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I. INTRODUCTION AND BACKGROUND

1.1 Consistently Based and Mixed Based Number Systems

A finite number system is a set of n-tuples of integers. These
elements of the n-tuples are called the digits and they correspond to the
n-moduli of the system. The term modulus as used in this dissertation
refers to the cardinality of the digit set. The cardinality of the number
system with moduli my, mp, ..., my 1is equal to iil m; . If there is a
mapping of this system onto the integers 0, 1, 2, ..., M-1 (denoted here-
after as Zy ), then the system is said to represent Zy , and M is said
to be the range of the system. Clearly the range M must be less than or
equal to iﬁi m; , in order that all integers in Zy may have a representa-
tion in the system. Such systems are sald to be complete.

For a consistently based system, since m =1y = ...=m =7r,
the range M 1is equal to r® . If the digit weights P1s» Pos +e+y P, B8re
such that Py = ri-1 » then the system can represent Zy for M= r non-
redundantly. This is not the only possible set of digit weights, but it is
the set normally encountered in practice.

In contrast, a residue number system must have moduli My, Mpy eeoy iy
that are pairwise relatively prime in order that the system can have a range

n

M =_Hi m; . The residue number systems are classified as weighted, since
1=

weights P1s Pos «++y P, can be attached to the corresponding moduli in

such a way that (xl, Xpy eeey xn) represents an integer erM if and only
if
n
X = .Z Xi pi (l'l)
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Since 1e€Zy must have a representation of the form (Cl’ Coy srey cn),

Zejpy

cieZmi in the system,

Ve 1 , which implies (pl, Pos ++vs Pp» M) = 1.

This is a necessary condition for all weighted systems. If leZM has a

representation (1, 1, ..., 1), as in the system of residue classes
n A

% pi| =1 , then any x€Z is represented by

i=1 M M

(Xl, Xy oo ) (1.2)
where Xy = lemi .

1.2 p-Matrix or Weight Matrix

Rozenberg ) , in his work on the "Algebraic Properties of Residue
Number Systems," has shown that the residue system is a pseudo-vector
space or an R-space, since the system obeys the axioms of a vector space
except for the uniquenesé of representation with respect to the generator
elements. Also the scalars here are integers instead of field elements
as required for a vector space. For a weighted system with modull
Myy Doy eeny My which are pairwise relatively prime, and P1s Pos wees By

the corresponding weights, the nxn array or matrix of the form

[ 1
P11 P12 =+ Pln
P22 PP ¢ o o o P2n
°m Ppo = v v ¢ Pin

where pij = lpilmj , is called the p-matrix or weight matrix. It is shown that
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the row elements of the p-matrix are the generators of the weighted system
and also span the R-space. In a non-redundant system of residue classes,

(or in the residue system in which Q, 1, ... l) represents l), we have

pif, . =
5

1]
O
-
e
T
e
-

and the p-matrix is an Identity Matrix. For a general residue systém, the
p-matrix is diagonal with the diagonal element satisfying (pii, mi) =1 .

It is shown in Rozenberg's paper that a sufficient condition for
a non-redundant system is that the p-matrix be triangular (or can be made
triangular by row and column permutation) and the diagonal elements satisfy
(pii, mi) =1, for 1i=1,2, ..., n. However, the necessary condition was
not established. Such systems with triangular forms are residue related systems.
An important one in that category is a mixed base system with conventional

carry propogation.

1.3 Finite, Non-redundant Number System Weights

For a general non-redundant weighted system using any set of n
moduli, the necessary and sufficient conditions are given by Garner's

theorem(6). These conditions are



b

for some ordering of the moduli My, Moy evey My o
Using these conditions for a special case of pairwise relatively
prime moduli, it is shown that the p-matrix is triangular, and (pii’mi) = 1.

Unfortunately, the p-matrix cannot be constructed similarly when the moduli

are not relatively prime.

1.4 Relation Between Digit Weights and Triangular Forms

For a system with any set of n moduli, the structure could be
expressed by the relations between the digit weights Pys Pos wes Py and
the range M . There exist n independent relations between the variables

P1s Poy «e+s Py and M . This set of relations gives rise to the rules for

carry generation. As an example, consider a consistently based system,
i-1

having all my; =T and weights py, Pps s Pp where Py =T . This
system has the n independent relations as below.
v 0 o0 .o Je. ] o]
n
-1 r 0. .. 0 Pp-1 0
O "l I’ ° O
= (mod M = %)
0 0 0. . .-1 r 0
— i B B B

The (nxn) matrix above gives the carry propagation rules, and
is called the carry matrix. For a residue system with moduli

Myy Doy eeey My, the relations are given by



my 0 O....0 P 0]
o) 0. 0
mp Py 0 |
0 0 I - . 0 = (mod M).
__O 0 0O ¢« sm Py _-O_

Since there are no carries between digits, the (nxn) carry matrix
above is appropriately diagonal. The triangular form of carry matrix is the
crucial property of non-redundant systems. Triangularity means that the
carries are propagated in one direction, and an ordering on the moduli is
possible. Also, the termination of carries is guaranteed once they are
propagated up to the highest ordered digit. In contrast, the carry matrices
of redundant systems need not be triangular and thus a more elaborate
arithmetic process is expected. Another complication associated with
redundant number systems is the tranformation of equivalent representa-
tions to the preferred representation. This is the canonical reduction

problem.



II. FINITE NUMBER SYSTEMS: LINEAR AND NON-LINEAR CATEGORIES

2.1 A Finite Number System

Here we define the concept of a number system which heretofore
has been left to the intuition of the reader. A number system could well
be considered as a method of representing or assigning names to the inte-

gers.

Let a system N , be a cartesian product of n digit sets.

N = Dl bid D2 X oo X Dn
where

Dy =10, 1, «ou, my-1f

and is called the i-th digit set and my ‘the i-th modulus. Then N will
be called a number system if
1) .N is closed under addition:
X, y€N<::>:x + yel  (closure law)
2) J 0eN such that x + 0 = 0 + x = x (identity).
It will be proved later that, in addition to the above two,
the other axioms of an abelian group are obeyed by non-redundant linear

number systems.

3) 4 a mapping w : N -Z, and v is a function of the
n variables, such that w(x+y) = w(x) + w(y) (mod M)
for all x, yeN .

This function, which we will call hereafter the weight function, is the

most significant property of the number system and is the major factor

determining the arithmetic and carry properties of N . We will observe

-6-



further that the division of number systems into different categories is
based on this function. The following definitions,* which are quite
familiar, are included as a basis for further discussion on number systems.

Definition 1. A number system N (obeying the three axioms stated above )

is complete &= w 1is onto Zy . This is to say that for all anM s
J x eN such that w(x) =a .
n
Also M > Imj&=> N is incomplete.

Definition 2. N is a redundant system &=»x,yeN such that x + y and

The above two definitions can be combined to obtain the lemma:
Lemma 1. A number system is complete and non-redundant <> w is an
isomorphism.

This lemma permits the seperation of number systems into

redundant and non-redundant tyres.

2.2 Fundaméntal Definition of Linearity

Definition 3. N 1is said to be a linear system if and only if w 1is a

linear function of n variables, the coefficients coming from ZM .

Definition 4. A number system N is weighted é:>nj pieZM for

i=1,2, ..., h such that for any x = (xl, cooy xn)eN
wix) = igl P1X4 . The weight function for weighted systems is a linear
homogeneous funct?on. |

Thus all the weighted systems are linear. However, not all

linear systems are weighted. The two examples is Section 2.3 illustrate

the above statement.

*
Definitionsl, 2, and 4 are made by Garner in his earlier work.



2.3 Non-weighted Codes

Before we go into the advantages of weighted and non-weighted
systems, we shall examine the weight functions w of some non-weighted
codes. Given below is a table of representation of the code known as
excess three representing ZlO(Nl ~>Z1O) , and the four-bit reflected
binary code for Zl6(N2 "Zl6> . It is well known that the excess three
code has the advantage over the binary coded decimal system (which is
linear homogeneous) in that the 9's complement is obtained by interchang-
ing O's and 1's. The advantage of the reflected binary code is that it
is a unit distance code. Thus any single digit error causes a change of
one in magnitude. We shall show that the weight function of the excess
three code is linear and non-homogeneous, and that of the reflected binary
code is non-linear.

Let 1§ and Ny be two non-redundant number systems representing
ZlO and Zl6 respectively.

Let the weight functions Nl —aZlO and Ny —aZl6 be defined
as shown in Table I.

Both of these mappings are (1-1) and onto, and hence for all
X, YeN , we have

1

X+ Y =vw" [w(Y) + w(X)]

This shows closure under addition. The existence of an identity element
is obvious.
We can easily find that the weight function for the excess three

code is such that for
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TABLE T

REPRESENTATIONS FOR CODES N, AND Ny

Excess Three Code Ny

210 X) Xz X5 Xy
0 0 0 1 1
1 0 1 0 0
2 0 1 0 1
3 0 1 1 0
L 0 1 1 1
5 1 0 0 0
6 1 0 0 1
I 1 0 1 0
8 1 0 1 1
9 1 1 0 0

Four-bit Reflected Binary Code Np

3Z16 X) x3 Xp Xy

2 0 0 1 1
.3 0 0 1 0
L 0 1 1 0
5 0 1 1 1
6 0 1 0 1

8 1 1 0 0

9 1 1 0 1
10 1 1 1 1
11 1 1 1 0
12 1 0 1 0
13 1 0 1 1
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X = (Xl, LOYREY Xy,)
_ 53 2 _ )
w(X) =2 X, + 2%, + 2x5 +X% -3,
where the coefficients 25, 22, 2, 1, M -3 are in Zy - Thus w 1is a
non-homogeneous linear function on the variables Xh’ ceey Xl'

However, for the reflected binary code, the function w is not

so straightforward to obtain. From Table I we have that

W(O) 0, O, O) = 0,
W(O) 0, 0, l) = 1 = Py
W(O) 0, 1, O) = 3 = 02:
W(O) 1, 0O, O) = 7T = 93:
w(l, 0, 0, 0) =15 = p
For an n-bit code
W(O) O) 00y O,ﬂl, O, ...O) = 21 - l = pi
1th place.

Next we denote the weight function for the n-bit reflected binary code
as fn . Taking note of the alternate negation in the weights of the
digits in the positions where 1l's are present, we can write as below:

In the case of a 1l-bit code

1 =w(X) =X =X,

and for a 2-bit code

"

fo = (X, X)) = Xppp + Xpp) - 2XpXyp)

Xopp + (1 - 2X,)T
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For a 3-bit code

fz = w(x3, Xp, X1)

= X5p5 + X0, + lel - 2X5X2p2 - 2X2lel - 2X5lel + AXBXQlel

= Xg05 + (1 - 2%) (ppp + (1 - 2%,)%,0p)

= Xgp3 + (1 - 2X3)f2 .
Then
f), = w(Xu, cee, Xl)
= an)_‘_ + (1 - 2X}+)f3
and

fo=w(Xy, «ovs Xq)

= Xppp + (1 - 2X)f, 1

nPn

J

Xpep + (1 - 2Xn>Xn—lpn-l +(1- 2Xn)Xn—Epn-E
+’.""'..

+ (1 - 2Xn)(l - 2% ¢) ... (1 - 2X5) %101 , (2.1)
which is clearly a non-linear function of order n .

2.4 Digitwise Sum

In a non-redundant system (w is a (1-1) mapping), the addition

in N is defined by w . This is because
w(X +Y) = |w(x) + w(Y)|M
for all X, YeN
x+7Y) = wi[lwX) + w(Y)lM]

-1
and w is (1-1) and, ZM is an additive abelian group, so is N .
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An important property of all linear homogenous systems is that for all

X, YeN
w(X+Y) = W(xl + Y1s Xp F Yps eees Xn + ¥y) (2.2)

This is trivial if X, +y; < mi forall i=1, ..., n. In which case

X +Y = (Xl +Y1s Xp t Yoy eeey X+ yn)eN . But when for any

i, x{ +y; >m , then (X7 + yy, ..., X, + yy )N . However, (2.2) still

holds.

w(X) = |x .+ annlM

1P+ *2Po
W(Y) = [ylpl + y2p2 + .0 ynpn‘M

w(X+Y)= w(X) + w(Y)

(%) + y1) pp + oor + (xg + yn)pnlM
= W(Xi t YLs eees X{ F Yoy eees Xy + V)

Conversely let

W(Xl; Xg) ey Xn) + W(Yl: Yos ey yn)

= w(xl + Yy eees Xt yn).

n

Then replacing y; =0 for 1=1, 2, +v., n , we get

W(Xl’ X2’ oy Xn>+W(O, O’ ey O)=W<Xl+o, l."x +O)

n

= W<Xl: Xny eey Xn)
Therefore,

w(0, 0, vv., 0) =0 .
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Also for any integer a ¢ Iy

w(axl, Xy, veey axn) = w(xl, Xpy veey xn) ol # fol’ Xpyeeny X
. Y
a times
= aw(xl, Xpy vees Xn)

Let

W(0, 0y vuuy X4y wea, 0) = £i(x4) ,
then fi is a homogeneous function on x; .
Since W(O, ceey X4 + Yis eoes O) = fl<Xl) + fi(yl) 3
fi is a linear homogeneous function on X5

w(xy, X0, +ov, %) = w(xy, 0, .., 0) + w(0, xp, X3y veny Xp)

= w(xl, Oy .., 0) + w(0O, X5y Oy «evy 0) +w(0, O, Xzy +oes xh)

- w(xy, 05 vovy 0) +W(0, x5, 0, vuv, O) + vt + x(0, ..., x,)
= igi fi<Xi) ’
Where f; 1s a linear homogeneous function of x; , for
i=1,2, .0, n .
Therefore w 1is a linear homogeneous function on n variables
X135 Xpy eeey Xpo

Thus we have proved the following:

n

)
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Theorem 1.
N is a linear homogeneous system with a mapping w:N -aZM if

and only if w satisfies the digitwise sum rule given by (2.2).

In the excess three code N; , which is non-homogeneous

X = (x, %55 Xp) %)
Y o= {3y v30 Yoo ¥y)
w(X) = BXM + MxB +2x, X -3
w(Y) = 8y + byg + 2y, +yy -3
(x+Y) = w(X) +w(Y) = 8(x+yy) + h(x5+y5) + 2(xptyp) + (x9+y1) -3 -3

W(Xh + ¥y, Xz + Y31 %p t Ypr Xy * yl) - 3,

Thus

w(X+Y) # w(xh + Yy, X3 + Yz Xp +t Yo, Xq yl)

In the reflected two-bit binary code (N, —Z)

X = (XE’ xy)
Y = (yp, ¥p)
w(X) = 5x2 + Xy - 2X2Xl
w(Y) = 5¥5 ¥y - 2¥o¥q

(/\Xx+y)

w(X) +w(Y) = 3(xp +yp) + (x94y7) - 2 (%% +yo¥1)
% W(Xg + Yo, X1 F Yl)
In linear homogeneous systems, we proved that digitwise addition

can be carried out. If any digit sum is > the corresponding modulus,

then the result is not in the number system. Conventionally this is taken
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care of by carry generation and assimilation. For a general weighted
number system, the carry generation and assimilation process is charac-

terized later by using the theory of modules.



ITI. THEORY OF MODULES OVER INTEGERS

In this chapter the concepts of free module, submodule and
quotient module are presented. The theorems of module theory relevant
and necessary for our study of weighted number systems, are stated here.
In Section 3.2, similarities are examined between the structures of a
non-redundant weighted system N , and a quotient module g/S over
integers. This leads to the concept that the quotient module g/S ,
where the submodule S of ¢ 1is constructed from the carry generation

rules of N , stands as an abstract model for N .

3.1 Algebraic Preliminaries

Iet Z Dbe the set of all integers. Algebraically, Z satis-
fies the axioms of a ring, integral domain and also an Euclidian domain.

Let & be n tuples of integers of the form (xl, Xpy ey xn),

xiGZ . Let addition in ¢ ©De defined as follows:
x = (X7, X0, «vu, Xp)
v o= (y1r ¥ps eees ¥p)

Xty = (X) + Y, Xp + Ypy eees X+ ¥)

Let scalar multiplication of xe€t by any integer ae€Z Dbe defined as

a(xl, Xy weey X ) = (axl, 8Xp) +eey 8X ) .

n n

If ¢ satisfies the axioms of an abelian group (the axioms Al
to A5) with respect to addition, and the mapping of Z x ¢ -»¢ called scalar
multiplication obeys the axioms ML to M4 and GlL , then ¢ 1is called
a module over Z , or a Z-module.

-16-
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(Al) X + yet
(A2) x + (y+w) = (x+y) + w
(A3) x+y=y +x > for all x, y, wet

(A4) 4 o€t such that x + 0 = x

(A5) J x'et such that x + x'= Q__J

(M) a(bx) = ab(x)

() alx +y)

ax + ay
~ for all x, yet¢ and a,beZ

[t}

(M3) (a + b)x = ax + bx

(M) 1x = x

J—

(Gl) There exists a set {el, €y vens en} ; ejet  such that

for any wet , there exist integers Wis Wpy eeey Wy

such that w

n
igl wies . The set {el, €0y srey en} is

called the generator set.

In connection with the above axioms Al to A5 , ML to M4 ,
and Gl , it must be pointed out that (1) a module need not necessarily
be defined over integers. A general definition of a module can be over
any ring with an identity. And (2) a module is a generalization of a
vector -space in that (1) a vector space is defined over a division ring
and more often over a field, and (ii) a module may not have a basis. If
a module has a basis, then it is called a free module. For a module to

have a basis, the axiom Gl must be replaced by a strengthened form, G2 .

(G2) There exist a set {el, €y eevy en} e; €t such that for

any wet can be written in one and\only one way in the
=

form wyeq + woep + ... + wpe, for some Wi €2 .
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It is now possible to observe that & as defined above is a free module
having a basis {el, s wees en} , Where e, = (0, 0 veey, 0, 1, 0, vu., O).
forall i=1,2, ..., 0 & i-th place

Definition 5. If C is a subgroup of & and for all seC ,

a€Z & aseC , then C is said to be a submodule.

From the above definition, the totality {x} of multiples ax
of the fixed element x in £ and for all a€Z 1is a submodule generated
by x . Also, C = {cl, Coy esey ck} is the submodule generated by the
set ¢y, Co, «+., Cx, cy€€ . For all x€C == x = 2 ajcy for some aj €z .
In this connection, a well-known = theorem stated and proved in standard

textbooks of modern algebra will be stated as follows.

Theorem 2.
If ¢ 1is a free Z-module with a basis of n elements, then any
submodule C of ¢ 1s also free and has a basis of m< n

elements.

Definition 6. ¢ 1is a free Z-module and if C is a submodule, then the

quotient group g/C satisfies the axioms of a module over Z . Thus,
g/C is a Z-module, called the quotient module or difference module.
The foliowing notation will be used hereafter for the modules
£, C and ¢/C :
(1) e =2 x Z X ... xZ

~/
n terms

and the basis {el, €ny +eey en} e; = (O, ...;11, veey 0)d
i-th place
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(2) A submodule C with k generators cy, cp, ..., Cis Cq€t
is written as C = {cl, Cos wees Ck} where
n
cy = j§ ¢y 585 i=1,2, ..., k (3.1)

and written as (Cil’ CiDy voey Cin) with respect to the basis

(el, €0y ceuy en) . Hence, the submodule C can be written as a

(k X n) matrix

C = {cl, Coy veey Ck} =

€11

(3) t/C 1is denoted as

Z + Z + ... + Z

Any (kxn) matrix over integers represents a submodule generated by

——

the k rows of that matrix, and each of the rows are an element of the

module ¢' with respect to the basis {el, €Dy caey en} . If

{f1, fo, «.., £} 1is another basis in t such that

n
e, = ,Z . T, for i=1,2,...,n

i 7 531 MigTd

the right multiplication of C by the (nxn) matrix p gives

respect to the new basis (fy, fp, ..., £,) of

3

(3.3)

with
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By considering the change of basis from (fl, f2’ vevy fn) to

(el, €y ey en) , another (nxn) matrix up' can be obtained such that
ppn' = identity matrix. Thus, p and u' are both invertible and so
must have determinant =+ 1 . Similarly, it can be shown that a change

of basis of the submodule can be effected by a left multiplication of C
by a (kxk) invertible matrix. We still have the same submodule but the
basis for representation of the submodule is different. Also, the row

representation is altered by a new basis of ¢ . Hence we may state the

following.

Theorem 3.

If C is a (kxn) matrix over integers representing a sub-
module of ¢ , then C' = uCv also represents the same sub-
module with respect to a different basis in £ where u is

a (kxk) and v an (nxn) invertible matrices over Z .

By definition we shall use the term equivalence for (kxn) matrices if
there exists u , v as defined above such that C' =uCv . If C 1is

an (nxpn) matrix, then the absolute values of determinants C and C!
are equal, since the invertible matrices have determinants equal to

+ 1 . Also we need the following important theorem.

Theorem 4.
If C is a (kxn) matrix with elements in Z , there exists
a matrix C' equivalent to C which has the diagonal form

as below,
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al 0 . 0
0 25 0
0 0 . 0 0
C' =
0 0 0 0 0
0 0 0
r S k S.n

a; # 0 and ay divides a3 for 1< Jj and r 1is the row rank of sub-
module. (This is a theorem in Jacobson, Vol. 2, Chapter 3, p.79.)<LL>
The row rank of a matrix coincides with the number of basis
elements of the submodule represented by that matrix. If r =k =n,
then |det C| = |det C'| =

.

i
a.
i=1 %

Let & Dbe a Z-module with a basis {el, €y +ee en} , and C

be a submodule with a basis of n elements Ci1s5 Cpy «vsy Cp where

Ci = (Cil) Cig, 00y Cin)

with respect to (e, ep, ..., ey) . That is

n
c; = jzi cijey i=1,2, ..., n.

Then C 1is an (nxn) matrix. The diagonal equivalent matrix C' of the

Theorem 4 will be of the form

e

‘ al 0 o o OT
o = 0 8.2 o . 0
_P 0 ag—



oo

Then g/C‘ in this form can be recognized as a group with cardinality
equal to |al 8o ese cAp| . Since C 1is the same submodule as C' ,
except that the representation is with respect to a new basis, the cardi-
nality of ¢/C is also equal to ]al 8p e an! = |det Cl . Hence

we proved the following theorem.

Theorem 5.

Let & be a Z-module of basis {ej, ey, ..., e f and C be a
submodule with a basis {cl, Chs vees cn} where

n

c; = jzi c5 585 for i=1,2, ..., n

such that C can be represented as an (nxn) matrix. Then

the cardinality of the ¢/C module is equal to the absolute

valvue of the determinant C

3.2 The Number System as a Quotient Module

ILet N Dbe a non-redundant weighted system with moduli

mj, Mo, ..., My and the corresponding digit weights P17 Pos «eoy Pp o

Then
N = Dl X D2 X eee X Dn
where
Di = {O, 1, 2, ceuy mi_l}
n
and the cardinality of N =i§l m . Also (Xl’ Koy ooy xn) represents

n
[izl Xipi|M in Zy . Let the digit weights be related by the following

equations or congruences.
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—
mp) = CloPp * C13P3 + « o+ F CypPy
mspP = Chqpq + + CogPx t + ¢ ¢+ Copp
2P2 21P1 23P3 nPn
~— (Mod M) (3.4)
MpPn = CpiP1 ¥ CpoPp * Cp3P3 FetCpn 1P ¥ ]

The form of the above equations is Jjustifiable from the following. Since

the system N is closed under addition, the sum of any two elements of

N , having a digitwise sum equal to (0, 0, ..., My vees 0) , must have
an equivalent canonical form in N . Let this be (ciy, Cip, +++y Cip) -
Then 0 < cys< n, - Also if cj; # 0, then (0, O, ..., my=Cysy vvy O)
and (Cil’ Cips woer 05 wuey cin) are equal. Since N 1is non-redundant,
this is contradictory. Therefore, c;; = O . Hence we can rewrite (3.4)
in the form below.
e —_— — T
m -¢12 -+ “=Clp P1 0
Cpp M - - "Cpp P2 0
z (mod 1) (3.5)
for O < ey < m;
Cp1 %2 0 ™ Pn 0|

The (nxn) matrix in the above form will be called the carry propagation

matrix, or simply, the carry matrix of the system N . It will be shown

below that the carry matrix is identical with the submodule S , such
that it is possible to define a structure of a quotient module g/S for

N as follows.



=)
Let the i-th row of the carry matrix be Si’ i.e.

Si = (—Cil, -012’ veoy -Ci,i-l’ n'li, —Ci’i_l_l, veay -Cin>
for

i =1,2, ..., n.

Also, let s3, Sp, «..,8p be considered as elements of ¢ with respect

to the basis ey, ep, ...y epf . That is,

n
Sl = i§1 —cljej
where
Cll = "Ini °

Let the free submodule with basis {Sl’ Spy eees sn} be S . We can then
give the following definition.

Definition Y?GLet N be a weighted system with modull my, my, ..., m

and corresponding digit weights pq, pps ¢y Op with the relation on
the digit weights yielding n independent equations that can be expressed
in the form (3.4). ILet C be the (nxn) matrix of (3.5), and S be

the submodule of ¢ generated by the rows of C , then N 1is said to have

‘the structure of ¢/S .

By the above definition, if N has a structure of t/S , then
S specifies completely the carry propagation in N . This idea will be

further studied in the next section.

The quotient moduyle structure for number systems was first conceived

by R. F. Arnold, 12) who gave a similar structure to linear number
systems. The main difference in his work is that ¢ 1is a finite module
over Zy 1instead of Z .



IV. NON-REDUNDANT WEIGHTED SYSTEMS

We have discussed in the preceding chapter a quotient module
£/S structure for a non-redundant system N . While the cardinality
of N is the range M and is equal to I m; , the cardinality of g/S
is equal to the absolute value of the determinant of S . Besides the
structural similarity between the system N and its model g/S s We
will in this chapter, establish the conditions on the system, for the
existence of an isomorphism between the two.

Two theorems on determinants are derived in sec. 4.1 in order
to establish a property of the carry matrix of the non-redundant weighted
systems. This property is that the determinant of such a matrix is less
than or equal to the product of the main diagonal elements, and the

equality holds if and only if the matrix has a triangular form.

4,1 Some Useful Theorems on Determinants

Let C be a (kxk) matrix of the form shown below:

1 %12 - * CIn
Cop mp . . €2n
¢y . . m,
L— —
mj, mp, ..., Mp.are used for the principal diagonal, so that they are

easily distinguished from the rest. A diagonal permutation on C is

a column and row permutation as defined below.

-25-
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Definition 8. If i-th and j-th rows are exchanged, followed by an i-th

and j-th column exchange, then the matrix is said to be diagonally permuted.

Such row and column permutations are said to be diagonal permutations.

Diagonal permutations satisfy the following:

(1) The set of elements my, mp, ..., m; of the matrix C
remains on the principal diagonal after a diagonal
permutation and also after any number of repeated
diagonal permutations.

(2) The determinent of C 1is unaltered in sign and magnitude
by diagonal permutation.

(3) Every diagonal permutation has an inverse diagonal
permutation.

Definition 9. If a (kxk) matrix C can be made (lower or upper) tri-

angular by a necessary number of repeated diagonal permutations, then C

is said to be triangularable.

Lemme. 2. If a (kxk) matrix C 1is triangularable, then

there exists a J < k such that Cji =0 for + i,

Proof: The lemms in esgence means that there must exist a row in C in

which off-diagonal elements are zero.

— _
m  Cc1p . . Clk
Cpp Mo o . Cox

Now let C = .

k2
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Let C' be the (lower) triangular matrix obtained by diagonal permutation

on C .
m! 0 . 0
col mé 0 . 0
Then C' = .
] 1
Ckl e . ° mk

C' can also be diagonally permuted to obtain C (as the diagonal per-
mutations have inverses). The first row of C' has at most one non-zero
element. Column permutations of C' do not change the number of non-zero
elements of any row. A row permutation involving the first row (which has
at most one non-zero element) and j-th row would leave the J-th row with
one non-zero element. Hence, there will always be a row having mi on
the diagonal with that row satisfying the required condition. Since C

i1s obtained by repeated diagonal permutation of C' , C satisfies that
condition; hence, the lemma is proved.

From here on, all the matrices and determinants are over integers.

Theorem 6.

Iet C Dbe a.determinant as shown below:

M -C1p - *  C1n

-Cgl m.2 . ° —Cen

—Cnl . ° o mn
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where Cij is any non-negative integer, and my > O
for i =2,3, ..., n . Then
n

C < I ms
=40 1L

(k.1)

Proof: For n =1, 2 the theorem is true. Assume the theorem is true

for n=1, 2, ..., k-1.

Claim. Theorem is true for n =k .

my -C12 . e -Clk
“Co1 o ’ . ~Cok
C =
k1 =Cx2 . . My
k i-1

C o= omp By- D egydyy (<)
k .
= ml All+ 122 (—l>_l CilAil. ) (ll-.E)

Ny is a (k-1 by k-1) determinant satisfying the conditions of the

theorem so by the induction hypothesis

.k
bn oS ™y

K
m by £ Lm

i
If it is shown that (-1) CilAil is <0 for i1=2,3, ..., k, then

. _ i
determinant C = mléil + (-1) Ci-lAil < mléil <m my ... My

and thus proof will be complete. Therefore consider (—l)l Ciléil where
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-C12 -C13 . : -C1i . -Clk

mo -C23 . . -C21 . -Cok

32 T3 T°31 "3k
A1 = g0 i1 TCia1,i “Ci-1,k

“Ciql,2 . . %L, M “Ci+l,k

“Cx,2  ~%k3 y . “Cki : My

This minor does not have m terms on the diagonal. By shifting the i-th
column to the place of the first column, a new minor A&l is obtained
such that A = (-1)1-2 A{; . Also, the Aiy has all off-diagonal

elements negative and all terms except the first on the principal diagonal
i2

> 0 , thus satisfying the induction hypothesis. Therefore, Aﬁl = (-1) By
where
-C 4 -1 . . . “C1y
-Cpi M2 : ’ ' ~C2k
1
Al = | 7%ii1,i M1 “Ci.1,k
“Ci41,1 M1 “Ci+l,k
-Cki —Ck2 . . . mk
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From the induction hypothesis we have

Ay S -C1g Wy oeeeMyy Mgy e Ty

IA
(@)

as Cqiy, mj are all non-negative for

J= 2,3, ..., 0.

Therefore, the summation term

ey (D (DA = ey () g,

and so has the same sign as A

i
Therefore, (-1) 1181 <0 for 1 =2, ..., N Therefore determinant
C < I m,

Hence:, the theorem is proved.

Lemma 3. Let there be two determinants c¢j_1 , Dy such that

my —c1p : : -C1 k-1
- Cgl m2 ° - C2 s k_l
k-1~
k1,1 ' ' k-1
-dpy my -dp3 ' -doy
and De = B ' 3k
e - ' ' My




-31-

all
and
mi>O i=2,...,k
m;  any non-zero integer.
Then if
k-1
Ck-1 = ,ni m; =—>Ck-1 is triangularable,
1=
then
k
b = iﬂi mg =D, is triangularable,
Proof': ‘ D, = by s
m2 —d23 N -d2k
—d32 m3 . —d3k
where Ail =
'dk,l . - m,
Dk = mlAll =m mo soe My
£y o= My oo My o

All is a k-1 by k-1

determinant whose determinant is equal to the

product of the principal diagonal elements. Thus All is triangularable.

Diagonal permutation of

D, , so that Ail is triangular, would leave the

first row of Dy unaltered, (since the zeros are permuted)° Hence, we will

have a Dk in triangular form. The proof is then complete.



Theorem 7.

Let

such that all

My

if and only if D,

is any non-zero integer.
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™ =C10 “C1n
“Co1 M “Con
“Cnl ~®n2 My
Cix >0, and m;, > O for i=2, ..., k,

Then

oo =y m

is triangularable.

Proof: Let Dn be triangularable. Then let Dy be the triangular form
of D, - Therefore we have Dj =D, . Since D) 1s triangular and the
diagonal is only permuted, we have Dn = Dﬂ =m oy ... Moo Therefore,
D, 1is triangularable = D, =m mp m, .
Yet to be proved is
D, m my ... m, ——> D is triangularable.

Proof by Induction:

Induction step:

Hence, Dy

is

For n=1, it is trivial.
For n=2, my -C1o
I A
“C21 M
—> %21 €2 =0
> cpporey =0.
triangular.
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Induction Hypothesis: The theorem is true for n =1, 2, ..., k-1.

Claim: The theorem is true for n=k .

m =% “C1k
0 - o1 M2 e ‘ ~Cok
. =
Cx1 My
§ i
Dy = mAy +,4 ()7 ey =mpomy e om
my  =Cp3z -Cok
-032 m3 . -C3k
&y =
mk2 o . mk

From Theorem 6 we have A&l < mp m3 ... My and as all the terms in

this summation are negative

n .
1
may + L (1) eppdyy = ompomp ... mg

i

= A 0 for 1 =2, .., k .

and All = m2 LY mk .

From the induction hypothesis, Ail is triangularable. Hence, let Dk
be diagonally permuted so that Ay} 1is lower triangular. Now reordering

the subscripts (as My, m are all arbitrary) we have D, as shown in

Table IT.
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TABLE IT

(kxk) DETERMINENT D) , WITH TRIANGULAR (k-1 x k-1) MINCR

my -C12  -C13 . -C1k-1 Cik
-C3l -032 m3 0 O 0
Dk -
-Ck-l,l o . . mk_l 0
_Ck.l o o . N mk

If there exists a row that has all zero terms, except the diagonal element,
then we can bring that row to the top by diagonal permutation. The result-
ing determinant then satisfies the hypothesis of lemma 3, and so Dy 1is
triangularable, and the theorem will be true. Therefore, we can assume

that there does not exist in D), a row having all zéro off-diagonal

elements.

From Table II,

k : Kk

D = mbyy + iZE (-1)7 epsdyy= I m,

since
k .

Ly = 152 mi , ¢y1i&3 =0, for all 1i=2, ..., k.

Case 1: Let C1o + o,

then A12 =0 = -Coy m3 cee o my
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Since My ... W, are greater than zero, Cpy = O . This
implies that the second row has all zero off-diagonal elements., This is

a contradiction, therefore

Case 2 Let J be the smallest integer such that

Clj + 0o .
Then
Aij =0 .

Now by shifting the first column to the j-th position, we obtain

A5 in the form

my 0 0 0 . 0 -C1j5  -Clj+1 - -C1k
m2 0 0 . . —Cgl 0 . 0
-C3p m3 0 . . -c31 0 . 0
-Clo 'C43 my, 0 . -C)q 0 . 0
-Cj.1,2 mj-1 0 0
-Cj,e ° o -CJ"l O . O
. . mj+l 0 0
! 0

M

Alj = Myypee. My A' = 0 , therefore A' =0

)

where A' 1is top left Jj-1 by j-1 determinant shown within the lines.
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A <L Mo M3 My ... mj-l’(‘cj,l) .

Since mp ... mj_] are all greater than zero, we have le =0 . A' is
j=1 by J-1 matrix whose determinant is equal to the product of diagonals
with off-diagonal terms non-positive. It is triangularable, and so from
lemma 2, there is a row in Dy with zero off-diagonal elements. This

implies in Table II a row with all off-diagonal elements equal to zero.

This is a contradiction. Hence, Clj =0 . So for all j=2, ..., k,
cy1j = O . Therefore, we have a triangular form. Hence, the theorem is
proved.

4.2 Triangularity of the Carry Matrix of Non-redundant Weighted Number
Systems

Let ¢ be a free module over 7 with a basis {el, €y vrey en} s

as before and ¢ be a mapping of ¢ onto Zy such that
N €2y

oley) = o3 }>.for i=1,2, oo, n . (%.3)

Now, for any x, ye€t , let

(Xl, X2, e o ey Xn)

X

and

vy o= (¥, vpr eees ¥y)
with respect to the basis {el, €py weey en} . Then

Py X3 ’
1 1

M
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since o(x+y) = @(xl+yl, XotYpy eevy XptVp) s
olety) = |2 ey lxgyy)
i=1
n n
- 'iéi Pi%y |y ¥ |54y Py
= 9(x) + oly)
Therefore ¢ 1s a homomorphism of ¢ onto Zy - Now consider a non-
redundant number system N , with moduli my, mp, ..., m, , and digit-

weights py, pp, +..py. Then the carry relations of (3.4) are

n
m:p; = _Z [P
1Fi = i
J=1 J7d for i=1, 2 n
j*:i ) ) )
and O < cij < mj

The carry relation of (3.4) are equivalent to

(P(Cil, Cipy ooy Ci,i—l’ -mj , ci,i+l’ oy cil’l) =0

for i=1,2, ..., n.

p; has a representation (1, 0, ..., 0) €N and M-p; must

have some representation of the form (Cll’ Cips aeey Cln) eN , so that
0] S-clj < mj—l.. Since the ring sum of p; and M-p; is zero the digit-
wise sum of their representations (cll+l, C1oy seey Cln) is in N , if
c11 S_mJ—Q . This is contradictory. Therefore,

¢1 = mj-l
and

¢(my, c12, ++vy cln) = O (h.4) *
¥

This form with all non-negative entries for s; 1is important for this

i
proof and was contributed by H. L. Garner.



-38-

Therefore the carry relation between the digit weights can be written in

the modified form as below in (4.5).

- - —
m Cjp Cy3 . ' C1n P1 0
-c21  mp -cp3 . + =Cgp P2 0
o3| = | 0| (mod M) (k.5)
“°nl ~Cn2 - . ‘ my Pn 0
j S, em—— — el

where O S-cij < mj

Let the new carry matrix of (M.S) be S , and let the i-th row be denoted
as s;€ , and @(s;) =0 fori =1,2, ..., n.

The totality {asi} for €2 1is a submodule of ¢ and
denoted as {si} . The generator s; 1s minimal in the sense that no
smaller integer than m; can generate carries from the i-th digit, and
the submodule {s;f is maximal, for all i =1, 2, ..., n . Furthermore,
if the determinant of S is non-zero, then the n generators {sl,sg, ...,sn}
are independent, and they generate K , the kernel of ¢ .

Consider now a matrix S' obtained from S, by multiplying

the first row of S by -1 . Then

det. S' = - det. S .

5" has now all off-diagonal elements non-positive, and except for the

first one all diagonal elements are positive. Therefore from Theorem 6,

det. §' <-Nmy (k.6)
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So det.8' and det.S are both non-zero and this establishes the independence
of the generator set {sl, Bpy +ees sn} .

Thus S 1is identical to K .

Since @ 1s a group homomorphism of £ onto ZM y g/K is

isomosphic to ZM ; and from Theorem 5 on modules
ldet. K| = M = |det. S| (k. 7)

This is consistent with (4.6) only if det. S = M. Therefore, det. S' = -M .
Since 8' satisfies the hypothesis of Theorem 7, S' must have

a triangular form. So S also must have a triangular form. By diagonally

permuting and reordering the subscripts we can obtain a triangular form of

the carry matrix S . Thus we have proved the following important theorem.

Theorem 8.
The carry matrix of a non-redundant weighted number system has a

triangular form.

Since S and K are identical, g/S is isomosphic to ZM .
Since the non-redundant system N is also isomosphic to ZM , we have that

the system N 1s isomosphic to its mathematical model g/S .

4.3 Examples of Quotient Module Structure

Example 1
n
A conventional non-redundant n-digit decimal system, having a range M=10 |,

will have a carry matrix



“ho-

lO O . . O

-1 10 . . 0
S =

0 . . -1 10

n-2

Since the digit weights are py = 10%7%, o5 = 10775, ..., pp1 = 10, py = 1;

the digit weight relations satisfy the condition below.

— I :]—_ — -
0 0 0 . 0] 10" 0
2110 0 . "o 10%-2 0
O ‘l lO O . o
= (mod 107)
L L] lO
o 0 o0 -1 10 1 0
— J— - pu—— I

Thus the n digit decimal system can be given a structure of a quotient
module /S .

Example 2

A consistently based system of k digits with all moduli m; = r , having

a range M = rk » can be given a structure of

r 0 0 . . 67
-1 r 0 . 0
. O - l I‘ ) 1]
E/S = Z+Z 4 ..+ 2
0 0 -1 r
I —
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Example 3
A residue system with moduli 2, 3, 5, 7 (which are pairwise relatively

prime) can represent integers modulo 210. The carry matrix

0]

N
O
o

0 3 0 0

is diagonal, indicating that there are no carries generated by this
system.
The weights are p; = 105, pp = 70, p3 = 126, and pj = 120

such that the condition

> o0 0o 0] 105 "o
o 3 0 0 70 0
= (mod 210)
o 0 5 0 126 0
o 0 o0 T 120 0
| ] o |

is satisfied giving a structure of Z +7Z + Z + Z/S to the system.
Example 4
A redundant representation of integers modulo T, using three binary

digits, can be constructed as follows:
N = D, XD, XDy b, = 10,1} fori=1,2, 3.

Let the digit weights be p3 = 1, pp=2, p = L as in conventional

binary. Then the digit relations give a carry matrix



Lol

2 o0 -1
S = -1 2 0
0 -1 2

such that condition (4.8) is satisfied. That is

ER )] (0|
-1 2 0 2 = 0 (mod 7T) (4.8)
0 -1 2 1 0

N is a redundant system, since O has two representations (0, 0, 0) and
(1, 1, 1). Two properties should be noted. (1) The determinant of C = 7,

and (2) S is not triangular.



V. GENERAL WEIGHTED SYSTEM STRUCTURE AND CANONICAL TRANSFORMATIONS

5.1 Brief Introduction

The discussion here is generalized to include the redundant
number systems. Let N be a system with moduli m, My, ..., M, having
a range M<II mj - (Note: M< T m, makes the system redundant.) Since
N is closed under addition, the sum of two elements in N , having a
digitwise sum equal to (0, O, ..., my, ..., 0) , is in N and is of the
form (cy1, Cypy +evy Cyis «+vy Cip) for 0< cjj<my and for all
i=1,2, ..., n. In the non-redundant case we proved in Section 3.2,
that Ciy should be zero. But here Cyy need not be zero. Thus if
m; -cy; =c¢; for i =1,2, ..., n, the relations between the digit-

weights P1s Py +evs Py and the range M of the system can be

expressed as below in (5.1):

¢y €12 -. - -Cip Pl 0
-Cp1 C2 . «  -Cop P2 0

. z (mod M) (5.1)
“Cnl ~Cn2 - . °n Pn 0
where O < Cij < mj s for i, J = 1,2, ..., n .

The (nxn) matrix of (5.1) can be called the carry matrix as before
and the structural similarity between N and g/S , (where the submodule

S is constructed as earlier), can be established. The main difference from
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the non-redundant case is that S is different from K , the kernel of
the mapping ¢ : & — Zy . The importance of K and the basis elements
of K for understanding the arithmetic process in redundant weighted
systems will be seen later when the canonical transformation and canonical
reduction methods are dealt with. However, to make clear the distinction
of the subgroups S and K in redundant systems, the~following two
examples are provided.

Example 5

Iet N be a residue system with moduli 6 and 15. The cardinality of N
is 90. Since the moduli are not relative prime, they can répresent
integers ZM ; where M< <§, 15>> =30 . Let M be 30. Since there
are no carries generated in a residue system, the carry matrix will be

[% 6]. Assuming that (1,1)eN represents 1, digit weights can be

0 1
Py = 5, Py = 26, satisfying

6 0 5 0

= (mod 30) ,
0 15 2! 0
op +pp=5+26 = 1 (mod 30)

¢ in this example is pairs of integers, and the mapping
Q:t - Z3O is such that
@(Xl, Xp) = |5Xl + 26x2| .
30
Trivially,

9(6,0) = ¢(0,15) = 0.
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However, (6,0) and. (0,15) cannot be generators of K since

o(-2,5) = -2.5 + 5.26 = 0 mod 30 , and (-2,5) is not in the submodule
generated by (6,0) and (0,15). On the other hand, (2,-5) and (0,15)
generate K . Equally well (6,0) and (2,-5) generate K .

Example 6

Let N be a system with moduli m = mp = m3 = my = 2 representing 25

and let o, = l, p.=2,p. =22 =k, o = 3 (mod 5). Carry matrix

3

C can be written as

0 o -1 2

2 o o -1 3 o |
21 2 0 o0 L 0
z (mod 5)
O -1 2 0 2 0
o o0 -1 2 1 0
L — L —_

It can easily be seen that C 1is not equal to K = kernel ¢ where

Pt - 25 such that

w(Xl:Xg;X3)Xu) = l3xl + hxy + 2xq + Xh|5

for all x;€Z . This is because (0,1,0,1) = [0 + 4 + 0 + 1[5 =0 and

(0,1,0,1) 1is not in the space generated by the row elements of C .
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However, it can be observed that the row elements of the matrix

generate K . K certainly contains C , since (2,0,0,-1) can be

obtained readily from the rows of the K matrix. It is also inter-
esting to observe that determinant C = 15 and determinant K =5 ,
showing that g/C has cardinality 15 and g/K is isomorphic to Z5.
This example will be further investigated in later sections where the

arithmetic process in redundant systems isiexplained.

5.2 Condition on the Determinant of the Carry Matrix

In weighted systems the digit weight relations expressed in
the form of (5.1) govern the arithmetic process. Some significant

results can be obtained from the following theorem relating to the con-

dition (5.1).

Theorem 9
The n independent linear congruences expressed below as
— — T ]
c11 c12 Cln X1 0
co1 c22 c2n Xp 0
(mod M)
°nl  Cn2 ®nn Xn 0
— | | |
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have solutions x; = p; where (pl, Pps veey Py M) =1
if only M divides the determinant of the (nxn) matrix

above,

A conventional proof of the above theorem can be found in the
Appendix. A module theoretic proof will be provided here, to exhibit
the usefulness of module theory as such to weighted systems.

Proof: Consider a weighted system N with n moduli and corresponding

digit weights satisfy the linear congruences as in the theorem

—
C1iPy *+ CioPp + veenn *CipPy 2O
Czlpl + C_22p2 b R + C2npn = 0

— (mod M) (5.3)
CnlP1 * CpoP2 + venven * CpnPpn = O_ﬂ

Then from the definition made earlier, M can be a given strﬁcture of a
quotient Z-module g/S where S 1is the submodule represented by the
(nxn) matrix of (5.2).

Let @ : & - Zy be defined as in (4.3) . It is proved in
Section 4.2, that ¢ is a homomosphism and g/K is isomorphic to Zy ,
50 has cardinality equal to M .

Since S 1is a subroup of K , and g/K is a subgroup of g/S s

the cardinality of the set £/K divides the cardinality of £/S .

Therefore it is evident that M divides determinant S .

5.3 Canonical Forms and Transformations

Let N be a redundant weighted system defined as in Section 5.1.

The relations between the digit weights of N can be expressed as (5.1).
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Also let @ : £ —»Z, be defined as before in Section 4.2. Since Nct, o

M
is a mapping of N onto ZM . Define an equivalence relation ~ in N

such that

Ve, xvy &= ox) = oly) . (5.4)

This amounts to saying that all such elements in N represent-
ing any particular element in ZM are considered equivalent. Since the

mp ¢ of N is onto Z (in order that N be a complete system)

M’
there are exactly M equivalence classes in N ., Whenever these
equivalence classes contain a large number of elements, there may be a
few elements with some advantages. Some elements may have fewer 1's
(when expressed in binary coded form) than the other members of the class.
Or in certain other examples, some other interesting properties could be

sought for. In any case, such a desired form for elements in N will be

called the canonical form or canonical property. The totality of elements

in N having a canonical property is said to be a canonical subset C

A necessary condition on the canonical form is that there exist at least
one element in canonical form in each equivalence class. However, there
exists some difficulty with this setup. The arithmetic sum of two elements
in C , obtained by means of the carry transformation associated with the
rows of S may not satisfy the closure law. That is, there may be
elements Xx,yeC such that x + yeN but x + yﬁC . The additional trans-
formations necessary for putting the result in C are called canonical

transformations. Recovery of any element in an equivalence class to the

canonical form is called canonical reduction. If T is the set of all

canonical transformations, then teT must satisfy the following criterion.
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1) (V )xeN t(x)nx  or t(X) = X (mod M)
2) (J)yen, yec, t(y)eC >(5.5)
3) (Y)zec, t(z)eC

Carry transformations satisfy the above criterion, but they
are not sufficient for taking any digitwise sum into the canonical form.

The major problem of canonical reduction is finding the exact
compound transformations which take every possible digitwise sum into
canonical form. This can be obtained for any particular system by
investigation of the transformations derived from the basis or generator
elements of K 1instead of S .

Since K D S and determinant of K = M, by theorem, the basis
transformation of K must be sufficient for reducing any element of ¢
into the required form.

In particular, if the basis of K 1is triangular for the system
N , then the transformations associated with the row elements of K ,
will simplify the canonical reduction. The exact nature of the transforma-
tions can be given and the time taken for the implementation of the
| canonical reduction can be estimated. This type of system could be con-

ceived for practical use.

The following simple examples demonstrate the canonical reduction

problem and in each case the necessary canonical transformation is suggested.

5.4 Some Examples of Redundant Systems and Their Canonical Forms

Example 7T

Example 6 will be reviewed here. N is a system with moduli
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mo=my = m3 =m = 2 . N 1is a set of 16 elements, starting from

(0,0,0,0), (0,0,0,1), «.., up to (1,1,1,1), representing Zg . The digit

weights of the system are given as

pp = 1
P3 = 2
o2 = b
pp = 8 = 3 (mod 5)
Since p) I 2pp (mod 5), an end around carry exists in the system.
The set N divides into 5 equivalence classes, representing
integers 0,1,2,3, and 4 as below.
0 . 2 ER S
P00 | 00010010011 ([0100
0101 0110 011111000 1001
1010 1011 110011101 1110
1111

If we define that the canonical form has not more than a single 1
among the four bits, then there are exactly five elements in the canonical
subset C , one in each equivalence class, shown within the enclosures in
the table.

The muliplication of any two elements in C 1s carried out by

a suitable shift and the result is also in C . This multiplication is very
simple and correspondingly faster compared with a conventional binary nota-

tion. The addition of two elements in C may result in two 1l's, then the
result is not in C . A simple canonical transformation will then be

necessary. If addition of two non-zero elements in C does not generate a
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carry, a canonical transformation is necessary. If they produce a carry,
the result is already in canonical form.
One canonical transformation +t7 will replace two nonadjacent

1's by O's. It is so because
CP(J-)O:]—;O) = 0 = @(O)lyo:l)

Another transformation t2 will transform two adjacent 1l's into

zeros followed by a 1 in the next place to the right.

0110 -» 0001
1100 -» 0010
1001 - 0100

0011 - 1000

These transformations can be constructed without much difficulty,
but in view of the simple example, the desirability of the transformation
and therefore the usefulness of the code is questionable. But multiplica-
tion is far simpler than in any other known weighted code representation
for integers modulo 5.

Example 8

Let N be a residue system with moduli 6,15 and 21, and (1,1,1) be a
represeﬁtation for 1 in the system. N can represent integers modulo M
where M = Least Common Multiple of the moduli = < 6,15,21 > = 210 . It
will be shown in Section 6.2 that the following two conditions on digit

weights p1, p2, p3 have to be satisfied:
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1) 6 o o EN 0]
0 15 0 Po = 0 mod 210 .
0 0 21 P3 0 (5.6)
2) Pyt oot P3 = 1 (mod 210) .
It will be proved later in Section 6.3, that there are léé%égi 9 dif-

ferent sets of digit weights satisfying the above conditions. One of the

nine sets of digit weights is (35,56,120), as they satisfy (5.6):

6x35=15%x56z2Lx120=z0 (mod 210)

35 + 56 + 120 = 211 = 1 (mod 210)

N is a set of 6 x 15 x 21 = 1890 elements representing ZElO . The sub-
set HCN , containing all elements generated by (1,1,1), constitute the
non-redundant system representing Zpyq . The system H has interesting
error detecting properties, due to the fact that the moduli are not

relatively prime. 3 divides all the moduli 6, 15, and 21.

If YeZ,, » then Y has a representation in H as (yl, Yo» y3)

21
where
yi = ¥ (mod my) 1 =1,2,3.
= Y - aym for some integers aj
Vi - ¥y = ¥ -am - (v - agmy)
= a,m, - a,m,
Jd ii

Since 3 divides my and m; , 3 divides the ajms - ajm; so also

Vi - 3
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If the residues of H are coded in binary form, a single error
in the bits would result in a change of 1, 2, or 4, etc. Since 3 1is not
a factor of the error, it can be detected. Thus, if H 1is considered the
canonical subset of N , any single error would take it out of the canon-
ical form. Error correction could be used to put it back in its canonical
form. This particular code is obviously unsuitable for error correction,
since the error does not keep it in the equivalence class. On the other
hand, if C 1is a canonical subset, containing all the elements of the
form (Xl, X5, x3) where O < ¥ < T , then any(element in its canonical

form needs only 3 bits for each digit.

Carry transformations based on the rows of

6 0 0]
s = o 15 0
o o 21

are not sufficient for canonical reduction, since there is no way to
continue if the sum in the second or third digit exceeds 7. This is

where the canonical transformation is required.

6 o 0
If T =|-2 5 0] is the assoclated matrix of submodule T of ¢,
_O o 7
then
6 0 0| [ 35 0
-2 5 0 56| = |0 mod 210 .
__Q 0 Z_ 129J 0
Thus, if
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such that

(P(xl,xz,x3) = l35xl + 56x, + 120%3 |51

then ¢ : T >0 and TS .

It can be seen that the row elements of T provide the transfor-
mation that is sufficient for canonical reduction. However, one of the
canonical transformations involves a carry propagation of 2, iéto the first
digit, whenever the sum in the second digit exceeds 4. These canonical
transformations can also be viewed as a homomorphism of the redundant
sustem N onto a non-redundant weighted system C of moduli 6, 5, and 7.

Thus, the cardinalities of N, H and D are:

1890

Il

—~ —~
{2s] =

~—" ~—
It

210

and (¢) = 210.
Thus, if H 1s considered as a system representing Zp1g » single error
detection in H 1is possible, A mapping of N to C can be carried out
by canonical reduction based on the row elements of T .
Example 9
Consider a system N with moduli m =My = ... =my = r+l and the
digit weights P =1, Pl =Ty ceey pp = rk'% P = rk-1 representing
integers modulo rk . This system has the same set of digit weights as
a consistently based system with m; = r . The digit weight relations

satisfy the condition (4.5).
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[+ o 0 0 rk-1 0|
-1 r 0 . 0 rk-2 0
. . z (mod r¥)
o r
g
o 0o 0 . . 1 0
e > _ — .

If the submodule generated by the rows of the above square matrix
is S , then N has a structure of g/S . N is a redundant system with
cardinality = (r + l)k > 5,

Addition of two numbers in N i1s possible by carry generation
based on the structure of g/S . The increase by 1 of the moduli, can be
used to restrict the carry propagation to at most one level. On this
basis it can be said that the addition is totally parallel. Totally
parallel addition is defined to be the case when a digitwise sum produces
a carry and partial sum, the carries getting absorbed without producing
further carries. Based on this idea there are some interesting redundant

(3)

systems such as signed digit representation in which any digit can be
negative or positive, and carries or borrows can be propagated to higher
ordered digits.
- Of particular interest is symmetric signed digit representation<3)
in which each digit position can take a value from -k to +k where
2k + 1 < r + 2 . Even though the addition is complicated by canonical
reduction, the symmetric signed digit representation was shown to have
many computational advantages besides totally parallel addition.

Then preceding examples are meant to explain the arithmetic pro-

cess in redundant systems and codes. The logical advantages of these

coding methods depend largely on the canonical reduction methods.
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Although the carry assimilation and the canonical reduction can
be combined and the arithmetic operation can be obtained in one step, it
will be desirable sometimes to treat them separately. Since the coding
simplifies the carry process, which is the first stage of the operation,
it can be performed and the canonical reduction can be left for some
other convenient time. It might be possible to do canonical reduction
in parallel with other operations. In this way some time sharing tech-
niques can be used. Also redundant codes for residue number systems
can be shown to be advantageous. The other aspect of redundant systems
is error checking in arithmetic operations. This problem has been studied
and several coding methods have been suggested for consistently bésed
number systems by other researchers.(8’9> Methods of error checking in

residue arithmetic are covered in Chapter VII.



VI. REDUNDANCY IN RESIDUE NUMBER SYSTEMS

6.1 Introduction and Results

This chapter investigates the conditions for a finite,
redundant residue system using the moduli, My; Mpjyeee, My to
represent integers modulo M. It will be proved that for a general
residue system (without any restriction on moduli) it is necessary
and sufficient that M be a divisor of the < My, My eee W >
in order that the system be redundant and weighted. M need not be
a divisor of IImi for redundant, non-residue systems (refer to
example 4 on page 41). It will also be proved that for a residue
system, if Ml= < My, Moyees, My >, there exist exactly d sets of
digit weights for the system where d 1s called the factor of

redundancy and is given as

m oo I m,
g - are R e R (6.1)
< My Mpyeen; My > M

These results are useful in the discussion of the methods of error-
checking in the arithmetic of residue systems as described in the
next chapter.

6.2 Necessary and Sufficient Conditions on the Digit Weights of a
Residue System

Lemma 5. P1s Poreees Py is a set of digit weights for a
general residue system N with moduli my, mp,..., my,

and range M, if and only if
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= 0 (mod M)
(6.2)
(pl’ Ppreesy pnyM) =1
The reader should note the distinction between the greatest common
divisor (xy, Xp,..., %) and an element of N or ¢ indicated
as (Cl’ Cyyeeey, c) € N or E.
Proof: N 1is a residue system with moduli My, Moyees, My and. the
corresponding weights P15 Possees Py representing ZM. Since there
are no carries in the system, m;p; % 0 (mod M) for 1= 1,2,...,n.
If (al, By eany an) represents 1 1in the system, then

iPi

-
M

This implies (pl, Possses Py M) = 1. Conversely, if a residue

system N with weights (pl, Poseses pn) satisfies (6.2),

then
:ﬂ 81y Bgyeeey By B

such that

n

Zoagpy ta g M o= 1

i=1
Therefore,

n

EQ 2;05] = 1

= M

So (29, @p,.ss, 8,) represents 1 in the system. For an xe€Zy

there exists (X7, Xp,..., X, )€N such that
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m.
i
and
’Z lei = X
M
Also, x, yeZy, x 4 y. Then
X, = |x@y |, x = Y x 04
yi = |va, | 5 ¥ = |Ly.e,
m, M

So (xl, Xpyeee xn) and (yl, Ypseres yn) have to be distinct.
Thus, all integers in ZM have a representation in N and that
completes the proof of the lemma.

The residue system in which (l,~ l,..., 1) represents
1l e Zy 1is sometimes called the system of residue classes., In
such systems

n

oy 1 (mod M)

i=1
and the necessary and sufficient conditions of (6.1) are modified

as

pjm; = 0 (mod M) fori=1, 2,..., n—l\

n (6.3
| [

1 (mod M) B

™
go)
H
il
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6.3 Number of Acceptable Sets of Digit Weights of a Residue System
with Modull That are Not Relatively Prime

The following theorems are for residue systems which have a
representation (1, 1, ..., 1) for 1, and so (6.3) applies. How-

ever, they can all be proved for the general case by using (6.2).

Theorem 10.

A necessary and sufficient condition that a congruence

o M
Y ki — = 1 (mod M)
m.
i=1 i
where
M = <ml, m2,..., mn >

is solvable for kl,..., k is that
n

(M/ml; M/mgﬁ“'J M/mn: M) = 1 (6.4)

If 4 is defined as in (6.1), then there are exactly d

sets of solutions to kl’ Kpyses, k) such that

—-_ 1 =71
. m- m
Proof: ILet (my, mp) = dyo, Mo = L=
d
12
mlm2m5
(M m,) = d M = —
127 )
2 1 B dyp03
m 111
(M ’ m ): d_ ’ m =——-!_—m£
132 L 14 14 i 34
1241341k
m-m s a s
M) oy, my) = 4y, M=M= 112 ™

diod1% ses din
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d in the theorem is now obtained by

m-m
1Mo 1y
a = — - Ay pdyg eve dyy

The first part of the theorem stating the necessaryand sufficient
condition for solvability is well established and proved in most of
the textbooks on number theory.5 However, we will show that the

condition (6.4) is true.

Let
(M/ml, M/-mg, cee, M/mn, M) = d

then
M/ (myd), M/ (mpd), ..., M/(md), M/a) = 1
(%le, %ymz, cee ? m, M/d) = 1

So

m, |M/a  for i=1,2,...n

Therefore M/d is a common multiple of Myy My, eeey Moo

The least common multiple, M divides all common multiples of
ml, m2J ooy mn.,
Therefore M divides M/d , and so d =1

Thus we have proved the condition (6.4). We have the congruence

M Lk sk L =1 (mod M)
m o Tp

From the definition of d12’°°°’ d n Ve have



-62-

M M M M>
Ty T v -
m M My

» Iy oMMy

<m2 ..mn mlm3 ...mn mlmg..

’ yeey
dlg..d

Using the formulas (1), (2) and (3) given below

(1) 1If (ml, m2) = d12
then (?2_ s Tl_) = 1
dip  dyp

a by _ (a0 _
(2) (E’) '{_") = £ B) (ta) tb) = t(an)

we have

1n Y4o%309y dypdy3 .-

dln

d d d d . d d d
13 1n 12713 1n 1k 1n
because
Mo m3 mymp
— —_— = 1; (M m ) = d H =M
) ] 122 3 1 k) 12
d 3 dio

13 43

)
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Continuing the process, we get

m,_q My, : MMy .o mn-2mn> _ _m__rl
J
4 paadn dpdhiz e dyy dn
because
m M
< n-l 1Jn-1> -1
4 ,0-1 4,01
Therefore (M. ’ Mo, M s M> = My
m o My mn-1 din
M M M M
Ky — 4+ kp —+, ..., + k + k, —= 1 dM
1 m 2 s ’ ’ n-1 m,_; Do (mod M)

From the above two equations and from (6.4) we have

(I‘{— ) Illn_. = l
My dln
and
M _
k, — =1 (mod mn/dln)
n
kn has exactly one solution mod mn/dln; however, it has dln solutions

mod m, or O <k, < m g Now substituting for k, one of the dl,n

possible values we obtain a congruence in n-l1 variables

1 2 1

ko Mo4x 1\-/-1—+kn_ _M o <l-an—> (mod M)
m o My-1 My
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This equation is divisible on both sides by

m
L
dln
Thus we have
M M M
Kk, —Len=l Lo l.n-l Ly L,n-1 _ ¢ (mod M ) .
1 2 n-1 n-1 1,n-1
-m m m F2e
1 2 n-1
Repeating the same step
(Ml,n—-l) M1 Mona , M 1) _ M
n-
my mp mo_, 9 n-1

we can show that kn-l has exactly dl,n-l solutions modulo m,o_q
and k,_ o has dl,n-e and so on. This proves that we have a total

of

d

1n "4

1,n-1 $1n2 0 4o =

solutions for ki, ko, ..., k

s such that O <k.<m, - 1. Hence
- Ti-"1

the theorem is proved.

From the above theorem the congruence
n
M _
L k. — = 1 (mod M)

has d sets of solutions for kl, ceey kn, such that 0 < ki < m, .
Now applying (6.3) on the digit weights of a residue system N with

the operating moduli My, My eee My W have Py = ki M/m:.L

n n
% 0. = % k. M/mi £ 1 (mod M)
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which has d sets of solutions for kj,..., ky, 0 <k. <m.. Thus

we have proved the theorem stated below.

Theorem 11.
For a residue system N with moduli my, my, ... m,
representing integers modulo M where M =<my, mo,..., my >,

there are exactly

sets of digit weights.

Example 10. Consider a residue system N with moduli 6, 10, 21 repre-

senting Z Then

210°

_6-10*21
210

d = 6; m =6,m =10, m = 21.

The six sets of digit weights are given below.

pl 92 03

0 21 190

35 126 50
175 126 120 ot o, P = 1 (mod 210)

T0 21 120
105 126 190 mp, =myp, =mp_ = 0 (mod 210)
140 o1 50 7L 72h2 373

6.4 Condition on the Renge M of a Residue System

Theorem 12.
my, Mo, .., M, are the moduli of & residue system N. N can
represent integers modulo M, if and only if M is a divisor

of<ni,m?.“,mn>.
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Proof: If N is a residue system, then :3 P1s Pps +ees Py € ZM

satisfying the condition (6.3). For any i, if (m,, M) =1

i?

m

S O mod M

= k. M
i

M|p my M, my) =1

Therefore Mlpi

Therefore Py c. M for some integer s

1

0 (mod M)

This means that for any modulo that is relatively prime to M 1its digit
weight is zero. Such digits exist in the system as purely redundant
digits. Assume there are r such bits where 0 < r<n. If r=n
then p, =0 for i=1,2,...n and % p; =0 (mod M) which contra-
dicts condition (6.1).

Now reordering the moduli so that the last r modulil

Mpersl? Pp-psp o000 My

are the ones that are relatively prime to M, let

(M, mi) = 4 for 1i=1,2,..., n-r
and
Moo
a i
i
di > 1.

Then applying the first part of (6.3), we have

0 (mod M)

1]

PiMmy

kiM .
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Dividing by di

m. M
Ly T Mg
i i
m,
Let < = n'; Do
dy d;
such that
] f
(mgy 5 M ) = 1
k. M .
py = —+ M; =cy — for some integer
i d,
i

for i =1, 2, «.. n-r.

Applying the second part of (6.3), we have

é%., MM Mj> = 1.
1 9% Aoy

This is possible only if

M o= <4, d, a, . >
m m
1 2 Wy _
=<',',”,!I‘>
m n m
1 2 n-r

which implies that

M| < My, Mo, eee, My o0 >
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and so divides

< My, My, weey My >
Now, if
M divides <my, mp, ..., m, >
it is necessary to prove the following.
Claim. N represents Zy. If we can show that ;] P1s Pos wees P,
satisfying (6.3), then we will have completed the proof.
We know that N with moduli My, Moy ceey My represents Zt
where t =<my, my, ..., my >. Let Pys Pps wees Py € Zt be the

digit weights of the weight functions W:N - Z Since M divides

"

t we have pym, =0 (mod %)

©
=
n

0 (mod t) —=>pm =0 (mod M)

™
©
"

m

=1 (mod t):;Zpi 1 (mod M)

S0 are the digit weights for the system N —2Z,..

lpllM""’lpnlM M

so the theorem is proved.
Let My Moy eeey My be the modulil of a residue system N
having a range M =<m, my, ..., my > and let P1s Pos +evs Py be

one of the

sets of acceptable weights. As explained in Chapter IV, the system
N can be given a quotient structure g/s, where S is the row

space of the diagonal matrix.



If mi, mé, voay mﬁ are the smallest integers satisfying

mip; = O (mod M), then S' 1is the row space of the matrix

o 1
il

m!
n

which contains S. Further, if m!, m!, ..., m' are all pairwise
1 n
relatively prime, then 1II mi =M and S' will be identical to the

kernel of ¢ where o: ¢ —>ZM such that
ole,) = Py for i=1, 2, ous, 0.

Then the residue system N" with moduli mi, mé, cosy m£
and weights P1s Pos eees Py having a range M, 1is nonredundant.

The redundant system N can be considered an extension or coded

form of N' and the factors

1
!
1

in that case will be called the coding factors. These factors can
be used for error checking purposes as will be described later in
the next chapter. Also, simplification of any residue number in N

can be done by means of the transformations based on S'.
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However, the condition that there exist a set of weights

P1s Pps eves P of N for which the corresponding mi, mé, ey mﬁ

are all pairwise relatively prime is yet to be established. This

can be done by choosing a set !, mé, eoey mﬂ satisfying (6.5).

1
1 —
m = mn
<m) ,...,m~_ )m'>
m‘% = lnl2- l J l J fOI‘ j=2) s 00y n
J—
I om,
i=1 - 6
(6.5)

This way we can obtain m!, m!, ..., m' that are pairwise
J 1’ 72 n
relatively prime and
n
.H m]!- = <ml) m2) teoy mn>o
i=1
The residue system N' with moduli m!, m!, ..., m! having
J 1 n

a range equal to II mi = M, will have weights pi, pé, cers pé that

satisfy

1]

1 1 =
mi p} 0 (mod M)

1
Lo

1 (mod M)

Since m}! divides m;, myp} = O (mod M), and therefore
pi, pé, ssay pg is an acceptable set of weights of N. This
establishes the desired condition. Since the ordering of the moduli
is arbitrary there can be more than one such set of moduli
mi, mé, saey mﬁ and also of the corresponding weights. Table IIT

shows that the residue system with moduli 6, 10 and 21, has four
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such sets of weights, leading to mi, mé, mé that are relatively

prime,

I‘Hn.
4 - =+ _ 6xlox2l o
M 210

for that system. The six sets of weights and the corresponding

values of mi, mé, m! are listed in the table below.

3

TABLE TII

DIGIT WEIGHTS AND CORRESPONDING VALUES OF mi, mé, mé

m' m!

-

N Py P 5 3
1 0 21 190 1 10 21
2 35 126 50 6 5 21
3 175 126 120 6 5 T
b TO 2l 120 3 10 T
5 {105 126 190 2 5 21
6 | o 21 50 3 10 21

If m' 1is the smallest positive integer such that lmipi‘ =0
i M
then the residue system with moduli m!, mé, m! can also have

1 3

weights P1s Py p3 and represent ZM. Such a system also has

diagonal carry matrix S.

(! 0 01
1

|\_N
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In particular, if mi, mé, mé are pairwise relatively prime,
then § 1is identical to K of the system. Otherwise, we will have K

that is not diagonal but is triangular.

For the second set of weights from the table m! = 6, m! = 5,

1 2
mé = 21, and the carry matrix S 1is given as
6 0 O]
S = 0O 5 0 and det. S = 360 .
0 0 21
The null space K has a matrix
(6 0 o0 2 0 -7
K ={0 5 0] =1]0 5 0 and det. K = 210 ,
-2 0 7 0O 0 21

K 1is not diagonal but triangular, and the system has carries between
the digits which are very much undesirasble., This is the case also with

the sixth set of weights which have

= - LI .
= 3, m.2 = 10 and m3 21

But in the case of the weight sets 1, 3, 4 and 5 (from the table)
mi, mé, and mé are pairwise relatively prime and there are no carries
at all.

Hence, a non-redundant residue system with 6, 5, 7 as moduli

having respective weights 175, 126, 120 can be represented by the

redundant system with moduli 6, 10 and 21 with the same weights.
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This is why the selection of the set of weights is important
from the arithmetic point of view and also decides the type of redund-
ancy.

If the range M 1s & proper divisor of < ml, My eeey M >

2)
the situation is not very much different. It can be shown by similar
reasoning that there exists a set of weights P15 Poy +ees Py for

the system which have corresponding integers 4 ﬂz, vess ﬁn satisfying

l)
(1) #4p; = O (mod,M)L
(i1) 44 |mg ™ for 1=1,2, ..., n
n
(ii1) I 4y =M,

i=1



VII. ERROR CHECKING IN RESIDUE ARITHMETIC

T.1 Introduction

Residue number systems, their properties<l’3’lo) and computational
methods have been investigated by several researchers.(5’lo:ll) Some of
the persistent problems in residue systems such as magnitﬁde and sign
determination, overflow detection and division methods have been studied
by them., The reliability aspect of residue arithmetic, and error checking
in residue number systems using pairwise relatively prime moduli are dis-
cussed by Garner,<7) Some of the coding techniques<8’9)l3) of error check-
ing in conventional number systems can be applied with advantage to residue
systems. Different methods of residue coding, error checking and their

relative advantages are discussed in this chapter,

7.2 Residue Representation

Error checking can be based on the notion of weights¥* of the coding
elements and the distance between two code elements, The representation of
the residues will be an important consideration in defining the weight of
a code element. If each modulus is considered a single digit, (irrespective
of the type of representation of the residues), then the weight of a code
element is equal to the number of non-zero residues‘ In particular, if
a residue system in which (1, 1, ..., 1) represents the integer 1, the

weight of (1, 1, ..., 1) is equal to n and so also the distance between

* The weight of a residue number referred here in this chapter is related
to the concept of Hamming distance and so must be distinguished from the
digit weight used before.

Th-
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any two adjacent numbers, The distance in this case, between two code
elements is the weight of the arithmetic difference between them, This
coincides with Hamming distance since there are no carries between the
moduli. On the other hand, i1f the residues are binary coded, it is
possible to look at each of the residues, and weight can be attached
to them separately. The weight of any particular residue is equal to
the number of 1's in it, The distance between any two residues (of
modulus my ) will then be considered as the weight of their difference.
In residue systems, even though there are no carries between
moduli, there is difficulty in obtaining the least positive residue
(with respect to my ) anytime the arithmetic result exceeds my - 1.

It will be shown later if the modulus is 2° - 1 for any positive

integer s , binary coding of the residues will be advantageous.

T.3 Pairwise Relatively Prime Moduli

Consider a residue system N with moduli my, mp, ..., m, 4

(relatively prime, pairwise) representing integers modulo

n
M=1 m (1.1)
i=1
Let
n+k
M'= I omy (7.2)
i=1

The k moduli mp,q, «oo, My, are used for redundancy. And we shall
consider the error checking possibilities of this redundant system with

M' elements representing ‘ZM . Let us examine this as a system
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representing ZM" non-redundantly and pick the subset representing
{O, 1, ooy M-l} of Zy. as the correct elements of the system and
the rest erroneous elements, Then if the system has a minimum weight
t+1 (or t error detecting capabilities), any element of weight less
than t must have a magnitude greater than M ,

Also let pq, Pps esey Ppyy De the weights of each of the

moduli, That is (0, ., 1, 0, ..., O) represents p; . Such that
@
(i-th place)

Pi€Zy, for 1i=l, 2, ..., ntk . For a non-redundant system, we have
that
M! .
P, = ky g for all i=1, 2, ..., n+k

where ki is any integer such that (ky, my) =1. If x = (x3, X5,

coay xn+k)eN has a weight equal to t , then exactly t of the x's
are nonzero, The magnitude of x can then be written as
t

L850y
J=l

],y =

M M S8 s

where pi, pé, saey pé are any combingtion of t weights out of

n+k  weights pq, Ppy ooy Ppyx + Then the condition

IXIM' > M

| 2

is sufficient for t error detection, or (E} error correction,

Theorem 13,%*
A residue system with n+k moduli My, Mo, eus, My (all pair-

wise relatively prime) representing integers modulo

* For the case k=1, 2, the theorem has been proved by H, L, Garner, in
some of his unpublished work.



-77-

n
M=Hmi
i=l
has a minimum distance k+1 if and only if mn+j > my; for
j=1, 2, ..., d end i=l, 2, ..., n . (7.3)

Proof: If my, my, ..., myy satisfy (7.3), then any element with weight

t, 1<t <k has magnitude X

Xy = | ;l 85 #1 |y
%
= . M!
The =) 5 % 2y
J= j M!
where 1 < 6j < mj -1 and mj, mé, csey m% are any t moduli out of
the n+k .
cC M for C
Xy =% ¢
I mj 1<C< I m!{ -1
j= - —i=1 J
M! M!
I m! I myes
SIS
since
%Hj>mi for all i=l, 2, ..., n .
Also
1 1
" M > . M =M since k > t,
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Thus, any element of weight t, 1 <t <k has magnitude greater than
M and so is not in the code. Thus every non-zero code element has
weight greater than k , Conversely, if every non-zero code element

has weight greater than k , then

t M
| T8y gl 2 M for all 1<t <k
J= J
k

1
cM > M where 1 <C<I m! -1
k - - —3=L
Im!
. J
J:

Therefore
MI MI
>M =
k - k
Inm! Im .
. n+
j= J j= J
This implies
k k
Im! < I .
= +

Pl jzlmn J

This is satisfied for all t <k and any combination

1 1 1
m m eaoy M
10 oo e T

only if
mn+j > my for j=l, 2, ..., k
i=l, 2, s, n
Thus, the theorem is proved,
If the magnitude of any arithmetic result is checked and is

found to be greater than M-1 then the arithmetic operation is in error,

Error correction is based on the principle of table look up or by trial
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and error check by procedure., Either of them is inconvenient as they
involve repeated magnitude determination which is not simple in residue
systems, Thus, the excess moduli coding is good at best for single error
detection, ©Single error detection can be obtained with one extra modulus

m. .y » such that m,.; >my for i=l, 2, ..., n .,

7.4 Moduli that are not Pairwise Relatively Prime

Error checking in residue systems with relatively non-prime
moduli. is based on the following
Theorem 1k4,
If m, my, ..., my are moduli of a residue system represent-
ing Zy where M =<mp, my, ..., my >, (m, mj) =d for some i, j, i#j
and (1, 1, ..., 1)eN represents leZy , then d divides x; - Xj, where

X; and Xy are residues with respect to the moduli m; and mj Tespec-
tively.
Proof: It was shown in Chapter VI, that if (l, 1, ..., 1) 1is a repre-

sentation for 1, then any erM has & representation

(%1, Xoy weey X )N

such that
X, = [x{mi
For i#j
Xi =X - kimi
for some integers k; and kj
xj =X - kjmj

X - %y =x - kymy - (x - kjmj)

Il

- kimi
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Since (mj, my) =d, 4 divides kymy - kym; and s0 also Xy - Xj .

Thus the theorem is proved.

The following example illustrates the error detecting proper-
ties of a residue system using 2% .1 type of moduli, which are not
pairwise relatively prime, Furthermore, this system uses binary coding
of the residues.

Example 11

Let N Dbe a residue system with moduli m, = 63, m, = 255,

m3 = 511, my = 1023, The prime factorization of the moduli will yield

the following

m o= 63 =3x%x 3% 7 =201
m,= 255 =3x 5x17 =2 -1
my = 511 =7x 73 =29 -1
m, =1023 = 3 x 11 x 31 = 210.1,

Since the modulil are not pairwise relatively prime, they can
represent Zy when M = <my, mp, mg, my > = 63 x 85 x 73 x 341, If
(xl, Xp, X3, xu)eN, then 7 must divide =xp - X3 and 3 must divide
X5 - x) . If the error is divisible by these factors then it can not be
detected. On the otherhand if the residues are coded in the binary form,
a single error in one of the residues causes a change of f(bmi - 2k)
where b=o or 1 , and k 1is any non-negative integer such that 2k <my.
Some gimpler methods of obtaining residues modulo 3, T or ok -1 (for

some integer k ) are covered in the next section,

7.5 Binary Coded Residue Systems

Since the residues are coded binary, conventional binary arith-

metic units can be used with certain modifications. Whenever the result
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of an arithmetic operation produces a residue value greater than my -1,
the least positive residue (mod mi) has to be recovered., This can be
done by a division of the result by m; and the remainder be taken as
the residue., That is a very cumbersome method. On the other hand,
residue addition and recovery of the least positive residue can be done
by generstion of suitable number of end-around carries. The idea of end-
around carries is based on the following. If a certain modulus my is

a power of 2 , say my = 2K then arithmetic modulo m;

; 1s done by a

k bit binary unit with overflows ignored, Otherwise, my is such that

2k > my > EK"l, for some positive integer k let 2k _ m,

;4 be equal to

C. Then C < 2Kl , and ok = ¢ (mod m;)., Thus an overflow from the
k-th stage, (equivalent to 2k) can be taken care of by addition of C.

If C in its binary form, has only a few 1's then these can be absorbed
as end-around carries. The result obtained by this technique is < ok ,

otherwise m: should be sub-

and is the correct value if it dis < ms 1

1 0
tracted, This method can be employed for multiplication using end-around
carries absorption, comparison with my being left to the end,

It my = 2k~l, there is only one end-around carry. Multiplica-
tion by 2 or by any power of 2 is obtained by a suitable number of
cyclic left shifts., Also, since m; = 2k-1 is expressed as 1l...l in
binary, the complement of any residue is obtained by switching zeros
into ones and vice versa; If a set of moduli my, mo, .;;) m, 1s chosen,

in which my = ZSi-l, (i=1, 2, ..., n;) then the moduli may not be rela-

tively prime,
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The example 11 in the previous section uses moduli of the
type ZSi-l and the redundancy factors are 3 and 7 . If the
residues are binary coded then error detection proceeds as follows,

Single errors in binary residue arithmetic would result in
an error of ¥(bmy - 2K) where b =0 or 1 and k any non-negative

integer such that 2k < m;. Since 3 divides my but does not divide

i
2K the error is detectable., The same thing can be said about the
moduli that have 7 as a common factor. Thus, single errors can be

detected by verifying whether

3 divides Xy = X and T divides x; - x

3
To check whether 3 divides any binary number several methods exist,
One method is to delete all sets of two adjacent 1l's or O's and group
the rest of the number and do it over again until no two adjacent zeros
or ones exist., The residue modulo 3 will be equal to the number of
1's if they are in odd places, or will be equal to ~(the number of one's)
if they are in even places.

Another method is to use a modulo three adder-subtractor to add
the odd digit 1's and subtract the even digit 1l's .

Residue modulo 2k—l of a binary number n digits long can be
obtained by treating the number in groups of K digit long and adding
the [%] + 1, k¥ Dbit numbers with an end-around carry. This is possible

because

o
1

21 mod (2K - 1)

1 mod (2K - 1)
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Also k adjacent 1's or O's forming part of the number can be deleted,
the remaining ones Jjoined.
An example of a binary number modulo 7 1s given below.
Example 12
To obtain X = |010 111 001 011 ()11\7
Deleting three adjacent 1's we have
010 001 011 011 .
Again deleting the three adjacent zeros formed, we have
011 011 011 .
Now dividing into three bit numbers, and adding them, we have
011
011
110
0ll
1001

An end-around carry has to be generated. Therefore the result is

001

1

010
Therefore, X =2,

A residue system with moduli 3my, 3m2, seey 3M,, Where

My, Mo, ..., M, are pairwise relatively prime, permits single error
detection in the residues. In fact, simultaneous detection of single
errors in t of the moduli is possible where t 1is any integer such
that t < Eé£ . Also, the exact moduli in which the errors occurred
can be located. If (X1, Xp, ..., X,) 1is the arithmetic result from

Theorem 7, we have that all the residues lxl]3, IXQIS, cens %]
3

should be equal, If these are single errors in any of the residues,
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they can be detected, If there are t moduli in which single errors
have occurred, corresponding to these moduli, the residues modulo 3
would be different. Since some of the moduli of the 2° -1 type have
3 as a factor, this method can be considered advantageous. Redundancy

of the system can be expressed as

n
log, [3 I mﬂ
i=

Information per bit = I ’

log2[3n il 1_|
i=1

which will be greater than the single error detecting system using rela-

tively prime moduli,if any of the moduli is greater than 3n-l .

7.6 An + B Type Coding of Residues

Error checking of the residues is possible by coding each of
the residues separately. This is based on the principle of An + B
type codes,(9) If Am; + 2B = ESi -1 for any particular modulus my ,

and for positive integers A, B and s; , then an s;

; Dbit binary repre-

sentation of the residues is possible, Since k and its complement
m; - k are coded as A k +B and A(my - k) + B respectively, their
sum
Ak +B+A(my -k) +B =Am +2B = %1 -1,
which 1s expressed as 11...l1 in the binary form. Complementation can be

done by switching O's and 1's. However for B#0 , the addition and

subtraction of two code elements should be accompanied by proper correction.
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This is not suitable for multiplication of two residues in the coded
form, However, for codes Amj = 2°1 .1 (that is for B =0 ) no cor-
rection will be necessary for addition or subtraction. If k; and k2
are two residues coded as A ki and A k, , their multiplication will
have to be ]A ki ko Ami . This can be obtained by multiplying A kl
by k5, or Ak, by k, . That is, one of the operands have to be de-
coded before multiplication. Also, the minimum distance or weight of
the code elements depends on the selection of A . For single error
detection A can be any odd integer > 3 ., For single error correction
the minimum distance has to be >3 . For each odd integer A there
exists integer r, . , such that A r; .. is of the form 2t * 1 for

smallest integer t . Then my <

< rpox » Since Ami is required to be

of the form 2°1 £ 1, my =Trpysy . Some values of A and m; are given

1

in the table below,

A m, Am; =271 11
19 o7 29 +1

21 3 26 -1

23 89 oll _ g

29 565 ol 41

37 3085 218 41

39 105 ol2 _ 1

91 L5 ole _ 1
99 331 210 + 1
105 39 ole -1

_ 051
If Ami =2

+ 1 type, the arithmetic is not so straightforward as in
Sa

ot .1 type. An end-around borrow will have to be propagated in

S

21 +1 type. Also, complementing a code element can be done by switch-

ing O's and 1's followed by an addition of 2 .
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T.7 Suitable Moduli for Residue Computation

The single error detecting system using moduli 63, 255, 1023,
and 511 has several advantages as shown before, The redundancy per bit

in the system is:

log, 63

log,[63 x 255 x 1023 x 511]

6
’:’6+8+9+11

176 = 17,6 percent,

11

and the information per bit =1 - ,176 = ,824 (approximately).
An n-single error correcting system using moduli 89, 117, 565,
and 331 which are all pairwise relatively prime has g range M = Imy ,

of the order of 231 . The corresponding coding factors A; and their

products are as below,

i A, my A:m

i 1My
1 23 89 ol _ g
2 35 117 pl2 _ 1
3 29 - 565 2t

I 99 331 ol 41

Any single error in each of the residues of the arithmetic result

(x1, X5, X3, xu) can be corrected by obtaining |x; If the result

ay °

is correct,

%4
i Ay
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would be all O . Since any single error causes a change of t Ek )

. S
k <s; for the 21 41 type, k <s; for the 2 1 - 1 type of moduli,
and their residues modulo A; are all distinct; the single error can
be corrected. This system enables n-single error correction (or a

single error correction in each of the n moduli). As expected, the

redundancy per bit given by 1T

logg[?3 x 35x 29 x 99]

log,[(2M - 1) (212 - 1) (2t + 1)(210 + 1]]

= _1h.66 = 40.6 per cent

52 x 694
is much larger than 18.2 percent of the single error detecting 25 -1
type moduli system described before, Further, this system has 25 +1
type moduli which are not as convenient as 2° - 1 type. Also, since
the coding factors Ay are 23, 35, 29, 99, there is no simpler way of

obtaining residues modulo A; other than by division. These features

make the n-single error correcting system less attractive.



VIII. CONCLUSION

8.1 Review of the Results and Conclusion

In the first part we are able to categorize the finite number
systems as linear and non=-linear and study their advantages and disadvan-
tages. It is shown that the digitwise sum has no meaning in non-linear
systems. In particular, the weighted systems, which are in the category
of linear homogeneous, obey the digitwise sum rule (2.2) as stated in
Chapter II. Very important consideration 1s given to the relations be-
tween the digit weights and carry propagation rules. These have been
explained very successfully by means of the quotient module structure
that can be given for all weighted systems. This leads to the interest-
ing notion of triangular form of carry matrix for non-redundant systems
and the theory of canonical transformations for redundant systems as ex-
plained in Chapter V.

For the residue number systems, it 1s shown that the carry
matrix is diagonal, and the range M 1s a divisor of the product of the
moduli. This condition limits the choice of redundancy we can use in the
residue systems. Also, since there are 4 sets of acceptable digit
weights in a redundant residue system representing Zy where M =<mj,
Moyeoes,ly > and d = gﬁi , computation can be done using any suitable
set of weights. However, the selection of the set of weights is depend-
ent upon the error checking scheme of the system. This dependency of
error checking and the digit weights 1s explained by means of the example

of a residue system with three moduli 6, 10, and 21.

-88-
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Using the theory of redundant residue systems, methods of
error checking in residue arithmetic are derived. Moduli of the
type 25 + 1 (for a positive integer s) and their advantages in re-
sidue computation are investigated.

The aspect of selecting suitable moduli and the type of
redundancy for reliable and logically superior residue arithmetic 1is
one of great importance. Other problems in residue computation are to
find improved methods of magnitude comparison, sign detection, and divi-
sion. There are attempts by some researchers,(lofll) to use redundancy
to obtain improved sign determination methods. Unless some breakthroughs
are obtained in these problems, the residue computer still remains as a
special purpose machine. While the abstract mathematical structure de-
scribed in the earlier parts is expected to enhance the understanding of
the general properties of the weighted systems, the investigation pre-
sented in the latter parts of this dissertation is expected to help in

the logical design of reliable and improved residue arithmetic units.



APPENDIX

Theorem 3:
The n 1independent linear congruences expressed below as
?11 ci2 . 61; '_Xf K
C21 %2 - Con =
. - (mod M)
¢nl ©n2 ¢+ Cnn Xn 0

have solutions xi = P; where (P1,Pp,...,Py,M) =1 if only M divides

the determinant of the nxn matrix above.

Proof: The congruences can be written as n equations
Cll Xl +C12 X2 + 00 + cll’l Xn =klM
Cop X7 + Cpp Xp + oue + Cop Xp =kp M
Cpnl X1 + Cpno X0 + ees + Cpp Xpn =k M
Let
€11 €12 €ln
C2l c22 Con
A =
Cnl ©Cn2 Cnn

and a minor Ajj of A be the (n-1) by (n-1) determinant obtained by

deleting the i-th row and Jj-th column from A.

-90-
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Then K] MAJ] + ko MAp] + ovv + kpy M A
A

4
l_J
!

]

gagl for some integer c¢j .

Similarly,
_ i-1 kg MAj3 + ko MAog + oo + Ry M Ay
x; = (-1)
A
= MAFi for some integer c4 .

Thus, we have

XiA=MCi fori=l,2,oco,no

Let

(X75%p,00 %) =k .
Since

(X1,X0, .00 %p,M) =1

(k,M) =1

(%1 8, % B, ovuy X A) =k A

(M Cy, MCoy vvey, MCpy) =MC for some integer C .
Therefore,

kA=MC,
Therefore M divides k A .

Since (M,k) =1, M divides A, thus proving the theorem.



10.

11.

12.

13.

BIBLIOGRAPHY

Garner, H. L., "The Residue Number System," IRE Trans. on EC,
Vol., EC-8, No. 2, June 1959.

LeVeque, W., Theory of Numbers, Vol. 1, Addison Wesley Publishing
Co. 1956.

Rozenberg, D, P,, "Algebraic Properties of Residue Number
Systems, " IBM 61-907-176.

Jacobson, N., Lectures in Abstract Algebra, Vol. 2, Chapter 3,
Van Nostrand Co., Inc,, 1952,

Garner, H. L., et al., "Residue Number Systems for Computers,'
ASD Technical Report 61- L83, The University of Michigan Techo
nical Note, ORA 04879-6-T, September 1962,

Garner, H, L., "Finite Non-Redundant Number System Weights, "
Information Systems Laboratory, The University of Michigan
Technical Note, ORA 04879-6-T, September 1962,

Garner, H, L., "Error Checking and the Structure of Binary Addi-
tion," Ph.D, Thesis, Chapter V, The University of Michigan, 1958.

Diamond, J. M., "Checking Codes for Digital Computers,' Proc, of
the IRE, 43, (1955) 457-488.

Brown, D. T., "Error Detecting and Correcting Binary Codes for
Arithmetic Operations," IRE TRANS, EC-9, (1960) 333-337.

Aiken, H., et al., "Modular Number Systems," Harvard University
Computational Laboratory, July 1960.

"Modular Arithmetic Techniques," Technical Documentary Report No,
ASD-TDR-62-686, January 1963, Lockheed Missiles and Space Co.

Sunnyvale, Callfornla

Arnold, R. F., "Linear Number Systems," The University of Michigan,
Technical Note 0L879-8-T, October 1962.

Peterson, W. W., "Error Correcting Codes," The MIT Press and John
Wiley & Sons, Inc., New York, (Jan. 1961) 236-2LkL,

-92-



