMP4655-GFP and S. maltophilia/pBPF-mCherry were used in this 

study. E. coli and S. maltophilia were labeled with a constitutively expressed green 

fluorescence protein (GFP) and red fluorescence protein mCherry, respectively. The 

culture media consisted of 10-fold diluted Luria-Bertani broth (0.1×LB), supplemented 

with 40 µg/ml tetracycline and 20 µg/ml gentamicin (Sigma-Aldrich, St. Louis, MO) for 

E. coli and S. maltophilia, respectively.  Planktonic cultures were inoculated from single 

colonies on LB agar plates and incubated at 30 °C overnight (13 h) with continuous 

shaking (250 rpm). Cells were pelleted by centrifugation (3,000×g, 3 min), and re-

suspend in fresh 0.1×LB to inoculate biofilm culture systems. The cell densities of E. coli 

and S. maltophilia were measured with the plate count method and adjusted as needed. 
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3.6.2 Biofilm culture in flow cell systems 

Flow systems were assembled with three-channel glass-bottom flow cells (Stovall, 

Greensboro, NC) as described previously [27]. Culture medium consisting of 0.1×LB was 

supplied continuously (0.12 ml/min) with a peristaltic pump. The medium flow was 

paused for inoculation of 1 ml single species E. coli or S. maltophilia, or a mixture of the 

two species with densities adjusted to 109 or 108 CFU/ml. Inoculated cells were allowed 

to attach onto the surface for one hour before the medium flow resumed, which 

corresponded to a time of 0 h. Growth of biofilms was monitored with confocal laser 

scanning microscopy (see below) every few hours until mature biofilms were developed 

with no further observable change in biomass or structures. Five flow cell chambers were 

run in parallel for single or mixed species biofilm culture with different inoculation ratios 

from the same overnight planktonic cultures (E1, S1, E1S1, E0.1, E0.1S1). The whole 

flow cell system was set at room temperature (20 °C). Each biofilm experiment in the 

flow cell system was replicated three times. 

3.6.3 Biofilm growth in static batch plates 

Biofilms were grown in 96-well Nunclon plates (Fisher Scientific, Pittsburgh, PA) for 

biomass quantification. Glass-bottom 24-well plates (MatTek, Ashland, MA) were used 

to culture biofilms for microscopic monitoring and biofilm imaging. Re-suspended cells 

from overnight planktonic cultures, single or mixed species at ratios of 0.1:1, 1:1, and 

1:0.1, were inoculated into 0.1×LB (1:100 by volume) in multi-well plates. The plates 

were set static for biofilm growth at room temperature (20 °C) for 22 h. Suspended cells 

in each well were gently removed and washed three times with phosphate buffered saline 

(PBS, pH 7.2). Biofilm biomass was quantified by staining with crystal violet [28] and 

the results are expressed as optical density (arbitrary units). Four replicate measurements 

were conducted for each biofilm and the mean value of biomass was reported. The same 

biofilm growth in 96-well plate was replicated three times independently and similar 

biomass was acquired. Biofilms in 24-well plates were immersed in PBS for microscopic 

imaging after three cycles of wash as described above. 
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3.6.4 Supernatant preparation and cell contact-free culture 

Planktonic cultures of S. maltophilia were harvested after 4 h (exponential phase) and 15 

h (stationary phase) of growth at room temperature after inoculation. Supernatant was 

acquired by filtering planktonic cultures through membrane filters (0.22 µm, Millipore, 

Billerica, MA). E. coli biofilms grown in 0.2×LB supplied with equal volume of either of 

the two supernatants were compared with E. coli biofilms grown in 0.1×LB in order to 

test the effect of supernatant on biofilm formation by E. coli.  

Cell-contact free cultures were conducted in a 24-well Transwell system (Corning, NY), 

with an insert made of polycarbonate membrane (0.4 µm) for each well. Bacterial species 

grown in the insert and in the corresponding well were separated from direct cell-to-cell 

contact, but allowing secreted signal molecules to diffuse freely in each part of insert and 

well. S. maltophilia or E. coli-S. maltophilia co-culture was grown in the inserts, while E. 

coli biofilm cultures were grown in the corresponding wells. Culture conditions in 

Transwells and biofilm biomass quantification were the same as those in 96-well 

microtiter plates as described above. 

3.6.5 Initial attachment assay 

Overnight cultures of E. coli and S. maltophilia were re-suspended in fresh 0.1×LB and 

adjusted to the same cell density (109 CFU/ml). Pure E. coli, S. maltophilia, or mixtures 

of the two species (1:1 ratio) were added into a 96-well plate (100 µl/well) and set static 

at room temperature (20 °C) for 1 h for initial attachment. Suspended cells were gently 

removed and washed three times with PBS. Biomass of attached cells showing initial 

attachment ability was quantified with crystal violet staining as stated above. 

3.6.6 Cell aggregation assay 

Overnight cultures of E. coli and S. maltophilia were re-suspended in fresh 0.1×LB. Two 

mixtures of E. coli with 10-fold less and with the same amount of S. maltophilia cells 

were prepared. Pure E. coli and the two mixtures were added into 5-ml test tubes (Fisher 

Scientific, Pittsburgh, PA) (3 ml/tube) to form a culture column and set static on the 

bench for 24 h. Cells were allowed to adhere together to form aggregates, which 
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gradually settled down due to gravity. As a result, the cell density in the top layer of the 

culture column decreased. E. coli cell aggregation was reported as the relative decrease in 

cell density (percentage) due to aggregates formation and settling. E. coli cell density in 

both pure and mixtures was measured by the plate count method using selective agar. The 

experiments were repeated independently twice and showed similar results. 

3.6.7 Biofilm invasion assay 

Pure E. coli or S. maltophilia biofilms were developed in microtiter plates for 24 h as 

described above. Suspended cells were gently removed and washed three times with PBS. 

Re-suspended E. coli or S. maltophilia cells from overnight planktonic cultures were 

added (100 µl/well) into each well to invade pre-formed S. maltophilia and E. coli 

biofilms for another 24 h, respectively. Suspended cell were then gently removed, 

washed three times with PBS. Biofilms before and after invasion were imaged with 

fluorescence microscopy (Olympus, Wirtz, VA). The same invasion experiments were 

replicated three times with similar results. 

3.6.8 Imaging biofilms 

Imaging biofilms cultured in flow cell systems and in microtiter plates were acquired 

with a confocal laser scanning microscope (FluoviewTM, Olympus, Wirtz, VA) with filter 

sets for monitoring GFP and mCherry fluorescence for E. coli and S. maltophilia, 

respectively. Images were obtained randomly from three to six spots in the center of each 

flow chamber or each well of the microtiter plates. Biofilms grown near the edge of a 

flow chamber were acquired only if no biofilms were observed in the center of a flow 

chamber for pure E. coli culture with low inoculation (system E0.1). Three-dimensional 

images were reconstructed using the software Volocity 3.2 (Improvision Inc., Waltham, 

MA) from a stack of confocal microscopy images of x-y sections of biofilm samples.  
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3.7 Figures 

 
Figure 3.1 Biofilm development in flow cell systems 
(A) Images showing the process of biofilm development in flow cell systems, from left to 
right, pure E. coli biofilm (E1), pure S. maltophilia biofilm (S1), E. coli in mixed species 
biofilm (E1S1), pure E. coli biofilm (E0.1), and E. coli in mixed species biofilm 
(E0.1S1). The numbers 1 and 0.1 correspond to inoculation of 1 ml 109 CFU/ml and 10-
fold less 108 CFU/ml cells, respectively. E. coli (carrying pMP4655-GFP) and S. 
maltophilia (carrying pBPF-mCherry) are shown as green and red cells, respectively. 
Images in the same row were taken at the same time after medium flow resumed unless 
specifically labeled. Red lines in two images of system E0.1 (55 h and 96 h) show the 
edge of flow chambers. All other images were randomly taken over spots in the center of 
the flow chambers. Embedded images in (B) show fluorescence and bright field 
microscopic images of filamentous S. maltophilia biofilm developed in system S1 at 33 h 
and in (C) show combined two-color mixed species biofilms grown in system E1S1. Grid 
size is 26.7 µm and scale bar is 20 µm. 
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Figure 3.2 Biomass and 3-D images of biofilms in static batch culture 
(A) Quantified biomass of single and mixed species biofilms and re-constructed 3-D 
biofilm images of E. coli biofilm (B), S. maltophilia biofilm (C), and mixed-species E. 
coli and S. maltophilia biofilm (D) formed on glass-bottom microtiter plates in static 
culture. E stands for E. coli/pMP4655-GFP, shown as green cells in images, S indicates 
S. maltophilia/pBPF-mCherry, shown as red cells in images, and E:S stands for E. coli 
and S. maltophilia mixed species cultures. Numbers 1 and 0.1 stand for inoculation of, 
respectively, 1 µl and 0.1 µl overnight cultures (5×108 CFU/ml) into 100 µl broth. 
Biomass quantification was measured by staining biofilm cells with crystal violet. Three 
independent cultures were performed, each with four replicates. Results from one 
independent culture are shown in (A). Error bars are standard deviations of three to four 
replicates. Symbol * indicates significant decrease (p<0.01) compared to pure E. coli 
biofilm. Arrows indicate the same culture conditions in which biofilms were grown for 
biomass quantification and biofilm imaging. 3-D images were re-constructed from a 
series of confocal laser scanning images taken randomly over the spot near the center of 
each well in microtiter plates. 
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Figure 3.3 Effect of supernatant and cell contact-free culture on E. coli biofilm 
formation 

Biomass of E. coli biofilms cultured (A) in media supplemented with supernatant from S. 
maltophilia cultures harvested during stationary (stat) or exponential (exp) growth phase, 
and (B) in Transwell systems with S. maltophilia (S) or E. coli and S. maltophilia (E&S) 
cells in the insert. Transwell systems corresponding to each culture condition in (B) are 
shown with white cells standing for E. coli, grey cells for S. maltophilia and stars as 
diffusible signals. Biomass was quantified by staining biofilm cells with crystal violet. 
Each culture was conducted independently twice, each with three/four replicates. Error 
bars are standard deviations of at least three replicates. Symbol * indicates significant 
difference (p<0.05) from the control of E. coli biofilm formation in the Transwell system 
with no inoculation in the insert. 
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Figure 3.4 Effect of mixing with S. maltophilia cells on E. coli cell aggregation and 
initial attachment 

The effect on (A) E. coli cell aggregation and (B) initial attachment due to mixing with S. 
maltophilia cells. E. coli cell aggregation is shown as the percentage of E. coli cells that 
formed aggregates and settled down from the top layer of a culture column due to gravity 
after being static for 24 h. E. coli cell density in the top layer was quantified with the 
plate count method using selective agar. “E. coli with 0.1× S. maltophilia” and “E. coli 
with S. maltophilia” indicate, respectively, 10-fold less and equal number of S. 
maltophilia cells were mixed with E. coli. Similar results were acquired from two 
independent replicates. Error bars show the standard deviations in density counting. 
Initial attachment measured the amount of cells attached to the surface in 1 h. Error bars 
are standard deviations of three replicates. Symbol * indicates a significantly different 
result (p<0.05) from the control of pure E. coli. 
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Figure 3.5 Invasion of pre-developed biofilms by suspended cells of the other species 
Fluorescence microscopy images of pre-developed biofilms of (A) E. coli and (B) S. 
maltophilia and of biofilms after invasion by (C) S. maltophilia and (D) E. coli cells. E. 
coli/pMP4655-GFP cells are shown as green or yellow and S. maltophilia/pBPF-mCherry 
as red cells. Pre-developed biofilms were cultured in microtiter plates for 24 h at room 
temperature. Invaded cells were 1 ml suspended cells from overnight planktonic culture 
(109 CFU/ml). Scale bar is 20 µm. 
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Chapter 4  
Separation of Escherichia coli K-12 from Mixed Species Communities for 

Transcriptome Analysis 

4.1 Abstract 

Study of bacterial species interactions in a mixed species community can be facilitated by 

transcriptome analysis of one species in the community using cDNA microarray 

technology.  However, current applications of microarrays are mostly limited to single 

species. The purpose of this study is to develop a method to separate one species, such as 

Escherichia coli, from communities for transcriptome analysis. E. coli cells were 

separated from dual-species (E. coli and Stenotrophomonas maltophilia) communities 

using immuno-magnetic separation (IMS). High recovery rates of E. coli were achieved. 

The purity of E. coli cells was as high as 95.0% separated from suspended mixtures 

consisting of 1.1 – 71.3% E. coli, and as high as 96.0% separated from biofilms with 

8.1% E. coli cells. Biofilms were pre-dispersed into single-cell suspensions. Reagent 

RNAlater was used during biofilm dispersion and IMS to preserve the transcriptome of 

E. coli. Microarray study confirmed that very few E. coli genes (8 out of 4,289 ORFs) 

exhibited a significant change in expression during dispersion and separation, indicating 

transcriptional profiles were well preserved. The method based on immuno-magnetic 

separation (IMS) and use of RNAlater was developed to separate E. coli cells with 

preserved transcriptome from mixed species communities. The method combined with 

cDNA microarray should be very useful to study species interactions in mixed species 

communities. 

4.2 Introduction 

Microorganisms in natural environments rarely grow as single species, but grow as mixed 

species consortia in which a variety of intra- and inter-species interactions take place [1, 

2]. Previous studies have shown that species interactions play an important role in the 
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development, composition, structure, and function of microbial consortia in biofilms as 

well as in suspended growth communities [3-5]. Studies of species interactions have 

promoted the understanding of microbial activities in mixed species communities [6-8].   

Identification of relevant genes is an important step toward the elucidation of the 

molecular mechanisms of species communication. cDNA microarray technology has 

been widely used for mono-species cultures, but only a few for mixed species consortia 

due to broad cross hybridization among species [6, 9, 10]. Variable conservation of genes 

existed across bacterial species [11]. Non-target transcripts have been shown to cross 

hybridize in oligonucleotide microarray studies [12]. The problem was addressed 

previously by carefully selecting co-cultures of a gram-negative and a gram-positive 

strain, so that RNA could be selectively extracted from one strain [6, 9]. However, for 

most mixed species communities, selective extraction is not possible and a method needs 

to be developed in order to apply cDNA microarray technology. 

Separating the target species from other community members before extracting RNA 

could be an approach in minimizing cross-hybridization on microarrays. Immuno-

magnetic separation (IMS) using magnetic force to recover target cells with paramagnetic 

beads and specific antibodies has been widely used [13-15]. The IMS procedure has been 

standardized [16]. However, isolated cells had been used for different types of analysis 

such as microscopic imaging, PCR, and western blot, but never been considered for 

transcriptome analysis. 

While the purity of recovered cells is important for microarray analysis, it was not always 

considered in previous studies. Preserving the transcription profile of target cells during 

IMS is critical for downstream microarray analysis. This is the most important concern 

addressed in this study. RNAlater (Ambion, Austin, TX) has been used to stabilize and 

protect cellular RNA during sample storage. Combining the use of RNAlater with IMS 

was desired to protect transcriptome during cell separation. However, the effect of 

RNAlater on IMS separation efficiency had not been explored.  

This study developed and tested a method that can be used to study the transcriptome of 

one species in a mixed species community, especially in biofilms. The efficiency of IMS 
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to separate a model species, Escherichia coli, from various suspended and biofilm 

cultures consisting of E. coli and Stenotrophomonas maltophilia was firstly evaluated. 

Recovery and purity of separated E. coli cells were reported. Changes in the transcription 

profile of E. coli cells due to sample processing and cell separation were quantified by 

cDNA microarray analyses and reported to evaluate the effectiveness of the developed 

method in this study. 

4.3 Results and Discussion 

4.3.1 Recovery rate of E. coli  

Recovery rate of E. coli by immuno-magnetic separation (IMS) from a series of 

suspended cultures was firstly determined. A general antibody of E. coli (polyclonal anti-

E. coli antibody (ViroStat, Portland, ME)) was used in this study. Using this antibody, 

recovery rate of E. coli was 74.4-98.2% when separated from suspended cultures with a 

density up to 1.9×108 CFU/ml (Figure 4.1). However, the recovery rate dropped to 60% 

for samples with ten-fold higher cells (1.9×109 CFU/ml), which may exceed the capacity 

of separation columns used in IMS (Figure 4.1). Therefore, E. coli cell densities in 

samples were adjusted to less than 2×108 CFU/ml for subsequent IMS. 

Determining the recovery rate of target species is important when IMS is used to separate 

target species for subsequent cDNA microarray analysis. High recovery rates yield 

sufficient cells for RNA extraction, especially for low-abundance target species or from 

limited sample amounts. High recovery rates of E. coli were achieved from samples with 

a wide range of cell densities (104-108 CFU/ml). The recovery rates in this study are 

generally higher than those reported previously (53-82%) [17-19]. 

4.3.2 Purity of E. coli separated from dual-species cultures 

Suspended mixtures containing 0.7-70% E. coli cells (104-106 CFU/ml E. coli and 105-

108 CFU/ml S. maltophilia) were used to evaluate IMS for separating and purifying E. 

coli cells from various communities. One-step IMS enriched E. coli cells to a purity of 

over 95% from mixtures with 38.3-71.3% E. coli cells (Figure 4.2A). But the purity of E. 

coli cells after one-step IMS was too low to be acceptable (32-53%) when separated from 

mixtures containing less E. coli cells (0.7-13.4%) (Figure 4.2A). Therefore, a second step 
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of IMS was performed and E. coli cells were successfully enriched to a high purity of 

95.9% from mixtures containing as little as 1.1% E. coli cells (Figure 4.2A). 

Previous studies did not report whether other species, such as S. maltophilia, would bind 

to the anti-E. coli antibody [18-20].  The high purity of E. coli obtained by one- or two-

step IMS (>95%) (Figure 4.2A) suggested that cross-reactivity, if there was any, was not 

a concern. Low purity of E. coli (32-53%) obtained from mixtures with small percentages 

of E. coli (0.7-13.4%) was a result of a small fraction (1%) of S. maltophilia cells 

accumulated in the LS columns, in which magnetically labeled E. coli cells were held 

during washing. When S. maltophilia was dominant in samples (e.g., S. maltophilia 

>90% and E. coli <10%), the seemly low accumulation of S. maltophilia (1%) yielded an 

absolutely high number of S. maltophilia cells, resulting in low purity of E. coli after 

IMS. However, since the accumulated S. maltophilia cells were not actually bound to the 

anti-E. coli antibody, they were removed during the second step of IMS, resulting in 

highly purified E. coli cells (Figure 4.2A).  

Real dual-species biofilms harvested from flow cell systems were used to investigate 

whether IMS could also separate E. coli from biofilms. Biofilm matrix was homogenized 

to disperse cell aggregates into a suspension of single cells before IMS. Two independent 

separations were performed for aliquots of dispersed biofilms. Two-step IMS was able to 

enrich E. coli to around 95% from biofilms containing only 8.1% E. coli (2.3x106 

CFU/ml E. coli and 2.6x107 CFU/ml S. maltophilia) (Figure 4.2B). The results 

demonstrated the feasibility of using IMS to separate E. coli cells from biofilms.  

It is important to obtain target cells in high purity when separated from mixed species 

communities for subsequent cDNA microarray analysis, in order to effectively limit cross 

hybridization.  The results showed that high purity of E. coli cells could be obtained by 

IMS from different mixed species communities (suspensions or biofilms) with various 

amounts of E. coli cells (0.7-70%). 

4.3.3 Preservation of RNA integrity during cell separation 

Preserving RNA integrity during IMS is critical when collected cells are used for 

subsequent cDNA microarray analysis. RNAlater (Ambion, Austin, TX) has been used 
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widely to preserve RNA in bacterial cells, but the impact of RNAlater on IMS 

performance was unknown. The recovery rate of E. coli dropped to 1% if samples 

remained in RNAlater during the whole IMS procedure. It may be the result of antibody 

denaturation by global protein denaturing reagents in RNAlater. Alternative products, 

such as RNAprotect (Qiagen, Germantown, MD), contain similar denaturing reagents and 

are expected to show similarly reduced recovery. 

In order to overcome this problem, RNAlater was removed during some procedure of 

IMS. Samples were stored in RNAlater at 4°C overnight to allow the reagent to penetrate 

into bacterial cells and to stabilize intracellular RNA. RNAlater was then removed and 

bacterial cells resuspended in separation buffer just before incubation with antibody and 

microbeads. One-step IMS could enrich E. coli to a similar level as shown in Figure 4.2A 

and remove over 99% of S. maltophilia cells (data not shown). The results confirmed that 

the modified protocol did not affect the recovery and purity of E. coli by IMS. 

Pre-stabilization in RNAlater, quick sample processing (~30 min), low working 

temperature (4 °C), and maintaining an RNAase-free environment were combined to 

limit RNA degradation during IMS, since RNAlater had to be removed during some 

procedure of IMS. The effectiveness of these strategies in preserving the integrity of 

RNA was confirmed by observing high quality RNA extracted from IMS “sorted” cells 

using agarose gel electrophoresis (data not shown). 

4.3.4 Impact of cell separation on E. coli transcription profiles 

In order to evaluate whether gene expression profiles were changed during sample 

process (biofilm dispersion) and IMS cell sorting, cDNA microarray analysis was used to 

compare gene expressions of E. coli cells without dispersion and IMS (unsorted cells) 

and with dispersion and IMS (sorted cells). To eliminate possible impact of any non-

target RNA (from the small amount (5%) of S. maltophilia cells remained in enriched 

collections), pure cultures of E. coli rather than dual-species mixtures were used to study 

changes in transcription profile of E. coli due to cell separation. The same procedure used 

for dual-species biofilm treatment, including cell dispersion and IMS, was performed 

with pure cultures of E. coli.  
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Differentially expressed genes were identified based on fold-change and statistical 

significance compared to the control (Figure 4.3) [21]. Only 10 and 45 of the 4,289 ORFs 

exhibited differential expression in two independent microarray studies I and II, 

respectively (each microarray study was performed with two technical replicates of 

microarray slides and each microarray slide had three built-in replicates). A complete list 

of the differentially expressed genes is provided in Appendix 4-1. Only eight of these 

genes showed consistent changes in both of the independent microarray studies (Table 

4.1), with three genes up-regulated and five genes down-regulated in sorted E. coli cells 

in comparison to unsorted E. coli cells. The fold-change of gene expression ranged from 

2.7 to -4.6 (Table 4.1).  

It was not surprising to find genes with changed expression after several treatment steps, 

i.e., cell homogenization/dispersion, re-suspension in buffer, and IMS cell sorting. 

However, the number of genes that were differentially expressed was very low (eight 

genes correspond to 0.2% of the 4,289 ORFs). Thus, it can be concluded that 

transcription profiles of enriched E. coli cells were well preserved during IMS.  

4.4 Conclusions 

Good recovery, high purity and preserved transcription profiles of separated E. coli cells 

indicate that the method developed in this study can be used to study transcription 

profiles of E. coli in a mixed community with S. maltophilia. Although S. maltophilia 

was used as the non-target species in this study, this method can be used to remove other 

non-target species. In addition, the method should not be limited to studies of E. coli, but 

also other species of interest for which specific antibodies are available. While it will be 

important to determine antibody dosage and homogenization intensity in separating other 

species of interest, the basics of the method presented here can be applied to other 

communities. The applicability of the method to study real mixed-species communities 

has been tested by our recent study in identifying genes of E. coli involved in interactions 

with S. maltophilia (manuscript in preparation). Gene identification of species 

interactions can lead to further our understanding of mechanisms of species interactions 

as shown by previous studies [9]. The method developed here thus has the potential to 
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contribute to studies in which understanding the mechanisms of species interactions is an 

important component. 

4.5 Materials and Methods 

4.5.1 Bacterial strains and suspended mixtures 

Overnight cultures of E. coli K-12 PHL644/pMP4655 (carrying a gfp gene under the 

control of a constitutive promoter) and S. maltophilia/pBPF-mCherry were grown in 

Luria-Bertani (LB) broth supplemented with tetracycline (80 µg/ml) or gentamicin (20 

µg/ml) at 34°C with continuous shaking (200 rpm). Cells were pelleted by centrifugation 

(3,300×g, 4°C, 3 min), re-suspended, and diluted in 1× phosphate buffered saline (PBS, 

pH 7.4) supplied with 0.5% bovine serum albumin (BSA) (Pierce, Rockford, IL). A series 

of artificial mixtures of E. coli and S. maltophilia were prepared by mixing the PBS re-

suspended and diluted E. coli and S. maltophilia cells at different ratios. 

Biofilms were cultivated on the inner surface of silicon tubing (Cole-Parmer, Vernon 

Hills, IL) in a flow cell system as described previously [22]. Briefly, a flow cell system 

was assembled, sterilized, and conditioned by running 0.1× LB broth (10-fold diluted LB 

broth, 1 ml/min) at room temperature (20-25 ºC). Operation was paused for one hour to 

allow inoculation with S. maltophilia and E. coli mixed at a ratio of 1:1. After three days 

of growth, biofilms were scraped into 1× PBS and pre-homogenized on ice using a 

homogenizer (OMNI TH, Marietta, GA) set at the lowest speed for 30 seconds.  Biofilms 

were further dispersed into single cells using the same homogenizer set at the maximum 

speed for two minutes. Over 99% of bacterial cells in the biofilm matrix were dispersed 

into single cells. The dispersed biofilm cells were then diluted in 1× PBS (with 0.5% 

BSA) for IMS.  

4.5.2 Immuno-magnetic separation  

One ml of samples was incubated with 10 µl anti-E. coli antibody (ViroStat, Portland, 

ME) for 10 min with gentle shaking. Bacterial cells were pelleted by centrifugation 

(3,300×g, 4 °C, 3 min) and re-suspended in 100 µl separating buffer (1× PBS, 0.5% BSA, 

2 mM EDTA, pH 7.4) (EDTA: ethylenediaminetetraacetic acid). 10 µl streptavidin 
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microbeads (Miltenyi Biotec, Auburn, CA) were added and incubated at 4 °C in the dark 

for 10 min. Separation of E. coli cells was performed in LS columns and a midi MACS® 

separator (Miltenyi Biotech, Auburn, CA) following the protocol provided by the 

manufacturer, except that one more washing step was added to remove more S. 

maltophilia cells. In a two-step IMS, enriched cells from the first step IMS were directly 

transferred into a new LS column for the second separation. Densities of E. coli and S. 

maltophilia cells in samples and IMS enriched collections were measured using a plate-

counting method with selective agar. Cell densities were used to calculate recovery and 

purity of E. coli after IMS. 

The protocol was amended with the use of RNAlater when enriched cells were used for 

microarray study. Bacterial cells were re-suspended in RNAlater rather than PBS after 

sample collection and kept at 4°C overnight, followed by homogenization. RNAlater was 

removed and cells were re-suspended in separating buffer just before IMS. During 

column separation, the buffer was additionally supplied with 10% (v/v) RNAlater. 

Enriched cells were immediately stored in RNAlater. The whole procedure was 

performed at 4°C. All buffers, reagents, and pipette tips were nuclease-free and pre-

cooled.  

4.5.3 Microarray study 

Pure E. coli cultures were used to evaluate the effect of separation on transcriptome by 

microarray analysis. Suspended E. coli cultures were harvested from an annular reactor 

(1320 LJ, BioSurface Technologies, Bozeman, MT), supplied with 0.1× LB broth (100 

ml/h) for 7 days after inoculation. Aggregates were removed from the cultures by 

filtration (5.0 µm Millipore, Billerica, MA). Suspended E. coli cells were immediately re-

suspended in RNAlater and stored at 4°C overnight. One aliquot of RNAlater stored E. 

coli cells served as the control (“unsorted” cells) and was kept in RNAlater without 

further treatment. The other aliquot was treated to acquire “sorted” cells as described 

above in the amended protocol. Samples collected independently from a second annular 

reactor served as a biological replicate for the microarray study. 
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RNAlater was removed by filtration with a membrane (0.22 µm, Millipore, Billerica, 

MA) from E. coli cells just before RNA extraction for both “unsorted” and “sorted” cell 

collections. RNA extraction was based on a hot SDS/phenol protocol for RNA extraction 

[23]. A step of bead-beating (BioSpec, Bartlesville, OK) for one minute was added to 

break cells, and all chemical extractions were performed in phase lock gels (5 Prime, 

Fisher Scientific, Pittsburgh, PA). DNA was removed from extracted RNA with Turbo 

DNase treatment (Ambion, Austin, TX) at 37 °C for 30 min followed by purification with 

an RNeasy Mini Kit (Qiagen, Germantown, MD). The quality of RNA was examined by 

gel electrophoresis using E-gel with SYBR Safer (Invitrogen, Carlsbad, CA). RNA with 

high quality was further re-precipitated, concentrated, and stored at -80°C. 

RNA was reversely transcribed into cDNA using random hexamers (pd(N)6) (GE 

Healthcare, Piscataway, NJ) and labeled with Amersham CyDye Post-Labeling Reactive 

Dye (Amersham Biosciences, Piscataway, NJ) following the protocol provided by the 

Amino Allyl cDNA Labeling Kit (Ambion, Austin, TX). Quantity and labeling efficiency 

of cDNA was measured using a NanoDrop Spectrophotometer (ND-1000, Thermo 

Scientific, Wilmington, DE).  

Microarray slides for E. coli were purchased from the University of Alberta (Edmonton, 

AB, Canada). Each slide contained three replicates of 5,978 70-mer oligonucleotides 

representing three E. coli strains (4,289 of them were for E. coli K-12). Sample 

preparation and loading, slide prehybridization, hybridization and washing were 

performed according to Corning protocols (GAPS II coated slides, Corning Inc., Lowell, 

MA). An extended 4-h prehybridization using a higher BSA concentration (1 mg/ml) was 

found to perform best in reducing background noise. Hybridization was in a Corning 

Microarray Hybridization Chamber (Corning Inc.) at 42 °C water bath.  

Microarray slides were scanned with a Virtek ChipReader (Virtek Vision, Waterloo, ON, 

Canada). Spots on scanned images were recognized and pixel intensity for each spot was 

quantified using the TIGR software Spotfinder (v3.1.1). Gene expression data was 

analyzed in the software Acuity 4.0 (Molecular Devices, Sunnyvale, CA). LOWESS 

normalization was performed for every microarray with three iterations using a 
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smoothing factor of 0.4. Hybridized spots with oligonucleotides for strain E. coli K-12 

having a high QC (quality control) value (>0.1), good flag tags (A, B and C) in both 

Cy3/Cy5 channels were chosen for further analysis. One sample t-tests were performed 

across replicates. Step-down Bonferroni-Holm was used for the correction of multiple 

hypotheses testing. Genes with at least two-fold change in expression (p-value < 0.05) 

were considered to have changed expression during sample dispersion and IMS. 

Microarray data was deposited in NCBI Gene Expression Omnibus database 

(GSE22885). 
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4.6 Figures and Tables 

Figure 4.1 Recovery rates of E. coli cells after immuno-magnetic separation 
Recovery rates of E. coli cells after one-step immuno-magnetic separation (IMS) from 1 
ml suspensions of E. coli with densities adjusted from approximately 104 to 109 CFU/ml. 
Recovery rates were calculated as the percentage of recovered E. coli cells after IMS. 
Cell density was quantified with the method of plate count and volume of cell collections. 
Error bars indicate standard deviations of triplicate plate counts. 
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Figure 4.2 Purity of E. coli cells before and after immuno-magnetic separation from 
suspended mixtures and biofilms 

Purity of E. coli cells before and after one- or two-step immuno-magnetic separation 
(IMS) from (A) suspended mixtures (B) biofilms of E. coli and S. maltophilia cells. 
Suspended mixtures were prepared by mixing suspended E. coli cells (104-106 CFU/ml) 
with S. maltophilia cells (105-108 CFU/ml) from planktonic cultures. Biofilms were 
scraped from a flow cell system and dispersed into suspensions of single cells (E. coli 
2.3×106 CFU/ml, S. maltophilia 2.6×107 CFU/ml) before IMS. Cell densities of E. coli 
and S. maltophilia were quantified with the method of plate count with selective agar. 
Two independent IMS experiments were performed for aliquots of dispersed biofilms. 
Error bars indicate standard deviations of two or three replicate plate counts. 
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Figure 4.3 Plot of gene expression in sorted/unsorted cells 
Plot of one-sample T-test p-values with fold-change in gene expression for all ORFs 
(open reading frames) of E. coli in microarray study I.  A similar plot was acquired from 
another independent study II (not shown). Vertical lines show the cutoff of fold-change 
of 2 (Log2 ratio of ±1), while the horizontal line shows the cutoff of p-value 0.05. Genes 
located in the left-bottom corner (Log2 ratio <-1 and p-value <0.05) and in the right-
bottom corner (Log2 ratio >1 and p-value <0.05) were considered to have their 
expressions significantly changed due to the conduction of cell dispersion and IMS 
(immuno-magnetic separation) cell sorting. p-value was achieved by one sample student 
t-test for replicates of each gene. A total of ten genes were selected using these criteria, 
eight of which also differentially expressed in microarray study II. 
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Table 4.1 Genes differentially expressed in sorted E. coli cells 
Genes with differential expressions# between IMS (immuno-magnetic separation) sorted 
E. coli K-12 cells versus unsorted E. coli K-12 cells* 

Fold-change of expression 
(sorted/unsorted) Gene  

Microarray 
study I 

Microarray 
study II 

Description of gene product⊕ 

tldD 2.7 ± 1.4Ψ 2.7 ± 1.4 Predicted peptidase 

proW 2.4 ± 1.1 3.3 ± 1.3 Glycine betaine transporter subunit 

ansP 2.2 ± 1.1 2.5 ± 1.1 L-asparagine transporter 

ydhB -2.2 ± 1.1 -2.9 ± 1.2 Predicted DNA-binding transcriptional 
regulator 

yhhN -2.6 ± 1.3 -3.1 ± 1.2 Conserved inner membrane protein 

ygeV -2.7 ± 1.1 -3.3 ± 1.4 Predicted DNA-binding transcriptional 
regulator 

flhE -2.7 ± 1.2 -3.2 ± 1.2 Conserved protein 

yicG -3.0 ± 1.2 -4.6 ± 1.3 Conserved inner membrane protein 

#Fold-changes of gene expression were significantly different from 2, with one-tail t-tests 
performed (p < 0.05).  
*Sorted E. coli cells: E. coli cells treated with dispersion/homogenization and IMS cell 
sorting after pre-stored in RNAlater; Unsorted E. coli cells:  E. coli cells continuously 
stored in RNAlater without any treatment. 
⊕Description of gene product is updated according to records of E. coli K-12 MG1655 in 
NCBI Entrenz Gene Database. 
ΨMean ± geometric standard deviation from two replicate slides, with three built-in 
replicates in each slide; positive and negative values indicate up- and down-regulation, 
respectively, in dispersed and IMS sorted cells. Geometric standard deviation=2SD, where 
SD is standard deviation of log2 transformation of fold-change. 
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Appendix 4-1 Full list of genes differentially expressed in sorted E. coli cells in two 
independent microarray studies 

Full list of genes of E. coli K-12 differentially expressed in IMS (immuno-magnetic 
separation) sorted E. coli K-12 cells versus unsorted E. coli K-12 cells in two 
independent microarray studies I and II 

Fold-change of gene expression 
(sorted/unsorted*) Gene 

Name Microarray 
study I 

Microarray 
study II 

Description of gene product⊕ 

tldD 2.7 ± 1.4Ψ 2.7 ± 1.4 Predicted peptidase 

proW 2.4 ± 1.1 3.3 ± 1.3 Glycine betaine transporter subunit 

ansP 2.2 ± 1.1 2.5 ± 1.1 L-asparagine transporter 

ydhB -2.2 ± 1.1 -2.9 ± 1.2 Predicted DNA-binding transcriptional 
regulator 

yhhN -2.6 ± 1.3 -3.1 ± 1.2 Conserved inner membrane protein 

ygeV -2.7 ± 1.1 -3.3 ± 1.4 Predicted DNA-binding transcriptional 
regulator 

flhE -2.7 ± 1.2 -3.2 ± 1.2 Conserved protein 

yicG -3.0 ± 1.2 -4.6 ± 1.3 Conserved inner membrane protein 

ybbO 3.0± 1.5 / L-asparagine permease 

aslA 3.8 ± 1.2 / (p)ppGpp synthetase I/GTP 
pyrophosphokinase) 

yihO / 6.3 ± 1.4Ψ Predicted transporter 

ydaJ / 4.2 ± 1.4 Predicted peptidase 

mhpT / 4.0 ± 1.5 Predicted 3-hydroxyphenylpropionic 
transporter 

metL / 3.9 ± 1.5 Fused aspartokinase II 

ldcA / 3.6 ± 1.7 L, D-carboxypeptidase A 

yciT / 3.6 ± 1.3 Predicted DNA-binding transcriptional 
regulator 

ytfB / 3.4 ± 1.2 Predicted cell envelope opacity-
associated protein 

lpxD / 3.4 ± 1.3 UDP-3-O-(3-hydroxymyristoyl)-
glucosamine N-acyltransferase 

rbsD / 3.3 ± 1.2 Glycine betaine transporter subunit 

arsC / 3.1 ± 1.3 Predicted cytoplasmic sugar-binding 
protein 

recC / 3.1 ± 1.4 Exonuclease V 
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ydaK / 3.0 ± 1.4 Putative transcriptional regulator 

pabA / 2.9 ± 1.5 Arsenate reductase 

ilvM / 2.9 ± 1.6 Predicted peptidase 

gpmA / 2.8 ± 1.4 Acetolactate synthase II, small subunit 

relA / 2.7 ± 1.5 Aminodeoxychorismate synthase, 
subunit II 

yciQ / 2.7 ± 1.2 Phosphoglyceromutase I 

uxaC / 2.7 ± 1.4 DNA-binding transcriptional regulator 

hdfR / 2.6 ± 1.3 Conserved protein 

ynfH / 2.5 ± 1.3 Uronate isomerase 

flgF / 2.4 ± 1.3 Acrylsulfatase-like enzyme 

yfaE / -2.3 ± 1.2 Oxidoreductase, membrane subunit 

ybhG / -2.3 ± 1.4 Flagellar basal body rod protein 

actP / -2.4 ± 1.1 Predicted oxidoreductase 

ybcN / -2.4 ± 1.1 Predicted protein 

flgD / -2.6 ± 1.4 Conserved inner membrane protein 

ybaW / -2.7 ± 1.3 Putative transporter subunit 

pckA / -2.7 ± 1.2 Part of gsp divergon involved in type II 
protein secretion 

fliM / -2.8 ± 1.5 Fused glutathionylspermidine 
synthetase/amidase 

hyfA / -2.9 ± 1.2 Predicted fimbrial-like adhesin protein 

narH / -2.9 ± 1.3 Conserved protein 

yhbM / -3.0 ± 1.4 Predicted DNA-binding transcriptional 
regulator 

yadL / -3.6 ± 1.4 Conserved inner membrane protein 

gsp / -3.7 ± 1.1 Nitrate reductase I, beta subunit 

gspB / -4.1 ± 1.4 Conserved protein 

yehY / -4.2 ± 1.2 Predicted DNA-binding transcriptional 
regulator 

ycgK / -6.4 ± 1.1 Flagellar motor switch protein 
*Sorted E. coli K-12 cells: E. coli K-12 cells treated with dispersion/homogenization and 
IMS cell sorting after pre-stored in RNAlater; Unsorted E. coli K-12 cells:  E. coli K-12 
cells continuously stored in RNAlater without any treatment. 
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⊕Annotations are from NCBI Entrenz Gene Database, mostly limit to E. coli K-12 
MG1655. 
ΨMean ± geometric standard deviation from six replicates (two technical replicated slides 
× three built-in replicates per slide) for each gene; positive value indicates up-regulation 
in dispersed and IMS sorted cells, while negative value indicates down-regulation in 
dispersed and IMS sorted cells. Geometric standard deviation =2SD, where SD is standard 
deviation of log2 transformation of fold-change.  
/: not differentially expressed. 
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Chapter 5  
Identifying Genes of Escherichia coli involved in Interactions with 

Stenotrophomonas maltophilia in Planktonic Cultures and Biofilms Using 
Transcriptome Analysis 

5.1 Abstract 

Biofilm formation by Escherichia coli was significantly inhibited when co-cultured with 

Stenotrophomonas maltophilia in static systems. cDNA microarray analysis was 

performed to identify genes of E. coli involved in species interactions with S. maltophilia 

in order to allow future studies of the mechanisms of altered E. coli biofilm formation. 

The transcription profile of E. coli in mixed cultures was compared to that in pure 

cultures by cDNA microarray technology after separating E. coli cells from mixed 

species cultures to eliminate cross hybridization of S. maltophilia transcript on E. coli 

microarray slides. A total of 89 and 108 genes were identified as differentially expressed 

in mixed species cultures when growing as biofilm and as planktonic cultures, 

respectively. Differential expression of certain identified genes was confirmed using E. 

coli reporter strains combined with single-cell based flow cytometry analysis. Co-culture 

with S. maltophilia affected genes involved in metabolism, signal transduction, cell wall 

composition, and biofilm formation of E. coli. The data suggest that these genes were 

likely involved in species interactions between E. coli and S. maltophilia.  

5.2 Introduction 

In this study, we used a transcriptomic approach to identify genes that were involved in 

species interactions affecting biofilm development. Microorganisms predominantly live 

as biofilms rather than in suspension in most environmental, industrial and medical 

systems [1]. These biofilms are rarely composed of single species, but rather consist of 

multiple co-existing species with various intra- and inter-species interactions [2]. 

Observations of species interactions and their effects on biofilm formation have been 

widely reported [3-5]. Species exhibit interactions as commensal relationships [6], co-
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aggregation [7], and can also communicate through quorum sensing signals [8], 

inhibitory compounds [9], and surface associated proteins [10].  

Escherichia coli and Stenotrophomonas maltophilia are frequently detected in water, soil, 

sludge as well as urinary tract infections [11-13]. Co-isolation of the two species suggests 

that they may occupy similar ecological niches [14]. Our previous study (Chapter 3) 

found that E. coli biofilm formation was inhibited in co-culture with S. maltophilia in 

static batch culture, and the inhibition was not mainly due to diffusible signals. This study 

evaluated the effects of co-culture on E. coli cells at the gene expression level. 

Identification of genes involved in species interactions could promote the mechanistic 

study of species interactions. cDNA microarray technology is a high-throughput method 

for relative gene expression analysis and identification of important genes. It has been 

applied to study dual-species communities [15, 16]. These transcriptome studies have 

lead to a better understanding of the mechanisms of species interactions, such as 

stabilized arginine synthesis in Streptococcus gordonii by Actinomyces naeslundii [17] or 

supply of iron for Pseudomonas aeruginosa by Staphylococcus aureus [15]. However, 

variable cross-hybridization of non-target species with the microarray for species of 

interest was observed in microarray studies of mixed species cultures [15, 16]. This 

problem was addressed by developing a method to separate target species from mixed 

species communities, while preserving the transcriptome of the target species (Chapter 

4). This study applied this separation method and cDNA microarray technology to 

identify genes of E. coli potentially involved in species interactions with S. maltophilia in 

both planktonic cultures and biofilms. 

5.3 Results 

The effects of S. maltophilia on the growth of E. coli in planktonic and biofilm cultures 

were studied in Chapter 3. E. coli formed thick biofilms on inert surface in pure cultures 

(Figure 3.2). However, in co-cultures, E. coli only formed small microcolonies 

interspersed on the surface covered by a single layer of S. maltophilia cells (Figure 3.2D). 

The biomass of E. coli in mixed species biofilms was 70-90% lower than that in single 

species biofilm (Figure 3.2A). Previous study in Chapter 3 revealed that the inhibited E. 
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coli biofilm formation resulted from nutrient competition, reduced cell aggregation, and 

outcompeted surface attachment by S. maltophilia. It also indicated that species 

interactions and the inhibitive effect on E. coli biofilm formation required cell-to-cell 

contact between them. 

This study intended to understand the effect of species interactions on E. coli cells from 

the transcription level. Changes in the E. coli transcriptome may uncover genetic 

mechanisms of inhibited E. coli biofilm formation in mixed species culture with S. 

maltophilia.  

5.3.1 E. coli genes differentially expressed in co-cultures 

cDNA microarray technology was used to identify E. coli genes differentially expressed 

in co-cultures, assuming that these differentially expressed genes may be involved in 

species interactions. Prior to cDNA microarray analysis, E. coli cells were separated from 

mixed species cultures before RNA extraction to reduce cross-hybridization using a 

method as previously described (Chapter 4). Two sets of microarrays were performed for 

different growth modes, biofilms and planktonic cultures. Gene expression profile of E. 

coli in mixed species biofilms was compared to that of E. coli in pure cultured biofilms 

(“Biofilm Mixed vs Pure”). A total of 89 genes (83 up- and 6 down-regulated) were 

identified as differentially expressed in biofilms due to co-cultures with S. maltophilia 

(Figure 5.1, Table 5.2 and Appendix 5-1). The second set of microarrays examined 

growth mode of planktonic cultures (“Planktonic Mixed vs Pure”) and identified 108 

differentially expressed genes due to co-cultures (104 up-and 4 down-regulated) (Figure 

5.1, Table 5.2 and Appendix 5-2). Comparison of the two lists of identified genes showed 

65 genes in common, which may be involved in species interactions regardless of growth 

mode. And the other 24 and 43 genes were likely to be specific to species interactions in 

biofilms and planktonic cultures, respectively. 

An additional set of microarrays was performed to identify genes differentially expressed 

due to different growth modes in pure cultures (“Pure Biofilm vs Planktonic”). Of the 

138 genes identified, only eleven were previously screened as candidate genes of species 

interactions from the first two sets of microarrays (Figure 5.1). Expression of the eleven 
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genes is shown in Table 5.3. Most of them (10 out of 11) exhibited opposite regulation 

trends in the two sets of microarrays (Biofilm Mixed vs Pure, and Pure Biofilm vs 

Planktonic). 

Candidate genes for species interactions were categorized based on protein functions 

according to the clusters of orthologous groups tag (COG tag) (Figure 5.2). More than 

40% of genes were grouped in the category of metabolism, including but not limited to 

transport and metabolism of carbohydrate, inorganic ion, amino acid, and secondary 

metabolites, in both growth modes. Around 15% and 18% were categorized as cellular 

process/signaling (e.g. cell wall and membrane, cell motility) and information 

storage/processing (e.g. replication and transcription) genes, respectively. The left 25% of 

identified genes were poorly or un-categorized. 

5.3.2 Confirmation of differential gene expression 

Differential expression of identified genes in mixed species cultures (Table 5.2 and 

Appendix 5-1,5-2) was confirmed using E. coli transcriptional reporter strains. Limited 

by the availability of all corresponding reporter strains and those strains that exhibited 

green fluorescence intensity higher than the background of S. maltophilia, a total of 

seventeen and fourteen genes were finally available for gene expression confirmation test 

in planktonic cultures and biofilms, respectively. Eight reporter strains showed increased 

fluorescence in planktonic co-cultures compared to pure cultures, confirming the up-

regulation of these genes in mixed species planktonic culture (Figure 5.3A). While in 

biofilms, eight genes were confirmed as up-regulated and one as down-regulated when E. 

coli cells were co-cultured with S. maltophilia (Figure 5.2B).  

5.3.3 Verification of genes involved in species interactions 

It was hypothesized that some, if not all, differentially expressed genes in co-cultured E. 

coli cells were involved in real interactions with S. maltophilia. To test this hypothesis, 

we examined biofilm formation by E. coli knockout mutants of fifteen genes in pure and 

mixed cultures. The fifteen genes were selected based on their highly changed expression 

and the availability of corresponding knockout mutants in the Keio library [18]. 
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Each knockout mutant was compared with wild type E. coli strain in biofilm formation in 

mixed and single species cultures. Mixed species biofilms of S. maltophilia with five 

knockout mutant strains (ΔyddB, ΔfliA, ΔphoH, ΔsapA, and ΔcspA) showed significantly 

higher biomass as compared to wild type E. coli-S. maltophilia biofilm (Figure 5.4A). 

Microscopic inspection found that increased overall biomass of mixed species biofilms 

resulted from increased E. coli knockout mutants (data not shown). The other ten 

knockout mutant strains showed no difference from wild type. Interestingly, the five 

mutants (ΔyddB, ΔfliA, ΔphoH, ΔsapA, and ΔcspA) showed no significant difference 

from wild type E. coli in pure biofilm formation (Figure 5.4B). The results further 

confirmed that these genes were involved in species interactions, which inhibited biofilm 

formation of E. coli in co-cultures. 

5.4 Discussion 

We observed a significantly inhibited biofilm formation of E. coli PHL644 when co-

cultured with S. maltophilia in microtiter plates (Figure 3.2). Further study showed that 

E. coli biofilm inhibition was not due to diffusible signals produced by S. maltophilia, 

although the signals was shown to regulate biofilm formation of other species in other 

studies [19]. This highlights the importance of direct cell-contact based interactions 

between E. coli and S. maltophilia in the E. coli biofilm formation. To further study the 

mechanisms of species interactions, genes that are potentially involved in species 

interactions were identified through a transcriptomic approach. 

5.4.1 Transcriptome analysis and confirmation of differential gene expression 

Transcriptome analysis in this study was focused on E. coli since biofilm formation of E. 

coli in co-cultures was affected while no effects on S. maltophilia biofilm formation were 

observed (Figure 3.2). Transcriptome analysis of E. coli in co-cultures was achieved 

using a previously developed sorting method (Chapter 4), prior to cDNA microarray 

analysis, to eliminate cross-hybridization from S. maltophilia. Two sets of DNA 

microarrays were performed to identify differentially expressed genes of E. coli in co-

cultures in two growth modes: biofilms and planktonic cultures. Most indentified genes 

were up-regulated (83 out of 89 in biofilms, 104 out of 108 genes in planktonic cultures) 
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(Figure 5.1). This result was not due to bias in dye labeling since dyes were swapped to 

label cDNA in the two sets of microarrays. It was neither an arbitrary effect in data 

analysis since normalization was performed. Moreover, the third set of microarrays 

identified more down-regulated genes using the same method of data analysis (37 down-

regulated genes in “Pure biofilm vs planktonic”) (Figure 5.1).  

E. coli transcription reporter strains combined with flow cytometry analysis were used to 

confirm differential expression of identified genes in mixed species and pure cultures. 

Single-cell based flow cytometry analysis was able to selectively quantify fluorescence of 

E. coli cells without the need to separate them for mixed species cultures, as long as E. 

coli reporter strains showed higher fluorescence than that of S. maltophilia cells in this 

study. However, this confirmation approach was limited by the fact that not all identified 

genes had a corresponding reporter strain and not all available E. coli reporter strains 

showed higher fluorescence than the background fluorescence of S. maltophilia. 

Therefore, only a subset of genes (17 for planktonic and 14 for biofilm culture) was 

selected for confirmation in this study. Of the selected genes, 50-60% were confirmed as 

up- or down-regulated, which was in agreement with transcriptome analysis. 

Confirmation of differential expression of these identified genes in both biofilm and 

planktonic cultures validated the feasibility of cDNA microarray analysis for identifying 

genes that were involved in species interactions in mixed species cultures.  

Based on genes identified by cDNA microarray analysis, in the following section, we are 

able to deduce E. coli response when co-cultured with S. maltophilia. 

5.4.2 The effect of co-culture on E. coli metabolism 

Metabolism plays an important role in species interactions. Substrate/nutrient competition 

and utilization between various species in co-cultures has been previously studied [20]. 

Specifically in commensal relationships, secondary metabolites from one species may 

serve as important carbon source for another species [6, 21, 22]. Thus it was not 

surprising that in this study, a large amount of genes differentially expressed in co-

cultures (>40%) were related to metabolism (Figure 5.2). Most of genes were 

differentially expressed in both growth modes (Table 5.2 and Appendix 5-1,5-2). 
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Metabolism of E. coli cells was affected at the level of gene expression, although 

planktonic growth (cell density) of E. coli in mixed species cultures was not significantly 

reduced (data not shown). 

Several genes involved in carbohydrate metabolism were differentially expressed. 

Specific carbohydrate transport genes (araH, dgoT, rhmT, and ytfR) and genes of the 

phosphotransferase system (nagE, yadI, gnd, and chbB) were induced when E. coli was 

co-cultured with S. maltophilia (Table 5.2). Induction of genes involved in an alternative 

sugar uptake system was also reported in previous studies of mixed species cultures [16]. 

In this study, up-regulation of these metabolism genes may result from carbohydrate 

competition of E. coli with S. maltophilia or the utilization of secondary metabolites 

produced by S. maltophilia due to primary carbon starvation at the time of cell harvesting 

(early stationary phase). It was unknown how differential expression of these genes may 

directly affect biofilm formation of E. coli, but various carbohydrate metabolism genes 

were related with biofilm formation of several species in previous studies [23, 24]. 

Inorganic ion transport genes involved in iron (ftnA, fecR), sulfur (ydeN), and phosphate 

(phnL, pitA) as well as some predicted ion transporters (yddB, yjcE, yfbS) were induced in 

mixed species cultures. Corresponding to these transporters, phosphate metabolism gene 

phoH and sulfur metabolism genes sirA and cysD were also induced in co-cultures. 

Ferritin A (FtnA) is an iron storage protein scavenging iron from disrupted iron-sulfur 

clusters. Stored iron can then be used in the presence of thioredoxin reductase system 

[25]. Gene ftnA, fecR and thioredoxin gene trxA were all up-regulated. Iron was not 

supplemented specifically but may exist as trace element in the complex Luria Broth 

media. Up-regulation of iron scavenging, transport and utilization genes suggested that E. 

coli may compete with S. maltophilia for iron in co-cultures. Expression of gene phoH is 

induced in the starvation of phosphate. In this study up-regulation of phoH was observed 

in mixed species biofilms, suggesting that E. coli may encounter phosphate depletion in 

biofilms when co-cultured with S. maltophilia. Induction of iron, phosphate and other 

ions was also observed in other species of interest rather than E. coli in previous studies 

of mixed species cultures [15, 16]. While most mechanisms underlying the observation 
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were not fully explored, iron provision by one species to the other in co-cultures was a 

well-studied example of species interactions [15]. 

5.4.3 Effect on signal transduction and cell wall component of E. coli 

S. maltophilia produces diffusible signal factors (DSF), which are a group of fatty acids 

[26]. DSF could serve the purpose of inter-species signaling and affect biofilm formation 

of other species such as Pseudomonas aeruginosa [19]. However in this study, DSF, if 

produced, in supernatant of S. maltophilia or cell contact-free cultures failed to show any 

significant effect on biofilm formation of E. coli. This study found that a fatty-acid 

transporter gene, fadD, of E. coli was up-regulated in both growth modes of co-cultures. 

Gene fadD encodes a fatty acyl-CoA synthetase and transports fatty acid across the inner 

membrane. Acyl-CoA is a key intermediate of fatty acid metabolism. Induction of the 

key gene fadD suggests that E. coli may digest fatty acid signals produced by S. 

maltophilia. 

Another group of identified genes with differential expression in co-cultures was for 

cellular process and signaling of E. coli (Figure 5.2). These genes indicated that E. coli 

sensed and responded to changed environments due to co-culture with S. maltophilia. For 

example, two-component sensor genes envZ and kdpD were up-regulated in co-cultures. 

EnvZ is a membrane-bound sensor kinase. With the response regulator OmpR, it could 

sense and react to environmental changes such as osmotic variations [27]. Induced 

expression of envZ indicated that E. coli sensed changed environment in co-culture with 

S. maltophilia, which may affect biofilm formation of E. coli since the response gene 

ompR was shown to influence curli production and biofilm formation of E. coli PHL644 

in static cultures [28]. 

Peptidoglycan is an important component of bacterial cell wall. Several E. coli genes 

related to peptidoglycan biosynthesis such as ampH, ddpX, ddpA, ycfS and dacA were up-

regulated in co-cultures. The induction of ampH was as high as 23-fold. Gene ampH 

encodes an uncharacterized protein related to class C β-lactamases with penicillin 

binding ability. Deletion of this gene affected normal morphology of E. coli cells [29]. 

Product of gene ddpX is a dipeptidase that catalyzes the hydrolysis of D-alanyl-D-alaline 
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dipeptide for biosynthesis of peptidoglycan, while ddpA is a D-alanine-D-alanine 

transporter. YcfS is responsible for the attachment of Braun lipoprotein to peptidoglycan 

and contributes to the integrity of outer envelope structure of E. coli [30]. Gene dacA 

encodes a carboxypeptidase and contributes to the maintenance of normal morphology of 

E. coli. Over-expression of dacA converts E. coli from rod-shape to spherical form [31]. 

It was unknown what triggered the induction of these peptidoglycan genes of E. coli in 

co-cultures. A previous study observed cell lysis of Lactococcus lactis in mixed species 

cultures and found that several genes encoding peptidoglycan hydrolases were induced 

while none of the biosynthesis genes were induced [16]. In contrast, this study found that 

several peptidoglycan biosynthesis genes were up-regulated, suggesting possible anti-

lysis of E. coli cells in co-cultures by induction of peptidoglycan biosynthesis. 

5.4.4 Reduced biofilm formation of E. coli in mixed species culture 

An observable effect of species interactions between E. coli and S. maltophilia was the 

significantly reduced biofilm formation of E. coli in co-cultures. One approach to identify 

genes responsible for the phenomenon was to find common genes differentially 

expressed both due to species interactions and due to different growth modes. Eleven 

genes were screened using this approach and ten of them showed opposite expression 

trends in the two sets of microarrays (Table 5.3). Nine genes (phoH, bolA, narZ, hspQ, 

gadA, yeaH, rpiR, ygiM and gadC) were down-regulated in pure biofilms compared to 

pure planktonic cultures. It indicated that E. coli cells with low expression of these genes 

tend to form biofilms and cells with high expression tend to switch to planktonic growth. 

Expression of these genes all showed higher levels in mixed species biofilms than in pure 

biofilms, possibly due to species interactions. Up-regulation of these genes may trigger E. 

coli cells to switch from attached growth to planktonic growth, probably resulting in 

biofilm detach and reduction in biomass as we observed in this study. This assumption 

was partially confirmed for the gene bolA using an E. coli strain with overexpressed bolA 

(data not shown). 

Most identified E. coli genes involved in species interactions were up-regulated in co-

cultures while biofilm formation of E. coli was significantly reduced in co-cultures 

(Figure 5.1). This result suggested that knockout of these genes might reduce the 
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response of E. coli to the presence of S. maltophilia and would restore at least partially 

the phenotype of robust biofilm formation of E. coli PHL644 as observed in pure cultures 

(Figure 5.4). The hypothesis was verified by the observation of increased biofilm 

formation by five E. coli knockout mutant strains (ΔyddB, ΔfliA, ΔphoH, ΔsapA and 

ΔcspA) compared to the wild type strain in the presence of S. maltophilia (Figure 5.4). 

This confirmed that these genes were involved in species interactions and their up-

regulation resulted reduced biofilm formation of E. coli, since knocking out them broke 

partial of species interactions and the effect of initiative biofilm formation of E. coli. 

How each of these five genes was involved in interactions with S. maltophilia and why 

their knocking out resulted in increased E. coli biofilm formation required detailed study 

in future. 

5.5 Conclusions 

This study applied cDNA microarray technology for transcriptome analysis of E. coli in 

mixed-species communities and identified genes that were potentially involved in species 

interactions with S. maltophilia. These genes showed genetic responses of E. coli to S. 

maltophilia co-culture in metabolism, signal transduction, and cell wall component etc. 

Differential expression of some identified genes in mixed species culture was confirmed 

using E. coli transcription reporter strains by flow cytometry. Some genes were shown to 

affect biofilm formation of E. coli in mixed species cultures. To the best of our 

knowledge, this is the first study to analyze the transcription profile of a Gram-negative 

species co-cultured with another Gram-negative species, since cross-hybridization is an 

issue for transcriptome analysis of mixed species community with both gram-negative 

species for which selective RNA extract is impossible. The approach used in this study 

should be very useful to study species interactions in other mixed species communities in 

many engineered and natural environments. Identification of genes that are potentially 

involved in species interactions will lead to further study of genetic mechanisms of 

species interactions. Characterization of identified genes will provide insights into 

genetic mechanisms of the response of E. coli to the presence of S. maltophilia in mixed 

species planktonic cultures and biofilms. In future, it would be interesting to study how S. 
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maltophilia responded to the presence of E. coli in mixed cultures as well, which could 

provide more insights into the interactions between S. maltophilia and E. coli. 

5.6 Materials and Methods 

5.6.1 Bacterial strains and cultures 

All strains and plasmids used in this study are listed in Table 5.1. Following antibiotics 

were used when appropriate (Sigma-Aldrich, St. Louis, MO): tetracycline (20 µg/ml), 

gentamicin (20 µg/ml), kanamycin (25 µg/ml), or chloramphenicol (30 µg/ml). 

Planktonic cultures were grown in 10-fold diluted Luria Broth (0.1×LB) with continuous 

shaking at room temperature (20 °C) for 18 h.  

Biofilms were grown in 96-well Nunclon plates (Fisher Scientific, Pittsburgh, PA) for 

biomass quantification and in glass-bottom plates (MatTek, Ashland, MA) for 

microscopic imaging. Petri dishes and 6-well plates with large surface area were used to 

harvest biofilm biomass. Biofilms were cultured under static conditions for 18 h at room 

temperature for gene-expression analysis or 22-24 h for biofilm imaging analysis. 

Inoculated E. coli to S. maltophilia ratio was approximately 1:1 except for microarray 

studies, in which the ratio was adjusted (5:1 ~ 2:1) to obtain about 50% of E. coli cells in 

mixed species cultures. 

Contact-free cultures were performed in Transwells (Corning, Lowell, MA) with a 

polycarbonate membrane (0.4 µm) to separate cells while still allowing S. maltophilia 

and E. coli interactions through diffusible signals. S. maltophilia was cultured in the 

insert while E. coli in the 24-well plate.   

5.6.2 Quantification and imaging of biofilms 

Biomass of biofilms was quantified using the microtiter assay with crystal violet staining 

as described previously [32]. Biofilms were examined with a confocal laser scanning 

microscopy (CLSM) (Olympus, Center Valley, PA). E. coli labeled with green 

fluorescence protein (GFP) and S. maltophilia labeled with red fluorescent protein 

mCherry were imaged in green and red channel with appropriate filter sets, respectively. 
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For imaging of biofilms developed by non-labeled bacterial strains, biofilms were stained 

with 5 µM SYTO 9 (Invitrogen, Carlsbad, CA) according to manufacturer’s protocol.  

5.6.3 Microarray analysis 

Samples were immediately re-suspended in RNAlater (Applied Biosystems, Austin, TX) 

after harvest and stored at 4 °C overnight. E. coli cells were separated from samples using 

a previously developed method (Chapter 4). Briefly, cells were dispersed with a 

homogenizer, re-suspended in buffer for incubation with anti-E. coli antibody (ViroStat, 

Portland, ME) and microbeads, and finally separated using a midi MACS® separator 

(Miltenyi Biotec, Auburn, CA). Enriched cells were re-suspended in RNAlater until 

RNA extraction. Pure E. coli cultures were processed with the same protocol to 

normalize the effect of separation on transcription profiles. 

Enriched cells were recovered from RNAlater just before RNA extraction with a hot 

SDS/phenol protocol modified by adding a 1-min bead-beating 

(http://www.genome.wisc.edu/pub/reprints/GEC_RNA_purification_ecoli.pdf). 

Extractions were digested with DNase and purified with an RNeasy Mini Kit (Qiagen, 

Germantown, MD). Indirect labeling was performed using an Amino Allyl cDNA 

Labeling Kit (Ambion, Austin, TX) according to the manufacturer’s protocol with 

random hexamers (pd(N)6) (GE Healthcare, Piscataway, NJ).  

E. coli microarray slides were purchased from the University of Alberta (Edmonton, AB, 

Canada). Each slide contained 4,289 oligonucleotides for E. coli K-12. Sample 

preparation and slide hybridization were performed according to the manufacturers 

protocol (Corning, Lowell, MA). Three sets of microarray experiments were performed, 

each with two biological, two technical, and three slide built-in replicates, resulting in 

twelve replicates for each gene. 

Slides were scanned and images were analyzed using Spotfinder (TIGR). Data analysis 

was performed using Acuity 4.0 (Molecular Devices, Sunnyvale, CA). Spots for strain E. 

coli K-12 with quality control value larger than 0.1 and good flag tags in both channels 

were selected for analysis. LOWESS normalization was performed for every microarray 
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with three iterations using a smoothing factor of 0.4. Genes with at least two-fold change 

in expression (p-value < 0.05) were considered as differentially expressed. Gene 

annotation and COG tag was updated according to NCBI (http://www.ncbi.nlm.nih.gov/). 

Microarray data will be deposited into NCBI Gene Expression Omnibus database. 

5.6.4 Confirmation of gene expression  

Expression of identified genes was confirmed using E. coli reporter strains in a promoter 

library (PEC3877, Pittsburgh, PA), each with a gfp fused to the promoter of an E. coli 

gene. Flow cytometry (Beckman Coulter, Brea, CA) was used to compare GFP 

fluorescence of a reporter strain in pure- with mixed-species cultures. S. maltophilia cells 

were set as background. Cells with higher fluorescence than the background were 

considered as E. coli and were collected to calculate mean fluorescence. At least two 

replicates were performed for each reporter strain. 



 72 

5.7 Figures and Tables 

Figure 5.1 Venn diagram of the number of E. coli genes identified in microarrays  
Each circle in the Venn diagram represents one set of microarray experiment. Biofilm (or 
Planktonic) Mixed vs Pure is the set comparing E. coli transcription profile in mixed 
species biofilms (or planktonic cultures) with that in pure E. coli biofilms (or planktonic 
cultures). Pure Biofilm vs Planktonic is the set comparing biofilms with planktonic 
cultures of pure E. coli. The number of identified genes was indicated in the parentheses, 
with up and down arrows showing up- and down-regulation of genes. Numbers in the 
circles show genes identified in either one or multiple sets of microarrays. Genes with at 
least 2-fold change in expression at a significant level of p-value<0.05 were considered as 
differentially expressed and identified  in microarrays. 
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Figure 5.2 Categorization of identified genes involved in species interactions 
Categories of identified genes identified by microarray analysis and potentially involved 
in species interactions in (A) biofilms and (B) in planktonic cultures. Genes were 
classified based on their protein functions according to their COG tag (clusters of 
orthologous groups). 
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Figure 5.3 Confirmation of differential expression of some genes of E. coli identified 
by microarray analysis 

Confirmed differential expression of E. coli genes in (A) mixed species planktonic 
cultures and (B) in mixed species biofilms, as normalized to corresponding pure E. coli 
planktonic and biofilm cultures, respectively. Each reporter strain carried a plasmid with 
a green fluorescence protein (gfp) gene under the control of the promoter of a gene. Gene 
expression was thus measured as the fluorescence of reporter strains in mixed or single 
species cultures by flow cytometry. Symbols triangle and circle mean up- and down-
regulation of that gene according to microarray analysis, respectively. Error bars are 
standard deviations of two to four independent replicates.  
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Figure 5.4 Effect of gene deletion on biofilm formation of E. coli cells in mixed and 
mono-species cultures with S. maltophilia 

Biomass of (A) mixed species biofilms of wild type E. coli (WT) or single gene knockout 
mutant (ΔyddB etc.) with S. maltophilia (dedicated as S in the figure) and (B) mono-
species biofilm of wild type E. coli or knockout mutants. Biofilms were cultured in 
microtiter plates and biomass was quantified by staining with crystal violet and expressed 
in arbitrary unit (a.u.). Error bars were standard deviation of at least three replicates. 
Asterisk * indicated significant difference (p<0.05) comparing to “WT+S”.  
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Table 5.1 Plasmids and strains used in this study 

Strains or plasmids Genotype Source or 
reference 

pBPF-mCherry mCherry fused to the oprF promoter 
in the vector pBBR1MCS-5 

LIamas et al. [33] 

pMP4655 egfp fused to the lac promoter in the 
vector pME6010 

Bloemberg et al. 
[34] 

E. coli K-12 PHL644 MC4100 malA-kan ompR234, 
increased curli expression 

Vidal et al. [28] 

S. maltophilia Environmental isolate This study 

E. coli K-12 BW25113  CGSC # 7636 

E. coli reporter strains  E. coli K-12 MG1655 containing the 
reporter plasmid pUA66 or pUA139 
carrying a gfp-fusion with the 
promoter of each corresponding 
genes including: acpP, acpS, alas, 
bhsA, bolA, corA, crl, cspA, dhaR, 
fliA, folA, gnd, mutM, phoH, pitA, 
pmrD, pntA, trxA, ycfA, ycgL, ydgA, 
yeaH, yejL, yhgF, yiaf, yicC, yjeB, 
ymcE 

E. coli promoter 
collection 
(PEC3877) [35] 

E. coli mutant strains Single gene knockout mutant of E. 
coli K-12 BW25113 including 
ΔyddB, ΔampH, ΔfliA, ΔyidL, 
ΔmutM, ΔyjcE, ΔyhhS, ΔyehL, 
ΔphoH, ΔcsgF, ΔbolA, ΔsapA, ΔtrxC, 
ΔyeaH, ΔcspA 

Keio collection 
[18] 

E. coli PHL644/ 
pMP4655 

The plasmid pMP4655 was 
transformed into E. coli K-12 
PHL644 strain 

This study 

S. maltophilia /pBPF-
mCherry 

The plasmid pBPF-mCherry was 
transformed into S. maltophilia strain 

This study 

E. coli BW25113 
/pMP4655 

The plasmid pMP4655 was 
transformed into E. coli K-12 
BW25113 strain 

This study 
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Table 5.2 Identified genes that were differentially expressed in mixed species 
biofilms and planktonic cultures compared to pure E. coli biofilms and 
planktonic cultures and were discussed in this study 

Ratio of expression 
mixed/pure for Function 

and gene 
Biofilms Planktonic 

Description of gene product 

Metabolism 

Carbohydrate transport 
araH 4.0 5.0 Fused L-arabinose transport protein 

dgoT 6.0 7.3 D-galactonate transporter 

rhmT / 4.9 Predicted L-rhamnonate transporter 

vtfR / 2.5 Putative sugar transport protein 

Phosphotransferase 
chbB / 2.3 N,N'-diacetylchitobiose-specific enzyme 

IIB 
gnd / 3.0 Gluconate-6-phosphate dehydrogenase 

nagE 6.0 8.8 Fused N-acetyl glucosamine specific 
phosphotransferase 

yadI 5.9 5.2 Predicted phosphotransferase enzyme IIA 

Ion transport and metabolism 
cysD 4.7 3.6 Sulfate adenylyltransferase subunit 2 

fecR 3.3 3.0 Transmembrane signal transducer for ferric 
citrate transport 

ftnA 3.2 / Ferritin iron storage protein 

phnL 3.6 3.4 Phosphate transport 

phoH 4.3 / Protein with nucleoside triphosphate 
hydrolase domain 

pitA / 2.3 Low-affinity phosphate transport 

sirA 3.4 5.3 Sulfurtransferase, sulfur mediator 

trxA / 3.2 Thioredoxin 1 

yddB 23.3 23.0 Predicted porin protein 

ydeN 3.0 3.0 Putative sulfatase 

yfbS 5.1 12.5 Predicted ion transporter 

yjcE 8.3 18.4 Predicted cation/proton antiporter 
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Signal transduction and cell wall component 

Fatty-acid transport 
fadD 3.0 3.1 Long-chain-fatty-acid-CoA ligase 

Sensor kinase 
envZ 4.6 3.6 Sensory histidine kinase for OmpR 

kdpD / 2.3 Fused sensory histidine kinase 

Peptidoglycan biosynthesis 
ampH 15.7 27.0 Penicillin-binding protein, peptidoglycan 

synthesis 
dacA / 3.1 D-alanyl-D-alanine carboxypeptidase 

ddpA 4.5 4.9 D-ala-D-ala transporter subunit 

ddpX 6.8 9.2 D-ala-D-ala dipeptidase 

ycfS 3.3 4.5 L,D-transpeptidase linking lipoprotein to 
murein 

Biofilm formation in co-culture 
yddB 23.3 23.0 Predicted porin protein 

fliA 15.5 14.4 Flagellar biosynthesis, alternative sigma 
factor 28 

phoH 4.3 / Protein with nucleoside triphosphate 
hydrolase domain 

sapA 3.3 / Predicted antimicrobial peptide transporter 
subunit 

cspA 2.5 / Cold shock protein, transcriptional 
activator of hns 

Note:  / indicates non-differential expression of the gene in microarray analysis 
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Table 5.3 Genes of E. coli differentially expressed in biofilms due to co-culture with 
S. maltophilia and differentially expressed due to different growth modes 
in pure culture 

Relative gene expression 
Gene Mixed biofilm 

to pure biofilm 
Pure biofilm to 
pure planktonic  

Description of gene product 

phoH 4.3 -3.4 Conserved protein with nucleoside 
triphosphate hydrolase domain 

bolA 4.1 -5.6 Transcriptional repressor of 
mophogene 

narZ 3.6 -3.3 Nitrate reductase 2 
hspQ 3.1 -2.9 DNA-binding protein, hemimethylated 
gadA 2.7 -3.0 Glutamate decarboxylase isozyme 
yeaH 2.7 -5.9 Hypothetical protein 
rpiR 2.7 -2.4 DNA-binding transcriptional repressor 

cspA 2.5 2.9 Cold shock protein, transcriptional 
activator of hns 

ygiM 2.5 -2.4 Predicted signal transduction protein 

gadC 2.3 -4.0 Predicted glutamate gamma-
aminobutyric acid antiporter 

ygeV -3.2 2.9 Predicted DNA-binding transcriptional 
regulator 

Note: positive value means up-regulation and negative value means down-regulation. 
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Appendix 5-1 Full list of identified E. coli genes that were differentially expressed in 
mixed species biofilms with S. maltophilia compared to pure E. coli 
biofilms 

Gene 
Name 

Fold-
Change 

Geometric 
SD 

Description of gene product 

yddB 23.3 2.8 Predicted porin protein 
ampH 15.7 1.9 Beta-lactamase/D-alanine carboxypeptidase 
fliA 15.5 2.5 Alternative sigma factor 28, regulation of 

flagellar operons 
yidL 10.3 2.7 Predicted DNA-binding transcriptional 

regulator 
mutM 10.2 3.5 Formamidopyrimidine DNA glycosylase 
yjcE 8.3 3.0 Predicted cation/proton antiporter 
yhhS 7.5 2.6 Predicted transporter 
yigM 7.3 2.4 Predicted inner membrane protein 
yebY 7.1 3.0 Predicted protein 
ddpX 6.8 2.7 D-ala-D-ala dipeptidase, Zn-dependent 
yjhP 6.3 1.9 Putative methyltransferase 
dgoT 6.0 2.5 D-galactonate transporter 
nagE 6.0 2.7 Fused N-acetyl glucosamine specific PTS 

enzyme 
yadI 5.9 2.8 Predicted PTS enzyme IIA 
ymcE 5.5 2.8 Cold shock gene 
mrr 5.4 2.1 Methylated adenine and cytosine restriction 

protein 
yjgW 5.3 2.0 KpLE2 phage-like element; predicted 

protein 
purE 5.2 2.4 N5-carboxyaminoimidazole ribonucleotide 

mutase 
yehL 5.1 3.9 Predicted transporter subunit: ATP-binding 

component of ABC superfamily 
yicC 5.1 1.9 Predicted alpha helix protein 
yfbS 5.1 2.6 Predicted transporter protein 
dhaR 4.9 2.9 Predicted DNA-binding transcriptional 

regulator, dihydroxyacetone 
mhpA 4.9 2.6 3-(3-hydroxyphenyl)propionate hydroxylase 
dnaN 4.7 2.0 DNA polymerase III, beta-subunit 
cysD 4.7 2.8 Sulfate adenylyltransferase subunit 2 
envZ 4.6 2.4 Sensory histidine kinase for OmpR 
insB 4.6 2.6 IS1 transposase InsAB 
pgpA 4.5 1.7 Phosphatidylglycerophosphatase A 
ddpA 4.5 2.5 D-ala-D-a la transporter subunit 
insB 4.5 2.8 IS1 protein InsB 
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phoH 4.3 2.7 Conserved protein with nucleoside 
triphosphate hydrolase domain 

sfsB 4.2 3.1 DNA-binding transcriptional activator of 
maltose metabolism 

csgF 4.2 1.9 Curli production assembly/transport 
component, 2nd curli operon 

bolA 4.1 1.9 Transcriptional repressor of mophogene 
araH 4.0 2.1 Fused L-arabinose transport protein (ABC 

superfamily) 
yfjF 4.0 2.8 Predicted protein 
fixX 3.9 2.7 Predicted ferredoxin-type protein 
exoD 3.9 2.8 Pseudogene, exonuclease,bacteriophage 
wcaB 3.8 2.6 Predicted acyl transferase 
rfaB 3.7 2.3 UDP-D-

galactose:(glucosyl)lipopolysaccharide-1, 6-
D-galactosyltransferase 

helD 3.7 2.0 DNA helicase IV 
bcsG 3.7 2.1 Predicted inner membrane protein 
narZ 3.6 2.0 Cryptic nitrate reductase 2 
phnL 3.6 1.7 ATP-binding component of phosphonate 

transport 
hisI 3.6 2.4 Phosphoribosyl-amp cyclohydrolase; 

phosphoribosyl-ATP pyrophosphatase 
yjhD 3.6 2.2 Orf, hypothetical protein 
uvrC 3.5 2.1 Excinuclease ABC, subunit C; repair of UV 

damage to DNA 
frlB 3.5 2.1 Fructoselysine-6-P-deglycase 
cspB 3.5 2.0 Qin prophage; cold shock protein 
rimI 3.4 1.9 Acyltransferase for 30S ribosomal subunit 

protein S18 
sirA 3.4 2.0 Conserved protein required for cell growth 
yejL 3.4 2.2 Orf, hypothetical protein 
panF 3.4 2.2 Sodium/pantothenate symporter 
wcaK 3.4 2.3 Predicted pyruvyl transferase 
yghJ 3.4 2.2 Predicted inner membrane lipoprotein 
ycfS 3.3 2.0 L,D-transpeptidase linking Lpp to murein 
fecR 3.3 1.8 KpLE2 phage-like element; transmembrane 

signal transducer for ferric citrate transport 
sapA 3.3 1.8 Predicted antimicrobial peptide transporter 

subunit 
kilR 3.3 1.6 Rac prophage, inhibitor of ftsZ, killing 

protein 
acpS 3.3 2.3 Holo-[acyl-carrier-protein] synthase 1 
phnP 3.2 1.8 Carbon-phosphorus lyase complex protein 
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tdcD 3.2 2.5 Propionate kinase/acetate kinase C 
rsgA 3.2 1.8 Ribosome small subunit-dependent GTPase 

A 
ftn 3.2 1.7 Cytoplasmic ferritin iron storage protein 

nuoE 3.1 2.5 NADH ubiquinone oxidoreductase chain E 
bhsA 3.1 1.7 Orf, hypothetical protein 
hspQ 3.1 2.3 DNA-binding protein, hemimethylated 
fadD 3.0 2.4 Acyl-CoA synthetase, long-chain-fatty-acid-

-CoA ligase 
ydeN 3.0 2.3 Putative sulfatase 
ydgA 3.0 2.1 Orf, hypothetical protein 
yhgF 2.9 1.8 Predicted transcriptional accessory protein 
yfaV 2.8 1.7 Putative transport protein 
rutA 2.7 1.8 Predicted monooxygenase 
gadA 2.7 1.6 Glutamate decarboxylase isozyme 
trxC 2.7 1.6 Thioredoxin 2 
yeaH 2.7 1.7 Orf, hypothetical protein 
rpiR 2.7 1.6 DNA-binding transcriptional repressor 
ycgL 2.6 1.7 Orf, hypothetical protein 
cspA 2.5 1.7 Cold shock protein 7.4, transcriptional 

activator of hns 
ygiM 2.5 1.4 Predicted signal transduction protein (SH3 

domain) 
yqhD 2.5 1.3 Alcohol dehydrogenase, NAD(P)-dependent 
yefM 2.3 1.3 Antitoxin of the YoeB-YefM toxin-antitoxin 

system 
gadC 2.3 1.3 Predicted glutamate gamma-aminobutyric 

acid antiporter 
corA -2.4 1.4 Magnesium/nickel/cobalt transporter 
intR -2.6 1.5 Rac prophage, integrase 
rsxG -2.8 1.5 Predicted oxidoreductase 
rbsB -2.9 1.8 D-ribose transporter subunit 
yicG -3.1 1.6 Conserved inner membrane protein 
ygeV -3.2 1.5 Predicted DNA-binding transcriptional 

regulator 
Note: Positive fold-change value is (gene expression in mixed species 
biofilms)/(expression in pure biofilms). Negative fold-change value is -(gene expression 
in pure biofilms)/(gene expression in mixed species biofilms). The value is mean of two 
biological replicates, each with two technical replicates.  
Geometric SD is 2SD, where SD is standard deviation of log2 transformation of fold-
change in each replicate. Differentially expression means fold-change over 2 with one 
sample single tail t-test p-value less than 0.05. 
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Appendix 5-2 Full list of identified E. coli genes that were differentially expressed in 
mixed species planktonic cultures with S. maltophilia compared to E. coli 
pure planktonic cultures 

Gene 
Name 

Fold-
Change 

Geometric 
SD 

Description of gene product 

ampH 27.0 3.2 Beta-lactamase/D-alanine carboxypeptidase 
yddB 23.0 3.5 Predicted porin protein 
gsp 19.3 1.5 Glutathionylspermidine synthetase/amidase 
yjcE 18.4 4.5 Predicted cation/proton antiporter 
fliA 14.4 3.4 alternative sigma factor 28; regulation of 

flagellar operons 
mutM 12.6 3.3 Formamidopyrimidine DNA glycosylase 
yfbS 12.5 2.2 Predicted transporter protein 
yicC 11.0 2.2 Predicted alpha helix protein 
yhhS 10.8 1.9 Predicted transporter 
yjhP 10.8 1.8 Putative methyltransferase; KpLE2 phage-

like element 
purE 10.0 3.3 N5-carboxyaminoimidazole ribonucleotide 

mutase 
ddpX 9.2 2.5 D-ala-D-ala dipeptidase, Zn-dependent 
ybjD 9.2 1.7 Conserved protein with nucleoside 

triphosphate hydrolase domain 
nagE 8.8 4.1 Fused N-acetyl glucosamine specific PTS 

enzyme; contribute to peptidoglycan recycle 
yidL 8.4 2.1 Predicted DNA-binding transcriptional 

regulator 
mrr 8.4 2.1 Methylated adenine and cytosine restriction 

protein 
yigM 8.0 1.8 Predicted inner membrane protein 
dgoT 7.3 2.2 D-galactonate transporter 
yebY 7.1 2.7 Predicted protein 
dnaN 7.1 1.7 DNA polymerase III, beta-subunit 
yjgW 6.4 1.7 KpLE2 phage-like element; predicted protein 
uvrC 6.2 2.8 Excinuclease ABC, subunit C; repair of UV 

damage to DNA 
sfsB 6.1 1.7 DNA-binding transcriptional activator of 

maltose metabolism 
nrfG 5.9 2.6 Part of formate-dependent nitrite reductase 

complex 
ymcE 5.7 2.2 Cold shock gene 
yejL 5.3 2.2 Orf, hypothetical protein 
yrhB 5.3 2.3 Orf, hypothetical protein 
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sirA 5.3 1.9 Conserved protein required for cell growth 
pgpA 5.2 1.6 Phosphatidylglycerophosphatase A 
yadI 5.2 1.6 Predicted PTS enzyme IIA 
yhjU 5.1 2.5 Predicted inner membrane protein 
insB 5.1 2.2 IS1 transposase InsAB 
araH 5.0 1.5 Fused L-arabinose transport protein (ABC 

superfamily) 
yfaV 4.9 1.9 Putative transport protein 
ddpA 4.9 2.4 D-ala-D-a la transporter subunit 
ydgA 4.8 2.8 Orf, hypothetical protein 
insB 4.6 1.9 IS1 protein InsB 
yjhD 4.5 1.9 Orf, hypothetical protein 
ycfS 4.5 2.3 L,D-transpeptidase linking Lpp to murein 
yghJ 4.4 1.6 Predicted inner membrane lipoprotein 
mhpA 4.4 2.4 3-(3-hydroxyphenyl)propionate hydroxylase 
rfaB 4.4 2.0 UDP-D-

galactose:(glucosyl)lipopolysaccharide-1, 6-
D-galactosyltransferase 

dhaR 4.4 2.0 Predicted DNA-binding transcriptional 
regulator, dihydroxyacetone 

fixX 4.2 1.5 Predicted ferredoxin-type protein 
nuoE 4.2 2.2 NADH ubiquinone oxidoreductase chain E 
cspB 4.2 2.2 Qin prophage; cold shock protein 
wcaB 4.1 2.8 Predicted acyl transferase 
hisI 4.0 1.6 Phosphoribosyl-amp cyclohydrolase; 

phosphoribosyl-ATP pyrophosphatase 
rimM 4.0 1.9 16S rRNA-processing protein 
acpP 3.8 1.4 Putative acyl carrier protein 
yhgF 3.8 1.3 Predicted transcriptional accessory protein 
wcaK 3.8 1.6 Predicted pyruvyl transferase 
acpS 3.8 1.5 Holo-[acyl-carrier-protein] synthase 1 
insZ 3.8 1.8 Orf, hypothetical protein 
ycgL 3.7 1.8 Orf, hypothetical protein 
alaS 3.7 1.7 Alanyl-tRNA synthetase 
ynfG 3.6 1.6 Putative oxidoreductase Fe-S subunit 
envZ 3.6 1.9 Sensory histidine kinase for OmpR 
yfiR 3.6 1.9 Orf, hypothetical protein 
cysD 3.6 1.7 Sulfate adenylyltransferase subunit 2 
pmrD 3.5 1.6 Polymyxin resistance protein B 
exoD 3.5 1.8 Pseudogene, exonuclease,bacteriophage 
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ykfC 3.4 2.0 Orf, hypothetical protein 
yhdW 3.4 2.1 Putative periplasmic binding transport protein 
phnL 3.4 1.6 ATP-binding component of phosphonate 

transport 
insB 3.4 2.1 IS1 protein InsB 
insB 3.3 1.9 IS1 transposase InsAB 
pyrD 3.3 2.2 Dihydro-orotate oxidase 
trxA 3.2 1.5 Thioredoxin 1 
ybeY 3.2 1.5 Conserved protein 
pntA 3.2 1.0 Pyridine nucleotide transhydrogenase, alpha 

subunit 
nsrR 3.1 1.6 Predicted DNA-binding transcriptional 

regulator 
rimI 3.1 1.4 Acyltransferase for 30S ribosomal subunit 

protein S18 
fadD 3.1 1.4 Acyl-CoA synthetase, long-chain-fatty-acid--

CoA ligase 
dacA 3.1 1.6 D-alanyl-D-alanine carboxypeptidase; 

penicillin-binding protein 5 
fecR 3.0 1.3 KpLE2 phage-like element 
gnd 3.0 1.6 Gluconate-6-phosphate dehydrogenase, 

decarboxylating 
helD 3.0 1.7 DNA helicase IV 
ydeN 3.0 2.0 Putative sulfatase 
fliS 3.0 1.3 Serine/threonine-specific protein phosphatase 

1 
yfjF 2.9 1.9 Predicted protein 
prr 2.9 1.9 Medium chain aldehyde dehydrogenase 

rzpR 2.9 1.6 Putative Rac prophage endopeptidase 
folA 2.9 1.4 Dihydrofolate reductase  
rsgA 2.9 1.5 Ribosome small subunit-dependent GTPase 

A 
insB 2.8 1.8 InsB IS1 transposase 
wzc 2.8 1.8 Protein-tyrosine kinase 
bhsA 2.8 1.7 Orf, hypothetical protein 
tdcD 2.7 1.6 Propionate kinase/acetate kinase C 
aceF 2.6 1.6 Pyruvate dehydrogenase, 

dihydrolipoyltransacetylase component 
phnP 2.6 1.2 Carbon-phosphorus lyase complex accessory 

protein 
cpxP 2.6 1.3 Periplasmic protein combats stress 
ytfR 2.5 1.5 Putative sugar transport protein 
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crl 2.5 1.3 DNA-binding transcriptional regulator 
yiaF 2.5 1.5 Orf, hypothetical protein 
pphA 2.5 1.4 Serine/threonine-specific protein phosphatase 

1 
pmbA 2.5 1.4 Predicted peptidase 
yddL 2.4 1.4 Putative outer membrane porin protein 
ydcU 2.4 1.4 Putative spermidine/putrescine transporter 

subunit 
ygdB 2.4 1.4 Orf, hypothetical protein 
kdpD 2.3 1.3 Fused sensory histidine kinase 
pitA 2.3 1.3 Low-affinity phosphate transport 
chbB 2.3 1.3 N,N'-diacetylchitobiose-specific enzyme IIB 

component of PTS 
mglC -2.4 1.4 Methyl-galactoside transporter subunit 
rsxG -2.5 1.5 Predicted oxidoreductase 
gadC -2.7 1.8 Predicted glutamate gamma-aminobutyric 

acid antiporter 
gadA -2.8 1.5 Glutamate decarboxylase isozyme 
ygeV -2.9 1.6 Predicted DNA-binding transcriptional 

regulator 
Note: Positive fold-change value is (gene expression in mixed species planktonic 
cultures)/(gene expression in pure planktonic cultures). Negative fold-change value is 
(gene expression in pure planktonic cultures)/(gene expression in mixed species 
planktonic cultures). The value is mean of two biological replicates, each with two 
technical replicates.  
Geometric SD is 2SD, where SD is standard deviation of log2 transformation of fold-
change in each replicate. Differentially expressed means fold-change over 2 with one 
sample single tail t-test p-value less than 0.05. 
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Chapter 6  
Gene fliA Mediates the Inhibition of Biofilm Formation by Escherichia coli when 

Interacts with Stenotrophomonas maltophilia 

6.1 Abstract 

Our previous study found that biofilm formation of Escherichia coli PHL644 was 

significantly inhibited in mixed species culture with Stenotrophomonas maltophilia 

(Chapter 3). Transcriptomic study identified that gene fliA was among the most highly 

induced genes of E. coli in co-culture with S. maltophilia compared with that in single 

species culture (Chapter 5). This study investigated the role of fliA in species interactions 

and inhibited biofilm formation by E. coli in mixed species culture. Induction of fliA 

expression was confirmed as resulting from direct cell-to-cell interactions between E. coli 

and S. maltophilia, rather than due to nutrition depletion in co-culture with S. maltophilia. 

Overexpression of fliA slightly increased cell motility of the non-motile strain E. coli 

PHL644. However, fliA overexpression significantly reduced cell aggregation and the 

production of a major curli monomer protein CsgA. Cell appendage curli was previously 

demonstrated as critical for cell aggregation and therefore biofilm formation of E. coli 

PHL644 in mono-species culture. Therefore, it was concluded that up-regulation of fliA 

in E. coli when interacting with S. maltophilia lead to reduced curli production and 

resulting inhibited biofilm formation of E. coli in mixed species culture. 

6.2 Introduction 

Biofilms in nature are usually mixed-species consortia, in which various species 

interactions exist and affect the composition of biofilms [1]. Our previous study found 

that interactions between Escherichia coli and Stenotrophomonas maltophilia inhibited 

biofilm development by E. coli in static batch culture (Figure 3.2). It also showed that 

cell aggregation and surface attachment of E. coli was reduced when mixing with S. 

maltophilia cells. Transcriptomic study has identified a list of E. coli gene differentially 
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expressed when E. coli was co-cultured with S. maltophilia compared with E. coli in 

mono-species culture. Gene fliA was among the most highly induced genes, with a 15-

fold induction in expression when E. coli was in mixed species culture (Table 5.2). The 

purpose of this study is to examine the role of induced gene fliA in inhibited E. coli 

biofilm formation in mixed culture. 

FliA is an alternative sigma factor (σ28) responsible for the initiation of transcription of 

several genes involved in cell motility. Most notable are for flagellar biosynthesis and 

functions, such as fliC encoding flagellin and motAB encoding stator element of the 

flagellar motor complex [2]. Expression of gene fliA itself is under the regulation of a 

master gene flhDC, which is regulated by quorum-sensing regulon qseBC in some E. coli 

strain [3]. Biofilm formation of E. coli in pure culture could be affected by the expression 

of these motility genes (fliA, fliC, motA, flhD, and qseB) [4, 5]. 

The E. coli PHL644 strain used in our previous studies was a derivative of E. coli 

MC4100, which carried a +1 frameshift in gene flhDC mutation [6, 7]. Expression of fliA 

was shown as very low in this strain [6]. But the strain PHL644 was previously screened 

out as a robust biofilm former, which had high expression of curli resulting high 

aggregation and biofilm formation in microtiter plates [7]. Inverse regulation of motility 

and curli mediated cell adhesion was previously reported [6, 8]. It was interesting to 

investigate relationship of fliA upregulation and curli production with regard to reduced 

cell aggregation and biofilm formation of E. coli in co-culture with S. maltophilia. 

This study firstly confirmed fliA upregulation in E. coli as due to direct contact with S. 

maltophilia cells. The mechanisms of fliA-mediated alteration in biofilm formation of E. 

coli in co-culture were further examined. 

6.3 Results 

6.3.1 Induction of fliA required cell-to-cell contact in mixed species culture 

Up-regulation of E. coli gene fliA in mixed species culture with S. maltophilia was 

identified in previous transcriptomic study (Table 5.2). Its induction was confirmed in the 

same culture condition as used for the transcriptomic study (18 h culture at room 
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temperature, early stationary stage) using an E. coli transcription reporter strain E. 

coli/pfliA-gfp, which carried a green fluorescence protein (gfp) gene under the control of 

fliA promoter (Figure 5.3). Expression of fliA was further tested in different culture 

conditions to confirm that its up-regulation actually resulted from species interactions. 

Extended growth of E. coli/pfliA-gfp from early to late stationary phase (18 h to 24 h) in 

both pure and mixed species cultures were conducted to test the effect of nutrient 

depletion on fliA expression. Cells in later growth phase encounter more serious depletion 

of substrate than in earlier growth phase. The result showed that expression of fliA in 

mixed species culture at earlier growth phase (e.g. 18 h) was higher than that in mono-

species culture at later stationary phase (e.g. 24 h). (Figure 6.1A).  

The effect of physical cell-to-cell contact between E. coli and S. maltophilia on gene fliA 

expression was tested using the Transwell system. E. coli/pfliA-gfp and S. maltophilia 

were cultured together but separated (without direct cell-contact between the two species) 

by porous membrane in a Transwell system. The results (Figure 6.1B) showed that fliA 

expression of E. coli in the contact-free was similar to the level in pure E. coli culture; 

both significantly lower than that in mixed species culture with S. maltophilia. 

6.3.2 Gene fliA affects E. coli biofilm formation in mixed species culture 

The effect of fliA expression on biofilm formation by E. coli was examined with three E. 

coli strains, wild type BW25113 strain, knockout mutant ΔfliA, and PHL644/pCA24N-

fliA strain with inducible fliA expression. Single and mixed species biofilms with S. 

maltophilia were cultured in static microtiter plates. 

Biomass of the biofilm by knockout mutant ΔfliA was not significantly different from that 

of wild type E. coli BW25113 (Figure 5.4B), while the structure of biofilms looked 

differently. Wild type biofilms had more cell aggregates and ΔfliA biofilm cells were 

more evenly spread on surface (Figure 6.2A,D). Biofilm formation by E. coli wild type 

and ΔfliA mutant strains was both inhibited when co-cultured with S. maltophilia. 

However, the inhibition was weakened when gene fliA was knocked out. Wild type E. 

coli biofilm formation was greatly inhibited by S. maltophilia, with few E. coli cells 



  93 

grown as biofilm, even if on the surface close to the edge of wells where more attached 

cells were usually observed (Figure 6.2B,C). In contrast, more ΔfliA cells could attach to 

the surface in mixed species culture (Figure 6.2E), especially near the edge of microtiter 

wells (Figure 6.2F). 

Expression of fliA in E. coli/pCA24N-fliA could be induced when chemical IPTG 

(isopropyl β-D-1-thiogalactopyranoside) was supplemented in culture media. Biofilm 

formation by E. coli/pCA24N-fliA was significantly reduced when fliA was 

overexpressed in single species culture (Figure 6.2G,H). However, growth inhibition of 

E. coli/pCA24N-fliA cells was also observed when fliA expression was induced by 50 µM 

IPTG (data not shown). 

6.3.3 Increased cell motility with overexpressed fliA 

E. coli PHL644 was a non-motile strain due to a mutation in gene flhDC, which was the 

master regulator of fliA. Expression of fliA was very low in E. coli MC4100, the parental 

strain of PHL644. Several flagella biosynthesis gene (e.g. fliC, motA) were under the 

control of gene fliA. External induction of fliA by IPTG may induce expression of these 

genes and flagella biosynthesis, resulting increased cell motility. Cell motility of E. coli 

PHL644 was thus examined on soft agar when gene fliA was induced by IPTG. The 

results showed that swimming ability of E. coli/pCA24N-fliA was increased (colony 

diameter increased from 6.5 mm to 8.5 mm) when 5 or 50 µM IPTG was supplemented 

in media (Figure 6.3). Swarming and twitching ability of E. coli/pCA24N-fliA showed no 

difference whether IPTG was supplemented or not (results not shown).  

6.3.4 Decreased cell aggregation and curli production with induced fliA 

Thick biofilm formation of E. coli PHL644 in pure culture was showed as a result of 

increased curli production and cell aggregation [7]. To test whether induced expression of 

fliA in mixed species culture caused inhibited biofilm formation of E. coli, the effects of 

fliA induction on cell aggregation and on curli production were examined. 

Cell aggregation was shown as a percentage of cells forming aggregates and settling 

down, resulting in decreased optical density in the top layer of a culture column. E. coli 
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and E. coli/pCA24N-fliA were cultured in media with 0 or 50 µM IPTG for aggregation 

test. Results showed that aggregation of E. coli/pCA24N-fliA was significantly reduced 

when cells were cultured in media with 50 µM IPTG (Figure 6.4). Supplement of IPTG 

showed no effect on cell aggregation of E. coli itself (Figure 6.4). 

Effect of fliA induction on curli production was examined using E. coli PHL644 strain 

with inducible fliA expression (E. coli/pTOPO-fliA) and corresponding vector control 

strain E. coli/pTOPO, cultured in media supplemented with inducer chemical anabinose 

at concentrations of 0, 0.02% and 0.2%. Curli production in the two strains was estimated 

through two critical curli proteins, CsgA and CsgG. CsgA is a major curli subunit. CsgG 

is an outer membrane-located protein for the secretion of CsgA. Production of CsgA and 

CsgG was semi-quantified with whole-cell western blot assay with normalized cell 

loading. The results (Figure 6.5) showed production of CsgA in E. coli and the vector 

control strain E. coli/pTOPO in three cultures with/without arabinose. However, E. 

coli/pTOPO-fliA cells showed very weak or no production of CsgA in all tested cultures. 

In contrast, protein CsgG was produced in all three tested strains (Figure 6.5). 

6.4 Discussion 

Our previous study found that E. coli biofilm formation was significantly inhibited in 

static mixed species culture with S. maltophilia (Figure 3.2). Gene fliA of E. coli was 

identified as highly up-regulated when E. coli was co-cultured with S. maltophilia by 

cDNA microarray analysis (Table 5.2). This study confirmed that induction of fliA was 

resulted from species interactions and investigated how fliA upregulation affected biofilm 

formation by E. coli.  

6.4.1 Induction of gene fliA resulted from species interactions 

Induction of fliA expression was confirmed using fliA transcription reporter strain E. 

coli/pfliA-gfp cultured at the same conditions as used for cDNA microarray analysis, 

which was 18-h planktonic culture or biofilm in 0.1×LB at room temperature. Both pure 

culture of E. coli and mixed species culture of E. coli and S. maltophilia reached early 

stationary phase in growth curves after 18-h growth (data not shown). In mixed species 

batch culture, one species compete for limited substrate with other species. Nouaille et al. 
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found that Lactococcus lactis encountered earlier carbon starvation in mixed species 

cultures than in its single species culture [9]. Mover, they found that many genes 

differentially expressed in mixed species culture were due to nutrition competition and 

showed similar expression trends in single species culture in later growth phase [9]. So 

we first tested whether up-regulation of fliA was due to nutritional limitation encountered 

by E. coli in mixed species culture. Growth of E. coli/pfliA-gfp in single and mixed 

species cultures were extended from 18 h to 24 h, reaching late stationary phase. 

Expression of fliA in mono-species pure culture was low and decreased a little with 

growth (Figure 6.1A). Gradually shutting down flagella genes after exponential growth 

phase was reported previously [10]. However, it was found that the expression of fliA in 

mixed species cultures at earlier growth phase (18 h) were always higher than that in 

single species cultures at all tested time points (every one hour during 18 and 24 h, Figure 

6.1A). It suggested that fliA induction was due to species interactions, rather than early 

nutrition depletion due to species competition in mixed species culture. 

Our previous study (Figure 3.3B) found that cell-to-cell contact between the two species 

was required primarily for inhibition of E. coli biofilm formation in mixed species 

cultures. With mixed species cultures in a Transwell system to prevent direct cell-contact 

between the two species, we found that fliA up-regulation also required cell-contact 

between E. coli and S. maltophilia (Figure 6.1B). It further confirmed that induction of 

fliA resulted from species interactions. It was thus interesting to study the relationship of 

up-regulation of fliA with reduced E. coli biofilm formation in mixed species cultures. 

6.4.2 Gene fliA, cell motility and biofilm formation 

Master regulator gene flhDC, sigma factor gene fliA, and flagellin and assembly gene 

fliCD, motAB etc. are in hierarchy transcription in flagellar synthesis and functions. Gene 

fliA plays a critical role in bacterial flagellar, which is an important rotary machine 

required for cell motility. Knockout mutants of fliA for several species (e.g. E. coli, 

Legionella pneumophila) showed decreased or aborted cell motility in previous studies 

[4, 11]. Expression of fliA in strain E. coli PHL644 used in this study was very low, due 

to a mutation in gene flhDC [12]. Low cell motility of this strain was confirmed in this 

study (Figure 6.3). Although with a nonfunctional master regulator FlhD, overexpression 
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of fliA from an external plasmid may be able to initiate transcription of flagella class III 

genes [8], resulting in restored, though very little, cell motility as observed in Figure 6.3.  

Previous studies showed that gene fliA was involved in biofilm formation through 

affected flagellar function and cell motility [4]. Knockout mutants of fliA for several 

species, such as E. coli MG1655, Legionella and Salmonella spp. showed less biofilm 

formation than wild type strains [4, 11, 13]. However, there is controversy about the 

effect of flagellar and cell motility on biofilm formation since the effects varied among 

species [14]. In this study, biomass of single specie biofilm by ∆fliA mutant was not 

significantly different from that of wild type E. coli BW25113 (Figure 5.4B), while the 

structure of biofilms showed some difference (Figure 6.2A,D). The results suggested that 

gene fliA, or flagella and cell motility may be not critical for biofilm formation by the 

strain BW25113.  

However, gene fliA did show its impact on biofilm formation of E. coli in mixed species 

cultures with S. maltophilia. The inhibition of S. maltophilia on E. coli biofilm formation 

in co-culture was diminished when gene fliA was knocked out (Figure 6.2B,C,E,F). It was 

confirmed in this study that gene fliA was induced as a result of species interactions. 

Knocking out fliA would cut off partial interactions and thus mitigate the negative effect 

of species interactions on biofilm formation. Although cell motility of E. coli increased 

with overexpressed fliA, the increase was very limited (Figure 6.3) and the strain E. 

coli/pCA24N-fliA was non-motile. It is likely that the effect of fliA on biofilm formation 

of E. coli may be through other mechanisms rather than flagellar or cell motility.  

It was previously found that flagellar was not required for biofilm development in curli-

overexpression strain [15]. E. coli strain PHL644 was a curli-overexpression strain. 

Moreover, curli production was actually the reason of robust biofilm formation by this 

strain in pure culture [7]. So the effect of fliA overexpression on curli production for this 

strain was further explored. 

6.4.3 Inverse effect of fliA induction on expression of curli gene csgA 

Curli was found as adhesive fimbriae of several species including E. coli. Curli is 

involved in cell aggregation, adhesion to host cells, and biofilm formation [16]. High cell 
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aggregation (91.5-93.4% Figure 6.4) of E. coli PHL644 was a result of curli 

overexpression. Reduced cell aggregation (72.3%) due to fliA overexpression (Figure 6.4) 

suggested a relationship between fliA overexpression and curli production. 

In E. coli, curli production involves at least six proteins. CsgA and CsgB are the major 

and miner monomer of curli fibers, respectively. CsgD is a transcription activator of 

csgBA. CsgGEF are nonfiber structural proteins for secretion of monomer (CsgG) and 

stabilization and modification of curli assembly (CsgEF) [17]. The effect of fliA 

overexpression on curli production was thus investigated by measuring the production of 

two of these curli proteins, CsgA and CsgG. Results showed little production of CsgA 

and uninfluenced CsgG synthesis in the fliA overexpression strain E. coli/pTOPO-fliA 

(Figure 6.5). Monomer CsgA is definitely critical for curli assembly. Curli may not 

assemble with little production of CsgA. Thus it was reasonable to infer that curli 

production was inhibited by fliA overexpression, resulted in reduced cell aggregation as 

observed in Figure 6.4. 

Inverse regulation of fliA and curli during exponential and stationary phase in E. coli was 

reported previously [10]. Expression of curli genes was under the control of stationary 

phase sigma factor (σ38). Since gene fliA encodes another sigma factor, σ28, 

overexpressed σ28 may outcompete σ38 for RNA polymerase when fliA expression was 

induced externally, resulting inhibited curli production. Pesavento et al. found that fliA 

induction could repress signaling system via c-di-GMP (bis-(3´-5´)-cyclic-diguanosine 

monophosphate), which actually initiated transcription of curli genes [10]. Observed 

negative effect on CsgA production by fliA overexpression was thus understandable, 

although why CsgG production was not affected needed further investigation. 

6.5 Conclusions 

Our previous study found that a robust biofilm former strain, E. coli PHL644, was 

significantly inhibited in biofilm formation in co-culture with S. maltophilia. Gene fliA in 

E. coli was identified as highly induced in co-cultures. This study confirmed that the 

induction of fliA was due to species interactions with S. maltophilia, rather than substrate 

depletion resulted from nutrient competition between E. coli and S. maltophilia in mixed 
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species cultures. Overexpression of fliA only slightly affected cell motility of E. coli 

PHL644, but significantly inhibited production of critical curli protein CsgA and cell 

aggregation. It was concluded that reduced curli production of E. coli PHL644 due to 

induced fliA expression by species interactions was responsible for inhibited biofilm 

formation of E. coli in mixed species cultures.  

Our study found that cell-to-cell contact between E. coli and S. maltophilia was required 

both in induction of fliA and in inhibited biofilm formation of E. coli in co-cultures. Curli 

and flagella are bacterial surface components and are reported to be involved in cell-to-

cell interactions. How S. maltophilia induce the expression of E. coli gene fliA by cell-to-

cell contact between the two species warrants further investigation in future study.  

6.6 Materials and Methods 

6.6.1 Bacterial strains and cultures 

All bacterial strains used in this study were listed in Table 6.1. All strains were grown on 

Luria Broth (LB) agar or 10-fold diluted LB broth (0.1×LB) supplied with appropriate 

antibiotics (Sigma-Aldrich, St. Louis, MO): tetracycline (20 µg/ml), gentamicin (20 

µg/ml), kanamycin (25 µg/ml), ampicillin (50 µg/ml) or chloramphenicol (30 µg/ml). No 

antibiotics were supplied in mixed species cultures. Planktonic cultures were incubated 

with continuous shaking (250 rpm) at 30 °C for 15 h. 

6.6.2 Biofilm culture and imaging  

Biofilms were grown in static glass-bottom 24-well plates (MatTek, Ashland, MA) 

containing 1 ml broth/well at room temperature (20°C) for 24 h. Inoculation was 1:100 

(v/v) from overnight cultures with a final concentration around 5×106 CFU/ml. Ratio of 

E. coli and S. maltophilia was adjusted to around 1:1 in mixed-species biofilm formation. 

To image biofilms, suspended cells in each well were removed and biofilms were gently 

washed three times with 1×PBS (phosphate buffered saline). Biofilms formed in the 

center of each well, except specifically indicated, were randomly chosen for imaging with 

a confocal laser scanning microscopy (CLSM) (Olympus, Center Valley, PA) equipped 

with the software FluoView 300 (Olympus, Center Valley, PA). Most E. coli strains and 
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S. maltophilia used in this study were labeled with fluorescent proteins (Table 6.1). Non-

labeled E. coli/pCA24N-fliA was stained with 5 µM SYTO 9 (Invitrogen, Carlsbad, CA) 

according to manufacture’s protocol. A series of CLSM images was taken every 1 µm in 

the depth of biofilm and combined to reconstruct 3-D biofilms using the software 

Volocity 3.2 (PerkinElmer, Fremont, CA).  

6.6.3 Confirmation of fliA expression 

Differential expression of fliA in mixed species cultures was confirmed with E. coli 

reporter strain, which carried a gfp gene in the control of promoter of gene fliA. 

Fluorescence intensity of the reporter strain thus indicated expression of fliA. Cell 

contact-free mixed-species cultures were performed in Transwell systems (Corning, 

Lowell, MA), with E. coli in 24-well microtiter plates and S. maltophilia grown in the 

inserts. E. coli reporter strain grown in planktonic pure cultures, mixed-species cultures, 

and in Transwells were analyzed with flow cytometry as previously described (Chapter 

5). 

6.6.4 Cell motility test 

Media used to test swimming ability contained 3 g/l agarose, 10 g/l tryptone, and 5 g/l 

sodium acetate with 0, 5 or 50 µM IPTG (Fermentas, Glen Burnie, MD). Inoculation was 

from fresh culture in LB agar. Plates were cultured at 30 °C for 24 h.  

6.6.5 Cell aggregation assay 

E. coli and E. coli/pCA24N-fliA were grown in 0.1×LB, supplied with appropriate 

antibiotics, for four hours to allow initial growth of cells before IPTG (50 µM) was 

supplemented. Cells in the overnight cultures were re-suspended in fresh 0.1×LB and 

adjusted to similar optical density (OD at 600 nm). Cultures in test tubes (3 ml/tube) were 

set static on bench for 24 h. Optical density of cultures in the top layer was measured and 

cell aggregation was expressed as the relative decrease of OD. 
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6.6.6 Whole-cell western analysis assay 

Planktonic cultures of E. coli, E. coli/pTOPO, E. coli/pTOPO-fliA and ΔcsgA were grown 

in 0.1×LB supplied with appropriate antibiotics and/or inducer arabinose (0.2% or 

0.02%) for overnight at 30 °C. Cell density of each culture was adjusted to OD of 0.2. 

Pellets of bacterial cells from 1 ml cultures were treated with 75 µl hexafluoro-2-

propanol (HFIP). HFIP was removed by spinning in a vacuum for 35 min at 42 °C and 

treated cells were resuspended in 150 µl 2× SDS loading buffer. Samples were separated 

on a 15% SDS-polyacrylamide gel and blotted onto polyvinylidene fluoride membrane 

(Fisher Scientific, Pittsburgh, PA) with standard method [18]. The blot was firstly probed 

with anti-CsgA polyclonal antibody (1:10,000) and a secondary anti-rabbit antibody 

(1:7,000) used by Chapman et al. The blot was developed using the Pierce SuperSignal 

duration substrate (Fisher Scientific) as described previously [18]. The same blot was 

then stripped with stripping buffer (Fisher Scientific), probed with anti-CsgG antibody 

(1:100,000) and the second antibody, and developed as above. 



  101 

6.7 Figures and Tables 

Figure 6.1 Confirmed up-regulation of fliA in mixed species cultures 
Expression of fliA in reporter strain E. coli/pfliA-gfp (A) during extended growth in 
planktonic single and mixed species cultures (18-24 h after inoculation) and (B) in pure 
culture, contact-free mixed species culture, and mixed species co-culture with S. 
maltophilia. fliA expression was shown as fluorescence intensity in arbitrary unit (a.u.) of 
a population of 30,000 E. coli/pfliA-gfp cells measured by flow cytometry. Contact-free 
mixed culture was conducted in Transwell systems with S. maltophilia in inserts and E. 
coli in the corresponding wells. Two independent replicates were conducted for each 
culture. Error bars show standard deviations of replicates. Symbol * indicates significant 
difference (p<0.05) using pure culture as a control. 
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Figure 6.2 Effect of fliA knockout on E. coli biofilm formation in single and mixed 

species culture 
Three dimensional images of biofilms by wild type E. coli BW25113 (A,B,C) and its 
knockout mutant strain ΔfliA (D,E,F) in single species pure cultures (A,D) and in mixed 
species cultures with S. maltophilia (B,C,E,F) and biofilm  formation of E. coli/pCA24N-
fliA cultured in media supplemented with (G) 0 µM and (H) 50 µM IPTG. Biofilms were 
all culture in 0.1×LB broth in static glass-bottom microtiter plates for 22 h at room 
temperature. E. coli wild type and fliA knockout carried a plasmid pMP4655 and shown 
as green, and S. maltophilia carried a plasmid pBPF-mCherry and shown as red. E. 
coli/pCA24N-fliA biofilm were stained with SYTO-9 and shown as green. 3-D images 
were compiled from a stack of confocal laser scanning microscopic images, which were 
randomly taken over biofilms grown in the center of wells except C and F. Grid size is 
26.8 µm. 
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Figure 6.3 Effect of fliA expression on cell swimming ability of E. coli PHL644 
Swimming test of E. coli/pCA24N-fliA strain on soft agar plate (0.3% agarose) 
supplemented with (A) 0 µM (B) 5 µM and (C) 50 µM IPTG, which induced the 
expression of gene fliA. The diameter of colonies shows the ability of cell swimming. 
Scale bars are 10 mm. 
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Figure 6.4 Effect of fliA expression on cell aggregation of E. coli cells 
Cell aggregation of E. coli PHL644 and E. coli/pC24N-fliA cells cultured in 0.1×LB 
supplemented with 0 and 50 µM IPTG, which induced the expression of fliA from the 
plasmid pCA24N-fliA. Cells were re-suspended in fresh 0.1×LB for aggregation test. Cell 
aggregation was shown as the percentage of decreased cell density (measured in optical 
density) in the top layer of a column culture set static for 24 h due to formation and 
settling down of aggregates in gravity. The experiments were replicated independently 
and error bars show the standard deviation of calculated cell aggregation. 
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Figure 6.5 Effect of fliA expression on CsgA and CsgG production of E. coli cells 
Bands of CsgA (lower band in the first row image) and CsgG on a western blot of strain 
E. coli/pTOPO-fliA (denoted as FliA in the figure) and E. coli/pTOPO (Vector) cultured 
in 0.1×LB broth supplemented with 0.2, 0.02 and 0% arabinose (.2, .02, and 0 in the 
figure) and mutant strain ΔcsgA cultured in 0.1×LB. Cell density of tested strains in each 
culture was adjusted to the same optical density before loading on gels (OD600=0.2). 
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Table 6.1 Strains and plasmids used in this study 

Strains or plasmids Genotype Source or reference 

pCA24N-fliA Plasmid of pCA24N with an IPTG 
inducible fliA gene 

ASKA library [19] 

pTOPO Plasmid of pBAD-TOPO Invitrogen pBAD-
TOPO TA 
expression kit 

pTOPO-fliA Plasmid of pBAD-TOPO with an 
inducible fliA gene inserted 

This study 

E. coli K-12 
PHL644/pMP4655 

MC4100 malA-kan ompR234, 
increased curli expression, labeled 
with green fluorescent protein 

This study  

S. maltophilia/pBPF-
mCherry 

Environmental isolate, labeled with 
mCherry fluorescent protein 

This study 

E. coli K-12 BW25113  CGSC # 7636 
E. coli/pfliA-gfp E. coli K-12 MG1655 containing a 

plasmid pUA66 or pUA139 carrying 
a gfp-fusion with the promoter of fliA 

E. coli promoter 
collection 
(PEC3877) [20]  

ΔfliA fliA knockout mutant of E. coli K-12 
BW25113 

Keio collection [21]  

E. coli/pCA24N-fliA E. coli K-12 PHL644/pMP4655 
carrying the plasmid of pCA24N-fliA 

This study 

E. coli/pTOPO E. coli K-12 PHL644/pMP4655 
carrying the plasmid of pTOPO 

This study 

E. coli/pTOPO-fliA E. coli K-12 PHL644/pMP4655 
carrying the plasmid of pTOPO-fliA 

This study 
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Chapter 7  
Conclusions and Future Directions 

This dissertation research was conducted to explore the effects and to investigate genetic 

mechanisms of bacterial species interactions on biofilm formation. Findings in this study 

contribute to a better understanding of biofilm formation by one species, especially 

pathogenic species, with impacts from indigenous species in the same environment. The 

output of this study could eventually lead to development of alternative strategies for 

biofilm control in industrial and clinical settings. Summarized are major conclusions 

generated from this study, as well as suggested directions for future research. 

7.1 Conclusions 

The first part of this study revealed that biofilm formation by one species was affected by 

interactions with other species and the effect varied in different culture conditions. 

Biofilms were cultured in static batch systems and dynamic flow cells, simulating typical 

environmental conditions with standstill and running water/liquid over the surfaces where 

biofilms grow. Escherichia coli biofilm development was significantly altered in co-

culture with Stenotrophomonas maltophilia compared to its pure culture. In flow cells, E. 

coli was promoted in biofilm formation in co-cultures, likely resulting from increased 

surface attachment of E. coli cells facilitated by S. maltophilia biofilm matrix. In contrast, 

biofilm formation by E. coli was inhibited (70-90% less biomass) in static batch co-

culture due to nutrient competition, outcompeted surface attachment and reduced cell 

aggregation of E. coli cells. The opposite effects suggested that species interactions and 

their effects may change by different environmental conditions. Survival of one species, 

especially under the treatment of disinfectants or antibiotics, can increase by embedding 

in biofilm [1]. Biofilm formation and therefore the fate of one species not only depends 

on its interactions with co-existing species but is also influenced by local environmental 

conditions such as hydrodynamic parameters. 
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The next theme addressed in this study was the transcriptomic responses of E. coli to S. 

maltophilia in mixed species cultures. The purpose was to identify genes that were 

involved in inhibited E. coli biofilm formation by species interactions in static co-culture. 

For this purpose, an immuno-magnetic separation based method was developed to enable 

the application of cDNA microarray technology for the study of a mixed species 

community, which bypassed the current limit of this technology, which has been applied 

mostly to single species cultures. Genetic responses of E. coli to co-cultures with S. 

maltophilia were revealed, at least partially, by combining the newly developed 

separation method and cDNA microarray analysis. Approximately hundred genes were 

identified and indicated changes in metabolism, signal transduction, and cell wall 

component of E. coli in co-cultures. It is unclear at this point how all these genes are 

involved in species interactions.  However, functional analysis of these genes showed 

their potential roles in several pathways, such as alternative carbohydrate uptake and ion 

transport, which are known to be involved in bacterial interactions by other species. 

Moreover, five genes (e.g., fliA) were confirmed to be involved in inhibiting biofilm 

formation in co-culture. Further characterization of these genes is warranted and will 

provide insights into the mechanisms of inhibiting biofilm growth by species interactions. 

Since the method developed in this study is not limited to separate E. coli for 

transcriptome analysis, future research can be conducted to study genetic responses of S. 

maltophilia to E. coli. It will result in a better understanding of responses to species 

interactions from both sides. 

The third achievement of this study was the uncovering of one mechanism involved in 

the inhibition of biofilm formation of E. coli in mixed species cultures. Gene fliA is 

among the most highly induced genes identified by transcriptome analysis and plays an 

important role in flagellar and cell motility, which showed a relationship with biofilm 

formation in previously studies [2]. Firstly, up-regulation of fliA in co-culture with S. 

maltophilia was confirmed to result from direct cell contact. But cell motility was only 

slightly increased though fliA was overexpressed. On the contrary, fliA induction greatly 

repressed the production of protein CsgA, a major fiber monomer of curli that is critical 

for cell aggregation and biofilm formation of the E. coli strain used in this study. 

Decreased cell aggregation with fliA overexpression was also verified. Moreover, 



  111 

knocking out gene fliA diminished the inhibition on E. coli biofilm formation in mixed 

species cultures. It was therefore concluded that inducing gene fliA to suppress curli 

production is at least one of the pathways in inhibiting E. coli biofilm formation by 

species interactions with S. maltophilia. The conclusion could have been drawn more 

persuasively, with evidence of less curli production of E. coli cells in mixed-species 

culture. Also left for future study is the trigger factor of S. maltophilia to induce fliA 

expression in E. coli. Cell surface components of S. maltophilia are suggested to be of 

interest, since both fliA induction and inhibited E. coli biofilm formation required cell-to-

cell physical contact between the two species. 

7.2 Future directions 

This research examined the effect of species interactions on biofilm formation of E. coli, 

highlighted the impact of environmental conditions on the effect, and revealed in part, 

mechanisms of species interactions at the genetic level. The ultimate goal in practice is to 

control biofilm formation of incoming bacterial species, e.g. pathogens, potentially by 

indigenous species existing in the environment. Future research could be conducted in the 

following directions to reach the final goal that formed the motivation for this dissertation 

study. Research on other genes confirmed to be involved in biofilm formation, such as 

phoH and yddB can bring a more complete understanding of inhibiting E. coli biofilm 

formation. Inhibitive effect on E. coli biofilm formation should be tested with additional 

environmental strains, or a natural mixed species community. This study implies that 

changing hydrodynamic parameters may switch promoted to prohibited effects of species 

interactions on biofilm formation; therefore, effectively controlling biofilm growth of 

bacterial strains of interest, such as pathogens, could be achieved by altering 

environmental parameters. The effectiveness of this approach needs to be further tested in 

systems that simulate relevant environmental conditions. Uncovering an effective trigger 

compound for fliA induction, if successful in future studies, could be applied for surface 

coating to control biofilm growth.  

Even though we have a long way to go from the basic research presented here to practical 

applications of effective control of biofilm formation of pathogenic species using 

environmental species, this study serves as a starting point of applications in 
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environmental health that may be similar to recently reported bacteriotherapy for human 

health [3]. 
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Introduction

In this study, we explore how a biological pathway can be
defined, and identify a set of methods to automatically learn a
pathway from experimental data. Although many biological
pathways have been described in the literature, these pathways
likely represent only a small portion of the known underlying
network of interactions. Recently, such pathway representations
have been systematized in databases such as EcoCyc [1],
RegulonDB [2], and KEGG [3]. The pathways represented in
these databases are commonly used as a starting point (seed
network) to analyze gene expression data and identify pathway
activity using computational tools such as GSEA [4] and DAVID
[5]. However, when an annotated pathway is used to analyze
microarray gene expression data, the assumption is made that the
ideal microarray derived network will be the same as that in the
literature. This assumption may not hold since many pathways are

defined based on observed protein-protein and protein-DNA
interactions, metabolic fluxes, and subsets of particularly well-
studied genes. Each of these factors may contribute to the
substantial inconsistency between RNA-level microarray-based
networks and currently defined pathways. Furthermore, the
selected pathway representation may be incomplete and not
include relevant regulator or effector molecules, thus necessitating
computational prediction and subsequent validation. To address
this issue, we introduce a method to systematically expand a
pathway by identifying new genes that, from a gene expression
perspective, better define the pathway itself.
Biological pathways have been constructed from the existing

literature and annotation information using a wide range of
methods [6,7,8,9,10,11,12,13,14]. One method of pathway
reconstruction uses Bayesian networks (BNs) to learn and model
relationships between variables (e.g., genes). Bayesian networks are
graphical models that describe causal or apparently causal
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Introduction

In this study, we explore how a biological pathway can be
defined, and identify a set of methods to automatically learn a
pathway from experimental data. Although many biological
pathways have been described in the literature, these pathways
likely represent only a small portion of the known underlying
network of interactions. Recently, such pathway representations
have been systematized in databases such as EcoCyc [1],
RegulonDB [2], and KEGG [3]. The pathways represented in
these databases are commonly used as a starting point (seed
network) to analyze gene expression data and identify pathway
activity using computational tools such as GSEA [4] and DAVID
[5]. However, when an annotated pathway is used to analyze
microarray gene expression data, the assumption is made that the
ideal microarray derived network will be the same as that in the
literature. This assumption may not hold since many pathways are

defined based on observed protein-protein and protein-DNA
interactions, metabolic fluxes, and subsets of particularly well-
studied genes. Each of these factors may contribute to the
substantial inconsistency between RNA-level microarray-based
networks and currently defined pathways. Furthermore, the
selected pathway representation may be incomplete and not
include relevant regulator or effector molecules, thus necessitating
computational prediction and subsequent validation. To address
this issue, we introduce a method to systematically expand a
pathway by identifying new genes that, from a gene expression
perspective, better define the pathway itself.
Biological pathways have been constructed from the existing

literature and annotation information using a wide range of
methods [6,7,8,9,10,11,12,13,14]. One method of pathway
reconstruction uses Bayesian networks (BNs) to learn and model
relationships between variables (e.g., genes). Bayesian networks are
graphical models that describe causal or apparently causal
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interactions between variables. In this study, a Bayesian network is
defined as a set of interactions (edges or arrows) between variables
(nodes) selected from a set of known pathway genes. High scoring
BN topologies are learned from data based on scoring metrics such
as the BDe scoring metric introduced by Cooper et al. in 1992
[15], that incorporates the joint probabilities for variables
connected to one or more other variables. In this context, the
Bayesian model is a multinomial model with a uniform Dirichlet
prior. Bayesian networks such as these have been used to identify
relationships from gene expression data [9,16], protein-protein
interactions[17,18], and the regulation of phosphorylation states
[19]. Due to their flexibility, reliability, ability to model multi-
variable relationships, and human interpretability, Bayesian
networks are well suited for network modeling using high-
throughput data such as gene expression microarrays.
Networks learned from datasets such as gene expression data

can be used to expand our knowledge about a known pathway, by
independently testing the effects of added genes or variables on the
overall scores of the corresponding expanded networks. A general
network expansion framework to predict new components of a
pathway was suggested in 2001 [20]. Many of the pathway
expansion methods use correlation or Boolean functions
[20,21,22,23]. Compared to these methods, Bayesian network-
based expansion methods provide distinct advantages, including
prediction of both linear and nonlinear functions, identification of
causal influences representing interactions among genes. Bayesian
network-based expansion was also used for gene expression data
analysis [24,25]. However, these expansion approaches are
module-based methods that focus on identifying modules (or
groups) of additional genes to one gene [24] or a group of genes
with a fixed topology [25]. The mRNA-based networks were also
merged with protein data which often do not agree with each
other [25]. The topology of the biological pathways may not be
consistent with networks learned from transcriptional gene
expression data obtained via DNA microarray studies [21].
We hypothesize that Bayesian networks derived from micro-

array gene expression data are largely consistent with known
pathway models and can be used as a basis to predict novel factors
that influence a given pathway. In this study, the hypothesis was

examined using the Escherichia coli reactive oxygen species (ROS)
pathway. Because E. coli and the ROS pathway had been well
studied [26,27,28,29], we were able to test the effectiveness of our
network expansion algorithm and to assess the ability to
reconstruct and expand an accepted pathway using microarray
data. We identified many stress-related genes potentially involved
in the ROS pathway and predicted their interactions with known
ROS genes. Our prediction was confirmed experimentally for one
example gene, uspE. Our single-gene expansion approach, termed
‘BN+1’, was successful in predicting unknown stress interactions
that can be verified through experimental analysis, and could
demonstrably be applied to other biological systems of interest.

Results

Below we describe the Bayesian network pathways identified
from gene expression data, and the expansions to each network as
predicted using the BN+1 algorithm (Figure 1).

Microarray-Based Bayesian Network Overlapped with
Known ROS Pathway
Using a compendium of microarray gene expression data from

the M3D database [30], networks were constructed for the 27
genes contained in the ROS pathway as defined by the EcoCyc
database [1] (Figure 2). E. coli uses a complex detoxification
pathway to protect against the oxidative stress posed by reactive
oxygen species (ROS), including oxygen ions, free radicals, and
peroxides [28]. The 27 genes identified in the EcoCyc ROS
pathway include five ROS-processing enzymes (i.e., katE, katG,
sodA, sodB, sodC) and 22 transcriptional factors that regulate
transcription of these ROS-related enzymes. This E. coli expression
dataset incorporates a variety of experimental conditions including
time course studies, cell stress-inducing environments, over-
expression, and single and double knockout strains. These
conditions perturb the ROS pathway and provide a reasonable
data set for the evaluation of our hypothesis. Our simulation
results showed that more than one Bayesian network generated for
the ROS pathway shared the same top posterior probability score.
Therefore, a consensus network was derived using the 33 top

Figure 1. Schema for the BN+1 expansion algorithm. Bayesian networks are generated from discretized microarray data and ranked according
to log posterior score. One of the top-scoring networks was selected as a core network for subsequent expansion. Each gene not included in the core
network yet appearing in the microarray dataset was independently tested for its ability to acquire the best log posterior score versus the other
tested expansion genes.
doi:10.1371/journal.pone.0009513.g001
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networks that shared the best identical posterior probability. The
consensus network contains all 27 genes from the original ROS
detoxification list in EcoCyc.
A comparison of the consensus network to EcoCyc revealed that

29% of the edges in the consensus are supported by corresponding
edges in EcoCyc [1] or RegulonDB [31]. However, inclusion of
literature information in the comparison revealed that approxi-
mately 42% of the edges found in the consensus network were
confirmed (Table S1). The difference suggests that some new
literature results have not been collected in current databases such
as EcoCyc and RegulonDB.

BN+1 Pathway Expansions Predict ROS-Related Genes
and Gene Interactions
An expansion algorithm termed BN+1 was developed to identify

those genes that provide the best network score when added to an
existing core network topology (Figure 1). This core network is a
representative Bayesian network randomly selected from those
top-scoring networks. Each gene not yet included in the core
network is individually added to the set of variables for the
Bayesian network simulation (hence Bayesian network plus one
gene, or ‘BN+1’). The edges in the initial core network topology
are used as a ‘structural prior’ or starting point, and are allowed to
change over the course of the BN simulations. The added node is
initially disconnected from the existing core network and can
become connected to other variables over the course of the
simulation. Those genes which best improve the network score
when added to the existing core are expected to have the most
direct biological influence and/or relevance to the core network
genes.
The BN+1 expansion algorithm was used to identify additional

potential members of the ROS detoxification pathway. The top-
ranked results from these analyses are shown in Table 1. The
algorithm identifies whether a gene is strongly associated with a
particular network (e.g., the ROS detoxification pathway) and
which genes in the network may influence or be influenced by the
newly predicted gene. The predicted influences between core

genes and the top ‘‘+1’’ genes (including dusB and uspE) identified
by BN+1 expansion are shown in Figure 3.
Expansion of the core network revealed that many top predicted

genes have known relationships with ROS and stress regulation
(Table 1). The tRNA-dihydrouridine synthase B gene (dusB or
yhdG) was predicted to be the top-scoring BN+1 gene and to
interact with fis and sodC (Figure 3A). Fis is an important regulator
of oxidative stress [32]. Because all of the known enterobacterial fis
genes are preceded by dusB (also called yhdG) within the same
operon [32], it is reasonable that dusB is positioned as a parent of
fis in our prediction. The gene dusB is highly similar to nifR3 [32],
an element of the nitrogen regulatory system in bacteria [33]. A
phylogenetic anlaysis of fis and dusB indicated that both genes were
acquired by a lineage ancestral to c-proteobacteria (including E.
coli) from the nifR3-ntrBC operon of an ancestral a-proteobacterial

Figure 2. Consensus network for the ROS detoxification pathway based on gene expression data. Bayesian networks were generated
using twenty-seven genes from the reactive oxygen species (ROS) detoxification pathway as variables or nodes and 305 gene expression microarray
observations per variable. Edges which appear in the consensus and are supported by external data (e.g. EcoCyc, RegulonDB, and/or literature) are
indicated (see Table S1).
doi:10.1371/journal.pone.0009513.g002

Table 1. Top 10 genes identified by BN+1 expansion of the
top Bayesian network.

Rank Top BN+1 gene hits Posterior BN score

1 dusB (tRNA-dihydrouridine synthase B) S=28295.81

2 fdhE (formate dehydrogenase formation protein) S =28298.44

3 uspE (stress-induced protein); S =28310.63

4 yohF (predicted oxidoreductase with
NAD(P)-binding Rossman-fold domain)

S=28312.24

5 yncG (predicted enzyme); S =28313.04

6 msyB (predicted protein); S =28318.20

7 yedP (conserved protein); S =28320.30

8 sra (30S ribosomal subunit protein S22) S=28323.97

9 ydcK (predicted enzyme); S =28325.91

10 ynhG (conserved protein); S =28326.20

Note that the numbers shown after gene names are negative logs of posterior
probabilities for each top network containing the respective predicted gene.
doi:10.1371/journal.pone.0009513.t001
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lineage by lateral gene transfer [32]. Since fis is an important ROS
regulator, it is likely that dusB, which was acquired together with fis
and shares the same operon with fis, also plays an important role in
ROS regulation. However, further experimental evidence is
required to confirm the role of dusB in ROS regulation. Both fis
and sodC are crucial to bacterial defense against the deleterious
effects of reactive oxygen species (ROS) [34,35]. The interaction
between sodC and dusB is likely important for bacterial antioxidant
reactions. The second top predicted gene fdhE encodes an E. coli
formate dehydrogenase accessory protein that regulates the
activity of catalytic sites of aerobic formate dehydrogenases and
their redox activities [36]. A third gene, the universal stress protein
uspE, is a known major regulator of motility factors and cell
aggregation under stress conditions [37]. Several other predicted
enzymes (yncG and ydcK) and proteins (msyB) found in the BN+1
search have no currently known functions related to the ROS
pathway and stress response.
Pair-wise plots of the expression of BN+1 genes versus ROS

pathway genes show simple (dusB vs fis, Figure 3A) or complex
relationships (uspE vs. gadX, Figure 3B–C). The plots show that the
relationships between these genes may be nonlinear. For example,
a ‘‘V’’ shaped pattern is observed between the expression profiles
of gadX and uspE, where gadX is down-regulated at moderate levels
of uspE and up-regulated in either increased or decreased levels of
uspE (Figure 3C). This special non-linear gene interaction pattern
was not clearly demonstrated in a traditional hierarchical
clustering heatmap (Figure S1). Gene gadX is a transcriptional
regulator of glutamic acid decarboxylase system, which enables E.
coli to overcome acidic stress, while uspE is a universal stress-
induced protein. A term enrichment method was generated to
identify words that are preferentially grouped and reflect most
significant features of the interactions between two genes (e.g.,
gadX and uspE) as predicted by our BN method.

Based on our term enrichment analysis of gadX and uspE, one
term that clustered the data particularly well was ‘‘biofilm’’, which
was demonstrated in the annotated scatter plot (Figure 3). High
expression of gadX was correlated with high expression of uspE in
biofilms. Biofilms are aggregates of microorganisms that attach to
and grow on a surface in contact with liquid, such as water or
media. Induced expression of stress response genes, e.g., a
universal stress regulater uspA, was a general feature of biofilm
growth [38,39]. In fact, the biofilm microarray data used in the
term enrichment were obtained from two studies. One study
analyzed stress-oriented gene expression profiles of E. coli biofilm
at various time points [40]. A second biofilm microarray study
examined biofilm responses to acid resistance and oxidative stress
using wild type and single gene knockout mutant strains of E. coli
[41]. Our combined analysis of microarray gene expression and
term enrichment indicated that uspE and gadX were both up-
regulated in many samples (chips) where ‘biofilm’ was mentioned
in the sample title and/or description (Figure 3B–C). These
suggested a potential role of the uspE and gadX in the formation of
E. coli biofilm.
To further evaluate the interactions between uspE and gadX and

their regulatory roles in ROS stress and biofilm formation, several
wet-lab experiments were conducted as described below.

Confirmation of the Involvement of Gene uspE and gadX
in ROS Network
Regulation of gene expression involved in the ROS network

upon exposure to ROS was widely reported
[26,27,28,29,34,35,37]. Hydrogen peroxide is one of the com-
monly used ROS. To test the involvement of uspE and gadX in the
ROS network, gene expressions of uspE and gadX were monitored
after exposure of two reporter strains, E. coli BW25113/pgadX-gfp
and BW25113/puspE-gfp, to hydrogen peroxide. GFP fluorescence

Figure 3. The genes dusB(A) and uspE (B) were the top results for the large network expansion. (C) Scatter plot for uspE versus gadX
highlighting experiments with the word ‘‘biofilm’’ in the experiment title and/or description. High levels of uspE and gadX were observed for all
conditions mapped to ‘biofilm’. The dotted lines indicate boundaries for binning used in network learning. A similar profile was shown for gadE (not
shown).
doi:10.1371/journal.pone.0009513.g003
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of the reporter strain indicated expression of the corresponding
gene. Compared to a control not exposed to hydrogen peroxide,
GFP fluorescence of both reporter strains significantly increased in
exposure to both 1 mM and 10 mM hydrogen peroxide (Figure 4).
This indicated that expression of gadX or uspE was up-regulated
upon exposure to hydrogen peroxide. It confirmed that both genes
were involved in the ROS network as predicted by our BN+1
method.

Confirmation of Interactions between uspE and gadX
To measure the interactions between gene uspE and gadX, two

mutant reporter strains, DuspE/pgadX-gfp and DgadX/puspE-gfp
were generated with gadX and uspE deleted, respectively. The two
mutants provide a way to monitor the effect of deleting one gene
on the expression of the other gene. Specifically, GFP fluorescence
of mutant reporter strains DgadX/puspE-gfp and DuspE/pgadX-gfp
were compared to fluorescence of their corresponding wild type
reporter strains, BW25113/puspE-gfp and BW25113/pgadX-gfp,
respectively. The results showed that expression of gene uspE was
significantly decreased to half level when gene gadX was knocked
out, while gadX expression was significantly increased if gene uspE
was knocked out (p-value,0.0001) (Figure 5). The results
suggested that gadX induced the expression of gene uspE, while
uspE may repress the expression of gene gadX. The fact that gene
gadX and uspE influenced the expression of each other confirmed
our prediction of the influences between the two genes and further
refined their biological interactions.
GFP fluorescence of different E. coli strains (wild type or single

gene knockout mutant strains) carrying reporter plasmids pgadX-
gfp or puspE-gfp indicated expression of the gene gadX or uspE in
these strains, respectively, under the tested experimental condi-
tions. The expressions of the gene gadX and uspE (GFP
fluorescence of the different E. coli strains carrying the two
reporter plasmids) under different tested conditions in the above
confirmation experiments were plotted against each other

(Figure 6). This plot demonstrated a roughly ‘‘V’’ shaped pattern
similar to that shown in the plot of gene expression data pooled
from microarray studies (Figure 3C).

Figure 4. Expression profiles of E. coli gadX and uspE upon
exposure to hydrogen peroxide. Change of GFP fluorescence of
two reporter strains E. coli BW25113/pgadX-gfp and BW25113/puspE-gfp
upon exposure to 0 mM, 1 mM and 10 mM hydrogen peroxide for
20 min. Cells were cultured in LB broth at 30uC overnight and re-
suspended in 16PBS. Different concentration of hydrogen peroxide was
added into three aliquots for 20 min before cell density (OD) and
fluorescence intensity were measured. Presented GFP fluorescence for
each sample was normalized to OD. Error bar indicated standard
deviation from two replicated cell cultures.
doi:10.1371/journal.pone.0009513.g004

Figure 5. Analyses of the gadX-uspE interaction through
knockout studies. GFP fluorescence of wild type E. coli BW25113
and single gene knockout mutant DgadX carrying the reporter plasmid
puspE-gfp, and wild type E. coli and single gene knockout mutant DuspE
carrying the other reporter plasmid pgadX-gfp. Cells of each reporter
strain were cultured in LB broth at 30uC overnight and re-suspended in
16PBS before cell density (OD) and fluorescence intensity were
measured. GFP fluorescence for each strain was normalized to the OD
value. Error bars indicated standard deviations from two replicated
cultures each with four replicate readings.
doi:10.1371/journal.pone.0009513.g005

Figure 6. Summary of gadX and uspE gene expression under
various experimental conditions. Plot of the expressions of gadX (x-
axis) and uspE (y-axis) against each other in different strain backgrounds
and tested experimental conditions. The expression of gadX or uspE was
represented by the GFP fluorescence of the reporter strains carrying the
respective reporter plasmids pgadX-gfp or puspE-gfp. The strain
background or experimental conditions were noted by the data.
Expression of gene uspE or gadX was assumed as zero in its single gene
mutant DuspE or DgadX, respectively. Wild type strain was used in the
ROS exposure experiments using 1 mM and 10 mM hydrogen peroxide.
Error bars indicate standard deviation from replicates.
doi:10.1371/journal.pone.0009513.g006
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Confirmation of the Involvement of Gene uspE and gadX
on Biofilm Formation
Biofilm cells response to a wide range of stresses [42]. Many

ROS related genes have been found to be up-regulated in biofilms
[38,39]. For example, arcA (a gene in our ROS core network) was
reported to be important for competitiveness in E. coli biofilms
[42]. Our term enrichment method identified ‘‘biofilms’’ as a
significantly enriched term associated with the gene pair of uspE
and gadX. Those microarray chips containing ‘‘biofilms’’ in their
experimental descriptions frequently show high expressions of
both uspE and gadX as demonstrated in Figure 3. To test the
involvement of gene uspE and gadX in biofilm formation, initial
biofilm formation (3 h attachment and growth) on glass surface by
wild type E. coli BW25113 and single gene knockout mutants,
DgadX or DuspE, was examined using confocal laser scanning
microscopy (CLSM). The structure of biofilm formation was
measured by a typical en face image of biofilms of each strain
(Figure 7A–C). The extent of biofilm formation was quantified
using biofilm biomass (Figure 7D). The results showed that
biofilms formed by the DuspE strain contained higher biomass than
biofilms formed by the wild type strain. The DgadX biofilm had
similar biomass but different structures compared to biofilms by
wild type E. coli strain. Microcolonies were observed in biofilms of
wild type strain (Figure 7A), while biofilms of DgadX were mostly
single layer of attached cells at this observation stage (Figure 7B).
The observed difference in biofilm biomass and structure in
biofilms formed by the uspE or gadX knockout mutant and wild
type strain indicates that both gene uspE and gene gadX were
involved in biofilm formation by E. coli.
In summary, the BN+1 algorithm predicted that the uspE gene

was a new gene in the ROS network and that the uspE gene

interacts with many ROS-related genes including gadX. Our
further text mining analysis predicted that gadX and uspE gene may
be important in biofilm formation. These three predictions were
then successfully verified in experiments.

Discussion

In this study, we addressed two questions: (1) Does a
microarray-based Bayesian network reconstruction match with
the known pathway from the literature and existing database? (2)
Is a network expansion approach such as BN+1 useful in
predicting new, biologically significant genes?
For the first question, our studies indicated that the microarray-

based Bayesian network reconstruction did not always agree with
the known pathway from the literature and databases. Our studies
on the E. coli ROS pathway indicated that the network
reconstructed by our Bayesian network overlaps at 29% with the
known ROS pathway network in EcoCyc and RegulonDB (Table
S1). A 42% agreement was achieved when more evidences from
the literature search was included. Inclusion of RegulonDB and
literature resources made our comparison more comprehensive.
The reason for the large mismatch is probably due to the fact that
microarray-based transcriptional data may not reflect the complex
biological pathways which involve complex interactions of genes in
the protein, RNA, and DNA levels [43]. However, the Bayesian
networks built from microarray gene expression data are
transcriptional regulatory models that are predicted to reflect the
complex ROS pathway.
For the second question, the BN+1 expansion algorithm was

found to successfully predict biologically significant genes to the
ROS network that were further experimentally verified. Gene uspE
was one of the top list genes selected by the BN+1 algorithm. Its
up-regulation in response to the exposure of hydrogen peroxide
suggested that this gene was probably involved in the ROS
network, along with the ROS-related gene gadX (Figure 4).
Hierarchical clustering of the uspE gene showed a different
connectivity pattern in the dendrogram for genes than the
Bayesian network, suggesting that the Bayesian network identified
a non-traditional (e.g. nonlinear) relationship between the genes.
Furthermore, the BN+1 algorithm suggested where the new genes
could participate in the pathway, and in some cases the model
even differentiated between the parents and children genes of a
new gene (Figure 3–4). Specifically, the BN+1 algorithm found the
‘‘V’’ shape relationships between expressions of genes, e.g., gadX
and uspE, which would not have been identified using traditional
clustering approaches. The interaction between gene gadX and
uspE was also confirmed experimentally. Expression of one gene
was significantly affected when the other gene was knocked out
from the wild type E. coli strain (Figure 5). Plot of the expression of
gadX and uspE against each other under different tested
experimental conditions showed a similar ‘‘V’’ shaped pattern
(Figure 6), which was in agreement with the finding using the
BN+1 algorithm although the expression data from the experi-
mental study were at the translational level.
The term enrichment algorithm successfully identified experi-

mental conditions in which genes might be involved and
biologically related with each other. In this study, genes uspE
and gadX were founded to be both up-regulated in the growth of
biofilms. The involvement of the two genes in biofilms was
confirmed by the fact that single gene knockout mutant strains
DgadX and DuspE showed difference in the biofilm formation,
either biomass or structures, as compared to the E. coli wild type
strain (Figure 7). Experimental confirmation of predicted term
enrichment results indicates that term enrichment algorithm is a

Figure 7. The effect of gadX and uspE on E. coli biofilm
formation. Fluorescent micrograph of biofilms formed by (A) wild
type E. coli BW25113, (B) single gene knockout mutant DgadX, and (C)
single gene knockout mutant DuspE. Biomass of biofilms formed by
each strain was calculated (D) using the software COMSTAT. Biofilms
were formed on glass bottom of 24-well plates for 3 h after inoculation.
Suspended cells were gently removed. Biofilms were gently washed
with PBS twice and stained with Syto 60 for 10 min before microscopic
examination. Images were taken from randomly chosen spots near the
center of the well. Error bar in the calculated biomass was standard
deviation from three stacks of images. Scale bar = 10 mm.
doi:10.1371/journal.pone.0009513.g007
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useful method to identify experimental conditions in which gene
relationship may take place, or to propose additional areas of
investigation. Performance of the term enrichment approach likely
depends upon the quality of the experimental descriptions
provided by researchers available from the M3D database. The
approach may perform better with controlled term or concept
vocabularies, or could be further tested with Gene Ontology (GO)
terms and other information in future studies.
Bayesian networks can be used to expand a pathway network

based on microarray gene expression data. The BN+1 method
expands a top Bayesian network by adding one gene at a time and
running it iteratively based on microarray gene expression data.
The BN+1 expansion algorithm showed the ability to predict
important factors for a pathway network from thousands of genes
in a microarray study. The BN+1 approach is a generalized
method to refine and expand biological pathways. Although a
ROS pathway in E. coli was shown in this study, the BN+1
algorithm can readily be applied to other organisms, pathways,
and data types. We also plan to develop a BN+1 expansion
method based on dynamic Bayesian network analysis [44].
Furthermore, the term enrichment-based identification of exper-
imental conditions in the context of binned data for BN analysis
can provide beneficial information in the interpretation of
predicted expansion genes.

Methods

Data Preprocessing
A compilation dataset comprising 305 gene expression micro-

array observations and 4,217 genes from Escherichia coli MG1655
was obtained from the M3D database [30]. A coefficient of
variation threshold (c.v. $1.0) was used to select 4,205 genes for
analysis. Twenty-seven genes were identified from the EcoCyc
ROS detoxification pathway (downloaded on March 26, 2008)
and matched to unique features found in 305 available gene
expression microarray chips. Expression profiles for each gene
were discretized using a maximum entropy approach that uses
three equally-sized bins (q3 quantization).

Learning Bayesian Network Pathway Models
Given the set of 27 genes, Bayesian network analysis was used to

learn the structure of the model which served as our core starting
topology. To maximize the network search space, 4000 indepen-
dent simulations with random starts were used to search 2.56107

networks per start for a total of 161011 networks. The five top
networks were saved from each run, thereby generating a final list
of 20,000 top-scoring networks. These networks were used to
estimate the posterior distribution. During the search, each
network was scored using log of the BDe score [15,45] which is
the natural log of posterior probability (S~ln P MjDð Þð Þ). Here
P MjDð Þ is defined as:

P MjDð Þ! P
n

i~1
P
qi

j~1

ri{1ð Þ!
Nijzri{1
! "

!
P
ri

k~1
Nijk!,

where n is the number of variables, qi is the number of parent
configurations for given variable i, ri is the arity of variable i, Nij is
the number of observations with selected parent configuration qi,
Nijk is the number of observations of child in state k with parent
configuration qi [15]. The calculation of this score was imple-
mented using the software package BANJO [46].
A consensus network was generated using 33 networks which

shared the maximum or best log posterior score (ln(P(D|M)).
Specifically, directed edges in the consensus networks represent

those edges that appear with 100% frequency in one direction in
all of these top networks. Undirected edges represent those edges
appearing 100% of the time in both directions in all stored
networks (Figure 2).

Network Expansion Using BN+1
To expand an existing network, a top network used to generate

the consensus network was selected as a starting topology for the
BN+1 algorithm (Figure 1). A set of 4,178 genes (4,205–27), not
included in the top BN, were tested for their ability to improve
score of the initial core BN when added to the initial gene set. In
each iteration of the BN+1 simulation, the current BN+1 gene was
added to the original data file. This was followed by a simulated
annealing search of 16107 networks for the top network
expansion. Although the top network was selected as a starting
point or seed, during the learning round all edges could be
modified such that the addition of genes could change the
backbone structure of the resulting model (i.e., unfixed structural
prior). Genes were sorted based on their log posterior scores.
BN+1 searches for each of the top 200 genes recovered from the
initial top network were rerun (2.56107 networks/simulation with
150 replicate simulations) to allow sufficient convergence.
All calculations, including the network expansion, were

implemented in a publicly available, internally developed software
program MARIMBA (http://marimba.hegroup.org/).

Term Enrichment for Identifying Relevant Experimental
Observations
A term enrichment program was developed to identify which

descriptive terms in the experimental conditions show significant
enrichment in selected regions of the microarray data. A ‘term’
here is defined as any individual word appearing in the names or
descriptions for each microarray sample. For two selected genes, a
p-value was introduced to determine the chance of observing a
selected term in a selected bin. The p-value was calculated using
the Fisher’s exact test for appearance of ‘term’ and ‘non-term’ data
observations in a specific bin [47]. The bins used for microarray
BN analysis were adopted in this term enrichment analysis. For
example, the q3 quantization was used for the expression levels of
gadX and uspE.

Experimental Validation of our Prediction Using Gene
uspE as an Example

Strains and cell cultures. E. coli K-12 wild type strain
BW25113 and single gene knockout mutant strains (DuspE and
DgadX) were obtained from the KEIO collection [48]. Cell cultures
were inoculated from single colonies on Luria broth (LB) agar plates,
supplied with 20 mg/ml tetracycline, 30 mg/ml chloramphenicol, or
20 mg/ml kanamycin (Sigma-Aldrich, St. Louis, MO) appropriately.
Planktonic cell cultures were grown in LB overnight with a continue
shaking (250 rpm) at 30uC.

Plasmids construction. Plasmids pUA66 or pUA139
carrying a gfp-fusion with the promoter of gadX or uspE were
extracted from corresponding strains in the promoter library
PEC3877 (Open Biosystems, Huntsville, AL) [49]. A tetracycline
resistance gene (tetR) was cloned from pMP4655 [50] using the set
of forward and backward primers, ACATGGCTCTGC-
TGTAGTGA and CGACATGTCGTTTTCAGAAG respec-
tively. Clone tetR was inserted in the AfeI (NEB, Ipswich, MA)
digestion site of the reporter plasmids to acquire two reporter
plasmids named as pgadX-gfp and puspE-gfp. The two plasmids
were individually transformed into E. coli BW25113 strains by
electroporation (Bio-Rad, Hercules, CA). Single colonies of E. coli
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were acquired on selective agar plates containing 20 mg/ml
tetracycline. Reporter plasmids pgadX-gfp and puspE-gfp were
then extracted from single colonies of E. coli, and then transformed
into wild type E. coli strains and single gene knockout mutant
DuspE and DgadX, respectively, to get totally four reporter strains.

Gene expression analysis. Planktonic cultures of the four
reporter strains, wild type E. coli BW25113/pgadX-gfp, BW25113/
puspE-gfp, DuspE/pgadX-gfp, and DgadX/puspE-gfp, were washed
and re-suspended in phosphate buffered saline (PBS). Cell growth
(optical density OD at 600 nm) and fluorescence intensity of
tagged GFP were measured in a plate-reader (Bio Tek, Winooski,
VT). Normalized fluorescence to OD was calculated and used to
indicate expression of gene gadX and gene uspE in wild type E. coli
as well as in single gene knockout mutants. Two independent
cultures were performed, each with three replicates of
measurement.
Planktonic cultures of E. coli BW25113/pgadX-gfp and

BW25113/puspE-gfp were used to monitor expression of gene
gadX and gene uspE in response to the exposure of hydrogen
peroxide. Final concentration of 1 mM and 10 mM hydrogen
peroxide (Fisher Scientific, Pittsburgh, PA) was added into PBS re-
suspended E. coli cells for 20 min. OD and GFP fluorescence
intensity were measured in the plate-reader, using the same E. coli
strains without exposure to hydrogen peroxide as controls. OD
adjusted GFP fluorescence intensity was used to indicate gene
expression of gadX or uspE.
GFP fluorescence of different E. coli strains (wild type or single

gene knockout mutant strain) carrying reporter plasmids pgadX-gfp
or puspE-gfp was summarized in a plot (Figure 6), assuming that
expression of the gadX gene and the uspE gene were zero in its
corresponding knockout mutant, respectively.

Biofilm cultures and analysis. Planktonic cultures of wild
type E. coli and single gene knockout mutant DgadX and DuspE
were acquired from overnight cultures in 0.16LB. Cultures were
mixed with the same volume of fresh 0.16LB before second
culture at 30uC for 4 hours. New cultures were added into 24-well
glass bottom plates (1 ml/well, MatTek, Ashland, MA) and kept

static for three hours at room temperature to allow cells to attach
onto the surface and form biofilms. Supernatant was gently
removed and biofilms were washed with PBS twice. Biofilm cells
were stained with 5 mm Syto 60 (Invitrogen, Carlsbad, CA) for
10 min. Biofilms were imaged randomly across the surface in the
center of each well with a confocal laser scanning microscopy
equipped with the software FluoView 300 (Olympus, Center
Valley, PA). Biomass of biofilms was calculated using the program
COMSTAT [51].

Supporting Information

Figure S1 Heatmap of gene expression profiles of all core genes
and the predicted uspE gene. This hierarchical clustering was
generated using a Manhattan distance metric and average
clustering via the Heatplus module in R.
Found at: doi:10.1371/journal.pone.0009513.s001 (0.24 MB
DOC)

Table S1 Database and literature evidence to support predicted
Bayesian network interactions. Directed (R) and undirected (-)
edges are shown for each level of consensus in the BN consensus
networks.
Found at: doi:10.1371/journal.pone.0009513.s002 (0.12 MB
DOC)
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