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PREFACE 

 
This thesis is composed of five chapters. The introduction (chapter 1) is a review 

article about our current understanding of thiol-mediated immunoregulation (Yan Z. & 

Banerjee, R. 2010. Redox remodeling as an immunoregulatory strategy. Biochem. 

49(6):1059-1066). Chapter 2 is a copy of publication by Yan Z. et al. (Yan Z., Garg S.K., 

Kipnis J., Banerjee, R. 2009. Extracellular redox modulation by regulatory T cells. Nat. 

Chem. Biol. 5:721-723). In this chapter, all authors contributed to the experimental design, 

data analysis and manuscript writing. Zhonghua Yan and Sanjay K. Garg performed the 

experiments. Contents of chapter 3 have been submitted for publication: Yan Z., Garg 

S.K., Banerjee, R. Regulatory T cells interfere with glutathione metabolism in dendritic 

cells and T cells. In this chapter, Zhonghua Yan and Ruma Banerjee designed research, 

analyzed data and wrote the paper; Zhonghua Yan and Sanjay K. Garg performed the 

experiments. Contents of chapter 4 were published in the following paper: Garg S.K.*, 

Yan Z.*, Vitvitsky V., Banerjee, R. 2010. Differential dependence on cysteine from 

transsulfuration versus transport during T cell activation. Antioxid. Redox Signal. (Epub 

ahead of print). *These authors contributed equally. In this chapter, all authors 

contributed to research design, data analysis and paper writing; Zhonghua Yan and Sanjay 

K. Garg performed the experiments. 
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ABSTRACT 

THIOL-MEDIATED REDOX MODULATION OF THE ADAPTIVE IMMUNE 

RESPONSE 

By 
 

Zhonghua Yan 
 

 
Chair: Ruma Banerjee 
 

T cell activation and proliferation requires a reducing microenvironment that is 

provided by antigen presenting cells especially dendritic cells (DCs). Naturally occurring 

CD4+CD25+Foxp3+ regulatory T cells (Tregs) suppress proliferation of CD4+CD25- 

effector T cells (Teffs) by mechanisms that are not well understood. Here, we have 

demonstrated that inhibition by Tregs of DC-induced extracellular redox remodeling is a 

component of the Treg immunosuppressive mechanism. We showed that the mechanism 

of redox remodeling during T cell activation involved secretion of glutathione (GSH) by 

dendritic cells and its subsequent cleavage to cysteine. Extracellular cysteine 

accumulation resulted in a lower redox potential, which is conducive to proliferation, and 

changed the net redox status of exofacial protein domains. Suppression of DC-dependent 

Teff cell proliferation by Tregs was correlated with a significant diminution in 

extracellular cysteine concentration and was abrogated by addition of exogenous cysteine. 

We demonstrated that Treg-mediated redox perturbation was antigen-dependent, antigen-

xii 



nonspecific and cytotoxic T-lymphocyte antigen 4-dependent. Tregs used multiple 

strategies for extracellular redox remodeling including modulation of GSH metabolism in 

DCs and competitive uptake of cysteine. By interfering with the extracellular cysteine 

pool, Tregs not only decreased the intracellular GSH levels in Teffs, but also blocked 

GSH relocalization into the cytoplasm, thus inhibiting T cell activation and proliferation.  

The synthesis of GSH, a major cellular antioxidant with a critical role in T cell 

proliferation, is limited by cysteine. We have evaluated the contributions of the xc
- cystine 

transporter and the transsulfuration pathway to cysteine provision for GSH synthesis and 

antioxidant defense in naïve versus activated T cells and in the immortalized T 

lymphocyte cell line, Jurkat. We showed that the xc
- transporter while absent in naïve T 

cells, was induced after activation. We also demonstrated the existence of an intact 

transsulfuration pathway in naïve and activated T cells and in Jurkat cells. The flux 

through the transsulfuration pathway increased in primary T cells in response to oxidative 

challenge by peroxide. Inhibition of the transsulfuration pathway in both primary and 

transformed T cells decreased cell viability under oxidative stress conditions.  
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Chapter 1 
 

General Introduction 
 
 

1.1 Regulation of T cell activation by dendritic cells 

The immune system is composed of a variety of organs, cells and molecules that 

protect an organism from infections by pathogens and from the growth of tumors. It is 

typically divided into two categories, the innate immune system and the adaptive immune 

system. Innate immunity provides the first line of defense against pathogens in a non-

specific manner. Components of the innate immune system include the skin and the 

mucous membranes, physiological conditions such as temperature and pH, phagocytic 

cells such as tissue macrophages, and inflammation. Adaptive immunity only exists in 

vertebrates, reacting to antigens with a high degree of specificity and immunological 

memory. B cells, T cells and the molecules they produce, including antibodies and 

cytokines, are the main agents of adaptive immunity. The adaptive immune response is 

initiated by the innate immune system via the process of antigen presentation. These two 

immune systems interact and collaborate, increasing the effectiveness of the immune 

response (1).  

T cells derive their name from the thymus, the organ in which they mature and are 

distinguished by the presence of T cell receptors (TCRs). The latter recognize antigens 

bound to the major histocompatibility complex (MHC) molecules on antigen presenting 

cells (MHC class II) or target cells (MHC class I). Like most immune cells,
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 T cells are initially derived from hematopoietic stem cells in the bone marrow where 

progenitor T cells are formed. They migrate to the thymus via the bloodstream to mature 

via positive and negative selection processes (2). “Naïve” T cells released from the 

thymus have yet to encounter an antigen and are in the G0 stage of the cell cycle. They 

circulate through the vascular system to secondary lymphoid tissues such as lymph nodes 

where they may encounter antigen-MHC complexes and in the process, become activated. 

Activated T cells play important roles in cell-mediated functions in the adaptive immune 

system and their dysfunction is manifest in a number of immune diseases (3).  

Antigen presenting cells such as dendritic cells (DCs), macrophages, and B cells 

express MHC class II molecules and co-stimulatory molecules on their membranes, and 

specialize in presenting antigens to naïve CD4+ T cells. DCs are the most potent 

professional antigen presenting cells (4) and originate from hematopoietic stem cells in 

the bone marrow. Precursor DCs are released from the bone marrow and circulate in the 

bloodstream to different tissues where they reside as immature DCs until they encounter 

antigens. Once internalized, antigens are processed and then displayed on MHC class II 

molecules and the resulting mature DCs migrate to lymph nodes where they interact with 

and activate antigen-specific T cells, which subsequently proliferate and differentiate into 

effector T cell subsets (2, 5, 6).  

Classically, three sets of signals in the immune synapse are recognized to be 

essential for priming naïve T cells: (i) specific engagement of the TCR by an antigen-

MHC class II complex, (ii) interactions between co-stimulatory molecules, CD28 on T 

cells and CD80/86 on the antigen presenting cells, and (iii) secretion of cytokines (Fig. 

1.1A). These signals result in the activation, survival, and differentiation of T cells. In 
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addition to these signals, T cell activation and proliferation requires a reducing 

microenvironment that is achieved by cysteine secretion from antigen presenting cells (7, 

8). Cysteine is the major low molecular weight thiol compound in the reducing milieu (7, 

9). It is the limiting amino acid for glutathione (GSH) synthesis. In T cells, GSH is shown 

to be important for the proliferative response of T cells to mitogens and antigens (10). 

Extracellular cysteine concentration significantly affects intracellular GSH levels, 

viability and DNA synthesis of T cells. However, cysteine is easily oxidized to cystine in 

the oxygenated extracellular space. The concentration of cysteine in the plasma (10-25 

μM) is much lower than of cystine (100-200 μM) (11). Naïve T cells can not take up 

cystine efficiently due to the low expression of the xc
- cystine transporter. However, 

antigen presenting cells such as DCs possess the xc
- cystine antiporter, which can take up 

cystine from the extracellular space in exchange for glutamate. The cystine imported by 

DCs is processed via an elaborate pathway to furnish extracellular cysteine that can be 

utilized by T cells. Interaction of antigen presenting cells with T cells further increases 

cysteine production and also induces secretion of thioredoxin 1 (Trx1). In this way, 

antigen presenting cells supply T cells with a reducing extracellular milieu necessary for 

T cell proliferation and function (7). 

The physiological relevance of redox remodeling by antigen presenting cells for T 

cell activation is demonstrated by the hyporesponsiveness of T cells from normal gut, 

which results from the inability of mucosal macrophages to provide a reducing 

microenvironment and contrasts with the presence of this capacity in peripheral blood 

monocytes in the same organism (12, 13). Under conditions of chronic mucosal 

inflammation as seen in inflammatory bowel disease, ulcerative colitis, and Crohn’s 
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disease, recruitment of peripheral blood monocytes results in sustained antigen-driven 

responses of T cells in the gut and is believed to be important in the etiology of these 

diseases (13).  

 

1.2 Mechanisms of suppression by regulatory T cells 

Discriminating self from non-self is a primary function of the immune system, and 

regulatory T cells play a cardinal role in maintaining self-tolerance and preventing 

autoimmunity by mechanisms that remain to be fully elucidated (14-16). To achieve self-

tolerance, T cells are “educated” in the thymus and autoreactive T cells are destroyed. 

However, a small fraction of self-reactive T cells escape from the thymus into the 

periphery, and if left unchecked, can cause autoimmune diseases (17). Naturally 

occurring CD4+CD25+Foxp3+ regulatory T cells, which comprise about 5%-10% of total 

CD4+ T cell population, suppress autoreactive T cells to maintain immune tolerance (18). 

Sakaguchi and coworkers made the groundbreaking discovery of this distinct T cell 

subpopulation in 1995 and demonstrated that depletion of the CD25+ population from the 

CD4+ T cells induced autoimmunity when T cells were transferred to the 

immunodeficient nude mice (14). In contrast, transfer of the CD4+CD25+ T cells together 

with the CD4+CD25- T cells prevented autoimmune diseases. Besides the role of 

regulatory T cells in controlling autoimmunity, they also play important roles in 

controlling anti-microbial, anti-tumor responses and transplantation immunity (18). 

Mutations in the transcriptional regulator, Foxp3, which is preferentially expressed in 

regulatory T cells (19), results in multiorgan autoimmune diseases and is fatal (20). 

Foxp3 is the master regulator for regulatory T cell development in the thymus and for the 
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suppressive function of regulatory T cells (20). The co-receptor, cytotoxic T lymphocyte 

antigen 4 (CTLA-4) (21), expressed preferentially on regulatory T cells, interacts with 

CD80/CD86 (Fig. 1.1B), i.e., the same ligand that binds CD28 expressed on naive T cells. 

However, CTLA-4 interacts with CD80/CD86 with much higher affinity and suppresses 

induction of CD80/86 expression by antigen-specific T cells, consequently limiting the 

capacity for activating naïve T cells (22). Regulatory T cells mature in the thymus, 

migrate to lymph nodes and are activated by self or nonself antigen-presenting cells. The 

homing receptors on regulatory T cells enable them to traffic to sites of infection to 

control immune responses (15). Regulatory T cells also suppress the activation and 

proliferation of B cells, DCs and natural killer cells by mechanisms that remain to be 

fully elucidated (23).       

Some of the strategies used by regulatory T cells for mediating their suppressive 

effects (15, 16) are shown in Fig. 1.2 and include: (i) secretion of inhibitory cytokines viz. 

TGF, IL-35 and IL-10 (24-26), (ii) cytolytic suppression by secretion of the proteases 

granzyme-A or granzyme-B (27, 28). (iii) metabolic disruption e.g. by direct transfer of 

cAMP to effector T cells (29) or by secretion of pericellular adenosine (30), which 

inhibits effector T cell functions and enhances induced regulatory T cell generation, (iv) 

suppression of DC maturation and/or function (31) by induction of indoleamine 2,3-

dioxygenase, which catalyzes the rate-limiting step in tryptophan catabolism and creates 

in turn, a shortage of this essential amino acid for effector T cells (32), and (v) by 

interfering with extracellular reductive redox remodeling by DCs during T cell activation 

(8). The panoply of suppressive strategies identified to date for regulatory T cells raises 

questions about their integration and relative importance in vivo. In the proposed 
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“hierarchical” model, one or few master mechanisms govern regulatory T cell 

suppressive functions in various physiological settings (16). Alternatively, in the 

“contextual” model, the microenvironment and tissue compartment govern the 

suppressive strategy that is deployed, resulting in the differential contribution of a given 

mechanism in different disease models (16). Given the importance of regulatory T cells 

in controlling autoimmunity and inflammation, and their influence on tumor and 

microbial immunity, elucidation of the mechanisms by which these cell types exert their 

effects have important implications for therapeutic target identification and development 

of intervention strategies.  

 

1.3 Redox potentials in the intra- and extra-cellular compartments  

The cytoplasmic and extracellular redox potentials are vastly different and influence 

the structure, stability, and function of the macromolecules that reside in each 

compartment. Within the intracellular compartments, several redox buffers exist e.g. Trx, 

GSH, and cysteine, and the relative concentrations of their oxidized versus reduced 

species sets the ambient redox poise for the system. Interestingly, the individual redox 

systems appear to be under kinetic control, are not in equilibrium with each other, and 

independently regulate the redox status of their client redox partners (33, 34). 

Quantitatively, GSH is the major intracellular redox buffer and is found at concentrations 

ranging from 0.5-10 mM in mammalian cells (35). The intracellular GSH/GSSG 

(glutathione disulfide) redox potential in dividing cells is estimated to range from -260 

mV to -230 mV and is progressively more oxidized in cells undergoing 

differentiation/growth arrest (-220 mV to -190 mV) or apoptosis (-170 mV to -150 mV) 
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(33) (Fig. 1.3). The redox potentials for the Trx1red/Trx1ox couple in cytoplasm and nuclei 

are ~-280 mV and -300 mV, respectively, while the redox potential of mitochondrial 

Trx2red/Trx2ox couple is estimated to range from -360 mV to -340 mV (34). 

Extracellularly, the cysteine/cystine couple represents the major thiol/disulfide 

redox buffer. Plasma cystine and cysteine concentrations are reported to be 100-200 μM 

and 10-25 µM, respectively and a redox potential of ~-80 mV for this couple has been 

estimated for plasma in healthy humans (11). Paralleling the changes in the intracellular 

GSH/GSSG redox potential, increasing extracellular cysteine/cystine potentials are 

associated with cells undergoing proliferation (<-80 mV), differentiation/growth arrest 

(~-80 mV) or apoptosis (0 mV to -80 mV) (Fig. 1.3). An age-dependent increase in the 

extracellular redox potential has been reported, which is also influenced by lifestyle 

choices such as smoking and by diseases such as AIDS (33). In contrast to the 

intracellular compartment, the GSH concentration in the extracellular space is very low 

(2-4 μM in human plasma). A major fate of secreted GSH is cleavage to its component 

amino acids, glutamate, cysteine, and glycine. The cysteine thus released is a major 

source of extracellular cysteine and cystine, which is formed rapidly in the oxidizing 

milieu of this compartment (36).  

Although dynamic regulation of the extracellular redox potential, which is linked to 

intracellular metabolism, has an important bearing on cell function, it is less well-studied 

and appreciated than intracellular redox control and its perturbations in pathological 

states. Reactive cysteines on proteins can be reversibly oxidized to sulfenic acids or form 

disulfide bonds, which can induce changes in their structure and function and elicit 

downstream effects in redox signaling pathways (37, 38). Disulfide bonds on 
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ectodomains of membrane proteins and in secreted soluble and matrix proteins form a 

dynamic scaffold that can be reorganized by their shuffling or by their reduction (39). It 

has been proposed that a general loosening of the extracellular disulfide crosslink 

scaffold might precede cell division (40, 41). Cancer cells typically have higher 

membrane thiol levels in comparison to nontransformed cells, and it is speculated that 

this might facilitate higher proliferative rates (42). The redox status of specific membrane 

proteins influence their transport or receptor activity (33). For instance, CD4 (cluster of 

differentiation 4), a glycoprotein found on the surface of helper T cells that is used as a 

receptor by HIV-1 for gaining entry, has a redox sensitive disulfide bond in one of its 

four immunoglobulin-like domains (D2). T cell activation shifts the equilibrium from the 

disulfide to the dithiol state (43). Locking the dithiols in the D2 domain by chemical 

modification blocks HIV-1 entry, indicating that a redox-linked conformational change in 

CD4 is critical for viral penetration into T cells (43).  

 

1.4 T cell induced extracellular redox remodeling by dendritic cells 

DCs are the key regulators in the adaptive immune system. Not only can they 

initiate the primary immune responses, but they also induce the immune tolerance and 

regulate responses of different T cell subsets depending on the context (5, 6). Upon 

interaction with T cells, DCs release cytokines as well as other low molecular weight 

metabolites such as cysteine, glutamate and serotonin to modulate T cell immunity. 

Serotonin released by DCs binds to the serotonin receptors on T cells, decreasing cAMP 

levels, thus promoting T cell activation (44). DC-T cell interaction results in 

accumulation of glutamate, which acts on metabotropic glutamate receptor 1 and 5 to 
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modulate T cell activation (45). DCs can also take up cystine and release cysteine, Trx, 

and GSH into the extracellular space, thereby modulating the extracellular redox 

environment for optimal T cell function (7, 46). 

The physiological relevance of extracellular reductive modeling during an adaptive 

immune response is supported by the dramatic increase in free thiols in lymphoid tissue 

following immunization (47). Under these conditions, enhanced nonprotein thiol staining 

is observed both inside cells and in the extracellular space. In contrast, Peyer’s patches 

from the gut shows virtually no staining for nonprotein thiols under these conditions, 

consistent with the antigenic hyporesponsiveness of this intestinal microenvironment (12, 

13).  

The magnitude of extracellular cyteine accumulation during activation of T cells 

increases with time and with the DC to T cell ratio and requires sustained contact 

between DCs and T cells. Increased cell surface thiols on T cells is correlated with 

increased production of the cytokine, IL-2, in vitro and enhanced proliferation in vivo 

(48). Naïve T cells require cysteine for GSH synthesis. However, cysteine is the least 

abundant of all amino acids in circulation (49) and naïve T cells are unable to import 

cystine efficiently due to the low expression of the cystine transporter, xc
- (50), thus 

creating a metabolic dependence on antigen presenting cells to meet their cysteine needs. 

Antigen presenting cells possess the xc
- antiporter that uses the glutamate gradient to 

drive import of cystine, which is subsequently converted to cysteine in the reducing 

intracellular milieu and is ultimately secreted into the extracellular space. Evidence has 

been accumulating that extracellular cysteine plays an important role in modulation of T 

cell functions (49, 50). Small variations in extracellular cysteine concentration strongly 
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influence T cell functions even in a background of high cystine concentration (9, 51). 

Thus, antigen presenting cells such as DCs and macrophages can regulate T cell 

activation and proliferation by modulation of cysteine supply. 

In addition to stimulating cysteine secretion, the interaction between antigen 

presenting cells and T cells results in the appearance of extracellular Trx1 (7). Trx1 is 

secreted by several cell types via a nonclassical leaderless secretory pathway under 

conditions of oxidative stress and inflammation (52). Secreted Trx1 does not appear to 

play a role in direct reduction of extracellular cystine leading to cysteine accumulation 

during T cell activation (8). Extracellular Trx1 interacts in a redox-sensitive manner with 

the TNF receptor superfamily member 8 (53) and exhibits proinflammatory effects by 

stimulating cytokine release and proliferation of lymphocytes (52, 54).  

The pathway for extracellular cysteine accumulation during co-culture of DCs and 

naïve T cells has been mapped recently (8). In principle, two metabolic routes could be 

considered to lead to enhanced cysteine accumulation outside the cell (Fig. 1.4): (i) the 

transsulfuration pathway (blue), which provides an avenue for conversion of methionine 

to cysteine, and (ii) import of cystine into the cell where it is rapidly reduced to cysteine 

and converted to GSH, which is subsequently secreted and degraded by the ectoenzymes 

-glutamyltranspeptidase and a dipeptidase. Metabolic labeling and pharmacological 

inhibition studies have established the involvement of the convoluted metabolic pathway 

originating in cystine and culminating in GSH-derived cysteine as the source of 

extracellular cysteine provided by DCs (8). This pathway demonstrates the dynamic 

interplay between the intra- and extra-cellular compartments for redox homeostasis via 

interconnected but independent redox nodes, i.e., GSH and cysteine.  
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The extracellular cysteine/cystine redox potential for DCs in culture is ~-80 mV, a 

value that is consistent for cells experiencing growth arrest (8). Naive T cells in culture 

that have not received activation signals are fated to undergo apoptosis and exhibit an 

extracellular cysteine/cystine redox potential of ~-45 mV. In contrast, when naïve T cells 

receive activation signals during co-culture with DCs, a more reducing extracellular 

environment reflected in a redox potential of -110 mV (at 36 h), results. This redox 

potential change is consistent with conditions that are conducive for T cell proliferation 

(8).  

In addition to triggering intracellular signaling pathways, engagement of DCs and T 

cells during activation leads to dynamic changes in the redox status of exofacial proteins 

in both cell types. A 30 mV potential shift is expected to lead to a 10-fold change in the 

ratio of reduced:oxidized cysteines in proteins. Indeed, enhanced cell surface labeling of 

protein thiols with the fluorescent dye, Alexa-maleimide, is seen during co-culture of 

DCs and T cells (by ~4 and 8-fold respectively) as visualized by confocal microscopy 

and quantified by FACS analysis (8).  

 

1.5 Redox signaling during T cell activation 

Paralleling reductive remodeling of the extracellular redox poise with consequent 

effects on the exofacial protein thiol status and intracellular redox metabolism, is the 

initiation of a flurry of redox-active signaling across the immune synapse. The timing and 

balance between oxidative and reductive responses to engagement of antigen presenting 

cells and T cells are important for modulating activation, proliferation, and apoptosis of T 

cells. At low levels, ROS (reactive oxygen species) e.g. H2O2 and O2
•-, are considered to 
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be mitogenic and their downstream effects are commonly mediated via changes in protein 

phosphorylation and/or activation/inhibition of transcription factors (55). Crosslinking of 

the TCR and the co-stimulatory molecule, CD28, results in enhanced intracellular H2O2 

production that is needed for NF-B activation and IL-2 and IL-2 receptor  chain gene 

transcription (56) and is consistent with an important role for ROS in the immediate early 

events during activation. Significant sources of ROS include membrane-bound NADPH-

dependent oxidase, lipoxygenase, and the mitochondrial respiratory chain (Fig. 1.5A, red 

arrows). However, sustained pro-oxidant conditions inhibit T cell proliferation and 

promote apoptosis (57).  

During activation, increased ROS levels launch an antioxidant response that is 

relayed via signaling pathways in antigen presenting cells and in T cells and result in 

activation of protein tyrosine kinases (e.g. Fyn, Src, and Lck in T cells (Fig. 1.5B)), 

oxidative inhibition of protein tyrosine phosphatases e.g. SHP1 and activation of 

transcription factors e.g. NF-B (58). The NF-κB pathway regulates the expression of 

various inflammatory genes including cytokines, chemokines, and costimulatory 

molecules. We speculate that as a consequence of an initial increase in ROS levels by 

mechanisms that are not clear, NF-B is activated in DCs and stimulates GSH biogenesis 

(via activation of -glutamylcysteine ligase (59)) (Fig. 1.5A, red arrows). Increased GSH 

synthesis is both an autocorrective reaction to oxidizing conditions and initiates the next 

response phase, i.e., an antioxidant wave (Fig. 1.5A, blue arrows). We hypothesize that 

the NF-B signaling pathway is important for stimulating extracellular cysteine 

accumulation (8). The combined effect of these cellular responses would be the initiation 

of an antioxidant response leading to a reductive milieu both in the intra- and extra-
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cellular space that is conducive to T cell proliferation. The importance of plasticity in 

redox remodeling during T cell activation is supported by the observation that deficiency 

of Ncf1 encoding neutrophil cytosolic factor 1 (or P47phox), the activating protein in the 

NADPH oxidase complex, results in a reduced capacity for reactive oxygen species 

genesis, increased cell surface thiols, and enhanced T cell autoreactivity in an arthritis 

model (48). 

GSH serves as an important proliferative signal in T lymphocytes (60) and is 

required for cell cycle progression from the G1 to S phase (61).  It is needed for the 

activity of ribonucleotide reductase and therefore, for DNA synthesis (62). Furthermore, 

the activities of telomerase (63) and of key transcriptional factors, e.g. NF-B and AP1 

(64), and cell cycle proteins e.g. Id2 and E2F4 (63) are redox regulated. GSH is 

concentrated in the nucleus during the early phase of cell proliferation and becomes more 

evenly distributed in confluent cells (65). GSH regulates nuclear protein function via 

glutathionylation and protects DNA from oxidative damage during the key stage of 

replication (65). ROS can either activate or inactivate specific redox-sensitive targets at 

cell cycle checkpoints, thus deciding cell fate (66). Overexpression of the B cell 

leukemia/lymphoma 2 (Bcl-2) protein results in increased synthesis and nuclear 

sequestration of GSH and decreased sensitivity to apoptosis (67).  

Redox signaling cascades are also elicited in T cells upon activation. For instance, a 

10-30% decrease in intracellular GSH in peripheral T lymphocytes completely abrogates 

T cell receptor-stimulated calcium signaling (68).  The adaptor protein linker for 

activation of T cells (LAT) (Fig. 1.5B), a membrane protein that plays a central role in 

signal transduction during T cell activation, is also influenced by the intracellular redox 
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status (69). Marked diminution in intracellular GSH level as seen under chronic oxidative 

stress conditions causes a conformational change in LAT, apparently via formation of an 

intramolecular disulfide bond, and results in its displacement from the membrane (69). 

This cytoplasmic relocalization results in failure to phosphorylate in response to T cell 

activation and derails the signal transduction cascade that leads eventually to expression 

of IL-2 and other genes. This redox-sensitive conformational displacement is associated 

with the hyporesponsive phenotype of synovial T cells in rheumatoid arthritis because of 

their depleted antioxidant capacity resulting from the chronic inflammation associated 

with this disease of the joints (69).  

In summary, redox responsive signaling networks during T cell priming involves 

dynamic and spatially regulated changes in the intra- and extra-cellular compartments 

and comprises both small molecules (e.g. ROS and redox-active metabolites) and 

proteins. Redox signaling has several important implications for T cell biology (55). 

Hypoxic conditions as encountered in poorly oxygenated tumors might limit the 

efficiency of T cell priming and contribute to their anergic phenotype in this environment. 

Alternatively, a pro-oxidant environment resulting from ROS production by active 

neutrophils might facilitate the priming of T cells or if overwhelming, impair signaling 

and lead to abrogation of cell inhibitory signals normally delivered by autoantigens. 

Additionally, redox signaling appears to influence T cell commitment to the Th1, Th2, 

and regulatory T cell phenotypes (70, 71).  

 
1.6 In vivo studies and therapeutic implications 

The redox status of secondary lymphoid organs such as lymph nodes and spleens 

are more reducing than non-lymphoid organs (47). The nonprotein thiol content in 
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lymphoid tissues is reported to increase in response to immunization with DCs, B cells, 

and macrophages, contributing to the reductive remodeling (47, 72). It is speculated that 

the reducing microenvironment might protect lymphoid organs from oxidative stress 

during T cell activation and antibody production (73, 74). However, low levels of ROS 

are essential for the onset of the immune response. In vivo treatment of mouse models 

with catalytic antioxidants (manganese porphyrin derivatives) causes inefficient CD4+ T 

cell activation and proliferation by inhibiting generation of ROS in antigen presenting 

cells (75). The catalytic antioxidants inhibit DNA binding by NF-B and subsequent 

production of proinflammatory cytokines (76). Redox modulation by catalytic 

antioxidants also suppresses CD8+ T cell functions such as proliferation and lysis of 

target cells (77).   

The xc
- cystine transporter, which transports cystine using the glutamate gradient, 

plays an important role in redox-based immunoregulation. Under normal conditions, 

lamina propria macrophages are unable to transport cystine and secrete cysteine because 

they lack the xc
- transporter (13). In inflammatory bowel disease, local recruitment of 

peripheral blood monocytes which exhibits high expression of the xc
- transporter leads to 

extracellular cysteine accumulation and hyperreactivity of lamina propria T cells (13). 

Furthermore, lymphoma cells, which cannot import cystine like naïve T cells, depend on 

tumor-associated somatic cells such as activated macrophages and DCs for their cysteine 

supply. Inhibition of the xc
- transporter by sulfasalazine inhibits growth of lymphoma 

cells and tumor progression (78). Overexpression of the xc
- transporter in lymphoma cells 

greatly increases intracellular and extracellular cysteine levels, protecting cells from 

oxidative stress induced cell death (79).  
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Redox modulation as a strategy for immunoregulation has been used in several 

diseases. HIV infects and kills CD4+ T cells, leading to a significant decrease in 

functional CD4+ T cells in AIDS. HIV infected individuals have lower cellular and 

plasma GSH levels compared with healthy controls, which correlates with low T cell 

numbers and deficient function. Administration of N-acetyl cysteine, a cysteine precursor, 

restores intracellular GSH levels and has shown benefits for HIV-infected individuals 

(80). Sulfasalazine is used in the treatment of T cell mediated autoimmune diseases such 

as inflammatory bowel disease and rheumatoid arthritis. It decreases proliferation of 

autoreactive T cells by inhibiting the xc
- cystine transporter thereby perturbing the redox 

environment (81).  

Since regulatory T cells play a central role in suppression of various immune 

responses, manipulation of their function is an important strategy for immune 

intervention. Enhancing regulatory T cell function in autoimmunity, allergy, 

transplantation, and pregnancy disorders can diminish unwanted immune responses. On 

the other hand, attenuating regulatory T cell function in cancer and microbial infection 

may be desirable (82). The recent identification of a novel immunosuppressive strategy 

deployed by regulatory T cells, which impacts the intra- and extra-cellular redox 

environments during T cell activation (8), illuminates a new therapeutic target.  
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Figure 1.1 Molecular interactions in the immune synapse. (A) Signals required for 
CD4+ T cell activation and proliferation include: (i) TCR-antigen•MHC complex 
interaction, (ii) interaction of CD28 on T cells and CD80/CD86 on the antigen presenting 
cells, (iii) secreted cytokines such as IL-6, IL-12 and TGF and (iv) a reducing 
microenvironment shaped mainly by extracellular cysteine accumulation. (B) Interaction 
of regulatory T cells with antigen presenting cells. Regulatory T cells constitutively 
express high levels of CTLA-4, which interacts with CD80/CD86 on antigen presenting 
cells, thus inhibiting their presentation capacity for interactions with effector T cells. 
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Figure 1.2 Mechanisms used by regulatory T cells for suppressing autoreactive 
effector T cells. Regulatory T cells suppress the function of effector T cells via the 
following mechanisms:  (i) secretion of inhibitory cytokines such as TGF, IL-10 and IL-
35, (ii) cytolysis by granzyme A or granzyme B, (iii) disruption of important metabolites 
including cAMP and adenosine, (iv) inhibition of DC function via the CTLA4-dependent 
induction of indoleamine 2,3 dioxygenase (IDO) and (v) modulation of the extracellular 
redox microenvironment. The red arrows denote the actions of regulatory T cells.  
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Figure 1.3 Correlated changes between cell cycle progression and the extra- and 
intra-cellular redox potentials. The GSH/GSSG couple represents the major 
intracellular redox buffer. The redox potential of the intracellular GSH/GSSG couple 
becomes more oxidized when cells progress from proliferation (-260 mV to -230 mV) to 
differentiation/growth arrest (-220 mV to -190 mV) to apoptosis (-170 mV to -150 mV). 
The cysteine/cystine couple is the main extracellular thiol/disulfide pool. Changes in the 
extracellular cysteine/cystine redox potential follows the same pattern, i.e., it is most 
reduced during proliferation (<-80 mV) and becomes increasingly oxidized during 
differentiation/growth arrest (~-80 mV) and apoptosis (0 mV to -80 mV). This figure is 
adapted from reference (33). 
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Figure 1.4 Mechanism of redox remodeling by DCs. The possible sources of 
extracellular cysteine that accumulates during DC and T cell co-culture include: (i) 
increased flux through the transsulfuration pathway leading to enhanced synthesis of 
cysteine from methionine, (ii) direct reduction from cystine catalyzed by extracellular 
thioredoxin. (iii) xc

--dependent import of cystine, its subsequent intracellular conversion 
to GSH, which is exported and degraded by the ectoenzyme, -glutamyltranspeptidase 
and a membrane-bound dipeptidase to furnish cysteine. The extracellular accumulation of 
cysteine results in a reducing microenvironment for T cell activation and proliferation 
and also provides T cells with cysteine needed for the synthesis of GSH. 
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Figure 1.5 Redox signaling responses in DCs and T cells during T cell activation. (A) 
Redox signaling in DCs. The TCR-antigen•MHC complex interaction and the co-
stimulatory signal results in an immediate early pro-oxidant response in DCs with ROS 
production e.g. by lipoxygenase and NADPH oxidase. Low levels of ROS act as 
signaling molecules to inhibit protein tyrosine phosphatases (PTPs) and activate protein 
kinases. ROS also activates the NF-B pathway, which stimulates the expression of -
glutamylcysteine ligase, thus increasing GSH synthesis. GSH activates the AP1 signaling 
pathway and initiates an antioxidant response. We postulate that system xc

--dependent 
cystine uptake, GSH export and degradation into extracellular cysteine are stimulated as 
part of this response. (B) TCR signaling in T cells. Stimulation of T cells by DCs via the 
TCR results in phosphorylation and activation of ZAP-70 by leukocyte-specific protein 
tyrosine kinase (LCK). ZAP-70 directly phosphorylates the adaptor protein LAT and 
causes the assembly of multiprotein signaling complexes. Recruitment of the growth 
factor receptor bound protein 2 (GRB2) and phospholipase C 1 (PLC1) to LAT leads to 
activation of downstream Ras and calcium signaling pathways.         
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Chapter 2 
 

Extracellular Redox Modulation by Regulatory T Cells 
 
 

2.1 Abstract 

We demonstrate that the mechanism of redox remodeling during mouse T cell 

activation involves secretion of glutathione by dendritic cells and its subsequent cleavage 

to cysteine. Extracellular cysteine accumulation results in a lower redox potential, which 

is conducive to proliferation, and changes the net redox status of exofacial protein 

domains. Regulatory T cells inhibit this redox metabolite-signaling pathway, which 

represents a previously unrecognized mechanism for immunosuppression of effector T 

cells. 
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2.2 Introduction 

T cell activation and proliferation require a reducing microenvironment in the 

immune synapse that is provided by professional antigen presenting cells, especially 

dendritic cells (DCs) (1). The mechanisms underlying extracellular redox remodeling by 

DCs and redox communication during activation of CD4+CD25- effector T cells (Teff) 

remain unclear but results in accumulation of extracellular cysteine (Cysex) (1). The 

proliferative response of activated Teff cells requires glutathione (GSH), an abundant 

intracellular antioxidant (2). The synthesis of GSH is limited by the availability of Cys 

and Teff cells are inefficient at transporting cystine (3), the predominant form of this 

amino acid in the extracellular milieu, thus creating a metabolic dependence on DCs. 

Naturally occurring CD4+CD25+Foxp3+ regulatory T cells (Treg), which constitute <10% 

of total CD4+ T cells maintain peripheral tolerance by suppressing autoimmune T cells (4, 

5). The mechanism of suppression by Treg cells is complex and is incompletely 

understood (5, 6). In this study, we have tested the hypothesis that inhibition by Treg 

cells of DC-induced extracellular redox remodeling is a component of the Treg 

immunosuppressive mechanism. We demonstrate that the increase in [Cys]ex upon co-

culture of DCs with naïve CD4+CD25- T cells (Tn) results from the system xc
--dependent 

import of cystine, its conversion to glutathione, which is subsequently exported and 

degraded by the ectoenzyme, -glutamyltranspeptidase (GGT) and a membrane bound 

dipeptidase, to furnish Cys. Suppression of DC-dependent T cell proliferation by Treg 

cells is correlated with a significant diminution in [Cys]ex and is abrogated by addition of 

exogenous Cys. The decrease in the extracellular redox potential during DC-T cell 

interaction and T cell activation is associated with an increase in the levels of exofacial 
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surface thiols in both DCs and T cells, which is diminished in the presence of Treg cells. 

This study elucidates the pathway of thiol release by DCs in response to T cell 

stimulation, demonstrates that Treg cells interfere with the process of extracellular redox 

remodeling and identifies a novel mechanism for immunomodulation. 

 

2.3 Results and Discussion 

Co-cultivation of Tn cells with immature DCs results in a time- and ratio- 

dependent increase in [Cys]ex (Fig. 2.1a), which is paralleled by extracellular cystine 

consumption (Fig. 2.2) as previously seen during antigen-specific activation of T cells (1). 

In subsequent studies, a 1:4 ratio of DC:T cells was used. When DC and T cells from 

syngenic and allogenic mice were employed, a substantial difference in Cysex 

accumulation was not observed (data not shown). While intracellular redox homeostasis 

is important for the operation of cellular processes (7), the Cys/cystine redox couple is a 

quantitatively significant determinant of the extracellular redox potential, which plays a 

critical regulatory role in cell proliferation, differentiation and apoptosis (8, 9). It is 

estimated to be ~-80 mV for DC cultures (Fig. 2.1b), which is expected to promote 

growth arrest/differentiation (8, 10). Co-culture of DCs with Tn cells decreased the redox 

potential to a more reducing value (-110 mV), consistent with remodeling of the 

extracellular potential to a value conducive to cellular proliferation (8).  

Sustained contact between DCs and T cells appears to be required for [Cys]ex 

accumulation and was not observed in a transwell culture system (Fig. 2.3) and further 

accumulation of Cys was not observed following removal of T cells after co-culture with 

DCs for 24 h (not shown). DC-T cell contact may result in the activation of various signal 
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transduction pathways in DCs, which, in turn, could regulate Cysex accumulation. Among 

them, the NF-κB pathway, which is activated in mature DCs, plays an essential role in 

effective antigen presentation and T cell activation (11, 12). To assess whether this 

signaling pathway plays a role in extracellular redox remodeling, DCs were pretreated 

with inhibitors of NF-κB activation, pyrrolidine dithiocarbamate (PDTC) or BAY 11-

7082, for 2 h, and then co-cultured with Tn cells. [Cys]ex was significantly diminished by 

these inhibitors (Fig 2.1c). Lipopolysaccharides (LPS), which induces DC maturation via 

the NF-κB pathway (12), also results in Cysex accumulation, which was abrogated by 

PDTC (Fig. 2.1c), thus supporting a role for the NF-κB pathway in stimulating Cysex 

release by DCs.  

To distinguish between the alternative pathways that might contribute to Cysex 

accumulation (Fig. 2.1d), various approaches were employed. First, the contribution, if 

any, of the transsulfuration pathway to Cysex was assessed. However, radiolabel 

incorporation from [35S]-methionine into total Cysex and GSHin was not enhanced (Table 

2.1) and inhibition of the transsulfuration pathway with the suicide inactivator, 

propargylglycine (PPG), failed to inhibit Cysex accumulation (Fig. 2.4) during DC-Tn cell 

co-culture. Furthermore, co-cultivation of cells in medium lacking cystine resulted in 

failure of [Cys]ex accumulation (data not shown), suggesting that extracellular cystine is 

the major source of Cysex. Inhibition of GSH synthesis with butathionine sulfoximine 

(BSO) and inhibition of GSH export with MK-571 significantly suppressed [Cys]ex 

accumulation (Fig. 2.4), indicating a role for GSHin synthesis and transport by DCs for 

provision of Cysex needed for T cell function. 
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To examine the contribution of cystine transporters and GSH metabolism to Cysex 

accumulation, we inhibited the xc
- and XAG cystine transporters and GGT with 

sulfasalazine, L-aspartic acid β-hydroxamate (AβH) and acivicin respectively (Fig. 2.1d). 

Inhibition of the xc
- but not the XAG transporter suppressed Cysex accumulation by ~25% 

(Fig. 2.1e), diminished incorporation of [14C]-cystine into GSH in DCs by ~20% and 

decreased the [GSH]in by ~25% (Fig. 2.5). The expression of xCT, the catalytic subunit 

of the xc
- transporter (13), was induced in DCs co-cultured with T cells (Fig. 2.1f), 

indicating a role for this high affinity cystine/glutamate antiporter in DC-dependent redox 

remodeling. Inhibition of GGT with acivicin decreased [Cys]ex by >35% (Fig. 2.1e), 

consistent with the model that secreted GSH is a source of [Cys]ex. When acivicin and 

sulfasalazine were co-administered, the [Cys]ex was reduced by ~70%.  

Extracellular thioredoxin (Trxex), which accumulates during DC-T cell co-culture, 

has been proposed to function in cystine reduction under these conditions (1). However, 

the source of electrons for the operation of this catalytic cycle is not known. Secreted Trx 

was also observed during DC-T cell co-culture in our study, but not when either cell type 

was cultured alone (Fig. 2.6). If Trxex does indeed play a role in increasing [Cys]ex, then 

inhibition of cystine import should not affect Cysex accumulation. However, [Cys]ex 

decreased in sulfasalazine-treated cultures (Fig. 2.1e) although Trxex levels were 

unchanged (Fig. 2.6). Together with the observation that secreted thioredoxin reductase, 

which reduces Trx, is not detected when DCs and T cells are co-cultured (not shown), our 

data are consistent with an alternative function of Trxex in T cell activation as suggested 

recently (14). 
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An increase in [GSH]in is correlated with the onset of T cell proliferation and Cys is 

the limiting reagent for GSH synthesis (3, 15). Increased [Cys]ex during co-culture of DC 

and T cells is associated with increased [GSH]in in T cells (Fig. 2.1g), which was 

significantly inhibited by sulfasalazine and acivicin respectively.  

Next, we investigated whether Treg cells can perturb Cysex accumulation induced 

by DC-Tn cell interaction. In contrast to Tn cells, co-culture of Treg cells with DCs did 

not affect the [Cys]ex (Fig. 2.7). However, co-culture of DCs, Tn and Treg cells resulted 

in significantly decreased [Cys]ex compared to co-cultures of DC and Tn cells, and was 

sensitive to the ratio of DC:Tn:Treg cells (Fig. 2.8a). LPS stimulation of DCs increased 

the [Cys]ex and was suppressed by Treg cells (Fig 2.8b). Enhanced Cysex accumulation 

was observed during co-culture of LPS-activated DCs and Tn cells, which was inhibited 

by Treg cells (Fig 2.9). Furthermore, [GSH]in in Teff cells was significantly decreased  

under these conditions (Fig. 2.8c, d), indicating that Treg cells perturb intracellular redox 

homeostasis in Teff cells by interfering with extracellular redox remodeling.  

Since the outcome of a successful activation event is T cell proliferation, a process 

that is suppressed by Treg cells, we assessed the effect of Treg cells on T cell 

proliferation in the presence and absence of exogenous Cys. Lower [Cys]ex was 

correlated with inhibition of T cell proliferation as measured by  [3H]-thymidine 

incorporation (Fig. 2.8e) or a mitochondrial activity (Fig. 2.10) assay. This inhibition was 

alleviated by provision of Cysex at concentrations seen under DC-T cell co-culture 

conditions (Fig. 2.8c and Fig. 2.10). Exogenous Cys did not significantly change the 

proliferation of Teff cells and as expected, did not induce Treg proliferation (Fig. 2.11). 
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The extracellular redox environment influences the equilibrium between oxidized 

and reduced thiols on exofacial membrane proteins (16) and a 30 mV potential change 

should lead to a 10-fold change in the ratio of reduced:oxidized Cys in proteins. The 

surface thiol status of T cells is responsive to reactive oxygen species levels that in turn, 

influences T cell functions and the susceptibility at the organismal level, to autoimmune 

diseases and to HIV infection (17-19). Hence, we investigated changes in the exofacial 

thiol status during T cell activation using Alexa-maleimide for thiol group labeling 

coupled with confocal microscopy and fluorescence-activated cell sorting (FACS) 

analysis (Figs. 2.8f-j).  Co-culture conditions enhanced cell surface labeling on DCs and 

T cells by ~4 and 8-fold respectively (Fig. 2.8f-h). Hence, redox remodeling of the 

extracellular compartment during T cell activation affects the redox status of membrane 

proteins on both cell types, which might be important for signaling in the immune 

synapse and/or for supporting downstream effector functions. In comparison to Tn cells, 

co-culture of DCs with Treg cells induced a minor increase in surface thiol labeling on 

DCs and Treg cells (Fig. 2.12). Addition of Treg cells to DC-Tn co-cultures suppressed 

cell surface thiol labeling on T cells and to a lesser extent, on DCs (Fig. 2.8i,j). Similarly, 

Treg cells decreased surface thiol labeling in LPS-stimulated DCs. Hence, interference by 

Treg cells in redox remodeling of the extracellular microenvironment appears to have a 

more pronounced effect on T cells compared to DCs. 

The ability of Treg cells to modulate metabolite signaling between DC and T cells 

has precedence. Thus, Treg cells induce indoleamine 2, 3-dioxygenase in DCs, which 

catalyzes the oxidative catabolism of tryptophan (20). Furthermore, TGF-β, an inhibitory 

cytokine involved in Treg-mediated suppression (21), is activated by oxidation and 
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inactivated by free thiols (22), demonstrating the need for the appropriate redox 

microenvironment  for its function.  

In summary, we have elucidated the mechanism of extracellular redox remodeling 

by DCs during T cell activation, which is needed for their subsequent proliferation, and 

demonstrated that Treg cells interfere with this process. T cells are inefficient at 

transporting cystine and depend on antigen presenting cells for the provision of Cys (3, 

23), the least abundant of all amino acids in circulation (24). However, Cys release by 

DCs clearly has other consequences including shifting the ambient redox poise to be 

more reducing, promoting cell proliferation and changing the redox status of many cell-

surface proteins, which await identification. Many exofacial membrane protein domains 

and extracellular proteins are Cys-rich and their oxidation state and function are 

influenced by the redox potential of the extracellular compartment (16, 25). Subtle 

changes in the extracellular redox status may cause profound functional changes in redox 

sensitive proteins, shaping the outcome of DC-T cell interaction. The ability of Treg cells 

to intervene in this process represents a previously unrecognized mechanism for 

immunosuppression of autoreactive T cells.  

 

2.4 Materials and Methods 
 
2.4.1 Mice 

BALB/c mice (7-10 weeks) were purchased from the Jackson Laboratory (Bar 

Harbor, ME). The mice were maintained in pathogen-free animal facilities at the 

University of Michigan. All procedures for animal handling were performed in 

accordance with the protocols approved by the University of Michigan.    
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2.4.2 Cell purification and culture  

DCs were isolated from bone marrow by a previously described method (26), with 

some modifications. Briefly, bone marrow cells from the BALB/c mice were depleted of 

red blood cells and plated at 2 x 106 cells/ml for 7 days in recombinant murine 

granulocyte macrophage colony-stimulating factor (GM-CSF, 20 ng/ml, BD Biosciences) 

and recombinant murine interleukin 4 (IL-4, 20 ng/ml, BD Biosciences) in DMEM 

supplemented with 100 µg/ml penicillin and streptomycin, 2 mM L-glutamine, 50 µM 2-

mercaptoethanol (2-ME), 1 mM pyruvate, 1:100 nonessential amino acids, and 10% heat-

inactivated fetal bovine serum. The culture medium was changed and the floating cells 

were discarded every two days.  

Tn (CD4+CD25-) and Treg (CD4+CD25+) cells were purified from mouse lymph 

nodes by magnetic-activated cell sorting using an AutoMACS sorter (Miltenyi Biotec) as 

described (27). Flow cytometry analysis of the purity of Treg cells and Teff cells shows > 

90% CD4+CD25+ with > 85% expressing Foxp3+ and > 95% CD4+CD25-, respectively 

(Fig. 2.13). For activated Teff cells, purified cell populations were cultured in 24-well 

plates (1 ml) supplemented with 0.5 µg/ml anti-CD3 and irradiated splenocyte feeders 

(1:3). 

DCs (5 x 105 /well) were co-cultured in 24 well plates with or without naïve Teff 

cells at 1:1, 1:2 and 1:4 ratio for 48 h at 37oC in a 5% CO2 incubator in RPMI medium 

supplemented with 100 μg/ml penicillin and streptomycin, 2 mM L-glutamine, 50 µM 2-

mercaptoethanol and 2.5% heat-inactivated fetal bovine serum in the presence of anti-

CD3 antibody (1 µg/ml). Sulfasalazine (SAS, 500μM), acivicin (ACV, 250 μM), L-

Aspartic acid β-hydroxamate (AβH, 400 μM), propargylglycine (PPG, 2.5 mM) and 
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butathionine sulfoximine (BSO, 200 μM) were added to the co-culture to inhibit the xc
- 

cystine transporter, γ-glutamyltranspeptidase (GGT), XAG cystine transporter, γ-

cystathionase and γ-glutamylcysteinyl synthetase, respectively. For the inhibition of the 

NF-κB pathway, DCs were pretreated with 200 μM pyrrolidine dithiocarbamate (PDTC) 

or 10 μM BAY 11-7082 for 2h and then co-cultured with naïve Teff cells in fresh 

medium. In transwell experiments, DCs were co-cultured either directly with naïve Teff 

cells or with naïve Teff cells placed in transwell chambers (Millicell, 0.4 µm pore size; 

Millipore, Bedford, MA). For the Treg experiments, DCs were co-cultured respectively 

with Treg cells (1:1), naïve Teff cells (1:4) and naïve Teff and Treg cells together (1:4:1, 

1:4:2), or DCs were treated with lipolysaccharide (LPS, 100 ng/ml) in the absence and 

presence of Treg cells for 48h. For activated Teff cells, co-cultures were performed in 24 

well plates at a DC: Teff cell ratio of 1:4 in DMEM medium supplemented with 100 

µg/ml penicillin and streptomycin, 2 mM L-glutamine, 50 µM 2-mercaptoethanol, 1 mM 

pyruvate and 1:100 nonessential amino acids. 

2.4.3 Measurement of thiols and metabolic labeling 

Extracellular cystine and Cys concentration was measured using the HPLC method 

as described (28). To measure the extracellular total GSH and homocysteine by mass 

spectrometry, culture supernatants were reduced by 10 mM dithiothreitol for 15 min 

followed by alkylation with 5 mM N-ethylmaleimide (NEM) for 30 min at room 

temperature. GSH, homocysteine and Cys were used as external standards and 50 µM 

NEM-derivatized 3-D2-Cys was used as an internal standard. The samples and standards 

were analyzed by multiple reaction monitoring (MRM) mass spectrometry using the 4000 

Q TRAP® LC/MS/MS System from Applied Biosciences. 
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Intracellular GSH concentration and [35S]-methionine incorporation into GSH was 

measured as described previously (29). Results were normalized to the protein 

concentration. Alternatively, L-[14C]-cystine was employed to follow its contribution to 

the intracellular GSH. For this, 5 µl/ml L-[14C]-cystine (0.02 mCi/ml, PerkinElmer) was 

added to the culture medium to obtain a final activity of 0.1 µCi/ml and the samples were 

processed as described for radiolabeled methionine.  

2.4.4 Western blot analysis 

Supernatants from DCs cultured with activated T cells in the presence and absence 

of sulfasalazine were analyzed by Western blot to detect the extracellular thioredoxin as 

described (1). Rabbit polyclonal antibody against human thioredoxin (courtesy of Dr. 

Vadim Gladyshev, University of Nebraska) was employed for detection of thioredoxin.  

To detect the xCT expression levels, DCs were cultured with and without naïve 

Teff cells for 36h and harvested in lysis buffer. Aliquots of cell lysates (20 g) were 

boiled and loaded on to a 10% SDS polyacrylamide gel and electroblotted to a PVDF 

membrane. Expression of xCT was investigated by immunoblotting with the polyclonal 

xCT antibody (1:2000) (Abcam) and the secondary horseradish peroxidase-linked anti-

rabbit IgG antibody (1:2500). Blots were developed by using the chemiluminescent 

horseradish peroxidase system as per the vendor’s protocol (Sigma). 

2.4.5 T cell proliferation assay 

Naïve Teff cells (2 x 105) were cultured with varying numbers of Treg cells for 72 h 

in flat 96-well plates with APCs (either DCs (5 x 104) or irradiated splenocytes (6 x 105)) 

and 1 µg/ml anti-CD3. Cys (50 µM and 100 µM final concentration) was added every 24 

h during the culture. T cell proliferation was assayed by measuring incorporation of [3H] 
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thymidine (1 Ci/ml, PerkinElmer) during the last 6 h of culture. Alternatively, 

proliferation was measured by using the “CellTiter 96® AQueous One Solution Cell 

Proliferation Assay” kit (Promega) according to the manufacture’s instructions.  

2.4.6 Flow cytometry and confocal microscopy  

Naïve Teff cells cultured with or without DCs for 1h and 48h were washed with ice-

cold media. Alexa-maleimide (ALM)-488 (Invitrogen) was added to the cell suspension 

at a final concentration of 5 μM and incubated for15 min on ice. Cells were washed three 

times with cold PBS, fixed in 2% paraformaldehyde and then analyzed by flow cytometry 

using the FACSCalibur instrument (BD phamingen). Data were analyzed using the 

Flowjo software (Treestar). DCs cultured with or without naïve T cells for 1h and 48h 

were washed with ice-cold media and then stained with 5 μM ALM-488 for 15 min on 

ice. Cells were washed three times with cold PBS and detached by incubating with 

accutase (Phoenix flow systems) for 10 min. After centrifugation, DCs were fixed in 2% 

paraformaldehyde and analyzed by flow cytometry. For the Treg experiments, DCs were 

co-cultured respectively with naïve Teff cells (1:4) and naïve Teff and Treg cells together 

(1:4:2), or DCs were treated with LPS (100 ng/ml) in the absence and presence of Treg 

cells for 36h. Cell surface thiols on DCs and T cells were determined as described above. 

For the confocal microscopy experiments, DCs were cultured with or without naïve 

Teff cells in 8-well chamber slides (Labtek) for 36h. Since naïve Teff cells can not 

survive for 36h, they can not be used as a control for activated Teff cells. We thus used 

activated Teff cells cultured with or without DCs for 16h to detect the cell surface thiol 

change on Teff cells. DCs and Teff cells were washed with ice-cold media and then 

stained with 5μM ALM-594 for 15 minutes on ice. Cells were washed three times with 
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cold PBS, fixed in 4% paraformaldehyde and then mounted. The samples were examined 

using an Olympus FV500 confocal microscope and photographed. 
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Figure 2.1 Mechanism of Cysex accumulation. (a) DCs were co-cultured with Tn cells 
at a 1:1, 1:2 or 1:4 ratio for different durations, and the [Cys]ex was measured. (b) 
Changes in the extracellular Cys/cystine redox potential at 36 h. The extracellular 
Cys/cystine redox potential was calculated according to the Nernst equation: Eh = Eo + 
RT/2F ln ([cystine]/[Cys]2), using Eo=-250 mV (pH=7.4). (c) Effect of NF-κB pathway 
inhibitors on [Cys]ex. (d) Cys metabolism during DC-T cell interaction and the effects of 
inhibitors. Propargylglycine (PPG), butathionine sulfoximine (BSO), sulfasalzine (SAS), 
L-aspartic acid β-hydroxamate (AβH), acivicin (ACV) and MK-571 inhibit -
cystathionase, -glutamylcysteinyl synthetase, the xc

- and the XAG transporter, -
glutamyltranspeptidase, and the multidrug resistance protein 1 (MRP1) respectively. (e) 
Inhibition of [Cys]ex by various inhibitors. DCs were co-cultured for 36 h with Tn cells 
(1:4) ± 400 µM AβH, or ± 500 µM SAS, or ± 250 µM ACV or ± SAS+ACV. [Cys]ex is 
expressed as a percent of the concentration in untreated DC-T cell co-culture medium. 
The data represent the mean ± SD of at least 4 experiments with different batches of cells. 
(f) xCT expression in DCs cultured ± Tn cells for 36 h. xCT migrates as 35 and 55 kDa 
bands. (g) [GSH]in in Teffs cells co-cultured with DCs (1:4) for 16 h ± SAS or ACV. 
Representative data from one of three independent experiments are shown for a, b, c, f, g.  
(*, p<0.05; **, p<0.005; ***, p<0.0005; two tailed Student’s t-test). 
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Figure 2.2 Extracellular cystine consumption during DC and Tn cell co-culture. DCs 
were co-cultured with Tn cells at a 1:1, 1:2 and 1:4 ratio for different durations, and the 
cystine concentration in the conditioned medium was determined. Data shown are the 
mean ± SD and are representative of 3 independent experiments. Student’s t-test revealed 
a significant consumption of cystine from the media by DCs, which was both DC:T cell 
ratio- and time-dependent. (*, p<0.05; **, p<0.005). 
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Figure 2.3 Effect of transwell culture on Cysex accumulation. DCs were co-cultured 
with Tn cells (1:4) (black bar) or with Tn cells (1:4) placed in the upper chamber of a 
transwell (TW) system (grey bar) for 36 h. Representative data (mean ± SD) from one of 
three independent experiments are shown. Student’s t-test revealed a significant increase 
in Cys accumulation only when DCs were in direct contact with Tn cells. (*, p<0.05). 
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Figure 2.4 Inhibition of GSH synthesis and GSH export but not the transsulfuration 
pathway suppresses Cysex accumulation. DCs were co-cultured with Tn cells (1:4) for 
36 h in the absence or presence of (a) 2.5 mM propargylglycine (PPG) or 200 μM 
buthionine sulfoximine (BSO) or (b) 50 μM MK-571. PPG, BSO, and MK-571 inhibit -
cystathionase, -glutamylcysteinyl synthetase, and the multidrug resistance protein 1 
respectively. Representative data (mean ± SD) from one of two independent experiments 
are shown. Student’s t-test revealed significant inhibition of DC-T cell-induced Cysex 
accumulation in the presence of either BSO or MK-571 but not PPG. (*, p<0.05; **, 
p<0.005). 
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Figure 2.5 Inhibition of the xc

- transporter decreases [GSH]in and GSH radioactivity 
incorporation in DCs. DCs were co-cultured with Teff cells (pre-activated CD4+CD25- 
T cells) (1:4) ± 500 μM sulfasalazine (SAS) for 16 h. L-[14C]-cystine was added to the 
culture medium to a final activity of 0.1 µCi/ml at the beginning of the experiment and its 
incorporation into GSHin and the [GSH]in in DCs were measured. Results are expressed 
as a percent of untreated co-culture control. Data are the mean ± SD of two independent 
experiments. Student’s t-test revealed significant inhibition of radioactivity incorporation 
and a decrease in [GSH]in in the presence of SAS. (*, p<0.05). 
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Figure 2.6 Inhibition of Cysex accumulation by SAS does not significantly affect Trx 
secretion. Medium from cell cultures treated ± 500 µM SAS were examined by Western 
blot analysis for the presence of Trx. 1: Trx standard; 2: DC medium; 3: T cell medium; 4: 
DC-T co-culture medium; 5: DC culture medium + SAS; 6: DC-T co-culture medium + 
SAS; 7: T cell medium + SAS. 
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Figure 2.7 Co-culture of DCs with Tn cells, but not with Treg cells results in Cysex 
accumulation. DCs were co-cultured with either Tn cells (1:4) or with Treg (1:4) cells in 
the presence of 1 µg/ml anti-CD3 antibody. (*, p<0.05; ns, not significant). 
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Figure 2.8 Treg-mediated extracellular redox remodeling. (a) [Cys]ex during co-
culture of DCs with Tn cells (1:4) or with Tn+Treg cells (1:4:1 or 1:4:2). (b) [Cys]ex in 
DC+LPS±Treg (1:2). (c) Treg-mediated suppression of [GSH]in in Teffs measured by 
labeling with chloromethylfluorescein diacetate (CMFDA) and (d) quantitative analysis. 
Student’s t-test revealed a significant reduction in DC+T cell- and DC+LPS-induced 
[Cys]ex (panels a, b, n=4) and GSHin labeling in T cells (panel d, n=2) in the presence of 
Treg cells. (e) Teff proliferation ± Tregs and with the addition of Cys to the medium as 
measured by the [3H]-thymidine incorporation assay. Student’s t-test revealed significant 
inhibition of proliferation of Teffs by Tregs, which was abrogated by addition of 
exogenous Cys (n=3). (f) Cell surface thiol levels on DCs and T cells as a function of co-
culture using Alexa-maleimide 488 (ALM-488) staining followed by FACS analysis. (g) 
Quantification of the mean fluorescence intensity (MFI) data shown in panel f (n=4). (h) 
Confocal microscopy using Alexa-maleimide 594 staining shows an increase in cell 
surface thiol levels on DCs and T cells as a function of co-culture as compared to single 
culture. (i) Tregs suppress surface thiol levels on DCs, T cells and LPS-activated DCs. (j) 
Quantitative analysis of FACS data shown in panel i (n =3). Data represent the mean ± 
SD of independent experiments (n as indicated in each section). (*, p<0.05; **, p<0.005; 
two tailed Student’s t-test). 
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Figure 2.9 Treg cells suppress Cysex accumulation induced during co-culture of 
LPS-activated DCs and Tn cells. LPS-stimulated DCs were co-cultured with Tn cells in 
the absence or presence of Treg cells (1:4:2). Representative data (mean ± SD) from one 
of two independent experiments are shown. Student’s t-test revealed significant inhibition 
of Cysex accumulation by Treg cells. (*, p<0.05; **, p<0.005). 
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Figure 2.10 Exogenous Cys abrogates Treg-mediated suppression of T cell 
proliferation. T cell proliferation in the absence and presence of Treg cells and with the 
addition of Cys to the medium was measured by the “CellTiter 96® AQueous One Solution 
Cell Proliferation Assay”. Data represent the mean ± SD (n=3). Statistical analysis was 
performed using Student’s t-test (*, p<0.05; **, p<0.005). 
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Figure 2.11 Exogenous Cys does not change Teff and Treg cell proliferation. DCs 
were co-cultured with either Tn or with Treg in the presence of different concentrations 
of exogenous Cys. Teff and Treg cell proliferation was measured by the [3H]-thymidine 
incorporation assay. Data represent the mean ± SD of two independent experiments 
performed in duplicates.  
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Figure 2.12 Treg cells cause relatively small changes in cell surface thiols on DCs 
(left panel, red line) and on T cells (right panel, red line). DCs were co-cultured with 
Tn or Treg cells at a 1:2 ratio for 36 h. Cell surface thiol levels on DCs and T cells were 
determined by FACS analysis. As a control, the effect of Tn cells on DCs cell surface 
thiols (blue line, left panel) is also shown. Results shown are representative of two 
independent experiments. 
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Figure 2.13 Purity of Treg and Tn cells. Tn cells and Treg cells were stained with anti-
CD4-Alexa 647, anti-CD25-PE and anti-Foxp3-FITC and analyzed by flow cytometry. 
The numbers inside the boxes indicate percentage of CD4+CD25-, CD4+CD25+ and 
Foxp3+ cells. 

 55



Table 2.1 

Incorporation of [35S]-Met into intracellular GSH and extracellular Cys. 

  DCs 

DCs from DC-T  

co-culture 

[GSH]in (μmol/g protein) 112 ± 12.1 89.4 ± 22.1 

GSH radioactivity (dpm/protein) 53.4 ± 9.2 40.7 ± 11.3 
35S-incorporation into GSHa 

(dpm/μM) 2.13 ± 0.30 2.22 ± 0.28 

   

[tCys]ex (μM) 198.3 ± 8.9 149.5 ± 40.3 

tCys radioactivity (dpm) 198.5 ± 20.5 142.0 ± 25.5 
35S-incorporation into tCys (dpm/μM) 1.00 ± 0.06 1.04 ± 0.10 
a35S-incorporation in DCs was determined as the ratio of GSHin (or tCysex) 
radioactivity to [GSH]in (or [tCys]ex) concentration at 16 h in DCs cultured 
alone or with activated Teff cells. Representative data from one of two 
independent experiments are shown.  
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Chapter 3  
 

Regulatory T Cells Interfere with Glutathione Metabolism in 
Dendritic Cells and T Cells 

 
 

3.1 Abstract 

Naturally occurring CD4+CD25+Foxp3+ Tregs suppress proliferation of Teffs by 

mechanisms that are not well understood. We have previously demonstrated a novel 

mechanism of Treg suppression, i.e., interference with extracellular redox remodeling 

that occurs during activation of T cells by DCs. In this study, we demonstrate that Treg-

mediated redox perturbation is antigen-dependent but not antigen-specific, is cytotoxic T-

lymphocyte antigen 4 (CTLA-4)-dependent and requires cell-cell contact. Tregs decrease 

expression of γ-glutamylcysteine synthetase, the rate-limiting enzyme for GSH synthesis, 

leading to lower intracellular GSH synthesis in lipopolysaccharide-stimulated DCs. We 

have previously shown that DC-derived GSH is a major source of extracellular cysteine 

that accumulates during DC-dependent T cell activation. Additionally, Tregs might 

contribute to restricting extracellular cysteine accumulation by a competitive uptake 

mechanism; they partition cysteine more proficiently to the oxidation product, sulfate, 

while Teffs divert more of the cysteine pool towards protein and GSH synthesis. Tregs 

appear to block GSH redistribution from the nucleus to cytoplasm in Teffs, which is 

abrogated by the addition of exogenous cysteine. Together, these data provide novel 

insights into modulation of sulfur-based redox metabolism by Tregs leading to 

suppression of T cell activation and proliferation. 
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3.2 Introduction 

A fundamental property of the immune system is to distinguish self from non-self 

and this education begins at the thymus where autoreactive T cells are recognized and 

eliminated. However, a small fraction of autoimmune T cells escape to the periphery and 

cause damage to host tissues. Tregs, by mechanisms that are not well understood, are able 

to inhibit autoimmune T cells to maintain self-tolerance and immune suppression (1-3). 

Tregs also play important roles in anti-tumor responses as well as transplantation 

immunity. Dysregulation of Treg function has been shown to be involved in different 

kinds of immunological diseases ranging from the digestive to the central nervous system 

(4, 5).  

Tregs deploy various strategies to mediate their suppressive activity including: i) 

secretion of immunosuppressive cytokines such as TGF-β and IL-10; ii) cytolysis by 

granzyme secretion; iii) metabolic disruption e.g. by adenosine; iv) suppression of DC 

function e.g. via induction of indoleamine 2, 3-dioxygenase (IDO) (6-8) and (v) 

perturbing DC-dependent extracellular redox remodeling leading to restricted 

extracellular cysteine (Cysex) availability for naïve T (Tn) cells (9). A key role for CTLA-

4, a co-receptor expressed preferentially on Tregs, is implicated in the Treg suppression 

mechanism (1, 8, 10). CTLA-4 interacts with CD80/CD86 on antigen presenting cells 

(APCs) and transduces an intracellular inhibitory signal to APCs. Thus, one strategy for 

Treg-dependent immunosuppression is via down-regulation of APC function (1, 11).  

In addition to the T cell receptor (TCR)-antigen:major histocompatibility complex 

(MHC) class II interaction, costimulatory signals and cytokines, T cell activation and 

proliferation also requires a reducing microenvironment that is shaped mainly by APCs, 
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especially DCs (9, 12, 13). Upon stimulation by T cells, DCs increase uptake of cystine 

via the xc
- cystine transporter, and by a convoluted metabolic route involving the γ-

glutamyl cycle, furnish Cysex, resulting in a relatively more reducing redox potential that 

is conducive to T cell proliferation (2, 9). Furthermore, cysteine is needed by T cells for 

synthesis of GSH, which provides reducing power for DNA synthesis (14) and for cell 

cycle progression from the G1 to S phase (15, 16). Although extracellular cystine is 

relatively abundant, naïve T cells are inefficient at transporting the oxidized form of the 

amino acid and depend on DC-derived cysteine to meet their metabolic needs (17). DCs, 

by controlling the Cysex level, are able to affect intracellular GSH levels and subsequent 

redox signaling pathways in T cells (2).  

The physiological relevance of redox remodeling is demonstrated by the dramatic 

increase in non-protein thiols in lymphoid tissues following immunization (18).  

Additionally, Payer’s Patches from the gut show very low thiol staining because resident 

APCs from lamina propria lack the xc
- transporter for cystine. However, under 

inflammatory conditions as in inflammatory bowel diseases, infiltration of peripheral 

APCs with high xc
- transporter expression allows Cysex accumulation, promoting 

activation and hyperreactivity of lamina propria T cells (19). We have demonstrated that 

Tregs suppress Cysex accumulation, and that this is correlated with suppression of T cell  

activation and proliferation (9). However, the mechanism by which Tregs interfere with 

the redox signaling crosstalk between DCs and Teffs is unknown. 

In this study, we demonstrate that the Tregs decrease Cysex levels in an antigen-

dependent, antigen-nonspecific and CTLA-4-dependent manner. We show that Tregs use 

multiple strategies for extracellular redox remodeling including modulation of DC and 
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Teff GSH metabolism and competitive uptake of cysteine. Together, these studies 

provide the first mechanistic insights into how Tregs influence redox metabolism in DCs 

and consequently, in Teffs.  

 

3.3 Materials and Methods 

3.3.1 Animals  

DO11.10 TCR transgenic mice were a generous gift from Dr. Nicholas Lukacs 

(University of Michigan) and were bred at our animal facility. BALB/c mice and CD1 

mice (7-10 weeks) were purchased from the Jackson Laboratory (Bar Harbor, ME). All 

procedures for animal handling were performed in accordance with the protocols 

approved by the University’s Committee on Use and Care of Animals. 

3.3.2 Cell preparation and cell culture conditions  

DCs were obtained from bone marrows of the DO11.10 mice and induced by 

recombinant murine granulocyte macrophage colony-stimulating factor (GM-CSF) and 

IL-4 (R&D systems), as described previously (9, 20). Immature bone marrow-derived 

DCs were harvested at day 7 and used in T cell co-cultures as APCs.  

Treg (CD4+CD25+) and Tn (CD4+CD25-) cells were isolated from mouse spleen 

and lymph nodes by magnetic-activated cell sorting using an AutoMACS sorter (Miltenyi 

Biotec) as described (9, 21). For activation of Teffs, purified Tn cells were cultured in 24-

well plates (1 ml) supplemented with 1 µM OVA323-329 antigen and irradiated splenocyte 

feeders (1:3) or DCs (2:1). The same conditions were employed for activation of Tregs, 

except that 20 ng/ml IL-2 (R&D systems) was also added to the medium. 
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DCs (5 x 105 /well) were co-cultured in 24 well plates with Tn cells (1:4) with or 

without Tregs (1:4:2) for 48 h at 37˚C in a 5% CO2 incubator in RPMI medium 

supplemented with 100 μg/ml penicillin and streptomycin, 2 mM L-glutamine, 50 µM 2-

mercaptoethanol and 2.5% heat-inactivated fetal bovine serum in the presence of either 1 

µM OVA323-329 antigen or anti-CD3 antibody (1 µg/ml). Alternatively, DCs were treated 

with LPS (100 ng/ml) in the absence and presence of Tregs and 1 µM OVA323-329 for 48 h. 

Anti-CTLA-4 antibody (100 µg/ml) was added to the DC+Tn+Treg or DC+LPS+Treg 

co-culture to block the function of CTLA-4. In transwell experiments, DCs were co-

cultured with Tn cells and Tregs were either placed in direct contact with DC:Tn (at a 

ratio of 1:4:2) or the upper chamber of the transwell (Millicell, 0.4 µm pore size; 

Millipore, Bedford, MA) at the same ratio.  

3.3.3 Measurement of thiols and disulfides by HPLC  

Concentrations of extracellular cystine, cysteine, GSH and GSHin concentrations 

were measured using the HPLC method as described (9, 22). The GSHin values were 

normalized to protein concentration determined in the Bradford assay with bovine serum 

albumin as standard. The extracellular cysteine/cystine redox potential (Eh) was 

calculated using the Nernst equation: Eh = Eo + RT/2F ln ([cystine]/[cysteine]2), where E0 

= -250 mV at pH 7.4.  

3.3.4 T cell proliferation assay  

Tn cells (4 x 104) were cultured with varying numbers of Tregs for 72 h in round 

bottom 96-well plates with DCs (1 x 104) in the presence of either 1 µM OVA323-329 or 1 

µg/ml anti-CD3 antibody. When needed, 50 µM cysteine was added every 24 h during 
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the culture. T cell proliferation was assayed by measuring incorporation of [3H]-

thymidine (1 Ci/ml, PerkinElmer) during the last 16 h of culture. 

3.3.5 Western blot analysis  

DCs from control, DC+LPS, DC+LPS+Treg and DC+LPS+Treg+anti-CTLA-4 

antibody-treated cultures were harvested and lysed in lysis buffer on ice. Aliquots of cell 

lysates (20 g) were boiled and loaded on to a 10% SDS polyacrylamide gel and 

electroblotted onto a PVDF membrane. Antibodies against γGCS (Lab Vision) and β-

actin (Sigma) were used to monitor expression of the proteins and detected using the 

Dura chemiluminescent horseradish peroxidase system (Pierce) as per the vendor’s 

protocol. 

3.3.6 Metabolic labeling  

Activated Teffs and Tregs (2 x 106 each) were cultured in cystine-free RPMI 

medium supplemented with 50 µM cysteine, 100 μg/ml penicillin and streptomycin, 2 

mM L-glutamine, 50 µM 2-mercaptoethanol and 2.5% heat-inactivated fetal bovine 

serum. [35S]-cysteine (PerkinElmer, 1 µCi/ml) was added to the cell culture media for 24 

h. T cells were collected and suspended in 125 µl PBS for the following analysis: 1) 25 µl 

for protein normalization: mixed with 25 µl of lysis buffer; 2) 50 µl for GSH analysis: 

mixed with 50 µl of metaphosphoric acid solution (16.8 g/liter metaphosphoric acid, 5 M 

NaCl, and 5 mM EDTA); Intracellular GSH radioactivity was measured and quantified as 

described previously (9); 3) 50 µl for taurine analysis and protein radioactivity 

measurement: mixed with 50 µl 10% trichloracetic acid (TCA). Proteins were 

precipitated with 10% TCA and dissolved in 1 M NaOH to measure radioactivity. 

Supernatants were used for taurine analysis using the HPLC method as described (23). 
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Medium samples were collected for the measurement of cysteine and sulfate radioactivity. 

To measure the radioactivity associated with Cysex, HPLC fractions containing cysteine 

were collected and measured by scintillation counting. For sulfate measurement, BaCl2 

(100 mM final) was added to the medium to precipitate sulfate. The pellet was dissolved 

in 1 M NaOH and the radioactivity was analyzed by scintillation counter. The 

radioactivity of sulfate in the control medium was subtracted from the final values. 

3.3.7 Confocal microscopy and fluorescence analyses  

Tn cells were cultured with DCs for 0, 6, 24, 36, 48 and 72 h in the presence of 1 

µM OVA323-329. In the Treg experiment, Tn cells were pre-stained with 2 µM PKH26 

(Sigma), a fluorescent dye that labels membranes, to distinguish them from Treg cells 

under co-culture conditions. When used, Tregs were added at a 1:4:2 ratio of 

(DC:Tn:Tregs) in the presence of 1 µM OVA323-329 for up to 48 h. Cysteine (50 µM) was 

added every 24 h during the culture. At the conclusion of the experiment, T cells from 

different culture conditions were separated from DCs and labeled with 10 µM CMFDA  

for 30 min at 37˚C.  Following removal of the staining solution, cells were incubated for 

another 30 min at 37˚C in 1 ml prewarmed serum-free medium. Hoechst dye (2 µg/ml, 

Invitrogen) was added during the last 5 min to stain nuclei. Cells were then washed with 

PBS and fixed with 4% paraformaldehyde. Confocal images were acquired using an 

Olympus FV500 confocal microscope. The following excitation wavelengths were 

employed for the individual dyes: 360 nm for Hoechst (emission: 480 nm), 551 nm for 

PKH26 (emission: 570 nm) and 492 nm for CMFDA (emission: 517 nm).  

For quantitative analysis of the GSH fluorescence intensity, the nuclear perimeter 

was defined by the area of Hoechst staining and the cell perimeter from the bright field 
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image of the cell seen by light microscopy as described previously (24). The cytoplasmic 

volume was the difference in the whole cell volume and the nuclear volume. The 

nuclear/cytoplasm GSH ratio was represented as the total CMFDA intensity (calculated 

using the ImageJ software) in each compartment. 

 3.3.8 Statistical analysis  

Comparison between groups was done using two-tailed Student's t-test. P values 

<0.05 were considered to be statistically significant.  

 

3.4 Results 

3.4.1 Treg-mediated redox remodeling is antigen-dependent, but antigen-nonspecific 

We have previously used BALB/c mice as a source of immune cells and shown that 

Tregs suppress Cysex accumulation with anti-CD3 antibody stimulation (9). Although this 

mode of T cell activation is widely used to mimic antigenic stimulation, the absence of 

antigen activation limits biological interpretation (25). We therefore evaluated the 

antigen-dependence of Treg-mediated redox remodeling using DO11.10 OVA323-329-

specific TCR transgenic mice. DCs, Tn and Tregs were purified from DO11.10 mice and 

co-cultured in the presence of either OVA323-329 antigen or anti-CD3 antibody. As shown 

in Fig. 3.1A, the magnitude of Cysex accumulation was similar regardless of whether 

OVA323-329 antigen or anti-CD3 antibody stimulation was utilized. Furthermore, the 

magnitude of decrease in Cysex accumulation by Tregs was also similar under both 

conditions (Fig. 3.1A). DCs in culture hold the extracellular cysteine/cystine redox 

potential at ~-80 mV (Fig. 3.1B), consistent with the growth arrest/differentiation stage of 

these cells. Co-culture of DCs with Tn in the presence of either OVA323-329 antigen or 
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anti-CD3 antibody stimulation resulted in a reductive shift to ~-120 mV, consistent with 

conditions favoring T cell proliferation (2, 26). However, addition of Tregs to the DC-Tn 

cell co-culture caused an oxidative shift to ~-100 mV. We have previously shown that 

addition of exogenous cysteine at levels seen under DC-Tn co-culture conditions 

abrogates Treg-mediated suppression of T cell proliferation induced by anti-CD3 

antibody activation (9). Similarly, with OVA stimulation, addition of 50 µM cysteine also 

alleviated inhibition of T cell proliferation by Tregs (Fig. 3.1C). In subsequent 

experiments, DCs, Tn and Tregs from DO11.10 mice were used with OVA323-329 antigen 

stimulation. 

Activation of Tn cells requires antigen presented by MHC class II molecules to be 

recognized by the TCR. To evaluate whether the Treg effect on Cysex is antigen-specific, 

DCs and Tn cells from DC11.10 mice and Tregs from different mouse strains were used. 

Tregs from DO11.10 mice suppressed Cysex levels to ~70% as compared with DC-Tn co-

culture, as expected (Fig. 3.1D). Similarly, Tregs from BALB/c mice and CD1 mice also 

suppressed Cysex accumulation to a similar extent, indicating that Treg-mediated redox 

remodeling is antigen-nonspecific. 

3.4.2 Treg-mediated redox remodeling is contact and CTLA-4 dependent  

We have previously shown that DC-T cell contact is required for Cysex 

accumulation (9). However, in principle, Treg suppression of Cysex accumulation could 

occur simply via competition for cysteine released by DCs. To address this possibility, 

Tregs were cultured in the upper chamber of a transwell set-up while DCs and Tn cells 

were in the lower chamber. Under these conditions, Tregs were unable to suppress Cysex 

accumulation (Fig. 3.2A). Furthermore, Cysex levels were not diminished when Tregs 
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pre-activated by DCs and IL-2 were employed. These results suggest that cell-cell contact 

is required for Treg mediated redox remodeling, consistent with the view that Tregs 

suppression of T cell proliferation in vitro is cell-contact dependent (1, 8). 

Tregs constitutively express high levels of CTLA-4, which competes with CD28 on 

Teffs and transmits inhibitory signals to cells (1, 10, 27-29). To investigate the role of 

CTLA-4 in Treg-mediated redox remodeling, we used anti-CTLA-4 antibody. As shown 

in Fig. 3.2B, anti-CTLA-4 antibody abrogated the effect of Tregs on Cysex accumulation 

(Fig. 3.2B). As a control, anti-CTLA-4 antibody added to a DC-Tn cell co-culture did not 

interfere with [Cys]ex levels. These results demonstrate that diminution in Cysex by Tregs 

is dependent on co-stimulatory molecules e.g. CTLA-4.   

3.4.3 Tregs interfere with GSH metabolism in DCs  

In principle, Tregs can interfere with the redox crosstalk between DCs and Teffs in 

at least three ways: 1) modulation of DC function that leads to lower cysteine production, 

2) competition for the Cysex pool, and 3) modulation of Teff function by limiting cysteine 

availability. First, we investigated whether Tregs inhibit cysteine secretion by DCs using 

LPS stimulation to exclude the effects of Teffs on DCs in the experiment. We have 

demonstrated that LPS, like Teffs, stimulates Cysex accumulation (9) and that Tregs 

suppress this effect in a CTLA-4-dependent fashion (Fig. 3.3A). We found that Tregs, in 

addition to decreasing Cysex levels, also decreased [GSH]ex, a response that was 

abrogated by anti-CTLA-4 antibody (Fig. 3.3B). This was paralleled by an increase in 

[GSH]in in LPS-stimulated DCs which was inhibited by Tregs in a CTLA-4-dependent 

manner (Fig. 3.3C). Western blot analysis revealed significant up-regulation of the 

catalytic subunit of γ-GCS in response to LPS stimulation, attenuation of this response by 
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Tregs and abrogration of the Treg effect by anti-CTLA-4 antibody (Fig. 3.3D). In 

contrast, Tregs did not alter the expression of other key proteins involved in mediating 

Cysex accumulation viz., the xc
- transporter and -glutamyltranspeptidase. These results 

suggest that one mechanism by which Tregs decrease Cysex accumulation is by inhibiting 

GSH synthesis in DCs.  

3.4.4 Cysteine uptake and utilization by Tregs and Teffs  

To determine whether competition by Tregs for the Cysex pool represents an 

additional mechanism of regulating Cysex levels, we used a metabolic labeling approach 

with [35S]-cysteine. After 24 h, the radioactivity associated with the cysteine pool was not 

significantly different in the Treg versus Teff medium (Fig. 3.4A). This suggests that 

cysteine consumption by Tregs might constitute one mechanism for reducing Cysex 

during activation of T cells. 

However, for a competition to be a plausible mechanism, Tregs, which are 

nonproliferating, must show net consumption of the imported cysteine to support its 

continuous influx. To address this issue, we determined the fate of cysteine imported by 

Teffs and Tregs. The four major intracellular cysteine sinks are protein, GSH, taurine and 

sulfate (30) and the incorporation of [35S]-cysteine into these pools in activated Treg and 

Teff cells was assessed. As shown in Fig. 3.5A, Teffs showed considerably higher 

incorporation of radioactive cysteine into protein (50%) and GSH (25%) compared to 

Tregs. This is consistent with activated Teff cells being fated to proliferate while Tregs 

are anergic. In contrast, a greater proportion (50%) of cysteine was oxidized to sulfate by 

Tregs compared to Teffs (Fig. 3.4A). Almost no incorporation of radioactivity into 

taurine was seen in the intra- or extra-cellular pools in either Teffs or Tregs. A very 
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similar pattern of radioactivity distribution was observed when Teffs and Tregs were 

activated by DCs instead of irradiated splenocytes (Fig. 3.4B). Collectively, these results 

reveal that cysteine is preferentially utilized for protein synthesis by Teffs and is 

catabolized to sulfate by Tregs.   

3.4.5 Tregs block GSH relocalization in Teffs during T cell activation  

Next, we investigated how restricted cysteine availability in the presence of Tregs 

affects mobilization of the GSHin pool in activated Teffs. Previous studies have shown 

that GSH concentrates in the nucleus during early stages of cell proliferation but later, 

redistributes approximately equally between the nuclear and cytoplasmic compartments 

(24). We imaged changes in GSHin localization during T cell activation and found that 

GSH co-localized with nuclear DNA during the early stages of T cell activation (Fig. 

3.5A). However, 24 h later, GSH appeared to be more diffusely distributed between the 

cytoplasmic and nuclear compartments. In order to quantitate this change, we compared 

the ratio of the nuclear:cytoplasmic GSH fluorescence observed by confocal microscopy 

analysis and found that it decreased ~2-fold over a 24 h activation period and was 

unchanged over the next 48 h (Fig. 3.5B). To examine the effect of Tregs on GSH 

localization in Teffs, we pre-stained Teffs with PKH-26 (red) to distinguish Teffs from 

Tregs. In the presence of Tregs, GSH relocalization in Teffs appeared to be inhibited (Fig. 

3.5C). Addition of 50 µM cysteine to the DC-Tn-Treg culture restored GSH 

relocalization. The nuclear/cytoplasmic GSH ratio for Teffs from the DC-Tn-Treg co-

culture was similar to that of Tn cells (Fig. 3.5D). Exogenous cysteine abrogated the 

effect of Tregs on the nuclear:cytoplasmic GSH ratio. While these data suggest that Tregs 

stall relocalization of GSHin, we note several limitations with the analysis and therefore, 
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interpretation of the results. First, the large nuclear volume of T cells makes accurate 

determination of the fluorescence intensity in the cytoplasmic compartment difficult. 

Second, during activation, the volume of Teff cells increase making the comparative 

estimation of nuclear:cytoplasmic total GSH fluorescence more complicated. 

 

3.5 Discussion 

While the requirement for a reducing microenvironment to support T cell activation 

and proliferation has been known for quite a while (12, 31), redox modulation has 

emerged as an immunosuppressive strategy only recently (2, 9). We have previously 

described this novel suppression mechanism whereby Tregs cause an oxidative shift in 

the extracellular redox environment during DC-dependent T cell activation (9). In this 

study, we demonstrate that Tregs deploy multiple strategies for inhibiting DC-dependent 

extracellular redox remodeling (Fig. 3.6).  

Activation of Teffs requires interaction between the TCR and a specific antigen 

presented by MHC class II molecules. However, the antigen specificity for the 

suppressive action of Tregs is controversial. While several studies suggest Tregs suppress 

in an antigen-restricted manner in vitro and in vivo (32-34), others report that Tregs do 

not require specific antigen-TCR interaction for suppression of Teff proliferation (35, 36). 

We demonstrate that while remodelling of the extracellular environment by Tregs is 

antigen-dependent it is not antigen-specific. These results are consistent with the 

observations of Vignali and coworkers who have shown that Tregs can suppress Teffs 

derived from mouse strains with distinct antigen specificities (35). Hence, Tregs might 
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harbor constitutive suppressive activity and mediate redox remodeling via a bystander 

suppression mechanism.  

 Recent studies by Sakaguchi and coworkers demonstrate an essential role for 

CTLA-4 in immunosuppression by Tregs (1, 10). Foxp3, a transcription factor needed for 

Treg function regulates CTLA-4 expression. Addition of anti-CTLA-4 antibody or 

disruption of the CTLA-4 gene in Tregs blocks Treg suppression and causes a variety of 

autoimmune diseases (10, 37). We showed that Treg-mediated redox remodeling is both 

contact- and CTLA-4-dependent. Administration of anti-CTLA-4 antibody blocked the 

Treg effect on Cysex, GSHex, GSHin and γ-GCS expression, suggesting that CTLA-4 

plays an important role in several aspects of redox remodeling by Tregs. By interacting 

with CD80/CD86 on DCs, Treg-derived CTLA-4 triggers several signaling pathways in 

DCs including activation of IDO expression and induction of the Foxo3 transcription 

factor (27-29). Tregs down-regulate CD80/CD86 costimulatory molecules on DCs to 

restrain the maturation and antigen presenting capacity of DCs (38, 39).  

We found that GSH synthesis in LPS-stimulated DCs is down-regulated by Tregs, 

which is consistent with lower GSH extrusion by DCs and consequently, lower Cysex 

generation via the γ-glutamyl cycle. The regulatory crosstalk between Tregs and APCs 

has been extensively investigated. Since Foxo3 is activated via CTLA-4 signaling and 

Foxo3 is a sensor and regulator of redox signaling (29, 40), a potential link between this 

transcriptional factor and the -glutamyl cycle merits investigation. 

The maintenance of GSHin levels requires the availability and transport of cysteine, 

the amino acid that limits GSH synthesis. Since cysteine is easily oxidized to cystine in 

the oxidizing extracellular milieu, the concentration of cysteine in the plasma is much 
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lower than of cystine (41). However, the cystine transporter activity in naïve T cells is 

very low compared to the cysteine transporter activity (42), thus making them dependent 

on APCs to meet their cysteine needs (2, 9, 12). DCs express the xc
- cystine transporter, 

and import cystine efficiently, stimulating Cysex accumulation during T cell activation (9, 

12). This response is inhibited by Tregs at multiple levels including cysteine consumption 

and its preferential oxidation to sulfate. However, the in vivo significance of this 

competitive mechanism for diminishing Cysex is uncertain since Teff cells outnumber 

Treg cells, which represent only ~5-10% of total CD4+ T cells (3). 

GSH plays essential roles in T cell functions including DNA synthesis (15, 43). 

Perturbation of GSHin levels and the GSH/GSSG redox status dramatically affects T cell 

proliferation, DNA synthesis and cytotoxic T cell activity (44). GSHin levels also 

substantially influence T cell signal transduction pathways such as tyrosine 

phosphorylation, AP1 and nuclear transcription factor κB (NFκB) (45). Overexpression 

of B cell leukemia/lymphoma 2 (Bcl-2) results in increased GSH levels by recruiting 

GSH to the nucleus to prevent apoptosis (46). GSH is concentrated in the nucleus during 

the early stage of cell proliferation and distributed more evenly when cells reach 

confluency. GSH regulates nuclear protein functions via glutathionylation, which also 

protects protein thiols from further oxidation (24). Although our analysis of cytoplasmic 

versus nuclear GSH pools is limited by the technical challenges discussed above, at least 

qualitatively, the data suggest that GSH is concentrated in the nucleus in naïve T cells but 

is more diffusely distributed in T cells undergoing activation and proliferation. 

Progression through the cell cycle is correlated with metabolism-linked redox changes 

(47) and inhibition of GSH relocalization dynamics by Tregs might represent one 

 74



 75

mechanism of inhibition of Teff proliferation. While the significance of GSH 

relocalization from the nuclear to the cytoplasmic compartment for Teff proliferation is 

not known, it is interesting that the inhibitory effect of Tregs on GSHin dynamics is 

alleviated by exogenous cysteine added at a concentration seen under DC-T cell co-

culture conditions.  

In summary, our study reveals that Tregs deploy multiple strategies for perturbing 

the extracellular redox environment during T cell activation, affecting both DCs and Tn 

cells. Elucidation of the signaling pathways that connect Treg engagement and the redox 

metabolic responses uncovered in this study might allow identification of potentially 

novel therapeutic targets for modulating Treg functions.    



 
 
Figure 3.1 Antigen-dependent but antigen-nonspecific Treg-mediated redox 
remodeling. DCs were co-cultured with Tn cells (1:4) or with Tn+Treg cells (1:4:2) in 
the presence of 1 µM OVA323-329 antigen or 1 µg/ml anti-CD3 antibody. (A) Tregs 
suppressed Cysex accumulation regardless of OVA323-329 antigen or anti-CD3 antibody 
activation. (B) Tregs increased the extracellular cysteine/cystine redox potential in an 
antigen-dependent manner. (C) Addition of exogeous cysteine abrogated Treg 
suppression of Teff proliferation, which was antigen-dependent. (D) Treg suppression of 
Cysex accumulation is not antigen specific. DCs were co-cultured with Tn cells (1:4 ratio, 
both from DO11.10 mice) in the presence of 1 µM OVA323-329 antigen. Tregs from 
DO11.10, BALB/c and CD1 mice were added separately to the DC-Tn co-culture, and 
the [Cys]ex was measured. [Cys]ex is expressed as percentage of the concentration in DC-
Tn cell co-culture medium. Data represent the mean ± SD of four (A, B) and two (C, D) 
independent experiments each performed at least in duplicates. * P<0.05; ** P<0.005; NS, 
not significant; two-tailed Student’s t-test.  
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Figure 3.2 Contact and CTLA-4 dependent redox remodeling by Tregs. (A) DCs 
were co-cultured with Tn+Treg cells (1:4:2) or with Tregs placed in the upper chamber of 
a transwell (tw). In another experiment, Tregs were first activated by DCs in the presence 
of 1 µM OVA323-329 and IL-2 (20ng/ml) and then cultured in the transwell. [Cys]ex is 
expressed as a percent of the concentration in untreated DC-Tn cell co-culture medium. 
(B) DCs were co-cultured with Tn cells (1:4) or with Tn+Treg cells (1:4:2) ± anti-CTLA-
4 antibody (100 µg/ml). Data represent mean ± SD and are representative of 3 
independent experiments performed in duplicate. * P<0.05; ** P<0.005; NS, not 
significant; two-tailed Student’s t-test.   
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Figure 3.3 Tregs interfere with GSH synthesis by DCs. DCs were treated with LPS 
(100 ng/ml) and cultured ± Tregs (1:2) and ± anti-CTLA-4 antibody (100 µg/ml).  [Cys]ex 
(A) and [GSH]ex (B) were measured by HPLC. (C) [GSH]in was measured by HPLC and 
normalized to protein concentration. (D) Western blot analysis of the expression of γ-
GCS in DCs. β-actin was used as a control for equal loading. Data represent mean ± SD 
(A, B and C) and are representative of 3 independent experiments (A-D). * P<0.05; ** 
P<0.005; two-tailed Student’s t-test. 
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Figure 3.4 Fate of cysteine in Tregs and Teffs. (A) Tn and Tregs were activated by 
irradiated splenocytes (1:3) in the presence of 1 µM OVA323-329 antigen for 72 h. IL-2 (20 
ng/ml) was added for Treg activation. Activated Teffs and Tregs (2 x 106 each) were 
incubated with [35S]-cysteine (1 µCi/ml) in T cell medium containing 50 µM cysteine for 
24 h. [35S]-cysteine remaining in the medium and its incorporation into intracellular 
protein and GSH and extracellular sulfate were determined. (B) Tn and Tregs were 
activated by DCs (2:1) in the presence of 1 µM OVA323-329 antigen for 48 h and separated 
from DCs. [35S]-cysteine and cystine in the medium and its incorporation into protein, 
GSH and sulfate were determined. Data are representative of three (A) and two (B) 
independent experiments. * P<0.05; NS, not significant; two-tailed Student’s t-test. 
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Figure 3.5 Tregs block relocalization of nuclear GSH into cytoplasm in Teffs during 
T cell activation. (A) Confocal microscopy images of GSH localization in T cells during 
72 h of T cell activation. T cells were co-cultured with DCs for 0, 6, 24, 36, 48, 72 h and 
separated from the co-culture by gentle pipetting and centrifugation. Cells were then 
stained with CMFDA for GSH (green), Hoechst 33342 (blue) for nuclei and imaged by 
confocal microscopy. (B) Quantification of the nuclear:cytoplasmic GSH ratio from 
experiment shown in panel A (n=4). The nuclear:cytoplasmic GSH ratio is represented as 
the total CMFDA intensity in each compartment. (C) PKH-26 pre-labeled Tn cells (red) 
were co-cultured with DCs in the presence or absence of Treg cells (1:4:2) ± 50 µM 
cysteine for 24 h. T cells were separated and stained with CMFDA (green) and Hoechst 
33342 (blue) to label GSH and nuclei, respectively. Yellow arrows indicate Tregs. (D) 
Quantitative analysis of the nuclear:cytoplasmic GSH ratio shown in panel C (n=3). * 
P<0.05; ** P<0.005; two-tailed Student’s t-test.  

 80



 

Figure 3.6 Model showing mechanism of Treg-mediated redox remodeling. 
Interaction of CTLA-4 on Tregs with CD80/86 on DCs triggers signaling in DCs that 
inhibits GSHin synthesis. Tregs also compete with Teffs for cysteine uptake under in vitro 
conditions. These two processes decrease the Cysex pool. Limiting the cysteine pool not 
only decreases the [GSH]in in Teffs, but also blocks GSH relocalization into the 
cytoplasm, thus inhibiting T cell activation and proliferation.  
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Chapter 4 
 

Differential Dependence on Cysteine from Transsulfuration versus Transport 
during T Cell Activation 

 

4.1 Abstract 

The synthesis of glutathione, a major cellular antioxidant with a critical role in T 

cell proliferation, is limited by cysteine. In this study, we have evaluated the 

contributions of the xc
- cystine transporter and the transsulfuration pathway to cysteine 

provision for glutathione synthesis and antioxidant defense in naïve versus activated T 

cells and in the immortalized T lymphocyte cell line, Jurkat. We show that the xc
- 

transporter while absent in naïve T cells, is induced after activation, releasing T cells 

from their cysteine dependency on antigen presenting cells. We also demonstrate the 

existence of an intact transsulfuration pathway in naïve and activated T cells and in Jurkat 

cells. The flux through the transsulfuration pathway increases in primary but not in 

transformed T cells in response to oxidative challenge by peroxide. Inhibition of the 

transsulfuration pathway in both primary and transformed T cells decreases cell viability 

under oxidative stress conditions.   
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4.2 Introduction 

T cells play important roles in innate and adaptive immune responses and their 

dysfunction due to excessive sensitivity to self-antigens or to deficiency, are associated 

with pathologies. Redox modulation has emerged as a key strategy in regulation of T cell 

functions (1, 2). Glutathione (GSH), a major cellular antioxidant and a cysteine reservoir, 

is an important component of redox signaling pathways and plays an essential role in T 

cell function. An increase in intracellular GSH levels is needed for the proliferative 

response of T cells to mitogens and antigens (3). Perturbation of intracellular GSH levels 

and the GSH/GSSG redox status dramatically affects DNA synthesis, T cell proliferation 

and the cytotoxic T cell response (4, 5). 

Low cysteine levels allow activation of NFκB-dependent transcription in the early 

G1 phase of the cell cycle whereas in the late G1 and S phases, IL-2-dependent cell 

proliferation is correlated with higher cysteine/glutathione levels (6). GSH depletion 

restricts cell cycle progression from the G1 to S phase (7). Cysteine, the limiting amino 

acid for GSH synthesis, can be obtained from metabolism through the transsulfuration 

pathway, or via transport. The ASC system imports cysteine whereas the xc
- antiporter 

uses the transmembrane glutamate gradient to drive import of cystine into the cell where 

it is subsequently reduced to cysteine (Fig. 4.1). The xc
- cystine transporter is composed 

of two subunits, the transmembrane xCT light chain, which houses the transporter 

activity and the regulatory extracellular 4F2 heavy chain (8). In the extracellular 

compartment, cysteine exists predominantly in its oxidized form and the concentration of 

plasma cysteine (10-25 μM) is significantly lower than of cystine (100-200 μM) (1).  

Naïve T cells reportedly lack the xc
- transporter and are thus metabolically 
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dependent on antigen presenting cells (APC) for meeting their cysteine needs during 

activation and proliferation (9-11). Endowed with the xc
- transporter, APCs take up 

cystine, and using a convoluted metabolic route involving conversion to GSH followed 

by its secretion and cleavage, furnish extracellular cysteine for uptake by T cells (11). 

GSH levels in APCs influence T cell response patterns with low GSH favoring a Th1- 

over a Th2-associated cytokine secretion pattern (12). The contribution if any, of the 

transsulfuration pathway, which converts methionine to cysteine, to redox metabolism in 

naïve T cells is not known. Methionine is an essential amino acid that is converted via the 

methionine cycle to homocysteine. Two enzymes in the transsulfuration pathway, 

cystathionine β-synthase (CBS) and γ-cystathionase, convert homocysteine to cysteine, 

and play a quantitatively significant role in supplying cysteine needed for GSH synthesis 

in several cell types (13, 14).  

In the present study, we have evaluated changes in the transsulfuration pathway and 

the xc
- system during transformation of naïve T cells to the activated state. We 

demonstrate using metabolic labeling and pharmacological inhibition studies, the 

presence of an intact transsulfuration pathway in both naïve and activated T cells and in 

Jurkat cells. We find that the expression of xCT is induced upon T cell activation 

weaning T cells off their metabolic dependence on APCs. Under oxidative stress 

conditions, the transsulfuration pathway is upregulated in naïve but not transformed T 

cells while its inhibition enhances cellular susceptibility to death in both naïve and 

transformed cells. 

  

4.3 Materials and Methods 
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4.3.1 Mice and cell lines  

Male BALB/c mice (7-10 weeks) were obtained from the Jackson Laboratory (Bar 

Harbor, ME) and maintained in pathogen-free animal facilities at the University of 

Michigan. The University’s Committee on Use and Care of Animals approved the 

protocol for animal handling used in this study. Jurkat cells were obtained from ATCC 

(Manassas, VA). 

4.3.2 Isolation and preparation of murine primary cells  

CD3+ T lymphocytes were prepared from lymph nodes and spleen that were 

harvested and mashed. T cells were enriched by negative selection on T cell columns 

(R&D Systems, MN) as per the vendor’s protocol (15). For in vitro activation, as isolated 

naïve T cells were suspended in RPMI media containing 2.5% heat-inactivated fetal 

bovine serum (FBS), 2 mM L-glutamine, 1x penicillin/streptomycin (Invitrogen), 50 µM 

2-mercaptoethanol (T cell medium) and incubated with either anti-CD3 + anti-CD28 

antibodies (eBiosciences) or with anti-CD3 antibody + dendritic cells or irradiated 

splenocytes (as APC, 1:4 ratio) for 48-72 h. Following incubation, activated T cells were 

separated from APCs by gentle pipetting and T cells were collected by low speed 

centrifugation at 200 x g for 10 min at 4˚C. Activation of T cells was assessed by 

monitoring the activation markers CD25 and CD69 by flow cytometry (Fig. 4.2). 

Numbers inside panels indicate the percentage of naïve and activated CD3+ T cells 

positive for CD25-FITC and CD69-PE.  

Dendritic cells were obtained from femurs and tibias removed from adult male mice 

and the bone marrow were flushed out with Ca2+- and Mg2+-free phosphate buffered 

saline (PBS). Red blood cells were lysed with ACK buffer (Lonza, Walkersville, MD). 
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Bone marrow cells were plated at 2-5 x 106 cells/ml in a 250 ml flask (total 15 ml) in 

DMEM supplemented with 100 µg/ml penicillin/streptomycin, 2 mM L-glutamine, 50 

µM β-mercaptoethanol, 1 mM pyruvate, 1:100 nonessential amino acids, and 10% heat-

inactivated FBS (dendritic cell medium). Recombinant murine granulocyte macrophage 

colony-stimulating factor and recombinant murine interleukin 4 (R&D systems), at 20 

ng/ml each, were added on day 0. On days 2 and 4, the culture medium was replaced with 

dendritic cell medium supplemented with cytokines, and floating cells were discarded. 

On day 7, cells were collected with accutase (eBioscience) to harvest adherent cells and 

centrifuged, the pellet was resuspended in fresh dendritic cell medium and used in T cell 

co-cultures as APCs. 

4.3.3 Cell culture conditions  

Jurkat cells were cultured in DMEM media containing 10% FBS, 2 mM L-

glutamine and 1x penicillin/streptomycin (Jurkat media). To activate Jurkat cells, phorbol 

12-myristate 13-acetate (PMA) was added to the culture medium at a final concentration 

of 100 ng/ml for 48 h. PMA was washed out and cells were incubated with fresh culture 

medium at the start of the experimental treatment. Naïve or pre-activated T cells were 

cultured in T cell medium and at the indicated time points, an aliquot of the medium was 

collected for extracellular cysteine, cystine and glutamate measurement, rapidly frozen 

and stored at -80˚C until further use. To measure the intracellular thiol concentration and 

to estimate flux through the transsulfuration pathway, naïve or activated T cells were 

incubated with 2 µCi/ml L-[35S]-methionine (specific activity of 1175 Ci/mmol, Perkin 

Elmer) in the presence or absence of 2.5 mM propargylglycine (PPG) for 6 or 12 h. The 

final concentration of L-[35S]-methionine was 2 nM and final specific activity, 20 
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µCi/µmol. To measure the effect of oxidative stress on the transsulfuration flux, the same 

experiments were repeated except in the presence of 20 µM and 100 µM t-BuOOH for 

naïve and activated T cells respectively. At the indicated time points, cells were washed 

with ice cold PBS, harvested and frozen at -80°C until further use.  

4.3.4 Metabolite analysis  

Samples for analysis of extracellular cysteine, cystine and glutamate were prepared 

by mixing conditioned media with an equal volume of metaphosphoric acid solution and 

the precipitated proteins were sedimented by centrifugation at 13,000 x g for 10 min at 

4ºC. Protein-free extracts were alkylated with monoiodoacetic acid, derivatized with 2,4-

dinitrofluorobenzene solution and analyzed via HPLC as previously described (13, 15). 

The concentration of metabolites in the control medium was subtracted from the final 

values. Intracellular GSH and [35S]-methionine incorporation into GSH were quantified 

as described previously (13, 15). The intracellular values were normalized to the protein 

concentration in each sample.  

4.3.5 Western blot analysis  

T cells (naïve or activated T cells) and Jurkat cells were harvested and lysed on ice 

as described previously (14). Antibodies against methionine synthase, CBS, xCT (Novus), 

γ-glutamylcysteine ligase (γGCL, Lab Vision) and actin (Sigma) were used to monitor 

expression of the respective protein antigens and detected using the Dura 

chemiluminescent horseradish peroxidase system (Pierce) as per the vendor’s protocol.  

4.3.6 [14C]-Cystine uptake assay  

Naïve or activated T cells (2 x 106) were incubated with 0.1 μCi/ml, [14C]-cystine 

(250 mCi/mmol, Perkin Elmer,) in the presence or absence of 500 μM sulfasalazine (SAS) 
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for the indicated times. The final concentration of [14C]-cystine was 400 nM and the final 

specific activity was 0.5 µCi/mmol. Cells were collected, washed 3 times with ice-cold 

phosphate-buffered saline and then lysed with 400 μl of 500 mM NaOH. Scintillation 

cocktail was added and total intracellular [14C] radioactivity was recorded. Data were 

normalized to cell number. 

4.3.7 Cell viability assay  

Cells were incubated with the indicated concentrations of tertiary butyl 

hydroperoxide (t-BuOOH) in the presence or absence of 2.5 mM PPG for 12-14 h. Cell 

viability was determined by incubating the cells with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide dye (0.5 mg/ml) followed by washing, solubilizing in 

dimethylosulfoxide and reading the optical density at 553 nm.  

4.3.8 Statistical analyses  

Comparison between groups was done using the Student's t test. P < 0.05 was 

considered to be statistically significant.  

 

4.4 Results 

4.4.1 The xc
- transporter is induced during APC-independent activation of T cells 

While T cells depend on APCs for their cysteine needs (9, 11), it is known that T 

cells can be activated ex vivo in an APC-independent fashion, i.e., by antibodies to the T 

cell receptor, CD3 and to the co-stimulatory molecule, CD28. This raises the obvious 

question as to how cysteine needs are met under these activation conditions. To assess the 

involvement of the xc
- transporter in cystine uptake, we used Western blot analysis to 

monitor expression of the xCT subunit in naïve and anti-CD3/anti-CD28 activated T cells. 
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As reported previously (16), xCT expression was not detectable in naïve T cells, but was 

highly induced in activated T cells (Fig. 4.3a). 

To evaluate whether induction of xCT is correlated with a functional difference in 

cystine transport in activated but not naïve T cells, we measured the kinetics of cystine 

consumption. During incubation with anti-CD3 and anti-CD28 antibodies, T cells 

progressively consume increasing amounts of cystine and accumulate cysteine in the 

extracellular compartment (Fig. 4.3b), consistent with the induction of the xc
- transporter. 

Cysteine accumulation plateaued after 48 h at which time extracellular cystine 

concentration was very low. 

4.4.2 The xc
- transporter is induced during APC-dependent activation of T cells 

Next, we examined whether xc
- expression is also induced in T cells activated in the 

presence of dendritic cells and anti-CD3. We found that xCT was strongly induced after 

48 h of incubation (Fig. 4.4a). We focused the remainder of the study on APC-activated T 

cells. 

4.4.3 Cystine/glutamate exchange is mediated by the xc
- transporter  

We compared the kinetics of [14C]-cystine uptake in naïve versus activated T cells. 

Under these conditions, activated T cells showed a time-dependent increase in 

intracellular radiolabel accumulation (Fig. 4.4b), which was sensitive to inhibition by 

SAS, an inhibitor of xc
- (Fig. 4.4c). In contrast, negligible uptake of radioactivity was 

observed with naive T cells. Since, xc
- is an antiporter that exchanges cystine 

stoichiometrically with glutamate, we assessed extracellular glutamate levels in the 

conditioned media from activated T cells cultured following their separation from APCs. 

Under these conditions, activated T cells showed a time-dependent increase in 
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extracellular glutamate levels, which was sensitive to SAS treatment (Fig. 4.4d,e). Naïve 

T cells do not export glutamate and the basal concentration in the culture medium (~100 

μM) is unchanged over a 24 h incubation time (Fig. 4.4d).  

4.4.4 The endogenous transsulfuration pathway is a source of cysteine for GSH in 

naïve T cells  

Since naïve T cells do not express xc
-, we wondered whether the endogenous 

transsulfuration pathway is a source of cysteine needed for GSH and other biosynthetic 

purposes in these cells. To test this, we measured the transfer of radioactivity from [35S]-

methionine to GSH in the presence and absence of PPG, a suicide inhibitor of -

cystathionase, the second enzyme in the transsulfuration pathway (Fig. 4.1). The 

transsulfuration pathway is clearly intact in both naïve and activated T cells as evidenced 

by the incorporation of radiolabel from [35S]-methionine into GSH and its inhibition by 

PPG (Fig. 4.5a). Radiolabel incorporation in naïve cells was inhibited to ~50% and ~33% 

of the untreated values at 6 h and 12 h respectively by PPG. In activated T cells, 

accumulation of radioactivity in GSH was less sensitive to PPG inhibition.  

The 100% increase in [35S]-labeling of GSH in naïve T cells between 6 and 12 h was 

accompanied by an ~40% increase in GSH concentration during the same time period 

(Fig. 4.5b). The GSH concentration was higher at 6 h in activated compared to naïve T 

cells and increased only marginally (~12%) at 12 h. We examined the expression of some 

key regulatory enzymes in sulfur metabolism: methionine synthase, CBS and γ-glutamyl-

cysteine ligase in naive and activated T cells. While methionine synthase expression was 

unchanged, activation was accompanied by increased expression of CBS and γ-glutamyl-

cysteine ligase (Fig. 4.5c).  
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4.4.5 T cells activate the transsulfuration pathway upon peroxide challenge 

Mammalian cells are known to upregulate flux through the transsulfuration pathway 

upon oxidative stress conditions and, in the short term, increase GSH concentration by 

~40% (17, 18). We assessed whether the transsulfuration pathway responds similarly in 

naïve and activated T cells to peroxide challenge. For this, naïve or APC-activated T cells 

were incubated with [35S]-methionine and challenged with the indicated concentration of 

t-BuOOH in the presence or absence of PPG for 6 h and 12 h (Fig. 4.6). t-BuOOH 

treatment induced a 50% increase in radiolabel incorporation in naïve T cells both at 6 

and 12 h after stimulation, which was completely inhibited by PPG (Fig. 4.6a). Activated 

T cells showed a modest increase (~25%) in radiolabel incorporation into GSH at 6 h and 

a more sizeable increase (~65%) after 12 h of t-BuOOH exposure (Fig. 4.6b). These 

results demonstrate that T cells activate the transsulfuration pathway in response to 

peroxide-induced oxidative stress.   

4.4.6 Transformed T cells do not activate the transsulfuration pathway upon 

peroxide challenge 

Jurkat cells are commonly used as a model for T cells in laboratory experiments. 

Since the metabolism of transformed cells is often distinct from that of the primary cells 

from which they are derived, we investigated whether Jurkat cells have an intact 

transsulfuration pathway that is responsive to oxidative stress conditions. A time-

dependent increase in radiolabel incorporation from [35S]-methionine into GSH that was 

sensitive to PPG inhibition confirmed the presence of an intact transsulfuration pathway 

in these cells (Fig. 4.7a). The intracellular GSH concentration initially increased (50%) 

between 3-12 h of incubation after which it stabilized (Fig. 4.7b). The sensitivity of the 
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intracellular GSH pool to PPG, which diminished to ~50% and ~30% of control values at 

12 and 24 h respectively, indicated that between 50-70% of the cysteine used for GSH 

synthesis is derived via other routes. The presence of the xCT subunit of the cystine 

transporter as detected by Western blot analysis (not shown) suggests that Jurkat cells can 

derive cysteine from imported cystine. Unlike primary T cells, the transsulfuration 

pathway in Jurkat cells is unresponsive to peroxide stress as evidenced by the lack of 

increased radiolabel incorporation (Fig. 4.7c) and decreased intracellular GSH upon t-

BuOOH exposure (Fig. 4.7d).  

PMA-activated Jurkat cells also showed a time-dependent increase in radiolabel 

incorporation from [35S]-methionine into GSH (Fig. 4.7e) albeit the extent of 

incorporation was considerably lower than in unactivated cells (Fig. 4.7c). As with 

resting Jurkat cells, the transsulfuration pathway in activated Jurkat cells was 

unresponsive to oxidative stress, at least for the first 12 hours following peroxide 

treatment. Thereafter, a ~45% decrease in radiolabel incorporation into GSH was seen 

between 12-24 h (Fig. 4.7e) although the intracellular GSH pool size decreased only 

marginally over the same time period (Fig. 4.7f). This suggests that cysteine derived from 

some other source, possibly transport, might be responsible for maintaining intracellular 

GSH concentrations under these conditions. 

4.4.7 Transsulfuration pathway blockade increases T cell susceptibility to oxidative 

stress-induced cell death 

Since the transsulfuration pathway is important in many cell types for cysteine 

provision especially under oxidative stress conditions, we compared the viability of T 

cells exposed to varying concentrations of t-BuOOH in the presence and absence of PPG 
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(Fig. 4.8). Both naive T cells and Jurkat cells are significantly more susceptible to 

peroxide-induced cell death (LD50= 35 μM and 42 μM respectively) than activated T cells 

(LD50= 240 μM). Inhibition of the transsulfuration pathway increased the sensitivity of 

all three cell types (LD50= 21 μM, 32 μM and 150 μM for naïve, Jurkat and activated T 

cells, respectively).  

 

4.5 Discussion 

The requirement for a reducing extracellular microenvironment for T cell activation 

and proliferation has been suspected from their dependence on exogenous reductant such 

as -mercaptoethanol added to the culture medium (19). The basis of this dependence has 

been ascribed to the inability of naïve T cells to efficiently transport cystine, the oxidized 

form of the amino acid that is relatively abundant in circulation. More recent studies have 

demonstrated that APCs, especially dendritic cells, provide the extracellular reducing 

milieu to facilitate an immune response (9, 11). In the present study, we demonstrate that 

during APC-independent activation of T cells by anti-CD3 and anti-CD28 antibodies, 

cystine uptake and extracellular cysteine accumulation, hallmarks of APC metabolism 

during activation, are observed. This begs the obvious question as to what is the primary 

sulfur metabolic status of T cells, i.e., what pathways exist for provision of cysteine 

needed for GSH and other biosynthetic needs in naïve cells and what routes for cysteine 

acquisition are added upon activation. To address these questions, we have characterized 

the transsulfuration pathway in naïve and activated T cells, its contribution to GSH 

homeostasis and antioxidant capacity under oxidative stress conditions and the induction 

of the xc
- transporter system that leads to APC independence. We also compare the sulfur 
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metabolic status of Jurkat cells, a transformed cell line that is widely used as an 

experimental model system for T cells. 

Activation of T cells is accompanied by up-regulation of pathways of nutrient 

uptake, ATP production, macromolecule synthesis and programs T cells for proliferation 

(20). We show that xCT, the catalytic subunit of the xc
- cystine transporter, is highly 

expressed in T cells activated in an APC-dependent or independent manner, but is not 

detectable in naïve T cells. Earlier studies have shown that the mRNA levels for xCT are 

very low in naïve T cells, whereas both xCT mRNA and protein are expressed in 

dendritic cells (10, 11, 21). Mice with homozygous disruption of the xc
- transporter (xCT-

/-) exhibit redox imbalance in the plasma, with high cystine and low GSH in comparison 

to xCT+/+ mice. Embryonic fibroblasts from xCT-/- mice fail to survive in culture unless 

supplemented with cysteine derivatives or antioxidants (22). Enhanced xCT activity in 

astrocytes increases GSH synthesis and protects neurons from oxidative stress (23). 

Expression of xCT is regulated by Nrf-2 (nuclear factor erythroid 2-related factor-2), 

which binds to the antioxidant response element (24) in response to oxidative stress. 

Although the mechanism of transcriptional induction of xCT during T cell activation 

awaits elucidation, it is possible that an initial pro-oxidant response during T cell 

activation leads to the transcriptional activation of xCT.  

Clearly, in the absence of xc
-, T cells must obtain cysteine needed for protein 

synthesis and for maintaining GSH at the levels seen in naïve cells from elsewhere. One 

such avenue is the transporter for cysteine. In T cells, cysteine uptake is mainly mediated 

by the sodium dependent ASC system (for alanine, serine and cysteine) (25). The cystine 

transport activity is extremely low in resting T cells compared to the cysteine transport 
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activity. When T cells are activated, both cystine and cysteine transporter activities are 

up-regulated, with the cystine uptake rate still being lower than the cysteine uptake rate 

(25).  

Another route for provision of cysteine is the transsulfuration pathway whose 

presence in T cells is controversial. Human lymphoid cell lines from normal subjects but 

not from a cystathionuric patient with γ-cystathionase deficiency, were able to convert 

[35S]-homocysteine to [35S]-cysteine, consistent with the presence of the transsulfuration 

pathway (26). However, other studies using the PCR and flow cytometry techniques 

reported that T cells lack γ-cystathionase and concluded that these cells lack the 

transsulfuration pathway (16, 27). Using a sensitive metabolic radiolabeling method, we 

confirm the presence of an intact transsulfuration pathway in naïve and activated T cells 

as well as in Jurkat cells (Figs 4.5 and 4.6). The transsulfuration pathway is estimated to 

contribute ~50% of the cysteine in the GSH pool in hepatoma cells lines and in 

macrophages (13, 14). Our studies demonstrate the quantitative significance of the 

transsulfuration pathway to GSH homeostasis in T cells where inhibition by PPG caused 

a ~35%, ~25% and ~50% decrease in GSH concentration within 12 h in naïve, activated 

and Jurkat T cells, respectively. Furthermore, increased flux through the transsulfuration 

pathway is observed under oxidative stress conditions in primary T cells and represents 

an autocorrective response for rebuilding antioxidant capacity, i.e., regaining the GSH 

pool size compromised by oxidizing conditions. However, even in the absence of 

increased flux through this pathway, its importance to the cellular capacity for countering 

oxidative stress is exemplified by the decrease in LD50 for peroxide in all three cell types 

treated with the transsulfuration inhibitor, PPG (Fig. 4.8).  
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The transsulfuration pathway and the xc
- transporter play important roles in several 

settings of intercellular communication. For example, the transsulfuration pathway is 

induced during monocyte differentiation and plays an important role in intracellular 

killing of mycobacteria (14). Inhibition of the transsulfuration pathway during 

mycobacterial infection allows bacteria to proliferate in the hostile environment of the 

host. Redox signaling between astrocytes and T cells endows astrocytes with a 

neuroprotective phenotype (15) and blockade of the xc
- transporter is detrimental for this 

phenotype. Immunosuppression of auto-reactive T cells by regulatory T cells involves 

interference with extracellular cysteine accumulation by dendritic cells (11).  

Since naïve T cells have the capacity for cysteine synthesis via the endogenous 

transsulfuration route, why then are they dependent on APCs for provision of cysteine 

during activation? We posit that the key role for APC-derived extracellular cysteine 

might be to create a reducing microenvironment needed to facilitate inter- and intra-

cellular signaling. The cysteine/cystine redox couple is an important redox buffer and is 

considered to be an important indicator of the extracellular redox poise (28). Human cells 

in the culture maintain an extracellular redox potential of ~-80 mV, which is associated 

with growth arrest/differentiation. This value is similar to the plasma cysteine/cystine 

redox potential in young healthy adults (29). More negative redox potential values favor 

cellular proliferation whereas more positive values favor cell death. Hence, cysteine 

accumulation by APCs is instrumental for fashioning a reductive shift in the extracellular 

microenvironment that is conducive for subsequent T cell proliferation. In addition to 

remodeling of the extracellular redox potential, it is possible that flux through the 

transsulfuration pathway is insufficient for meeting the cysteine needs of T cells that 
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receive activation signals, which eventually leads to an increase in cell size in addition to 

triggering proliferation. The relative importance of APC-derived cysteine for 

extracellular redox remodeling versus supporting intracellular biosynthetic needs, awaits 

further investigation.  
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Figure 4.1 Glutathione homeostasis in T cells by the xc
- transporter and the 

transsulfuraton pathway. PPG, SAS, and azaserine are inhibitors of γ-cystathionase, the 
xc

- transporter and the neutral amino acid transporter ASC, respectively. CBS, CSE and 
GCL denote, cystathionine β-synthase, γ-cystathionase and γ-glutamylcysteine ligase, 
respectively. This figure was prepared by Sanjay K. Garg. 
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Figure 4.2 Upregulation of activation associated markers on T cells surface. Naïve 
and dendritic cell-activated T cells were stained with anti-CD25-PE and anti-CD69-FITC 
or the corresponding isotype controls and analyzed by flow cytometry. Numbers inside 
the boxes indicate percentage of CD3+ naïve and activated T cells positive for CD25-
FITC and CD69-PE. 
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Figure 4.3 T cells induce the cystine transporter during activation. (a) xCT 
expression increases upon activation of T cells by anti-CD3/anti-CD28 antibodies. Cell 
lysate from either naïve T cells or T cells activated by anti-CD3/anti-CD28 antibodies for 
6, 24 and 72 h were subjected to immunoblotting and probed with anti-xCT antibody. 
Actin is shown as an equal loading control. (b) Naïve CD3+ T cells were incubated with 
anti-CD3 and anti-CD28 antibodies and the concentration of cystine and cysteine were 
measured at the indicated time points. Data are representative of 2 (a) and 3 (b) 
independent experiments performed in triplicates (b). Zhonghua Yan and Sanjay K. Garg 
performed the experiments together in figure 4.3a. Sanjay K. Garg performed the 
experiments in figure 4.3b. 
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Figure 4.4 Activated but not naïve T cells mediate cystine/glutamate exchange via xc
-. 

(a) xCT expression increases upon activation of T cells by dendritic cells. Cell lysate 
from either naïve T cells or T cells collected from a dendritic cell and T cell co-culture 
were subjected to immunoblotting and probed with anti-xCT antibody. Actin is shown as 
an equal loading control. Naïve (b,d) or activated (b, c, d, e) T cells were incubated with 
0.1 μCi/ml [14C]-cystine in the presence or absence of 500 μM SAS (c, e) for the 
indicated times. An aliquot of the medium at indicated times was removed for glutamate 
analysis (d, e) and cells were collected for intracellular radioactivity measurement (b, c). 
For this, cells were collected in a tube, washed 3 times with cold phosphate-buffered 
sailine and then lysed with 400 μl NaOH (500 mM). Scintillation cocktail was added and 
total intracellular [14C] radioactivity was recorded and normalized to the cell number. 
Data are shown as mean ± SD and are representative of 2 (a, b, e) and 3 (c,d) 
independent experiments performed in duplicates. * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 
0.001. Sanjay K. Garg performed the experiments in figure 4.4b-e. 
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Figure 4.5 The transsulfuration pathway is intact in both naïve and activated T cells. 
Naïve (gray) and activated  (black bar) T cells were incubated with 2 µCi/ml L-[35S]-
methionine in the presence or absence of 2.5 mM PPG for 6 and 12 h. At the indicated 
time, cells were harvested and radioactivity incorporation in GSH (a) and the intracellular 
GSH concentration (b) were measured and normalized to protein. Data are shown as 
mean ± SD and are representative of 3 independent experiments performed on different 
batches of cells. Statistical analysis using Student t-test revealed significant changes in 
intracellular GSH synthesis and radioactive labeling over time in both naïve and activated 
T cells and its inhibition by PPG. * p ≤ 0.05, *** p ≤ 0.001 and ns=not significant. Panel 
c shows the comparison of expression level of CBS, methionine synthase, γGCL (heavy 
subunit) between naïve and activated T cells via Western blot analysis. Zhonghua Yan 
and Sanjay K. Garg performed the experiments together in figure 4.5a, b. Sanjay K. Garg 
did the experiments in figure 4.5c. 
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Figure 4.6 Peroxide stress activates the transsulfuration pathway in both naïve and 
activated T cells. Naïve T cells (a) ± 20 µM t-BuOOH (gray bar) were incubated with 2 
µCi/ml L-[35S]-methionine ± 2.5 mM PPG. Activated T cells (b) ± 100 µM t-BuOOH 
(gray bar) were incubated with 2 µCi/ml L-[35S]-methionine ± 2.5 mM PPG. At the 
indicated time, cells were harvested and radioactivity incorporation into GSH was 
measured and normalized to protein concentration. Data are shown as mean ± SD and are 
representative of 3 independent experiments performed on different batches of cells. 
Statistical analysis using the Student t-test revealed significant changes in intracellular 
radiolabeling upon t-BuOOH treatment and inhibition by PPG.  *p ≤ 0.05,  **p ≤ 0.01, 
and ***p ≤ 0.001. Zhonghua Yan and Sanjay K. Garg performed the experiments 
together in figure 4.6a, b. 
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Figure 4.7 Jurkat cells have an intact transsulfuration pathway that is unresponsive 
to peroxide stress. Resting Jurkat cells (a-d) or PMA-activated Jurkat cells (e-f) were 
either untreated (a, b) or treated with 10 µM t-BuOOH (c, d, e, f) and incubated with 2 
µCi/ml L-[35S]-methionine ± 2.5 mM PPG as described under Methods. At the indicated 
time, cells were harvested and radioactivity incorporation into GSH (a, c, e) and the 
intracellular GSH concentration (b, d, f) were measured and normalized to protein 
concentration. Data are shown as mean ± SD and are representative of 3 independent 
experiments performed in duplicates. Statistical analysis using the Student’s t-test 
revealed a significant time-dependent increase in intracellular GSH synthesis and 
radiolabeling in Jurkat cells and inhibition by PPG.  *p ≤ 0.05,  **p ≤ 0.01, ***p ≤ 0.001, 
ns=not significant. 
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Figure 4.8 Blockade of the transsulfuration pathway enhances T cell susceptibility 
to oxidative stress-induced cell death. Naïve (a) or activated (b) T cells or Jurkat cells 
(c) were incubated with the indicated concentrations of t-BuOOH ± 2.5 mM PPG for 12-
14 h. Cell viability was determined as described under Methods. Data are shown as mean 
± SD and are representative of at least 2 independent experiments performed in 
duplicates. 
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Chapter 5  
 

Conclusions and Perspectives 
 
 

5.1 Summary of findings 

Activation and proliferation of T cells require a reducing extracellular 

microenvironment in the immune synapse that is provided by antigen presenting cells, 

especially dendritic cells. Stimulation of dendritic cells by T cells activates the NF-B 

pathway in dendritic cells and induces an antioxidant response. It also enhances system 

xc
--dependent cystine uptake, leading to increased GSH synthesis, export, and finally, 

degradation to cysteine outside the cell. Accumulation of extracellular cysteine supports 

GSH synthesis in T cells while also leading to a more reducing redox potential that is 

needed for T cell proliferation.  

Naturally occurring regulatory T cells, a suppressor sub-population of T cells, 

prevent autoimmune diseases and maintain peripheral tolerance by suppressing self-

reactive effector T cells. They also suppress beneficial immune responses to parasites, 

viruses, and tumors. However, their mechanism of suppression is still not fully 

understood. Here, we have demonstrated that inhibition by regulatory T cells of dendritic 

cell-induced extracellular redox remodeling is a component of the regulatory T cell 

suppression mechanism. Suppression of DC-dependent T cell proliferation by regulatory 

T cells is correlated with a significant diminution in extracellular cysteine concentration 

and is abrogated by addition of exogenous cysteine. We demonstrated that regulatory T
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cell-mediated redox perturbation is antigen-dependent but not antigen-specific, is CTLA-

4-dependent, and requires cell-cell contact. Regulatory T cells decrease expression of γ-

glutamylcysteine synthetase, the rate-limiting enzyme for GSH synthesis, leading to 

lower intracellular GSH synthesis in LPS-stimulated DCs. Additionally, regulatory T 

cells might contribute to restricting extracellular cysteine accumulation by a competitive 

uptake mechanism, and they partition cysteine more proficiently to the oxidation product, 

sulfate, while effector T cells divert more of their cysteine pool towards protein and GSH 

synthesis. By interfering with the extracellular cysteine pool, regulatory T cells not only 

decrease the intracellular GSH levels in effector T cells, but also block GSH 

relocalization into the cytoplasm, thus inhibiting T cell activation and proliferation. 

Furthermore, the decrease in the extracellular redox potential during T cell activation is 

associated with an increase in the levels of cell surface thiols in both DCs and T cells, 

which is diminished in the presence of regulatory T cells.  

We also investigated the role of the xc
- cystine transporter and the transsulfuration 

pathway in the regulation of GSH homeostasis in T cells and in the defense against 

oxidative stress. The xc
- transporter is absent on naïve T cells, but up-regulated during T 

cell activation. We showed the existence of the intact transsulfuration pathway in naïve 

and activated T cells and the Jurkat T lymphoma cell line. The flux through the 

transsulfuration pathway increases in T cells under oxidative stress conditions. Inhibition 

of the transsulfuration pathway increases the vulnerability of T cells and Jurkat cells to 

oxidative cell death.  

 

5.2 A general mechanism of Treg suppression 
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In this thesis, we report a novel mechanism of regulatory T cell suppression of 

effector T cell activation and proliferation by modulation of the extracellular redox 

environment (1, 2). In contrast to naïve T cells, co-culture of regulatory T cells with DCs 

does not affect extracellular cysteine concentration. However, regulatory T cells suppress 

cysteine accumulation in the extracellular compartment when added to co-cultures of 

DCs and naive T cells. As a consequence, both intracellular (diminished GSH levels in T 

cells) and extracellular (diminished cell surface thiol labeling on T cells and on DCs) 

perturbations in the redox status result (3). Remarkably, although regulatory T cells are 

known to mediate their suppressive functions by multiple strategies, provision of a single 

reagent, i.e., exogenous cysteine at concentrations seen under DC-T cell co-culture 

conditions, alleviates inhibition of T cell proliferation (3). This observation begs the 

question as to whether redox regulation serves as a master switch in the multipronged 

suppressive action of regulatory T cells. 

We posit that the redox changes in the intra- and extra-cellular compartments 

influence one or more of the well known regulatory T cell suppressive mechanisms. For 

instance, the anti-inflammatory cytokine IL-10, has antioxidant properties (4), and TGF, 

a multifunctional cytokine, is redox regulated (5). Activation of latent TGF requires 

reductive cleavage of a disulfide bond that links it to the latency-associated peptide, but 

over-reduction leads to formation of inactive TGF monomers. Thus, activation and 

inactivation of TGF are subject to redox control, and dynamic changes in the 

extracellular redox milieu might be important for regulating TGF activity (6). 

Furthermore, granzyme A, the cytolytic T cell protease, cleaves redox factor 1 (Ref-1), 

which in turn enhances cell death (7). Regulatory T cells induce indoleamine 2, 3-
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dioxygenase in DCs, which catalyzes the oxidative catabolism of tryptophan (8). The 

tryptophan metabolites generated from the kynurenine pathway by indoleamine 2, 3-

dioxygenase, which inhibits T cell proliferation, are redox active (9). Subtle changes of 

the extracellular redox status may cause the functional changes of these redox sensitive 

proteins, which affects T cell activation and proliferation. Regulatory T cells need to 

modulate the extracellular redox status for these molecules to work in a proper redox 

microenvironment. Thus, redox control may be integral to regulatory T cell mediated 

suppression mechanisms and is more pervasive than previously recognized.  

Furthermore, extracellular redox remodeling is utilized by other cell types such as 

myeloid-derived suppressor cells and B cells to modulate immune responses as well (10). 

Myeloid-derived suppressor cells are induced by tumor cells from myeloid progenitor 

cells to suppress the anti-tumor immunity (11). One mechanism they use to suppress T 

cell activation and function is by consuming cystine and limiting cysteine availability. 

These myeloid-derived suppressor cells express high levels of the xc
- transporter to 

uptake cystine but do not export cysteine, which makes a cystine and cysteine deficient 

microenvironment inhibiting T cell proliferation (10). During B cell differentiation into 

plasma cells, ROS levels increase initially followed by an antioxidant response, including 

induction of antioxidant enzymes and accumulation of small molecular weight thiols (12).   

Thus, thiol-mediated redox modulation has emerged as a key regulatory strategy for the 

regulation of adaptive immune responses.  

 

5.3 Future directions 
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It has long been known that T cell activation and proliferation require a reducing 

milieu, which is shaped primarily by the metabolic activity of antigen presenting cells, 

especially DCs. Interactions of DCs with naïve T cells stimulate cystine consumption and 

cysteine accumulation in the extracellular space, which produces an extracellular redox 

potential suitable for T cell proliferation (3, 13). A more reducing extracellular redox 

potential is reflected in the increased T cell surface thiol status (3). Isotope-coded affinity 

tag (ICAT) coupled to mass spectrometry is being employed to identify the redox-

sensitive cell-surface thiols on T cells (14). Our preliminary study using Jurkat cells in 

the presence and absence of N-acetyl-cysteine (NAC) identified about 60 membrane 

proteins showing redox sensitivity. Examples of the potential redox sensitive membrane 

proteins that were identified in this preliminary study include CD5, CD45, and annexin 

A2. CD5, which contains several cysteine-rich domains, is highly expressed on T cells 

and upregulated upon strong activation (15). CD45 is shown to be a redox sensitive 

protein tyrosine phosphatase, controlling the production of cytokines (16). Annexin A2 is 

a substrate of Trx and involved in the processing of plasminogen (17). These redox-

sensitive membrane proteins are potential targets for extracellular redox regulation during 

DC-T cell interaction. The effects of redox status change on the function of these redox 

sensitive proteins and on T cell biology, i.e., activation and proliferation, remain to be 

elucidated. Identification and characterization of redox sensitive proteins on DCs and T 

cells will shed light on potential pharmacological targets to modulate immune responses. 

Accumulation of extracellular Trx1 has been observed under DC-T cell co-culture 

conditions. The role of extracellular Trx1 in T cell activation and proliferation is also an 

interesting topic to be studied. Despite the antioxidant role of intracellular Trx1 in 
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maintaining the cytosolic redox environment, a reductive role for extracellular Trx1 is 

quite controversial. Many studies suggest cytokine/chemokine-like functions for 

extracellular Trx1 in immune and cancer cells. Extracellular Trx1 exhibits 

proinflammatory effects by stimulating cytokine release and proliferation of lymphocytes 

(18, 19). It also exhibits a chemotactic effect, inducing migration of neutrophils, 

monocytes and T cells (20). However, several recent studies suggest the role of 

extracellular Trx1 in reducing disulfide bonds on cell surface membrane proteins. 

Matthias et al. showed that reduction of the CD4 glycoprotein by Trx1 secreted by 

effector T cells facilitates the entry of HIV-1 (21). Using the mechanism-based kinetic 

trapping method, CD30 was found to be the main interaction partner for extracellular 

Trx1 on the surface of lymphocytic cell lines (22). More recently, extracellular Trx1 was 

shown to activate the classical transient receptor potential (TRPC) channel by breaking 

the disulfide bridge in TRPC5 (23). Thus, the extracellular Trx1 accumulated in DC-T 

cell co-culture may change the redox status of T cell surface proteins such as CD4 and 

CD30, which influence T cell activation and proliferation. T cells play a central role in 

the pathogenesis of rheumatoid arthritis. Extracellular concentrations of Trx1 are highly 

elevated in the serum and synovial fluid of rheumatoid arthritis patients, which makes it a 

good biomarker for the disease activity of rheumatoid arthritis (24). However, the role of 

extracellular Trx in rheumatoid arthritis is unclear. We therefore can consider a role for 

extracellular Trx in regulating T cell surface thiol status, thus affecting T cell reactivity 

and arthritis development.  

The greater availability of extracellular cysteine influences the intracellular 

antioxidant capacity within T cells since cysteine limits GSH biosynthesis. Consequently, 
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intracellular GSH levels rise and in turn, influence T cell signal transduction pathways 

and gene expression. The choreography of GSH localization and the GSH/GSSG redox 

potential changes during T cell activation, and their correlation with the onset and 

operation of signaling pathways and cell cycle progression await elucidation.  

Modulation of the extracellular redox microenvironment induced by DC and T cell 

interaction by regulatory T cells, could be mediated by one or more mechanisms. For 

instance, by limiting cysteine availability, regulatory T cells deprive effector T cells of a 

building block needed for protein and GSH synthesis. Alternatively, by perturbing the 

redox environment, regulatory T cells can have both indirect effects by enhancing other 

suppressive mechanisms used by them (as discussed above) and direct effects on T cell 

activation and proliferation targets, which are sensitive to the redox potential and the 

redox status of key signaling proteins. Many questions remain to be addressed regarding 

how regulatory T cells inhibit reductive remodeling by DCs. For instance, how do 

regulatory T cells modulate the redox environment and redox signaling in vivo? Is there a 

connection between the mechanism for perturbing redox remodeling and Foxp3 

expression, and what is the extent of cross-talk between the other suppressive 

mechanisms and redox remodeling? And finally, what is the physiological relevance of 

the redox remodeling mechanism in normal and disease states? The answers to these 

questions will help illuminate the biology of regulatory T cell suppressive mechanisms 

and identify potential therapeutic targets. 
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